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1  Introduction
Wireless sensor networks (WSNs) are groups of spatially distributed communication 
nodes capable of sensing environmental variables (e.g., humidity, temperature, irradia-
tion) for applications that usually require low data rates. Also, they tend to cover large 
and possibly remote areas (e.g., forests and mountains), which imposes the need for 
low-power and lower-complexity device implementations. This design principle imposes 
severe limitations on the radiated power, because electromagnetic radiation is the main 
source of energy consumption for WSN nodes [1]. Such limited radiated power, in turn, 
restricts the range of communication of each node.

The use of multiple-input multiple-output (MIMO) techniques for increasing the 
energy efficiency of WSN has started to receive attention from the scientific community. 
In particular, the diversity gain enabled by MIMO systems can be used for improving the 
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Singular value decomposition (SVD) beamforming is an attractive tool for reducing the 
energy consumption of data transmissions in wireless sensor networks whose nodes 
are equipped with multiple antennas. However, this method is often not practical due 
to two important shortcomings: it requires channel state information at the transmit-
ter and the computation of the SVD of the channel matrix is generally too complex. 
To deal with these issues, we propose a method for establishing an SVD beamforming 
link without requiring feedback of actual channel or SVD coefficients to the transmitter. 
Concretely, our method takes advantage of channel reciprocity and a power iteration 
algorithm (PIA) for determining the precoding and decoding singular vectors from 
received preamble sequences. A low-complexity version that performs no iterations 
is proposed and shown to have a signal-to-noise-ratio (SNR) loss within 1 dB of the bit 
error rate of SVD beamforming with least squares channel estimates. The low-complex-
ity method significantly outperforms maximum ratio combining diversity and Alamouti 
coding. We also show that the computational cost of the proposed PIA-based method 
is less than the one of using the Golub–Reinsch algorithm for obtaining the SVD. The 
number of computations of the low-complexity version is an order of magnitude 
smaller than with Golub–Reinsch. This difference grows further with antenna array size.
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reliability of the wireless link, reducing the outage probabilities and boosting the overall 
energy budget of WSN nodes [2–4]. These works show that if channel state information 
(CSI) is available at both ends of the link, an optimal symbol error rate (SER) is attained 
by employing the SVD-beamforming method [5]. SVD beamforming consists of using 
the strongest singular value decomposition (SVD) eigenmode of the MIMO channel [6]. 
This is implemented by employing the principal right and principal left singular vectors 
of the MIMO channel matrix as beamforming weights at the transmitter and receiver, 
respectively.

A key limitation of SVD beamforming is that channel state information (CSI) is 
required at the transmitter (CSIT). In frequency division duplexing (FDD) systems, CSI 
has to be computed in the receiver and then sent back to the transmitter, introducing an 
additional burden to the data traffic. To address this issue, limited feedback techniques 
have been proposed, whereby the receiver selects the beamforming vectors from a pre-
defined finite and indexed set [7–10]. Thereafter, only the index of the precoding vec-
tor that best matches the channel in effect must be signaled back to the transmitter. An 
important drawback of this technique is that the data feedback must be performed prior 
to having the beamforming signal-to-noise-ratio (SNR) gain available across the link, 
making this approach impractical for low SNR scenarios.

In time division duplexing (TDD) systems, channel coefficients are estimated at both 
sides of the link using training signals in both directions and by exploiting the reciproc-
ity of the wireless channel [11]. Respective SVDs may then be calculated by both devices 
from the channel estimates.

Another difficulty of the SVD-beamforming scheme is that obtaining the SVD of the 
channel matrix is computationally costly. For general applications, the Golub–Reinsch 
algorithm (GRA) [12] is the most utilized method for calculating the SVD because of its 
numerical stability, reduced computational cost and acceptable convergence speed [13]. 
While much research has been done trying to find ways to reduce the complexity of the 
SVD computation [14, 15], existent solutions are still inadequate for implementation in 
systems with a restricted energy budget and fixed-point computation constraints.

A family of TDD algorithms that require neither channel estimates nor SVD calcu-
lations have been explored in [16–20] and provide a way around the above-mentioned 
difficulties. These methods are based on the power iteration algorithm (PIA) [21] and 
require several back-and-forth transmissions before achieving a channel estimate good 
enough for reliable communication. One of the first of these algorithms is proposed in 
[17], in which an arbitrary symbol precoded with a unit vector is sent from the source. 
Then, only through normalization, conjugation and retransmissions of the received 
signals, the SVD-based beamforming link is established. A blind iterative MIMO algo-
rithm (BIMA) is proposed in [18], which unlike [17] does not require a training stage. 
The precoding and decoding vectors are determined using payload data and are con-
tinuously updated while used at the same time for communication. The drawback of the 
algorithms of [17, 18] is their slow convergence (i.e., higher error rate at the beginning of 
packet transmission) and their poor performance in low SNR scenarios [20]. To improve 
performance at low SNRs, [20] extends BIMA with an adaptive algorithm, which esti-
mates the principal singular vectors at both sides using a weighted sum of previous esti-
mates and the current received signal. This reduces the detrimental effect of the thermal 
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noise significantly, but the convergence of the algorithm is still slow. Hence, the cited 
methods are still inadequate for packet-based transmissions and energy-constrained 
devices.

Our contribution in this work is a method for establishing SVD beamforming by 
means of the power iteration principle. In contrast to the prior art, however, the pro-
posed method does not realize its power iterations by repeated transmissions over the 
air, and it uses instead single transmissions of preambles followed by local iterative com-
putations at the receiver. In addition to the energy and time savings obtained this way, 
an additional trade-off between energy consumption of computations versus quality of 
the resulting beamforming weights and, consequently, versus bit error rate (BER) perfor-
mance can be exploited by varying the number of computational iterations. Improving 
the quality of the beamforming vectors does not require more transmissions over the 
air, just more computation at each transceiver. For the special case in which only one 
iteration of the PIA is performed, a reduced-complexity formulation of the method is 
devised.

After describing the proposed method and modeling it mathematically, we assess its 
computational complexity and its BER performance. The computational costs of the pro-
posed method and of the popular Golub–Reinsch algorithm (GRA) for performing SVD 
are determined and compared for different antenna array sizes in terms of number of 
arithmetic operations. It is shown that the computational cost of the proposed method 
is less than for GRA in all cases of practical interest. The cost of the reduced-complexity 
version is an order of magnitude smaller than for GRA.

The BER performance is compared to well-known multiple-antenna diversity tech-
niques, including maximum ratio combining and Alamouti coding. It is shown that both 
are outperformed by a significant SNR margin, even by the proposed reduced-complex-
ity version. For antenna array sizes up to 64, the reduced-complexity version is shown 
to attain a BER with an SNR loss smaller than 1 dB with respect to SVD beamforming 
based on least squares channel estimates and perfect SVD computation by the GRA, 
while requiring an order of magnitude fewer computations.

The rest of the paper is organized as follows: In Sect. 2, we briefly present the MIMO 
signal model and SVD-BF in order to establish the nomenclature used. Section 3 pre-
sents the structure of the transmissions over the air used by the method and explain the 
calculations that the devices at each end of the link have to conduct. The performance 
of the proposed technique is quantified by Monte Carlo simulations in Sect. 4. Finally, 
Sect. 5 summarizes the main conclusions.

2 � System model
This section introduces the MIMO signal model and the SVD-based beamforming 
scheme for a system with Nt transmit antennas and Nr receive antennas. The signal at 
the receiver can be modeled as

where y ∈ C
Nr is the column vector of received symbols at the Nr antennas of destina-

tion device �2 , H ∈ C
Nr×Nt is the MIMO channel matrix of coefficients hij that represent 

the complex fading gains from transmit antenna j to receive antenna i, column vector 

(1)y = Hx + n,
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x ∈ C
Nt represents the baseband-equivalent complex training or data symbols transmit-

ted by the Nt antennas of source device �1 , and n ∈ C
Nr is a column vector of complex 

additive white Gaussian noise (AWGN) with i.i.d. elements with zero mean and ν2 vari-
ance. Throughout this work, the elements hij are assumed to be i.i.d. circularly symmet-
ric complex Gaussian random variables with zero mean and unit variance. In order to 
normalize the radiated power, the restriction ||x|| = 1 is imposed, where || · || denotes the 
Euclidean norm.

The SVD theorem [22] states that any matrix H can be factored as

where (·)† denotes the conjugate transpose operator. The matrices 
U = [u1,u2, . . . ,uNr ] ∈ C

Nr×Nr and V = [v1, v2, . . . , vNt ] ∈ C
Nt×Nt are unitary, i.e., 

UU† = INr and VV† = INt , where IN is the identity matrix of size N × N  . The left and 
right singular vectors uk and vk , respectively, are not unique, because {eθuk}Nr

k=1 and 
{eθvk}Nt

k=1 , with an arbitrary angle θ and  defined as 
√
−1 , are also valid singular vectors 

for H . The matrix � is an Nr × Nt diagonal matrix of nonnegative real numbers σk , known 
as the singular values. These terms can be ordered such that σ1 ≥ σ2 · · · ≥ σmin(Nt,Nr) , 
where rank(H) ≤ min(Nt,Nr) of these singular values are nonzero [6].

If CSI is available at both transmitter and receiver, then by using an SVD precoding, 
the MIMO channel can be decomposed into rank(H) parallel data streams commonly 
known as eigenchannels. The various eigenchannels have different statistical properties: 
the strong ones are useful when diversity is needed, while the weak ones can be used for 
increasing throughput [5]. The highest diversity gain is obtained by transmitting data 
only over the strongest eigenchannel, which is known in the literature as SVD-BF. The 
corresponding transmission scheme consists of using the first right singular vector v1 to 
precode a scalar payload data symbol d ∈ C , which is then decoded at the receiver with 
the conjugate transpose of the first left singular vector u†1 . The resulting communication 
can be modeled as

where ñ is a scalar of complex AWGN with zero mean and variance ν2 , ỹ is the received 
symbol d under equivalent thermal noise ñ and channel gain σ1 . It is to be noted that the 
statistics of σ1 can be well approximated using the Nakagami-m channel fading model 
[5].

The main difficulty of this technique is to obtain CSI at both sides of the link, par-
ticularly at the source device, and determine the first singular vectors from the channel 
matrix H.

3 � Proposed method
In this section, we present a detailed method for establishing an SVD-BF link between 
two nodes �1 (source) and �2 (destination) in an environment where channel reciprocity 
between forward (source to destination) and backward (destination to source) transmis-
sions can be assumed. Hence, if the signals in both directions use the same frequency 

(2)H = U�V†,

(3)
ỹ = u†1U�V†v1d + u†1n

= σ1d + ñ,
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carrier and bandwidth, as in TDD systems, then the channel response is the same [23]. 
Formally, for MIMO systems, a channel H in the forward direction has a reciprocal 
channel HT in the backward direction, where (·)T denotes the transpose operator.

Even though non-symmetric characteristics of the RF electronic circuitry break the 
channel reciprocity, various solutions to that problem are available, either hardware-
based or based on calibration algorithms [24, 25]. As addressing this aspect is beyond 
the scope of this work, we assume that devices �1 and �2 are properly calibrated so that 
channel reciprocity can be assumed. We also assume perfect packet detection and tim-
ing acquisition for all the transmissions. It has been shown that these tasks can be per-
formed with the same preamble structure used here for channel estimation [26].

In the sequel, we first describe the method and its various steps, followed by a detailed 
description of each one. Then, an algorithm for obtaining the first singular vector from 
the channel matrix estimate is provided. And finally, we present a computational cost 
analysis of Golub–Reinsch algorithm, the most common technique for obtaining SVD, 
for comparing it with the simplified method that we propose.

3.1 � Conceptual description of the method

The technique for establishing an SVD-BF link entails two types of transmissions: Ping 
and Pong (Fig. 1). The Ping consists of transmitting a known time-orthogonal preamble 
from �1 to �2 , which allows for estimating the first left singular vector u1 at �2 . This type 
of transmission does not contain payload data. After the Ping, an arbitrary number of 
Pongs containing preamble and payload may be sent alternatingly in both directions. The 
first Pong is a transmission from �2 to �1 composed of a preamble and payload data that 
are precoded at �2 with the left singular vector. The preamble thus received by �1 ena-
bles it to estimate the first right singular vector v1 . �1 then replies to �2 with a next (sec-
ond) Pong, which has the same structure as the first Pong (preamble followed by payload 
data), but is precoded with v1 . The method is described with mathematical formality in 
Sect. 3.2.

The method might be used for two-way communications, because Pongs may carry 
payload data in both directions. However, for simplicity of description we present only 
a one-way communication scheme because the bidirectional case is a straightforward 
extension. In particular, we present the case when the communication is initiated by a 
node �1 that has information that it wishes to communicate to a neighboring node �2 . 

Fig. 1  Representation of the Ping–Pong–Pong scheme between source node �1 and destination node �2
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This communication situation requires at least three transmissions: Ping–Pong–Pong 
(Fig. 1). It is to be noted that if the communication is initiated by a node that queries a 
neighboring node to find out if it has information to communicate, then the communi-
cation could be achieved with only two transmissions: Ping–Pong.

We focus on the case when the mobility of the environment is slow enough so that 
the coherence time of the channel is longer than the time required for a Ping–Pong–
Pong transmission. In general, two-way SVD-BF communications could be maintained 
for longer than the coherence time of the channel if new Pong transmissions are made 
between both nodes more frequently than the coherence time. Furthermore, the re-esti-
mations of singular vectors could be weighed with previous estimates as proposed in 
[20].

While the proposed method allows for calculating the first singular vectors on both 
sides of the link, it does not provide the first singular value σ1 . However, as can be seen 
in (3), the knowledge of σ1 is only necessary for decoding the data if the communication 
system uses amplitude modulation, such as quadrature amplitude modulation (QAM) or 
amplitude-shift keying (ASK). σ1 may be estimated in several ways, such as by embed-
ding further pilot symbols in the transmissions. Alternatively, in order not to increase 
the complexity or transmission overhead of the scheme, only phase modulations, such 
as quadrature phase-shift keying (QPSK), may be used. This is of particular interest for 
long-distance transmissions using SVD-BF, because it is more energy efficient to use 
small modulation sizes for these cases [27].

3.2 � Mathematical formulation of the method

In the sequel, we describe the Ping and Pong transmissions in detail.

3.2.1 � Ping

The Ping consists of sending a known preamble of complex symbols from node �1 to 
node �2 . The preamble is represented by an Nt × L1 matrix X1 , whose rows contain the 
symbol sequences for each transmit antenna, and its columns index symbol time. Thus, 
L1 is the duration of the Ping preamble in terms of symbol times. Even though the matrix 
can be composed by arbitrary sequences of symbols, for computation efficiency at the 
receiver it is best composed in a staggered form with L1/Nt training symbols for each 
antenna [28]. We assume that they are taken from a column vector c1 of L1 known train-
ing symbols.

The received Ping is therefore

where N1 ∈ C
Nr×L1 is the complex matrix of AWGN at receiver �2 during the Ping 

reception.
Upon reception, channel estimation is performed at the destination node �2 using Y1 . 

We present our work based on the least square (LS) channel estimator due to its simplic-
ity and limited computational complexity [28], but any other suitable estimator may be 
used. The LS estimate of H at �2 is given by

(4)Y1 = HX1 +N1,
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where X†
1

(
X1X

†
1

)−1 is the Moore–Penrose right pseudo-inverse of X1 . It is to be noted 
that this pseudo-inverse matrix can be precomputed and stored permanently at �2 , so 
that only the matrix multiplication between Y1 and the stored pseudo-inverse of X1 is 
required with each Ping. An estimate û1 of the first left singular column vector u1 can 
be extracted from Ĥ using a power iteration algorithm. This step is explained later in 
Sect. 3.3. We assume that the estimation error in û1 is an additive term ru ∈ C

Nt such 
that û1 = u1 + ru.

3.2.2 � Pong in the backward direction

Using the estimate û1 , �2 transmits the matrix X2 = û∗1
[
cT2 d

T
2

]
 to �1 , where (·)∗ denotes the 

complex conjugation, c2 ∈ C
L2 is a column vector whose elements are a known preamble 

sequence of length L2 symbols, d2 ∈ C
D2 is payload data column vector of length D2 sym-

bols ( D2 ≥ 0 ), and 
[
cT2 d

T
2

]
 is the concatenation of row vectors cT2  and dT2  . Considering that 

the reverse channel is HT [23], this reverse-channel transmission can be modeled as

where N2 ∈ C
Nt×(L2+D2) is the AWGN matrix at the receiver �1 during the Pong 

reception.
An estimate of the first right singular vector v1 can be obtained at the source �1 using LS 

estimation from preamble c2 as follows:

where Y2c is the portion of the received signal Y2 that corresponds to preamble c2 , and 
column vector c2

(
c†2c2

)−1 of size L2 is the pseudo-inverse of c†2 . As before, this vector can 
be precomputed and stored on each device beforehand. Hence, the calculation of (7) 
takes one matrix multiplication and one vector normalization.

In case that the backward Pong carries payload data, node �1 can decode it now using v̂1 
as follows:

(5)Ĥ = Y1X
†
1

(
X1X

†
1

)−1
,

(6)

Y2 = HTX2 +N2

= HTû∗1
[
cT2 d

T
2

]
+N2

= HT
(
u∗1 + r∗u

)[
cT2 d

T
2

]
+N2

= V∗
�

TUTu∗1
[
cT2 d

T
2

]
+HTr∗u

[
cT2 d

T
2

]
+N2

= σ1v
∗
1

[
cT2 d

T
2

]
+HTr∗u

[
cT2 d

T
2

]
+N2,

(7)v̂1 =
Y∗
2cc2

(
c†2c2

)−1

∣∣∣
∣∣∣Y∗

2cc2
(
c†2c2

)−1
∣∣∣
∣∣∣
,
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where Y2d and N2d correspond to the parts of the received signal Y2 and thermal noise 
N2 , respectively, that are associated with payload data d2 . Vector rv is the estimation 
error of the first right singular vector v1 and n2d is the respective AWGN vector with 
i.i.d. zero mean and ν2 variance elements. It is to be noted that if estimation errors ru and 
rv tend to zero, then (8) tends to σ1dT2 + nT

2d , which corresponds to the vector form of (3) 
when several symbols are transmitted.

3.2.3 � Pong in the forward direction

In case node �1 has payload data for node �2 , it transmits X3 = v̂1
[
cT3 d

T
3

]
 , where c3 ∈ C

L3 
is a column vector of a known preamble of length L3 symbols and d3 ∈ C

D3 is the payload 
data column vector of length D3 symbols. The received signal at �2 is

where N3 ∈ C
Nr×(L3+D3) is the AWGN matrix at the receiver �2 during the Pong 

reception.
It is to be noted that transmitting preamble c3 at this stage is not strictly necessary for 

�2 to be able to decode the received payload d3 , because �2 already has an estimate for u1 , 
obtained during Ping. However, it may be convenient to transmit preamble c3 for improving 
the quality of the estimate û1 obtained during the Ping, because the newly received signal 
on this first forward Pong has the advantage of having been transmitted over the best eigen-
channel, thus enjoying higher SNR for a new or improved estimation of u1 . Perhaps the 
simplest approach is to re-estimate u1 with LS as in (7):

where Y3c is the portion of the received signal Y3 that corresponds to preamble c3 . Again, 
the pseudoinverse c∗3

(
cT3 c

∗
3

)−1 can be precomputed and stored at �2 . The payload data is 
then decoded as

where Y3d and N3d correspond to the parts of the received signal Y3 and thermal noise 
N3 , respectively, that are associated with payload data d3 . n3d is the corresponding 
AWGN vector with i.i.d. zero mean and ν2 variance elements.

(8)

yT2d = v̂T1 Y2d

=
(
vT1 + rTv

)(
σ1v

∗
1d

T
2 +HTr∗ud

T
2 +N2d

)

= σ1d
T
2 + vT1 H

Tr∗ud
T
2 + σ1r

T
v v

∗
1d

T
2

+ rvTH
Tr∗ud

T
2 +

(
vT1 + rTv

)
N2d

= σ1d
T
2 +

(
σ1u

T
1 r

∗
u + σ1r

T
v v

∗
1 + rTv H

Tr∗u
)
dT2 + nT

2d,

(9)
Y3 = HX3 +N3

= σ1u1

[
cT3 d

T
3

]
+Hrv

[
cT3 d

T
3

]
+N3,

(10)û1 =
Y3cc

∗
3

(
cT3 c

∗
3

)−1

∣∣∣
∣∣∣Y3cc

∗
2

(
cT3 c

∗
3

)−1
∣∣∣
∣∣∣
,

(11)
yT3d = û†1Y3d

= σ1d
T
3 +

(
σ1v

†
1rv + σ1r

†
uu1 + r†uHrv

)
dT3 + nT

3d,
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A summary of all the steps that were described and that make up a complete Ping–
Pong–Pong sequence is presented in Fig. 2.

3.3 � Computation of the first singular vector

In the sequel, we describe how to estimate the first left singular vector u1 using a power 
iteration algorithm (PIA) on channel matrix estimate Ĥ obtained from (5) after a Ping 
transmission.

The most popular algorithm for computing singular vectors, the Golub–Reinsch algo-
rithm (GRA), as most of the SVD algorithms, calculates all left and right singular vectors 
together as a set. But we are only interested in calculating u1 at node �2 after the Ping. 
The PIA [21] offers a suitable approach to this. We first summarize the general PIA and 
then provide a simplified one.

Fig. 2  Summary of the Ping–Pong–Pong steps in each of the two nodes involved in the communication. The 
left side (blue) shows the steps of a node operating as a source. The right side (green), shows the steps of a 
similar node operating as a destination
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3.3.1 � General PIA

The PIA allows for computing the first left singular vector u1 of a matrix H by exploiting the 
following property [21]:

where W = HH† is a Wishart matrix, q0 ∈ C
Nr is a random vector with unit norm and 

exponent m is a positive integer. It is to be noted that an estimate of u1 can be defined as

where Ŵ = ĤĤ† , with Ĥ given by (5) or any other suitable estimate.
Having a random initial vector q0 instead of a fixed vector gives no benefit when u1 is 

unknown, as is our case. Therefore, without loss of generality, we use q0 � [10 · · · 0]T.
We thus utilize the following version of the PIA for obtaining estimate û1 . 

The number of basic mathematical operations needed for each computational step of the 
algorithm is shown in Table 1.

3.3.2 � Reduced‑complexity power algorithm

For a lower-complexity algorithm, we can observe that in the special case when m = 1 , the 
result of matrix multiplication of step 4, with i = m = 1 , is

where Ĥ1,1:Nt denotes the first row of Ĥ . We can hence use the following reduced-com-
plexity power algorithm (RCPA) for obtaining û1 . 

(12)lim
m→∞

Wmq0

||Wmq0||
= u1,

(13)û1 =
Ŵmq0

||Ŵmq0||
,

(14)

q1 = Ŵq0

= ĤĤ†q0

= Ĥ(Ĥ1,1:Nt)
†,

Table 1  Computational operations power iteration algorithm

Line Sums Products Divisions Square roots

1 2N2
r (2Nt − 1)m 4NtN

2
r m 0 0

4 2Nr(2Nr − 1)m 4N2
r m 0 0

7 2(Nr − 1)m 2Nrm Nrm m
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The computational cost of the RCPA is smaller by roughly a factor mNr compared to 
the general PIA, as shown in Table 2:

3.4 � Computational cost using the Golub–Reinsch algorithm

A comparison of the reduction in complexity that PIA and RCPA provide over the GRA 
during the Ping stage is provided next.

In “Appendix”, we present a study of the computational cost of the GRA. We find that 
the total cost of performing the SVD for an N × N  matrix takes

Using the parameters of [29], we calculate the number of cycles that an arithmetic logic 
unit (ALU) requires for performing the decomposition of Ĥ to obtain û1 using the GRA, 
PIA and RCPA. Results show that RCPA provides clear reductions on the complexity 
with respect to the PIA and GRA (cf. Fig. 3). It will be shown in Sect. 4 that this com-
plexity reduction does not significantly sacrifice bit error rate performance.

It is to be noted that when comparing the computational complexity in terms of ALU 
cycles per calculated singular vector element, the GRA does require fewer operations 
than the PIA. But the GRA does not allow for computing only the first singular vector 
alone and forces to compute the entire SVD each time, resulting in a larger net compu-
tational cost than for the PIA, as shown in Fig. 3. The RCPA, on the other hand, requires 
an order of magnitude fewer operations than the GRA in either case (per vector element 
and total).

4 � Results and discussion
In this section, we provide simulative valuations of the Ping–Pong–Pong (PPP) method 
using the PIA and RCPA algorithms.

We performed simulations in which the elements of each realization of the channel 
matrix H were generated randomly for each run as i.i.d. circularly symmetric complex 
Gaussian random variables with zero mean and unit variance. Thermal noise samples 

(15)CGRA =





16
3 N

3 + 10N 2 − 28
3 N + 10 sums

16
3 N

3 + 16N 2 − 70
3 N + 4 products

4N 2 − 2N − 3 divisions

2N 2 − 3 square roots
2N − 3 sign operations

.

Table 2  Computational operations of reduced-complexity power algorithm

Line Sums Products Divisions Square roots

1 2Nr(2Nt − 1) 4NtNr 0 0

2 2Nr − 1 2Nr Nr 1
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were generated randomly as i.i.d. circularly symmetric complex Gaussian random vari-
ables with zero mean and variance ν2.
Ping and Pong packets were assembled considering L1 = L2 = 32 , L3 = 0 and 500 

symbols of payload data with an uncoded QPSK modulation. It is to be noted that it 
does not matter if the payload data is sent in the backward ( D2 = 500 QPSK symbols, 
D3 = 0 ) or forward ( D2 = 0 , D3 = 500 QPSK symbols) Pong transmissions. Both cases 
are equivalent in terms of the BER of the payload data as long as there is no re-estima-
tion of the respective singular vector, i.e., as long as L3 = 0 , which was always the case. 
Each PPP composed this way was transmitted over one million channel realizations.

The bit error rate (BER) performance of the proposed technique in 2× 2 and 4 × 4 
MIMO configurations is presented in Figs. 4 and 5, respectively. Both graphs also show 
the BER performance of a single-input single-output (SISO) channel with flat Rayleigh 
fading, of maximum ratio combining (MRC) receive diversity [6], of the iterative method 
presented by Tang [17] and of SVD beamforming with ideal channel knowledge and ideal 
SVD computation. In the case of 2× 2 MIMO links, the BER performance of Alamouti 
coding is also presented [30]. To make a fair comparison, for all cases we considered the 
same total number of symbols used for channel training (considering both link direc-
tions) and the same total sum of signal power transmitted among all antenna branches. 
This means that in all cases the total energy spent for training transmissions is the same. 
All schemes used LS channel estimation. We observe for 2× 2 that the SNR loss with 
respect to ideal SVD beamforming (curve SVD-BF-Ideal) is approximately 1 dB for the 
RCPA version (PIA with m = 1 iteration) and approximately 0.1  dB with m = 4 itera-
tions (Fig. 4). In 4 × 4 the respective losses are approximately 2 dB and 0.7 dB (Fig. 5). 
It is also apparent that the proposed PPP method outperforms the BER of receive MRC, 
Alamouti and Tang in both MIMO configurations, even when the RCPA is used.

Fig. 3  ALU cycles needed to perform the Golub–Reinsch algorithm (GRA), the power iteration algorithm 
(PIA) with m = 2, 4 and 8 iterations and the reduced-complexity power algorithm (RCPA) for MIMO channels 
with equal number of transmit and receive antennas
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The above results suggest that the SNR loss grows with MIMO channel size. In order 
to explore this aspect, we performed additional BER simulations of MIMO constellations 
of sizes 8× 8 , 16× 16 , 32× 32 and 64 × 64 . The BER performance of SVD beamforming 

Fig. 4  Simulated BER of Rayleigh SISO ( 1× 1 ), MRC receive diversity ( 1× 2 ), Tang method [17] ( 2× 2 ), 
Alamouti coding ( 2× 2 ) and proposed PPP ( 2× 2 ) schemes (RCPA with m = 1 , PIA with m = 2 and m = 4 
iterations) versus ideal SVD beamforming (SVD-BF-Ideal, 2× 2 ) with ideal channel knowledge and ideal SVD 
computation

Fig. 5  Simulated BER of Rayleigh SISO ( 1× 1 ), MRC receive diversity ( 1× 4 ), Tang method [17] ( 4× 4 ) and 
proposed PPP ( 4× 4 ) schemes (RCPA with m = 1 , PIA with m = 2 and m = 4 iterations) versus ideal SVD 
beamforming (SVD-BF-Ideal, 4× 4 ) with ideal channel knowledge and ideal SVD computation
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with least squares channel estimation and ideal SVD computation was also assessed by 
simulation. This performance provides a best-case performance reference for the pro-
posed iterative method. Preambles with 64 symbols were used in all cases. The corre-
sponding SNR losses with respect to ideal SVD beamforming (ideal channel knowledge 
and ideal SVD computation) at BER = 10−3 are shown in Fig. 6. While the SNR loss of 
the proposed method clearly grows with antenna array size, even the worst-case per-
formance of RCPA stays within 1 dB of the best-case performance given by SVD beam-
forming with LS channel estimation. With respect to this latter case, the performance 
loss of the proposed method with m = 8 iterations is negligible. The overall BER per-
formance of the proposed method at 64 antennas ranges between 5 dB and 6 dB of SNR 
loss with respect to ideal SVD beamforming. This is smaller than the loss observed for 
MRC diversity even at 2× 2 and 4 × 4 configurations (cf. Figs. 4, 5).

The impact of using the re-estimation of vector u1 at the forward (second) Pong stage, 
as given by (10), rather than using the û1 estimated during the initial Ping, as presented 
in Sect. 3.2, is similar to performing an extra iteration of the PIA in the case without re-
estimation (Fig. 7). These curves were generated using the same parameters as for Fig. 5. 
In the case when m = 1 (RCPA), the SNR improvement gained by the re-estimation can 
be as large as 1 dB.

The difference in BER between the PPP with m = 4 and the theoretical SVD-
BF (with perfect CSI) is due to the channel estimation error. This aspect is evaluated 
in Fig.  8, where simulations with preambles of length L1 = L2 = 4 , L1 = L2 = 32 and 
L1 = L2 = 128 symbols are compared for the case of 4 × 4 channels estimated accord-
ing to (5). We used L3 = 0 in all cases. As intuition suggests, as the preamble grows in 

Fig. 6  SNR loss of the proposed PPP scheme (RCPA with m = 1 , PIA with m = 2 , m = 4 and m = 8 iterations) 
and of SVD beamforming with least squares channel estimation and ideal SVD computation (SVD-BF-LS) with 
respect to ideal SVD beamforming (ideal channel knowledge and ideal SVD computation) for MIMO channels 
with equal number of transmit and receive antennas
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length, the BER approaches the theoretical SVD-BF curve. The low-complexity algo-
rithm (RCPA) with L1 = L2 = 4 (worst-case performance) displays an SNR loss of 
approximately 4 dB with respect to ideal SVD-BF, is similar to the BER performance of 

Fig. 7  Simulated BER for PPP with beamforming vector re-estimation (VR) at forward Pong stage compared 
to the Ping–Pong–Pong base case and the ideal SVD beamforming with LS-estimated channel (SVD-BF-LS) 
using a 4× 4 MIMO array

Fig. 8  BER comparison with L1 = L2 = 4 , L1 = L2 = 32 and L1 = L2 = 128 symbols for channel estimation, 
and m = 1 (RCPA) and m = 4 iterations of the PIA using a 4× 4 MIMO array. They are compared to the 
theoretical SVD-BF BER with ideal channel knowledge
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Tang and superior to that of MRC diversity (compare with Fig 5). While extending the 
preamble length has diminishing returns in terms of BER performance, it does not spoil 
the performance gained by varying the number of iterations of the PIA.

5 � Conclusions
In this article, we propose a low-complexity method for establishing a communication 
link over MIMO channels using SVD-based beamforming. The method takes advantage 
of the channel reciprocity property in order to acquire estimates of the precoding and 
decoding first singular vectors at both ends of the wireless link. This is attained with two 
types of transmissions: an initial Ping, consisting of a space and time orthogonal pream-
ble transmitted once, and Pong, a beamformed preamble followed by beamformed pay-
load data. Pong can be transmitted an arbitrary number of times in both directions, thus 
allowing for one-way or two-way communications. After an initial beamforming vector 
estimation at the receiver of the Ping, the receiver of a Pong preamble estimates or re-
estimates the singular vector that corresponds to that end of the link. This is performed 
with a power iteration algorithm.

Simulations show that four iterations suffice for attaining a BER within 1 dB of ideal 
SVD beamforming performance for MIMO array configurations of up to 4 × 4 . With 
4  antennas and only one iteration (reduced-complexity algorithm), the SNR loss is 
within 2 dB of the ideal singular vector computation, but the complexity of the algorithm 
requires an order of magnitude fewer computations. It is also shown that the proposed 
method outperforms the BER of maximum ratio combining and of Alamouti coding.

For arrays with 64 antennas, the method is shown to achieve a BER performance 
within 1 dB of that of SVD beamforming with least squares channel estimates and per-
fect SVD computation.

The use of the PIA for this task is also computationally more efficient than the Golub–
Reinsch algorithm for the SVD, whose main limitation is that it does not allow for com-
puting only the first singular vector alone and forces to compute the entire SVD each 
time.

The BER degradation due to imperfect channel estimation was shown to be within 
4  dB of ideal performance for a worst-case configuration (shortest training preamble, 
reduced-complexity algorithm). Further simulations show that re-estimating the vector 
at the Pong has an effect similar to performing an extra iteration of the PIA. The SNR 
improvement gained by the re-estimation can be as large as 1 dB.

Appendix: SVD computation cost
The Golub–Reinsch algorithm (GRA) [12] is popular for performing the SVD decompo-
sition because of its numerical stability, efficiency and good convergence velocity [31]. 
Following [13], this “Appendix” analyzes the computational cost of the GRA on a matrix 
H of size N × N  . The algorithm is composed of two phases: a bidiagonalization and a 
superdiagonal reduction.

In the following, we denote Aj:n,k:n as the submatrix of A that contains rows from j to n 
and columns from k to n of A . Further, blank entries in a matrix represent zeros, while × 
or + terms represent nonzero coefficients.
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Phase I: Bidiagonalization

The bidiagonalization is the process of turning an arbitrary complex matrix H into a 
bidiagonal real matrix B (i.e., a matrix with zeros in all entries except the diagonal and 
superdiagonal terms). This is achieved by a series of unitary transformations, which are 
described in the following.

Description

A Householder reflector is an unitary transformation P0 that takes the first column of 
H , h1 , into the direction of the first canonical axis ê1 = (1, 0, . . . , 0)T , while rotating the 
other columns arbitrarily as

where || · || represents the Euclidean norm.
A second Householder reflector Q1 can be applied from the right, while preserving the 

first column intact, resulting in

where g is the first row of the matrix (P0H)1:N ,2:N .
By repeating this procedure with the lower submatrices, we can obtain

where B is a bidiagonal matrix of real coefficients, and each Pj and Qj is Householder 
reflector that operates in subspaces of dimension N − j.

Calculation cost

It can be seen that each Pj acts non-trivially only over a N − j subspace. Hence, the com-
putation of the non-trivial effect over the (N − j)× (N − j) matrix A can be computed 
as

where P̃j corresponds to the (N − j)× (N − j) lower submatrix of Pj and v ∈ C
N−j is a 

vector calculated as

where a1 is the first column of A and a11 is the first element of a1 [31]. The calcula-
tion of v costs 2(N − j) real sums, an equal number of products, 1 square root and 1 
sign operation. Recalling that one complex product consists of 4 real products and 2 
real sums and that 1 complex sum takes 2 real sums, the cost of the application of P̃j is 

(16)P0H =



||h1|| × × ×

× × ×
× × ×
× × ×


,

(17)P0HQ1 =



||h1|| ||g||

× × ×
× × ×
× × ×


,

(18)B = PN−2 . . .P1P0HQ1 . . .QN−2,

(19)P̃jA = A − 2v

(
v†A

)

v†v
,

(20)v = sign(a11)||a1||ê1 + a1,
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8(N − j)2 + 2(N − j)− 1 real sums, 8(N − j)2 + 5(N − j) real products and 1 division. 
The total cost of the transformation Pj is thus given in Table 5.

The application of Qj is done repeating the same procedure to the hermitian of the 
lower (N − j + 1)× (N − j) submatrix. Therefore, (19) and (20) are valid but with A 
being an (N − j)× (N − j + 1) matrix. The cost C(Qj) can be seen in Table 5.

Finally, the total cost of the phase I (cf. Table 3) can be calculated using (18) as

Phase II: Superdiagonal reduction

The second phase of the GRA reduces the upper diagonal terms into zeros, such that the 
real bidiagonal matrix B is diagonalized.

It can be shown that it is not possible to build an algorithm that performs this in a 
finite number of steps [31]. Hence, this phase consists of reducing the size of the upper-
diagonal terms until they are smaller than a given threshold.

Description

This phase entails a series of Givens rotations, which are unitary operations on the 
2-dimensional subspace spanned by canonical vectors êi and êj . If Gi,j(θ) is a Givens 
rotation on dimensions i and j with an angle θ , its effect on the canonical base {êk}Nk=1 is

The first step of the second phase is to apply a Givens rotation T1 = G1,2(θ1) from the 
right, where the angle θ1 is chosen such that TT

1 z = ||z||ê1 for a given z . The effect of the 
application of T1 is that a nonzero element is introduced:

The rest of the second phase is to perform a series of Givens rotations to displace this 
nonzero element out of the matrix. It starts with a Givens rotation Q1 = G1,2(θ2) , which 
makes Q1y = ||y||ê1 , where y is the first column of the matrix BT1 . The result will have a 
zero in the desired position, but will introduce a new nonzero entry:

(21)CI =
N−2∑

j=0

C(Pj)+
N−2∑

j=1

C(Qj).

(22)Gi,j(θ)êk =





êi cos(θ)+ êj sin(θ) if k = i,
−êi sin(θ)+ êj cos(θ) if k = j,
êk in other case.

(23)BT1 =



× ×
+ × ×

× ×
×


.

Table 3  Bidiagonalization computational cost

Cost Item Sums Products Divisions Square roots Sign Operations

C(Pj) 8(N − j)2 + 2(N − j) 8(N − j)2 + 6(N − j) 1 1 1

C(Qj) 8(N − j)2 − 6(N − j)− 4 8(N − j)2 − 2(N − j)− 6 1 1 1

CI 16
3
N3 − 2N2 + 8

3
N − 4 16

3
N3 + 2N2 + 2

3
N + 8 2N − 3 2N − 3 2N − 3
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This procedure can be repeated until the nonzero position reaches the bottom of the 
matrix:

At this stage, a last Givens rotation QN−1 = GN−1,N (θ2N−2) will act on the lower 2× 2 
submatrix and turn the desired element into a zero entry without introducing new 
nonzero entries, giving a new bidiagonal matrix

This step can be repeated for generating a sequence of bidiagonal matrices Bn . It can be 
shown that Bn converges to a diagonal matrix D that has the singular values of the origi-
nal matrix H.

Calculation cost

First we calculate the number of operations needed in one step of the algorithm, Ck , 
which turns a k-dimensional bidiagonal matrix Bn into a new bidiagonal matrix Bn+1 . 
This cost has two sources: the cost of calculating the Givens rotations C(k)

calc and the appli-
cation of the Givens rotations C(k)

app.
The Givens rotation is used for rotating a two-dimensional vector (α1,α2) onto its first 

axis:

Therefore, the generation of a Givens rotation is equivalent to the calculation of cos θ 
and sin θ as function of (α1,α2) . A stable algorithm for doing this is [13]:

The average cost of calculating a Givens rotation is 1 sum, 1 product, 2 divisions and 1 
square root. As each iteration of the algorithm consists of 2(k − 1) Givens rotations, the 
total calculation cost is given by C(k)

calc (cf. Table 5).
We still need to calculate C(k)

app . The first rotation T1 is applied to the first two columns 
of a bidiagonal matrix Bn as

(24)Q1(BT1) =



× × +

× ×
× ×

×


.

(25)QN−2 . . .Q1BT1 . . .TN−1.

(26)B1 = QN−1 . . .Q1BT1 . . .TN−1.

(27)
[

cos θ sin θ
− sin θ cos θ

](
α1
α2

)
=

(
σ

0

)
.

(28)if α2 = 0 : cos θ = 1, sin θ = 0;

(29)if |α2| ≥ |α1| = 0 : v = α1/α2, w =
√

1+ v2,

(30)sin θ = 1/w, cos θ = v/w;

(31)else : v = α2/α1, w =
√
1+ v2,

(32)cos θ = 1/w, sin θ = v/w.
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The computational cost of the application of T1 , denoted as C(T1) , is 6 products and 2 
sums. By considering (23), the application of the second rotation can be seen as

Counting the operations, and recalling that the entry of the second row and first column 
is zero by construction, one finds that the cost C(Q1) is 8 products and 3 sums. Compar-
ing (23) with (24), one can conclude that all the rotations, excepting the very last one, 
have the same structure and therefore share the same costs.

The last rotation has the form Qk−1(Qk−2 . . .Tk−1) and costs 6 products and 3 sums. 
Adding all together, we obtain the total operations of the application of one step of the algo-
rithm in a k-dimensional matrix

Hence, the total cost of one k-dimensional iteration of the algorithm is

It has been reported that the algorithm usually ends with no more than 2N iterations [12]. 
If we consider an average case where 2 iterations are needed per matrix size from 2 to N, 
then the total cost of the second phase (cf. Table 4) is given by

(33)BnT1 =



× ×

× ×
× ×

×







c s
−s c

1
1


.

(34)Q1(BnT1) =




c s
−s c

1
1






× ×
× × ×

× ×
×


.

(35)C(k)
app =

k−1∑

i=1

{C(Ti)+ C(Qi)}.

(36)Ck = C
(k)
calc + C(k)

app.

(37)CII = 2

N∑

k=2

Ck

Table 4  Superdiagonal reduction computational cost

Cost item Sums Products Divisions Square roots Sign 
operations

C
(k)
calc

2(k − 1) 2(k − 1) 4(k − 1) 2(k − 1)

C
(k)
app

6k − 7 16k − 20

Ck 8k − 9 18k − 22 4k − 4 2k − 2

CII 8N2 − 10N + 2 18N2 − 26N + 8 4N2 − 4N 2N2 − 2N

Table 5  Computational Cost of GRA​

Cost Item Sums Products Divisions Square roots Sign Operations

CN 16
3
N3 + 10N2 − 28

3
N + 1016

3
N3 + 16N2 − 70

3
N + 4 4N2 − 2N − 3 2N2 − 3 2N − 3
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Total calculation cost

The total cost of the GRA is given by the sum of the costs of phases I and II, i.e., 
CN = CI + CII (cf. Table 5). For large values of N, the total cost of GRA is dominated by 
the third-order terms, which are part of the phase I of the algorithm [31].
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