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RESUMEN 

La forma en la que crece la ciudad está definida en gran medida por cómo diferentes actores 

eligen dónde localizarse en la ciudad, de lo cual depende en gran parte la sustentabilidad del 

desarrollo urbano. Por esto es importante modelar estas decisiones, entendiéndolas y 

cuantificando el rol jugado por distintas variables explicativas, con el objeto de alimentar 

políticas públicas bien informadas.  
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Para entender el comportamiento de estos actores, ya sean hogares, desarrolladores 

inmobiliarios, comercio, u otros, es importante reconocer la heterogeneidad de preferencias 

que subyacen en sus decisiones, evitando modelos demasiado generales. Esta 

heterogeneidad puede estar ligada tanto a las diferentes características de estos tomadores 

de decisiones, como también a la multiplicidad de contextos urbanos en los cuales se 

emplazan los inmuebles a elegir.  

De acuerdo a esto, el objetivo principal de esta tesis es explorar y proponer métodos 

adecuados para definir segmentaciones que reflejen la diversidad del mercado de la vivienda, 

con aplicaciones al contexto chileno, centrándose en la interacción entre la heterogeneidad 

en las preferencias de los hogares y las características de la oferta de espacio construido y 

atributos urbanos de su contexto. 

Del objetivo principal se desprenden tres objetivos específicos, los cuales se asocian a las 

tres partes de esta tesis.  

En la primera parte se implementa un modelo de elección de localización bajo un enfoque 

choice con clases latentes, en el cual el tomador de decisión es el desarrollador inmobiliario, 

enfrentándose a un conjunto de alternativas para localizar un proyecto con características 

dadas previamente. El modelo se enfoca en los proyectos en áreas de expansión de Santiago, 

buscando modelar cómo cambian las preferencias de localización dado que el proyecto 

pertenezca a submercados diferentes, los cuales son definidos como clases latentes. Los 

resultados del modelo indican una importante polarización del mercado, según el cual hay 
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dos estrategias bien definidas al elegir la localización: una de ellas asociada a proyectos más 

“exclusivos”, los cuales rehúyen la densidad y se atraen mutuamente; y otra asociada a 

proyectos más “masivos”, que se desarrollan cercanos a áreas consolidadas y satélites. El 

método probabilístico de clasificación permite observar que la gran mayoría de los proyectos 

son clasificados en uno u otro submercado, sin muchos proyectos en el intermedio, lo cual 

permite confirmar la polarización existente. 

En la segunda parte se explora un modelo de clases latentes aplicado a la elección de 

localización, pero en el marco de un enfoque tipo bid-auction. Esta combinación, no 

reportada antes en la literatura y que denominamos “clases latentes espaciales”, permite que 

la segmentación de las clases latentes se efectúe sobre los inmuebles rematados, lo cual 

implica poder generar clases de sectores en la ciudad. De esta forma, se propone un nuevo 

método para incluir heterogeneidad espacial en las preferencias. Este método es 

implementado para modelar la elección de localización en una muestra de hogares de la 

Encuesta Origen Destino de Santiago, mostrando un mejor ajuste que otros métodos y una 

segmentación de la ciudad coherente, que permite una mejor interpretación de los resultados.    

En la tercera parte se aplica el enfoque de clases latentes espaciales, propuesto en la 

segunda parte, para explorar su capacidad de modelar la forma en que las preferencias de los 

hogares varían de acuerdo a si están observando un inmueble en una zona endógenamente 

clasificada como de Desarrollo Compacto o no. Se exploran algunas aplicaciones, como la 

posibilidad de calibrar un índice de Desarrollo Compacto a partir de la función de 

clasificación del modelo de clases latentes. Complementariamente, se constata que la 
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fórmula de elasticidad reportada en la literatura no es aplicable a los modelos bid ni para 

clases latentes, por lo que se deriva y aplica una fórmula de elasticidad para estos casos. El 

modelo permite observar que el nivel socioeconómico del entorno tiene mucho peso en la 

decisión de localización, siendo esto más relevante todavía en casos de Desarrollo 

Compacto. Esto muestra que las políticas de integración social en densidad son complejas 

de implementar y por lo tanto deben ser cuidadosamente diseñadas. 
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ABSTRACT 

 

Urban growth is largely defined by different actors choosing where to locate in the city, on 

which the sustainability of urban development strongly depends. For this reason, it is 

important to model these decisions —understanding them and quantifying their variables— 

to better inform urban public policy. 
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To understand the behavior of these actors, whether they are households, real estate 

developers, commerce, or others, it is important to recognize the heterogeneity of 

preferences that underlie their decisions and avoid generalizing models. This heterogeneity 

can be linked both to the different characteristics of these decision makers, as well as the 

variety of urban contexts where available properties are located. 

Accordingly, the main objective of this research is to explore and propose suitable methods 

to define segmentations that reflect the diversity of the housing market, with case studies in 

the Chilean context, focusing on the interaction between heterogeneity in household 

preferences and the characteristics of the built space and attributes of its urban context. 

Three particular objectives emerge from the main objective, which are associated with the 

three parts of this thesis: 

In the first part, a location choice model with latent classes is implemented, in which the 

decision maker is the real estate developer who faces a set of alternatives to locate a project 

with given characteristics. The model focuses on projects in expansion areas of Santiago. 

The objective is to understand how the location preferences change depending on the project 

belonging to different sub-markets, which are defined as latent classes. The results of the 

model indicate an important polarization of the market, according to which there are two 

well-defined strategies when choosing a location. One strategy is associated with more 

“exclusive” projects, which avoid density and attract similar projects, while the other is 

associated with more "massive" projects, which are developed close to consolidated areas 
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and urban satellites. The probabilistic classification method allows us to observe that the 

vast majority of projects are classified into either one or the other of these two submarkets 

with remarkably high probabilities, without many projects in between, which confirms the 

existence of a strong polarization. 

In the second part, a latent class approach for location choice is again explored but within 

the framework of a bid-auction model. This combination, not previously reported in the 

literature and which we call “latent spatial classes”, allows latent class segmentation to be 

carried out on the auctioned properties, which generates classes of locations in the city. Thus, 

a new method is proposed to include spatial heterogeneity in preferences. This method is 

implemented to model the location choice in a sample of households from the Santiago 

Origin Destination Survey, showing a better fit than other methods and a coherent 

segmentation of the city that permits a clearer interpretation of the results. 

In the third part, the latent spatial classes approach proposed in the second part is applied 

to explore its ability to model the way in which household preferences vary according to 

whether or not they are observing a property in an area classified as Compact Development. 

Some applications are explored, such as the possibility of calibrating a Compact 

Development index from the latent class model classification function. In addition, it is 

found that the elasticity formula for logit models reported in the literature is not applicable 

to a bid model or to latent classes, so an elasticity formula is derived and applied for these 

cases. The model reveals the importance of an area’s socioeconomic level in the location 

decision, this being even more relevant in cases of Compact Development. This result shows 
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that any policy aiming for social mixing in dense areas is complex to implement and 

therefore must be carefully designed. 
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1. INTRODUCTION 

“The diversity that is generated by cities rests on the fact that in cities so many people are 

so close together, and among them contain so many different tastes, skills, needs, supplies, 

and bees in their bonnets.” 

Jane Jacobs, The death and life of great American cities (1961) 

Cities can be thought of as some of the most complex artifacts created by humans, and their 

complexity relies on the emergent nature of their origins and development, which results in 

dynamics that continuously defy our understanding. 

People and built space make the city; its creators become part of their creation. Flesh and 

stone, as Richard Sennett (1997) would say. The continuous interrelation between these two 

systems is what makes cities strong and durable. People shape built space and built space 

shapes people’s lives and relationships. To accommodate space to our activities, people build 

homes, workspaces, and infrastructure to move and socialize.  

Stone is resistant and hard to shape; it takes the effort of multiple people to build a 

neighborhood and buildings may last much longer than a person’s lifetime. Cities are built 

by an entire society, and people are continuously looking for ways to inhabit the outcome of 

years of building and rebuilding space.   

This thesis, in a broad sense, is about understanding how people’s needs and tastes determine 

how they compete for the diverse supply of existing built space. In this sense, the principal 



20 

 

  

focus of this thesis is to acknowledge heterogeneity when modelling the interaction between 

people and built space.  

The specific method to be used in this thesis is location choice modeling, which uses a 

microeconomic approach to characterize the behavior of agents when choosing a location. 

As described in the following section, these models relate observed household characteristics 

and unobserved variables such as preferences of households, to the chosen location, which 

possesses observed urban and built attributes. Econometric methods are used to identify the 

unobserved preferences, considering the observed decisions and attributes.  

1.1 Location choice models 

Location choice modeling is a tool increasingly used to understand and forecast demand for 

residential and other land uses in different areas of cities, in current or simulated scenarios, 

accounting for changes in transport infrastructure or building regulations, among others. 

They contribute to the efficient use of resources when locating infrastructure such as public 

transport and other services, by understanding the drivers of city growth, be it expansion or 

densification. 

The importance of modelling location decisions has been recognized from Von Thünen 

(1826) onwards. These studies examine city distributions based on different types of agents 

seeking to maximize their utility by making a trade-off between the cost of transportation 

and the price or rent of a location, depending on individual characteristics such as income. 

This model was extended to the urban case by Wingo (1961), Alonso (1964), Muth (1969) 
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and Mills (1967). These models correspond to what Wegener (2014) identifies as the first 

generation of location models, which were deterministic and focused on technical aspects 

such as urban growth and densities. 

McFadden (1978) introduced stochasticity into location choice, through the use of discrete 

choice models, which gave a strong theoretical and mathematical basis to the discipline. 

Most location choice models presented nowadays are based on this framework, usually 

referred to as the “choice approach”.  

The bidding approach of Alonso and stochasticity in McFadden were the basis for  

Ellickson´s (1981) bid-auction approach, where locations are assigned to the best bidder 

among a set of competing agents.  

Location choice models are implemented mostly as a part of Transport and Land Use 

Interaction (LUTI) models. LUTI assumes that location choice depends on accessibility of 

the location, which is an output of the behavior of the transport system, which itself depends 

on the located demand for trips.  

According to Wegener (2014), the 1990s brought a revival of LUTI models, as a second 

generation came about that concerned environmental, equity, and segregation issues. Now, 

the development of a third generation is underway which incorporates other dimensions in 

preferences, mainly related to the heterogeneity of agents, the modelling of latent 

characteristics, and greater spatial and temporal detail. 



22 

 

  

1.2 Latent classes for agent heterogeneity in location choice models 

To better reproduce the observed behavior of a group of agents, one must address the 

diversity of preferences guiding their decisions. Normally, this heterogeneity is included in 

models as a two-step process: first, agents are divided into segments or types of agents using 

differences in agent characteristics as criteria (age, income, etc.); second, the model is 

estimated in order to identify a specific set of parameters for each type of agent. This 

sequential method induces estimation bias as it assumes that segmentation is error-free  

(Ben-Akiva et al., 2002), and it does not assure that agents, in the first step, are segmented 

in groups of agents with similar preferences, as preferences are only identified afterwards, 

in the second step. Another method to introduce heterogeneity is the definition of 

interactions between agent characteristics and location attributes. This technique does not 

present the aforementioned bias, but renders results that are more difficult to interpret and 

does not allow to identify types of decision-makers 

Latent class models (Kamakura & Russell, 1989) can overcome this issue, as they use a one-

step which jointly estimates classes and preferences. Therefore, class identification is 

informed by differences in preferences of agents. In simple terms, a latent class model 

introduces in the model a probability for the decision maker belonging to a specific class or 

segment, with each class having different preference parameters in their utility functions. 

Most implementations of latent class models in the transportation and location choice 

literature use a logit formulation for the class-membership probability, which depends on 
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the characteristics of the decision maker and a set of parameters to be estimated jointly with 

preference parameters. 

Although latent class models have been applied in different decision contexts, the first work 

that applies this methodology to location choice, to the extent of our knowledge, was 

presented by Walker and Li (2007). These authors propose a model in which the latent 

classes correspond to the different lifestyles of households choosing their location. 

In more recent applications, the classes to which the decision makers belong are based not 

only on socioeconomic characteristics (income, age, education, etc.), but also on agents’ 

attitudes regarding certain aspects of the city or other areas (Olaru, Smith, & Taplin, 2011); 

lifestyle as attitudes towards transportation and accessibility based on the development of 

transit-oriented-development (TOD) in the area (Meng, Taylor, & Scrafton, 2016; Smith & 

Olaru, 2013); preference for compact neighborhoods (Liao, Farber, & Ewing, 2014), smart 

growth neighborhoods (Lu, Southworth, Crittenden, & Dunhum-Jones, 2014), trade-off 

between having a private garden and park space in the neighborhood (Tu, Abildtrup, & 

Garcia, 2016), or predisposition towards telework and the effect of a more distant location 

(Ettema, 2010).  

1.3 Spatial heterogeneity 

Spatial heterogeneity is a special case of heterogeneity in general, in which model 

parameters are not stable in space (Anselin, 1999). For decision models, this means that 

preference parameters of agents are different depending on the location. 
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We can find an early example of spatial heterogeneity in Quandt (1958), who used different 

functions in a linear regression for different subsets of observations. Identifying the structure 

of this variation of parameters can be approached with different methods. A direct approach 

is to use zones defined exogenously to the model; for example, by administrative limits or 

by predominance of certain land uses, where each zone will have a different set of preference 

parameters that fit the observations within the zone. Exogenous zonification, however, 

presents the shortcoming of the Modifiable Areal Unit Problem (MAUP) (Openshaw, 1984), 

which recognizes that zone-based spatial analysis can have different outcomes depending on 

the zonification used. This means that, since exogenous segmentation can be arbitrary, so 

can be the results.  

Some techniques address this issue by estimating location-specific parameters, using 

observations within a given distance (Chica-Olmo, 1995; Dubin, 1992) or using decreasing 

weights for observations based on distance to location (Fotheringham, Brunsdon, & 

Charlton, 2002; Páez, Long, & Farber, 2008). These approaches use “sliding 

neighborhoods”, where each observation is explained from values within a given distance, 

but are not adapted to address the spatial structure of the city. 

In hedonic price models (Rosen, 1974), where the price of real estate is modelled as a 

function of location attributes, the issue of spatial heterogeneity has been dealt-with by 

defining zones as submarkets. These zones have been sometimes identified with methods 

such as the definition of functional zones like, for example, center and peripheries (Jang & 

Kang, 2015). Other models use two-step methods such as Principal Component Analysis or 
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Clustering to identify homogenous areas in terms of spatial attributes or homogenous sets of 

housing units in terms of their built characteristics (Bourassa, Hamelink, Hoesli, & 

Macgregor, 1999; Rosmera & Lizam, 2016). These methods, however, may introduce some 

bias as explained in section 1.2. As the objective of these techniques is to identify zones 

where same parameters apply, defining these zones from differences in built characteristics 

does not assure differences in estimated parameters, as they are only known in a second step. 

1.4 Heterogeneity, segregation and the Chilean context 

As pointed out extensively by Jane Jacobs (1969) and several other authors (Alexander, 

1965; Batty, 2008; Glaeser, 2011), diversity is perhaps the most important feature in a city’s 

origins and stability over time, and the source of its economic power and capacity to generate 

innovation. Yet, a growing amount of literature describes how people with different 

characteristics sort into segregated communities in the same city (Massey, 2016; Quillian, 

2012; Sabatini, 2003), undermining the possibility to interact and generate innovation. This 

“diversity-segregation conundrum” as described by Florida (2017), is a characteristic feature 

of large and dense cities, and much more research is needed to understand the 

interdependence between the two.  

In Chile, income and material wealth has increased in recent decades, but inequalities in 

aspects such as income, urban segregation and social mobility are a hard burden that persist 

over time (PNUD, 2017). Spatial segregation, associated with inequalities in access to 

opportunities and unequal built environment standards, is the most visible outcome of this 
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dynamic in Chile’s main city, Santiago (Sabatini, Cáceres, & Cerda, 2001). High income 

households live mainly in the northeast quarter of Santiago, with a residential “garden city” 

type of urbanization, while the rest of the city, except for the CBD, is characterized by 

extended peripheries of low-income households and industrial areas. In the last decades, this 

sectorial distribution has been broken down by the location of residential projects for 

medium and high income households in expansion areas not necessarily connected to high 

income areas, mostly under the typology of gated-communities (Sabatini, 2015).  

1.5 Research opportunities 

Inequalities and socio-spatial segregation are determinant in the spatial distribution of land 

uses, households and real estate supply, especially in developing countries. To understand 

the residential location choices in this context, it is important to acknowledge the complex 

definition of and interaction among different segments of households and also how the city 

is perceived as segmented in different zones or neighborhoods.   

Two areas for possible contribution are identified, related to methodological and case study 

aspects: 

i) Methodological: Spatial segmentation of the city in location choice models has only 

been addressed with two-step methods, which can induce estimation-bias, but this could be 

overcome by segmenting locations applying Latent Class Models to space.  
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ii) Case Study (evidence): The use of latent segmentation allows exploration of 

preferences in the Chilean context considering the definition and interaction of segments. 

This method helps to identify aspects such as the polarization of submarkets and the 

differences in preferences according to these submarkets. The approach taken in this thesis 

helps to build a better understanding of the emergence of the segmented urban spatial 

structure of Santiago. 

1.6 General objective 

The main objective of this research is to explore proper methods to define segmentations of 

the housing market in the Chilean context, focusing on the interaction of heterogeneity in 

household preferences with project supply characteristics and spatial attributes. 

1.7 Specific objectives 

The thesis is composed of three main stages, each focusing on a specific objective: 

i) Model the heterogeneity in location strategies of housing projects in expansion areas, 

measuring their attraction to certain spatial attributes or urban elements and characterizing 

the possible polarization of projects into specific submarkets. 

ii) Explore a novel method to treat heterogeneity in location choice models, using 

“latent spatial classes”. This allows to endogenously define spatial submarkets, where 

households may have different preferences for urban attributes. 
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iii) Explore the application of “latent spatial classes” to report evidence on a specific 

Chilean policy, allowing one to observe the interaction between the latent spatial class of 

Compact Development Zones, and preferences of different types of households in these 

types of zones.  

Each of these objectives is studied in three different models. The conceptual ground, 

methods, data and results are reported in each of the next chapters.  
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2. SUBDIVIDING THE SPRAWL: ENDOGENOUS SEGMENTATION OF 

HOUSING SUBMARKETS IN EXPANSION AREAS OF SANTIAGO, CHILE1 

Tomás Cox and Ricardo Hurtubia 

 

ABSTRACT 

Urban sprawl is a phenomenon observed in most cities around the globe and especially in 

Latin America, where it is associated to socioeconomic segregation. In the case of Chile, 

sprawl has been generally based on large real estate projects. Developers target their projects 

to different types of consumers, which translates into submarkets with a broad range of 

housing-unit’s characteristics, but also different location strategies. This heterogeneity has 

been analyzed and measured in the literature, but quantitative studies have used exogenous 

or sequential methods to identify submarkets, leading to potential bias in the segmentation. 

In this chapter we propose an econometric model to measure location drivers for different 

types of real estate projects that fills this gap. The modelling framework is based on discrete-

choice and latent-class models, allowing us to simultaneously identify market 

segmentations, and their particular location choice preferences, without the need of arbitrary 

                                                 

1 This chapter is published online as a paper in journal “Environment and Planning B: Urban Analytics and 

City Science”. August 25, 2020. https://doi.org/10.1177/2399808320947728. 
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or ex-ante definitions of submarkets. The model is applied to the city of Santiago, Chile. 

Results reveal two clearly different approaches taken by developers to produce housing, with 

one submarket of “exclusive” and more sprawling projects, and another submarket of 

“massive” and more density driven projects. Location strategies are very different between 

submarkets, reproducing the socio-spatial segregation already observed in the consolidated 

city.  

2.1. Introduction 

The horizontal growth of some contemporary cities, based on scattered private projects of 

single-family detached houses, has been a trend observed not only in Anglo-Saxon countries, 

with a long suburban tradition, but also in Latin American metropolitan areas in the last 

decades (Borsdorf, Hidalgo, & Sánchez, 2007; Webster, Glasze, & Frantz, 2002). This 

pattern in Latin American cities is the latest stage of the evolution from an originally compact 

shape, to a sectorial distribution in the last century and, finally, to a fragmented structure in 

recent decades (Borsdorf, 2003). In this scenario, most residential projects in expansion areas 

are built as “gated communities,” with emphasis on vigilance/security, social homogeneity 

and marketing campaigns based on the image of a suburban, high-standard lifestyle (Coy & 

Pöhler, 2002). As we will present later, the Chilean case (especially in Santiago) is no 

exception to this trend, although amplified by the existence of some market-oriented land 

use policies. 
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Originally, private projects in expansion areas of Chilean cities were associated to high 

income groups searching for a “garden city” life-style, but recent authors (Borsdorf et al., 

2007; Borsdorf, Hildalgo, & Vidal-Koppmann, 2016) have pointed out the broad spectrum 

of households locating in these projects, from high-income to low-income groups, with each 

project being targeted to specific segments. While some authors have studied how the 

location of these projects produce accessibility and environmental conditions that often 

imply a burden to middle and low-income households living in them (Cáceres-Seguel, 2015, 

2017; Gainza & Livert, 2013; Romero et al., 2012), there has not been much attention paid 

to understanding the heterogeneity in this market, especially in terms of location strategies. 

Although these authors have described the location of projects in terms of accessibility, 

spatial and geographical variables, the analysis is generally case-oriented and there has not 

been a systematic effort to measure differences in location drivers among different types of 

projects. 

This real estate development pattern seems to be consistent with the existence of housing 

submarkets (Palm, 1978; Schnare & Struyk, 1976), although defined not only by product 

similarity (units) but also by spatial attributes, as proposed by Watkins (2001). Identifying 

and characterizing these submarkets is relevant to understand the logic behind the production 

of built space and the emergence of spatial and structural (i.e. housing characteristics) 

segmentations in expansion areas of the city, which can be one of the causes of fragmented 

urban sprawl and residential segregation (Massey & Denton, 1988).  
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This chapter proposes a model to understand location choice patterns of residential projects 

and their membership to different housing submarkets. The modelling approach, based on 

latent class models (Kamakura & Russell, 1989) and location choice models (McFadden, 

1978), allows for identification of housing submarkets from the observed location data of 

residential projects through simultaneous estimation of location choice and market 

segmentation parameters. This is a contribution to the housing submarkets literature, where 

the problem has been generally analyzed following a two-step fashion, with market segments 

being defined prior to the estimation of location preferences or hedonic price parameters 

(Bourassa et al., 1999; Rosmera & Lizam, 2016; Schnare & Struyk, 1976).  

To our knowledge, the model presented here is the first housing supply location choice 

model using latent classes to segment real estate projects according to their characteristics 

and location choice. Latent class models have been used before in location choice, but mostly 

to segment households according to their characteristics (Ettema, 2010; Liao et al., 2014; Lu 

et al., 2014; Olaru et al., 2011; Walker & Li, 2007). 

While the model can be applied to understand location choices in any part of the territory, 

we believe it can be particularly useful to understand location strategies in areas where 

submarkets are not already well defined, such as expansion areas.  Therefore, the proposed 

modelling approach is applied to the case of Santiago, Chile using data describing all new 

real estate projects built in expansion areas between years 2004 and 2013 (accounting for 

1,833 projects and 89,422 units). Estimation results confirm a very clear market 

segmentation, with significantly different housing location preferences between submarkets 
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of projects. We argue this reflects social segregation, which clearly manifests spatially in 

consolidated areas of Santiago, and is now replicated in the sprawl. 

This chapter is structured as follows. Section two provides an overview of the literature in 

the field of housing submarkets, location choice and agent heterogeneity. Section three 

presents the proposed model. Section four presents the model implementation, introducing 

Santiago as a case study, describing the data assembly and showing the estimation results. 

Finally, conclusions are presented.  

2.2. Housing submarkets and location choice models 

Housing markets are different from other markets for several reasons (Galster, 1996; 

O´Sullivan, 2012). In particular, they deal with heterogeneous quasi-unique goods (housing 

units) that usually have very high transaction costs. As most markets, they can be subdivided 

into submarkets, but there are some key differences that are relevant to this work. 

Because of demographic, spatial and production factors, new housing products are 

heterogeneous but can be grouped in clusters or subgroups of nearly similar products with 

some internal variance, which has been studied as housing submarkets (Schnare & Struyk, 

1976; Adair, Berry & McGreal, 1996; Galster, 1996; Goodman & Thibodeau, 1998; 

Watkins, 2001; Rosmera & Lizam, 2016, inter alia).   

These submarkets can be correlated with social segregation patterns (Daniels, 1975; Hwang, 

2015) by contributing to the emergence of homogenous neighborhoods. While spatial 
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segregation, understood as the physical separation of two or more groups of agents into 

different areas of the city (Massey & Denton, 1988) is the result of individual location 

preferences with respect to the location of other groups or types of agents (Clark, 1991; 

Schelling, 1978), most theoretical and applied approaches trying to measure or describe 

segregation are based on exogenous definitions of types or groups of agents. While this 

makes these approaches intuitive and easily transferred to public policy, exogenous and/or 

fixed definition of groups has been criticized in the literature since this is clearly a complex 

process that depends on multiple variables (Wright, 2000). This is also the case in the 

discussion about segregation in Latin America and particularly in Chile (Ruiz-Tagle & 

López-Morales, 2014). We believe that the use of latent submarkets, as proposed in this 

chapter, can help to tackle this issue by using an endogenous segmentation process that helps 

not only to identify groups that tend to agglomerate (or segregate from each other) but also 

to measure their location preferences and, therefore, the drivers of segregation.  

McFadden (1978) proposed modelling the residential location as a discrete decision, in 

which each household is a decision maker facing a set of locations (dwellings) as 

alternatives. Each alternative reports a utility to the household, which is a function of 

location attributes, dwelling price and household preferences. Alternatives with higher utility 

have a higher probability of being chosen (stochasticity is given by a random error term 

accounting for unobserved attributes and idiosyncratic behavior).  

In location choice models, heterogeneity is the explicit differentiation of preference 

parameters by type of decision maker. This differentiation is usually defined exogenously, 
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based on decision maker characteristics, such as income, car ownership and households’ size 

(for a review see Schirmer, Van Eggermond, & Axhausen, 2014). Models for the location 

of residential supply considering heterogeneity of the developers are reviewed by Haider 

and Miller (2004) and Zöllig and Axhausen (2015). 

Exogenous definitions of types of agents (and hence heterogeneity) cannot ensure an 

adequate and representative clustering of decision makers with similar preferences. To tackle 

this problem, endogenous segmentation techniques can be used. The most common approach 

for endogenous segmentation in location choice models is latent class modeling (Kamakura 

& Russell, 1989). These models estimate the probability of belonging to a certain class of 

decision maker as a function of her characteristics, while simultaneously estimating the 

preference parameters for each of the classes considered in the model. This approach is 

explained with more detail in section 2.3. 

Latent class models have been used to account for heterogeneity in residential location 

choice (Ettema, 2010; Glumac, Han, & Schaefer, 2014; Ibraimovic & Hess, 2017; Liao et 

al., 2014; Lu et al., 2014; Smith & Olaru, 2013; Tu et al., 2016; Walker & Li, 2007), allowing 

for a better characterization of behavior. Latent class models applied to the problem of 

location choice for residential supply are not reported in the literature, to the extent of our 

knowledge.  
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2.3. A model for endogenous segmentation of housing submarkets 

We propose a model where the decision makers are real estate developers. We assume each 

developer produces one project with given characteristics. Each developer chooses where to 

locate their project from all feasible locations in the study area, and their location preferences 

vary depending on the project characteristics (i.e. the submarket it targets).  

In our model, submarkets are endogenously identified as a function of the project 

characteristics and location patterns. We assume each submarket targets a different type of 

consumer, whose willingness to pay for a dwelling in a specific location defines the price. 

Similar to households maximizing utility in standard location choice models as proposed by 

McFadden (1978), real estate developers are profit maximizers. Therefore, developers 

attempt to maximize their profit by choosing the best location for each project, depending 

on the submarket the project belongs to. However, submarket segmentation is not explicit 

and must be identified. We do this by assuming submarkets can be treated as latent classes, 

with each project belonging to a “latent submarket” with a probability, which is a function 

of its characteristics. The set of possible submarkets (𝑆) is unknown to the analyst before 

estimation. 
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We model the profit of a project 𝑛 belonging to a submarket 𝑠 ∈ 𝑆, decomposing the cost 

between development costs and land acquisition. The developers profit maximization 

problem then is: 

max
𝑖∈𝐿

𝜋𝑛(𝑖|𝑠) =  𝑅𝑛𝑖𝑠(𝑍𝑖 , 𝑋𝑛) − 𝐷𝑛(𝑋𝑛) − 𝐿𝑖(𝑍𝑖̅) ∙ 𝑞𝑛 (2.1) 

where 𝜋𝑛(𝑖|𝑠) is the expected profit per unit built in location 𝑖, given that the project 

containing it (𝑛) belongs to the submarket 𝑠. This profit is a function of the expected price 

of a unit in project 𝑛 if it is built in location 𝑖, given that it belongs to submarket 𝑠 (𝑅𝑛𝑖𝑠). 

This price is a function of a vector of characteristics of the project 𝑋𝑛 and location 

attributes 𝑍𝑖. We assume all units within a project have the same characteristics and, 

therefore, the same price. Development cost for a unit within project 𝑛 (𝐷𝑛) is also a function 

of project characteristics (𝑋𝑛). The development cost function may account for economies 

of scale due to the total number of units in the project, an attribute that can be included in 

𝑋𝑛. The land acquisition cost is the product of land price per surface unit at location 𝑖 (𝐿𝑖) 

and the amount of land required to build one dwelling within the project (𝑞𝑛). The land price 

is also a function of location attributes (𝑍𝑖̅) but in a different period, so we assume it to be 

exogenous in the rest of the formulation. We assume that the profit for each project is 

independent from the other projects’ location decisions and, therefore, our model is not 

accounting for agglomeration economies. 

The expected selling price (𝑅𝑛𝑖𝑠) is modeled using a linear-in-parameters specification, 

similarly to what is usually done in hedonic price models, where parameter-vectors 𝜌𝑠 and 
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𝛽𝑠, which are submarket-specific, represent the marginal price of dwelling characteristics 

and location attributes respectively. 

𝑅𝑛𝑖𝑠 = 𝛽𝑠 ∙ 𝑍𝑖 + 𝜌𝑠 ∙ 𝑋𝑛  (2.2) 

The estimated selling price, as well as development and land costs, may be subject to 

uncertainties derived from imperfect information, unobserved attributes or non-rational 

behavior. According to random utility theory (Domencich & McFadden, 1975), we can 

account for these uncertainties if we assume that the profit associated to each location 

alternative has a random error following an IID Gumbel distribution, and treating the 

decision process under an stochastic approach. This assumption, which renders a 

Multinomial Logit model (MNL), is frequently used in the location choice literature (see for 

example Hurtubia & Bierlaire, 2014; Martínez & Henríquez, 2007; McFadden, 1978; 

Walker & Li, 2007). A reason for this is the “Independence of Irrelevant Alternatives” 

property of the MNL, which allows to estimate a model using a sample of alternatives instead 

of the complete choice set, usually very large in this type of problem (Antoniou & Picard, 

2015). Additionally, the MNL has the advantage of having a closed form, something that is 

particularly convenient for models with a latent class structure, and therefore 

computationally expensive to estimate, such as the one proposed in this work.  
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Therefore, the probability that a location alternative i reports the maximum profit among all 

alternatives, conditional to a particular submarket 𝑠, and therefore being chosen to build a 

project 𝑛 is: 

𝑃𝑛(𝑖|𝑠) =  
exp(𝜇 ⋅ 𝜋𝑛(𝑖|𝑠))

∑ exp(𝜇 ⋅ 𝜋𝑛(𝑗|𝑠))𝐽
𝑗=1

   ∀ 𝑛, 𝑖, 𝑠  (2.3) 

where 𝜇 is a scale parameter. Replacing (2.1) and (2.2) in (2.3), the location choice 

probability is: 

𝑃𝑛(𝑖|𝑠) =  
exp(𝛽𝑠̂ ∙ 𝑍𝑖 + 𝜌𝑠̂ ∙ 𝑋𝑛 − 𝜇 ∙ 𝐷𝑛(𝑋𝑛) − 𝜇 ∙ 𝐿𝑖 ∙ 𝑞𝑛)

∑ exp(𝛽𝑠̂ ∙ 𝑍𝑗 + 𝜌𝑠̂ ∙ 𝑋𝑛 − 𝜇 ∙ 𝐷𝑛(𝑋𝑛) − 𝜇 ∙ 𝐿𝑗 ∙ 𝑞𝑛)𝐽
𝑗=1

   ∀ 𝑛, 𝑖, 𝑠 (2.4) 

With some algebra, we can see that terms that are not specific to the location (number of 

units, development costs and the project characteristics in the expected price) can be 

cancelled-out: 

𝑃𝑛(𝑖|𝑠) =  
exp(𝛽𝑠 ∙ 𝑍𝑖 − 𝜇 ∙ 𝐿𝑖 ∙ 𝑞𝑛)

∑ exp(𝛽𝑠 ∙ 𝑍𝑗 − 𝜇 ∙ 𝐿𝑗 ∙ 𝑞𝑛)𝑁
𝑗=1

   ∀ 𝑛, 𝑖, 𝑠  (2.5) 

Therefore, as development costs are not part of the profit function in the location choice, any 

economies of scale due to number of units in the project are not relevant for modelling this 

particular decision. Economies of scale could be considered when defining the size of 

projects, but this decision is previous and exogenous to this model. It should also be noticed 

that development costs could have some variation across the city for the same project, but 

for modelling purposes we assume this variable to be constant across space. 
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The location probability of (2.5) is conditional to submarket 𝑠. We assume the membership 

of a project to a particular submarket is latent. However, following Kamakura and Russell 

(1989), this relation can be described through a class membership function 𝑊𝑠(𝑋𝑛, 𝜃𝑠). We 

assume this membership can be described by project characteristics (𝑋𝑛) and their 

corresponding parameters (𝜃𝑠), explaining how much a project 𝑛 fits into a submarket 𝑠. 

Making similar assumptions about unobserved attributes and stochastic behavior as in (2.3), 

the probability of a project 𝑛 belonging to submarket 𝑠 is: 

𝑃𝑛(𝑠 | 𝑋𝑛) =  
𝑒𝑥𝑝(𝑊𝑛𝑠(𝑋𝑛, 𝜃𝑠))

∑ 𝑒𝑥𝑝(𝑊𝑛𝑔(𝑋𝑛, 𝜃𝑔)𝑔∈𝑆
      ∀ 𝑠, 𝑛 (2.6) 

Where 𝑆 is the set of possible project submarkets. Finally, following the latent class 

approach, the unconditional probability of choosing a location alternative 𝑖 is: 

𝑃𝑛(𝑖) =  ∑𝑃𝑛(𝑖|𝑠) ∙  𝑃𝑛(𝑠|𝑋𝑛)

𝑠

          ∀ 𝑖, 𝑛 (2.7) 

Using equation (2.7), parameters 𝛽𝑠 and 𝜃𝑠 can be estimated through maximum likelihood 

using observed project location decisions, without requiring any information regarding 

submarket structure. This approach avoids an ex-ante definition of the membership of 

projects to submarkets and, instead, infers how developers perceive projects as part of a 

submarket, according to their characteristics and expected profit in different locations.  

The estimation results allow the modeler to label each class according to the magnitudes and 

signs of parameters 𝛽𝑠 and 𝜃𝑠, assigning a “recognizable adjective” to each class, as it is 
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done in the case study. The number of classes is defined exogenously, although the optimum 

number of classes could be found with an iterative and exploratory estimation process.  

2.4. Santiago case study: Project-based expansion 

To test our model, we propose as a case study the development of residential projects in the 

expansion areas of Santiago, Chile. With 6,123,000 habitants (INE, 2018), Santiago is by a 

large extent the main city of Chile, concentrating administrative power, services and 

commerce.  

In this case study, we will focus on private residential projects built in suburban and 

expansion areas (outside the outer ring road) from 2004 to 2013. During this period, several 

urban highways were built, facilitating the development in areas that were previously hard 

to reach. Figure 2-1 shows the “centrifugal” evolution through time of the location of new 

real estate projects in the outskirts of the city, and how this correlates with the construction 

of urban highways. 

These projects were regulated under a policy called “conditioned urban development zones2” 

which, from 1997 to present day, allows developers to urbanize rural areas, if certain basic 

requirements of connectivity and amenities are met. This means that real estate location is 

                                                 

2 Called ZODUC, due to their acronym in Spanish  
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more the outcome of the developers’ decisions than of discretional regulations; making this 

case study particularly suitable to be approached through econometric models. 

 

Figure 2-1: Location of residential projects (left) and average travel time to the outer ring road (right). 

 

2.4.1. Model implementation and data  

We applied the model described in section 2.3, to a database of residential projects in 

expansion areas. The class membership function 𝑊𝑛𝑠 depends on intrinsic observed 

characteristics of the projects. Due to data limitations we had only a few characteristics: the 

number of units in the project, the average plot size and average listed asking price (we use 

average because units in the same project may vary in their characteristics, having slightly 

different prices and sizes). Although few, these variables are among the most relevant 
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attributes describing a housing project (Hurtubia, Gallay, & Bierlaire, 2010). Due to the 

evolution of the urban growth process, some of the location attributes are updated for each 

year. The location model for a specific project will depend on attributes for the same period 

when it was built. 

We divided the study area into a 175 x 175 grid, resulting in 30,625 cells of 500 by 500 

meters. Each cell is a valid alternative in the location decision process but, because 

estimating a logit model with such a large choice-set (30,625 alternatives) would be 

inefficient and too expensive in computational terms, a sampling strategy was used 

following McFadden (1978). We use the observed location of the project as the chosen 

alternative while nine un-chosen alternatives were randomly sampled from all locations that 

were feasible. 

Project data comes from a private cadaster of all residential developments built in Santiago’s 

expansion areas (out of the main ring of the city, Americo Vespucio) from 2004 to 20133. 

This database describes 1,833 residential projects accounting for a total of 89,422 new 

housing units. These projects represent approximately 26% of the total new housing supply 

in this period, according to own calculations based on intercensus growth (INE, 2002, 2018). 

Demographic attributes of the cells are obtained from the National Census (INE, 2002) and 

a socioeconomics segmentation provided by Adimark (2000). Land cost is available at an 

                                                 

3 provided by the consulting firm Inciti (http://www.inciti.com/ ) 

http://www.inciti.com/
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aggregate spatial zoning for year 20144. A road network topology, obtained from Open Street 

Map, was used to compute accessibility measures. Travel time is obtained through cost 

surface analysis (see Leusen, 1997). All variables describing location attributes (𝑍𝑖) and 

project characteristics (𝑋𝑛) used in the model are described in Table 2-1.  

2.4.2. Estimation results 

The model described in section 2.3 is estimated using the statistical software Biogeme 

(Bierlaire, 2003) and considering two classes. Models with more classes were estimated, but 

the parameters were not significant, which can be interpreted as evidence of this market 

being polarized into two well-defined submarkets.  For comparison purposes a base model 

with no latent classes (i.e. all projects have the same location preferences) was also 

estimated. Results are shown in Table 2-2. 

In both models, most parameters were significant at the 95% confidence level, and signs and 

magnitudes are as expected, with a few exceptions that will be analyzed later. The latent 

class model considerably outperforms the basic model in terms of fit. 

                                                 

4 provided by the consulting firm Transsa (http:// http://www.transsa.com/)  

http://www.transsa.com/
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Table 2-1: Attributes used in proposed models. 

Type Attribute Description Sources 

Cell (location) 

Attributes 𝒁𝒊 

Density Number of households in a cell for each 

year divided by surface 

Census 2002 (INE, 2002), Inciti 

and GFK project database(new 

projects) 

Location 

Socioeconomic 

Index 

Ratio between the number of high income 

(ABC1 and C2) and low income 

households (D and E) in the cell (1) 

Adimark (Market consulting) 

classification (ABC1: higher 

income, E: lower income) with 

Census 2002 data (INE, 2002) 

Land 

acquisition cost 

(𝑳𝒊 ∙ 𝒒𝒏) 

Average plot size multiplied by average 

land value in the cell (UF/m2) (2)  

Transsa Consulting 

((2013)(2013)(2013)(2013)(201

3)(2013)(2013)(2013)(2013)(20
13)(2013)(2013)(2013)(2013)(2

013)(2013)(2013)2013) 

Distance to 

hillsides 

Average distance (km) of the cell to the 

nearest hillside in a 360° parse. 

own calculation. 

Travel Time 

(TT) 

Travel time to 

CBD 

Travel time (min) to nearest point in CBD 

(Alameda-Providencia axis) 

own calculation based on 

openstreetmap roads. 

Travel time to 

nearest 

industrial zone 

Travel time (min) to nearest industrial 

zone. 

own calculation based on 

openstreetmap roads. 

Travel Time to 

nearest 

Highway 

Travel time (min) to nearest existing 

highway for each year. 

own calculation based on 

openstreetmap road.  

Travel time to 

nearest satellite  

Travel time (min) to nearest cell with 

density of more than 7 Households per Há, 

outside the Santiago main continuous 

urbanized area. 

own calculation based on 

openstreetmap roads and census 

2002 (INE, 2002). 

Travel time to 

high price 

projects 

Weighted average of travel time (min) to 

the 10% of highest price residential 

projects built the year before. Number of 

units is used as weight. 

own calculation based on 

openstreetmap road (for travel 

time). Inciti and GFK project 

database (for new projects). 

Average travel 

time to low 

price projects 

Weighted average of travel time (min) to 

the 10% of lowest price residential projects 

built the year before. Number of units is 

used as weight. 

own calculation based on 

openstreetmap road (for travel 

time). Inciti and GFK project 

database (for new projects). 

Developer´s 

project 

characteristics 

Project Unit 

Price 

Average price of units in the project 

(UF/m2) (2) 

Inciti and GFK project database 

Plot Size Average plot size of the units in the project 

(m2) 

Inciti and GFK project database 

Number of 

Units 

Number of houses built in the project. Inciti and GFK project database 

(1) Santiago Metropolitan Region has 541 censal districts. This index is based on a stratification methodology by 

Adimark (2014), where households are divided in five classes (ABC1, C2, C3, D and E) according to education and 

material belongings. 

(2) UF: Unidad de Fomento. Monetary unit that is re-adjustable according to inflation, which is equivalent to 42 dollars 

(August 2017) 
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BASE MODEL  

(NO CLASSES) 

 SUBMARKET MODEL  

(2 CLASSES) 

Attribute parameters (𝜷) Coefficient (t-test) 

    

Class 1 

(“Massive”) 

Class 2 

(“Exclusive”) 

Travel time to high price projects (min) -0.0519 (-13.92) -0.0303 (-3.63) -0.0609 (-14.25) 

Travel time to low price projects (min) -0.0255 (-5.59) -0.0591 (-6.07) 0.0118 (2) 

Land acquisition cost (UF) -0.0000668 (-3.38) -0.000215 (-6.02) 

Density (Households/Hectare) 0.000543 (5.9) 0.00154 (10.11) -0.000295 (-1.87)* 

Location Socioeconomic Index 0.0088 (2.41) 0.00903 (2.03) 0.0217 (3.42) 

Distance to hillsides (m.) -0.0151 (-1.81)*  0.0851 (4.78) -0.0568 (-5.71) 

Travel time to CBD (min) -0.0272 (-4.19) -0.0712 (-5.34) 0.00564 (0.75)** 

Travel Time to nearest Highway (min) 0.129 (15.81) 0.24 (14.27) 0.0407 (4.6) 

Travel time to nearest industrial zone 

(min) -0.122 (-17.32) -0.19 (-12.63) -0.0946 (-9.7) 

Travel time to nearest satellite (min) -0.00233 (-0.61)** -0.0376 (-5.11) 0.0209 (4.71) 

Class Membership parameters (𝜽)   Class 1 Class 2 

Intercept - 63.6 (2.07)  - 

Average unit asking price (UF/m2) - -1.29 (-2.08)  - 

Plot size (m2) - -0.13 (-1.88)*  - 

# Units (un) - 0.0775 (1.6)**  - 

Null model log-likelihood -3875.25 -3875.25 

Final log-likelihood -2425.09 -1926.59 

Likelihood ratio test (against null 

model) 2900.33 3897.32 

 

Table 2-2: Estimation results. 

 

The class membership model (bottom of Table 2-2) shows parameters that affect the 

probability of belonging to class 1. By interpreting the signs of these parameters, class 1 can 
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be labeled as a submarket of more “massive” projects, as they have a lower asking price5, 

with smaller plot size and a higher number of units in the project. In contrast, class 2 projects 

can be labeled as belonging to a more “exclusive” submarket. 

Several parameters in the latent class model change significantly with respect to the basic 

one. This is because the class-specific parameters are describing a much more coherent 

behavior. For example, travel time to low price projects, to the CBD and to the nearest 

satellite are all negative in the basic model but become positive for class 1 (massive projects) 

and remain negative for class 2 (exclusive projects) in the latent class model. A similar 

change is observed for density and distance to hillsides. 

The interpretation of the parameters becomes much more intuitive in the latent class model. 

For example, both massive and exclusive projects prefer to locate near high price projects, 

but this is much more important for the exclusive projects while, at the same time, the 

exclusive projects try to locate as far as possible from low price projects (which is not the 

case for the massive ones). The case of the distance to hillsides variable is interesting, 

showing that high income households prefer to locate in enclosed or “protected” places, 

which can be interpreted as an extension in a topographic scale of the typology of gated 

communities (Borsdorf & Hidalgo, 2008; Webster et al., 2002), but in this case instead of 

                                                 

5 This asking price is not the same as the expected selling price (𝑅𝑛𝑖𝑠) of equation (2.1) 
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crime, protecting themselves against new “undesirable” projects locating nearby. Travel 

time to CBD is significant for massive projects, which seem to prefer locations with good 

accessibility to employment centers. However this variable becomes irrelevant for exclusive 

projects, which is consistent with the observed trend where this type of development (usually 

associated to households with higher car ownership) tend to locate farther away from the 

consolidated city.  

Although both classes value to have low travel times to certain amenities or desirable 

opportunities (e.g. high income projects, industry, CBD), which clearly benefit from the 

presence of highways connecting them, they also prefer locations far from the highways 

themselves. This, although seems to be contradictory, reflects how urban highways provide 

benefit to peripheral locations (by increasing their accessibility) but, simultaneously, are not 

desirable from a public space and externalities perspective. 

The parameter for land acquisition cost is the scale parameter, following equation (2.5), but 

it cannot be confidently interpreted as such since the available data only provides a very 

coarse approximation for this attribute. Due to several unknown factors, such as the amount 

of time passed between the purchase of land and the construction of the project, or the 

interest rates involved in the transactions, the land cost attribute can be only interpreted as a 

proxy of the opportunity cost of developing that parcel. 
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2.4.3. Spatial distribution of sub-markets 

Using the class membership parameters (𝜃), the probability of belonging to the massive or 

exclusive sub-markets can be computed for every project in the database. Figure 2-2 shows 

the location of projects and their probability of belonging to the exclusive class. The spatial 

segregation is evident, with the north east part of the city clearly dominated by the Exclusive 

submarket (in red) and only one satellite in the west exit of the city breaking this pattern.  

The histogram in Figure 2-3 (top) shows the empirical membership probability distribution 

for exclusive projects. Most of the projects can be clearly classified in one of the two 

submarkets. 47% of the projects fall in the 0 to 0.05 range of probability of being classified 

as exclusive (so they can be labeled as Massive), 36% in the range of 0.95 to 1 (clearly 

exclusive) and only 17% are in the wide intermediate range of 0.05 to 0.95 (yellow dots in 

Figure 2-2).  This pattern shows that there is not a smooth transition from the exclusive to 

the massive submarkets, and that real estate decision makers strongly divide their location 

choices according to these two submarkets. This pattern is coherent with the strong social 

segregation and inequality observed in Chilean society (PNUD, 2017). 
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Figure 2-2: Location of projects and segmentation according to probability of membership to “exclusive” 

submarket. 
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Figure 2-3: Histogram (top) with number of projects in each range of probability of membership to 

“exclusive” submarket. Spatial distribution of location probabilities for Massive (bottom left) and Exclusive 

(bottom right) projects. 

The extreme segmentation of projects into submarkets, with very different location 

strategies, is a clear result of deregulation and market-oriented land use policies implemented 

in Santiago, something well discussed in previous literature (Borsdorf & Hidalgo, 2008; Cox 

& Hurtubia, 2016; Heinrichs, Nuissl, & Rodríguez, 2009). Loose regulations allowed 

developers to produce housing targeted at very specific segments of the population, 
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differentiating their products not only through unit or project characteristics, but also through 

location. 

2.4.4. Location elasticities to urban elements 

We calculate the aggregate elasticities for location choice probabilities with respect to each 

location attribute conditional to each project class. Depending on the sign and magnitude of 

the elasticities, shown in Figure 2-4, the attributes can be interpreted as “attractors” or 

“repellers” of location for each submarket. All the distance or travel time attributes are 

attractors if their sign is negative.  

The most relevant attributes attracting the location of “massive” projects are low travel times 

to similar projects, to the city center and to industry areas. On the other hand, the most 

repulsive attributes for this submarket are low travel times to the nearest highway and 

closeness to hillsides. In the case of “exclusive” projects, the most relevant attractors are low 

travel times to similar projects and to industry areas. The most relevant attributes that make 

a location unattractive for this submarket are low travel times to satellite urban areas and 

high land costs. 

In general, attributes related to accessibility play a much more relevant role in the location 

choice process than intrinsic attributes of the location itself (other than access). This 

quantification of “attraction and repulsion forces” for each type of project allows us to draw 

a schematic model of project-based urban expansion, which is shown to the left in Figure 2-

4. This diagram represents two simplified location behaviors: While massive projects have 

a continuous and “attached” expansion from the city, exclusive projects expand mainly from 
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the existing high income area in a “furtive” manner, or in isolated areas with their “backs 

against the slope”.  

 

Figure 2-4: Diagram of location of projects according to attraction to urban elements (left), and model 

elasticities (right). 

2.5. Conclusions 

A model for location choice of real estate projects in expansion areas is proposed. The 

modelling framework makes it possible to simultaneously identify the parameters of a 

submarket classification function and the parameters of different expected price (and, 

therefore, profit) functions for each submarket, using a location decision model with latent 

class structure and, therefore, not requiring ex-ante definitions of market segments 

(although, the characteristics that are submarkets classifiers must be exogenously defined by 

the analyst). Thanks to a better representation of heterogeneity in the developers’ 
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preferences, the proposed model outperforms a basic location choice model in terms of fit, 

simultaneously allowing for a better understanding of urban growth drivers. 

Estimation results confirm there are two clearly different classes of projects in expansion 

areas of Santiago de Chile, according to their characteristics and location preferences. This 

reveals an inherent link between the spatial (location) and structural (unit characteristics) 

segmentation that emerges in the housing production process, given a developer that tries to 

find the most profitable location for a project of certain characteristics. This is consistent 

with the submarket definition proposed by Watkins (2001), which asserts that structural and 

spatial attributes are both relevant dimensions in the market segmentation of housing.  

Among the main findings is the clear distinction between expected price/profit (and therefore 

location preferences) for both submarkets. The polarization of the market is also a relevant 

finding, showing that the great majority of projects (83%) belong to one of the two market 

classes with more than a 95% probability. This seem to reflect segregation and inequality 

patterns observed in many other aspects of Chilean society and it is mostly the product of 

deregulation and market-oriented land use policies (such as the “conditioned urban 

development zones or ZODUC)  which permit developers to target submarkets with large 

differences on their valuation of urban externalities and willingness to pay for spatial 

attributes. 

References for all chapters are presented in a specific chapter after conclusions. 

 



55 

 

  

3.  LATENT SEGMENTATION OF URBAN SPACE THROUGH RESIDENTIAL 

LOCATION CHOICE6 

Tomás Cox and Ricardo Hurtubia 

 

ABSTRACT 

Understanding the preferences of households in their location decisions is key for residential 

demand forecast and urban policy making. Accounting for preference heterogeneity across 

agents is useful for the modelling process but not enough to completely describe location 

choice behavior. Due to place-specific conditions, the same agent may have different 

preferences depending on the sector of the city considered as potential location, a phenomena 

known as spatial heterogeneity. Segmenting the city by defining zones where agents are 

supposed to behave similarly has been a common modelling solution, assigning different 

zonal preference parameters in the estimation process. This has been usually done with two-

step methods, where spatial segmentation is done independently of the location choice 

process, something that could bias estimation results. We propose and test a one-step model 

for simultaneous estimation of location preference parameters and spatial segmentation, 

                                                 

6 This chapter is under second round of revision for publication as a paper at journal “Networks and Spatial 

Economics”. 
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therefore accounting for heterogeneity across agents and space. The model is based on 

Ellickson´s bid-auction approach for location choice and latent class models. We test our 

model with a case study in Santiago, Chile and compare it with other models for spatial 

segmentation. In terms of predictive power, our approach outperforms a model with no 

zones, a model with zones defined exogenously, and a clustering-based two-step model. This 

novel approach allows for a better conceptual ground for urban predictive models with 

spatial segmentation. 

3.1. Introduction 

Modelling households’ location decisions is key to understand past and future patterns of 

urban growth and change, which helps to plan transport and services infrastructure, and to 

design policies that guide towards a better and more sustainable urban development.  

The work by Alonso (1964) was the first to model the spatial distribution of different types 

of households according to their specific willingness to pay (WP) for a location as a function 

of its attributes, such as accessibility and built surface. In this model, each location is 

assumed to be auctioned, and the household with the highest bid (correlated with its WP) 

“wins” the location. This defines both the spatial distribution of households and the prices 

of real estate goods. Most present models of location choice are based on later formulations 

by McFadden (1978) and by Ellickson (1981). In both approaches, households evaluate each 

location in terms of its attributes and dwelling characteristics, and their probability of 
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choosing the location depends on this evaluation (a utility function in McFadden’s and a WP 

function in Ellickson’s). 

In location choice models, WP functions are generally based on the interaction between a 

vector of location attributes and agent characteristics, and a vector of unobserved parameters 

that represent the marginal contribution of each attribute and characteristic to the WP. These 

parameters are specific to each type of agent and are modelled as to represent their 

preferences in the choice process. Besides demographic heterogeneity we can also find 

heterogeneity across (types of) places, known as spatial heterogeneity. As demographic or 

agent heterogeneity can be included by segmenting agents according to their characteristics, 

also spatial heterogeneity can be included by segmenting locations according to their spatial 

attributes and assigning segment-specific preferences. 

In this chapter we argue that spatial segmentation and how it affects valuation of attributes 

(preferences) is a complex issue, as it is part of the spatial cognition of city dwellers. If we 

want to achieve a spatial segmentation that maximizes the likelihood that parameters are 

representative of preferences in each zone, we cannot predefine zones only from differences 

in built or urban attributes as it is done, for example, in cluster analysis (Jain, 2010; 

MacQueen, 1967).  Location preferences should play an active role in the spatial 

segmentation process, something that can’t be achieved when segmentation is defined before 

the estimation of preference parameters, but can be done with a joint estimation of both 

spatial segmentation and preferences.    
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In order to do so, we propose a model based on the bid-auction approach, where agents not 

only have a WP function, but also have an heterogeneous perception of urban space which 

can be described by a spatial segmentation function, with parameters that are estimated 

jointly with the WP parameters, following a latent class modelling approach (Kamakura & 

Russell, 1989).  

This model presents a novel simultaneous approach to spatial segmentation and location 

choice, which we affirm is ahead of previous (two-step) zone-based segmentation 

methodologies, thanks to zones defined by a classification function based on parameters that 

are estimated in order to maximize the likelihood of reproducing the phenomenon. This 

method is also behavior-based, in a model formulation that follows agent segmentation 

process and is consistent with microeconomic theory. We apply the model to household 

location data for Santiago de Chile and compare results with those obtained when using a 

model with no segmentation, and other two models where segmentation is done in a first 

step (exogenous zones and cluster-based zones). Model comparison is done using a 

validation subsample. 

The chapter is structured in five sections. After this introduction, section two discusses the 

issue of spatial heterogeneity in general terms; section three details the proposed modelling 

framework; section four explains the mathematical formulation of the bid-auction 

localization model. Section five presents the proposed model, conceptually and 

mathematically. Section six presents the data and implementation of the proposed model. 



59 

 

  

Section seven presents the results and the comparison with other approaches. Finally, 

conclusions are presented.  

3.2. Sources and methods for spatial heterogeneity 

In location choice models, heterogeneity is dealt with when the modeler accounts for 

different behavior for different types of agents, understanding that people have a complex 

nature and that a general rule or set of drivers is not enough. The differences in behavior 

under the same conditions, for different types of people, is also observed across space. 

Spatial heterogeneity means that model parameters are not stationary across space (Anselin, 

1988) which means that, for different reasons, the same individual facing the same 

conditions will behave different in different parts of the territory. 

3.2.1. Sources of spatial heterogeneity 

Fotheringham et al. (2002) identify three reasons for non-stationary parameters in space. 

Two of them belong to modelling shortcomings: one related to the possibility of data samples 

being different across space and the other to the existence of non-observed variables that are 

correlated with spatial variations. The third one relates to the spatial phenomena itself, 

related to contextual effects that affect the valuation of location attributes by individuals. 

The fact that the same person could react in different ways to the same stimuli, depending 

on the location of the city where she or he stands, provides evidence for the existence of 

some underlying qualitative aspects of places that interact with observed attributes. 

Neighborhood effects (Becker & Murphy, 2009; Durlauf, 2003; Sampson, Morenoff, & 
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Gannon-Rowley, 2002) may explain the synergies among certain urban attributes that can 

act as a multiplier of their effects on behavior. As traditional model parameters represent the 

marginal effect of one additional unit of an attribute in the level of the explained variable, it 

is natural to think that this effect is not constant, as it can be sensitive (or relative) to the 

levels of other urban attributes in the same location.  

Different levels of urban attributes can represent states of saturation or scarceness of that 

attribute. In places where the attribute is abundant, it is possible that the valuation of that 

attribute is lower than in places where the attribute is scarce, meaning the preference 

parameter for that attribute should vary across space. For example, the same additional 

square meter of green area can have a greater effect (larger parameter value) if the location 

in question has a high built density (and therefore scarcer green areas) than if it’s a low 

density location. In a complex system as a city, attributes interact in complex ways, so it is 

reasonable to assume that the effect of urban attributes on behavior is not isolated from the 

magnitude of other attributes (Abbott, 1997). 

One of the first systematic works exploring how neighborhoods are recognized and affect 

behavior was the research by Lynch (1960), which surveyed inhabitants of three cities in the 

US to obtain maps of how they perceived their neighborhoods. Lynch identified five 

elements (zones, barriers, paths, milestones, nodes) that people can recognize as 

characteristic of a city and that are related to the reading that people make to orient 

themselves and be able to "navigate" through the city; a concept that was later investigated 

as mental maps applied to space (Gould & White, 1974). Other research (Nasar, 1990; 
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Salesses, Schechtner, & Hidalgo, 2013) has identified how people not only identify sectors, 

but also apply different valuations based on their urban attributes. This is consistent with 

general theories from psychology, for example, Gestalt (Wertheimer & Riezler, 1944), 

fragmentation or chunking (Gobet et al., 2001; Miller, 1956), and mental models (Johnson-

Laird, 2010), which indicates that people tend to group or add information in elements to 

simplify the abundant information of the context, and be able to handle it efficiently. 

3.2.2. Methods for identifying spatial heterogeneity 

Spatial heterogeneity is a special case of heterogeneity in general, for which we can find an 

early example in Quandt (1958), who used different functions in a linear regression for 

different subsets of observations.  

There are different technics to structure the variation of parameters across space. The 

simplest one, that can be usually seen in hedonic price (Rosen, 1974) and location choice 

models, is to use an exogenous zonification (administrative or functional mainly), where 

each zone has a different set of parameters corresponding to the observations in the zone. 

Exogenous zonification, however, presents the shortcoming of the Modifiable Areal Unit 

Problem (MAUP) (Openshaw, 1984), which recognizes that zone-based spatial analysis can 

have different outcomes depending on the zonification used. This means that, since 

exogenous segmentation can be arbitrary, so can be the results.  

Some techniques address this issue by estimating location-specific parameters, running a 

regression for each zone or area only using observations within a distance (Moving windows 
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regression, MWR) (Chica-Olmo, 1995; Dubin, 1992) or using decreasing weights for 

observations depending on distance to location (Geographically weighted regression, GWR) 

(Fotheringham et al., 2002; Páez et al., 2008). These methods have the advantage of not 

having to rely on arbitrary zones (but the size of the moving window and the decreasing 

weights function can be arbitrary).  

3.2.3. Housing submarkets as a form of spatial heterogeneity 

In order to define zones, or submarkets, that really group similar preferences, a simultaneous 

estimation method (one step) has to be used. The proposed simultaneous estimation is based 

on defining two sets of parameters: submarket-specific preference parameters, and 

submarket classification function parameters. Both sets of parameters are estimated jointly 

to better capture the phenomena and reduce bias (Ben-Akiva et al., 2002). 

We propose that this joint estimation can be achieved for location choice models by using 

Latent Class Models (LCM) (Kamakura & Russell, 1989). These models estimate the 

probability of individuals belonging to a certain class of decision maker as a function of her 

characteristics, while simultaneously estimating the preference parameters for each of the 

classes considered in the model.  

LCM have been widely used to model heterogeneity in preferences for location choice across 

decision makers (Cox & Hurtubia, 2019b; Ettema, 2010; Liao et al., 2014; Lu et al., 2014; 

Olaru et al., 2011; Walker & Li, 2007). The cited literature uses latent classes to identify 

classes of households and real estate developers or, in general terms, agents that search for 
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locations, based in a traditional choice framework as described by McFadden (1978). LCM 

allows estimating a different set of preference parameters for each class of agent. The 

probability of choosing a location is a total probability that considers the probabilities of 

being part of each class, and the probabilities of choosing that location conditional on 

belonging to a particular class.   

In the authors’ knowledge, LCM have only been applied in location choice models under a 

“traditional” choice approach, in which the classes segment households (or other agents such 

as firms) and give a different set of parameters to each class. However, the framework has 

not been applied in the context of a bid auction approach which, although mathematically 

analogous to the choice approach in its formulation, has a totally different interpretation and 

allows for the introduction of endogenous heterogeneity in preferences across space. In this 

matter, the authors have found only two previous examples of spatial segmentation using 

LCM (Oliva, Galilea, & Hurtubia, 2018; Sarrias, 2019) but not directly applied to location 

choice. Interestingly, the bid-auction formulation, which enables applying LCM to spatial 

data, imposes a structure where agents have to be exogenously classified in order to compute 

a WP for each of them. This opens the question of whether there is a trade-off in this regard, 

or if there are methods allowing to classify locations and agents simultaneously without 

exogenous definitions, which should be addressed in further research. 
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3.3. Problem and proposed model: simultaneous estimation 

We argue that in order to define zones, or submarkets, that really group similar preferences, 

a simultaneous estimation method (one step) has to be used. The proposed simultaneous 

estimation is based on defining two sets of parameters: submarket-specific preference 

parameters, and submarket classification function parameters. Both sets of parameters are 

estimated jointly to better capture the phenomena and reduce bias (Ben-Akiva et al., 2002). 

We propose that this joint estimation can be achieved for location choice models by using 

Latent Class Models (LCM) (Kamakura & Russell, 1989). These models estimate the 

probability of individuals belonging to a certain class of decision maker as a function of her 

characteristics, while simultaneously estimating the preference parameters for each of the 

classes considered in the model.  

LCM have been widely used to model heterogeneity in preferences for location choice across 

decision makers (Cox & Hurtubia, 2019b; Ettema, 2010; Liao et al., 2014; Lu et al., 2014; 

Olaru et al., 2011; Walker & Li, 2007). The cited literature uses latent classes to identify 

classes of households and real estate developers or, in general terms, agents that search for 

locations, based in a traditional choice framework as described by McFadden (1978). LCM 

allows estimating a different set of preference parameters for each class of agent. The 

probability of choosing a location is a total probability that considers the probabilities of 

being part of each class, and the probabilities of choosing that location conditional on 

belonging to a particular class.   
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In the authors’ knowledge, LCM have only been applied in location choice models under a 

“traditional” choice approach, in which the classes segment households and give a different 

set of parameters to each class. However, the framework has not been applied in the context 

of a bid auction approach which, although mathematically analogous to the choice approach 

in its formulation, has a totally different interpretation and allows for the introduction of 

endogenous heterogeneity in preferences across space. In this matter, the authors have found 

only one reference of spatial segmentation using LCM (Sarrias, 2019), who evaluated 

changes in subjective evaluations of well-being, but not directly applied to location choice 

and with far lesser detail in spatial attributes used for segmentation. 

3.4. Bid-auction approach in location choice models 

Location choice models are based on the assumption of agents facing a set of location 

alternatives. Each alternative reports a utility, which depends on the alternative attributes, 

agent characteristics, and a set of preference parameters. Building on McFadden’s (1978) 

choice model, and Alonso’s (1964) work, Ellickson (1981) proposed the bid auction 

approach which is appropriated for location decisions in a households and real estate market 

interaction.  

The bid auction model can be derived from a utility maximization problem, in which an 

agent ℎ chooses a location 𝑖 from a set Ω of different locations in the city, trading off with 

consumption of other goods (𝑥). Besides consumed goods, the agent’s utility depends on a 

vector 𝛽ℎ of preference parameters and a vector 𝑍𝑖 of attributes of each location 𝑖. A budget 
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constraint is added, in which rent 𝑟𝑖 for location plus expenditure in other goods (priced at 

𝑝) have to be equal or less than the agents´ available income 𝐼ℎ.  

max
𝑥,𝑖∈Ω

𝑈ℎ𝑖(𝑥, 𝑍𝑖 , 𝛽ℎ)  

𝑠. 𝑎.       𝑝𝑥 + 𝑟𝑖 ≤ 𝐼ℎ 

(3.1) 

Assuming equality to clear 𝑥 from the budget constraint and replacing it in 𝑈, we obtain an 

indirect utility function (𝑉) and the utility maximization problem simplifies to choosing the 

location that maximizes 𝑉: 

max
𝑖∈Ω

𝑉ℎ𝑖(𝐼ℎ −  𝑟𝑖, 𝑍𝑖, 𝑝, 𝛽ℎ)  (3.2) 

Considering a fixed referential maximum utility level 𝑈ℎ
̅̅̅̅  (expected by the agent), we can 

clear the rent 𝑟𝑖 which, if assumed endogenous, represents the willingness to pay (WP) of 

the agent for that location, in order to reach the reference utility (Jara-Díaz & Martínez, 

1999). Endogenous rent then becomes the willingness to pay agent h for location 𝑖 (𝑊𝑃ℎ𝑖): 

𝑊𝑃ℎ𝑖 = 𝐼ℎ − 𝑉ℎ𝑖(𝑈ℎ
̅̅̅̅ , 𝑍𝑖 , 𝑝, 𝛽ℎ) (3.3) 

If the utility function of (3.1) has a (quasi) linear form, the willingness to pay function can 

be simplified and written in terms of two components. One component is specific to the 

agent, related to the income level and expected maximum utility, and other is related to the 

preferences the agent has for attribute location (Martinez, 2000): 
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𝑊𝑃ℎ𝑖 = 𝑏ℎ + 𝑓(𝑍𝑖, 𝛽ℎ) (3.4) 

Assuming an i.i.d Gumbel distributed error term associated to the 𝑊𝑃ℎ𝑖 (accounting for 

unobserved attributes) the probability that agent ℎ is the highest bidder for location 𝑖, and 

therefore locates there, is defined by a logit function where 𝜇 is non-identifiable a scale 

parameter (McFadden, 1973): 

𝑃(ℎ|𝑖) =
exp (𝜇𝑊𝑃ℎ𝑖(𝑏ℎ, 𝑍𝑖 , 𝛽ℎ))

∑ exp (𝜇𝑊𝑃𝑔𝑖(𝑏ℎ, 𝑍𝑖 , 𝛽ℎ))
𝑔∈𝐻

 
(3.5) 

From a sample of located agents (segmented by type) and the attributes of their location, and 

using maximum likelihood estimation, this model can identify, for each type of agent, the 

marginal WP for each attribute considered in the WP function. 

The bid auction approach has been used in several Transport and Land Use Interaction 

(LUTI) models such as MUSSA (F. Martínez, 1996), ILUTE (Salvini & Miller, 2005) and 

IRPUD (Wegener, 2011). Several research papers on the literature about location choice also 

use this approach (Chattopadhyay, 1998; Gross, Sirmans, & Benjamin, 1990; Hurtubia & 

Bierlaire, 2014; Hurtubia, Martinez, & Bierlaire, 2019; Muto, 2006)). 

3.5. Proposed latent spatial-segmentation model  

The proposed model applies a latent class model framework (LCM) to a bid-auction location 

choice model. Mathematically, applying LCM to bid-auction framework is relatively similar 
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to doing so for a choice framework, but the interpretation and application differs in 

substantial aspects.  

In a bid-auction model with latent classes, the class membership function applies to the 

location, understood as the agent that receives the bids (e.g the owner of the property or the 

land). Therefore, the class-specific preference parameters can be interpreted as the location-

seeking agents (households and firms) having a different valuation of urban attributes 

conditional to the class of the location. 

 

Figure 3-1: Latent classes applied in a bid-auction framework. 

In simple terms, an agent will valuate differently an amenity depending on the class of the 

location. If the distribution of the magnitudes of the attributes is somehow continuous in the 

city (which indeed happens, due to spatial dependence; see Anselin, 1988) classes of 

locations can be related to neighborhoods.   

Departing from the bid-auction model presented above, we modify equation (3.5) so the 

probability 𝑃(ℎ|𝑖, 𝑠) is conditional to each class 𝑠 of locations or submarkets:  
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𝑃(ℎ|𝑖, 𝑠) =
exp (𝜇𝑠𝑊𝑃ℎ𝑖

𝑠 (𝑏ℎ, 𝑍𝑖 , 𝛽ℎ
𝑠))

∑ exp (𝜇𝑆𝑊𝑃𝑔𝑖
𝑠 (𝑏ℎ, 𝑍𝑖 , 𝛽𝑔

𝑠))
𝑔∈𝐻

 
(3.6) 

Each agent will have a different 𝑊𝑃 depending on the submarket or class of the location 

where they are bidding, because the 𝑊𝑃 is function of a set of preferences parameters 𝛽ℎ
𝑠 

which are conditional to the class of location. 

Simultaneously, each location will have a probability of belonging to a class which, 

according to the standard formulation of LCMs, is a logit probability based on a class 

membership function 𝑊𝑖𝑠 for which we assume an error term 𝜖 i.i.d Gumbel and a non-

identifiable scale parameter 𝛾: 

𝑃(𝑠|𝑖) =
𝑒𝑥𝑝(𝛾𝑊𝑖𝑠(𝑍𝑖, 𝜃𝑠))

∑ 𝑒𝑥𝑝(𝛾𝑊𝑖𝑔(𝑍𝑖, 𝜃𝑔)𝑔∈𝑆
  

(3.7) 

As we are segmenting space into zones or neighborhoods, the class membership function 

𝑊𝑖𝑠 depends on location attributes 𝑍𝑖, instead of agents characteristics, unlike previous 

applications of LCM to location choice (see for example, Walker and Li, 2007, and Hoshino, 

2011). A vector of parameters 𝜃𝑠 is estimated, which represent the marginal contribution of 

each location attribute to the probability of belonging to a class.  

Given the probability that agent ℎ gets the location 𝑖, conditional to the class of the location, 

for all agents and locations (equation 3.6), and also the probability that location 𝑖 belongs to 
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class 𝑠, for all locations and classes (equation 3.7), the probability that agent h gets location 

𝑖, unconditional to class membership is:  

𝑃(ℎ|𝑖) = ∑𝑃(ℎ|𝑖, 𝑠) ∙

𝑠

𝑃(𝑠|𝑖)  (3.8) 

Using equation (3.8), maximum likelihood estimation can be used to identify parameters 𝛽𝑠 

and 𝜃𝑠 from observations of agents’ location decisions, without requiring any information 

regarding submarket structure. This approach avoids an ex-ante definition of the 

membership of locations to submarkets and, instead, infers how agents’ perceive locations 

as part of a submarket, and accordingly variate their preferences. 

In this specific model implementation, we use an estimation method proposed by Lerman & 

Kern (1983), where the maximum likelihood is not only targeting to reproduce the actual 

localizations of agents, but also minimizing the difference between winning WP and 

observed price (in this case monthly rent) paid by the located agent. This method is similar 

to other methods to discrete-continuous choices (see for example Bhat, Astroza, Bhat, & 

Nagel, 2016), although strictly formulated for location choice. We use this method because 

it allows to identify the scale parameter for each class (𝜇𝑠) and, therefore, enables the 

identification of parameters for all type of agents (otherwise parameters for one type of agent 

have to be fixed and the other parameters estimated relative to them). This scaling of 

parameters renders estimated values of WP with the same magnitude as observed prices. 
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As we are including latent classes, first we have to specify a Lerman & Kern likelihood 

function specific to each class, and then specify a final likelihood function considering the 

probabilities of each class.  

Equation (3.9) shows the likelihood function ℒ conditional to each class 𝑆, where 𝑅𝑖is the 

observed rent in the location 𝑖, 𝑊𝑃ℎ′𝑖
𝑠  is the highest bid modelled for location 𝑖 conditional 

to that location being part of class 𝑆, and 𝜔𝑠 is the scale parameter of the class-specific logit 

function. This function is calculated for each location 𝑖.   

ℒ𝑖
𝑠 = 𝜔𝑠 ∙ exp (−𝜔𝑠 ∙ (𝑅𝑖 − 𝑊𝑃ℎ′𝑖

𝑠
)) ∙ exp 

(

  
 

−𝑒𝑥𝑝

(

 
 

−𝜔𝑠 ∙

(

 𝑅𝑖 − (
1

𝜔𝑠
) ∙ ln ∑ 𝑒𝑥𝑝(𝜔𝑠 ∙ 𝑊𝑃𝑔𝑖

𝑠
)

𝑔 ∈𝐻
𝑔≠ℎ′ )

 

)

 
 

)

  
 

 (3.9) 

The final likelihood function to be maximized, not conditional to class, is: 

ℒ =  ∏(∑[ℒ𝑖
𝑠 ∙ 𝑃(𝑠|𝑖)]

𝑠∈𝑆

)

𝑖∈Ω

  (3.10) 

The likelihood function is basically maximizing the joint probability that, for each location, 

the winning agent has the highest bid, and that the highest bid is equal to the observed rent.  

3.6. Application to Santiago case study 

The proposed model was tested with a database of households from the 2012 Origin 

Destination Survey for Santiago (SECTRA, 2015), each with socio economic variables and 

exact georeference. Location attributes were calculated for each location using a 
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Geographical Information System (GIS). With this information, besides the proposed model, 

a base model (with no spatial heterogeneity) and two other alternative approaches (cluster-

based zones and administrative zones) were estimated for comparison purposes. Direct log-

likelihood was measured with a validation sample, for the proposed model and the 

alternative approaches, in order to compare predictive power. 

3.6.1. Urban structure of Santiago 

The spatial structure of Santiago depends on its particular history and national hierarchy. 

With 6,123,000 inhabitants (INE, 2018), it is the main city of Chile in terms of population, 

economic activity and administrative power. Santiago has evolved from a traditional 

compact city to a fragmented and globalized city (Borsdorf, 2003), where both densification 

and expansion development patterns have been observed in recent decades (Cox & Hurtubia, 

2016; Vergara Vidal, 2017)  

In terms of urban structure, the city of Santiago answers to the latest stage of the model 

described by Borsdorf (2003), where there is a main Central Business District (CBD) based 

on the historical center, from which departs a wedge of high income residential areas 

(towards the north-east in the case of Santiago), with an spine in its central axis of more 

modern commercial and office areas (Providencia and Avenida Las Condes). In the case of 

Santiago, this commercial spine is becoming more relevant in later years (Suazo, 2017). 

Borsdorf’s model describes the location of high income households as very differentiated 

from low income households, which locate in broad areas beside industrial corridors. In the 
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case of Santiago, this areas correspond to north-west, west and south peripheral areas of the 

city. Also described in this model, and observed by other authors (de Mattos, 1999; Sabatini 

& Salcedo, 2010) is the later fragmentation of this sectorial model towards a more network-

based urbanization, with growing system of highways that connect so-called “globalization 

artifacts”, such as malls, airport, gated communities and industrial parks, sprawling on the 

fringes of the city, many times inserted in but not actually connected with low income areas. 

Although this relatively new “leap-frog” urbanization hasn´t followed the sectorial 

residential segregation seen in past decades, the segregation is still being reproduced but in 

a lower scale (Sabatini, 2015). 

If the proposed model adequately reproduces how people perceive city areas when choosing 

location, this depiction of the city coming from urban geography should be somehow 

observed when mapping the resulting spatial segmentation of the model. 

3.6.2. Data 

Household data was extracted from the Santiago 2012 Origin-Destination Survey (SECTRA, 

2015), accounting for 18,624 observations, from which 14,172 were used for estimation 

(exclusion was based on lack of some key attributes for some observations). The survey 

considers 790 zones as its basic spatial analysis unit, we use these zones to compute some 

of the attributes describing each location (such as average income and accessibility 

measures). Households were segmented into three categories according to the educational 
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level (EL) of the head of household. Low EL correspond to 0 to 11 years of education7, 

middle EL to 12 to 15 years of education and high EL to 16 or more years. The map in Figure 

3-2 presents the spatial distribution of households, as well as the general structure of the city 

while Table 3-1 characterizes these types of households. Table 3-2 describes the attributes 

used to describe each location and their sources. 

One limitation of the database is the lack of information on built surface for the dwelling of 

each observed household´s location. As a proxy, we use the average built surface in the zone 

of the dwelling. 

 

 

 

 

 

 

Table 3-1: Segmentation of households according to educational level (EL). 

 

 

                                                 

7 In Chile, having 12 years of education implies finishing the compulsory high school degree. However, a large 

part the population does not achieve this educational level. 

COD Level 

Years of 

Education 

Number of 

Households % 

Lo-EL Low Educational Level 0 to 11 6620 37.1% 

Mid-EL Middle Educational Level 12 to 15 7774 43.6% 

Hi-EL High Educational Level 16 + 3436 19.3% 

  TOTAL 17830  
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Table 3-2: Variables evaluated for the model. *CLP: Chilean Peso. 

Variable Unit Description Source Mean Min Max 

Monthly 

Rent 

Million 

CLP 

Monthly rent paid by 

household in million chilean 

pesos (CLP) 

Origin Destination 

Survey (SECTRA, 

2012) 

0.19 0.01 5 

Accessibility 

to Industry 

(transit) 

- 

Gravitational with negative 

exponential function 

weighted by industry surface 

in destination zone. 

Own calculation 

based on Internal 

Revenue Service 

(2014) and 

SECTRA (2015) 

1807 33 4536 

Accessibility 

to commerce 

(transit) 

- 

Gravitational with negative 

exponential function 

weighted by commerce 

surface in destination zone. 

Own calculation 

based on Internal 

Revenue Service 

(2014) and 

SECTRA (2015) 

2262 46 6096 

Accessibility 

to Industry 

(car) 

- 

Gravitational with negative 

exponential function 

weighted by industry surface 

in destination zone. 

Own calculation 

based on Internal 

Revenue Service 

(2014) and 

SECTRA (2015) 

5082 1031 6934 

Accessibility 

to commerce 

(car) 

- 

Gravitational with negative 

exponential function 

weighted by commerce 

surface in destination zone. 

Own calculation 

based on Internal 

Revenue Service 

(2014) and 

SECTRA (2015) 

5894 1048 8583 

Distance to 

closest 

Subway 

Station 

km 

Euclidian distance from 

household to closest subway 

station as of 2012 

Own calculation 

in QGIS 
4.74 0.03 49.84 

Distance to 

closest 

highway exit 

km 

Euclidian distance from 

household to closest highway 

exit as of 2012 

Own calculation 

in QGIS 
2.04 0.03 13.27 

Zonal 

average 

income  

Million 

CLP 

Average income of the 

households in the OD Zone. 

Origin Destination 

Survey (SECTRA, 

2012) 

0.66 0.14 4.95 

Built surface m2 

Average built surface of 

residential units in the block 

of the household 

Internal Revenue 

Service (2014) 
31 49.59 207.3 

Built density 

in zone 
coef 

Total built surface divided by 

zone area. 

Internal Revenue 

Service (2014) 
0.38 0 4.59 
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Figure 3-2: Location of survey households according to their educational level. 

Accessibility for each zone 𝑖 in mode 𝑚 was calculated with a gravitational measure 

(Hansen, 1959), following: 

𝐴𝑐𝑐𝑖
𝑚 = ∑𝑂𝑗 ∙ 𝑒𝑥𝑝(−𝛽 ∙ 𝑡𝑣𝑖𝑗

𝑚)

𝑗

 
(3.11) 

where 𝑂𝑗 is the amount of opportunities (e.g. built surface of commerce, or industry) in each 

of the possible destination zones, 𝑡𝑣𝑖𝑗
𝑚 is the travel time in mode 𝑚 (car or transit) between 

pair of zones 𝑖 and 𝑗, and 𝛽 is an impedance parameter (we used 𝛽 = 0.05, which gave the 

higher significance and log-likelihood in the estimation stage, while also reproducing 
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observed distributions of trip-lengths). For accessibility to commerce and industry, built 

surface of each land use in all of the 790 OD Survey zones was extracted from the Internal 

Revenue Service registry for 2014. Travel times by car and transit between each OD Survey 

zone was obtained from the strategic transport model for Santiago (ESTRAUS, SECTRA, 

2016) which is calibrated with the same OD Survey travel data. 

 

Figure 3-3: Maps showing attributes used for the spatial segmentation function (latent class model) and the 

clusterization. The attributes are built density in zone (left) and average income in zone (right). 

3.6.3. Estimation results 

Several specifications for the Willingnes to Pay (𝑊𝑃ℎ𝑖) and Class Membership (𝑊𝑖𝑠) 

functions were explored. The results for a model with two classes are reported; models with 

three and more classes could not be estimated as parameters could not be identified. We 

interpret this as a consequence of the structure of the data, confirming that Santiago is 

strongly polarized into two well-defined classes of locations. Also a benchmark model was 
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estimated, parallel to the estimation of the proposed model. The benchmark (base) model 

uses the same variables, household types and approach (bid-auction and Lerman & Kern 

estimation) as the proposed model, but has no segmentation of locations. Table 3-3 shows 

estimation results for both models, where coefficients can be interpreted as the marginal 

willingness to pay for each attribute. The t-test for each estimate is presented between 

parentheses. Estimation was made using the econometric software Biogeme (Bierlaire, 

2020). 

For this implementation of the proposed model, the zonal average income and zonal built 

density (see Figure 3-3) were used to classify the city locations in two different types 

(classes) of locations. In the base model these attributes were included directly in the WP 

function. From the sign of the class membership parameters, the probability of membership 

to Class One improves in zones with higher income and density. Therefore Class One can 

be labelled as wealthy and dense locations. By opposition, class two corresponds to sparse 

and low income locations.  

Parameters 𝜇1 and 𝜇2 are the scale parameters for the choice model of each class, identifiable 

thanks to the Lerman & Kern (1983) estimation method we used. For comparison purposes 

between models, attributes with non-significant parameters were not excluded.  
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BASE MODEL  

(NO CLASSES) 

 PROPOSED MODEL  

(2 CLASSES) 

Observations   17830 17830 

Null model log-likelihood -258759 -258759 

Final log-

likelihood   -77213 -72709 

Attribute 

Household 

Type  Coefficient (t-test)  
      Class 1 Class 2 

      (Dense/Wealthy) (Sparse/Low Income) 

Accessibility to 

Commerce by 

transit 

Low-EL -0.0000965 (-0.36)* -0.00438 (-1.51)* 0.000613 (3.65) 

Mid-EL 0.00351 (14.57) 0.00329 (3.16) 0.00255 (13.54) 

Hi-EL 0.00741 (18.74) 0.0019 (2.05) 0.0054 (8.45) 

Accessibility to 

Industry by 

transit 

Low-EL 0.000398 (1.06)* 0.00801 (1.94)* -0.000453 (-1.89)* 

Mid-EL -0.00429 (-12.49) -0.0064 (-4.33) -0.00263 (-9.79) 

Hi-EL -0.0112 (-19.67) -0.00542 (-3.87) -0.0054 (-5.81) 

Accessibility to 

Commerce by 

car 

Low-EL 0.00109 (3.41) 0.00855 (2.08) -0.000142 (-0.68)* 

Mid-EL -0.00203 (-7.05) -0.000289 (-0.22)* -0.00257 (-11.18) 

Hi-EL 0.005 (10.37) 0.00983 (7.68) -0.00607 (-6.19) 

Accessibility to 

Industry by car 

Low-EL -0.000958 (-2.42) -0.0144 (-2.89) 0.000561 (2.18) 

Mid-EL 0.00333 (9.02) 0.00158 (1.02)* 0.00355 (12.57) 

Hi-EL -0.00186 (-2.86) -0.00929 (-5.77) 0.00766 (6.79) 

Distance to 

nearest subway 

station 

Low-EL 0.0166 (0.91)* 0.0215 (0.07)* 0.0374 (3.37) 

Mid-EL 0.0994 (5.61) 0.167 (1.33)* 0.0691 (5.8) 

Hi-EL 0.299 (8.23) 0.868 (8.51) 0.137 (3.92) 

Distance to 

nearest 

highway exit 

Low-EL -0.0385 (-0.74)* -1.6 (-2.13) 0.0372 (1.19)* 

Mid-EL 0.0000959 (0)* -0.188 (-0.82)* 0.0528 (1.56)* 

Hi-EL -0.00546 (-0.06)* -0.459 (-2.32) 0.033 (0.29)* 

Average Built 

surface in zone 

Low-EL 0.00696 (1.26)* 0.127 (3.2) 0.0144 (4.48) 

Mid-EL 0.0597 (13.23) 0.128 (9.09) 0.0458 (16.02) 

Hi-EL 0.146 (27.74) 0.238 (22.88) 0.0627 (8.18) 

Average 

Income in 

Zone 

Low-EL -0.0482 (-0.09)*     

Mid-EL 7.68 (30.99)     

Hi-EL 7.61 (33.93)     

Built density in 

zone 

Low-EL -2.77 (-6.62)     

Mid-EL 0.657 (3.07)     

Hi-EL 0.554 (2.4)     

Household type 

constant 

Low-EL 5.92 (7.06) 5.36 (10.43)   

Mid-EL -4.65 (-6.04) 2.13 (3.97)   

Hi-EL -28.7 (-22.04) -8.66 (-5.92)   

Class Membership Variables   Class 1 Class 2 

Intercept     -9.22 (-31.85)   

Average Income in Zone   10.8 (26.64)   

Built density in zone   1.86 (5.87)   

𝜇1   0.164 (169.84) 0.0907 (65.96)   

𝜇2     0.28 (116.92)   

 

Table 3-3: Estimation parameters. 



80 

 

  

A first thing to notice is how parameters that appear as non-significant in the base model can 

become significant when using the proposed approach. For example, the parameters for 

distance to the nearest highway are all non-significant in the base model but become 

significant for Low-EL and High-EL in the dense/wealthy class. In this case, the negative 

sign can be interpreted as those types of households having a higher WP for locations that 

are close to highways.  

The model fit (rho-squared) is significantly higher for the latent class model. When applying 

a likelihood ratio test between models (LR= 9008) it is confirmed that the latent class model 

provides more information about perception even when being penalized for using more 

parameters (Ben-Akiva & Lerman, 1985). 

Built surface (as said before, we use average built surface in the zone of the dwelling as a 

proxy for this variable) is, as expected, a relevant attribute. From the base model, we observe 

that higher EL households are willing to pay more than other households for additional built 

space. But from the latent class model we can also see that these households are willing pay 

as much as almost four times more for an additional square meter, if the location is in a 

wealthier and denser zone. We acknowledge that not using the exact built surface of the 

dwelling could induce endogeneity in the estimation and other techniques, such as 

instrumental variables, could be used to overcome this issue (Guevara & Ben-Akiva, 2006).  

Accessibility to commerce, by transit and car, is always positive in the base model but, when 

including latent classes, we see some differences. Accessibility by car increases willingness 
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to pay in wealthy areas, but decreases it in low income/density areas for all types of 

households (except mid-EL households which are indifferent to this attribute in dense and 

wealthy areas). This can be interpreted as households assigning a positive value to the type 

of commerce usually observed in wealthy areas, with the opposite occurring in low income 

areas. This result is consistent with our expectations, considering the fact that high income 

municipalities are capable to minimize or mitigate the negative externalities of commercial 

activities (congestion, garbage production, landscape impact of buildings), while lower 

income municipalities usually don’t have enough resources to control this. 

Accessibility to industry has a mixed effect, although mostly negative, for both car and 

public transport in the base model. In the model with spatial classes, accessibility to industry 

becomes a positive attribute for the sparse/low-income class and a negative one for the 

dense/wealthy class. This is a good example of how the proposed approach can capture 

preferences that diverge and that, otherwise, would lead to a misinterpretation of the drivers 

behind location behavior. 

Distance to subway stations is always positive, which is counterintuitive but expected 

considering we are including other variables that account for accessibility through public 

transport. In the latent class model we see that being far from subway stations is more 

important in wealthier zones than in low income zones, and this difference is more critical 

for High EL households. These may be due to reasons similar to those exposed for the 

commerce case, considering the negative externalities metro stations can produce in their 

immediate surroundings 
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This differences in parameters between classes is consistent with our hypothesis that spatial 

heterogeneity in preferences can be captured by using latent classes as different zones in the 

city. The latent class model has a significantly better log-likelihood the benchmark model, 

which indicates that this new dimension of heterogeneity introduced helps to better 

reproduce the location choice phenomenon. 

3.6.4. Spatial distribution of class membership of locations 

Once the class membership parameters of the model are estimated, they can be used to 

evaluate the probability of each location of belonging to each spatial class all over the city. 

The map in Figure 3-4 shows the spatial distribution of these probabilities, indicating a clear 

segmentation of the city, consistent with the well-known socioeconomic segregation patterns 

of Santiago (Sabatini, 2003). Class 1 locations (blue), related to dense and high-income 

zones, are clearly correlated with what is known as the “high income wedge” of Santiago. 

However, there are several places with a high probability of belonging to class 1 outside of 

this wedge, where a combination of density and relatively high income is observed.  Most 

of the city has a high probability of belonging to class 2 (yellow), which are mostly the 

extended peripheries, with low density and medium and low income.  

Some isolated zones with high probability of belonging to class 1 are newer private 

developments, where medium high income households have located. These projects  answer 

to the typology of gated communities, locating outside the high income area of the city and 
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being mainly disconnected to their immediate lower income context (Borsdorf et al., 2007) 

and many times surrounded by hills to reinforce their “enclave” condition.  

 

Figure 3-4: OD survey households´ locations and their probability of membership to a wealthy high density 

zone (class 1 in the model) according to the proposed model.  

It can be seen that few locations are neither yellow nor blue. As it is shown in histogram in 

figure 3-5, most of the locations (55%) fall below the 1% probability of belonging to class 1 

while 16% do so for class 2. This is evidence that perception or valuation of urban attributes 

in Santiago not only variates for different zones, but also that this differences have clear cuts, 

building strong perceptual urban limits.  
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As the location classification in this model is estimated simultaneously with the model for 

the location decision process of each household, this can be interpreted as households 

perceiving the city as a two clearly different sets of zones, where they will apply different 

valuations of urban attributes.  

 

Figure 3-5: Histogram of the probability of membership to class 1 for every location (households’ location in 

ODS 2012). 

 

3.6.5. Comparison to alternative models: Exogenous zones and attribute-based 

clusters 

There are different approaches to include spatial heterogeneity in a location choice model. 

In order to compare the effectiveness of the proposed method, we compare its results with 

those of two alternative approaches: a model with exogenous zones, and two models with 

zones based on clustering of location attributes. We used the same attributes as in the base 
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and proposed model. The same two attributes that were used for the segmentation function 

in the latent class model were used for the clustering process in the cluster models.  

For the model of exogenous zones, we use the seven macro-zones of the Origin Destination 

Survey that we have used in this work, and we estimated the location model with preference 

parameters specific to each zone. Map in figure 3-6 shows the households colored according 

to the zone where they belong.  

Table 7.1 (in Annex) shows the estimated preference parameters of each household for each 

attribute in each zone, for the exogenous zone model. The principal result to notice is that 

the log-likelihood (-76.511) is lower than the one obtained with the proposed model while, 

as it can be expected, it´s better than the log-likelihood for the base model (with no zones). 

Parameters are mostly significant at 95%, and with significantly different values for each 

zone, indicating that these zones, although defined with no explicit market considerations, 

are still capable to define submarkets where preferences are different. Accessibilities by car 

where excluded as the model was not able to be estimated with all the attributes, which is 

probably due to the high amount of parameters involved. 

As for the cluster-based models, they are expected to have better performance than the 

exogenous zones model, as locations are grouped following differences in some of their 

attributes. We used a k-means method (MacQueen, 1967) for the cluster-based models, 

where each possible location was assigned to one cluster (we estimated two models: one 

with seven clusters, in order to compare with exogenous zones model, and one with two 
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clusters, similar to the number of classes in the proposed model). The assignation criteria 

was to group locations with similar level of two attributes: Zonal Average Income and Built 

Density (the same attributes used in the proposed model to generate the latent classes). 

Figure 3-7 shows the spatial distribution of the clusters. Tables 7.2 and 7.3 (in Annex) shows 

the estimation results for this model. The log-likelihood of these two models is higher than 

the one for the exogenous model and the base model (no zones), but still is not higher than 

the one for the proposed model. Most of the parameters are significant at a 95% level and 

show differences between zones, indicating they do represent different zones.  

 

Figure 3-6: Survey households colored according to the survey zone they belong (zones used to estimate the 

exogenous zones model). 
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Figure 3-7: Survey households colored according to the cluster they belong (clusters used to estimate the 

seven clusters model). 

To validate the proposed model against the other models, we reestimated all the models with 

a random sample of 90% of the locations, and then with the remaining 10% we calculated 

the probability that the observed winning household also had won the bid in the model, for 

each location in the validation sample. 

Table 3-4 shows a summary of model-fit and information statistics for all the estimated 

models using the validation sample. 
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Figure 3-8: Survey households colored according to the cluster they belong (clusters used to estimate the two 

clusters model). 

 

 

 

 

 

Table 

3-4: Model log-likelihood comparison. 

The proposed model shows better log-likelihood than the other models, and also better 

percentage of significant parameters. To account for the relation between the number of 

Model Log-Likelihood 
Number of 

parameters 

% significant 

parameters 

(95%) 

AIC BIC 

No spatial heterogeneity -7,608 31 74% 15,278  15,448  

7 Exogenous zones -7,534 109 55% 15,287  15,885  

2 Cluster-based zones -7,494 56 57% 15,100  15,408  

7 Cluster-based zones -7,450 193 46% 15,285  16,344  

Endogenous zones (proposed 

model) 
-7,216 50 76% 14,532  14,806  
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parameters and log-likelihood, we also calculate the Akaike Information Criterion (AIC) 

(Akaike, 1998) and Bayesian Information Criterion (BIC) (Schwarz, 1978) for each model, 

where the proposed model also has a better performance. 

3.7. Conclusions and discussion 

We propose a discrete choice model that allows to include spatial heterogeneity with 

probabilistic zones (fuzzy limits among zones) that are defined endogenously, following a 

one-step estimation of location preferences and zone segmentation parameters. 

The main conclusion is that the proposed location model, with endogenous spatial 

heterogeneity (LCM applied to the bid auction approach), outperforms other common 

approaches in terms of direct log-likelihood when applied to data from a hold-out sample, 

indicating better forecasting abilities. Also, the proposed model is parsimonious, as it has 

better log-likelihood with fewer parameters than the other models. This is confirmed by the 

Aikaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) as is shown in 

table 4. 

When we apply the segmentation function to the map of Santiago, two clear zones emerge, 

which are closely related to the income stratification of this city. The proposed method helps 

not only to identify zones, but also to observe how fuzzy or clear-cut are the boundaries 

among zones, which can relate to perceived barriers or to smooth transitions between zones.  
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This modelling approach provides a significant contribution by including spatial 

segmentation from a behavioral perspective. As the segmentation method is integrated in the 

microeconomic modelling of the decision process, segmentation parameters can be 

interpreted as the decision maker criteria of segmentation of the city that assist him in the 

location choice process. It can be interpreted as individuals dealing with qualitative (classes) 

and quantitative (WPs) aspects in their decision process.  

Besides the extension to traditional location choice models in order to better forecast 

residential demand, the proposed model has other useful public policy applications as it can 

provide city planners with new insight about which spatial attributes are affecting location 

patterns. For example, if one class of locations can be identified as “desirable” (for instance, 

the attributes used in the classification function are related to compact or sustainable 

development), then the probability of belonging to that class, for each location, can be used 

as an urban index to measure the status that location with regards to the desired objective.   

The proposed approach can be easily extended to hedonic price models, usually found in the 

real estate submarkets literature (Bourassa et al., 1999; Rosmera & Lizam, 2016). The 

approach can also be applied to other behavior taking place in the urban context that could 

be influenced by spatial attributes, such as mobility patterns and their relation to the built 

environment (see Oliva et al., 2018, for an early example of this). 

References for all chapters are presented in a specific chapter after conclusions. 
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4. COMPACT DEVELOPMENT AND PREFERENCES FOR SOCIAL MIXING IN 

LOCATION CHOICES: RESULTS FROM REVEALED PREFERENCES IN 

SANTIAGO, CHILE8 

Tomás Cox and Ricardo Hurtubia 

 

ABSTRACT 

Even though densification and social mixing are declared objectives of many nowadays 

urban planning paradigms, their simultaneous implementation is usually questioned by 

different actors and is not frequent in practice. In a market economy, understanding potential 

demand for this class of development, from different types of households, is essential to 

define public policy oriented to achieve both compact development and social mixture. In 

order understand the preferences of households and potential demand, we design and 

implement a location choice model based on bid-rent theory, using census data and location 

attributes. The model uses latent spatial classes to endogenously segment locations 

according to their attributes, and identifies households’ preferences specific to each spatial 

class. We specify the model to identify spatial classes related to compact development (CD); 

                                                 

8 This chapter is under revision for publication as a paper at “Journal of Regional Science”. 
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by doing this, we can measure how households preferences for urban attributes change 

between zones classified as CD or suburban.  

We apply the model to Santiago de Chile, where social mixing in dense and well-located 

areas is being intensely discussed. We find strong differences in households' valuation of 

attributes between spatial classes. Results show that social mixing is more difficult in dense, 

well-connected areas than in suburban areas, because higher income households are more 

sensitive to the socioeconomic context of the location in compact areas.  

We derive the elasticity formulation for bid-auction location choice models, which allows to 

quantify the importance of location attributes in location probability. Latent spatial classes 

also shows an interesting methodology to generate a behaviorally-based CD index for urban 

areas.   

4.1. Introduction 

The interaction of different social groups in the city, encouraged by living closer to each 

other, helps towards an equal access to opportunities and a vibrant heterogeneity that allows 

innovation, as pointed out by Jacobs (1969) and other, more recent, works (Bettencourt, 

Lobo, Helbing, Kühnert, & West, 2007; Cohendet, Grandadam, & Simon, 2010; Stolarick 

& Florida, 2006). But most cities normally tend to show socio-spatial segregation (Kempen 

& Ozüekren, 1998; Massey, 2016), which shows that social mixing is hardly natural to our 

societies, and therefore it has been a recurrent, although hard to achieve, objective in urban 

planning policies.  
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Different types of social mixing policies have been applied in recent decades mainly in 

Europe, United States and Australia (Galster, 2013). This includes mechanisms such as 

redevelopment of low-income areas, where some original families remain located, and the 

rest is sold to higher income households; vouchers for low income families to locate in higher 

income areas; and imposing a percentage of social housing in exchange for allowing a higher 

density for the project. This last mechanism has been implemented in Colombia, Brazil and 

United States, and now it is being discussed in Chile (Dohnke, Heinrichs, Kabisch, 

Krellenberg, & Welz, 2015; Ruiz-Tagle & Romano, 2019).  

Adding density to social housing not only makes these projects more attractive for private 

developers (as they can sell more units), but also gives urban space a more efficient use. 

Dense development is consistent with more central locations, where low income households 

are more likely to improve their access to different oportunities, and also helps the global 

objective of greater sustainability (United Nations, 2018). Densification of urban areas has 

several potential positive outcomes, such as shifts to more sustainable transport behavior 

(Ewing & Cervero, 2017), savings in service provision, reduction in energy use  (Ewing, 

Bartholomew, Winkelman, Walters, & Chen, 1997; Ewing & Rong, 2008), work 

productivity (Cervero, 2001), innovation (Carlino, Chatterjee, & Hunt, 2011), social 

mobility (Ewing, Hamidi, Grace, & Wei, 2016); but it has also been associated with an 

increase in land values, (Downs, 2005), congestion, overcrowding, unaffordability of 

housing, lack of open spaces, among others (Burton, 2000).  
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Achieving compact cities is an essential part in many of nowadays urban planning paradigms 

(such as smart growth, transit oriented development and compact development). 

Nevertheless, it is restricted in most urban regulations due to its potential negative outcomes 

(Mills, 2005) and has difficulties in being implemented (Downs, 2005), although in some 

contexts there is a latent demand for it (Myers & Gearin, 2001) and may bring more 

satisfaction than suburban living (Lovejoy, Handy, & Mokhtarian, 2010). 

Despite the discussion of positive and/or negative effects of compact development (CD) and 

social mixing, the success of its implementation depends strongly on the reception by the 

potential household demand. The literature has shown that socioeconomic attributes of 

neighborhoods are within the most relevant features that defines households’ location 

decision (Schirmer et al., 2014; Waddell, 2006). Understanding (and forecasting) 

preferences of households for the attributes of these developments is crucial, especially when 

there is few past experiences in a given context.  

In order to add more evidence to the discussion, we propose a model for residential location 

choice, based on census data for Santiago, which allows to explore the revealed preferences 

of different types of households towards locating in dense and well-located areas (which we 

associate to compact development areas), and more precisely, to understand how the 

socioeconomic level of the area influences their location choices in contexts of compact 

development, compared to suburban areas.  
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In our case study, we segment households into nine types, according to three educational 

levels and three life cycle stages. Then we use the observed locations of these households 

and, based on a bid-auction framework (Ellickson, 1981) and discrete choice models, we 

infer how much each type of household values different urban attributes, with average 

education of the head of the household within the zone (a proxy of the socioeconomic level) 

being one of them.  

To analyze the interaction between compact development and the valuation of 

socioeconomic level, we use a latent class modeling framework (LCM) (Kamakura & 

Russell, 1989), that allows us to simultaneously understand how households classify (or 

“tag”) different areas of the city, and how their valuation of location attributes vary according 

to this classification. This method, originally proposed by Cox and Hurtubia (2019a), allows 

for an endogenous and data driven segmentation of urban space, avoiding ex-ante or 

arbitrary subdivisions, and achieving better model fit. 

We identify four main contributions in this chapter. First, we report the first application of 

latent spatial classes in a case study for urban policy making, exploring the benefits of 

capturing spatial heterogeneity of location preferences. Second, this chapter explores the 

spatial class membership probability as a method to calculate a behavior-based index of 

compact development, which could be extended to other urban dimensions. Third, we report 

evidence on households’ demand for urban and socially sustainable development in the 

Chilean context, which can be useful for urban policy making. Fourth, we derive the 

formulation for elasticities to be used in a bid-auction location choice framework which, due 
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to the use of willingness to pay instead of utility functions, deviates from traditional 

elasticities and has not yet been explored in previous literature. 

This chapter is structured as follows: section two presents a literature review on compact 

development and location preferences of households; section three presents the methods 

used in this research, including the econometric model and formulation of elasticities; 

section four presents the case study; section five presents the data for the case study; section 

six presents and analyzes modeling results, and finally conclusions are presented. 

4.2. Literature review 

The following literature review focuses on two main aspects that provide a conceptual 

framework to our work and which are relevant to contrast and validate the model and the 

results presented in this chapter. First, we analyze the trends of household location in urban 

central areas, in order to better understand the type of behavior we are modelling. Second, 

we explore the literature on social mixture in dense areas, understanding when and where 

such policies work and therefore providing insight on the potential relevance of our model 

as an input for public policy design. 

4.2.1. Compact development and household location preferences 

The positive and negative effects of sprawling and compact cities are an ongoing and 

intensively discussed subject in the urban studies literature (Bruegmann, 2008; Crane, 2008; 

Ewing & Hamidi, 2015). Compact cities may encourage to travel shorter distances and drive 
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less, but may also lead to excessive crowding and other density-related problems. The most 

frequent and outspoken paradigm in the last decades has been promoting cities with higher 

densities, walkability, accessibility to transit, mixing of land uses and types of households, 

among other principles. Sustainability, in a broad sense, is underlying in all these principles, 

which have been comprised under Neo-traditional planning with concepts such as Smart 

Growth, New Urbanism and Transit Oriented Development (Downs,2005; Sharifi, 2017).   

Strongly related is the concept of compact development (CD), which is usually associated 

with “ the five Ds”: density, diversity, design, distance to transit and destination accessibility 

(Cervero & Kockelman, 1997; Ewing & Cervero, 2010).  Different studies find that density, 

land-use diversity, and pedestrian-oriented designs generally reduce trip rates and encourage 

non-auto travel in statistically significant ways (Ewing & Cervero, 2017), although some 

find its contribution is marginal (Stevens, 2017). 

While attributes associated to CD are appealing to planners and environmentalists, they are 

not very frequent in practice, mostly because of longstanding low density traditions (Downs, 

2005), especially in North American cities. This is why an important quantity of research 

has focused on household preferences for this type of development.   

Classical urban economics models explain location as a function of income and a trade-off 

between dwelling surface and transportation costs, under the assumption of a monocentric 

city (Alonso, 1964; Mills, 1967; Muth, 1969). In the United States context, suburbs have 

been traditionally associated to higher income households, as they could afford motorized 
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vehicles and bigger homes. Since the 1970, as cars where more affordable, some high income 

households no longer saw  the advantages of living in suburbs and, also associated to a higher 

valuation of time, started moving towards central areas of cities (LeRoy & Sonstelie, 1983). 

Along with income, lifecycle has an important role in location, as new households usually 

demand smaller dwellings closer to the city center. For example, as a family grows, more 

space and other amenities associated to suburban living are demanded (schools, parks, etc.) 

and, when children leave, there is a tendency to return to smaller dwellings with better 

accessibility (Doling, 1976). This helps to understand the “return to the city center” 

phenomena described by LeRoy & Sonstelie (1983), as nowadays a higher proportion of 

households chose not to raise children, so there is a lower interest in migrating to suburbs. 

Recent research based on survey data and choice models, mainly in the United States, have 

found correlations between households’ characteristics and their location choices in respect 

to CD. While high income households are increasingly gaining interest in locating in central 

neighborhoods, low income households are still correlated to CD (Cao, 2008; Lewis & 

Baldassare, 2010; Liao et al., 2014; Olaru et al., 2011; Smith & Olaru, 2013; Walker & Li, 

2007).   

The return to the center of the city by high income households, sometimes related to 

gentrification, implies that preferences for central locations are not linear or polarized. Some 

research find correlations of CD with lower education (Cao, 2008; Olaru et al., 2011) and 

other with professionals (Walker & Li, 2007), which is consistent with this non-linear and 
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context-dependent dynamic. Lifecycle is central in this aspect, as preferences for CD are 

both strong in elderly (Cao, 2008; Smith & Olaru, 2013; Walker & Li, 2007) and also young 

(Smith & Olaru, 2013) and households defined as “non-family” (i.e. no children) (Olaru et 

al., 2011; Walker & Li, 2007). 

Research based on generational segmentation found that suburbs are correlated with middle 

class home-owners, while CD tends to have more millennials and also affluent and highly-

educated people (Lee, Circella, Mokhtarian, & Guhathakurta, 2019). CD preferences are 

also associated with people that appreciate social heterogeneity and have less concern for 

privacy (Liao et al., 2014), are less likely to own their dwellings  (Lewis & Baldassare, 2010; 

Liao et al., 2014), have fewer cars or don’t drive (Cao, 2008; Olaru et al., 2011), are part of 

minorities (Lewis & Baldassare, 2010), and have higher awareness for sustainability (Rid & 

Profeta, 2011).   

4.2.2. Density and social mixing  

Social mixing policies are based on the premise that spatial closeness among different social 

groups may produce sharing of social capital and therefore higher social sustainability (Bolt 

& van Kempen, 2013). This argument has been contrasted with evidence from different 

contexts, showing that integration among social groups is not guaranteed as a function of 

spatial closeness, and often conflicts may appear (Atkinson & Kintrea, 2000; Mugnano & 

Palvarini, 2013).   
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Some evidence shows that concerns about social mixing from medium and high income 

households are higher if mixing is at the block level than at the neighborhood level (Perrin 

& Grant, 2014), but can be lowered when compensated with other variables such as design 

quality (Arundel & Ronald, 2017; Bretherton & Pleace, 2011). Other studies show that even 

when units in the same project are non-distinguishable, social divisions still appear (Tersteeg 

& Pinkster, 2016). Research in the Australian context showed that a negative response to 

social mixing is more related to the densification it implies, than to mixing itself 

(Nematollahi, Tiwari, & Hedgecock, 2016). As reported by research in Chile, social mixing 

is also resisted by real estate developers, even in the presence of strong incentives (Greene, 

Mora, Figueroa, Waintrub, & Ortúzar, 2017; Waintrub, Greene, & Ortúzar, 2016). 

When measuring the impact of densification on social diversity, studies in different contexts 

show that there is a non-linear effect. An important study in 318 U.S. metropolitan areas 

showed that medium density areas are more segregated than low and high density areas, but 

changes in density normally increase segregation (Pendall & Carruthers, 2003). Another 

study in the Brazilian context had similar results, indicating that density in major and 

polycentric cities increases integration, but in midsize monocentric increases segregation 

(García-López & Moreno-Monroy, 2016). Other studies have found that densification 

projects do not assure increasing diversity in the neighborhood (Bramley & Power, 2009; 

Kim, 2016; Kupke, Rossini, & McGreal, 2012). 

The hypothesis that densification of well-located areas may reduce segregation is disputed 

and different case studies vary in their results. Therefore further evidence and theory is 
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needed to understand the complex relation between household’s preferences and levels of 

density. We believe this chapter contributes on this topic. 

4.3. Methods 

We propose a location choice model following a bid-auction approach (Ellickson, 1983), 

where households compete for dwellings by bidding their willingness to pay, which is based 

on their preferences for location attributes. We include latent classes, following Cox and 

Hurtubia (2019a), where each location in the city belongs to a class with a certain probability, 

which is a function of zonal attributes. This formulation allows to estimate a different set of 

preference parameters for each class which, combined with the probability of a location 

belonging to a class, render willingness to pay functions that are specific to each type of 

household and each location. 

The following sections explain the modelling framework in detail, starting with the 

mathematical formulation of the (classic) bid-auction model and continuing with the 

adaptation of the latent class framework for segmentation of urban space.  

4.3.1. Model framework: Real estate market as a bid-auction model  

The bid-auction model proposed by Ellickson (1983) is based on the assumption that a set 

of households 𝐻 face a set of dwellings or locations alternatives 𝐼. Each location (𝑖) has a 

vector of attributes 𝑍𝑖 (built surface, accessibility, among others). Households are segmented 

in categories (ℎ), and each category has a vector of preference parameters 𝛽ℎ associated to 
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the valuation of attributes of the location, and a parameter 𝑏ℎ that comprises household 

structural attributes such as income and expected maximum utility (Jara-Díaz & Martínez, 

1999). Based on these assumptions, each type of household ℎ has a Willingness to Pay (WP) 

for each location 𝑖: 

𝑊𝑃ℎ𝑖 = 𝑏ℎ + 𝑓(𝑍𝑖, 𝛽ℎ) (4.1) 

The real estate market is modelled considering that all types of households enter an auction 

for each location, bidding their WP, and that the type of household with the maximum WP 

wins the location.   

To account for unobserved attributes of locations and heterogeneity in preferences, an i.i.d 

Gumbel distributed error term can be added to 𝑊𝑃ℎ𝑖, rendering a multinomial logit model 

(McFadden, 1973) for the probability of a household ℎ being the highest bidder for location 

𝑖:  

𝑃(ℎ|𝑖) =
exp (𝜇𝑊𝑃ℎ𝑖(𝑏ℎ, 𝑍𝑖 , 𝛽ℎ))

∑ exp (𝜇𝑊𝑃𝑔𝑖(𝑏ℎ, 𝑍𝑖 , 𝛽ℎ))
𝑔∈𝐻

 
(4.2) 

where 𝜇 is a scale parameter. From a sample of located households (segmented by type) and 

the attributes of their location, using maximum likelihood estimation, we can identify, for 

each category of household, the parameters 𝛽ℎ associated to each attribute and the 𝑏ℎ 

constant. Equation (4.2) can be interpreted as the probability of the owner of the location or 

dwelling (𝑖) choosing the highest bidder from the set 𝐻. This is not the same as the 
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probability of the “choice” approach (McFadden, 1978) which maximizes the likelihood of 

a household ℎ choosing a location 𝑖 from a set of alternatives 𝐼, although Martinez (1992) 

showed that they are equivalent if some conditions are fulfilled. 

The bid auction approach has been used in several Transport and Land Use Interaction 

(LUTI) models such as MUSSA (Martínez, 1996), ILUTE (Salvini & Miller, 2005) and 

IRPUD (Wegener, 2011). Several research papers on the literature about location choice also 

use this approach (Chattopadhyay, 1998; Gross et al., 1990; Hurtubia & Bierlaire, 2014; 

Hurtubia et al., 2019; Muto, 2006). 

4.3.2. Latent spatial classes within bid-auction models 

Accounting for heterogeneity (segmentation of agents with different preferences) allows for 

a better interpretation of parameters and model fit. For modelers, a good segmentation is not 

trivial to define, as preferences of agents are not known a priori. To overcome this issue, 

Latent Classes (LC) (Kamakura & Russell, 1989) is a technique used in discrete choice 

models that allows to endogenously segment the decision makers into classes, each with 

class-specific preference parameters. With LC models, the analyst does not impose a 

segmentation, but relies on a classification function with parameters to be estimated 

simultaneously with the preference parameters. 

Since  Walker and Li (2007) we can find several applications of LC in location choice models 

(Cox & Hurtubia, 2019b; Ettema, 2010; Liao et al., 2014; Lu et al., 2014; Olaru et al., 2011) 

These authors do not use LC in a bid-auction model, but in the standard McFadden´s (1978) 
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choice model, where latent classes are applied to segment households. Because of their 

mathematical structure and interpretation, in bid-auction models the segmentation can be 

applied to locations (Cox & Hurtubia, 2019a). 

Departing from the bid-auction model presented above, we modify equation (4.2) so the 

probability 𝑃(ℎ|𝑖, 𝑠) is conditional to each class 𝑠 of locations:  

𝑃(ℎ|𝑖, 𝑠) =
exp (𝜇𝑠 ∙ 𝑊𝑃ℎ𝑖

𝑠 (𝑏ℎ, 𝑍𝑖 , 𝛽ℎ
𝑠))

∑ exp (𝜇𝑆 ∙ 𝑊𝑃𝑔𝑖
𝑠 (𝑏ℎ, 𝑍𝑖 , 𝛽𝑔

𝑠))
𝑔∈𝐻

 
(4.3) 

Each agent has a different 𝑊𝑃 depending on the class of the location where they are bidding, 

because the 𝑊𝑃 is function of a set of preferences parameters 𝛽ℎ
𝑠, which are now conditional 

to the class of the location. 

Simultaneously, each location will have a probability of belonging to a class which, 

according to the standard formulation of LC models, is a multinomial logit probability based 

on a classification function 𝑊𝑖𝑠 for which we assume an additive i.i.d Gumbel distribution 

error term, and a non-identifiable scale parameter 𝛾: 

𝑃(𝑠|𝑖) =
𝑒𝑥𝑝(𝛾 ∙ 𝑊𝑖𝑠(𝑍𝑖̂, 𝜃𝑠))

∑ 𝑒𝑥𝑝(𝛾 ∙ 𝑊𝑖𝑔(𝑍𝑖̂, 𝜃𝑔)𝑔∈𝑆

  
(4.4) 

As we are segmenting locations into classes, the class membership function 𝑊𝑖𝑠 depends on 

a set of location attributes 𝑍𝑖̂, instead of agents characteristics, as in previous applications of 

LC to location choice (see for example Walker & Li, 2007, and Hoshino, 2011). A vector of 
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parameters 𝜃𝑠 is estimated, which represent the marginal contribution of each location 

attribute to the probability of belonging to a spatial class.  

Given the probability that agent ℎ gets location 𝑖, conditional to the class of the location 

(equation 4.3), and also the probability that location 𝑖 belongs to class 𝑠 (equation 4.4), the 

probability that agent ℎ is the highest bidder for (and therefore gets) location 𝑖, unconditional 

to class membership is:  

𝑃(ℎ|𝑖) = ∑𝑃(ℎ|𝑖, 𝑠) ∙

𝑠

𝑃(𝑠|𝑖)  (4.5) 

Using equation (4.5), maximum likelihood estimation can be used to identify parameters 𝛽𝑠 

and 𝜃𝑠 from observed location decisions. This approach avoids an ex-ante definition of the 

membership of locations to spatial classes and, instead, infers how agents’ perceive locations 

as part of a spatial class, and accordingly variate their preferences. 

4.3.3. Calculation of elasticities in a bid-auction location choice model 

Traditional formulation of elasticities in logit models is based on how the probability of 

choosing an alternative varies with respect to the variation of an specific attribute (see, for 

example, Domencich & McFadden, 1975 and Ortúzar & Willumsen, 2011). This is 

calculated for attributes that vary only for one of the alternatives (for example, travel time 

of buses).  
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In bid models, the attributes included in the WP functions are not specific to households 

(which are the “alternatives”), but are proper to the location (accessibility, for example). 

Therefore, a variation in location attributes affects not only one but every alternative (the 

bidding households). This condition makes the traditional formula for direct elasticity in 

(choice) logit models not valid for bid-auction location models. We derive the logit function 

for the particular case of bid-auction models (see annex 7.5), finding that elasticity (𝐸𝑃(ℎ|𝑖),𝑧𝑖
𝑘) 

for the location probability with respect to the k-th location attribute, for a household type ℎ 

is: 

𝐸
𝑃(ℎ|𝑖), 𝑧𝑖

𝑘 = 𝛽ℎ
𝑘 ∙ 𝑧𝑖

𝑘 ∙ (1 − 𝑃(ℎ|𝑖)) − ∑[𝑃(𝑔|𝑖) ∙ 𝛽𝑔
𝑘 ∙ 𝑧𝑖

𝑘]

𝑔≠ℎ

 
(4.6) 

where 𝑃(ℎ|𝑖) is the location probability of household ℎ in location 𝑖, 𝛽ℎ
𝑘 is the preference 

parameter of the k-th location attribute, for household ℎ, and 𝑧𝑖
𝑘 is the value of the k-th 

attribute in the location 𝑖. 

In the model presented in this chapter, we calculate this elasticity for each spatial class. This 

only implies that the bid elasticity conditional to a spatial class has to be calculated using the 

parameters estimated for that spatial class.  

In this case, the direct point bid-elasticity can be understood as the percentage change in the 

probability of household ℎ being the best bidder for location 𝑖, with respect to a marginal 

change in attribute 𝑧𝑖
𝑘. 
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The aggregate elasticity (𝐸
𝑃(ℎ|𝑠), 𝑧𝑖

𝑘) for a household type ℎ, is calculated by adapting the 

equation of Domencich & McFadden (1975), and equation (4.6), so it can be specific to a 

spatial class:   

𝐸
𝑃(ℎ|𝑠), 𝑧𝑖

𝑘 =
∑ [𝐸

𝑃(ℎ|𝑖, 𝑠), 𝑧𝑖
𝑘 ∙ 𝑃(ℎ|𝑖, 𝑠) ∙ 𝑃(𝑠|𝑖)]𝑖

∑ [𝑃(ℎ|𝑖, 𝑠) ∙ 𝑃(𝑠|𝑖)]𝑖
 

(4.7) 

4.4. Case study: social mixing policies in Chile 

The discussion about densification has been abundant and intense in recent years in Chile, 

especially in its capital, Santiago, as it has observed an important raise in the proportion of 

built apartments with respect to houses (according to census data, 20.4% of dwellings were 

apartments in 2002, while this proportion increased to 30.2% in 2017). Central areas of the 

city have concentrated this type of development, which can be associated to a nation-wide 

demographic transition, based on an increase of the number of single-person households and 

couples with no kids, a decline in the number of “traditional” households, together with an 

important immigration flow and higher life expectancy (Diaz Franulic, 2017). These trends, 

together with higher transport costs in general, increase demand for more central and smaller 

dwellings.  

Densification has also come into public discussion with a recent law project called Zonas de 

Integración Social (Social Integration Zones), which would allow to define zones in well-

connected areas where developers can increase density beyond pre-established limits, 

conditional to the inclusion of a percentage of affordable (and subject to subsidies) housing. 
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This mechanism has been already implemented in Colombia, Brazil and the United States 

(Budds & Teixeira, 2005; Hananel, 2014; Lobo, 2015). After long deliberations, the law 

project was finally put on hold by the congress, as density incentives where not well defined 

and it could open a door for unsustainable density levels and excessive developers´ benefit. 

This mistrust can be rooted in elements such as the stigmatization of dense low-cost 

apartments in neighborhoods with poor urban standard (one emblematic area was famously 

dubbed as “vertical ghettos” by an authority), and the undermining of historic low-density 

neighborhoods by high-rise residential towers. 

Social mixing policies in Chile are part of an optimistic approach towards the effects of 

social mixing, that has been present in urban planning since at least two hundred years 

(Galster, 2013) but, lately, academia seems to be more skeptic about its real effects. These 

policies are based on the bridging of social capital, but social interaction between inhabitants 

of these projects is rare, and the positive effects are mostly about improvement of physical 

quality of neighborhood (Bolt & van Kempen, 2013).  

The mechanism that has been discussed in Chile (private developers being allowed to build 

higher density in well-located areas, in exchange of integrating social housing), requires an 

evaluation of how the market may react to these projects. In a strongly market-driven urban 

development, as it is the case of Chile, the success or failure of these projects depends, 

among other variables, on the acceptance of the population towards living in socially-diverse 

projects and, in consequence, on the interest of private developers in building them. The 



109 

 

  

question is more complex when density is included, as Chile has a long tradition of single-

family housing. 

Using the model presented in the methodology section, we can characterize the potential 

demand for CD and its drivers. CD zones can be treated as a latent spatial class, so we can 

identify how household’s preferences vary from places that are classified as belonging to a 

CD class, compared with other spatial classes (e.g. suburban), putting special attention to 

the variation of preferences with respect to the socioeconomic level in the location. Due to 

the model structure, we can measure this effects for different types of households. 

4.4.1. Data 

In general terms, the model is fed with household data from the 2017 national census, and 

land use data extracted from different sources, including own calculations using a 

Geographical Information System. 

4.4.2. Household data and segmentation 

We use the 2017 national census data to identify 454,570 households that relocated between 

2012 and 2017 in the Metropolitan Region of Santiago, from a total of 2,241,551 households 

living in that area in 2017. There is a data limitation in this aspect, because census only asks 

each household if they lived the same municipality in 2012, therefore we do not observe 

households that moved within the municipality. 
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To estimate a bid-auction model, households have to be segmented into categories. Wealth 

or resource availability and household structure are main internal determinants of location 

choice (Doling, 1976). According to available data (census does not ask for income), 

education of head of household and life cycle of household was used to produce segments.  

 

Table 4-1:  Household segmentation criteria.  

 

 
 

Table 4-2:  Number of households by type. 

Both criteria explain different aspects of households, as education level is related to the 

capacities or availability of resources, and life cycle is more related to needs and restrictions 

of the household.  

SEGMENTATION CRITERIA NUMBER OF HOUSEHOLDS BY SEGMENT

Educational  Level  (years  of formal  education) Indep Senior wChild TOTAL

Low-EL from 1 to 8 years 20218 10423 18294 48935

Mid-EL: from 9 to 12 years 4% (7%) 2% (8%) 4% (9%) 10% (25%)

HI-EL: more than 13 years 72287 11445 72581 156313

Li fe Cycle (age of integrants  of household) 15% (14%) 2% (6%) 15% (20%) 33% (40%)

Indep: Al l  between 18 and 65 years 162977 13740 92605 269322

Senior: No one below 18 years  and at least one above 65 years 34% (16%) 3% (4%) 20% (15%) 57% (36%)

wChi ld: At least one below 18 years TOTAL 255482 35608 183480 474570

54% (37%) 8% (18%) 39% (44%) 100%

Low-EL

Mid-EL

Hi-EL

SEGMENTATION CRITERIA NUMBER OF HOUSEHOLDS BY SEGMENT

Educational  Level  (years  of formal  education) Indep Senior wChild TOTAL

Low-EL from 1 to 8 years 20218 10423 18294 48935

Mid-EL: from 9 to 12 years 4% (7%) 2% (8%) 4% (9%) 10% (25%)

HI-EL: more than 13 years 72287 11445 72581 156313

Li fe Cycle (age of integrants  of household) 15% (14%) 2% (6%) 15% (20%) 33% (40%)

Indep: Al l  between 18 and 65 years 162977 13740 92605 269322

Senior: No one below 18 years  and at least one above 65 years 34% (16%) 3% (4%) 20% (15%) 57% (36%)

wChi ld: At least one below 18 years TOTAL 255482 35608 183480 474570

54% (37%) 8% (18%) 39% (44%) 100%

Low-EL

Mid-EL

Hi-EL
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Description of segmentation criteria and resulting proportions is shown in tables 4-1 and 4-

2. Table 4-2 shows number of households by segment. Second line shows the proportion of 

each segment in the estimation dataset (movers), and the proportion of the segment in the 

population (between parentheses). As can be seen, and confirming intuition, independent 

households with high education are overrepresented among movers with respect to their total 

population in the study area, and seniors in general (but more in low education) are 

underrepresented.      

4.4.3. Urban context data 

Each dwelling in the census is georeferenced at a zonal level (there are 1,630 zones in the 

study area, with an average surface of 47 Ha. each but significantly smaller in central areas). 

Urban context attributes, such as accessibility (distance to city center and to nearest subway 

station), zonal land use (percentage of commerce, built density, land use mix), 

socioeconomic level (% of households with high education in the zone) and a proxy of 

dwelling size (average size of dwellings in the zone) are calculated for each zone.  

Since these attributes are used to explain relocations that took place between 2012 and 2017, 

they are calculated for years 2012 and 2014, depending on the source data availability, which 

can be closer to what households observed when taking the decision. 
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Table 4-3: Statistics, description and source of urban attributes. 

Land use entropy is a measure of diversity, and is calculated following Turner, Gardner, & 

O’Neill (2001), and corrected considering the overall proportions of each land use in the 

study area (Song, Merlin & Rodriguez, 2013) as seen in equation (4.8).  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑖 = − 
∑ [(

rui

∑ 𝑟𝑣𝑖𝑣
)  ∙ 𝑙𝑛(

rui

∑ 𝑟𝑣𝑖𝑣
)]𝑢

𝑙𝑛(𝑈)
 

(4.8) 

where 𝑈 is the number of land uses (five in our case study) and 𝑟𝑢𝑖 is:   

rui = 
𝑝𝑢𝑖

𝑝𝑢
 

(4.9) 

where 𝑝𝑢𝑖 is the percentage of land use 𝑢 in zone 𝑖 and 𝑝𝑢 is the percentage of land use 𝑢 in 

all the study area.  

Attribute Mean Min Max Description Year Source

Distance to Nearest Subway (km) 2.25 0.12 12.43 Euclidian Distance (in GIS) 2012 Own Calculation

Distance to City Center (km) 9.9 0.22 23.66 Euclidian Distance (in GIS) 2012 Own Calculation

% Commerce 0.04 0 0.48 Percentage of Built Surface for commerce 2014 SII

Avg Unit Built Surface 54.6 18.9 230.9 Average of the surface of residential units in census zone2014 SII

Land Use Entropy 0.59 0 0.98 Index of Diversity in the zone 2014 Own Calculation with SII Data

Built Density 0.48 0 5.86 Ratio between built surface and total area of census zone2014 SII

% Hi-EL Households 0.36 0 0.96 Percentage of heads of households with aobove high school education2012 Census
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Figure 4-1: Distribution of urban attributes for the location choice model 

 

The entropy index for a zone 𝑖 assumes the value of 1 in a census zone when the proportion 

of each land use in that zone is equal to the proportion of the same land use type in the 

complete study area, and 0 if there is only one type land use in the whole zone. Entropy in 

this case study is calculated using the built surface of five land uses: residential, commercial, 
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office, industry and services (educational, sports, religious, health), which are taken from 

the Internal Revenue Service (SII, for its name in Spanish) database (Servicio de Impuestos 

Internos, 2014). Figure 4-1 shows the spatial distribution of this and other land use attributes 

for the study area. 

4.5. Results and analysis 

Estimated parameters for the WP function of each type of household for each class of 

location (see equation 4.3) allow to understand the relative value of each urban attribute in 

their location decisions, enabling comparison across households. In the other hand, 

parameters estimated for the spatial segmentation function (see equation 4.4) allow to 

characterize the segmentation criteria and the labeling of each class as CD or Suburban.  

With both functions we calculate an aggregate location probability of each type of household 

in each of the two spatial classes, so we can compare which type of household is more likely 

to locate in CD zones. 

The spatial segmentation function, with its parameters, allows to map each area of Santiago 

according to their probability of being classified as CD, which reports a spatial distribution 

of this segmentation. We calculate elasticities in the segmentation function to measure the 

weight of density, distance to subway and diversity in the probability of a location being 

classified as CD. 
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We also calculate the aggregate elasticity of each location attribute, for each type of 

household in each spatial class. This is central to our analysis as it allows to report, for each 

type of household, how the relevance of socioeconomic level in the area varies depending 

on that area being CD or not.   

4.5.1. Estimation results and elasticities 

Due to the fact that, in a logit model, the effect of the WP of a household with respect to the 

choice probability is relative to the value of the WP of the other households, we had to fix 

to zero the parameters of one arbitrary household type (we choose Low-EL with Children), 

otherwise the likelihood maximization problem is indeterminate, with multiple possible 

solutions. Therefore, all the values of the parameters are relative to those of this household, 

and the signs do not necessarily represent that the household has a negative or positive 

valuation of the attribute, but only if its valuation is higher or lower than the valuation of the 

reference household type. For the same reasons, we also fixed in zero the parameters of the 

segmentation function of one of the spatial classes. 

Table 4-4 shows the parameters of both the WP functions specific to household type and 

spatial class (two central columns), and the parameters of segmentation function (in the 

lower part of the table). Except for eight estimates, all parameters are significant at the 95% 

confidence level. Columns to the right show the aggregate elasticities of each attribute with 

respect to location or class membership probability.  
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The parameters of the segmentation function (bottom of Table 4-4), show that, for class one, 

the parameter for built density is negative, positive for distance to nearest subway station, 

and negative for land use entropy. Therefore, spatial class one can be labeled as “suburban 

zones” and, by opposition, spatial class two can be labeled as compact development (CD). 

The calculation of aggregate elasticities of these three attributes for the probability of being 

classified as CD indicates that built density (0.13) is less relevant than distance to subway (-

0.18) and land use entropy (0.27). Figure 4-2 shows the spatial distribution of the probability 

of belonging to the CD class. 

Regarding location preferences we find, as expected, significant differences in elasticities 

between households. Moreover, for each type of household, there are significant differences 

in parameters between spatial classes, which validates the introduction of spatial 

heterogeneity through the identification of latent classes. 

Comments on location probability elasticities for the socioeconomic level of the location is 

discussed in a special section below. 
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Figure 4-2: Probability of membership to compact development class in Santiago. 
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Table 4-4: Model estimates, for WP and spatial class segmentation functions.  

Education 

Level
Life Cycle

Compact 

Development
Suburban

Compact 

Development
Suburban

Indep 1.11  (5.2) -0.927  (-9.43)

Senior 0.656  (3.33) -2.26  (-10.9)

wChild 0 0

Indep 2.3  (12.57) -0.6  (-6.68)

Senior -2.6  (-11.5) -1.52  (-9.26)

wChild 2.16  (10.94) 0.378  (5.16)

Indep -0.224  (-1.21) 0.351  (4.47)

Senior -3.58  (-15.89) -3.13  (-18.79)

wChild 0.364  (1.73) -1.53  (-21.22)

Indep -0.283  (-15.81) 0.0486  (9.76) -0.97 0.10

Senior -0.0817  (-9.41) 0.00403  (0.48) 0.42 -0.35

wChild 0 0 1.37 -0.38

Indep -0.239  (-24.38) 0.0606  (13.33) -0.78 0.01

Senior -0.0155  (-1.74) -0.0665  (-7.5) 1.00 -0.86

wChild -0.236  (-16.67) 0.067  (17.7) -0.79 0.33

Indep -0.0794  (-10.09) -0.226  (-40.83) 0.19 -1.21

Senior -0.012  (-1.35) -0.0939  (-11.2) 0.87 -0.87

wChild -0.0969  (-9.68) 0.0456  (12.36) 0.18 0.21

Indep 12.8  (13.18) -1.92  (-14.93) -0.78 -0.59

Senior 11.3  (11.74) 2.27  (10.15) -0.53 -0.03

wChild 0 0 -0.91 -0.40

Indep 13.7  (14.28) 0.972  (9.98) -0.65 -0.32

Senior 16.1  (16.5) 2.17  (11.43) -0.19 -0.23

wChild 12.4  (12.87) 0.786  (9.13) -0.68 -0.30

Indep 18.2  (18.82) 4.2  (42.66) 0.65 0.31

Senior 17.8  (18.26) 4.56  (20.54) 0.38 0.50

wChild 15.7  (16.44) 4.71  (58.21) -0.18 0.65

Indep 18.7  (7.45) -1.16  (-3.08) 0.08 0.01

Senior 16.3  (6.42) -2.8  (-3.64) -0.02 -0.04

wChild 0 0 -0.25 0.05

Indep 18.2  (7.31) -0.822  (-2.83) 0.04 0.21

Senior 17.3  (6.87) -6.42  (-6.89) 0.00 -0.17

wChild 18.3  (7.3) -3.04  (-11.24) 0.05 -0.04

Indep 17.3  (7.02) 2.04  (8) -0.01 0.18

Senior 18.6  (7.42) -8.7  (-10.62) 0.06 -0.26

wChild 17.2  (6.76) -1.93  (-8.17) -0.01 -0.03

Indep -0.00942  (-2.77) 0.0177  (13.05) 0.00 0.38

Senior -0.0206  (-5.51) 0.00709  (3.66) -0.47 -0.12

wChild 0 0 0.36 -0.43

Indep -0.00871  (-2.65) 0.0105  (9.12) 0.03 0.00

Senior -0.000425  (-0.12) 0.0125  (5.05) 0.42 0.09

wChild -0.014  (-4.18) 0.00447  (4.51) -0.21 -0.24

Indep -0.00531  (-1.63) 0.00859  (8.73) 0.11 -0.18

Senior 0.000965  (0.29) 0.0247  (17.58) 0.52 0.83

wChild -0.0228  (-5.57) 0.017  (18.83) -0.68 0.28

Class Membership Attribute

Intercept 0 0.927  (26.42)

Built Density 0 -0.66  (-35.62) 0.13 -0.26

Distance to Closest Subway 0 0.101  (29.66) -0.18 0.07

Land Use Entropy 0 -0.852  (-29.94) 0.27 -0.26

Constant

Low-EL

Mid-EL

Hi-EL

Distance to 

City Center 

(km)

Low-EL

Mid-EL

Hi-EL

Location Probability Elasticity

Avg Unit Built 

Surface (m2)

Low-EL

Mid-EL

Hi-EL

Household Types

% Comerce

Low-EL

Mid-EL

Hi-EL

Class Specific Coefficients (and t-test)Location 

Attribute

% Hi-EL 

Households

Low-EL

Mid-EL

Hi-EL
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By comparing the observed and the predicted proportions of households of each type in each 

zone, the model has a fit (R2) of 0.88.  

4.5.2. Location probability shift by household type in compact development 

neighborhoods. 

To evaluate which type of households are more likely to locate in each spatial class, we 

calculate an aggregate location probability, following the equation:  

𝑃(ℎ|𝑠) =
∑ [𝑃(ℎ|𝑖, 𝑠) ∙ 𝑃(𝑠|𝑖) ∙ 𝐻𝑖]𝑖∈𝐼

∑ [𝑃(𝑠|𝑖) ∙ 𝐻𝑖]𝑖∈𝐼
  

(4.10) 

where 𝐻𝑖 is the total number of households observed in location 𝑖. 

This aggregate probability indicates which household types are more attracted by the CD 

spatial class in their location decisions. Table 4-5 shows some intuitive patterns but also 

some interesting variations. Independent households are more likely to locate in CD, except 

when they have a low educational level. Seniors are also more likely to locate in CD, but 

this declines when their education level increases (less educated senior households have a 

low probability of living in suburbs, but for high education seniors the probability is not so 

different than living in CD). Households with children have higher probabilities of living in 

suburbs, regardless their educational level.  
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Table 4-5: Aggregate location probability. 

4.5.3. Elasticities for socioeconomic level in compact development neighborhoods 

Looking at elasticities in Table 4-4 (last two columns of highlighted rows), for the variable 

of % of Hi-EL households (which accounts as a proxy of socioeconomic level in the 

neighborhood of a location), we can see that an increase in this variable affects very 

differently the probabilities of location, depending on the household type. As expected, Mid-

EL and Low-EL households have a lower location probability when the socioeconomic level 

in the zone increases, whereas the opposite happens with Hi-EL households, with one 

exception. Hi-EL households with Children decrease their probabilities of locating in CD 

when the socioeconomic level in the area increases, which seems counterintuitive, especially 

considering their positive parameter for this attribute. We hypothesize that this is an effect 

of competition with other Hi-EL households, especially Hi-EL Independent households, 

with strong preferences for these locations and more disposable income, therefore 

outbidding other households. 

Education 

Level
Life Cycle

Compact 

Development
Suburban

Relative 

difference (CD 

over Suburban)

Indep 3.3% 5.5% -40%

Senior 3.2% 0.4% 759%

wChild 2.0% 5.6% -64%

Indep 16.7% 12.1% 38%

Senior 3.1% 2.0% 57%

wChild 7.9% 22.2% -65%

Indep 52.8% 19.1% 176%

Senior 3.7% 2.4% 58%

wChild 7.3% 30.7% -76%

100% 100%

Aggregate Location Probabilities

Low-EL

Mid-EL

Hi-EL
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We can identify significant differences between spatial classes in location elasticities for this 

attribute. An important difference is seen for Hi-EL Independent households, for which the 

socioeconomic level of the location affects the double when the zone is CD. This difference 

is important, as this type of household has the higher overall probability of locating in CD 

zones. 

When looking at elasticities of Mid-EL and Lo-EL households, for all of them except one, 

an increase in socioeconomic level of the location has a stronger negative effect when the 

zone is CD than when is Suburban. This means that, while a raise in socioeconomic level in 

a zone implies a higher difficulty for Lo-EL and Mid-EL households to locate, this difficulty 

is even higher in CD zones.  

4.5.4. Compact development classification 

Beside the analysis of location, the estimated model allows to report an endogenous 

classification of location areas into CD or Suburban, based on the probabilistic classification 

of the 𝑊𝑠 function. If we apply this function with its estimated parameters to each zone, we 

can report a probability of CD for each one. Figure 4-2 shows the spatial distribution of this 

probability. 

As it can be expected, the probability is high along the subway lines, and gets its maximum 

value in the city center, which may not have the highest value in land use diversity, but has 

a high built density. 
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Figure 4-3 shows the amount of surface in the city that can be classified as CD according to 

the class membership probability. This graph shows that only a small area (0.54%) of the 

city has a probability above 75% of being CD, while 17.7% of the city has a probability 

above 75% of being suburban. If we apply a strict classification of the city into both classes, 

cutting in the 50% probability, only 8.5% of the city would belong to the CD class.   

 

Figure 4-3: Cumulative probability of being classified as CD for all zones of the city. 

Results from the classification function also allow to determine thresholds of the urban 

attributes at which the CD probability reaches values closer to one or to zero. This sensitivity 

analysis could allow planners to determine the combination of attributes that are necessary 

for an area to be perceived as CD.   
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Figure 4-4: Charts showing the probability curve of a zone being classified as a CD neighborhood, depending 

on built density, distance to subway and land use entropy. 
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As shown by the plots in Figure 4-4, in an area somewhat close to a subway station (300 m. 

upper-left), the probability of CD reaches 0.95 when built density is around 59.  Graphs show 

that if entropy is lower, built density has to be higher to compensate. When subway stations 

are farther away (see figures at the bottom), higher densities are needed (e.g. built density 

coefficient of around 10 when subway is at a distance of 30 km).   

4.6. Conclusions 

Results show that, for Santiago, compact development areas are attractive to independent 

and highly educated households which, due to their higher income, tend to be the best bidders 

for dwellings in those locations. This, at first glance, could be interpreted as a positive trend, 

because it makes compact development more economically viable, triggering urban renewal 

and favoring a more compact city. However, results also show that, in general, households 

are more sensitive to the socioeconomic level in the neighborhood when considering a CD 

location. While for low and mid education levels, an increase in the socioeconomic level of 

the location implies a strong reduction of their likelihood to be able to locate there, this is 

the opposite for high education households. This is not only a problem due to the reduced 

probability of lower income households locating in CD areas, but also an issue if social 

                                                 

9 This coefficient means that in a block with total terrain surface x, the total built area is 5x (this would led, for 

example, to a 10 story building with a footprint of half of the terrain). 
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housing is built in such areas and triggers the relocation of higher income households, 

therefore defeating the purpose of such policies if social integration was between their 

objectives. 

Nevertheless, this difference is not so strong in suburban zones, indicating that social mixture 

can be more easily achieved in this class of locations. Suburban zones, with less pressure 

and more available land, are less prohibitive for Lo-EL households even when the 

neighborhood socioeconomic level increases. This is consistent with the findings of Pendall 

and Carruthers (2003) who showed that increases in density may exacerbate segregation due 

to the higher WP of households with high income and no kids. These results are also relevant 

for explaining gentrification dynamics, which may quickly turn the social composition of a 

neighborhood and exclude lower income households, therefore increasing social 

segregation. 

Spatial segmentation into latent classes shows that CD zones are scarce in Santiago. At the 

same time, demand for dwelling in these locations come primarily from the types of 

households that are most quickly growing in Chilean society: Independents and Seniors 

(Diaz Franulic, 2017). Both elements contribute to a higher market pressure over CD areas. 

These results mean that social mixing, which is already difficult in the Chilean context (and 

apparently, elsewhere), could be even more difficult in dense and well-located projects. CD 

is positive in terms of sustainability and innovation, but it may not be recommendable to be 

implemented together with social mixing unless accompanied by complementary policies. 
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Results show that, unlike what it is usually believed, zones with a higher probability of 

belonging to the suburban class are more likely to accommodate social mixing with success. 

It is important to notice, however, that no zone belongs absolutely to one class or the other, 

and that a high probability of belonging to the suburban class can still be achieved with 

moderately high densities or with good (although probably not excellent) distance to metro 

and land use diversity. 

The latent spatial segmentation method used in this work, allows to identify CD zones as a 

function of built density, distance to subway stations and land use diversity. The 

classification function and the subsequent logit probability of belonging to the CD class, can 

be interpreted as a Compact Development Index, which goes from 0 to 1. This indicator, 

with parameters that are estimated from observed behavior, can be a useful contribution for 

building urban indexes, which are usually hard to construct due to the difficulty in calibrating 

their parameters (Maclaren, 1996; Oliva et al., 2018). The proposed model also allows to 

find which combinations of values, for certain urban variables, offer a higher probability of 

a zone being classified as CD. These findings are particularly useful for informing public 

policy and definition of built environment regulations, when the objective is to generate 

more CD areas. 

Another relevant contribution of this work is the derivation of the elasticity formula for 

location choice models using the bid-auction approach which, to the extent of our 

knowledge, has not been proposed in the literature before. This formulation is also necessary 

to estimate elasticities for the classification probability in any discrete choice model with 
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latent classes. It is also useful in regular discrete choice models, to estimate elasticities for 

characteristics of the decision maker that are typically included in the specification of the 

utility function (e.g. age or gender in mode choice models) but for which, so far, no elasticity 

formula has been proposed. 

References for all chapters are presented in a specific chapter after the conclusions. 
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5. CONCLUSIONS 

Contributions provided by this thesis range from direct methodological improvements and 

evidence from case studies, to wider understanding of modelling urban phenomena. 

5.1. Direct contributions 

The direct contributions of this thesis can be summarized in four main aspects. We will focus 

on methodological aspects, as contributions about evidence are mostly summarized in each 

chapter. 

A first contribution is the formulation of latent spatial classes, which is a clear advance in 

treating spatial heterogeneity with a strong behavior basis. In this thesis, latent spatial classes 

is used in the context of location choice models, but it can be extended to be used in parallel 

with other discrete choice models, including mode choice in transport modelling, and also 

to continuous models, such as linear regressions estimated with ordinary least squares. 

Therefore, a wide range of phenomena can be modelled including this technique, opening a 

vast area for future work.  

A second contribution is the use of latent classes in location choices as a method to explore 

polarization in space, which in this thesis has been related to spatial segregation patterns. 

Related to this, a third contribution is the use of spatial latent classes to provide a robust 

method to measure a specific characteristic of urban areas. Probability of membership to a 

latent spatial class can be used for this purpose, if the class can be labelled with certain 
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relevant urban characteristic (compact development, using the study case for this thesis). 

This probability, being measured from 0 to 1, resembles a normalized index. Traditionally, 

indexes are based in a set of attributes, each being associated to a weight or its marginal 

contribution to the final value of the index. Using latent spatial classes allows to find, with 

a behavioral basis, the weights for each attribute, and also to measure if they are significant. 

A fourth contribution is the formulation of a “bid elasticity”, which was not part of original 

objectives, and deserves a more extensive future analysis of its applications and properties. 

It is important to notice that its application is extensive to any discrete choice based on a 

logit function, in which the variable to be analyzed is part of the decision maker.   

5.2. Contribution to urban modelling 

Modelling is not only about reproducing observed data, but also implies a deeper 

understanding of the essential dynamics of a phenomena. The approach presented in this 

thesis is intended as a step towards a more comprehensive representation of people´s 

behavior in the city. 

Traditional modelling of location choices, and also of travel behavior, normally assumes that 

urban attributes can be directly measured, represented in variables such as distances, travel 

times, zonal densities or built surface. The econometric effort is mainly focused in 

identifying unobservable variables from the decision maker side, normally preferences. 
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But the city is not only about plain built space that can be measured transparently. There is 

an underlying structure of the city as perceived by people in everyday life, which has been 

explored in other disciplines such as urban geography and urbanism.  

Kevin Lynch (1960), a seminal author in this area, studied the urban structure from 

characteristic of a city that people can identify (in interviews) as important in their 

“navigation” of the city. 

 

Figure 5-1: Lynch´s map of Boston. 

Actually, people perceive limits, nodes, hierarchies, zones, and others elements, which do 

not necessary relate to administrative boundaries. It is reasonable to think that their behavior 

answers to these perceptions, therefore models of residential location also should. 
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Nowadays, measuring this underlying structures can be approached with GIS, through 

heuristics such as Space Syntax or clustering methods, based on built elements and or natural 

barriers. First approaches for the models presented in this thesis were built upon this type of 

methods, but they lacked a behavioral basis, as they were based on pure physical elements. 

So the resulting structures reflected differences in physical attributes, but didn’t necessarily 

had a relation to people´s behavior. 

The main concern in this thesis was to design a model of people´s behavior in which urban 

underlying structures play a role. The formulation of the model had to allow that these 

structures could not be observable, but identifiable from peoples´ decisions, same as 

preferences. Modelling behavior with latent classes resulted as a very consistent way to 

simultaneously identifying both preferences and also distinctive zones in the city. 

Probably the main contribution of this thesis is to state that, even though urban attributes can 

be measured, the way they shape macrostructures that people perceive is not known but can 

be unveiled observing how people behave. So unobserved or latent aspects of these models 

are not only on decision maker’s side, but also in the urban attribute side. 

Because of estimation limitations, the maps that resulted from the models presented here are 

still rough, being able only to segment the city into few macrozones. In this sense, there is 

still a long way to capture the rich complexity of a city´s urban structure. Nevertheless, it 

opens the door to explore other behavior-based methods, which may be suitable to identify 

more complex urban structures.  
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Considering that they depart from a solid behavioral basis, these models seem to be a solid 

start and a good contribution in crossing disciplines between econometrics and urban 

geography.  
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8. ANNEX 

Table 7.1: Estimation parameter of the exogenous zones model 

EXOGENOUS ZONES MODEL             

Observations 17830             

Null model log-likelihood -258759             

Final log-likelihood -76511             

Attribute 

Household 

Type               

    Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 

Accessibility 

to Commerce 

by transit 

Low-EL 

-0.000337 

(-1.46)* 

0.000264 

(1.1)* 

-0.000766 

(-1.63)* 

-0.000837 

(-1.49)* 

0.000475 

(2.32) 

0.000804 

(3.09) 

0.000885 

(0.62)* 

Mid-EL 

-0.000476 (-

2.15) 

-0.00105 (-

4.51) 

-0.0000457 

(-0.21)* 

0.00165 

(4.93) 

0.000754 

(3.53) 

0.000798 

(3.85) 

0.0026 

(1.64)* 

Hi-EL               

Accessibility 

to Industry by 

transit 

Low-EL               

Mid-EL               

Hi-EL               

Accessibility 

to Commerce 

by car 

Low-EL               

Mid-EL               

Hi-EL 

-0.00143 (-

4.51) 

-0.00129 (-

4.68) 

0.00119 

(6.63) 

0.00203 

(5.08) 

-0.00234 

(-7.5) 

-

0.000322 

(-1.21)* 

-0.00222 

(-2.79) 

Accessibility 

to Industry by 

car 

Low-EL               

Mid-EL               

Hi-EL               

Distance to 

nearest 

subway 

estation 

Low-EL 

-0.151 (-

4.04) 

0.18 

(1.09)* 

-0.154 (-

0.71)* 

2.03 

(1.51)* 

-0.148 (-

2.04) 

-0.165 (-

1.18)* 

0.00224 

(0.11)* 

Mid-EL 

0.0322 

(1.07)* 
-0.879 (-6) 

-0.848 (-

5.28) 
1.1 (1.23)* 

-0.116 (-

1.54)* 

-0.765 (-

5.84) 

0.0438 

(1.85)* 

Hi-EL 

-0.355 (-

5.26) 

-0.719 (-

3.05) 

-1.52 (-

11.31) 

-3.11 (-

2.48) 

-0.304 (-

2.15) 

-1.62 (-

8.3) 

0.0745 

(1.63)* 

Average Built 

surface in 

zone 

Low-EL 

0.00394 

(0.4)* 

-0.000768 

(-0.04)* 

0.0858 

(2.44) 

0.014 

(0.41)* 

-0.0258 

(-1.68)* 

-0.0258 

(-1.68)* 

0.0267 

(1.5)* 

Mid-EL 

0.0447 

(6.15) 

0.0655 

(3.6) 

0.225 

(18.53) 

0.0272 

(1.4)* 

0.0679 

(4.28) 

0.0402 

(2.71) 

-0.0203 

(-1)* 
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Hi-EL 

0.0468 

(2.69) 

0.0867 

(2.69) 

0.244 

(28.63) 

-0.0675 (-

2.1) 

0.163 

(5.35) 

0.125 

(6.17) 

0.11 

(3.54) 

Average 

Zonal Income 

Low-EL 
1.03 (0.95)* 

-3.05 (-

2.44) 

-0.524 (-

0.37)* 

1.67 

(0.58)* 

-0.153 (-

0.1)* 

-4.21 (-

3.26) 

-3.5 (-

1.86)* 

Mid-EL 
9.2 (10.83) 

17.8 

(16.66) 
1.36 (2.52) 

0.398 

(0.22)* 

7.71 

(5.18) 

9.8 

(12.86) 
5.66 (2.8) 

Hi-EL 
24.9 (14.45) 25.1 (11) 

5.83 

(15.94) 
10.4 (4.65) 

28.8 

(14.81) 

16.3 

(18.78) 

10.3 

(3.45) 

Built Density 

in Zone 

Low-EL 

0.203 

(0.13)* 

-0.207 (-

0.17)* 

-2.79 (-

1.64)* 

-1.42 (-

1.42)* 

-1.92 (-

0.96)* 

-5.06 (-

2.79) 

-0.716 (-

0.12)* 

Mid-EL 
4.88 (3.63) 

-0.737 (-

0.63)* 

0.539 

(0.91)* 

0.496 

(1.21)* 

-8.71 (-

4.19) 

0.435 

(0.32)* 

14.3 

(1.99) 

Hi-EL 
5.3 (1.82)* 

0.971 

(0.38)* 

0.298 

(0.82)* 

0.441 

(0.95)* 

-6.23 (-

1.5)* 

-0.547 (-

0.22)* 

-34.1 (-

2.26) 

Household 

constant 

Low-EL 
8.4 (16.32) 8.4 (16.32) 8.4 (16.32) 8.4 (16.32) 

8.4 

(16.32) 

8.4 

(16.32) 

8.4 

(16.32) 

Mid-EL 
0.64 (1.54)* 

0.64 

(1.54)* 

0.64 

(1.54)* 

0.64 

(1.54)* 

0.64 

(1.54)* 

0.64 

(1.54)* 

0.64 

(1.54)* 

Hi-EL 
-9.34 (-6.99) 

-9.34 (-

6.99) 

-9.34 (-

6.99) 

-9.34 (-

6.99) 

-9.34 (-

6.99) 

-9.34 (-

6.99) 

-9.34 (-

6.99) 

𝜇1  
 

  

0.168 

(169.54)             
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Table 7.2: Estimation parameters of the seven clusters model. 

ATTRIBUTE-BASED 7 CLUSTER 

MODEL             

Observations   17830             

Null model log-

likelihood -258759             

Final log-likelihood -75556             

Attribute Household Type             

    Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

Accessibility to 

Commerce by 

transit 

Low-

EL 

0.00198 

(1.02)* 

-0.000495 

(-0.82)* 

0.000771 

(0.78)* 

0.00291 

(0.45)* 

0.00028 

(0.84)* 

0.0021 

(0.38)* 

-0.00882 (-

1.15)* 

Mid-

EL 

-0.00276 (-

2.54) 

0.00268 

(6.13) 

0.0017 

(1.72)* 

-0.000372 

(-0.13)* 

0.00111 

(3.16) 

-0.00653 (-

3.04) 

0.00839 

(1.74)* 

Hi-EL 

0.000356 

(0.25)* 

0.00436 

(7.18) 

0.00456 

(1.84)* 

-0.00277 (-

1.21)* 

0.00212 

(2.37) 

-0.00466 (-

3.19) 

0.00975 

(4.11) 

Accessibility to 

Industry by 

transit 

Low-

EL 

-0.00401 (-

1.76)* 

0.00092 

(1.22)* 

0.000858 

(0.82)* 

-0.00639 (-

0.98)* 

-0.000119 

(-0.26)* 

-0.00168 (-

0.21)* 

0.0238 

(1.64)* 

Mid-

EL 

0.00253 

(1.72)* 

-0.00425 (-

7.66) 

-0.00209 (-

1.94)* 

-0.0012 (-

0.45)* 

-0.000528 

(-1.1)* 

0.00985 

(3.34) 

-0.0207 (-

2.32) 

Hi-EL 

-0.000514 (-

0.24)* 

-0.00622 (-

7.76) 

-0.00497 (-

1.81)* 

0.000268 

(0.11)* 

-0.000639 

(-0.53)* 

0.00656 

(3.26) 

-0.0194 (-

4.4) 

Accessibility to 

Commerce by 

car 

Low-

EL 

-0.00225 (-

1.05)* 

0.0018 

(2.6) 

0.00109 

(1.17)* 

-0.0104 (-

0.93)* 

0.000284 

(0.71)* 

0.000177 

(0.02)* 

0.029 

(2.51) 

Mid-

EL 
0.00684 (5) 

-0.00285 (-

5.85) 

-0.00199 (-

2.18) 

0.00413 

(0.87)* 

-0.00315 (-

7.65) 

0.0224 

(6.56) 

0.00411 

(0.64)* 

Hi-EL 

0.0116 

(5.56) 

-0.000168 

(-0.24)* 

-0.00533 (-

2.24) 

0.0191 

(4.91) 

-0.00579 (-

5.48) 

0.0297 

(12.83) 
0.012 (4) 

Accessibility to 

Industry by car 

Low-

EL 

0.00359 

(1.45)* 

-0.00214 (-

2.8) 

-0.00157 (-

1.54)* 

0.0116 

(0.95)* 

0.000148 

(0.3)* 

-0.000692 

(-0.06)* 

-0.037 (-

2.46) 

Mid-

EL 

-0.00844 (-

4.97) 

0.00457 

(8.63) 

0.0029 

(2.87) 

-0.00285 (-

0.54)* 

0.00278 

(5.57) 

-0.0257 (-

6.27) 

0.00183 

(0.22)* 

Hi-EL 

-0.0144 (-

5.62) 

0.00217 

(2.63) 

0.00653 

(2.5) 

-0.0179 (-

3.93) 

0.00435 

(3.48) 

-0.0323 (-

11.67) 

-0.00475 (-

1.22)* 

Distance to 

nearest subway 

estation 

Low-

EL 
0.21 (0.16)* 

0.0308 

(0.3)* 

0.00572 

(0.28)* 

6.41 

(1.38)* 

0.0484 

(0.77)* 

3.04 

(1.44)* 

1.56 

(1.92)* 

Mid-

EL 
1.5 (1.55)* 

-0.12 (-

1.76)* 

0.0593 

(2.66) 

-0.429 (-

0.2)* 

-0.0551 (-

0.84)* 
1.3 (1.77)* 

0.338 

(0.73)* 

Hi-EL 
4.68 (3.54) 

0.0818 

(0.88)* 

0.0545 

(1.09)* 

-2.26 (-

1.4)* 

-0.444 (-

2.35) 
3.05 (6.74) 1.46 (6.91) 

Low-

EL 

-0.285 (-

0.33)* 

-0.361 (-

2.27) 

0.0214 

(0.33)* 
7.79 (2.23) 

-0.0726 (-

0.71)* 

-2.33 (-

1.94)* 

-0.116 (-

0.08)* 
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Distance to 

nearest highway 

exit 

Mid-

EL 
1.18 (2.2) 

0.292 

(2.75) 

-0.0681 (-

0.94)* 

1.74 

(1.16)* 

-0.0841 (-

0.77)* 

-1.37 (-

2.89) 

-2.26 (-

4.21) 

Hi-EL 
-1.53 (-2.31) 

0.113 

(0.79)* 

-0.265 (-

1.61)* 

0.163 

(0.16)* 

-0.244 (-

0.83)* 

-2.51 (-

7.55) 

-2.31 (-

9.51) 

Average Built 

surface in zone 

Low-

EL 

0.00786 

(0.19)* 

0.00036 

(0.02)* 

0.0035 

(0.51)* 

0.301 

(2.64) 

-0.0027 (-

0.22)* 

-0.0027 (-

0.22)* 

0.0472 

(0.67)* 

Mid-

EL 
0.141 (6.41) 

0.0581 

(5.4) 

0.00533 

(0.7)* 
0.186 (4.1) 

0.131 

(10.39) 

0.0957 

(3.78) 

0.0458 

(1.31)* 

Hi-EL 
0.161 (6.18) 

0.109 

(9.16) 

0.0163 

(0.98)* 

0.138 

(3.86) 

0.242 

(7.58) 

0.0578 

(3.68) 

0.0265 

(1.99) 

Average Zonal 

Income 

Low-

EL 

-0.834 (-

0.18)* 

1.93 

(1.09)* 

3.04 

(1.88)* 

-13.1 (-

1.24)* 

0.132 

(0.11)* 

2.64 

(0.43)* 

-1.85 (-

0.46)* 

Mid-

EL 
2.92 (1.21)* 9.95 (9.3) 14.7 (7.96) 

-1.06 (-

0.26)* 
19.5 (15.8) 

2.51 

(1.22)* 

1.35 

(1.01)* 

Hi-EL 
14.1 (5.25) 18.9 (16.2) 29.8 (6.68) 7.6 (2.35) 

33.4 

(10.56) 
9.39 (8.32) 3.17 (6.38) 

Built Density in 

Zone 

Low-

EL 

0.0226 

(0.01)* 

2.84 

(1.13)* 

-5.51 (-

1.76)* 

0.699 

(0.48)* 

-3.34 (-

2.23) 

-6.47 (-

1.51)* 

-21 (-

1.09)* 

Mid-

EL 
10.5 (5.51) 

2.85 

(1.74)* 
11.4 (3.74) 

0.318 

(0.55)* 

-2.04 (-

1.29)* 

-4.63 (-

3.2) 

-8.89 (-

1.26)* 

Hi-EL 
12.1 (6.44) 

-4.7 (-

2.24) 

-16.8 (-

2.37) 

-0.829 (-

1.38)* 

-3.53 (-

0.86)* 
-6.3 (-7.4) 

-26.2 (-

8.58) 

Household 

constant 

Low-

EL 
5.72 (6.24) 5.72 (6.24) 5.72 (6.24) 5.72 (6.24) 5.72 (6.24) 5.72 (6.24) 5.72 (6.24) 

Mid-

EL 
-4.91 (-5.59) 

-4.91 (-

5.59) 

-4.91 (-

5.59) 

-4.91 (-

5.59) 

-4.91 (-

5.59) 

-4.91 (-

5.59) 

-4.91 (-

5.59) 

Hi-EL 

-21.3 (-

13.44) 

-21.3 (-

13.44) 

-21.3 (-

13.44) 

-21.3 (-

13.44) 

-21.3 (-

13.44) 

-21.3 (-

13.44) 

-21.3 (-

13.44) 

 𝜇1  
 

  

0.175 

(167.84)             
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Table 7.3: Estimation parameters of the two clusters model. 

ATTRIBUTE-BASED 2 CLUSTER MODEL     

Observations   17830   

Null model log-likelihood   -258759   

Final log-likelihood   -76170   

Attribute Household Type     

    Cluster 1 Cluster 2 

Accessibility to Commerce by 

transit 

Low-EL 0.000447 (1.22)* -0.0022 (-0.89)* 

Mid-EL -0.00263 (-7.59) -0.000142 (-0.11)* 

Hi-EL -0.0065 (-10.01) -0.000636 (-0.51)* 

Accessibility to Industry by 

transit 

Low-EL -0.0000768 (-0.3)* 0.00187 (1.02)* 

Mid-EL 0.00252 (10.4) -0.00115 (-1.2)* 

Hi-EL 0.00518 (11.44) -0.00171 (-1.94)* 

Accessibility to Commerce by 

car 

Low-EL 0.00103 (3.36) -0.00137 (-0.48)* 

Mid-EL -0.00279 (-10) 0.0104 (6.56) 

Hi-EL -0.000588 (-1.14)* 0.0251 (17) 

Accessibility to Industry by car 

Low-EL -0.000896 (-2.35) 0.000997 (0.28)* 

Mid-EL 0.00354 (9.97) -0.0101 (-5.15) 

Hi-EL 0.00232 (3.4) -0.0239 (-13.26) 

Distance to nearest subway 

estation 

Low-EL 0.0194 (1.1)* 0.178 (0.26)* 

Mid-EL 0.0594 (3.34) 0.193 (0.63)* 

Hi-EL 0.155 (4.2) 0.798 (3.86) 

Distance to nearest highway 

exit 

Low-EL     

Mid-EL -0.028 (-0.59)* -1.26 (-3.91) 

Hi-EL 0.106 (1.17)* -2.34 (-10.87) 

Average Built surface in zone 

Low-EL -2.31 (-3.14) -0.87 (-0.93)* 

Mid-EL 2.72 (4.25) 0.175 (0.45)* 

Hi-EL 1.9 (1.52)* -1.3 (-3.79) 

Average Zonal Income 

Low-EL 0.0279 (0.1)* -0.00536 (-0.01)* 

Mid-EL 14.5 (34.11) 0.786 (0.97)* 

Hi-EL 24.7 (43.52) 5.66 (12.93) 

Built Density in Zone 

Low-EL -2.31 (-3.14) -0.87 (-0.93)* 

Mid-EL 2.72 (4.25) 0.175 (0.45)* 

Hi-EL 1.9 (1.52)* -1.3 (-3.79) 

Household constant 

Low-EL 5.75 (7.53)   

Mid-EL -5.21 (-6.65)   

Hi-EL -28.2 (-19.99)   

  𝜇1  
 

  0.171 (168.87)   
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Annex 7.5: Bid elasticities 

We present the derivation of the “bid elasticity”, which is a variation on the elasticity for 

choice models. As explained in the body of chapter four, traditional choice elasticity 

accounts for variations in the probability of choosing an alternative with respect to a 

variation in a particular attribute of that alternative.  

For this case, the particular attribute is part of the utility function (or WP in bid-auction 

models) of all the alternatives, with a different parameter in each alternative. This implies 

that the elasticity is not only direct, but also crossed with the probability of all other 

alternatives. 

The elasticity 𝐸
𝑃(ℎ|𝑠), 𝑧𝑖

𝑘 of the location probability 𝑃(ℎ|𝑖), of household ℎ in location 𝑖, 

with respect to a location attribute 𝑧𝑖
𝑘, is: 

𝐸
𝑃(ℎ|𝑠), 𝑧𝑖

𝑘 =
𝜕𝑃(ℎ|𝑖)

𝜕𝑧𝑖
𝑘

∙
𝑧𝑖
𝑘

𝑃(ℎ|𝑖)
 

(7.1) 

Where 𝑃(ℎ|𝑖) is the probability of a household ℎ being the best bidder for location 𝑖, defined 

by: 

𝑃(ℎ|𝑖) =
exp (𝑊𝑃ℎ𝑖)

∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻

  
(7.2) 

The derivative of 𝑃(ℎ|𝑖) with respect to 𝑧𝑖
𝑘 is (using the quotient rule for deriving divisions): 
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𝜕𝑃(ℎ|𝑖)

𝜕𝑧𝑖
𝑘 =

exp (𝑊𝑃ℎ𝑖) ∙ 𝛽
ℎ

𝑘 ∙ ∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻 − exp (𝑊𝑃ℎ𝑖) ∙ ∑ [exp (𝑊𝑃ℎ𝑖) ∙ 𝛽
𝑔

𝑘]
𝑔∈𝐻

 

[∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻 ]
2  

(7.3) 

Then, from (7.1) and (7.3), bid elasticity is: 

𝐸
𝑃(ℎ|𝑠), 𝑧𝑖

𝑘 =

exp (𝑊𝑃ℎ𝑖) ∙ 𝛽
ℎ

𝑘 ∙ ∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻 − exp (𝑊𝑃ℎ𝑖) ∙ ∑ [exp (𝑊𝑃ℎ𝑖) ∙ 𝛽
𝑔

𝑘]
𝑔∈𝐻

 

[∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻 ]
2  ∙

𝑧𝑖
𝑘

exp (𝑊𝑃ℎ𝑖)

∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻

 

(7.4) 

Simplifying with some algebra: 

𝐸
𝑃(ℎ|𝑠), 𝑧𝑖

𝑘 =

𝛽
ℎ
𝑘 ∙ ∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻 − ∑ [exp (𝑊𝑃ℎ𝑖) ∙ 𝛽

𝑔
𝑘]

𝑔∈𝐻

 

∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻

 ∙ 𝑧𝑖
𝑘 

(7.5) 

𝐸
𝑃(ℎ|𝑠), 𝑧𝑖

𝑘 =

[
 
 
 
𝛽

ℎ
𝑘 ∙ ∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻  

∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻

−

∑ [exp (𝑊𝑃ℎ𝑖) ∙ 𝛽
𝑔
𝑘]

𝑔∈𝐻

 

∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻

]
 
 
 
∙ 𝑧𝑖

𝑘 

(7.6) 

𝐸
𝑃(ℎ|𝑠), 𝑧𝑖

𝑘 =

[
 
 
 
𝛽

ℎ
𝑘 −

∑ [exp (𝑊𝑃ℎ𝑖) ∙ 𝛽
𝑔
𝑘]

𝑔∈𝐻

 

∑ exp (𝑊𝑃ℎ𝑖)𝑔∈𝐻

]
 
 
 
∙ 𝑧𝑖

𝑘 

(7.7) 

  

𝐸
𝑃(ℎ|𝑠), 𝑧𝑖

𝑘 = 𝛽
ℎ
𝑘 ∙ 𝑧𝑖

𝑘 − ∑[𝑃(𝑔|𝑖) ∙ 𝛽
𝑔
𝑘 ∙ 𝑧𝑖

𝑘]

𝑔∈𝐻

 
(7.8) 
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𝐸
𝑃(ℎ|𝑠), 𝑧𝑖

𝑘 = 𝛽
ℎ
𝑘 ∙ 𝑧𝑖

𝑘 − ∑[𝑃(𝑔|𝑖) ∙ 𝛽
𝑔
𝑘 ∙ 𝑧𝑖

𝑘]

𝑔≠ℎ

+ 𝑃(ℎ|𝑖) ∙ 𝛽
𝑔
𝑘 ∙ 𝑧𝑖

𝑘 
(7.9) 

𝐸
𝑃(ℎ|𝑠), 𝑧𝑖

𝑘 = 𝛽
ℎ
𝑘 ∙ 𝑧𝑖

𝑘 ∙ (1 − 𝑃(ℎ|𝑖)) − ∑[𝑃(𝑔|𝑖) ∙ 𝛽
𝑔
𝑘 ∙ 𝑧𝑖

𝑘]

𝑔≠ℎ

 
(7.10) 

Finally, the formula for the bid elasticity is composed by the “traditional” direct choice 

elasticity, plus the sum of the cross elasticities for all the other households.  

 

 

 

 

 

 

 


