Discovering XSD Keys from XML Data

Marcelo Arenas
PUC Chile &
University of Oxford
mar enas @ ng. puc. cl

Martin Ugarte
PUC Chile
ngugart e@ic. cl

Jonny Daenen
Hasselt University &
Transnational University of Limburg

jonny. daenen@uhassel t. be

Jan Van den Bussche
Hasselt University &
Transnational University of Limburg

Frank Neven
Hasselt University &
Transnational University of Limburg
frank. neven@hassel t . be

Stijn Vansummeren
Université Libre de Bruxelles (ULB)
stijn.vansunmer en@l b. ac. be

j an. vandenbussche@hassel t. be

ABSTRACT

A great deal of research into the learning of schemas from XML
data has been conducted in recent years to enable the aittdieat
covery of XML Schemas from XML documents when no schema,
or only a low-quality one is available. Unfortunately, andstrong
contrast to, for instance, the relational model, the autandéscov-

ery of even the simplest of XML constraints, namely XML keys,
has been left largely unexplored in this context. A majortate
here is the unavailability of a theory on reasoning about Xihéi/s

in the presence of XML schemas, which is needed to validae th
quality of candidate keys. The present paper embarks on-a fun
damental study of such a theory and classifies the complexity
several crucial properties concerning XML keys in the pneseof

an XSD, like, for instance, testing for consistency, boumdss,
satisfiability, universality, and equivalence. Of indegent inter-
est, novel results are obtained related to cardinalityregton of
XPath result sets. A mining algorithm is then developed inith
the framework of levelwise search. The algorithm leverdgesvn
discovery algorithms for functional dependencies in tHatienal
model, but incorporates the above mentioned propertiessesa
and refine the quality of derived keys. An experimental stoiagn
extensive body of real world XML data evaluating the effeetiess

of the proposed algorithm is provided.

Categories and Subject Descriptors

H.2.8 Information Systemg: Database ManagemenBbatabase
Applications, Data Mining

Keywords
XML key mining

1. INTRODUCTION

The automatic discovery of constraints from data is a furetam
tal problem in the scientific database literature, esplgcialthe
context of the relational model in the form of key, foreigrykand

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD’13,June 22-27, 2013, New York, New York, USA.

Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

functional dependency discovery (e.g., [22]). Although dbsence
of DTDs and XML Schema Definitions (XSDs) for XML data oc-
curring in the wild has driven a multitude of research onnesy

of XML schemas [6, 7, 8, 9, 10, 18], the automatic inference of
constraints has been left largely unexplored (we refer wiGe 2
for a discussion on related work). In this paper, we addrikes t
problem of XML key miningwhose core formulation asks to find
all XML keys valid in a given XML document. We use a formal-
ization of XSD keys (defined in Section 3) consistent withdleé
inition of XML keys by W3C [31]. We develop a key mining al-
gorithm within the framework of levelwise search that aiddially
leverages discovery algorithms for functional dependenai the
relational model. Our algorithm iteratively refines keyséd on a
number of quality requirements; a significant portion ofpager is
devoted to a study of the complexity of testing these requanrs.

ExamMpPLE 1.1. Consider the key,

:= ((order, . I/ book ltitle,.//year)).
o] ((, Qor der), ,(s y)
contexte target pathr key pathgp1 , pa, . . .

Here, the pair(order, gor der) iS @ contextconsisting of the label
‘order’ and the state or typ@or der 1, Which identifies the context-
nodes for whichy is to be evaluated. Further,/ / book is an
XPath-expression, calledrget pathselecting within every context
node a set of target nodes. The key constraint now statesvieay
target node must be uniquely identified by the record detezchi
by the key paths//titl e and.//year, which are XPath-
expressions as well. In other words, no two target nodesldhou
have both the same title and the same year. A schematic eapres
tation of the semantics of a key is given in Figure 2. So, dver t
XML document displayed in Figure 1, the key gives rise to the
table Ry +:

(order, gorder) . // book ltitle . lyear
(o1, b1, ‘Movie analysis;, 2012
(o1, b2, ‘Programming intro; 2012
(02, bs, ‘Programming intro; 2012

In Figure 1, the names of the order and book nodes from lefgtu r
are o1, o2, andbs, b, bs, respectively, and every order node has
typeqor der - Then,¢ holds int if the functional dependency

(order, gorder),. //title,.//year — .//book

holds in R, .. That is, within the same context node, ‘title’ and
'year' uniquely determine the ‘book’ element.

Types are defined in the accompanying schema which is nat give
here but discussed in Section 3.

As a necessary condition for a key to be valid on a trethe
XML key specification ([31, Section 3.11.4]) requires evésy
path to always select precisely one node carrying a datsegal
The key is then said tqualifyont. As an example,

¢’ = ((bookshopgsookshop), ./ /order, (.//address)),

qualifies for the particular tree given in Figure 1 (assurengry
node labeled ‘bookshop’ has typgokshop) Since every target node

01 andoz has precisely one address node. But, the accompanying

XSD might allow XML documentswvithout or with multiple ad-
dresses, for which’ would not qualify. So, qualifying for the given
document does not necessarily entail qualifying for eveigudnent
in the schema. We say that a keycnsistentv.r.t. an XSD if the
key qualifies on every document satisfying the XSD. As a qgali
criterion for keys, we want our mining algorithm to only cater
consistent keys. We, therefore, start by studying the cexityl
of deciding consistency and obtain the pleasantly surmisgsult
that consistency can be tested in polynomial time for kegsldi
lowing disjunction on the topmost level. We show that caesisy
for general keys isoNP-hard and everspPACEhard for keys with
regular expressions (which are not allowed in W3C keys).

In addition to consistency, we want to enforce a number of ad-

ditional quality requirements on keys. In particular, wentveo

disregard keys that can only select an a priori bounded nuotbe
target nodes independent of the size of the input documénteS
the main purpose of a key is to ensure uniqueness within acoll

tions of nodes, it does not make sense to consider bounded key

for which the size of this collection is fixed in advance and oat
grow with the size of the document. Similarly, we want to igmno
so-called universal keys that hold in every document. Waiobt
that testing for bounded and universal keys is tractable.

A final theoretical theme of this paper is that of reasoninguab
keys. On the negative side, and in strong contrast to reagoni
about relational keys [3, 29] or XML keys without an accomypan
ing schema [14, 15], we show that testing satisfiabilityjesjance,
and implication between keys BXPTIME-hard. As an aside, we
show that a milder form of equivalence, namely, that of tapg¢h
equivalence, i.e., determining that two target paths adwsslect
the same set of target nodes over documents satisfying lileensg
is tractable. The latter can be used as an instrument to eeitiec
number of candidate target paths.

After laying the above theoretical groundwork, we turn te th
theme of mining. Example 1.1 indicates how XML key mining can
leverage algorithms for the discovery of functional depeies
(FDs) over a relational database. Indeed, once a contartd a
target pathr are determined, any FD of the forep1, ..., pn —

7 that holds in the relational encoding, ., 5 , entails the key

(¢, T, (p1,...,pn)) in t whereP is a sequence consisting of all
possible consistent key paths. Of course, it remains tostive
gate how to efficiently explore the search space of candictate
texts ¢, target paths, and consistent key paths To this end,
we embrace the framework of levelwise search (as, e.g.ridegc
by Manilla and Toivonen [24]) to enumerate target and keyhqat
The components of this framework consist of a search space
Boolean search predicage and a specialization relatiod that is
a partial order orlV and monotone w.r.iy. In particular, the par-
tial order arranges objects from most general to most speauifil
wheng holds for an object thep should also hold for all gener-

2Actually, the specification is a bit more general in allowthg use
of attributes. For ease of presentation, we disregardates and
let leaf nodes carry data values. We note that all the resuttse
paper can be easily extended to include attributes.

alizations of that object. The solution then consists ofoajects
u € U for which ¢(u) holds, enumerated according to the special-
ization relation while avoiding testing objects for whigltan not
hold anymore given already obtained information.

We define a target path miner within the above framework as fol
lows: the search predicate holds for a target path when thbar
of selected target nodes exceeds a predetermined thresilokel
and, the partial order is determined by containment among target
paths. To streamline computation, we utilize a syntactie-step
specialization relation<; that we prove to be optimal w.r.t. the
considered partial order. Furthermore, the search priedaan be
solely evaluated on a much smaller prefix tree representafithe
input document and, therefore, does not need access toitiie or
nal document. In addition, we define a one-key path miner kwhic
searches for all consistent single key pathsv.r.t the already de-
termined context and target path). Specifically, the sejretlicate
holds for a key patly whenp selectsat most onekey node (w.r.t.
the given context and target path). Even though consistescy
quires the selection of exactly one key node, this mismaachbe
solved by confining the search space to all key paths thatbagse
paths from target nodes in the prefix tree. Even though thelsea
predicate can not always be computed on the much smallex prefi
tree without access to the original document, we providécsemt
conditions for when this is the case. The partial order iseefias
the set inclusion relation defined on key paths for which the-o
step specialization relation is the inverse-af. Once all consistent
one-key paths are determined, as explained above, a foattie-
pendency miner can be used to determine the correspondirig XM
key (e.g., [11, 21, 23])).

Contributions. We make the following contributions:

(i) We characterize the complexity of the consistency proki@m
XML keys w.r.t. an XSD for different classes of target and key
paths (Theorem 4.4). As a basic building block, and of indepe
dent interest, we study the complexity of cardinality estiion of
those XPath-fragments in the presence of a schema (an eweis/i
given in Table 1). In addition, we characterize the compierf
boundedness, satisfiability, universality, and implizatof XML
keys (Theorem 4.5) as well as equivalence of target pathsoTh
rem 4.6).

(i) We develop a novel key mining algorithm leveraging on al-
gorithms for the discovery of relational functional depencies
and on the framework of levelwise search by employing an-opti
mal one-step specialization relation for which the seastation
can be computed, if not completely, then at least partly orefixp
tree representation of the document. (Section 5)

(iii) We experimentally assess the effectiveness of the prdpalse
gorithm on an extensive body of real world XML data.

Outline. In Section 2, we discuss related work. In Section 3, we
introduce the necessary definitions. In Section 4, we ifya& the
complexity of decision problems concerning keys in the gnes of
XSDs. In Section 5, we discuss the XML key mining algorithm. |
Section 6, we experimentally validate our algorithm. Wedtode

in Section 7.

2. RELATED WORK

XML Keys. One of the first definitions of keys for XML was in-
troduced by Buneman et al. [14, 15]. These keys are of the form
(Q, (Q’, P)) whereQ is the context-pathy)’ is the target path and

P is a set of key paths. Although the W3C definition of keys was
largely inspired by this work, there are some importanedédhces.
First, Buneman et al.'s keys allow more expressive targetkay

order

/ bookshop\

order

—

id perso| items id person address items
I T T |
0001 Mr. Black Sun City book / book\ 0004 Mr. White Sin City / book
title year price quantity title year price quantity title year price quantity

Movie analysis 2012 5.63 63 Programming intro2012

6.72 74 Programming intro2012 5.63 150

Figure 1: An example XML tree (order and book nodes are named; , 0. and b1, b2, bs from left to right).

paths by allowing several occurrences of the descendamatope
Context paths, however are less expressive since W3C kieyg al
the context to be defined by an arbitrary DFA, while Buneman et
al.’s keys limit themselves to path expressions. Furtheep®une-
man et al.'s key paths are allowed to select several nodescasie
W3C keys paths are restricted to select precisely one node. W
stress that in this paper we follow the W3C-specificationtfar
definition of keys. As is the case for the relational modelchis
known about the complexity of key inference for Buneman &t al
keys [14, 15, 20]. Unfortunately, these results do not cawer to
W3C keys as the latter are defined w.r.t. an XML Schema but the
former are not.

Decision problems in the presence of a schema\ number of
consistency problems of XML keys w.r.t. a DTD have been abnsi
ered by Fan and Libkin [17]. They have shown, for instancat th
key implication in the presence of a DTD is decidable in polyn
mial time. The keys that they consider, however, are mucipleim
than the W3C keys considered in the present paper. Basiadiby

in their setting is determined by an element nhame and a nuafber
attributes. Their model is subsumed by ours since each seich k
can be defined by an XML key and every DTD can be represented
by an XSD. We point out that [17] contains many more results on
the interplay between keys, foreign keys, inclusion depanits
and DTDs. Arenas et al. [4] discuss satisfiabiliof XML keys
w.r.t. a DTD. The result most relevant to the present paparis
hardness of satisfiability w.r.t. a non-recursive DTD andKeys
with only one key path. We show that the problem becomes hard
for EXPTIME in the presence of XSDs.

XML constraint mining. The automatic discovery of Buneman
et al.’s keys from XML data has previously been considerea by
number of researchers. Grahne and Zhu [19] considered gnirfiin
approximate keys and proposed an Apriori style algorithnictvh
uses the inference rules of [15] for optimization. Necashkd a
Mlynkova [28] ignore the XML data but present an approach to
infer keys and foreign keys from element/element joins inus€y
logs. Fajt et al [16] consider the inference of keys and fprdieys
building further on algorithms for the relational model.€rabove
algorithms can not be used for W3C keys since they do not take
the presence of XSDs into account and keys are not requiree to
consistent. Yu and Jagadish [32] consider discovery oftfanal
dependencies (FDs) for XML. Similar to Buneman et al.’s kélys
considered FDs have paths that can select multiple dataeatem
and contexts are defined w.r.t. a selector expression asego
w.r.t. a DFA. For these reasons, W3C keys can not be encoded a
a special case of FDs. Barbosa and Mendelzon [5] proposes alg
rithms to find ID and IDREFs attributes in XML documents. They
show that the natural decision problem associated to thodery

3We note that satisfiability is called consistency in [4].

problem isnP-complete, and present a heuristic algorithm. Abite-
boul et al. [2] consider probabilistic generators for XMLleotions

in the presence of integrity constraints but do not considi@ing

of such constraints.

root

context node

target node

key node

unique

key tuple

Figure 2: Schematic representation of a key.

3. DEFINITIONS

In this section we introduce the required definitions conicer
trees, XSDs, and XML keys, and formally define the XML key
mining problem. The correspondence between our definitfon o
XML keys and the W3C definition is discussed in Section 3.3.

For a finite setR, we denote byR| the cardinality ofR.

3.1 Trees and XML

As is standard, we represent XML documents by means of la-
beled trees. Formally, for a s€f anS-treeis a pair(¢, lab;) where
t is a finite tree andab: maps each node @fto an element irS.
To reduce notation, we identify each tree simply tbgnd leave
lab; implied. We assume the reader to be familiar with standard
common terminology on trees likehild, parent root, leaf, and so
on. For a node), we denote bync-string, (v) the string formed
by the labels on the unique path frara root to (and includingy,
called theancestor stringf v. By child-string, (v), we denote the
string obtained by concatenating the labels of the childfen If
v is a leaf therchild-string, (v) is the empty string, denoted ly
Here, we assume that trees are sibling-ordered. We fix a finite
of element nameX and an infinite seData of data elements. An

XML-treeis a (X U Data)-tree where non-leaf nodes are labeled

with X and leaf nodes are labeled with elements f(@iw Data).
As the XSD specification does not allow mixed content modgis f
fields in keys [31], we ignore ‘mixed’ content models altdgat
to simplify presentation, and assume that when a node iseldbe
with a Data-element it is the only child of its parent. We then

: : bookshop
—> (Gbookshog

order
id

Figure 3: The type automaton of Xpookshop-

denote byvalue;(v) the Data-label of v’s unique child when it
exists; otherwise we definelue;(v) = L with L a special sym-
bol not inData. Whenvalue;(v) € Data, we also say that is
aData-node.

ExampLE 3.1. Figure 1 displays an XML-treé. In this tree,
anc-string, (b1) = bookshop order itens book,andalso
child-string,(b1) = title year price quantity. Fur-
thermore, every node labeledd, per son, address, title.
year,pri ce,orquantityisaData-node, while, for instance,
b1 is not.

3.2 XSDs

XML keys are defined within the scope of an XSD. We make use
of the DFA-based characterization of XSDs introduced bytbtas
et al. [25]. AnXSDis a pairX = (A, \) whereA = (Types X U
{dat a}, d,qo) is a Deterministic Finite Automaton (or DFA for
short) without final states (called the type-automaton) and a
mapping from Types to deterministicegular expressions over the
alphabett U {dat a}. Here, Types is the set of statekat a is
a special symbol, not i, which will serve as a placeholder for
Data-elementsy : Typesx XU {dat a} — Types is the (partial)
transition function; ando € Types is the initial state. Additionally,
the labels of transitions leavirgshould be precisely the symbols in
A(g). Thatis, for everyy € Types,Out(q) = Symi§A(q)), where
Out(q) = {0 € ¥ | (g, o) is defined andSymlgr) consists of all
3-symbols in regular expression

A contextc = (o, q) is a pair inX x Types. ByCNodes:(c), we
denote all nodes of ¢ for whichlab;(v) = o and A halts in state
g when started ifgo on the stringanc-string, (v). Let £(r) denote
the language defined by the regular expressiokVe say that the
treet adheres taX, if for every contextc = (o, ¢) and everyv in
CNodes;(c) one of the following holds.

e value;(v) € Data anddat a € L(\(q)); or

e value;(v) = L andchild-string, (v) € L(A(q)).
Intuitively, A determines the vertical context of a nodéy the
stateg it reaches in processingic-string, (v). Whenv is aData-
node, the content model specified fythat isA(q), should con-
tain the placeholdedat a. Otherwise, whenv is not aData-
node,child-string, (v) should satisfy the content-modg({q). We
stress that this DFA-based characterization of XSDs cporeds
precisely to the more traditional abstraction in terms ng§k&-type
grammars [26, 27]. We lef(X') denote the set of all trees adhering
to XSD X.

4Also referred to as 1-unambiguous regular expressions [13]

EXAMPLE 3.2. Let Xhookshop= (A, A) be the XSD wherel is
given in Figure 3 and\ is defined as follows.

go — bookshop

+
Qbookshopr—> order

Qorder — 1d person address items™

Qitems — book ™
Qbook — title year? price quantity

For all other types;, A(¢) = data.
Then treet in Figure 1 adheres taXhookshop MoOreover, b, €
CNodes; (book gnook) andchild-string, (b1) € L(A(gbook))-

3.3 XML keys

A selector expressiois a restricted XPath-expression of one of
the three forms ‘. (the dot symbol) ayli/l2/ ... /l; (starting
with the child axis) or.//l1/l2/ ... /lx (starting with the descen-
dant axis), wher& > 1, andly, ..., I are element names or the
wildcard symbol *'. A stringw = ws - - - wg, Where eachw; is
an element name, is saidrwatch. /i1 /l2/ ... /1, whenw; = [; or
l; = *for eachi. For selector expressions starting with the descen-
dant axis, we say thab matches //l1/l2/ ... /1, if a suffix of w
matches/l1/l2/ ... /lx. For a tree, a nodev of ¢, and a selector
expressiorr, the setr(t,v) is defined as follows. If = ‘., then
7(t,v) = {v}. Otherwiser is of the form either/l1/l2/ ... /lx
or.//li/l2/ ... /ly, and7(t,v) contains all nodes’ such that’
is a descendant af and the path of labels from (but excluding
the label ofv) to (and including)y’ matchesr. A disjunction of
selector expressioris of the formr = 7, | - - - | 7., where each;
is a selector expression. In this casé;, v) is defined as the union
of all 7;(¢,v). Whenv is the root of the document, we simply write
7(¢t) for 7(t,v). We denote bySE€ andDSE the class of selector
expressions and disjunctions of selector expressiongecésely.

DEFINITION 3.3. An XML key, defined w.rt. an XSIX, is a
tuple¢p = (¢, 7, P), where(i) c is a context inX; (i) = € DSE
is called thetarget path and (iii), P is an ordered sequence of
expressions iDSE calledkey paths

To emphasize that is defined w.r.tX, we sometimes write a key
simply as a pai{¢, X).

We stress that the definition of XML keys given above, corre-
sponds to the definition of keys in XML Schema [31]. In pariéeu
the context is given implicitly by declaring a key inside dareent
and an element has a label and a certain type. Target pattesl izt
selector path$31, Section 3.11.6.2] and key paths are caflefils
They obey the same grammar as used here with the differeate th
we do not make use of attributes but require key paths totsidta
nodes.

The semantics of an XML key is as follows. The contexte-
fines a set of context nodes which divides the document irga-se
rate (but not necessarily disjoint) parts. Specificallgheaode in
CNodes¢(¢) = {v1,...,vn} can be considered as the root of a
separate tree. For each of those trees, i.e., for eacf, ..., n},
every node inr(¢,v;) should uniquely define a record. Such a
record is determined by the key pathsin= (p1, ..., px). Thatis,
eachv in 7(t, v;) defines the recorflalue; (u1), . . . , value; (ug)],
denoted byrecordp(¢,v), wherep;(t,v) = {u;} for all j €
{1,...,k}. We graphically illustrate the above in Figure 2.

Note thatp; (¢, v) might select more than one node or might se-
lect a node: for whichvalue; () is undefined; both are disallowed
by the XML Schema specification:

DEFINITION 3.4. Akeyp = (¢, 7, P) qualifiesin a document
if for everyv € CNodes;(c), everyu € 7(t,v) and everyp € P,
p(t,u) is a singleton containing Mata-node.

Finally, following the W3C specification, we define satifac
of an XML key w.r.t. a document:

DEFINITION 3.5. An XML treet satisfiesa key¢ = (¢, 7, P)
or a key isvalid w.r.t. ¢, denoted byt = ¢, iff (i) ¢ qualifies in
t; and, (ii) for every nodev in CNodes;(c), recordp(t,u) #
record p (¢, u’), for every two different nodesandu’ in (¢, v).

Notice that, there can be two causes for a key to be invai)d: (
the key does not qualify in the document and actually isefiited
w.r.t. the document; orii) the data values in the document invali-
date the key. The first cause can be seen as structural iarafid
while the second cause is semantical and more informative.

In this paper, we are interested in inferring keys tilataysqual-
ify to a document satisfying the schema. We call such keysisen
tent. In Section 4, we show that consistency can be decided ef
ciently for target and key paths ¢, and is intractable otherwise.

DEFINITION 3.6. A key is consistent w.r.t. a schema if the key
qualifies in every document adhering to the schema.

ExampPLE 3.7. Consider the key from Example 1.1. Thenis
valid w.r.t. the tree in Figure 1 bup is not consistent w.r.tXhookshop
Indeed, Xnookshopdefines the ‘year’-element of a ‘book’-element to
be optional.

3.4 XML key mining

Given an XML document adhering to a given XSD, we want to
derive all supported XML keys that are valid w.r.tt.> We define
the support of a key as the quantity measuring the numberdgfsio
captured by the key. DefifENodes;(¢) as the set of target nodes
selected by = (¢, 7, P) ont. Thatis,

U

v€CNodest (c)

Then, following Grahne and zZhu [19], we define tgportof ¢
ont to be the total number of selected target nodesgip(¢, t)
| TNodest(¢)|. Since this support only depends on the context
and the target pathof ¢, we also writesupp(c, 7, t) for supp(¢, t).
We are now ready to define the problem central to this paper.

TNodes: () 7(t,v).

DEFINITION 3.8. (XML key mining problem) Given an XSD
X; an XML document adhering toX; and a minimum support
thresholdV, the XML key mining problemconsists of finding all
keys¢ consistent withX such that = ¢ andsupp(¢,t) > N.

The above is only the core definition of the XML key mining
problem. We will discuss some quality requirements in thet ne
section.

4. BASIC DECISION PROBLEMS

A basic problem in data mining is the abundance of found pat-
terns. In this section, we address a number of fundamentaide
problems relevant to identifying low quality keys which cduen
be removed from the output of the key mining algorithm. Sfpeci
cally, we consider testing for consistency and show thgptbblem
becomes tractable when top-level disjunction is disalthw&Ve

SW.l.o.g. and to simplify presentation, we restrict attentio a
single document as multiple XML-documents can always be-com
bined into one by introducing a common root.

P Vies Vies Vies
RE EXPTIME-complete| in PTIME IN EXPTIME
PSPACEhard(k > 1)
. in EXPTIME
DSE | EXPTIME-complete| in PTIME conmhard(k > 1)
SE | EXPTIME-complete| in PTIME in PTIME
S&E” in EXPTIME in PTIME in PTIME
sg’/ in PTIME in PTIME in PTIME

Table 1: Complexity of Vars”.

also study universality and boundedness, and show thatateey
tractable. Finally, we show that testing for satisfiabitityd impli-
cation of keys isexPTIME-hard, even when disallowing disjunc-
tion, which complicates the inference of minimal keys.

4.1 Consistency

As detailed in Section 3.3, the W3C specification requirgs ke
to be consistent. We therefore definexGISTENCYas the prob-
lem to decide whethep is consistent w.r.tX, given a keys and
an XSDX. In this section, we show that@\SISTENCYis in fact
solvable inPTIME when patterns in keys are restricted6. The
proof of this result is the most technical result of the papertu-
ally, the PTIME result is also surprising since a minor variation of
consistency is known to kexPTIME-hard, as we explain next.

Consistency requires that on every document adheriog, tev-
ery key path should select preciselygedata node for every target
node. This is related to deciding whether an XPath selegfmes-
sion selectst leastandat mosta given number of nodes, on every
document satisfying a given XSD. Indeed, defif¥§, with k € N
ande € {<,=,>} to be the problem of deciding, given an XSD
X and a selector expressign whether it holds thatp(t)| e &,
for everyt € £(X). We show in Lemma 4.3 that@\SISTENCY
can be easily reduced .. Although Bjorklund, Martens, and
Schwentick [12] showed that.k is ExPTIME-complete, we obtain
below thatv;. can in fact be solved in polynomial time through an
intricate translation to the equivalence test for unambigutree
automata [30].

4.1.1 Cardinality of XPath result sets

Because of its relevance to cardinality estimation of XPasult
sets, we investigate in more detail the complexityv@f.” and
it restriction to strings, denoted byf"', relative to the XPath-
fragmentP.

To obtain a more complete picture, we also consider the ofass
all regular expressions, denoted BRE. For a regular expression
r and a treet, r(¢) then selects all nodes whose ancestor string
matches-. Furthermore, denote h§€ the set of all selector ex-
pressions and b§&// andSE*, the set of all selector expressions
withoutdescendant and wildcard, respectively. For a class of pat-
ternsP € {RE, DSE,SE,SE//, SE*}, we denote by/pe.” the
problemves, where expressions are restricted to the cfass

THEOREM 4.1. The complexity of the problew%.” is as stated
in Table 1.

Notice that the probler;- ¢ is pspacehard for every value
k > 1, while V322 PS¢ is conrhard for every valug > 1. On

Defined in Section 3.2 as the string formed by the labels on the
path from the root to the considered node.

the other handv; 2 ¢ = ik ®¢ andv, 2 P98 = Vb PS¢ and,

thus, these two problems can be solved in polynomial timergiv
the results in the second column of Table 1. Below we provide a
sketch of the proof that.. ¢ can be solved in polynomial time,
which is a key problem in our study of consistency.

PROOF SKETCH OFVges®® € PTIME. In this proof, we need

an encoding of XML trees as binary trees. More preciselyafor
XML treet, denote by fcn&) a binary tree such that for every node
v of t: (1) v is a node in fcn&); (2) the left child ofv in feng(t)

is the first child ofv in ¢ (if v is a leaf int, then a node with label
is placed as the left child af in fcng(t)); and (3) the right child
of v in fcng(t) is the next sibling ofv in ¢ (if such a sibling does
not exist int¢, then a node with labe} is placed as the right child
of v in fcns(t)). Moreover, in this proof we also make use of tree
automata which operate in a top-down fashion over binargstre
which are called binary tree automata (BTA). Given a BAAwe
denote byL(A) the set of trees accepted by and we say thatl

is unambiguous if for every € L£(A), there is only one accepting
run of A ont, but there could many non-accepting ones.

In order to show that/;os° € PTIME, we first need the follow-
ing results: (1) given an XSIX, one can construct in polynomial
time a deterministic BTAA x such that for every treg fcns(t) €
L(Ax) ifand only ift € £(X); (2) given a selector expression
p, one can construct in polynomial time a non-determinisfidAB
B, such that for every XML tree: fcns(t) € L(B,) if and only
if [p(t)] > 0; and (3) there is a deterministic BTA, such that
t' € L(Ay)ifand only if ¢’ = fcng(t) for some XML treet. With
these ingredients, the polynomial time algorithm¥gg: $¢ works
as follows.

Let X be an XSD ang a selector expression. In order to test
whether(X, p) € Vien¢, we first verify whethet X, p) € Vi °¢,
which can be done in polynomial time (see Table 1). If thisds n
the case, then we know thaK, p) ¢ Vyes°%, so the algorithm
returnsfalse Otherwise, the algorithm continues by computing de-
terministic BTAsAx, Ay and non-deterministic BTAB,. Then
to check whethefX, p) € Vs °¢, the algorithm needs to verify
whetherL(Ax x Agx) C L(Bp), whereAx x Ay is the usual
product of BTAs that accept§(Ax) N £L(Ax) and can be com-
puted in polynomial time. The key observations to make hege a
(1) testing whetheC(Ax x Ax) C L(B,) is equivalent to veri-
fying whetherL(Ax x Ax) C L(Ax X Bp); (2) containment for
BTAs is an intractable problem, but it becomes tractableifam-
biguous BTAs [30]; (3)Ax x A is an unambiguous BTA as it
is deterministic; and (4) although x x B, is non-deterministic,
by using the fact thatX, p) € Vaa°%, it is possible to prove that
Ax x B, is an unambiguous BTA. Therefore, we can test in poly-
nomial time whetheC(Ax x Ax) C L(Ax x B,) and, thus, we
can test in polynomial time whethéX, p) € Vi, O

Finally, we consider the corresponding problem for striags
well. We denote by/g7 the problem to decide whether, given a
DFA A and a patterm € P, |p(s)| e k for everys € L(A). Here,
as every string can be viewed as a unary tgge) simply denotes
the nodes selected lpywhen evaluated from the root.

kP
wing 1S s for

THEOREM 4.2. The complexity of the proble
vek P with the exception that:
k,RE k,DSE k,SE
1. .vs>t.ring 'vs>tring 'vs>tring
is in PTIME;
2 v:k,RS

string

=k,DSE
3. vstring

>k,SE*
string

are PSPACEcomplete and,

is PsPACEcomplete for every > 1; and

is coNP-complete for every > 1.

The results in Theorem 4.2 are important for our investayatiot
only because they can be used to obtain lower bounds for the co
plexity of the problems7s:” | but also because the extension of
some of the techniques developed to prove them played a ey ro
in pinpointing the complexity of some of the problenfs:”, most

notably in the case ofg o %.

4.1.2 Main result on consistency

For a class of patterr®, we denote by ONSISTENCY(P) the
problem GNsISTENCYrestricted to keys using expressionsin
We introduce the following definition. Lét € N, e € {<,=, >},
and R, S be two pattern languages. We denotety; ™ the
problem to decide whether for a given XSB and a key¢ =
(c,7,(p)) with 7 € R andp € S, it holds that|p(t,u)| e k for
everyt € L£(X), every node in CNodes;(c), and for every node
win7(t,v).

Let root stand for the class containing only the selector expres-
sions *, that is, the expression which selects the root. The follow
ing lemma now allows to transfer upper and lower bounds ftmen t
previous section:

LEMMA 4.3.Letk € N, lete € {<,>,=}, and letP €
{RE,DSE, SE,SE//,SE*}. Then

1. Yok REP ok, P.

key is polynomial time reducible tdgs" ; and,

2. Vies” is polynomial time reducible tag,, """
The main result of this section immediately follows from ®he

rem 4.1 and Lemma 4.3:

THEOREM 4.4. 1. CONSISTENCY(SE) isin PTIME;

2. CONSISTENCY(DSE) is coNP-hard and iNnEXPTIME;
3. CoNSISTENCY(RE) is PspAaCEhard and INEXPTIME;

4.2 Determining the quality of keys

We investigate a number of additional criteria to deternthe
quality of keys. Since the number of keys mined from a givec+ do
ument can be quite large, we are interested in identifyirejgvant
keys that can be disregarded from the output of any key miaing
gorithm. Examples are keys that hold in any document, thigt on
address a bounded number of target nodes, and keys that-are im
plied by keys that have already been found.

Thereto, letX be an XSDg a key andV be a set of keys such
that every key in U {¢} is consistent w.r.tX. Then,

e UNIVERSALITY is the problem to decide whethel= ¢ for
every tree it € L(X);

e BOUNDEDNESSIs the problem to decide whether there is an
N € N, such that for every treec L£(X),

| TNodest(¢)| < N.

e KEY IMPLICATION, denoted by C ¢, is the problem to
decide whether for all tregse £(X) such that\ ;. ¢ =
it holds thatt = ¢.

e SATISFIABILITY is the problem to decide whether there is a
treet € L(X) with ¢t = ¢;

Intuitively, a bounded key can only select a bounded number o
target nodes independent of the size of the input documenteS
the main purpose of a key is to ensure uniqueness of nodegmwith
a collection of nodes, bounded keys are not very interesting

We next show that identifying universal and bounded keys is
algorithmically feasible, while determining implicatidand even

satisfiability) of keys is intractable. Therefore, detarmg a small-
est set of keys (aka, a cover) is practically infeasible. eNbat,
while the EXPTIME-completeness of &ISFIABILITY is discour-
aging, it does not pose a problem for key mining algorithms in
practice. Indeed, by Definition 3.8 a key mining algorithmlwi
on input (X, ¢) with t € L£(X) only return keysp with ¢t = ¢
(which can efficiently be checked). As such, the keyis returns
are necessarily satisfiable.

Similar to the previous section, we parametrize the problem
above by a clas® of expressions, to restrict attention to input keys
that only use expressions .

THEOREM 4.5. 1. UNIVERSALITY (DSE) is in PTIME.

2. BOUNDEDNESYDSE) is in PTIME.
3. KEY IMPLICATION(SE) is EXPTIME-hard.
4. SATISFIABILITY (S&) is EXPTIME-complete.

Next, we considetarget path containmerindequivalenceGiven
an XSD X, a contextc, and two selector expressionsand 7/,
TARGET PATH CONTAINMENT is the problem to decide whether
for every tree¢ € £(X) and every node € CNodes;(c), 7(t,v) C
7'(t,v). We denote the latter condition by Cx . 7'. By TAR-
GET PATH EQUIVALENCE we denote the corresponding equiva-
lence problem.

THEOREM 4.6. TARGET PATH CONTAINMENT and TARGET
PATH EQUIVALENCE are in PTIME.

TARGET PATH EQUIVALENCE is a particularly relevant prob-
lem for key mining since it allows to identify, within the nad set
of keys, the semantically equivalent but distinct kéysr, P) and
(c, ', P) with T target path equivalent te’. In this sense, target
path equivalence is a sufficient condition for key implioati but
which can be solved efficiently.

5. XML KEY MINING ALGORITHM

In this section, we provide an algorithm for solving the XML
key mining problem. Recall from Definition 3.8 that the inpat
this algorithm is an XSDX, an XML treet and a minimum sup-
port thresholdV, and that it should output keys that are consis-
tent with X, are satisfied by, and whose support exceedg'.
For the remainder, leX = (Ax,Ax) with the type-automaton
Ax = (Types X U {dat a}, d, qo).

The overall structure of the XML key mining algorithm is out-
lined in Algorithm 1.

Algorithm 1 XML Key Mining Algorithm

for all ¢ € ContextMineg, x do
for all T € TargetPathMingry (c) do
S = OneKeyPathMingr (¢, 7)
P = MinimalKeyPathSetMingr (c, 7, S)
for each P € P return(c, 7, P)

Basically the algorithm consists of four components:

e ContextMineg, x returns a list of possible contexts based on
tand.X;

e TargetPathMiner (c) returns a list of unique target paths
with minimal support int given a context;

“If no XSD is available, one can be derived, e.g., using albors
from [9].

bookshop

(fIbookshop 1)

order
(QOrden 2)
id person address items
(gia, 2) (gperson 2) (Gaddress 2) (gitems, 2)
book
(gbook, 3)
. . / \ .
title quantity price year
(giite, 3) (gauantity, 3) (gprice, 3) (gyear, 3)

Figure 4: Prefix tree for the XML tree in Figure 1.

e OneKeyPathMiner y (c, 7) returns a maximal st of unique
key paths for whiclc, 7, {p}) is consistent for every € S;
and,

e MinimalKeyPathSetMingr (c, 7, S) returns a seP of min-
imal subsets of S for whicht = (¢, 7, P).

TargetPathMingr (c) and OneKeyPathMingr, (c, 7) are dif-
ferent instantiations of levelwise search [24], while thidtion
MinimalKeyPathSetMingr (c, 7, S) leverages on discovery algo-
rithms for functional dependencies in the relational modelthe
remainder, we explain each function in detail. We will ontyne
sider target and key paths up to a given length,. which can be
at most the maximum depth of the document. Since the presénce
top-level disjunction renders testing for consistencyaictable (cf.
Theorem 4.4), we focus on a key mining algorithm that dismdga
the union operator.

5.1 Prefix Tree and Context Miner

We first define a basic data structure that is used to speed-up
various parts of the mining algorithm. Denote BY (¢) the prefix
tree obtained fron by collapsing all nodes with the same ancestor
string. Recall that the ancestor string of a node is thegstibtained
by concatenating all labels on the unique path from the ¢and
including) that node. Let be the function mapping each nodetin
to its corresponding node IPIT'(¢). Then, we label every node in
PT(t) with the number of nodes ihmapped tan, i.e.,|h ! (m)|
together with the state assignedrtoby the type-automaton x .

For example, the prefix tree for the XML tree in Figure 1 is show
in Figure 4. Note thaPT(¢) does not contain data nodes. The
prefix tree can be computed in time linear in the size ¢$ee,
e.g., [19]).

We next discuss the context miner. Clearly, the set of altexdn
¢ = (0,q) with o € X andq € Types, can be directly inferred from
the given XSD. But, since only contexts that are actuallyized
in ¢t can give rise to a non-zero support, the context miner enumer
ates all unique contextsoccurring inPT(¢) through a depth-first
traversal.

5.2 Target Path Miner

Next, we describe the target path miner which finds all target
paths exceeding the support threshold for a given contexthe
algorithm follows the framework develwise searcldescribed by
Mannila and Toivonen [24]. In brief, the algorithm is of a geate-
and-test style that starts from the most general target path

Algorithm 2 Basic algorithm for levelwise search [24]
Cy := set of most general elementsof
1:=0;
while C; # () do
Fi:={reCilq(n)}
Cit1 ::{TEU|VT’€U:T'<T:>T/€UJ.SiFj}
\ i< Cj;

U"L

1:=1+1;
Return{;);

in our case, and generates increasingly more specific pditts w
avoiding paths that cannot be interesting given the inféionaob-
tained in earlier iterations.

The components of any levelwise search algorithm consiat of
setU called thesearch spacea predicate; on U called thesearch
predicate and a partial ordek on U called thespecialization re-
lation. The goal is to find all elements &f that satisfy the search
predicate. Obviouslyl/ in our case is the set of selector expres-
sions up to lengttk..... A standard approach is to use a sup-
port threshold for the search predicate. Accordingly, wignéethe
search predicate ag7) := supp(c, 7,t) > N, for the given in-
put thresholdV. That is,r is deemed interesting when its support
exceedsV.

For levelwise search to work correctly,should bemonotone
(actually, monotonically decreasing) with respect£p meaning
that if 7 < 7 andq(r) holds, theng(7’) holds as well. The intu-
ition of 7’ < 7 is thatr is more specific tham’, or in other words,
that7’ is more general than. For our purposes, it would be ideal
to use the semantic containment relatiorC x . 7’ in contextc
(as defined in Section 4.2). Although this containment ietais
shown to be tractable (Theorem 4.6), through a translaticihe
inclusion test of unambiguous string automata, it is not-seited
to be used within the framework of levelwise search whicluiesg
fast testing of specialization due to the large number ofigasts.

In strong contrast, as we show below, the containment ots®le
expressions that disregards the presence of a schema, yrase: s
tic counterpart which can be implemented efficiently. TFene
we definer’ < 7 if and only if for every XML treet, the setr(¢)

is a subset of’(¢). With respect to this definition it is obvious that
q is monotone. Notice also thatC 7’ impliesT Cx,. 7'

Now, levelwise search computes sétsiteratively as shown in
Algorithm 2. Here,< is the strict version of<, so7’ < 7 if
7" < 7and7’ # 7. Each step computing';; 1 is calledcandi-
date generationthose candidates that satigfythen end up in the
corresponding sef; 11 (the letterF is a shorthand for “frequent”,
referring to the support threshold). It can formally be shawat
the union of all setd; indeed equals the set of all elementslof
satisfyingq [24]. Moreover, the algorithm is terminated as sd@gn
is empty, because then all later sétsandC; with j > 7 will be
empty as well.

The above abstract framework, however, leaves a numbeesf qu
tions to be answered: (Jow can we efficiently evaluate the search
predicateq(7)?; and, (ii) How can we efficiently generate candi-
date setg”;+1?. We will next answer these questions in detail.

Search predicate. The search predicateipp(c, 7, ¢) can be en-
tirely evaluated on the prefix trd®T'(¢) and does not need access
to the original document A single XPath-expression can be used
to aggregate the counts of all nodes matchifglow nodes in con-

Algorithm 3 TargetPathMingr (c)

Co := set of minimal elements df’;

1:=0;

while C; # 0 do
Fi={zeCi|q@)}
Giq1:={z€U|IyeF:y=<ia}
Civi={z€Git1 |Vy:y<1z=>yE€ Uj<z. F;};
i:=1+1; -

Returr(F;);

textc.® Indeed, forc = (o, ¢), the support can be obtained from
PT(¢) using the following XPath expression:

sum(//o[@state = id4]/7/ Qmatches),

whereid, is the internally used id of the state The attributes
@t at e and@rat ches contain respectively the state id assigned
to the node in the prefix tree and the number of nodes with tine sa
ancestor path in.

Specialization relation and candidate generationSince our cho-
sen specialization relation is purely semantic, we needgaiva-
lent algorithmic definition to show that containment can fiece
tively decided. Thereto, we define a “one-step speciatinatela-
tion” as follows: 7' <1 7 if 7 is obtained fromr’ by one of the
following operations: (a) if~" starts with the descendant axis, re-
place it by the child axis; (b) if’ starts with the descendant axis,
insert a wildcard step right after it; or, (c) replacing adeird with
an element name.

We establish that’ < 7 if and only if 7' can be transformed

into 7 by a sequence ok -steps, or, more formally:

PrRoPOSITION 5.1. The relation= equals the reflexive and tran-
sitive closure of the relatior .

Note that the definition ok, makes it impossible that’ <1
7" <1 7 while at the same time’ <1 7. Hence, Proposition 5.1
implies that<, as defined above really is the “successor” relation
of <. More formally,7" <; 7 holds precisely if and only’ <
and there exists no intermediaté such thatr’ < v’ < . More-
over, < is very efficient to compute. Thus armed, we can perform
candidate generation in a effective manner as given in Atlgor3.
Here, candidate generation is split up in two steps, whigbrae-
tice can be interleaved. The s@t,1 takes all successors of the
current setF;; the setC;41 then prunes away those elements that
have a predecessor that does not satjsfycan be shown formally
that the setd; computed in this concrete manner are exactly the
same as those prescribed by the levelwise algorithm:

THEOREM 5.2. Algorithms 2 and 3 are equivalent.

Duplicate elimination. Often, a nuisance in mining logical formu-
las such as selector expressions is duplicate eliminatifferent
expressions may be logically equivalent. Fortunatelypinsetting,
it follows from Proposition 5.1 that only identical selectxpres-
sions can be equivalent.

Regardless, it can happen that two derived, and therefore, i
equivalent, target paths and 7’ select precisely the same set of
target nodes on the given documeéntAs these paths are equiv-
alent from the perspective df it holds thatt E (c, 7, P) iff

8Recall that in the prefix tree every node contains its comeding
context and count.

t &= (c, 7', P) for all setsP. Therefore, w.r.t generation of key

there are at least two nodes selecteg byhich belong to the same

pathsP, it does not makes sense to consider all of these equivalenttarget node it and which contradict consistency.

path separately. Rather we should choose among them one-cano
ical path. One possibility, e.g., is to opt for the most sfegath
according to<; minimizing the length and number of wildcards.
Notice that equivalence of target paths tonan be tested on the
prefix treePT'(¢) without access to the original document.

Boundedness elimination. The quality of the mining result can
be improved using the results of Section 4.2. Indeed, tqgtts
that are bounded but that have still passed the supportibickd/,
which may happen with low values 8f, may be eliminated at this
stage.

5.3 One-Key Path Miner

Our task here is to find all key patpgor which (¢, 7, (p)) is con-
sistent on the given document: that is, for everg CNodes:(c)
and everyu € 7(¢,v), it holds thatp(¢, v) is a singleton containing
aData-node. Afterwards, only those key pathsire retained for
which (¢, 7, (p)) is consistent w.r.tX . The reason for this two-step
approach is to reduce the number of costly consistency. tédts
though testing for consistency w.r.t. a schema is in polyiabtime
(cf., Theorem 4.4), it can be slow for large schemas and-&iited
to be used directly as a search predicate. Therefore, wdaiest
document consistency in a first step and make use of the fact th
inconsistency on implies inconsistency oX. That is, key paths
which are not consistent arand which are therefore pruned in the
first step, can never be consistent wXt.

It turns out that again a levelwise search may be used, intjliz
the converse of the specialization relatigrior target-path mining.
So, definegy’ <*® piiff p < p’. Thatis,p’ <X piff p’ C p. The
search predicatéﬁey(p) is now defined to hold ip selectsat most
one node int for each of the target nodes selectedrtiy contextc.
This ¢ is indeed monotonically decreasing w.r.t. the converse of
containment among selector expressigris<*® p = p’ C p and
¢ (p) together implyg“¥(p’). We note that consistency requires
the selection of exactly one, rather than at most one, noaev-H
ever, this mismatch can be solved by confining the searchespac
Ukey to all selector expressions up to length.. that from a target
node select a leaf node in the prefix tree: these expressibast s
at least one node by virtue of their being present in the ptedix
The “most general” elements from which the levelwise seasch
started are then the paths in the prefix tree from target ntmes
leafs. Obviouslylkey can be computed directly frofAT (¢).

It remains to discuss how to compugf” efficiently. Unfortu-
nately,¢“® can not always be computed solely BT (¢). Indeed,
consider the documents = a(b(d), b(d)) andts = a(b(d, d),b),
where eachi-node is aData-node. ThenPT(¢1) = PT(t2) yet
¢ is consistent ori; but inconsistent ory for ¢ = (croot,./a/b,
(./d)) with croor the root context.

We next present a sufficient condition for inconsistencyalhi
can be tested on the prefix tree. Thereto, consider (c, 7, (p))
and lett’ = PT(¢). For a nodem in t’, we denote by#,; (m)
the number assigned e in ¢/, that is,|h~* (m)| for h as defined
in Section 5.1. Define the following conditions: (C1) These e
ists av € CNodesy (c¢) and au € 7(t',v) such that#, (u) <
> wep() #r (w); and, (C2) There existsae CNodesy (c), a
u € T(t',v),aw € p(t’',u), and a noden on the path from: to w
such that#, (m) < #(w).

Here, (C1) says that the number of target nodeis strictly
smaller than the number of nodes selectegjgnd (C2) says that
there is a leaf node selected pyand an ancestor with a smaller
number of corresponding nodes#n Both conditions imply that

Formally, we have that:

PrRoOPOSITION 5.3. Given¢ = (¢, 7, (p)) and a document. If
condition C1 or C2 holds o T'(¢), then¢ is inconsistent on.

So, only when the tests for the above two conditions fail, we
evaluatep ont to determine the value @t(p).

Finally, define<® as the inverse of, that is,p’ < p
iff p <1 p’. Then, the first step of OneKeyPathMiner(c, 7)
is the same algorithm as depicted in Algorithm 3 wifh ¢, and
<1, replaced bylUkey, ¢*%, and«'iey, respectively. The second step
in OneKeyPathMiner (c, 7) retains from all of the returned key
pathsp, those for which(c, 7, (p)) is consistent w.r.tX employing
the algorithm of Theorem 4.4. A duplicate elimination stapikar
to the one of the previous section is performed as well.

5.4 Minimal Key Path Set Miner

At this point, we have computed the maximal $efor which
everyp € S, (¢, 7, {p}) is consistent w.r.tX. Next, we are looking
for minimal and meaningful set® C S such thatt = (¢, 7, P),
that is, such thafc, T, P) is a key fort.

We capitalize on existing relational techniques for miniagc-
tional dependencies (e.g., [11, 21, 23]). To this end, wendedi
relation Rs,; with the following schema

(CID7TID7p17p27"'7p\5\)7

whereCID andTID are columns for the selected context nodes
and target nodes, respectively, and eygrgorresponds to the unique
Data-value selected by the corresponding key path Then,
(v,u,0) € Rs, if and only if v € CNodes(c), u € 7(t,v)
andrecords (¢, u) = 6. Now, it follows thatt = (¢, T, P) iff

CID,p1,p2,...,pn — TID.

is a functional dependency iRs,; for P = (p1,...,pn). We can
now plug in any existing functional dependency discoveigoal
rithm.

6. EXPERIMENTS

For our experiments, we use a corpus of 90 high quality XML
documents and associated XSDs obtained from [1]. The irgut c
therefore be seen as 90 pairs consisting each of a unique XML-
document and a uniqgue XSD. The maximal and average number
of elements occurring in documents is 91K and 5K, respdgtive
while the maximal and average number of elements occurring i
XSDs is 532 and 52, respectively. All experiments are wo.this
corpus and were run on a 3GHz Mac Pro with 2GB of RAM. In
all experiments, we sdt,... to 4 for target paths and t for key
paths, unless explicitly mentioned otherwise.

Prefix tree. As different parts of the algorithm can avoid access to
the input document by operating directly oPT(¢), it is instru-
mental to investigate the compression ratePdf(t) overt. Fig-

ure 5 plots the number of nodes in documents versus the number
of nodes in the corresponding prefix trees. Note that theessal
logarithmic. In essence, every document is compressed ttefix p
tree with at most 200 nodes even for large documents contnini
ten or even hundred thousand of nodes.

Contexts. A key ¢ = (¢, 7, P) consists of three interdependent
components: target paths need only to be considered waana
text, and key paths need only to be considered w.r.t. a cbatek
a target path. To avoid an explosion of the size of the segrabes

1000
g ° .
E e
S 100 o %% o o
£ oe° o0
x
s % . e % 0o
ey ’:?j °e g '.“'
° o9 [
g w T"-. .o
£ e @ ® Toee ° .
2 [X
1
1 10 100 1000 10000 100000 1e+06

number of document nodes

Figure 5: Number of documents versus number of nodes in
prefix trees.

it is paramount to reduce the number of considered contexts,
get paths and key paths. We next assess the effectivenels of t
algorithm in this respect.

We start with the number of contexts considered by the algo-
rithm. An analysis comparing the number of contexts allolwgd
XSDs with the number of contexts actually used in the XML docu
ments, shows that for 40% of the documents all allowableecast
materialize in the corresponding XML documents, i.e., ¢hiemo
improvement as no allowable context can be omitted. Negerth
less, it appears that this mostly happens for smaller XSitedd,
the total sum of allowable contexts over all 90 document6&94
while the total sum of contexts found in actual document2ik72
which indicates that over the complete data set 52% of aliptes
contexts daot have to be considered. Keeping in mind that every
context that can be removed in this step, eliminates a ctiletdar-
get pathandkey path miner underlines the effectiveness of context
search driven by the XML data at hand.

1le+07

= candidate
mmmm supported

le+06 |- HmEEE non-equivalent supported

100000

10000

1000

number of target paths

100

10

1

documents (ordered on XSD filesize)

Figure 6: Behavior of the target path miner.

Target paths. Next, we discuss the behavior of the target path
miner when the support threshaM equals10. The results are il-
lustrated in Figure 6 (cases with,.. = 5 and/or lower support
threshold were also tested but are similar and thereforshmtn).
For presentation purposes, the X-axis enumerates all demtam
XSD pairs increasingly ordered by the size of the XSD. Therégu
then shows per pair, the number of candidate, supportedpamd
equivalent derived target paths. Its purpose is to provigiszal
inspection on the considered quantities on a per documesis.ba

10000
C— candidate

=3 not inconsistent on prefix tree
mmm consistent on document
mmm consistent on XSD

i M

documents (ordered on keypaths considered)

1000

[N
o
o

number of key paths

10

Figure 7: Behavior of one-key path miner.

By candidate target paths we mean those that occurred indican
date setC; during the execution of Algorithm 3. Non-equivalent
target paths are those which remain after duplicate elitioingas
explained in Section 5.2). The number of possible targdtgptd
consider (that is, the cardinality of the search spécemes the
number of allowable contexts) is not shown as the targetmpater
only considers a small fraction of those, to be precise, 8ftyon
average. Furthermore, on average, only 7% of all candidate t
get paths turn out to be supported and of all supported patlys o
27% remain after duplicate elimination. To get a feeling tto
magnitude of the reduction in target paths (TPs) providedhiey
algorithm, we give the following table of absolute numbetsch
are summed up over the whole data set of document-XSD pairs:

2.4 x 107
6.7 x 10°
8.4 x 10%
1.3 x 10%

possible TPs
candidate TPs
supported TPs
unique TPs

One-key paths. Figure 7 provides a visual interpretation of the
reduction in number of key paths by the consecutive stepheof t
one-key path miner as described in Section 5.3. Again, fesqn-
tation purposes, the X-axis enumerates all document-X$i3 ja
creasingly ordered by the number of resulting candidatepkiys.
Specifically, the figure plots on a per document basis thevoll
ing numbers: candidate key paths, paths for which the irisons
tency test fails on the prefix tree, paths which are condistehe
document, and paths which are consistent w.r.t. the XSD. &k fi
discuss the average improvement on a per document basisf-Spe
ically, on average 29% of candidate paths are inconsistatttbe
prefix tree. This means that for 61% of the remaining key paths
consistency needs to be tested on the document. On averdge, o
6% of key paths are consistent w.r.t. the document and of t6&%
turn out to be consistent w.r.t. the XSD. Absolute numbensraed

up over the whole data set of document-XSD pairs, give theviel

ing picture for key paths (KPs):

candidate KPs 48144
inconsistent KPs on prefix trep 29190
consistent KPs on document | 484
consistent KPs on XSD 288

It is interesting to observe that on the considered samptleaif
world documents, consistency on the document does not alway
imply consistency w.r.t. the associated XSD. Specificttiy,above

table shows that overall only roughly 60% of KP which are t®ns
tent on documents are consistent on the XSD as well.

Keys. Next, we discuss the keys returned by our algorithm. We use
the hypergraph transversal algorithm to mine relationatfional
dependencies as, for instance, described in [22], but astyalgo-
rithm can be readily plugged in. We consider keys with tapzgh
length at most 4 and key path length at most 2. In the folloywivey
refer to testing consistency of a key w.r.t. its XSD, thabisapply-
ing the algorithm of Theorem 4.4, as the schema consistasty t
Table 2 and Table 3 then gather some statistics of discoveresl
without and with the schema consistency test. First of atlan be
observed that not every document contains a key with thanestju
support: only 30% and 16% of all documents using support t0 an
100, respectively (Table 2). The latter might seem stratdiesa
sight, but note that not all XML documents are in fact databas
and that the requirement for a key to qualify (cf., Definit@a) is
a severe one. Indeed, even lowering the support threshaldatue
of two (experiment not shown here) only provides a key for 60%
of the documents, but of course a key with support two is not ve
relevant. We note that the average supports for discovergsl ik
this section is 404 and 612 for support thresholds equal tantD
100, respectively, while the maximum support encountes@911,
indicating that the discovered keys indeed cover a largebeurof
elements.

The figures in the two tables nicely illustrate the effeatiess of
schema consistency as a quality measure. Indeed, withbeirsc

| | sup =10] sup = 100]

derived keys 107 54
docs with keys 27 15
average nr. of keys perdgc 4 3.6
max nr. of keys per doc 23 23
average nr. of key paths 1.3 1.3
max key nr. of key paths 2 2

Table 2: Statistics of mined keyswithout the requirement to be
consistent w.r.t. the associated XSD.

| [sup =10] sup =100]

derived keys 43 16
docs with keys 19 10
average nr. of keys perddc 2.2 1.6
max nr. of keys per doc 9 4
average nr. of key paths 1.3 1.2
max key nr. of key paths 2 2

Table 3: Statistics of mined keyswith the requirement to be
consistent w.r.t. the associated XSD.

from which all other keys can be derived. For instance, te thi
end Grahne and Zhu [19] make use of the inference algoritoms f

Consistency Table 2 shows that 107 and 54 keys are derived forXML keys investigated and shown to be p0|yn0mia"y Comp[ﬂab

support threshold 10 and 100, respectively. Interestjriglypoth
cases, there is a document with a rather large number of &3s:
to be specific. But, after the schema consistency test eaittesé
keys is removed as they all contain a key path which selecteziés

of which the schema says they are optional. Of course, onlel cou
debate about whether the schema is actually always conretap

be too liberal. One could always opt to offer keys which do not
pass schema consistency to the user. However, after arctispe
of the derived keys from our corpus, it becomes apparentithat

by Buneman et al. [15]. Unfortunately, Theorem 4.5 shows tha
key implication in the presence of a schemax®TIME-hard. Still,
there is opportunity to detect duplicate keys. For instatieenext
pair of discovered keys turn out to be equivalent (both wigbport
90):

((State: 188, Synbol: ConstraintID),/x*,{/*})
((State: 167, Synbol : PureOrM xt ureDat a),
[Constraint/Constraintl D/, {/x})

many cases keys rejected by the schema are probably notkeys aygoonst r ai nt | Dean only occur under@nst r ai nt -element.

all. As an illustrative example, consider the three derikegs (all
with support 340, and whereoot refers to the root context):

(root,/Products, {/1D})
(root,/Products, {/ O her_Information,
/ Cat al ogue- Nane})

(root,/Products, {/ Type, /Qher_|nformation})

where after the schema consistency test only the first kegiresn

In this case, it should be clear that the second and third &eys
not accurate but a glitch in the data. Therefore, one couldtszt

the reduction from 107 to 43 and from 54 to 16 keys in Tables 2
and 3 actually improves the quality at the expense of lovggettie
quantity which in our opinion can be seen as a good thing a$ mos
data mining problem suffer from an explosion in derived qas.

Quality. It remains to discuss the quality of the keys. When the
provided schema is accurate, the schema consistency $edis-a
cussed above, provides a quality criterion in its own. A seco
quality criterion can be the high support of derived keysmen-
tioned above the found support of derived keys is on averige 4
and 612 for support thresholds equal to 10 and 100, respégtiv
while the maximum support encountered is 2011. Furthermore
when inspecting found keys it appeared that in many cases key
select elements whose name contains ‘ID’.

We finish with a discussion on implication of keys. Usually, i
key discovery, the goal is to find a minimal set of keys, catleder,

We can therefore consider the keys to be equivalent as ttegt se
precisely the same set of target nodes.

100000

== overall time
mmmm time for schema consistency test

10000

1000

100

10

time (s)

1

0.1

0.01

0.001
documents (ordered on total time)

Figure 8: Proportion of the running time consumed by the
schema consistency check.

Running time. We next discuss the runing time of the algorithm.
Of course, the previous sections have already illustratd the
different mining steps succeed in reducing the number oiden
ered contexts, target paths and key paths and every suctticedu

100000

10000

1000

100

10

time (s)

1

0.1

0.01

0.001

schema consistency mining overall no schema consistency

Figure 9: Boxplots indicating average run times.

induces a gain in speed. Figure 9 gives insight in the ovaratiing
time. Here, a large fraction of the time is taken up by the sthe
consistency test. Furthermore, Figure 8 gives an indisaifcthe
proportion of time taken by the schema consistency test e
overall running time. For presentation purposes, the X-axiu-
merates all document-XSD pairs increasingly ordered bytithe
required for the schema consistency test. Note that thecfigoes
not imply an exponential growth of the running time. In faas,
the X-axis does not corresponds to a quantity, no infereanebe
made about the asymptotic growth of the running time.

We want to stress that key discovery is not a time critica tasl

that the algorithm only has to be run once for an XML-document

[2] S. Abiteboul, Y. Amsterdamer, D. Deutch, T. Milo, and engllart.
Finding optimal probabilistic generators for XML collemtis. In
ICDT, pages 127-139, 2012.

[3] S. Abiteboul, R. Hull, and V. VianuFoundations of Databases
Addison-Wesley, 1995.

[4] M. Arenas, W. Fan, and L. Libkin. What’s hard about XML scha
constraints? IMDEXA pages 269-278, 2002.

[5] D.Barbosa and A. O. Mendelzon. Finding id attributes iMIX
documents. IIXSym pages 180-194, 2003.

[6] G.J.Bex, W. Gelade, W. Martens, and F. Neven. Simpldy{ML
schema: effortless handling of nondeterministic regukpressions.
In SIGMOD, pages 731-744, 2009.

[7] G.J.Bex, W. Gelade, F. Neven, and S. Vansummeren. Lggrni
deterministic regular expressions for the inference oéswds from
XML data. TWERB 4(4), 2010.

[8] G.J.Bex, F. Neven, T. Schwentick, and S. Vansummerdarénce
of concise regular expressions and DTBREM TODS 35(2), 2010.

[9] G.J.Bex, F. Neven, and S. Vansummeren. Inferring XMLesoh
definitions from XML data. InVLDB, pages 998-1009, 2007.

[10] G.J. Bex, F. Neven, and S. Vansummeren. Schemascopstens

for inferring and cleaning XML schemas. 8iIGMOD, pages

1259-1262, 2008.

D. Bitton, J. Millman, and S. Torgersen. A feasibilitpch

performance study of dependency inferencddBE, pages

635-641, 19809.

H. Bjérklund, W. Martens, and T. Schwentick. Validity toee pattern

queries with respect to schema information. 2012.

[13] A. Bruiggemann-Klein and D. Wood. One-unambiguous l&agu

languagesinf. Comput, 140(2):229-253, 1998.

P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, and W. &.. Ta

Keys for XML. Computer Networks39(5):473-487, 2002.

15] P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, and W. &.. Ta
Reasoning about keys for XMlnf. Syst, 28(8):1037-1063, 2003.

(11]

[12]

(14]

and XSD. Nevertheless, the above figures also show that tise mo [16] S. Fajt, I. Mlynkova, and M. Necasky. On mining XML inteéty

room for improvement lies within a speed up of the schemaisens
tency test and less in other components of the algorithm.

7. DISCUSSION

In this paper, we initiated a fundamental study of propsrté

constraints. INCDIM, pages 23-29, 2011.

[17] W. Fan and L. Libkin. On XML integrity constraints in thesence
of DTDs.J. ACM 49(3):368-406, 2002.

[18] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadngl &. Shim.
XTRACT: Learning document type descriptors from XML docurhe
collections.Data Min. Knowl. Discov.7(1):23-56, 2003.

W3C XML keys in the presence of a schema and introduced an ef- [19] G. Grahne and J. Zhu. Discovering approximate keys irbddta.

fective novel key mining algorithm leveraging on the forisal of
levelwise search and on algorithms for the discovery of tional
dependencies in the relational model.

A number of interesting issues remain open and requiredurth
investigation. The most direct one is to close the gaps l@twe
some of the obtained lower and upper bounds. It would bedster
ing to investigate tractable subcases especially w.nt.itkglica-
tion. An observed bottleneck of the proposed approach iké¢galc
consistency of a derived key w.r.t. the associated scheren e

though the number of keys which have to be tested is greatly re

duced by testing for inconsistency on the XML document, agth
be investigated how schema consistency can be accelerBitésl.
would require advances in string and tree automata theargthfer
approach would be to try to find fast heuristic algorithmsomstudy
the problem for subclasses of XSDs.

8. ACKNOWLEDGEMENTS

We used the infrastructure of the VSC - Flemish SuperconnpDiés-
ter, funded by the Hercules foundation and the Flemish Gouent. We
acknowledge financial support of the Fondecyt Grant #1131B87-ICT-
233599 and ERC grant agreement DIADEM, no. 246858.

9. REFERENCES
[1] University of Amsterdam XML web collectiorht t p:
/] dat a. pol i tical mashup. nl/sgrijzen/ xm web/.

CIKM, page 453-460, 2002.

[20] S. Hartmann and S. Link. Efficient reasoning about a soB(ML
key fragmentACM TODS 34(2), 2009.

[21] H. Mannila and K.-J. Raiha. Practical algorithms foidfimg prime
attributes and testing normal forms.RODS 1989.

[22] H. Mannila and K.-J. Raih&he design of relational databases
Addison- Wesley, 1991.

[23] H. Mannila and K.-J. Raiha. Algorithms for inferringrfational
dependencies from relatiorBata Knowl. Eng.12(1):83-99, 1994.

[24] H. Mannila and H. Toivonen. Levelwise search and basar
theories in knowledge discovei@ata Min. Knowl. Discoy.
1(3):241-258, 1997.

[25] W. Martens, F. Neven, and T. Schwentick. Simple off thelf
abstractions for XML schem&IGMOD Record36(3):15-22, 2007.

[26] W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Esgik@ness
and complexity of XML schemaCM TODS 31(3):770-813, 2006.

[27] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. TaxonomyX¥1L

schema languages using formal language thed® Trans.

Internet Techn.5(4):660-704, 2005.

M. Necasky and I. Mlynkova. Discovering XML keys and éan

keys in queries. '8AG pages 632-638. ACM, 2009.

R. Ramakrishnan and J. Gehrlatabase management systems (3.

ed.) McGraw-Hill, 2003.

H. Seidl. Deciding equivalence of finite tree autom&=BAM J.

Comput, 19(3):424-437, 1990.

[31] W3C. XML schema part 1: Structures, 2nd edition.

[32] C. Yuand H. V. Jagadish. XML schema refinement through
redundancy detection and normalizatidiDB J, 17(2):203—-223,
2008.

(28]
[29]

[30]

