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ESCUELA DE INGENIERÍA
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ABSTRACT

Cardiac MRI is a valuable tool for studying cardiac function. Particularly, cardiac

tagging MRI combined with advanced processing techniques allows the estimation of the

tissue motion and strain, which could help for an early assessment of several diseases.

However, state-of-the-art tagging sequences and processing methods suffer from several

issues, including but not limited to sensibility to off-resonance, prolonged scanning times,

and poor signal for tagging sequences; and sensibility to through-plane motion, large

frame-to-frame displacements, and low frequencies contamination for processing tech-

niques. In this thesis, three research articles intended to tackle some of these previous

issues are presented.

The first article is a comprehensive comparison of image processing techniques applied

to tagged and DENSE MR images under several imaging conditions, including non-ideal

cases. This research’s primary outcome was the optimum combination of imaging pa-

rameters to obtain the best results after applying the motion estimation techniques. The

second article introduced HARP-I, a novel motion estimation technique based on tagged

MR images that outperformed the state of the art techniques in many aspects. The main

outcomes include the reduction in the estimation sensitivity to low-frequencies contami-

nation, noise, and large frame-to-frame displacement problem. The last article presented

ORI-O-CSPAMM, a new tagging MR sequence that allowed the acquisition of CSPAMM

and MICSR grids in half scan time. ORI-O-CSPAMM also allowed the removal of off-

resonance artifacts during the tagging preparation, which is helpful in the presence of fat.

The three research papers presented improvements to the three essential parts of the

estimation of cardiac strain, including the acquisition sequence, the imaging parameters,

and the image processing tool.
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RESUMEN

La Resonancia Magnética (RM) cardı́aca es una herramienta valiosa para el estudio

de la función cardı́aca. Particularmente, las imágenes de RM de tagging combinadas

con herramientas de procesamiento avanzadas, permiten la estimación del movimiento del

tejido y sus deformaciones, y por lo tanto la detección y seguimiento temprano de varias

enfermedades. Sin embargo, las secuencias de tagging y los métodos de procesamiento

sufren de numerosos problemas, incluyendo pero no limitado a la sensibilidad a efectos

de off-resonance, tiempos de adquisición elevados y mala señal en cuanto a imágenes de

tagging; y sensibilidad al movimiento a través del plano, grandes desplazamientos entre

imágenes consecutivas y contaminación por bajas frecuencias en cuanto a técnicas de

procesamiento. En esta tesis se presentan tres artı́culos que buscan solucionar algunos de

los problemas previamente descritos.

El primer artı́culo es una comparación rigurosa de técnicas de procesamiento apli-

cadas a imágenes de RM de tagging y DENSE bajo distintas condiciones de adquisición,

incluyendo casos no-ideales. Uno de los resultados principales, es la obtención de la com-

binación óptima de parámetros de adquisición que mejoran los resultados de las técnicas

de procesamiento. El segundo artı́culo introduce la técnica de procesamiento HARP-I, la

que a partir de imágenes de RM de tagging, supera al estado del arte en cuanto a estimación

de movimiento. Las principales mejoras introducidas incluyen la reducción de la sensi-

bilidad de la estimación a contaminación por bajas frecuencias, ruido y grandes desplaza-

mientos entre imágenes consecutivas. El último artı́culo presenta ORI-O-CSPAMM, una

nueva secuencia de imágenes de RM de tagging que permite la adquisición de grillas de

CSPAMM y MICSR en la mitad del tiempo de escaneo en comparación con la secuencia

CSPAMM y ORI-CSPAMM. Además, permite remover los artefactos de off-resonance

generados durante la preparación de la grilla, lo que es útil en presencia de grasa.

xxiii



Las tres investigaciones presentan mejoras a tres partes esenciales de la estimación de

deformaciones cardı́acas, incluyendo la secuencia y los parámetros de adquisición y la

técnica de procesamiento.

Palabras Claves: RM Cardiovascular, RM Cardı́aca, RM de Tagging, Deformaciones

Cardı́acas, Estimación de Movimiento.
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1. INTRODUCTION

Cardiovascular diseases are one of the leading causes of death globally (World Health

Organization, 2018). Most of these diseases involve myocardial disfunction, whose signs

and symptons are often called Heart Failure (HF) (Adamczak et al., 2020). HF has been

progressively recognized as an epidemic, and its incidence in developing and developed

countries keep growing, with a prevalence of 1.1-5.5% in the general population.

The Ejection Fraction (EF), defined as the ratio of the stroke volume1 and the end-

diastolic volume of the Left-Ventricle (LV), is the cornerstone in the diagnosis of HF

and has been extensively used (Cikes & Solomon, 2016). Depending on the EF, the HF

is subclassified into three ranges: HF with reduced EF (HFrEF; EF < 40%), HF with

mid-range EF (HFmrEF; 40 ≤ EF < 50%), and HF with preserved EF (HFpEF; EF ≥

50%) (Ponikowski et al., 2016). These ranges characterize different diseases with different

outcomes in terms of myocardial function, including systolic malfunction in the case of

HFrEF and HFmrEF patients, and diastolic dysfunction for HFpEF.

HFpEF was discovered in 1982 and described a group of patients with typical HF

symptoms and preserved Left-Ventricular EF (LVEF). Recent studies suggest that the

prevalence of HFpEF is increasing at a rate of 1% annually relative to HFrEF, which

means that HFpEF is becoming the most common type of HF (Owan et al., 2006; Adam-

czak et al., 2020). This is particularly important, as most of the diseases inducing HFpEF

cannot be detected at the early stages of development, which is crucial for assessing the

affections.

Furthermore, EF suffers from several issues that affect its reproducibility and predic-

tive capability, including but not limited to preload and afterload dependency, geometric

assumptions, and the presence of pre-existent diseases such as hypertension, diabetes, and

renal malfunction (Cikes & Solomon, 2016). Therefore, the use and development of more

robust biomarkers with high sensitivity to early cardiac function changes has increased

1Volume of blood ejected by the left-ventricle at end-systole.
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in the past years. In this context, cardiac strain, which is a measure of the tissue’s local

deformation, plays a fundamental role.

The cardiac strain has been used to assess HF in early and later development stages,

including diseases that develop with preserved EF. Cardiac strain has found several ap-

plications in later stages of disease development: discriminating dysfunction in patients

with myocardial infarction, differentiating patients with idiopathic dilated cardiomyopa-

thy, differentiating active from passive contraction in patients with ischemia, as a predic-

tive index of the extent of transmurality after infarction, detecting and assessing cardiac

dyssynchrony in patients with left bundle branch ablation and HF with narrow QRS, and

as a predictive value of the response in cardiac resynchronization therapy (among others)

(Götte et al., 2001; MacGowan et al., 1997; Gorcsan & Tanaka, 2011; Budge et al., 2012).

Also, cardiac strain has found useful applications in the early stages of diseases in diag-

nosing patients with hypertrophic cardiomyopathy with normal or increased EF; assessing

the cardiac function in patients with Type 2 Diabetes Mellitus, diastolic dysfunction, and

normal EF; and differentiating patients with Duchenne muscular dystrophy (characterized

by progressive cardiac dysfunction and myocardial fibrosis late in the disease process) and

normal EF at any progression stage of the disease (A. A. Young, Kramer, Ferrari, Axel, &

Reichek, 1994; Fonseca et al., 2004; Hor et al., 2009).

Lately, cardiac strain has been used to generate maps of the LV mechanical activation

in HF and evaluate its implications in cardiac resynchronization therapy, as a predictor of

major adverse cardiac events following an acute myocardial infarction, and to detect post-

chemotherapy cardiotoxicity (changes in the cardiac function produced by chemotherapy)

in long-term survivors of breast cancer (Auger et al., 2017; Mangion et al., 2019; Kar,

Cohen, McQuiston, Figarola, & Malozzi, 2019).

Cardiac strain estimation has become non-invasively available in the late 1980s with

the development of Tagging MRI (Reichek, 2017) and since 2004, with the introduction
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of echocardiographic Speckle Tracking (Leitman et al., 2004). Since then, many acquisi-

tion and image processing techniques for echocardiography and MRI, which allow tissue

deformation estimation, have been developed. Since the first evaluations in cardiac dis-

eases and HF, cardiac strain has been a robust biomarker, highly reproducible, and more

sensitive to subtle cardiac function variations than EF.

In this thesis, novel MRI acquisition and processing techniques for assessing the car-

diac strain were developed to improve issues related to the quantification process. First, a

comparison between processing methods to estimate cardiac strain was performed to study

the pros and cons of current methods. Second, a new and more robust processing tech-

nique was developed to obtain better strain estimations from tagged MR images. Finally,

a novel acquisition sequence was introduced to acquire improved tagged MR images in

half of the scan time compared to CSPAMM sequences.

1.1. Overview

This thesis is structured as follows: in Section 1.2, the physical principles of MRI are

explained. In Sections 1.3 and 1.4, a review of MRI sequences and processing techniques

to estimate cardiac motion and strain are presented and their main limitations are men-

tioned. In Section 1.5, the formal definition of cardiac strain is given. In Section 1.6, the

main and specific objectives, the hypothesis, and also the methodology of this research are

introduced.

In Chapter 2, the first publication is presented. In this research, three state-of-the-

art motion estimation techniques used on two kinds of MR images were interrogated and

compared under different imaging conditions to evaluate their performance.

In Chapter 3, the second publication is given. In this investigation, a new motion

estimation technique, more robust to low-frequency artifacts and improved temporal con-

sistency, is introduced and tested on synthetic and in-vivo data of healthy and unhealthy

volunteers and compared against two current techniques.
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In Chapter 4, the third article is provided. In this work, a new acquisition sequence

of tagged MR images, which allows the measurement of high-quality images without off-

resonance artifacts in reduced scan-time and allows magnitude reconstructions, was de-

veloped.

Finally, in Chapters 5 and 6, the current work’s perspectives and the conclusions of

this research are listed and discussed.

1.2. Physical principles of MRI

The Magnetic Resonance (MR) phenomenon is based on an external magnetic field’s

interaction with the protons of the atom’s nucleus. Suppose the number of protons and

the atomic weight of a nucleus are odd. In that case, its magnetic moment interacts with

the magnetic field due to its electrical charge and spin (the intrinsic angular momentum

of the proton). The human body comprises several nuclei with suitable characteristics to

interact with magnetic fields. However, the hydrogen nucleus made up of a single proton

(i.e., 1H nucleus) is the most abundant. Therefore, MR focuses mainly on imaging the
1H nucleus.

In the MR context, the spin of atomic or subatomic particles is a fundamental property

that represent the ability of a nucleus to interact with electromagnetic fields, and like the

angular momentum, it is represented by an arrow (see Fig. 1.1). Unlike macroscopic

properties, the spin (denoted by the letter I) can only be measured in discrete integer or

half-integer units (0, 1/2, 1, 3/2, 2, 5/2, . . . ), and only nuclei with non-zero spins can

resonate while interacting with an external magnetic field. The 1H nucleus and the single

proton conforming it have a spin of 1/2, which makes it suitable for MR applications.

1.2.1. Magnetization

The MR measurement is generated by a set of hydrogen atoms rather than individual

atoms. In the absence of a magnetic field, the protons in a tissue containing hydrogen
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Figure 1.1. A group of hydrogen spins share the same magnetic mo-
ment but randomly oriented in the absence of an external magnetic field
(B0 = 0), which leads to a zero net magnetization M . After applying a
strong magnetic field (B0 = 1.5T), the spins align with the magnetic field,
resulting in a non-zero net magnetization.

atoms have spins with the same magnitude oriented randomly in several directions (see

Fig. 1.1). Therefore, the vectorial addition of all the spins leads to a zero-sum or no net

magnetization. If an external magnetic fieldB0 is applied to the tissue, the hydrogen atoms

align with the magnetic field leading to a net magnetization M . The interaction between

the external magnetic field and the hydrogen nucleus spins makes the individual protons

start to precess around B0 with a frequency given by

fL =
γB

2π
(1.1)

The Larmor frequency fL is a fundamental property of the nucleus and depends on the

gyromagnetic constant γ and the external magnetic field B. For instance, on a MR scan-

ner with main magnetic field of B = 1.5 Tesla (T), for the hydrogen nucleus γ/(2π) =

42.58 × 106 Hz/T and the Larmor frequency is fL ≈ 64 MHz (in the same range of FM

radio signals).

As it will be discussed later, for the generation of MR images, small spatial variations

are induced on the magnetic field B to change the precession frequency at different spatial

locations of the tissue, which are then measured to form images. Thus, the expression

given in Eq. 1.1 is fundamental to MRI.
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Figure 1.2. In presence of a strong B0 field, the net magnetization vector
is alignated with this field and precess with an angular frequency ω0. After
the application of a 90o RF pulse (B1 field) with central frequency ω0, the
magnetization vector is not longer alignated with B0

1.2.2. RF excitation

The signal detection in MR is based on an energy transfer principle. Before the de-

tection, the 1H nuclei in the tissue are excited by a radiofrequency (RF) pulse with central

frequency fL = γB0/2π (note that B in Eq. 1.1 was replaced by the main magnetic field

of an MR scanner B0). The energy of the RF pulse is absorbed by the tissue, re-emitted,

and measured by the MR scanner.

The RF pulse is a less powerful magnetic field denoted as B1, which is applied per-

pendicular to B0 to allow the energy transfer to the protons and the rotation of the mag-

netization vector out of the equilibrium and away from the B0 direction. In the presence

of a strong magnetic field, the magnetization vector aligns with the B0 axis (usually re-

ferred to as z−axis), and the spins precess with the Larmor frequency. As the precessing

is incoherent, there is no net magnetization in the x − y plane. After the application of

B1, the magnetization is rotated into the y−axis, generating a net magnetization in the

transverse (x − y) plane (see Fig. 1.2). The rotation angle (i.e., the amount of transverse

net magnetization) depends on the strength and duration of B1 (for instance, in Fig. 1.2,

a 90o B1 field was used, which fully rotated the magnetization vector into the transverse

plane).
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Figure 1.3. (a) T1 and (b) T2 relaxation curves

When the B1 field is turned off, the 1H protons will tend to the equilibrium state,

aligning with the B0 field. During the previous process, the net magnetization on the x−y

plane precesses around B0, emitting energy at a frequency fL. Suppose a loop of wire is

placed perpendicular to the transverse (x− y) plane. The precessing magnetization vector

will induce a voltage in a phenomenon denoted Free Induction Decay (FID) by Faraday’s

induction law. The FID is the received MR signal use to generate the images, and the loop

of wire is the receiver, often called the receiver coil.

1.2.3. Relaxation

The relaxation process describes how the magnetization vector returns to the equilib-

rium after applying a RF pulse. The recovery of the magnetization in the longitudinal (z)

axis is characterized by the T1 relaxation (also called spin-lattice relaxation) time. The

decay of the magnetization in the x − y plane is characterized by the T2 relaxation (also

called spin-spin relaxation) time.

T1 relaxation

After the application of a 90o RF pulse, the magnetization M0 is fully rotated into

the transverse plane (see Fig. 1.2), resulting in a zero net magnetization in the longitu-

dinal direction (z−axis). Once the RF pulse is turned-off, the magnetization tends to the
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equilibrium and recovers its longitudinal component exponentially with:

Mz(t) =M0(1− e−t/T1) (1.2)

where t is the time after the RF pulse application, and T1 the time that takes to recover

63% of the longitudinal magnetization (see Fig. 1.3).

T2 relaxation

After the application of a 90o RF pulse, all the magnetization M0 is placed in the

transverse plane, resulting in a Mxy magnetization equals to M0. Once the B1 field is

turned-off, the transverse magnetization start to decay exponentially to zero:

Mxy =M0e
−t/T2 (1.3)

where t is the time after turning off the RF pulse, and the T2 the time that takes the

magnetization to decay 37% of its original value (see Fig. 1.3).

1.2.4. Spatial encoding of the image

Spatially varying magnetic gradients are applied to change the precession frequency of

the spins locally, generating a FID signal that depends on the magnetic gradients, i.e., the

spatial position. By applying magnetic gradients with different magnitudes and durations,

multiple spatially varying FID signals can be measured, which are used to generate the

image.

Magnetic gradients

Magnetic gradients are coils within the scanner that are used to spatially encode the

MR signal. These gradients produce small variations of the static B0 field (typically less

than 1% of the total magnetic field). The gradients can be varied in the x−, y−, and

z−directions with strengths2 Gx, Gy, and Gz, respectively, generating a magnetic field

2The strength of the magnetic gradients is usually measured in militesla per meter (mT m−1).
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Figure 1.4. After the application of a RF pulse combined with a slice-
selective z-gradient, the precession frequency of the tissue vary linearly
with the z position. Depending on the central frequency of the RF pulse,
thin slices in different z locations can be excited. For instance, if the RF
pulse has central frequency f0, only the magnetization vectors inside the
thin Slice 0 are excited.

that depends linearly on the gradients:

Bz(x, y, z) = B0 +Gxx+Gyy +Gzz (1.4)

The Bz field generates a spatially varying Larmor frequency given by:

fL(x, y, z) =
γ

2π
(B0 +Gxx+Gyy +Gzz) (1.5)

which makes the protons resonate at different frequencies depending on its position. By

changing the gradient strength and taking multiple measurements, information about one

spatial location at multiple frequencies can be obtained.

Slice selection (encoding in z-direction)

The first step in acquiring a MR image is to localize the signal in one of the spatial

dimensions (z- or slice-direction). This is done by the combination of a B1 field and

magnetic gradient in a process called slice-selective excitation. After the application of a

magnetic gradient in the z-direction, the precession frequency vary with the spatial loca-

tion within the magnet:

fL(x, y, z) =
γ

2π
(B0 +Gzz) (1.6)
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The slice selection is when just the magnetization of a thin slice of tissue is tipped

to the transverse plane. The last is done by tunning the central frequency and bandwidth

(BW ) of theB1 field to values corresponding to different tissue locations (see Eq. 1.6) and

slice thicknesses. Thus, only spins with precession frequency within the range fL ± BW

are excited. After the excitation, the transverse plane’s spins are dephased because they

did not experience the same magnetic field, and a rephasing gradient is applied to regain

its initial phase. However, in some MR applications, the whole volume (slices with infinite

thickness) is excited in a process called non-selective RF excitation, which is often used

in contrast preparation.

Although the selective RF excitation was described only in the z-direction, by com-

bining the magnetic gradient fields in two or more directions, slices can be positioned in

any arbitrary orientation.

Frequency encoding (encoding in x-direction)

During the frequency encoding (readout), a magnetic gradient is applied in the x-

direction to localize the FID signal spatially. In the readout, the spins precess at different

frequencies based on their location in the x-direction (see Fig. 1.5a). The signal measured

by the receiver is a superposition of these frequencies, which contains information on the

localization of protons in the x-direction (see Fig. 1.5b). The measured FID signal is

related with the image through the Fourier transform, as will be discussed later.

The signal measured by the scanner is continuous in time, but due to the discrete nature

of the hardware, it is sampled at a specific frequency. The Nyquist sampling theorem

states that a continuous signal can be reconstructed from uniformly spaced samples if

the samples are taken at a rate that is twice the signal’s bandwidth. Thus, during the

acquisition, the user specifies the bandwidth defining the field-of-view (FOVx) and the

number of samples (Nx) in the x-direction to fulfill the Nyquist theorem (the pixel size is

given by ∆x = FOVx/Nx).
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Figure 1.5. (a) During the readout (the application of a frequency encoding
gradient), the spins precess at different frequencies based on their spatial
location in the x-direction, generating different signals. (b) The signal that
is being readout is a superposition of these signal and it is used to locate
the protons in the x-direction.

Phase encoding (encoding in y-direction)

The phase encoding is the final step to localize the final spatial dimensions. During the

phase encoding, a magnetic field gradient is applied in the y-direction (phase direction)

after the slice selection and before the frequency encoding. After the slice-selective exci-

tation, the spins precess at a frequency given by fL = γB0/(2π). With the application of

a phase-encoding gradient Gy, the protons experience a different precession frequencies

based on their y-location according to fL = γ/(2π)(B0 + Gyy). When Gy is turned-off,

the spins recover their original frequency but they are now dephased (see Fig. 1.6). The

different phases of the spins depends on their y-location, the strength of Gy, as well as its

duration, and are used to localize the protons in the y-direction.

Similar to frequency encoding, the user defines the field-of-view (FOVy) and the

number of samples (Ny) in the y-direction during a MR scan (the pixel size is given
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Figure 1.6. (a) During the application of the phase-encoding gradient (Gy),
each spin is subject to a spatially varying magnetic field B0+ y ·Gy, which
makes it to precess at different frequencies. (b) After turning-off the gra-
dient, the spins regain their original frequencies but are dephased in the
y-direction.

by ∆y = FOVy/Ny). However, unlike frequency encoding, each sample in the phase-

encoding direction is sampled in separate measurements, increasing the scan time if the

chosen Ny is large.

The slice selection, frequency-, and phase-encoding are the main ingredients to obtain

a MR image, and are combined into an acquisition sequence (Fig. 1.7a).

1.2.5. The signal equation

The MR signal scanned during an exam contains the protons information encoded

based in their spatial location. These signal can be viewed as points in the k-space. The

k-space corresponds to the spatial frequency content of the image, i.e., the Fourier trans-

form of the image (see Fig. 1.7b). Each location in the k-space is defined by the frequency
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Figure 1.7. (a) The combination of the slice selection, and frequency and
phase encodings define an acquisition sequence. (b) The MR signal is ac-
quired in the k-space, which denotes the image in the Fourier domain. (c)
After the application of the inverse Fourier transform, the image is recov-
ered.

and phase encoding gradients:

kx =
γ

2π

∫ T

0

Gx(τ) dτ (1.7a)

ky =
γ

2π

∫ T

0

Gy(τ) dτ (1.7b)

where γ denotes the gyromagnetic constant, T the duration of the magnetic gradients Gx

and Gy (the total time in which the gradients where turned-on), and kx and ky the spatial

frequencies (with units usually measured in Hz/m).

The k-space formalism given in Eq. 1.7 allows to represent the measured signal by the

Fourier transform of the object being scanned, which is defined by:

s =

∫
r

Mxy(r) exp(−i2πr · k) dr (1.8)

where Mxy denotes the transverse magnetization of the object and k = (kx, ky) the

k-space locations, and r = (x, y) the object position. With the previous definition, the

magnetization of the object being measured is reconstructed using the inverse Fourier
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transform (see Fig. 1.7c):

Mxy = F−1(s) (1.9)

1.3. Tagging Magnetic Resonance Imaging

Tagging MRI is an acquisition technique in which, a grid pattern generated over the

tissue at the beginning of the cardiac cycle (by a selective saturation of the tissue in the

form of lines) follows the cardiac motion (see Fig. 1.8), allowing the tracking of the car-

diac walls with temporal resolutions in the range of 30 to 50 msec. At the beginning of

the cardiac cycle, grid-lines in tagged images are parallel and equispaced. In the spa-

tial frequency domain, this behavior is expressed as several spectral peaks with harmonic

frequencies, which become wider due to the tissue contraction and energyless as the mag-

netization relaxes. Several techniques have been developed to acquire tagged MR images3.

(a) (b)

Figure 1.8. (a) Anatomical and (b) tagged MR images of a short-axis LV
slice of the heart for an end-diastolic (upper row) and end-systolic (bottom
row) cardiac phase.

3It must be noticed that cardiac strain cannot be estimated directly from tagged MR images, and other
processing techniques must be applied. Nonetheless, in the following paragraphs, Tagging MRI sequences
are explained and revisited. Processing techniques to estimate cardiac strain are described immediately after.
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One of the earlier approaches combined a series of selective Radio-Frequency (RF)

pulses to create saturation bands on the cardiac tissue (Zerhouni, Parish, Rogers, Yang, &

Shapiro, 1988), which allowed following the myocardium’s motion. However, the time

required to generate a proper amount of stripes was elevated and did not allow finer grids.

A year later, the Spatial Modulation of Magnetization (SPAMM) was introduced (Axel &

Dougherty, 1989a), which employed a position encoding gradient and two non-selective

RF pulses to rapidly saturate the magnetization, allowing images with sinusoidal intensity

profile. High-order SPAMM was introduced in the same year (Axel & Dougherty, 1989b),

and distributed the gradients and RF pulses accordingly with the coefficients of the bino-

mial sequence to obtain sharper stripes. The last two remain as the most used Tagging

MRI techniques and have commercial implementations in multiple vendors.

A significant improvement was made with the Complementary SPAMM (CSPAMM)

sequence (Fischer, McKinnon, Maier, & Boesiger, 1993), which used two SPAMM ac-

quisitions to remove the non-tagged signal from the image at the cost of doubling the

acquisition time. The last permitted to improve the tagging contrast through the cardiac

cycle. A Slice-Following CSPAMM (SF-CSPAMM) acquisition was introduced a year

later (Fischer et al., 1994). Using a slice-selective tagging preparation and excitation, SF-

CSPAMM allowed for the first time imaging the true myocardial motion by correcting the

through-plane cardiac displacement. Despite the improved capabilities, both CSPAMM

and SF-CSPAMM share time restrictions, requiring four images to measure a 2D grid,

while SPAMM only needs one.

In the late 1990s, the Displacement-Encoded with Estimulated Echoes (DENSE) ac-

quisition sequence was introduced (Aletras, Ding, Balaban, & Wen, 1999). In DENSE

MRI, the tissue motion is encoded into the complex image phase by using a position en-

coding and decoding magnetic gradient, allowing the direct estimation of motion. DENSE

MRI shares similar characteristics with SPAMM, CSPAMM, and SF-CSPAMM in the fol-

lowing sense: (1) the same SPAMM tagging prepulse is used to position-encode the tissue
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at the beginning of the cardiac cycle. (2) Unwanted spectral peaks are removed by acquir-

ing a complementary DENSE acquisition in the so-called Phase-Cycling approach (Kim,

Gilson, Kramer, & Epstein, 2004). And (3), Slice-Following DENSE MRI is used to mea-

sure true myocardial motion (Spottiswoode et al., 2008). However, DENSE MRI needs

five images to measure 2D motion (four position encoded and one reference).

Cardiac strain is estimated by applying complex processing methods to tagged MR im-

ages, many times involving elevated processing times. These issues were surpassed with

the introduction Strain-Encoded (SENC) MRI (Osman, Sampath, Atalar, & Prince, 2001),

which allowed measuring strain directly from the image. In SENC MRI, a simple calcu-

lation on two SPAMM images with position encoding gradients orientated in a direction

perpendicular to the image plane and with different phase encodings allows the estimation

of a dense strain map. The strain is measured in the same direction of the applied gradients

and, i.e., in the orthogonal direction of the image plane. To obtain fully 2D strain maps,

SENC MRI recquires four images, making it similar to CSPAMM in terms of acquisition

times.

MRI images are prone to off-resonance effects, which, in tagged MR images, are visi-

ble as distorted or curved stripes in the absence of motion. A modified CSPAMM sequence

was introduced later to fix the off-resonance effects produced by fat, which worked invert-

ing the tagging gradient in the second SPAMM image and adjusting its duration (Fahmy,

Basha, & Osman, 2009). This sequence was generalized five years later with the devel-

opment of the Off-Resonance Insensitive CSPAMM (ORI-CSPAMM) acquisition, which

corrected the off-resonance effects produced not only by fat but also by other chemical

species (Reyhan, Natsuaki, & Ennis, 2014).

Almost in parallel, Orthogonal CSPAMM (OCSPAMM) was introduced to reduce the

acquisition time of CSPAMM grids. In this sequence, two complementary SPAMM ac-

quisitions with orthogonal tagging gradients (instead of the four needed with CSPAMM)

are used to generate a CSPAMM grid after complex subtraction (H. Wang et al., 2011).
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Many of the MRI sequences mentioned before have been extended to allow 3D ac-

quisitions, i.e., they can measure a volume instead of 2D slices. Some examples are 3D

SPAMM, 3D CSPAMM, Accelerated 3D CSPAMM, and Volumetric Spiral Cine DENSE

MRI, which have been used to assess the left-, right-, and bi-ventricular cardiac function

(A. A. Young & Axel, 1992; Haber, Metaxas, & Axel, 2000; Ryf, Spiegel, Gerber, & Boe-

siger, 2002; Rutz, Ryf, Plein, Boesiger, & Kozerke, 2008; Zhong, Spottiswoode, Meyer,

Kramer, & Epstein, 2010).

Although the previously mentioned MRI sequences have been successfully used to

estimate cardiac strain, they suffer from mainly two issues: first, all of them suffer from

off-resonance artifacts generated during the preparation pulses and the readout (Fahmy et

al., 2009; Reyhan et al., 2014). Second, many of them (CSPAMM, SF-CSPAMM, ORI-

CSPAMM, DENSE, and 3D versions) are not applicable to clinical setups due to high

acquisition times. Therefore, new improvements must be developed to overcome these

issues.

1.4. Motion estimation techniques from tagged MR images

Cardiac strain cannot be estimated directly from tagged MR images, and motion esti-

mation techniques must be applied. Motion processing techniques can be divided into two

groups: those based on the image intensity and those based on the k-space4. In the first

group, taglines tracking, optical flow, and image registration methods (which use intensity

models and brightness or biomechanical constraints) are found. In contrast, the second is

composed of those based on the identification and filtering of the harmonic spectral peaks.

One of the earlier approaches used optical flow to estimate the tissue velocity from

synthetic and in-vivo 2D tagged MR images of a phantom, which was used later to estimate

the underlying displacement field recursively (Prince & McVeigh, 1992). A few years

later, an image registration problem was solved using the active contours to estimate 3D

4The image representation in the k-space is obtained by taking the Fourier transform of the image.



18

motion from a set of orthogonal Short-Axis (SA) and Long-Axis (LA) tagged MR images.

The cardiac strain was calculated after motion interpolation using the Finite Elements

Methods (FEM) (A. A. Young, Kraitchman, Dougherty, & Axel, 1995). Physic-based

deformable models were used to parameterize the cardiac geometry and motion one year

later, which used Lagrangian dynamics to convert the geometric model to an equivalent

dynamic model deformed by external forces to estimate strain. Similar to the previous

method, 3D motion was estimated from a set of SA and LA tagged MR slices of the

heart (Park, Metaxas, Young, & Axel, 1996; Park, Metaxas, & Axel, 1996). The last

method was extended later by using a Cascaded SPAMM acquisition, which allowed the

LV motion estimation with full cardiac cycle coverage (Park, Metaxas, Axel, Yuan, &

Blom, 1999).

B-splines have also been used for taglines localization and tracking of combined SA

and LA tagged MR data. Deformable B-solids, defined in terms of a 3D tensor product B-

spline, were used to localize and track the taglines of the tagged MR images. The cardiac

motion was estimated by solving an energy minimization problem (Radeva, Amini, &

Huang, 1997). Similarly, B-snake grids (a grid formed by a set of B-splines) were used

to estimate the displacements at the tag intersections, and constrained thin-plate spline

interpolation was used to obtain a dense map of displacements (Amini, Chen, Curwen,

Mani, & Sun, 1998). A 4D B-spline model was proposed later for the spatio-temporal

tracking of myocardial deformation alos from combined SA and LA images. A time-

varying B-spline model was used to localize the tag-planes, extract a set of material points,

and reconstruct the displacement field in a single-step procedure (Huang, Abendschein,

Dâvila-Român, & Amini, 1999), which had better interpolation properties that previous

B-spline methods.

Another method was introduced later to track a sparse set of material points through the

whole cardiac cycle. Tag-planes were recovered using thin-plate splines at each frame, and

the intersection points of three perpendicular planes were defined as the material points.

The time-varying position of each material point was used to calculate the tissue motion



19

(Kerwin & Prince, 1998). The Model Tags method was developed a year later to overcome

the long processing times required for most techniques. Model Tags allowed the direct 3D

tracking of cardiac motion from orthogonal SA and LA tagged MR slices by using a FEM

mesh for the geometric model, which included material surfaces to mimic the tag-planes.

The match between the mesh with the images was done through a constrained optimization

problem imposing the likelihood between the mesh’s material surfaces and the tag-planes.

The processing time was reduced from 45 min/frame to 5 min/frame compared to other

methods (A. A. Young, 1999).

In the late 1990s, the Harmonic Phase analysis (HARP) was introduced, allowing the

automation of estimating motion and strain from tagged MR images. HARP method is

a k-space-based technique in which the first harmonic spectral peak is bandpass-filtered

to obtain a harmonic image whose phase contains the tissue’s position. The phase is

treated as a material property moving accordingly with the tissue, i.e., material points

keep they phase through the cardiac cycle. The last assumption is used to track the tissue’s

material points into a deformed state by solving an optimization problem (Osman, Kerwin,

McVeigh, & Prince, 1999; Osman, McVeigh, & Prince, 2000). The development of the

HARP algorithm marked a milestone in the history of cardiac motion estimation, and until

today remains as one of the most used techniques.

Peak-combination HARP was published a few years later to correct artifacts in the

harmonic phases produced by unwanted variations in the scanner’s main magnetic field

(Ryf, Tsao, Schwitter, Stuessi, & Boesiger, 2004). HARP only uses the first negative or

positive spectral peak to obtain the harmonic phases, while peak-combination HARP uses

either the positive and negative. However, peak-combination HARP reaches its optimum

performance with CSPAMM images, i.e., images without non-tagged signal.

ZHARP was introduced the next year to obtain 3D motion from 2D CSPAMM images.

ZHARP is both a new processing method and a new acquisition sequence (Abd-Elmoniem,

Stuber, Osman, & Prince, 2005). Trough-plane motion is encoded into the images by

modifying the CSPAMM sequence adding a position encoding gradient through the Z
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direction to each SPAMM image. Then, harmonic phases are obtained by solving a linear

system of equations after applying four bandpass filters to the first negative and positive

spectral peaks in the X and Y directions.

Another family of k-space-based technique is the Gabor filter banks. A Gabor fil-

ter has the form of a sinusoidally modulated Gaussian, and it is mostly used for texture

analysis applications. A set of Gabor filters with different central frequencies and band-

widths called Gabor Filter Banks have been used for tagline detection and motion esti-

mation from tagged MR images. Deformable models combined with Gabor filter banks

and spatio-temporal constraints were used to automatically segment the myocardial ge-

ometry and estimate cardiac strain from 3D tagged MR images (T. Chen & Axel, 2006).

A similar work was done to detect and track the tag-planes of 3D tagged MR images us-

ing Gabor filter banks (Qian, Metaxas, & Axel, 2006). Similar to the previous methods,

Gabor filter banks, robust point matching, and deformable models were used to find the

tag intersections, sparsely track the tissue motion, and obtain a dense motion map, respec-

tively (T. Chen, Wang, Chung, Metaxas, & Axel, 2010). This last methodology allowed

the automated estimation of 3D motion and strain from 3D tagged MR images.

Another improvement of HARP was made with Extended HARP, which fixed tracking

issues suffered by the original method (Tecelão, Zwanenburg, Kuijer, & Marcus, 2006).

During the acquisition of tagged MR images, the tissue near cardiac borders goes in and

out of the imaging plane, making the harmonic phase appear and disappear from one frame

to another. The last produces mistracking near the boundaries. Extended HARP added

additional constraints to the tracked points to fix the issue mentioned before, allowing the

estimation of a more accurate and representative motion of the LV.

With the advances in computation capacity, the non-rigid image registration problem

has become more available to estimate cardiac motion (Chandrashekara, Rao, Sanchez-

Ortiz, Mohiaddin, & Rueckert, 2003; Ledesma-Carbayo et al., 2008; Li, Young, & Cowan,

2008). Moreover, the registration problem has been enriched via regularization or data

assimilation using biomechanical models and MRI observations to improve the tracking
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outcome (Genet, Stoeck, von Deuster, Lee, & Kozerke, 2018; Škardová, Rambausek,

Chabiniok, & Genet, 2019), allowing the estimation of cardiac motion as well as other

mechanical parameters.

Feature Tracking (FT) is another processing technique used to obtain motion and strain

using tagged MR images that can also be applied to anatomical images (Claus, Omar,

Pedrizzetti, Sengupta, & Nagel, 2015). FT is based on tracking the intensity features

of the images using image registration algorithms with proper regularization schemes.

Recent advances in FT are based on hyperelastic regularization to penalize the deviation

from the mechanical equilibrium instead of penalizing the kinematic (Genet et al., 2018).

This leads to results that are physically consistent with the mechanical behavior of the

cardiac tissue.

Nevertheless, it has been demonstrated that FT performs well obtaining global metrics

of the heart but poorly locally (Morton et al., 2012; Wehner et al., 2018). For this reason,

FT was not considered in this investigation as regional strain measurements are relevant

to detect subtle changes in cardiac function.

Overal, most of the techniques mentioned previously suffers from at least one of the

following issues:

(i) High operator-dependency and elevated interaction times.

(ii) Elevated processing times (computational expensiveness).

(iii) DC (low frequencies) contamination.

(iv) Signal decay.

(v) Missestimation due to through-plane motion.

(vi) Missestimation due to large frame-to-frame motion.

(vii) Missestimation of local deformations (in the case of non-rigid registration meth-

ods).

Therefore, new strategies must be developed to surpass these issues.
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1.5. Biomechanical quantification using cardiac strain

Figure 1.9. Representation of the heart as a continuum body. The motion
of the heart is defined through the deformation map φ, which maps every
material point P from an undeformed state B0 (i.e., end-diastolic position)
to its position at a later state p ∈ Bt.

The heart can be represented as a continuum body that moves through time (see Fig.

1.9). The undeformed configuration of the heart B0 is usually chosen as its position at

end-diastole, i.e., just before the contraction. At any time t after end-diastole, the domain

occupied by the deformed heart is denoted by Bt.

The deformation map φ, that completely describes the motion of the heart, can be

recovered after the processing of MR images. Thus, the deformation maps of the heart

can be obtained through the Green-Lagrange strain tensor E:

E =
1

2
(FTF − I) (1.10)
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where I denotes the identity and F the deformation gradient tensor defined as:

FiJ =
∂φi

∂XJ

(1.11)

Figure 1.10. Left-ventricle of the heart with the circumferential (CC), ra-
dial (RR), and longitudinal (LL) directions represented by red arrows.

To obtain the circumferential (CC), radial (RR), and longitudinal (LL) strain compo-

nents, E needs to be rotated using:

ECC = λ̂CC · Eλ̂CC , (1.12a)

ERR = λ̂RR · Eλ̂RR, (1.12b)

ELL = λ̂LL · Eλ̂LL, (1.12c)

where λ̂CC , λ̂RR, and λ̂LL represent unit vectors pointing towards the directions CC, RR,

and LL (see Fig. 1.10).

1.6. Objectives and hypothesis

The objective of this research is to develop strategies for the acquisition and processing

of cardiac MR images, providing techniques with improved detection of motion and strain

under ideal and non-ideal conditions such as noise, off-resonance artifacts, DC contami-

nation, and large frame-to-frame motion, among others. Therefore, the specific objectives
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of this investigation are: (1) to compare the state-of-the-art motion estimation techniques

based on motion encoded MR images, interrogating their strengths and weaknesses. (2)

To develop a new acquisition sequence that could deal with off-resonance artifacts and

could be used in clinical protocols without increasing the scan time. And (3), to develop a

new and more robust processing technique to estimate cardiac motion and strain from MR

images that can deal with large motions, DC contamination, and signal decay.

1.6.1. Hypothesis

We hypothesize that the use of more robust acquisition sequences and processing tech-

niques on tagged MR images will lead to better estimations of motion and strain in terms

of precision and accuracy han current methods based on tagging MR imaging.
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2. FIRST ARTICLE: A COMPREHENSIVE COMPARISON OF MOTION ESTI-

MATION TECHNIQUES
2.1. Title and authors

A Comprehensive Comparison Between Shortest-Path HARP Refinement, SinMod, and

DENSEanalysis Processing Tools Applied to CSPAMM and DENSE Images

Hernán Mella1,2,6, Joaquı́n Mura3,6, Julio Sotelo4,6, and Sergio Uribe1,2,5,6

1 Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santi-

ago, Chile.
2 Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile.
3 Department of Mechanical Engineering, Universidad Técnica Federico Santa Marı́a,

Santiago, Chile.
4 School of Biomedical Engineering, Universidad de Valparaı́so, Valparaı́so, Chile.
5 Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile,

Santiago, Chile.
6 Millennium Nucleus for Cardiovascular Magnetic Resonance, ANID - Millennium Sci-

ence Initiative Program - Millennium Nucleus in Cardiovascular Magnetic Resonance,

Santiago, Chile.

Article published in the Magnetic Resonance Imaging journal (impact factor of 2.546).

2.2. Introduction

The myocardial strain is a regional biomarker of the cardiac function that has been

assessed for several cardiovascular diseases (Fonseca et al., 2004; Ernande et al., 2012;

Auger et al., 2017). One of the main advantages of strain measurements over global

measurements, as ejection fraction or stroke volume, is its significant sensitivity to detect

early changes in cardiac function (Cikes & Solomon, 2016).
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Several non-invasive Magnetic Resonance (MR) imaging techniques have been used

to estimate myocardial strain. Among them, Tagging MR imaging has been intensely used

for the evaluation of strain (Axel, Montillo, & Kim, 2005; Petitjean, Rougon, & Cluzel,

2005), considering the conventional tag analysis (i.e., following the intersections of the

tag lines) the current gold-standard MR method for the estimation of heart deformation

(Auger et al., 2017). One of the most used Tagging modalities is Complementary Spatial

Modulation of Magnetization (CSPAMM) (Fischer et al., 1993), which uses two com-

plementary SPAMM acquisitions to generate a new image with better relaxation proper-

ties. Another technique for quantifying strain is Displacement Encoding with Stimulated

Echoes (DENSE) (Aletras et al., 1999), which encodes the displacement of the tissue into

the phase of the magnetization vector. In the last case, a phase-cycling approach (based on

the same principle that CSPAMM) can be employed to isolate the stimulated echo (Gilson,

Yang, French, & Epstein, 2004). DENSE imaging has recently been considered the new

gold standard for estimating motion and strain from MRI (Goto et al., 2017; Wehner et al.,

2018).

In CSPAMM and DENSE, the motion of the tissue cannot be directly estimated from

the image, and other postprocessing methods need to be applied. Some well-known meth-

ods are Shortest-Path HARP Refinement (SP-HR) (an improved version of the Harmonic

Phase analysis (HARP) (Osman et al., 1999, 2000)) and Sine-Wave Modeling (SinMod)

(Arts et al., 2010), which extract harmonic peaks from the k-space using bandpass fil-

ters. In DENSE, the motion is estimated by isolating the stimulated echo from k-space

(Spottiswoode et al., 2007; Kim et al., 2004), which contains information about the dis-

placement of the tissue.

Several articles have evaluated the behavior of Tagging and DENSE imaging tech-

niques under different acquisition parameters (NessAiver & Prince, 2003; Sigfridsson,

Haraldsson, Ebbers, Knutsson, & Sakuma, 2011; Kim et al., 2004; D. Wang, Fu, & Ashraf,

2015; Epstein & Gilson, 2004), illustrating the importance of an appropriate imaging pro-

tocol. Recent works have compared different postprocessing methods for Tagging MR
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images using synthetic images (E. S. Ibrahim, Swanson, Stojanovska, Duvernoy, & Pop-

Busui, 2016; ElDeeb & Fahmy, 2016; E. S. H. Ibrahim et al., 2018; Cao et al., 2018),

giving insights about the differences between SinMod and HARP methods. The estima-

tion of motion and strain with both Tagging and DENSE images have also been compared

against feature tracking (Li, Liu, Occleshaw, Cowan, & Young, 2010), providing a pic-

ture of the reproducibility and differences in the estimation of radial, circumferential, and

longitudinal strain components from each imaging modality (Cao et al., 2018; Augus-

tine et al., 2013; Wu et al., 2014). Furthermore, the estimation of motion and strain using

conventional methods from SPAMM and DENSE images has also been studied under con-

trolled conditions on in-silico, in-vitro, and in-vivo experiments (A. A. Young, Li, Kirton,

& Cowan, 2012), showing comparable performances in all cases except for radial strain,

where analysis of DENSE images showed best results. However, most of these works

suffer from a lack of analytical solutions or controlled experiments and have excluded

variables such as the cardiac motion, pixel sizes, noise level, and tag periods, among other

relevant parameters.

Although there is a consensus about the expected performance of motion and strain

metrics estimated from each imaging modality, the ultimate performance depends on the

acquisition parameters and the postprocessing strategy used. This work aims to analyze

the precision and accuracy in estimating both motion and strain, compared against simu-

lated values, using SP-HR, SinMod, and DENSEanalysis; three different automated post-

processing tools on CSPAMM and DENSE images when subjected to several noise and

resolution levels. The study firstly uses images from 2D phantoms with only in-plane

motion and under ideal acquisition conditions. Secondly, under non-ideal conditions, con-

sidering a cartesian acquisition (i.e., adding EPI-like artifacts, k space cropping, and k

space filtering). Finally, the sensitivity analysis in estimating the three-dimensional car-

diac motion and artifacts is performed using 3D data sets. To achieve these goals, we

developed a multi-platform open-source Python (Van Rossum & Drake, 2009) library to

generate numerical phantoms of CSPAMM and DENSE MR images, which can be used

to simulate different physiological motion conditions.



28

Figure 2.1. Representation of the synthetic geometry and slices used to
generate the images. (a) The geometry in the undeformed state was used to
place the basal, mid, and apical slices. (b) As the geometry moves with a
clockwise and counterclockwise rotation at the base and apical levels, the
ishochromats moves in and through the plane of each slice. (c) The dis-
placement field observed in (b) of the isochromats is shown in the same
slices, showing the amount of in- and through-plane motion. (d) To esti-
mate the voxel-wise signal, all the isochromats located inside the voxel are
identified and used to define weights based on their distance with respect
to the voxel center (red sphere). Blue spheres denote the set of isochromats
inside the voxel.

It is essential to clarify that this work compares the estimations of motion obtained

with SP-HR, SinMod, and DENSEanalysis as processing tools rather than CSPAMM and

DENSE as imaging sequences.
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2.3. Material and methods

2.3.1. Image generation

A 3D phantom consisting of millions of isochromats randomly distributed on space

is generated and limited to the cardiac geometry (see Fig. 2.1). We defined the idealized

cardiac geometry as a cylinder whose in-plane motion is determined by a set of parameters

and expressions given in (Gilliam & Epstein, 2012). Additionally, we added a third motion

component in the through-plane (Z) direction to achieve a displacement from base to apex

up to 20 mm (Fischer et al., 1994), which is given by:

∆Z = 20× (Z̃ − 1) (2.1)

where Z̃ is a normalized coordinate that varies from 0 to 1 from base to apex and ∆Z the

through-plane displacement. To emulate the clockwise and anticlockwise rotation of the

LV at the basal and apical levels (Fischer et al., 1994), we added a scaling factor which

changes the rotation of the isochromats depending on its longitudinal position, defined by:

αϕ = Z̃

(
ϕapex
en

ϕen

− 1

)
(2.2)

where αϕ denotes the scaling, ϕapex
en the imposed end-systolic endocardial rotation at the

apex, and ϕen the end-systolic endocardial rotation at the base. In all our simulations

ϕapex
en > 0 and ϕen < 0.

To generate the MR images, we assigned a complex magnetization to every isochro-

mat, which was transferred to the images using a distance-weighted sum (with respect to

the voxel centers). We modified the FOV and resolution of images to emulate the k space

sampling of the MR scanner. Finally, the images with the user’s specifications were ob-

tained by filtering, zero-filling, and correcting the oversampling of the generated k space.
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2.3.2. CSPAMM magnetization

CSPAMM images were built by adding two complementary SPAMM images (Fischer

et al., 1993). During each SPAMM pre-pulse, a position encoding gradient G is placed

between two radiofrequency (RF) pulses with tip angles (+β + β) and (+β − β). In

both combinations, the last RF pulse stores the magnetization in the longitudinal direction

±Z (depending on its polarity) to avoid T2 relaxation. With this into consideration, both

complementary SPAMM magnetizations at the time tn are given by (Fischer et al., 1993):

MSPAMM(tn) =M0 cos
2(β) sin(α)e−tn/T1 +M0 sin(α) cos

n(α)
(
1− e−tn/T1

)
±

{
M0

2
sin(α) cosn(α) sin2(β)e−tn/T1e−ikeX

+
M0

2
sin(α) cosn(α) sin2(β)e−tn/T1e+ikeX

}
(2.3)

where M0 represents the magnetization at the thermal equilibrium, i =
√
−1 the complex

unit, α the imaging flip angle, X the material position of the tissue, and ke the encoding

frequency. The sign of the last term in Eq. 2.3 depends on RF pulses polarity during the

preparation step. Thus, if two complementary SPAMM images IASPAMM and IBSPAMM are

acquired, their difference leads to the CSPAMM magnetization expression:

MCSPAMM(tn) = IASPAMM − IBSPAMM

=M0 sin(α) cos
n(α) sin2(β)e−tn/T1e−ikeX

+M0 sin(α) cos
n(α) sin2(β)e−tn/T1e+ikeX (2.4)

2.3.3. DENSE magnetization

The DENSE acquisition sequence encodes the displacement of the tissue directly on

the phase of the magnetization. The preparation pulse is the same as SPAMM, but the

acquisition sequence differs due to an additional gradient with the same magnitude applied

in the preparation step, which rephases the static spins. In this sequence, the magnetization

is also stored in the longitudinal direction to avoid T2 relaxation. Thus, the magnetization
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expression at the time tn for the DENSE technique becomes (Kim et al., 2004):

MDENSE(tn) =M0 sin(α) cos
n(α)

(
1− e−tn/T1

)
e−ike(X+∆X)

± M0

2
sin(α) cosn(α)e−tn/T1e−ike∆X

± M0

2
sin(α) cosn(α)e−tn/T1e−ike(2X+∆X) (2.5)

where ∆X represents the displacement of the tissue and ke the encoding frequency and the

sign of the two first terms depend on the polarity of RF pulses during the preparation step.

Thus, similarly to CSPAMM, if two complementary DENSE images IADENSE and IBDENSE

are acquired, their difference leads to:

MCDENSE(tn) = IADENSE − IBDENSE

=
M0

2
sin(α) cosn(α)e−tn/T1e−ike∆X

+
M0

2
sin(α) cosn(α)e−tn/T1e−ike(2X+∆X) (2.6)

The last step is also called phase-cycling (Gilson et al., 2004).

2.3.4. Numerical experiments

2D analysis

We generated a synthetic dataset using SPAMM and DENSE magnetization expres-

sions given in Equations 2.3 and 2.5, where a different image was generated for each RF

pulse polarity to obtain, after subtraction, the CSPAMM and phase-cycled DENSE images.

The dataset consisted of 100-2D slices of a short-axis view of an idealized left-ventricle

with only in-plane motions with a FOV of 100 × 100 × 8mm3 and isotropic (in-plane)

pixel sizes of 1.0, 1.5, 2.0, 2.5, and 3.0 mm. For this experiment only mid-level slices

were considered. The number of isochromats used in each data was around 22/mm3 (this

density depends on the LV volume rather than the slice volume) which means that smaller

voxels contained a smaller number of isochromats (a voxel of 1× 1× 8mm3 that belongs
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completely to the LV contained 176 isochromats, while a voxel of 3 × 3 × 8mm3 con-

tained 1584). This number was arbitrarily defined and only depends on the computational

capacity, the signal requirements, and the time available for the generation.

For the SPAMM images, we used encoding frequencies of 0.79, 0.63, 0.52, 0.45, and

0.39 rad mm−1 to achieve tag periods of 8, 10, 12, 14, and 16 mm respectively. Here,

it must be noticed that the tag period is effectively one period of the sinusoid given in

Equations 2.3 and 2.4 and not half of the period as usually reported as tag spacing in

magnitude images. Additionally, to make a fair comparison with DENSE and avoid adding

an unwanted DC component, we decided to work with complex CSPAMM data. A fixed

encoding frequency of 0.75 rad mm−1 was chosen for DENSE images to achieve suitable

echoes for phase-cycling correction and avoid large phase wrapping artifacts. The imaging

flip angle for both images was chosen as 15o (constant through the cardiac phases), and a

tissue T1 relaxation of 0.85 seconds was used to emulate the relaxation properties of the

myocardium at 1.5T (Fischer et al., 1993).

We randomly choose the physiological parameters, which controls the geometry and

motion, according to Gilliam et al. (Gilliam & Epstein, 2012), i.e., we choose different

physiology for each synthetic data. In our case, we used a set of parameters defining 50

cases with normal deformation patterns (normal cardiac function) and 50 with abnormal

patterns (regionally reduced function) (Gilliam & Epstein, 2012) to interrogate the three

methods under different levels of motion at end-systole. For the analysis of the results,

both types of deformation patterns were equally considered for the estimation of the error

metrics and no differences were made between them. The displacement field of the defined

motion is defined by

∆rn(t) = Γ(t)(∆rES
n −∆rED

n ) (2.7)

Where Γ(t) ∈ [0, 1] is a piece-wise continuous function, which mimics the standard left-

ventricular volume diagram (McCulloch, 2000) and modulates the maximum end-systolic

displacement, and rES
n and rED

n the end-systolic and end-diastolic position of the LV, re-

spectively (the expression defining Γ(t) is given in the Appendix A.1). rED
n is defined
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Table 2.1. Noise levels and corresponding Signal to Noise Ratios in the
noise sensitivity analysis images. The noise level has the same standard
deviation throughout the cardiac cycle. However, from early-systole to
late-diastole, the SNR decreases due to the signal model given in Equations
2.4 and 2.6. The reported SNR has adimensional units.

Name Noise level Early-systolic SNR (×α) Late-diastolic SNR (×α)

NL0 0 noise-free noise-free
NL1 1 33.6 8.4
NL2 2 27.6 7.0
NL3 3 21.4 5.5
α: scaling factor to consider the signal decay due to the reduction of
the voxel size. For an in-plane isotropic pixel size (and constant slice
thickness) of 3, 2.5, 2, 1.5, and 1 mm the associated factors are 1, 0.69,
0.44, 0.25, 0.11, respectively.

by the initial geometry of the phantom (for all the 2D data, we used a cylinder height of

8 mm as only in-plane motions were considered), whereas rES
n depends on several pa-

rameters uniformly distributed, such as the end-diastolic endocardial radius, end-diastolic

wall thickness, end-systolic endocardial and epicardial twist, and end-systolic endocardial

and area scaling, among others (Gilliam & Epstein, 2012). The expressions and param-

eters defining the motion patterns and the geometry of the synthetic LV are given in the

Appendix A.1.

We performed a resolution and noise sensitivity analysis to the estimation of displace-

ments and strain obtained from CSPAMM and DENSE MR images using SP-HR, SinMod,

DENSEanalysis.

The resolution sensitivity analysis considered several pixel sizes and tag periods for

both imaging modalities, whereas, for the noise experiment, we used the tag periods that

performed better in the first experiment using the following rule: given fixed pixel size and

for all the tag periods, the tag period used for the noise analysis was that one that minimizes

the error on the circumferential strain component. The idea behind this selection is to test

just those cases which performed better in the estimation of circumferential strain due to

the clinical relevance of this biomarker.
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Real and imaginary Gaussian noise with zero mean was added to the image k-spaces.

The standard deviation (SD) of the noise was estimated to achieve certain SNRs at early

systole and late diastole only on 3× 3 mm2 phase-cycled DENSE images, as described in

Table 2.1. However, the noise was added separately before phase-cycling. The same SD

was used for images with smaller pixel sizes as the signal is reduced during the generation

process (fewer isochromats are inside the voxels). The best and the worst noise scenario

can be commonly found on standard cartesian cine (Kim et al., 2004) and undersampled

(Sigfridsson et al., 2011) cine DENSE acquisitions with a constant flip angle. The noise

SD was estimated as a fraction of the maximum magnitude of the stimulated echo in

the k space, which at t = 0 shares the same magnitude as the spectral peaks of the cosine

modulation (see Equations 2.3 and 2.5), and therefore can also be used in SPAMM images.

3D analysis

In this case, just one set of physiological parameters was chosen (see Table 2.1) to

generate slice-following versions of the CSPAMM and DENSE images (Fischer et al.,

1994; Spottiswoode et al., 2008). For both imaging techniques, the slice thickness of the

selective excitation was 8 mm with offsets of 12 and 6 mm for slices at basal and mid

cardiac levels, whereas the imaged thickness was 30, 25, and 20 mm for slices at basal,

mid, and apical cardiac levels respectively (Stuber et al., 1999). The encoding frequency

used for SPAMM was 0.39 rad mm−1 (tag period of 16 mm) and for DENSE 0.75 rad

mm−1. Both images also shared the same FOV of 350 × 350 mm2, and were generated

using imaging matrices of 256 × 128 for SPAMM and 128 × 64 for DENSE with an

oversampling factor of 2 in the measurement direction. A constant flip angle of 15o was

used to simulate the acquisition of 20 cardiac phases. The dimensions of the cylinder

emulating the LV geometry are given in Table 2.2. The same density of isochromats

used for the 2D generation was used in this experiment, i.e., the number of isochromats

contained in the cylinder was 4 millions.
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Table 2.2. Physiological parameters used for the generation of images with
3D motion patters

Ren τ H σ Sar Sen ϕen ϕapex
en ϕep Ψ χ tA tB tB

25 10 100 4.0 0.7 1.1 -8.0 20 -4.0 0.0 0.5 0.15 0.35 0.5
Ren: endocardial radius (mm), τ : LV thickness (mm), H: long axis
height (mm), σ: the skew factor which moves motion towards epicar-
dial (σ > 1) or endocardial motion (σ < 1), Sar: end-systolic area
scaling, Sen: end-systolic endocardial scaling, ϕen: end-systolic endo-
cardial twist (o), ϕep: end-systolic epicardial twist (o), Ψ: the direction
in which the motion is reduced (o), ξ: motion reduction factor, tA, tB,
tC : time modulation times (s)

Additionally, we simulated a cartesian acquisition and added multi-shot EPI-like arti-

facts considering a “top-down” acquisition with a receiver bandwidth of 64 KHz, echo-

train length of 9, and off-resonance frequency of 115 Hz, as described in (Bender, Ahmad,

& Simonetti, 2013). This setup generates a shifting artifact in the reconstructed image due

to the linear accumulation of phase across the k space. Also, complex Gaussian noise was

added to achieve the SNRs given by the NL1 in Table 2.1. The previously described EPI

artifact and noise were added to each SPAMM and DENSE acquisitions used to generate

CSPAMM and complementary DENSE images.

The imaging parameters were chosen according to standard values given in the liter-

ature. Pixel sizes, slice-thicknesses, tag periods, acquisition matrices, number of cardiac

phases, and flip angles were similar to that described in (Stuber et al., 1999; Tecelão et

al., 2006; X. Liu & Prince, 2010) for the acquisition of CSPAMM and slice-following

CSPAMM images in volunteers, while similar DENSE imaging parameters, including the

given encoding frequency, have been used in (Kim et al., 2004; Spottiswoode et al., 2007;

Sigfridsson et al., 2011) for in-vivo studies.

The set of physiological parameters used in this study (following the notation of

Gilliam et al. (Gilliam & Epstein, 2012)), which defines the motion at the basal level,

are presented in Table 2.2.
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2D data

3D data

Figure 2.2. Using the 2D data, displacement and strain fields are estimated
for every resolution and noise level described in the Experiments section.
Then, the error metrics given in Equations 8a, 8b, and 8c are evaluated.
For the 3D data, displacement and strain fields are estimated and the error
metric given in Equation 9 is evaluated.

A summarized description of the 2D and 3D experiments is shown in Fig. 2.2.

2.3.5. Image processing

In Eq. 2.5, the three terms (in order of appearance) are often called Stimulated, Com-

plex Conjugate, and Relaxation echoes (see Figure 3b), centered at (0, 0), (2ke, 0) and

(ke, 0) respectively. By using the phase-cycling approach, the relaxation echo is canceled

(see Eq. 2.6). However, depending on the pixel size (i.e., k space bandwidth), energy

from the complex-conjugate echo could be partially or entirely sampled, leading to se-

vere artifacts (Kim et al., 2004). To correct these artifacts, we applied a Butterworth filter

(H. Wang & Amini, 2013) of 10-th order and fixed cutoff frequency was applied to every

DENSE image.
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Figure 2.3. k-space and reconstructed images for (a) SPAMM and
CSPAMM, and (b) DENSE and phase-cycled DENSE of an mid-level
short-axis slice. The frames 1, 4, 7, 10, 13, and 19 of an acquisition of 20
frames equally distributed in a cardiac cycle of 1 second are shown. In the
case of SPAMM and CSPAMM, the image shows the reconstructed mag-
nitude, whereas for DENSE and phase-cycled DENSE, the reconstructed
phase. For the image simulation, a multi-shot EPI acquisition was used in
all cases, with half of the lines sampled in the phase direction.
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2.3.6. Motion estimation

Using motion estimation techniques, we tracked the CSPAMM and DENSE images

to a reference domain at end-diastole. Once the displacement field U(X) was estimated,

we calculated the Lagrangian strain tensor E (Fonseca et al., 2004; Auger et al., 2017).

In this study, we evaluated the circumferential (ECC) and radial (ERR) components of the

tensor, which are usually used to evaluate strain in short-axis views. As our implemen-

tations of SP-HR, SinMod, and DENSE analysis only allowed 2D motion estimation, the

longitudinal strain component of the tensor E was not evaluated.

Motion from CSPAMM images was obtained using a free version of the SP-HR algo-

rithm provided by the Image Analysis and Communication Lab at Johns Hopkins Univer-

sity (X. Liu & Prince, 2010), and a self-made implementation of SinMod as described by

the developers (Arts et al., 2010). In contrast, for DENSE images, the MATLAB toolbox

DENSEanalysis (Spottiswoode et al., 2007; Gilliam & Suever, 2016) was used.

In the case of SinMod analysis, no frequency windowing was applied, and resulting

displacements were corrected using the quality model proposed by the authors (Arts et al.,

2010) with a weighting matrix with 8 in the exponent. In both cases, SP-HR and SinMod,

the same bandpass filter was used, as described by Arts et al. (Arts et al., 2010).

When using DENSEanalysis, a temporal fitting of a 10th-degree polynomial was ap-

plied (H. Wang & Amini, 2010), and displacement resampling was done using the im-

plementation of the gridfit function given in DENSEanalysis (Gilliam & Epstein, 2012;

Gilliam & Suever, 2016), with a triangular interpolation scheme with a smoothing fac-

tor of 0.8 for noisy data. The same temporal fitting procedure was used for SP-HR and

SinMod displacements.

From the 3D results, mean strains were estimated from the base, mid, and apical

cardiac levels using the segmentation defined by the American Heart Asociation (AHA)

(Cerqueira et al., 2002; Selvadurai et al., 2018). As the motion used in this experiment

did not contain regional differences, the right-ventricular insertion point was arbitrarily
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chosen and used as the reference to evaluate each segment. The segmentation used for the

regional strain estimation is shown in Figure S1.

2.3.7. Statistical analysis

The error was measured using the Normalized Root Mean Square Error (nRMSE) and

Directional Error (DE), defined as (Mura et al., 2016):

nRMSEa(%) = 100× 1

maxi|aei |

√√√√ 1

N

N∑
i=1

|ai − aei |2 (2.8a)

nRMSEu(%) = 100× 1

maxi∥ue
i∥2

√√√√ 1

N

N∑
i=1

∥ui − ue
i∥22 (2.8b)

DE =
180

πN

N∑
i=1

arccos

(
|ui · ue

i |
∥ui∥∥ue

i∥

)
(2.8c)

whereN represents the number of masked pixels in the image, nRMSEa (%) and nRMSEu

(%) are the nRMSE for scalar and vectorial quantities respectively, ai is any pixelwise

scalar quantity at the pixel i (e.g., circumferential and radial strains), and ui is the dis-

placement field at the pixel i. The superscript ()e denotes the exact value. The three

previous error metrics were evaluated for SP-HR, SinMod, and DENSEanalysis results at

end-systole, where displacements have maximum amplitude.

The error metrics defined in Eq. 2.8 characterized the mean value of the pixelwise

error for just one data. However, the error metrics presented in the next section are the

mean value across the whole dataset (N=100) of the metrics estimated using 2.8.

Finally, to quantify the error in the estimation of regional strain throughout the entire

cardiac cycle, we introduce another metric given by:

Errseg = 100× 1

Nfr

Nfr∑
n=1

|E(tn)E
e
(tn)|

maxn|E
e
(tn)|

(2.9)
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Figure 2.4. Results for the resolution sensitivity analysis. Mean errors in
(a) magnitude, (b) direction of the displacement field, (c)ECC , and (d)ERR

strain components. The left plot of each case shows the results obtained us-
ing SP-HR and to the right using SinMod. The results from DENSEanal-
ysis are shown on all the plots. Each color denotes a different tag period
(s). Overall, the estimation obtained from DENSE images performed better
than the other techniques, whereas using CSPAMM images, better results
were obtained for smaller pixel sizes and wavelengths.

where the overline denotes the mean value across all the segments, E(tn) and E
e
(tn) the

estimated and exact mean strains at the time tn, and Nfr the number of frames (cardiac

phases).

2.4. Results

2.4.1. Sensitivity analysis: resolution

Fig. 2.4 shows the mean nRMSE and DE values across all the analyzed data without

noise. In the absence of noise, smaller pixel sizes improve the estimation of displacements

and strain using the three techniques. Regarding the displacement field evaluation, the best
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performance was achieved by DENSEanalysis, and almost always SP-HR performed bet-

ter than SinMod (see 2.4a and 2.4b). For standard resolutions of DENSE and CSPAMM

images (in-plane isotropic voxel sizes around 3.0 and 1.5 mm respectively (8, 16)), the dif-

ferences in the performance of DENSEanalysis and SP-HR become a bit smaller, whereas

with SinMod results always showed larger errors.

A similar tendency occurs for the estimation of strain. For almost every pixel size, re-

sults obtained with DENSEanalysis postprocessing were better than SP-HR and SinMod

(see 2.4c and 2.4d). Although the nRMSE of the ECC obtained with SP-HR growths for

tagging periods of 8, 10, and 12 mm, in general terms, SP-HR performed better than Sin-

Mod in most of the cases. Additionally, the error ECC did not follow a clear trend for the

spacing of 8 mm. A similar behavior was observed for the ERR component, although the

nRMSE increased with the three postprocessing techniques, with errors rising to around

31% with SP-HR, 33% with SinMod, and 20% with DENSEanalysis (see Figure 2.4d).

Fig. 2.5 shows the mean values and standard deviations (between data) of the most

favorable cases of the analysis presented in Fig. 2.4, i.e., combinations of tag periods and

pixel sizes where the nRMSE of the ECC component reached the minimum value of all

the curves (see Fig. 2.4c). With SinMod, the best results were obtained using a fixed

tagging period of 10 mm for every pixel size, while with SP-HR, the best performance

was achieved using a tag period of 10 mm for pixel sizes of 1, 1.5, and 2 mm, and 14 mm

for pixels of 2.5 and 3 mm. Despite the difference in the errors between the three methods,

all of them shared similar deviations.

2.4.2. Sensitivity analysis: noise

Fig. 2.6 shows the error metrics calculated from the noisy data using the tagging

spacings given in Fig. 2.5. As the noise level increases, the overall performance of three

motion estimation techniques become worse (as expected). Moreover, the gap between

noise levels becomes higher for smaller pixel sizes as the images with larger k space

bandwidth are noisier (see the SNR scaling in Table 2.1). At any noise level and resolution,
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Figure 2.5. Mean errors and standard deviations for the best performing
combination of tag periods and pixel sizes of the results given in Figure
4, for (a) magnitude, (b) direction of the displacement field, (c) ECC and
(d) ERR strain components. Each color represents a different tag period
(s). The three methods showed similar results in terms of mean errors and
deviations (except in the displacement field magnitude, where deviations
obtained with DENSEanalysis remain low).

the displacement fields were better estimated using DENSEanalysis (see 2.5a and 2.5b).

However, the difference was more evident for the magnitude rather than the direction. For

NL3 case and standard isotropic in-plane pixel sizes of 1.5 and 3 mm for CSPAMM and

DENSE images, the nRMSE in magnitude and DE were approximately 6.2 ± 2.4% and

6.7±5.3o for SP-HR, 9.2±2.6% and 7.0±4.8o for SinMod, and 3.4±1.4% and 4.4±3.9o

for DENSEanalysis. Although the estimations made with DENSEanalysis showed the

best performance, the results obtained with SP-HR and SinMod were comparable with

DENSEanalysis.

In terms of strains, the behavior of the three methods was similar between the ECC

and the ERR components. The errors showed less sensitivity to noise at bigger pixel sizes
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Figure 2.6. Results for the noise sensitivity analysis for an end-systolic
cardiac phase. Mean errors in (a) magnitude, (b) direction of the displace-
ment field, (c) ECC , and (d) ERR strain components. The left plot of each
metric shows the results obtained using SP-HR and to the right using Sin-
Mod. The results from DENSEanalysis are shown in all the figures. Each
color denotes a different SNR (see Table 2.1). SP-HR gave the most sig-
nificant sensitivity to noise in every case, whereas DENSEanalysis showed
the smallest.

in both cases, with an increasing trend as the pixel size decreases. However, the error

obtained using SinMod showed less sensitivity to noise than SP-HR and DENSEanalysis

at any pixel size for both strain components.

For the same pixel sizes and noise level previously mentioned, the nRMSE obtained

for the ECC and ERR components were 10.7 ± 10.8% and 25.5 ± 14.8% using SP-HR,

11.9 ± 2.5% and 29.3 ± 6.5% using SinMod, and 6.4 ± 2.0% and 18.2 ± 4.6% using

DENSEanalysis. These results showed a substantial increase in the error variability with

SP-HR, which means that the noise highly impacted the motion estimation under different

contraction conditions. As in the previous section, the estimation of the ERR component
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Figure 2.7. Results for the noise sensitivity analysis for an early-systolic
cardiac phase. Mean errors in (a) magnitude, (b) direction of the displace-
ment field, (c) ECC , and (d) ERR strain components. The left plot of each
metric shows the results obtained using SP-HR and to the right using Sin-
Mod. Each color denotes a different noise level. As the displacement is
small at the beginning of the cardiac cycle, the impact of noise on the phase
of harmonic and stimulated echo images becomes more prominent. As a
consequence, worse results were achieved for all the error metrics.

was worse than theECC component for all the tested postprocessing methods but was

better captured using DENSEanalysis for all noise levels.

For small motions, i.e., early systolic cardiac phases, the error metrics for estimating

displacement and strain are presented in Fig. 2.7. At lower motion levels, both motion

and strain calculation were worse than at end-systolic cardiac phases. The gap in the

error of displacement estimation decreased, and in the case of strain, SP-HR and SinMod

performed better than DENSEanalysis for the ECC and partially better for the ERR. That

suggests that DENSEanalysis is more sensitive to noise for lower motion levels.
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Figure 2.8. Regional strains at basal, mid, and apical levels. Each column
shows the strain estimated using SP-HR, SinMod, and DENSEanalysis.
Gray lines with triangle markers denote the reference curves, while black
lines with square markers denote the estimations made with the three pro-
cessing techniques. Every point in the curves represents the mean regional
strain across the segments defined by the AHA (Cerqueiraet al., 2002; Sel-
vadurai et al., 2018). Analysis of CSPAMM images using SP-HR tends to
fail for cardiac phases in the diastolic part of the cardiac cycle, resulting
from the signal decay.

2.4.3. 3D experiment

Figure 8 shows the ECC and ERR strain curves obtained from basal, mid, and apical

short-axis slices of the phantom shown in Fig. 2.1. In this experiment, the performance
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Table 2.3. Errseg(%) for the results of the 3D experiment. Results show
how far the regional strains estimated with the three methods are from the
reference values. From base to apex, the synthetic phantom rotation in-
creases, and higher errors were found using SP-HR and SinMod.

Cardiac level SP-HR SinMod DENSEanalysis

ECC Base 3.8 3.1 0.9
Mid 4.3 2.4 0.7
Apex 19.4 2.5 0.6

ERR Base 19.7 31.0 12.8
Mid 27.5 30.1 19.2
Apex 46.0 34.8 17.9

of the three methods was interrogated through the whole cardiac cycle. SP-HR showed

the most unfavorable performance, especially in the apical region, where the torsion was

augmented. The three methods were imprecise in estimating the ERR component, but

DENSEanalysis was closer to the reference values. In contrast, SinMod and DENSEanal-

ysis gave very accurate estimations of the regional ECC through the whole cardiac cycle

and at any cardiac level, while SP-HR correctly behaved at basal and mid-levels.

In Table 2.3, the errors estimated using the metric proposed in Eq. 2.9 are presented,

which measures the difference between strain curves. Differences calculated from the

strain curve estimated with SP-HR increased as the slice moved from base to apex. How-

ever, the previous statement is no longer valid for SinMod and DENSEanalysis. Sin-

Mod did not exhibit any pattern, whereas DENSEanalys showed decreasing and increas-

ing trends from base to apex. The similarity between the reference and the estimated

curves was minimal, and no significant differences were observed between SinMod and

DENSEanalysis. However, we noted more significant discrepancies in terms of error for

the ERR component, where DENSEanalysis accomplished the best execution (see Table

2.3).
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2.5. Discussion

The tag analysis from Tagging MR images has been considered the gold standard for

the estimation of myocardial strain. Several approaches have been developed to estimate

motion from these images, being SinMod and SP-HR two of the most used methods (Cao

et al., 2018). On the other hand, the analysis of DENSE images using processing tools

as DENSEanalysis has become a powerful tool for estimating displacements and strain.

Nevertheless, tagging and DENSE techniques remain a research (Cao et al., 2018), and

discussion about their accuracy and precision continues.

The three methods gave accurate estimations of displacements and strains (see Fig.

2.4) in the absence of noise. As the pixel size decreases, DENSEanalysis showed a slight

decay in the error metrics of magnitude, direction, and ECC , whereas for the ERR com-

ponent, the nRMSE increases with smaller pixel sizes. A similar behavior was observed

with SP-HR and SinMod for almost any tag period and also for the ERR component. Con-

cerning the tag periods, there was a clear tendency for both SP-HR and SinMod. As the

tag period increases, the estimation of displacement and strain deteriorates, obtaining the

most significant errors with a tag period of 14 mm. However, for SP-HR, the smallest

tag period did not work adequately for any pixel sizes. We can explain this behavior by

comparing the pixel size, tag period, and amount of motion (Osman et al., 1999, 2000),

which says that HARP-based techniques tend to fail for motions larger than the tag period.

Additionally, for this tag period and the imaging parameters used, the spectral peak con-

taining motion information was too close to the k space bandwidth, leading to information

loss.

We decided not to include field inhomogeneities in the generation of the images be-

cause we did not observe considerable differences in the error metrics and their behavior.

This was tested in the same experiment used to evaluate the behavior of the three tech-

niques under nose-free conditions, but adding a smooth and spatially-varying phase to



48

each acquisition given in Equations 2.3 and 2.5. Moreover, the average increase in the er-

ror metrics for both displacement and strain was around 2%, while keeping their behavior

observed in Fig. 2.4. The results obtained from noise-free data with field inhomogeneities

are presented in Figure S2 (see supplementary material).

Although several pixel sizes were considered for the analyses, the impact of this pa-

rameter on the estimations was small in terms of displacements (see Figures 2.4a and

2.4b). This could be explained by the bandwidth of the bandpass filters used in both

CSPAMM and DENSE images. For a fixed encoding frequency, the pixel size only

changes the bandwidth of the k-space while the filtered spectral peaks keeps its posi-

tion and distance with respect to the k-space center. Therefore, the true resolution of the

filtered harmonic images and displacement maps obtained from CSPAMM and DENSE is

given by the bandwidth of the filter rather than the resolution of the image.

In our experiments, estimations made from DENSE images showed a better behavior

than SP-HR and SinMod for the quantification of displacements and strain from noisy

data. For the range of pixel sizes usually acquired in DENSE images (2.5 to 3 mm),

DENSEanalysis was less sensitive to noise than SP-HR and SinMod, for the range of

resolutions usually acquired in CSPAMM images (1.5 mm) (see Fig. 2.6). This behavioral

dependency on the voxel size is explained with the SNR reduction as the voxels become

small, i.e., the kspace bandwidth becomes bigger. Additionally, the bandpass filters used

in SP-HR and SinMod did not remove completely the high-frequency noise as they are

centered at a higher frequency than the filter used to remove the remaining energy of the

complex-conjugate echo in DENSE images.

In this study, the resolution and noise sensitivity analysis were performed mainly at the

end of systole, where the displacement and strain have maximum amplitude. However, due

to the signal decay and the low phase SNR in both CSPAMM and DENSE images, the es-

timation can be biased during early systolic and late diastolic cardiac phases, which could

be determinant when smaller strains need to be measured (Auger et al., 2017). Fig. 2.7

shows the errors in the estimation of displacement and strain at early systole. Compared
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with Fig. 2.5 (results at end-systole), the three methods showed a worse performance,

leading to higher errors in the estimation of motion and strain with increased noise sen-

sitivity. However, SP-HR and SinMod gave better results than DENSEanalysis for the

estimation of strain, showing that at smaller motion levels, SP-HR and SinMod, are more

accurate and less sensitive to noise.

Although the three methods were able to estimate accurately the regional ECC com-

ponent during the whole cardiac cycle (see Fig. 2.8) at any cardiac level, neither SP-HR,

SinMod, and DENSEanalysis were able to estimate appropriately theERR component (see

Figures 2.6, 2.7, and Fig. 2.8), differing severely between techniques even in the absence

of noise (see Fig. 2.4). The last finding has been previously reported as an issue shared by

many motion estimation techniques (Cao et al., 2018) and needs to be further studied.

When tested under realistic acquisition and motion conditions, the motion estimated

with SP-HR failed in apical levels, where the torsion of the phantom was larger than the

basal and mid-levels. Torsion augmentation implies an increment of relative displacement

between frames, causing more errors in HARP-based methods (X. Liu & Prince, 2010).

This behavior was observed in either SinMod and DENSEanalysis. Additionally, the three

methods estimated accurately the mean regionalECC strain component (except for SP-HR

at the apex) but not the ERR (see Fig. 2.8). Furthermore, the estimation of the ERR made

using SP-HR and SinMod differed severely from the reference values, while DENSEanal-

ysis worked significantly better.

The estimation of the ERR strain component and its reproducibility is still under study

(Augustine et al., 2013; Swoboda, Larghat, Greenwood, & Plein, 2011; Haggerty et al.,

2013). The inaccuracy in the estimation of the radial strain component is generated mainly

by the lack of resolution and the small number of pixels in the radial direction of the

LV. This is even worsened by the bandpass filters applied to the images to isolate the

harmonic part in CSPAMM, and remove the remaining energy of the complex-conjugate

echo in DENSE. However, in this study we found that the radial strain estimated from

DENSE images using DENSEanalysis gave the most accurate estimations, which is in
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corcondance with (Haggerty et al., 2013) and could be explained by the direct encoding of

the displacement into the images (the number of the intermediate steps needed to recover

the motion field is minimized).

As a side product of this study, we developed an open-source and flexible Python li-

brary to generate synthetic CSPAMM and DENSE images from 3D phantoms. Our library

also include variables such as field inhomogeneities, dynamic flip angles, and EPI-like ar-

tifacts (among others) to each imaging mode. Another feature is that it can be easily

modified to add new imaging techniques. In our case, as we are interested in studying

the estimation of motion and strain, future work is the implementation of the Strain-

Encoded (SENC) MRI sequence (Osman et al., 2001). PyMRStrain is freely available

at github.com/hmella/pymrstrain.

Although it is out of the scope of this paper, the current approach could also be used

to interrogate feature tracking techniques applied to images acquired in standard MRI

protocols (i.e., bSSFP images). With the current framework, spatially varying isochromats

density or tissue properties could be used to introduce features to the images to make it

suitable for these techniques

The estimation of motion from both CSPAMM and DENSE images was chosen to

consider its similarities related to the MR pulse sequence. Although the DENSE se-

quence is not yet available across all platforms, its development as a research tool has

converted it into a powerful technique for estimating motion. We chose SP-HR, Sin-

Mod, and DENSEanalysis as postprocessing techniques because they have implementa-

tions commercially and freely distributed, and therefore, have been widely used in the MR

community (E.-S. H. Ibrahim, 2011). Regarding the postprocessing techniques, although

SinMod was implemented following as exact as possible, the steps and algorithms pro-

posed by the developers, the possibility of some variability between our implementation

and commercially available software should be considered.
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A limitation of the current study was the lack of tissue surrounding the LV, which can

impact negatively the motion estimation. In such case, any method can suffer from arti-

facts at the interfaces due to differences in tissue properties, discontinuities in the motion

field, and loss of signal. Due to the partial volume effect, the three issues described before

can bias the motion maps estimated with any technique, introducing unlikely displace-

ments. By construction, SinMod can deal better with these issues because correct unlikely

displacements using a quality model (Arts et al., 2010), while phase-based postprocess-

ing techniques such as SP-HR and DENSEanalysis relies on the local information of each

pixel. In this investigation, only the loss of signal was considered in the framework.

In conclusion, SinMod and DENSEanalysis showed excellent and comparable results

for the estimation of displacements andECC strain from CSPAMM and DENSE data when

we used typical image resolutions and imaging parameters. In contrast, SP-HR tends to

fail for large amplitude motions, although it worked well in any other case. Additionally,

we showed that the three techniques could not accurately estimate the radial strain compo-

nent accurately, even when motion estimated from DENSE images using DENSEanalysis

showed the best performance.
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3. SECOND ARTICLE: A NEW METHOD FOR MOTION ESTIMATION
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3.2. Introduction

diseases are one of the leading causes of death globally (World Health Organization,

2018). Most of these diseases induce changes in the functionality of the cardiac mus-

cle, leading to abnormal ventricular contractions (Götte et al., 2006; Schuster, Paul, et al.,

2013; Mangion et al., 2019). The assessment of the global cardiac morphology and func-

tion has been extensively used for the diagnosis of cardiopathies. However, these metrics

can suffer from preload and afterload dependency, geometric assumptions, moderate re-

producibility, and its prediction capabilities are affected by conditions such as diabetes

and hypertension (Cikes & Solomon, 2016), or congenital heart diseases (Burkhardt et

al., 2017). Cardiac strain, on the other hand, is an advanced measure of the cardiac func-

tion with good reproducibility (Schuster, Morton, et al., 2013), which has demonstrated

to be a powerful tool for the assessment and diagnosis of several cardiac diseases, such

as heart failure, cardiomyopathies, dyssynchrony, abnormal pressures, and valve lesions

(Chitiboi & Axel, 2017). Moreover, cardiac strain has the potential to detect subtle de-

creases in contractility not seen by ejection fraction. Therefore, accurate time resolved

maps of the motion and deformation of the heart walls are needed for a better diagnosis

and understanding of these diseases.

Currently, echocardiography is the most widely used technique to study areas in the

left-ventricular walls with reduced functionality by estimating cardiac strain. (Chitiboi &

Axel, 2017; Amzulescu et al., 2019). However, this technique suffers from low Signal-

to-Noise Ratio (SNR), poor acoustic windows (L. Chen, 2001), geometric assumptions in

the bidimensional case (Salgo et al., 2012), and high inter-observer variability depending
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on the image quality (Nagata et al., 2018). Tagged Magnetic Resonance Imaging (MRI)

has also been used for the assessment of the cardiac function (A. Young, 2006). In this

technique, a grid pattern generated over the tissue at the beginning of the cardiac cycle

(by a selective saturation of the tissue in the form of lines) follows the cardiac motion,

allowing the tracking of the cardiac walls with temporal resolutions in the range of 30 to

50 msec.

At the beginning of the cardiac cycle, tag-lines in tagged images are parallel and eq-

uispaced. In the spatial frequency domain, this behavior is expressed as several spectral

peaks with harmonic frequencies, which become wider due to the tissue contraction and

energyless as the magnetization relaxes. Several techniques have been developed to ac-

quire tagged MR images. One of the earlier approaches combined a series of selective RF

pulses to create saturation bands on the cardiac tissue (Zerhouni et al., 1988). A year later,

the Spatial Modulation of Magnetization (SPAMM) was introduced (Axel & Dougherty,

1989a), which employed a position encoding gradient and two non-selective RF pulses to

rapidly saturate the magnetization. A significant improvement was made with the Comple-

mentary SPAMM (CSPAMM) sequence (Fischer et al., 1993), which using two SPAMM

acquisitions, removed the non-tagged signal from the image at the cost of doubling the

acquisition time. Additionally, other techniques have been introduced, such as high-order

SPAMM, slice-following CSPAMM, DANTE, and variations of both of them (Fischer et

al., 1994; Axel et al., 2005).

Lately, new acquisition strategies were developed to acquire 3D tagging data. In (Ryf

et al., 2002) a 3D CSPAMM sequence was proposed to estimate 3D cardiac motion, taking

16 minutes to acquire all the information. A further improvement was made in (Rutz et

al., 2008), where an accelerated 3D CSPAMM was introduced, allowing the acquisition

of the whole heart in only 3 breath-holds of 18 heart-beats duration each.
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With the advances in the imaging sequences, many motion estimation strategies based

on the image intensity or its k-space were developed. In the first group, tag-lines track-

ing, optical flow, and image registration methods, which use intensity models and bright-

ness constraints, are found (Guttman, Prince, & McVeigh, 1994; A. A. Young, 1999;

Dougherty, Asmuth, Blom, Axel, & Kumar, 1999; Chandrashekara, Mohiaddin, Razavi,

& Rueckert, 2007). Additionally, although computationally expensive, the image regis-

tration problem has been enriched with biomechanical models of the heart to improve the

tracking outcome (Genet et al., 2018; Škardová et al., 2019). The other group of tech-

niques are those based on the identification and filtering of the harmonic spectral peaks,

such as the Harmonic Phase (HARP) analysis (Osman et al., 1999, 2000), Sine-Wave

Modeling (SinMod) (Arts et al., 2010) technique, and Gabor filter banks (Qian et al.,

2006; T. Chen & Axel, 2006). The three methods use bandpass filters to obtain images

containing motion information processed in three different ways: HARP estimates motion

using local approximations of the phase gradient, SinMod does it using power spectrums,

and Gabor filter banks detecting tag-lines changes through several k-space filtered images

(H. Wang & Amini, 2012). However, until today, the most used techniques are HARP

analysis and SinMod method.

Since its initial development, several approaches have been proposed to improve the

capabilities of HARP, including the Improved HARP (Khalifa, Youssef, & Osman, 2005),

Extended HARP (Tecelão et al., 2006), dense multiscale HARP (Florack, Van Assen, &

Suinesiaputra, 2007), seeded region growing refinement (X. Liu, Murano, Stone, & Prince,

2007), shortest path HARP refinement (X. Liu & Prince, 2010) (SP-HR), and HARP track-

ing with locally uniform deformation assumption (ElDeeb & Fahmy, 2016), which using

spatial and/or temporal constraints, were developed to fix tracking issues due to large

deformations between image frames, through-plane motion, and tissue boundaries. For

SinMod, few improvements have been proposed (at least for the author knowledge), being

worth to mention the robust and accurate center-frequency estimation (RACE) algorithm

(H. Liu et al., 2014) and the multilevel B-splines based method (H. Wang & Amini, 2011).
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Additionally, HARP and SinMod have been successfully extended to work with 3D data

(Ryf et al., 2002; Moerman et al., 2011; H. Wang & Amini, 2013).

Although HARP-based techniques and SinMod are good methods for estimating mo-

tion and strain, both techniques are affected by different issues: HARP could be sensitive

to the image quality (Arts et al., 2010), SinMod over-estimates strain and angular motions

(E. S. H. Ibrahim et al., 2018), and both can be very sensitive to DC contamination, as will

be shown later. To tackle the issues described above, a robust and fast Harmonic Phase In-

terpolation method (HARP-I) is introduced. Similar to HARP and SinMod, our proposed

method operates using bandpass filters to obtain the harmonic phase of the image. Then,

unlike HARP-based methods and SinMod, the whole phase is corrected from wrapping

artifacts and temporal inconsistencies, which leads to a function that moves accordingly

with the heart motion. Finally, the displacement field on a reference domain is obtained

using a Radial Basis Functions (RBF) interpolation scheme defined on unwrapped phases.

In this study, we introduce HARP-I and compare its performance against SP-HR and

SinMod using numerical phantoms and tagged MR images from 24 volunteers. We also

present a sensitivity assessment under ideal (noise-free) and non-ideal (noisy) image con-

ditions.

3.3. Methods

3.3.1. Principle of HARP-I

The HARP-I method is based on the same principle as SP-HR but using a different

approach to estimate motion. Assuming that the harmonic phase of tagged images (cor-

rected from wrapping artifacts) moves accordingly with the tissue (Osman et al., 1999,

2000), the unwrapped phase of images tagged in orthogonal directions are used to define

a new virtual coordinate system. Then using an interpolation scheme, motion maps are

obtained on a fixed reference system.
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Figure 3.1. Representation of motion of a continuum body. The motion of
the body R0 is completely defined through the deformation map φ, which
maps every material point P ∈ R0 to its position at a later state p ∈ Rk.

The motion of a continuum body R0 is described using the deformation map φ, which

maps the coordinates X ∈ R0 onto its position x ∈ Rk (see Figure 3.1). Here R0

denotes the body at a reference frame (e.g., the heart at end-diastole) and Rk the region

of the space occupied by the body at the time tk (Gurtin, Fried, & Anand, 2010) (e.g., the

beating heart). At this point should be noticed that the following description of the method

is general and can be applied to either 2D and 3D data by repeating the whole procedure

to an additional dimension.

Let us consider now the pair of images I(x, t0) and I(x, tk) of a sequence of tagged

MR images not necessarily subsequent, in which brightness represents an object occupy-

ing the domains R0 and Rk at different times. Without loss of generality, the intensity

distribution of the k-th image with tag-lines in the X direction was modeled as

I(x, tk) = A(tk) cos(ΩX(x, tk)) + n(x, tk) (3.1)

where Ω represents the spatial frequency of the sinusoidal tag pattern, A the image inten-

sity depending on time tk, and n the noise contributions which depend separately of x and

tk (i.e. vary with the position and time). Then, isolating the harmonic part of the image

in (3.1) using a bandpass filter in the frequency domain [ωx, ωy] with central frequency Ω,
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Figure 3.2. (Left image) Tagged image with tag-lines pointing towards the
oblique direction x⋆, given by the angulation θ. (Right image) The Fourier
transform of the tagging image gives a frequency spectrum in the domain
[ωx, ωy], with the first harmonic peak centered at a frequency Ω over the
ω⋆
x axis. The central frequency of the bandpass filter (gray broken lines)

coincides with Ω.

we obtained the harmonic image

Ibf (x, tk) = A(tk)e
iΩX(x,tk) + nbf (x, tk) (3.2)

where nbf is the bandpass filtered version of n. Taking the angle in (3.2), a wrapped

version of the harmonic phase of I was obtained:

ϕw(x, tk) = ∠Ibf (x, tk) = W(ΩX(x, tk) + nϕ(x, tk)) (3.3)

where W(ϕ) = mod(ϕ+ π, 2π)− π denotes the non-linear wrapping operator and nϕ the

phase noise induced by nbf .

Following the same procedure for an image with tag-lines in the Y direction, we can

obtain the wrapped phase for the two directions X and Y as:

ϕw(x, tk) = W(ΩX(x, tk) + nϕ(x, tk)) (3.4)

where X now denotes the two components of the reference system, and ϕw and nϕ (in

bold) the vectorial versions of the wrapped phases and noise components.

Differing from SP-HR, we corrected the wrapping artifacts in (3.4) to obtain a phase

ϕ that depends directly on the Eulerian (spatial) description of the reference position X ,
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given by:

ϕ(x, tk) = ΩX(x, tk) + nϕ(x, tk) + 2πck (3.5)

where 2πck is a constant vector on Rk (with ck a vector of integers) denoting the fact that

phases obtained from the unwrapping procedure are not temporally consistent and can

differ by a multiple of 2π.

Using the first phase as reference (i.e., we assumed c0 = 0), the reference coordinates

are related with the new virtual system as:

XV (x, tk) = ϕ(x, tk)− ck = ΩX(x, tk) + nϕ(x, tk) (3.6)

where XV (x, tk) is a function that depends on noisy measurements of the reference posi-

tion X(x, tk) on Rk (further details regarding the estimation of ck are discussed later).

Using this new reference system, we defined a multivariate RBF interpolation scheme

for noisy scattered data to map deformed coordinates into its reference description (Buhmann,

2003). Thus, the interpolation scheme was defined as:

g(y) =

Npixels∑
i=1

λi · ψ(∥y −XV (xi, tk)∥) (3.7)

where Npixels denotes the number of pixels in the image, g(y) the interpolated function at

the point y (with y a variable that can be evaluated at any point of the virtual system),

ψ(∥y−XV (xi, tk)∥) a radial basis function centered at XV (xi, tk), and λi the weighting

factor associated with the i-th basis function.

Instead of constructing the exact interpolation of polluted measurements (see Appen-

dix A), we seek the approximation ĝ(XV (xi, tk)) ≈ xi, using (Poggio & Girosi, 1990):

(Ψ+ ηI)λ = G (3.8)

where η > 0 is a regularization constant that ensures the non-singularity of the system, I

the identity matrix, λ a vector of weights, and G a vector of measurements (details about

the matrix Ψ are in the Appendix B.1).
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(a) Cardiac
phase 1

(b) Cardiac phase 5 (c) Cardiac phase 12

Figure 3.3. Phase-distance matrices (upper row) and the corresponding un-
wrapped harmonic phases (bottom row). Figure (a) shows the distance ma-
trix and phase for the reference frame, whereas (b) and (c) show the uncor-
rected (left) and corrected (right) distance matrices and phases for frames 5
and 12. The matrices were obtained from an image of a healthy volunteer
with taglines in the direction given by θ = 45o (see Figure 3.2) and using
only the pixels inside the LV (this explains why the matrix size is square in
(a) but non-square in (b) and (c). See (3.11) for the definition of distance
matrices). The colors on all the plots share the same scale.

After solving (3.8), the interpolator in (3.7) was evaluated at XV (X, t0), allowing the

estimation of the deformed position of the object Rk on the reference configuration R0

(see Appendix B). Finally. the displacement field U of the object R0 between the times

t0 and tk was easily estimated using

U(X, tk) = φ(X, tk)−X (3.9)

3.3.2. Strategies for correcting temporal phase inconsistencies

For a proper estimation of displacements, ck is estimated using ϕ1 as reference phase.

Exploding the structure of the distance matrices: as we treat the harmonic phases as

a material property, both of the following distance matrices should always have a similar
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structure:

rref
mn = ∥XV (Xm, t0)−XV (Xn, t0)∥ (3.10a)

rkmn = ∥XV (Xm, t0)−XV (xn, tk)∥ (3.10b)

However, due to the phase jumps between temporal frames, the previous assertion is not

valid (see Figure 3.3).

Phase inconsistencies are ligated to the constant ck, and can be fixed by ensuring the

similitude between rref and rk. This condition is imposed through the coming optimization

problem:

argmin
ck

{∣∣∣∣min
m,n

rref
mn −min

m,n
rkmn

∣∣∣∣} (3.11)

where ck is defined implicitly on rk through XV (xn, tk) (see (3.6)). This approach does

not introduce any restriction on the temporal resolution and can be used on either seg-

mented or non-segmented cardiac geometries.

3.3.3. Application of HARP-I in oblique directions

Although the whole process consider tag-lines in the directions x and y, we can also

apply HARP-I in oblique directions x⋆ and y⋆ (see Figure 3.2). Defining the angulation

of the tag-lines as θ, the deformed and frequency coordinates [x⋆, y⋆] and [ω⋆
y , ω

⋆
y] (respec-

tively) are defined by:  x⋆

y⋆

 =

 cos θ sin θ

− sin θ cos θ

 x

y

 (3.12a)

 ω⋆
x

ω⋆
y

 =

 cos θ sin θ

− sin θ cos θ

 ωx

ωy

 (3.12b)

Thus, replacing x by x⋆ = [x⋆,y⋆] and ω by ω⋆ = [ω⋆
x,ω⋆

y] in (3.1) to (3.9) all the procedure

remains valid.
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3.3.4. Implementation of HARP-I

HARP-I method, listed in (3.1) to (3.9), was implemented in MATLAB (The Math-

Works, Inc., Natick, Massachusetts). Similar to SP-HR and SinMod, Fast Fourier Trans-

form (FFT) was applied to two input images (not necessarily subsequent) I1 and Ik with

tag-lines in the direction x⋆ (or y⋆) (see Figure 3.2), leading to frequency spectrums in the

[ω⋆
x, ω

⋆
y] domain. The center of the region containing the first harmonic component of the

images was identified as [Ωx,Ωy], and the central frequency Ω and the tag-lines angulation

θ (see Figure 3.2) were calculated using:

Ω =
√

Ω2
x + Ω2

y, θ = arccos

(
Ωx

Ω

)
(3.13)

In practice, we identify just one harmonic component and choose the second direction to

be perpendicular to the first one.

The harmonic phases given in (3.4) were corrected from wrapping artifacts using a

quality-guided path following unwrapping algorithm (Ghiglia & Pritt, 1998), which has

been previously used for the estimation of displacements from DENSE images (Gilliam

& Epstein, 2012; Spottiswoode et al., 2007).

In our implementation we tested several families of RBF, such as Wendland’s, Wu’s,

splines, Gaussians, and multiquadrics, being the last which had better smoothing proper-

ties without comprising the quality of the estimation. Therefore, we used a third-order

multiquadric RBF given by

ψ(r) = (r2 + a2)3/2, a ∈ R (3.14)

where a is a constant that controls the smoothing during the interpolation process (Carr et

al., 2003). The value of a used on all the experiments (with synthetic data and real images)

was empirically determined as

a =
150

No pixels per wavelength
=

150∆x

2π/Ω
(3.15)



63

where ∆x denotes the pixel size. The key idea behind this choice is that as the number of

pixels-per-wavelength decreases, higher frequency components are present in the filtered

images and therefore, the amount of smoothing should increase.

3.3.5. Implementation of SP-HR and SinMod

To compare our method with other processing techniques, we used SP-HR and imple-

mented SinMod methods as described in Osman et al. (Osman et al., 1999, 2000; X. Liu

& Prince, 2010) and Arts et al. (Arts et al., 2010), respectively. In the case of SP-HR,

the source code was provided by the Image Analysis and Communication Lab at Johns

Hopkins University. For the SinMod method, the implementation was done in accordance

with (Arts et al., 2010; H. Wang & Amini, 2013). The local quality model proposed by

the authors, consisting on a weighted hanning windowing of the power spectrum based on

an intensity-based quality measure, was used to correct the motion estimation. The size of

the hanning window was set to 15 and the power of the quality measure was chosen as 8.

Motion with SinMod was estimated in a frame-by-frame basis using two consecutive

images, and tracked backward to a reference frame using a Thin-Plate spline interpolation.

For the estimation of strain, no smoothing techniques were applied to the estimation of

spatial derivatives. However, a 10th order polynomial was fitted to each component of

the estimated motion to slightly smooth the tissue trajectories (Spottiswoode et al., 2007;

Zhong et al., 2010; Wehner et al., 2018).

For the sake of fairness during the comparison, we used the same Butterworth band-

pass filter (H. Wang & Amini, 2013) for the three methods, choosing the frequency-cutoff

and decay order accordingly to ensure, as far as possible, the removal of higher harmonics

and the DC component. The central frequency Ω of the filter was defined as the tag-lines

frequency.
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(a) (b)

Figure 3.4. (a) First and (b) last frames of a noisy synthetic data. The red
circle denotes the place where the stiffer inclusion was added. The contrast
of the images (see Eq. 3.16) was set differently for a better visualization.
Both images were obtained using the WL5

3.4. Experiments

3.4.1. In-silico experiments

SP-HR, SinMod, and HARP-I were tested using a synthetic 2D dataset of 10 different

idealized left-ventricular geometries. The intensity model used was similar to the given in

Eq. 3.1 but with a decaying tagged and growing non-tagged terms as follows:

I(x, tk) = 1− e−tk/T1 + e−tk/T1 cos(ΩX(x, tk)) (3.16)

where T1 = 0.72 denotes a relaxation parameter chosen to achieve a 75% of signal decay

of the tagged part in the last frame. Each image was generated with a resolution of 200×

200 pixels. The intensity model given in Eq. 3.16 emulates the signal of tagging MR

images without DC correction (E.-S. H. Ibrahim, 2011).

The motion pattern of the idealized geometries combines angular and non-uniform

radial displacements with a stiffer inclusion to simulate an abnormal contraction (see Fig-

ure 3.4). Motion maps were estimated under noise-free and noisy conditions, and all the

experiments were performed using wavelengths of 2.9, 4.9, and 6.9 pixels, namely WL3,

WL5, and WL7 respectively.
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The maximum angular and radial displacements of the inner wall, ∆θ and ∆r respec-

tively, vary across data following:

∆θ =
WLi

2r
, ∆r =

WLi

2
(3.17)

where WLi is the wavelength of the intensity model (i = 4, 5, 7) and r the inner radius.

For the outer displacements, no angular motion was imposed and the maximum radial

motion was estimated in order to ensure a isochoric deformation. The spatial variation of

the motion pattern across the wall (between the inner and outer radius) was chosen to be

linear, with a stiffer additive inclusion to simulate an abnormal contraction. The maximum

displacement was applied in increments of 0.1WLi, i.e., six motion levels per data were

simulated, being the maximum displacement achieved in the last frame.

To investigate the behavior of the three methods with low SNR images, additive un-

correlated white Gaussian noise with standard deviation 0.06 was added to both real and

complex channels of all the images (see Figure 3.4).

3.4.2. In-vivo experiments

Finally, we tested and compared the three methods on a short-axis view of the left

ventricle (different cardiac levels) of 23 volunteers (19 males of 28 ± 15 years and 4

females of 50 ± 21 years of which 9 were acquired on a 1.5T Ingenia system (Philips,

Best, Netherlands), 4 on a 1.5T Achieva system (Philips, Best, Netherlands), and 10 on a

1.5T Avanto Fit system (Siemens Healthineers, Erlangen, Germany). The spacings of the

tag-lines were 4.5± 0.8 pixels per wavelength.

Additionally, to demonstrate the functionality of HARP-I on 3D data, the method was

tested on a 3D CSPAMM image of one healthy volunteer (male, 66 years old) acquired on

a 1.5T Achieva system (Philips, Best, Netherlands). After alignment and resampling of

the volumes in each direction, the size of the reconstructed matrix was 112 × 112 × 112

with a voxel size of 0.96× 0.96× 1.12 mm3. The tag spacing was 7 mm in each direction.

For further details about the acquisition, please refer to (Rutz et al., 2008).
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Table 3.1. Diagnoses and/or MRI findings for subjects with abnormal ven-
tricular contraction

Identifier Sex Age Diagnosis/Specialist impression

2⋆ M 21 Mildly decreased LV ejection fraction (EF
50%).

4⋆ F 69 Severely decreased LV systolic function.
Dyskinetic motion of apex (with thrombus
present). Possible hypertrophic cardiomyopa-
thy in septum at LV outflow tract.

7⋆ M 43 Globally hypokinetic LV.
10 M 12 Duchenne muscular dystrophy.
11 M 30 Duchenne muscular dystrophy.
12 M 11 Duchenne muscular dystrophy.
13 M 12 Hypertrophic cardiomyopathy.
14 M 13 Duchenne muscular dystrophy.
Each subject identifier is accompanied by its respective diagnosis and/or
MRI finding. Diagnoses were made by a cardiologist with expertise in
cardiovascular MRI, while MRI findings were made by a medical doctor
with more than 5 year experience with clinical cardiovascular MRI. These
identifiers will be used in the rest of the article to refer to the data.
⋆: MRI finding; M: male; F: female; EF: ejection fraction.

The acquisition of all the subjects was approved by the Institutional Review Boards at

Pontificia Universidad Católica de Chile (Santiago, Chile), Cincinnati Children’s Hospital

Medical Center (Ohio, USA), and the Institute for Clinical and Experimental Medicine

(Prague, Czech Republic). The dataset was composed of 16 healthy volunteers (including

the 3D data) and 8 patients with known cardiopathies. In Table 3.1, a summary of the

diagnoses and/or MRI findings of the subjects can be found.

3.4.3. Statistical analysis

All the results presented include comparisons between reference displacements and

strain, considering displacement magnitude and direction, and circumferential and radial

components of the Lagrangian strain tensor (Gurtin et al., 2010). The metrics used to

quantify the error were the normalized root Mean Square Error (nRMSE) and Directional
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Error (DE) (Mura et al., 2016), defined as:
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where ∥·∥ represents the Euclidean norm, N the number of analyzed pixels in the image,

ai a pixelwise scalar or vectorial quantity at pixel i, and ui the pixelwise displacement.

The superscript ()e denotes the reference value. All the results reported in the succeeding

section are average values of the metrics presented in Eq. 3.18a and Eq. 3.18b computed

over the whole synthetic dataset (N = 10) for each displacement level.

3.5. Results

In the following sections, we split the results into three parts. The first and the second

comprise the in-silico results of the noise-free and noisy experiments respectively, whereas

the third one reports the results from the in-vivo data.

3.5.1. Noise-free experiments

Figure 3.5 shows the mean nRMSE and DE across the whole dataset calculated using

the expressions given in Eq. 3.18a and Eq. 3.18b. For all the wavelengths the three

methods showed a similar behavior, achieving all of them the best performance at WL3

and the worst at WL7 (see Figures 3.5a to 3.5c). Overall, the performance of HARP-I was

similar to SP-HR and SinMod at any wavelength.

In terms of nRMSE and DE, the three methods showed a clear trend across all the

wavelengths: the error increased with the displacement level (see Figure 3.5). However,

no major differences were found in any case. The average nRMSE and DE obtained

using SP-HR, SinMod, and HARP-I (across all wavelengths and displacement levels) were
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(a) WL3 (b) WL5 (c) WL7

Figure 3.5. Mean errors and deviations in the estimation of displacement
magnitude (first row), direction (second row), circumferential strain (third
row), and radial strain (fourth row) for wavelengths of (a) 2.9 (WL3), (b)
4.9 (WL5), and (c) 6.9 (WL7) pixels. The label in the x-axis denotes the
amount of radial and angular displacement of the synthetic data (in the last
case, the x-axis represents r times the angular displacement, as stated by
Eq. 3.17), while in the y-axis, CC and RR stand for circumferential and
radial strain components. For all the displacement levels and wavelengths,
the performance of HARP-I was superior than SP-HR and SinMod.

6.1 ± 2.5% and 1.8 ± 0.6o, 6.9 ± 2.6% and 2.2 ± 0.6o, and 5.6 ± 2.6% and 1.8 ± 0.6o

respectively, i.e., SP-HR and HARP-I showed slightly better performance than SinMod.

When looking at the variability in the error metrics, the behavior was similar to what

was described before. The average standard deviations were 1.0±0.7% and 0.4±0.2o for
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SP-HR, 1.1±0.6% and 0.5±0.2o for SinMod, and 1.0±0.6% and 0.4±0.2o for HARP-I,

which means that almost no differences were found in terms of variability.

For both strain components, the error metrics behaved similarly to the errors in the

displacement field, exhibiting a clear increasing trend with the motion levels (see third

and fourth rows of Figure 3.5). However, HARP-I did not follow this trend for WL3

and SP-HR achieved bigger errors in the last displacement level of the WL7. Despite

the bigger errors of HARP-I at the smallest displacement for WL3, SinMod and HARP-I

always achieved better performances in both strain components for WL3 and WL5. For

WL7, however, SP-HR performed better than SinMod but worse than HARP-I. In terms

of averages (across wavelengths and displacement levels), for the circumferential strain

the three methods reached errors similar to those found for displacements. However, for

the radial component the error increased considerably when compared with displacement

magnitude and direction, and also with the circumferential part, reaching average values

of 33.6± 4.7 for SP-HR, 29.7± 2.9 for SinMod, and 26.4± 2.9 for HARP-I.

In general, the three methods showed good performance estimating displacements and

strains as the errors and differences between techniques were relatively small. This mean

that SP-HR, SinMod, and HARP-I showed a similar behavior under ideal conditions.

3.5.2. Noisy experiments

Figure 3.6 (first and second rows) shows the error metrics for displacement magni-

tude and direction in the presence of noise. When compared with the noise-free results,

the three methods performed worse (as expected) but keeping a similar difference in the

error metrics between techniques, although HARP-I achieved the best results at all the

displacement levels.

The average error across displacements, in terms of nRMSE and DE, were 8.0± 2.0%

and 2.7 ± 0.7o for SP-HR, 8.4 ± 1.9% and 2.8 ± 0.5o for SinMod, and 7.1 ± 2.1% and

2.4 ± 0.6o for HARP-I. When compared with the same results in the noise-free case, the
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(a) WL3 (b) WL5 (c) WL7

Figure 3.6. Mean errors and deviations in the estimation of displacement
magnitude (first row), direction (second row), circumferential strain (third
row), and radial strain (fourth row) for the noisy experiment for wave-
lengths of (a) 2.9 (WL3), (b) 4.9 (WL5), and (c) 6.9 (WL7) pixels. Strain
estimations obtained SP-HR, SinMod, and HARP-I followed a similar be-
havior than the displacement magnitude and direction. However, the error
increased due to the presence of noise.

errors were 1.3 and 1.5 times greater for SP-HR, 1.2 and 1.3 for SinMod, and 1.3 and 1.3

for HARP-I, which means that SinMod was slightly less sensitive to noise in the estimation

of displacements. Although the increase in the average nRMSE and DE, the variability in

error across the dataset did not experience a significant increase.

Figure 3.6 (third and fourth rows) shows the error metrics for the estimation of the

strain components. The circumferential and radial components were better estimated with
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-0.11 -0.08 -0.06 -0.03 0 0.018

Figure 3.7. Circumferential strain maps obtained with SP-HR, SinMod,
and HARP-I for one representative sample of noisy data using WL5. Rapid
spatial variations were observed in estimations made with SP-HR and Sin-
Mod, whereas more accurate and homogeneous results were obtained using
HARP-I.

HARP-I, whereas SP-HR performed the worst. In the last case, similar to the noise-free

case, bigger errors where induced in the estimation of strain at the last displacement level.

The average errors for the circumferential and radial components were 25.8± 14.9% and

41.5±10.4% for SP-HR, 21.8±10.8% and 34.2±5.0% for SinMod, and 15.4±4.5% and

30.7± 7.1% for HARP-I. When compared with the noise-free experiment, errors obtained

under noisy conditions were 2.3 and 1.2 times greater with SP-HR, 2.1 and 1.2 greater for

SinMod, and 1.9 and 1.2 greater for HARP-I, indicating that derivatives estimated from

SinMod and HARP-I results were less sensitive to noise than SP-HR.

Finally, Figures 3.7 and S1 (see Supporting Information) show the accuracy of HARP-

I in the estimation of the position, shape, and strain values under noisy and noise-free

conditions. Particularly, Figure S1 presents the results of an experiment conducted to

determine the accuracy of HARP-I in the estimation of strain under different inclusion

sizes.

3.5.3. Motion estimation on healthy volunteers

Figure 3.8 shows the left-ventricular strain maps of a subset of five healthy volunteers

estimated using SP-HR, SinMod, and HARP-I, from tagged MR images. Although the

strain maps at end-systole were similar between techniques in most cases, SP-HR gave

results with severe artifacts, while SinMod and HARP-I showed smooth and similar strain
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Figure 3.8. Circumferential strain of a short-axis view of the left ventricle
for 5 volunteers at end-systole and late-diastole (the last frame acquired).
We used late-diastole to emphasize that in ECG triggered MR images, the
cardiac cycle is not completely sampled. All the maps are presented in
the reference cardiac phase (first frame) and were estimated using SP-HR
(left), SinMod (middle), and HARP-I (right). The red dots indicate the in-
sertion points of the RV walls into the LV. Each volunteer was identified
with a number to make it easier to refer. The volunteers 7 and 13 presented
abnormal strain patterns as they presented cardiomyopathies. The first case
showed a hypokinetic LV and the second hypertrophic cardiomyopathy.
SP-HR showed strain maps with artifacts on 3 of the 5 cases, whereas Sin-
Mod and HARP-I showed similar results at end-systole for most of the
cases. Nonetheless, at late-diastole (where cardiac strain in healthy sub-
jects should be small as the heart relaxes and come back to its reference
position) some artifacts were observed with three methods in almost all
cases. However, HARP-I showed a more stable behavior across the whole
cardiac cycle.
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maps. At late-diastole, severe artifacts were obtained with the three techniques, but to a

lesser extent with HARP-I. In the same Figure, strain maps of two patients, one with a

hypokinetic LV (volunteer 7) and other with hypertrophic cardiomyopathy (volunteer 13),

are presented.

To get an error measure of the motion and strain, we followed a similar approach as

in (Arts et al., 2010), and for all the volunteers, we estimated the accumulated fraction of

pixels with circumferential strains exceeding the unlikely high value of 50% (see Figure

3.9). For SP-HR and SinMod this metric increased to elevated levels, reaching maximum

values 1.5 and 1.1 respectively. For HARP-I, on the other hand, the fraction remained

always close to zero, with a maximun value of 0.02.

In Figure 3.10 the temporal strain curves obtained with the three techniques are shown.

With SP-HR and SinMod, highly unlikely strain values (bigger than 0.5) were not consid-

ered for the estimation of the curves, whereas with HARP-I all the values were used.

Overall, the results given by the three methods were physiologically consistent and closer

to clinical values, although SP-HR not always gave good results (see volunteers 11, 13 18,

21, 22, and 23 in Figure 3.10).

Finally, Figure 3.11 shows the estimated motion of the processed 3D data using 3D

HARP-I and 3D SinMod. Each slice of the LV shows the circumferential strain and dis-

placement field (arrows). HARP-I gave smoother strain maps than SinMod and displace-

ments were closer to what we observed from the images. At basal level, the longitudinal

displacement measured from the images was -7 and -11 pixels at the red and blue points

(see Figures 3.11a and 3.11b), whereas with HARP-I was -7.2 and -10.8, and SinMod -

7.6 and -13.1, which means that SinMod overestimated the longitudinal component of the

displacement.
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Figure 3.9. Accumulated (across all volunteers) fraction of pixels with cir-
cumferential strain (ECC) with unlikely high values. The X-axis denites
the frame of the cardiac cycle relative to the first one. The fraction was
estimated as the number of pixels satisfying |ECC | > 0.5 divided by the
number of pixels inside the left ventricle. Results were added together no
matter if they shared the same number of frames (this explains why SP-HR
and SinMod shows curves with increasing and decreasing behavior).

Figure 3.10. Circumferential strain curves estimated with SP-HR, SinMod,
and HARP-I for in-vivo data (highly unlikely strain values bigger than 0.5
were not considered for the estimation of the curve with SP-HR and Sin-
Mod methods, not so with HARP-I). The number on each plot is a label
to make it easier to refer to the result of each volunteer. Results remarked
with blue boxes are the same as those presented in Figure 3.8. The vol-
unteers 7 and 13 presented abnormal strain patterns as they presented car-
diomyopathies. The first case showed a hypokinetic LV and the second
hypertrophic cardiomyopathy.

3.6. Discussion

HARP-I was based on the same principles of the original HARP method but using a

different approach to recover the tissue motion. Firstly, we obtained the harmonic phases
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(a) Slice at frame 2 (b) Slice at frame 10

(c) HARP-I (d) SinMod

(e) HARP-I (f) SinMod

Figure 3.11. Motion estimated from a 3D CSPAMM image of a healthy
volunteer using HARP-I and SinMod. The figure shows a slice of the 3D
volume at (a) frame 2 and (b) 10 of the cardiac cycle (the first frame was
not used because of the lack of contrast between the cardiac walls and the
blood pool) and the circumferential strain and displacement field (arrows)
at frame 10 estimated using (c) HARP-I and (d) SinMod. The red and blue
dot denotes the position of two points manually tracked. Figures (e) and
(f) shows the global strains of the circumferential, radial, and longitudinal
components (GCS, GRS, and GLS, respectively) obtained with HARP-I
and SinMod. The strain maps were plotted in the range [−0.5, 0.2].

by bandpass filtering the tagged MR images. Second, we corrected the phases from wrap-

ping artifacts, and then, we correct phase inconsistencies using distance matrices on the

virtual coordinate system. Finally, similarly to HARP which treats the phase as a material
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property, we used the phase to recover, via RBF interpolations, the motion field at any

time on a reference frame. The previous methodology gave us a new technique with sim-

ilar capabilities to SP-HR and SinMod, but with improved results under ideal as well as

under noisy conditions.

In the absence of noise, the proposed method worked similar to that of SP-HR and

SinMod, reaching all the techniques the worst performance with WL7 (see Figure 3.5). For

this wavelength, the over-smoothed image obtained by the small bandwidth of the filter

did not allow the accurate tracking of the tissue, and sharp details as the stiffer inclusion

were lost. Exactly the opposite happened with smaller wavelengths (i.e., bigger filter

bandwidths), where more detailed and accurate motion and strain maps were obtained

(see Figure 3.5 and 3.7).

One of the most relevant biomarkers of the left-ventricular function is the circumfer-

ential strain (A. Young, 2006; Petitjean et al., 2005), which can be directly calculated from

displacement fields. However, a good estimation of the tissue motion does not ensure a

similar performance of the strain estimate. The last is summarized in Figure 3.6, where

in presence of small motions and noise, SP-HR estimated fairly well the displacement

field but missestimated the strain maps when compared with SinMod. Furthermore, the

nRMSE in the circumferential and radial components obtained with SP-HR (under noise-

free and noisy conditions) became more significant at the highest displacement level for

WL7 (see Figures 3.5 and 3.6), which is attributable to high DC contamination.. HARP-I,

on the other hand, gave the best estimations of both displacements and strain even at small

motion levels, which is advantageous in the study of diseases where small displacements

and strains are relevant (Auger et al., 2017).

HARP-I also demonstrated to be a reliable tool for the estimation strain from in-vivo

data (see Figures 3.8 and 3.10), where strains similar to SP-HR and SinMod were obtained

but with improved quality. The last assertion is also true for patient data with abnormal

contraction patterns. For instance, in Figure 3.8, the end-systolic strain maps of the vol-

unteers 7 (hypokinetic LV) and 13 (hypertrophic cardiomyopathy) obtained with HARP-I
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were comparable to SP-HR and SinMod, and sharp details were conserved (see the an-

terolateral and inferolateral parts of volunteer 7, and the anteroseptum for volunteer 13).

In the case of the hypokinetic LV, small details were kept even for small motion levels and

deformations. However three methods failed at diastolic cardiac phases mainly due to DC

contamination of the harmonic images.

Looking carefully into the strain curves, we could observe that they are according to

the diagnoses and MRI findings detailed in Table 3.1. For subject 4, the Global Peak-

Circumferential Strain (GPCS) was −7.0%, which is consistent with the decreased LV

systolic function, and the dyskinetic motion explains the unusual shape. The hypokinetic

LV of subject 7 explains the GPCS of −1.4% and its shape. The patients with Duchenne

muscular dystrophy (subjects 10, 11, 12, and 14) presented a GPCS of −15.3 ± 2.6%,

which is slightly reduced compared to reference values (Hor et al., 2009). Volunteer 13

exhibited the expected behavior in hypertrophic cardiomyopathy patients (Jeung et al.,

2012). Additionally, we found a reduced GCPS of −10.5% and −11.6% in subjects 1 and

8 respectively, which had no known findings or diagnoses. Interestingly, for subject 2, the

GCPS was −7.1%, which is surprisingly low for a person with an EF of 50% (greater than

55% is considered normal). The last could be explained by some pathology developed with

almost preserved EF unknown by the authors. Excluding the data previously mentioned,

the GCPS on healthy subjects was −16.2 ± 1.9% and almost no differences were found

between SP-HR, SinMod, and HARP-I.

Until this point, it is crucial to notice that the quality of the harmonic images highly

depends on the bandpass filter. Several tagging modalities (as those used to acquire the

volunteer data) do not have a sinusoidal intensity, and therefore, the frequency domain

contains higher harmonics and a DC component. (Fischer et al., 1993). Thus, the size

of the filter should be adjusted to ensure the isolation of just one harmonic and avoid the

low-frequency component. At low magnetic fields, however, regardless of the accurate

fitting of the filter, obtaining a harmonic image is not always possible because the DC

component recovers rapidly with T1, which contaminates the harmonic peak early in the
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cardiac cycle. The last was observed in almost all the in-vivo experiments, where the

image corruption at diastolic cardiac phases, did not allow the appropriate estimation of

motion with any of the three methods (see Figure 3.8). These issues can be surpassed by

using acquisition and reconstruction techniques such as CSPAMM (Fischer et al., 1993)

and MICSR (NessAiver & Prince, 2003) with the cost of increased scan time.

An advantageous feature of HARP-I is that, although RBF interpolations removed

rapid spatial variations from displacements and strain maps, there was no deterioration in

the estimation of local characteristics of the tissue. In fact, under noise-free conditions and

without DC component (as in CSPAMM or MICSR images), the shape and position of the

stiffer inclusions of different sizes were correctly estimated in almost all the cases, failing

just with the smallest (see Figure S2 in Supporting Information). Furthermore, in Figure

3.7 HARP-I correctly estimated the position, shape, and strain of the stiffer inclusion under

noisy and DC-contaminated conditions, which could be determinant for the detection of

infarcted tissue and other diseases.

Another feature of HARP-I which is shared with SP-HR and SinMod, is that none

of them need a segmentation to estimate tissue motion, and similar motion-guided semi-

automatic segmentation techniques as such introduced in (Khalifa et al., 2005) and (Miller

et al., 2013) can also be implemented. However, the motion estimation with HARP-I de-

pends on the availability of a unwrapped harmonic phase of high quality on the tissue of

interest, which depends on the unwrapping method used. In this work, a Quality-guided

Path Following algorithm was used, which performed well in all the cases as the path was

constrained inside the geometry of the tissue, i.e., a segmentation was available. To avoid

the segmentation without losing quality in the estimation of motion, unwrapping algo-

rithms based on phase predictions with region growing (Auger, Cai, Sun, & Epstein, 2018)

and graphcuts (Bioucas-Dias & Valadão, 2007; Venkatesh, Gupta, Lloyd, Dell ’Italia, &

Denney, 2010) could be used.

When working with the 3D CSPAMM data, HARP-I worked better than SinMod in

terms of strain smoothness and displacement field estimation. In fact, HARP-I was able
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to give accurate estimation displacement field in the longitudinal direction (the reference

values were obtained manually from the images), whereas SinMod presented overesti-

mated values. Additionally, as HARP-I estimates the motion between two frames directly

(without intermediate estimations), less tracking artifacts were observed.

The efficiency of the proposed method, in terms of computation time, was also mea-

sured and compared against SP-HR and SinMod. In general, on a machine with an Intel

Core i7-8700 CPU with 12 physical cores of 3.20 GHz and 32 Gb of memory, HARP-I

took around 6.0 seconds to process each data (phase-unwrapping and interpolation), while

SP-HR took 1.4 seconds and SinMod 3.2. Additionally, for the 3D experiment, the execu-

tion times were 184 seconds with HARP-I (phase-unwrapping and interpolation) and 155

with SinMod (frame-by-frame estimation and Lagrangian tracking). In the last case, to

avoid memory issues with HARP-I, we implemented a disjoint RBF interpolation scheme,

in which the interpolator was defined on a equispaced downsampled set of points and eval-

uated incrementally in the reference frame. Overall, the three techniques shared similar

processing times with the same order of magnitude, and no delays were introduced by

HARP-I.

In this study, HARP-I was used to estimate the Lagrangian strain at a reference frame.

However, with a small modification of the interpolator given in Eq. 3.7 Eulerian strain

could also be obtained. If the interpolator is defined once at the first cardiac phase and

evaluated at XV (x, tk), the Eulerian displacement is obtained at frame k, which allows

the estimation of the Eulerian strain tensor. This approach would be faster because it does

not need the definition of multiple interpolators.

Additionally, we developed a new method to fix the temporal phase inconsistencies,

which uses the same distance matrices needed for the RBF interpolation. With this method,

we were able to correct all the phase jumps between frames without additional constraints

on the tag-spacings and temporal resolution, making it robust to any combination of imag-

ing parameters. On all the tested data, either in-silico and in-vivo, the correction worked

in 100% of the cases. Therefore, even at the low temporal resolutions usually found in
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clinical and scientific setups (18 to 20 frames per cardiac cycle), HARP-I could work

with even fewer frames without any bound on the total number. Although techniques like

HARP Tracking Refinement Using Seeded Region Growing (X. Liu et al., 2007) and SP-

HR (X. Liu & Prince, 2010) can also deal with large tissue motion between frames, in this

work we found that SP-HR and SinMod failed in many cases due to high DC contamina-

tion.

It must be clear that by solving Eq. 3.11, we are ensuring that the tissue motion esti-

mated using HARP-I is free of non-physiological jumps in time. Therefore, the temporal

consistency imposed by HARP-I differs from other methodologies proposed previously

for MRI and other imaging modalities. Different to computationally expensive registration

algorithms (Reinhardt et al., 2008; You, Evangelou, Zun, Andescavage, & Limperopou-

los, 2016; Liao et al., 2016), biomechanically constrained inverse problems (Sundar, Da-

vatzikos, & Biros, 2009), and physiological motion models (McClelland, Hawkes, Scha-

effter, & King, 2013), HARP-I decouples the temporal consistency problem from the mo-

tion estimation step. Furthermore, as these two steps are decoupled (i.e., nothing is said

about the displacement field), there is no need for adding spatiotemporal constraints to the

motion estimation problem, avoiding adding limitations between the tag spacing and the

number of frames of tagged images (Spottiswoode et al., 2007; Venkatesh et al., 2010).

Additionally, the proposed technique is self-contained (in the sense that does not need ex-

ternal information) and can be applied to any data without previous knowledge of cardiac

motion behavior, which is the case of statistically-based methods (Chandrashekara et al.,

2003). In other words, HARP-I does not need additional calculations to correct temporal

inconsistencies rather than comparing two matrices (see Eq. 3.11).

Finally, when compared to further improvements of HARP, HARP-I addressed the

same issues but with enhanced results. With HARP-I, smoothed results were obtained

without loosing quality in the estimation and keeping small and sharp details. The amount

of artifacts in the displacement field where highly reduced and they did not propagated

to other cardiac phases. Although the used quality-guided unwrapping algorithm does
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not handle well corrupted phases, HARP-I demonstrated to have low sensitivity to DC

contamination, maintaining its robustness even for highly deteriorated harmonic phases.

The proposed RBF interpolation approach also dealt with mistracked boundary points and

through-plane motion (which makes the tissue disappear) by interpolating or extrapolating

the positions depending on the case. In the case of artifacts in the motion pattern, these

were corrected using the polynomial fitting proposed in (Spottiswoode et al., 2007), which

did not work with either SP-HR and SinMod.

3.7. Conclusion

We developed a new method for motion estimation from tagged MR images based on

the same physical principle as HARP and SP-HR but with a different processing pipeline.

HARP-I allows the estimation of motion in any direction with better results than SP-HR

and SinMod techniques under highly demanding conditions as DC contamination, tag-

lines fading, and image quality. HARP-I also showed to be more robust on estimating

motion patterns with high temporal consistency, which was appreciated as artifacts-free

strain patterns at almost any cardiac phase. Fast and robust extraction of motion gives

HARP-I a potential in routine analysis of clinical exams to facilitate patient stratifica-

tion. Secondly, the outcome of HARP-I could be used as high-quality observers while

assimilating data into complex biomechanical models, e.g., to contribute to optimal thera-

peutical action (Imperiale, Chabiniok, Moireau, & Chapelle, 2011; Chabiniok et al., 2012;

Bertoglio, Moireau, & Gerbeau, 2012; Hadjicharalambous et al., 2017).
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ago, Chile.
2 Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile.
3 Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile,

Santiago, Chile.
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5 Philips, Cincinnati, Ohio, USA.
6 Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati,

Ohio, USA.

Article published in the Magnetic Resonance in Medicine journal (impact factor of

4.668).

4.2. Introduction

Tagged Magnetic Resonance Imaging has been used extensively to study the function

of the heart as well as other organs. After its introduction, several techniques have been

proposed to improve the original idea, leading to new sequences with improved image

quality (Axel et al., 2005; E.-S. H. Ibrahim, 2011). The first and still widely used tag-

ging technique was Spatial Modulation of Magnetization (SPAMM) (Axel & Dougherty,

1989a), which employed a spatial encoding gradient and two non-selective RF pulses to
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rapidly modulate the magnetization. One of the most notable improvements was the de-

velopment of the Complementary SPAMM (CSPAMM) sequence (Fischer et al., 1993),

which was introduced to improve the tagging contrast in later phases of the cardiac cycle

and remove the unwanted DC signal of SPAMM images, leading to a zero mean sinusoid

suitable for motion estimation techniques such as Harmonic Phase-based analysis (HARP)

(Osman et al., 1999, 2000; Tecelão et al., 2006; X. Liu et al., 2007; X. Liu & Prince, 2010;

Mella et al., 2021), Sine-Wave Modeling (SinMod) (Arts et al., 2010; H. Wang & Amini,

2011, 2013), and Gabor filter banks (Qian et al., 2006; T. Chen & Axel, 2006). A Magni-

tude Image CSPAMM Reconstruction (MICSR) (NessAiver & Prince, 2003) method was

introduced later as an alternative reconstruction procedure to combine SPAMM acquisi-

tions using only magnitude images. The resulting signal shared similar characteristics with

CSPAMM (zero mean sinusoid) but with improved tag persistence and enhanced contrast

during most of the acquisition window. Moreover, MICSR cancelled out any spurious

phase gained during the readout from complex SPAMM data. However, due to the dou-

bled acquisition time, the use of both CSPAMM and MICSR remain restricted for clinical

applications, and both CSPAMM and MICSR images are prone to off-resonance effects

during the tagging preparation, which can impact the motion estimation in presence of

tissue with fat content (Fahmy et al., 2009; Reyhan et al., 2014).

To overcome the acquisition time issue, Wang et al. (H. Wang et al., 2011) introduced

the Orthogonal CSPAMM sequence (O-CSPAMM), which allowed to obtain a CSPAMM

image with orthogonal taglines using only two acquisitions instead of four. By rotating

in 90° the tagging gradient in the complementary SPAMM acquisition, O-CSPAMM re-

moved the DC component while generating an orthogonal grid after complex subtraction

(i.e., O-CSPAMM is the sum of two orthogonal zero-mean sinusoids). While this method-

ology allowed the acquisition of data that can be optimally used for motion estimation

(H. Wang et al., 2012) (20), O-CSPAMM is not compatible with MICSR reconstructions

and is prone to off-resonance effects. To fix the off-resonance sensitivity issue, Fahmy

et al. (Fahmy et al., 2009) proposed a new method to cancel the off-resonance effects of

the fat in CSPAMM acquisitions by inverting the tagging gradient of the second SPAMM
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image and adjusting its duration. However, this approach was limited to one chemical

specie (fat) and was inapplicable at field strengths bigger than 1.5T, especially for closely

spaced tag lines. Reyhan et al. (Reyhan et al., 2014) introduced an Off-Resonance Insen-

sitive CSPAMM (ORI-CSPAMM) sequence to compensate for all forms of off-resonance,

in which the tagging gradient was split into two parts separated by a 180° refocusing hard

pulse, removing the off-resonance effects of any chemical specie at the cost of some inten-

sity changes. Nonetheless, the last two approaches share the same time restrictions than

conventional CSPAMM.

In this work, we propose an Off-Resonance Insensitive O-CSPAMM (ORI-O-CSPAMM)

sequence, which takes the best of O-CSPAMM and ORI-CSPAMM. The proposed se-

quence allows the obtention of orthogonally tagged CSPAMM images free of off-resonance

artifacts and suitable for MICSR reconstructions in half of the acquisition time compared

to CSPAMM and ORI-CSPAMM.
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4.3. Methods

4.3.1. Sequence development

Figure 4.1. (A) CSPAMM, (B) O-CSPAMM, (C) ORI-CSPAMM, and (D)
ORI-O-CSPAMM tagging preparations. In all the figures, M, P, and S de-
note the measurement, phase, and slice axes. In the ORI-CSPAMM se-
quence, the spurious phase gained during the tagging preparation is re-
wound by splitting the tagging gradient into two parts separated by a 180°
refocusing hard pulse.

Figure 4.1 shows the pulse sequence diagram for the CSPAMM, O-CSPAMM, ORI-

CSPAMM, and the proposed ORI-O-CSPAMM sequences. The phases of the RF pulses

in Figure 1 determine if the resulting images will be cosine- or sine-modulated (a 0o RF

phase denotes a rotation around the +X axis and a 90o RF phase a rotation around the

+Y ). As a general rule, we can consider that the tagline modulation will vary with the

cos(ϕ(X)−θ), where ϕ(X) is the encoded position and θ the phase of the last RF pulse of
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the tagging preparation (e.g., if the phase of the last RF pulse is 0o or 90o, the taglines will

be cosine- or sine-modulated, respectively). For CSPAMM, as the phases of the second

RF pulses are 0o and 180o (see Figure 1A), the transversal magnetization of each image

after the readout is cosine-modulated and is given by:

MCSPAMM,1 = {f1(t, T1,M0, α)− f2(t, T1,M0, α) cos(keX + ϕtag)} eiϕRO sin(α),

(4.1a)

MCSPAMM,2 = {f1(t, T1,M0, α) + f2(t, T1,M0, α) cos(keX + ϕtag)} eiϕRO sin(α),

(4.1b)

where i =
√
−1 denotes the complex unit, ke the encoding frequency produced by the

tagging gradient, X the tissue position at a reference frame (usually at end-diastole in

cardiac imaging), and ϕtag and ϕRO denote spurious phases induced due to off-resonance

effects during the application of the tagging gradient and the read-out, respectively. It is

important to mention that ϕRO was assumed equal between acquisitions for the sake of

simplicity, although it can vary between images due to phenomena such as eddy currents.

In Eq. 4.1, f1 and f2 are increasing and decreasing functions (respectively) that depend on

the time tn (with n = 0, . . . , Nfr−1 the current frame number andNfr the total number of

frames), the relaxation time T1, the magnetization in the thermal equilibrium M0, and the

flip angle α of the imaging RF pulse (in following equations, the dependency on t, T1,M0,

and α will be dropped to simplify the expressions). Both f1 and f2 take into consideration

that the tissue tends to the thermal equilibrium and the taglines fade, respectively, and take

the following form (Fischer et al., 1993; NessAiver & Prince, 2003):

f1 =M0 sin(α) cos
n(α)(1− e−tn/T1) (4.2a)

f2 =M0 sin(α) cos
n(α)e−tn/T1 (4.2b)

In Equation 4.2, the term cosn(α) represent the residual part of the longitudinal magneti-

zation after a train of n+1 imaging RF pulses of constant flip angle α. Then, the complex
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difference and MICSR images are obtained by:

MCSPAMM =MCSPAMM,2 −MCSPAMM,1

= 2f2 sin(α)e
iϕRO cos(keX + ϕtag) (4.3a)

MMICSR = |MCSPAMM,2|2 − |MCSPAMM,1|2

= 4f1f2 sin
2(α) cos(keX + ϕtag) (4.3b)

In the previous expressions, the complex difference taken in Eq. 4.3a does not remove the

spurious phase gained during the readout, while the MICSR does.

The magnetization expression for each image in a O-CSPAMM is also cosine-modulated

because they use identical RF pulses to CSPAMM. Therefore, the magnetization expres-

sions for O-CSPAMM images are:

MO-CSPAMM,1 = {f1 − f2 cos(keX + ϕtag)} eiϕRO sin(α), (4.4a)

MO-CSPAMM,2 = {f1 + f2 cos(keY + ϕtag)} eiϕRO sin(α), (4.4b)

MO-CSPAMM = f2 sin(α)e
iϕRO{cos(keX + ϕtag) + cos(keY + ϕtag)} (4.4c)

MO-MICSR = 2f1f2 sin
2(α){cos(keX + ϕtag) + cos(keY + ϕtag)}

+ f 2
2 sin

2(α){cos2(keX + ϕtag) + cos2(keY + ϕtag)}. (4.4d)

In Eq. 4.4c, the image obtained by complex difference is a grid consisting of the sum of

two sinusoids, while in Eq. 4.4d, the MICSR image contains unwanted higher order terms.

In ORI-CSPAMM, the tagging gradient during each image’s preparation is split into

two parts with opposite polarities and separated by a refocusing hard RF pulse (see Fig.

4.1A). The last makes that the spurious phase ϕtag gained during the first gradient appli-

cation be completely rewound after applying the second gradient. Additionally, in this

sequence, the phases of the last RF pulses are 90o and 270o, which means that the taglines

are sine-modulated. Thus, the longitudinal magnetization after the third pulse of each
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SPAMM acquisition is:

MORI-CSPAMM,1 = {f1 − f2 sin(keX)} eiϕRO sin(α), (4.5a)

MORI-CSPAMM,2 = {f1 + f2 sin(keX)} eiϕRO sin(α). (4.5b)

In this investigation, we could not reproduce the results of (Reyhan et al., 2014), as the

spurious phase gained during the read-out was not transformed into a cosine modulation

by the subtraction operation (as will be demonstrated later). Therefore, the complex dif-

ference and MICSR images obtained with ORI-CSPAMM are:

MORI-CSPAMM = 2f2 sin(α)e
iϕRO sin(keX), (4.6a)

MORI-MICSR = 4f1f2 sin
2(α) sin(keX), (4.6b)

which have taglines in one direction without off-resonance effects.

With both O-CSPAMM and ORI-CSPAMM, a tagging grid without DC frequencies

can be obtained by acquiring 2 and 4 images, respectively. In both cases, the magnetization

is shifted by eiϕRO , which induces a distortion in the complex image that can be removed

by taking its magnitude or using MICSR. However, the first procedure generates low (DC

component) and high harmonic frequencies, and the second is restricted only to ORI-

CSPAMM because of the presence of higher order terms (see Eq. 4.4d).

To overcome these issues, in ORI-O-CSPAMM we applied the ORI preparation used

in ORI-CSPAMM (see Fig. 4.1C) twice in two orthogonal directions to obtain a SPAMM

grid within each image (see Fig. 4.1D). The final modulation of the grid depends on the

180o and 90o ± 180o phases of the third and sixth RF pulses, respectively, which means

that a grid modulated by the product of a cosine and sine functions will be obtained.Thus,

the pair of images obtained with ORI-O-CSPAMM follows:

MORI-O-CSPAMM,1 = {f1 − f2 cos(keX) sin(keY )} eiϕRO sin(α), (4.7a)

MORI-O-CSPAMM,2 = {f1 + f2 cos(keX) sin(keY )} eiϕRO sin(α), (4.7b)
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which can be combined taking the complex difference or using MICSR, obtaining:

MORI-CSPAMM = f2 sin(α)e
iϕRO cos(keX) sin(keY ), (4.8a)

MORI-MICSR = 2f1f2 sin
2(α) cos(keX) sin(keY ). (4.8b)

In Eq. 4.8a, still contains the phase shift eiϕRO gained during the read-out, but this is fixed

in Eq. 4.8b by the MICSR reconstruction. In both Eqs. 4.8a and 4.8b the obtained result

is a grid.

The expressions given in 4.8 can be re-written using the identity cos(x) sin(y) =

{sin(x+ y)− sin(x− y)}/2, as:

MORI-CSPAMM = f2 sin(α)e
iϕRO{sin(keX + keY )− sin(keX − keY )}, (4.9a)

MORI-MICSR = 2f1f2 sin
2(α){sin(keX + keY )− sin(keX − keY )}. (4.9b)

From Eq. 4.9, three important observations can be done: (a) ORI-O-CSPAMM gives im-

ages with the same contrast as CSPAMM and O-CSPAMM (considering that the absolute

value of the sum of two sinusoids is bounded from above by 2. See Eqs. 4.4c, 4.4d, and

4.9). (b) Although the tagging gradients were applied towards the X and Y directions,

the tagging patterns obtained with ORI-O-CSPAMM are rotated in 45° into the X + Y

and X − Y directions (i.e., to obtain tag lines pointing towards the directions X and Y ,

the ORI-O-CSPAMM gradients must be applied in the directions X − Y and X + Y ).

And (c), in ORI-O-CSPAMM smaller tagging gradient areas (by a factor of 1/
√
2), i.e.

tagging encoding frequencies, are needed to generate the same tag period as in CSPAMM,

ORI-CSPAMM, and O-CSPAMM (this is more evident if we consider the frequency of

the wave sin(k ·X), where k = (ke, ke), X = (X, Y ), and ∥k∥ =
√
2ke).

It is important to notice that using the two complementary images scanned with CSPAMM

and ORI-CSPAMM sequences, only 1D motion information can be obtained, while with

the same data scanned with O-CSPAMM and ORI-O-CSPAMM, 2D motion information

can be recovered.
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Table 4.1. Imaging parameters used during the acquisition of the in-silico
and in-vivo data. All the volunteers shared the same imaging parameters,
only differing in the number of cardiac phases.

Phantom Volunteers

ETL (TFE factor) 5 5
Acq. Matrix 160× 120 160× 75

Recon. Matrix 160× 160 160× 160
FOV (mm2) 175× 175 260× 260

Tag period (mm) 17.5 17.5
Slice thickness (mm) 8 8

FA 10° 10°
Cardiac phases 21 23, 24, 31

TR/TE 7.0/3.4 5.3/2.6
Trigger delay (ms) 31 26
Abbreviations: ETL, echo-train-length; FA, flip angle.

4.3.2. Phantom and in-vivo data acquisition

A phantom consisting of a bottle filled with the same amount of water and vegetable

oil was scanned. For the in-vivo acquisition, three healthy male volunteers with age 27,

28, and 35 years old, weight 60, 74, and 68 kg, and heart rate 51, 68, and 71 beats/min

were studied. Each volunteer provided a written informed consent approved by the local

institutional review board. ECG triggered images were acquired at end-expiration in a

bread-hold condition. Mid-level short-axis views of the heart were obtained using a four-

element cardiac coil. The phantom and in-vivo protocols consisted of the acquisition

of bSSFP, CSPAMM, ORI-CSPAMM, O-CSPAMM and ORI-O-CSPAMM images. For

the ORI-O-CSPAMM scans, tagging gradients 1/
√
2 times weaker were applied in the

directions X + Y and X − Y to achieve the user-defined tag-period in the directions X

and Y .

All the sequences for both phantom and in-vivo acquisitions were acquired on a 1.5T

Achieva system (Philips, Best, The Netherlands) using a multi-shot Turbo-Field-Echo

(TFE) with imaging parameters listed in the Table 4.1, setting the shortest trigger delay

time and the maximum number of cardiac phases.
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4.3.3. Image analysis

To compare the signal characteristics of ORI-O-CSPAMM, we normalized the signal

of each complementary image before the complex difference and MICSR reconstructions

and compared the normalized mean signals of ORI-O-CSPAMM and ORI-CSPAMM in

both fat and water regions of the phantom. The images were normalized by the M0 of

the fat, which has the biggest magnitude at the first cardiac phase (see Fig. 4.2). M0

was estimated by calculating the mean signal inside a ROI in the fat region of one of the

complementary acquisitions of the ORI-CSPAMM sequence (see Fig. 4.1B and Eq. 4.1),

as proposed by NessAiver et al. (NessAiver & Prince, 2003).

To obtain the normalized mean signal, two rectangular ROIs with the same dimensions

were placed in the fat and water regions. Then, the maximum signal of the magnitude of

the complex difference images inside each ROI was found and used to define a threshold.

This procedure was applied to the first cardiac phase, masking the pixels where the signal

was greater than 0.65 times the maximum value obtained inside each rectangular ROI,

obtaining the fat and water masks shown in Fig. 4.2. Finally, the normalized mean signal

was calculated with the pixels inside the fat and water masks.

Figure 4.2. Fat and water masks used for the estimation of the Normalized
Mean Signal in (A) ORI-CSPAMM and (B) ORI-O-CSPAMM images.
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The off-resonance insensitive benefits and the capacity to obtain MICSR images of

the proposed ORI-O-CSPAMM sequence are shown by comparing the acquired images

qualitatively to O-CSPAMM.

4.4. Results

4.4.1. Phantom acquisition

Figure 4.3. Water and fat phantom images obtained using complex dif-
ference (CD. Upper row) and MICSR (bottom row). The images were
acquired using (A) bSSFP, (B) CSPAMM, (C) ORI-CSPAMM, (D) O-
CSPAMM, and (E) ORI-O-CSPAMM sequences. The trigger delay of each
image is shown in the figures and varies due to the different duration of the
preparation pulses. The images acquired without ORI preparation showed
a shift in the tagging pattern at the water-fat interface. The MICSR image
obtained from O-CSPAMM lost the grid pattern as predicted in Eq. 4.4d.

Figure 3 shows the first frame of the complex difference and MICSR images obtained

from CSPAMM, ORI-CSPAMM, O-CSPAMM, and ORI-O-CSPAMM data. The differ-

ences in the trigger delay time between acquisitions is due to the different duration of

the preparation pulses. The resulting images show that those acquired without using the

ORI preparation (see Figures 4.3B and 4.3D), presented a shift at the fat-water interface.

Images obtained using complex difference showed a higher signal than MICSR, which
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is the expected behavior. Tagging patterns were correctly obtained with MICSR using

CSPAMM, ORI-CSPAMM, and ORI-O-CSPAMM scans, while using O-CSPAMM, dis-

torted grids were obtained due to the second-order sinusoidal term in 4.4d. The complex

difference and MICSR images obtained with O-CSPAMM showed distorted grids in the

water region produced by high-frequency spectral peaks.

Figure 4.4. k-spaces of the (A) first complementary image acquired by
each sequence and (B) the complex difference (CD) reconstructions. High-
frequency spectral peaks are present on all the images in (A) although are
less visible with ORI-O-CSPAMM (see red arrows). In the complex dif-
ference images, the most energetic high-frequency peaks are completely
removed with all the sequences but not with O-CSPAMM (see red arrows
in (B)), which generate distortions in the water part of the phantom image
(see Fig. 4.3). Although 45° rotated and weaker gradients were applied
using ORI-O-CSPAMM, the same encoding frequency (tag period) was
achieved compared to the other sequences (see blue vertical arrows in (B)).

Fig. 4.4 shows the k-spaces of the first complementary image and the complex dif-

ference reconstructions (see Fig. 4.3) obtained in the phantom with the four acquisition

sequences. High-frequency spectral peaks are present in all the k-spaces of the first com-

plementary images, but their intensity is reduced with ORI-O-CSPAMM (see Fig. 4.4A).

The additional spectral peaks are generated by the reduced k-space in the phase direc-

tion (see Table 4.1). In the case of O-CSPAMM, the most energetic high-frequency peaks
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were not removed after taking the complex difference (see Fig. 4.4B), which curiously

only distorted the water part of the phantom image (see Fig. 4.3D). For the acquisition

of the ORI-O-CSPAMM data, the tagging gradients were rotated in 45° into the direction

X + Y and X − Y and made weaker by a factor of 1/
√
2. However, the same period and

direction of the tagging lines was observed as stated by the Eq. 4.9.

Fig. 4.5 shows the normalized mean signal for the fat and water regions. The signal

curves obtained from complex-difference showed the expected behavior in both fat and

water, with the highest signal in the first cardiac phase and decaying through the acquired

temporal window. The signals measured from MICSR images also behaved as expected

although there were evident differences between fat and water curves. In the fat (see

Fig. 4.5A), the MICSR signals increased at the very beginning of the acquisition window,

reaching higher values than those obtained by complex difference, and decaying until the

end, which follows the characteristic signal behavior of MICSR images. In the water

(see Fig. 4.5B), however, the decaying part of the MICSR signals are not appreciable in

the acquisition window used due to the long T1. Overall, the normalized mean signals

obtained from ORI-O-CSPAMM scans were almost equal in complex difference images

and slightly higher in MICSR images.
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Figure 4.5. Normalized mean signal in the fat (A) and water (B) ob-
tained from images reconstructed using complex difference (CD) and
MICSR, from data acquired using ORI-CSPAMM and ORI-O-CSPAMM
sequences. The normalized signal from an ORI-CSPAMM acquisition is
shown using a blue and red continuous line respectively, while curves ob-
tained from an ORI-O-CSPAMM acquisition are displayed using blue and
red square markers.

4.4.2. In-vivo acquisition

Fig. 4.6 shows the first cardiac phase of complex difference and MICSR images ob-

tained with O-CSPAMM and ORI-O-CSPAMM for the three volunteers. MICSR images

obtained from O-CSPAMM acquisitions produced distorted grid as predicted by the Eq.

4.4d, which was not the case of ORI-O-CSPAMM acquisitions. The signal of complex

difference images was higher than MICSR images for the three volunteers, which was

also observed in the phantom (see Figures 4.3 and 4.5) and it is the expected behavior.

The three volunteers presented epicardial and subcutaneous fat (see bSSFP images in Fig.

4.6), which distorted the tagging grids in O-CSPAMM (see red arrows in Fig. 4.6) but not

in ORI-O-CSPAMM images.

Fig. 4.7 shows the same results described for the Fig. 4.6 but for an end-systolic

cardiac phase. The signal of MICSR obtained from ORI-O-CSPAMM was higher than
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complex difference images in all the cases, which was also observed in the phantom (see

Figures Fig. 4.3 and Fig. 4.5) and it is the expected behavior.

O-CSPAMM ORI-O-CSPAMM

Figure 4.6. Images acquired using the O-CSPAMM (second column) and
ORI-O-CSPAMM (third column) sequences and reconstructed using com-
plex difference (CD) and MICSR for (A) volunteer 1, (B) volunteer 2, and
(C) volunteer 3. Each volunteer has a bSSFP image as reference. The dis-
played images correspond to the end-diastolic cardiac phase. The discrep-
ancies in the trigger delay times are due to the difference in the duration of
the preparation pulses. The red arrows show the places where the grid is
distorted by the presence of epicardial and subcutaneous fat. The images
acquired with ORI-O-CSPAMM did not show any distortion in the places
indicated by arrows.
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Figure 7 shows the same results described for the Figure 6 but for an end-systolic

cardiac phase. The signal of MICSR obtained from ORI-O-CSPAMM was higher than

complex difference images in all the cases, which was also observed in the phantom (see

Figure 3 and 5) and it is the expected behavior.
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O-CSPAMM ORI-O-CSPAMM

Figure 4.7. Images acquired using the O-CSPAMM (second column) and
ORI-O-CSPAMM (third column) sequences and reconstructed using com-
plex difference (CD) and MICSR for (A) volunteer 1, (B) volunteer 2, and
(C) volunteer 3. Each volunteer has a bSSFP image as reference. The dis-
played images correspond to the end-systolic cardiac phase. The discrep-
ancies in the trigger delay times are due to the difference in the duration
of the preparation pulses and the cardiac cycle. The red arrows show the
places where the grid is distorted by the presence of epicardial and subcu-
taneous fat. The images acquired with ORI-O-CSPAMM did not show any
distortion in the places indicated by arrows.
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4.5. Discussion and conclusions

Although the CSPAMM sequence provides images that are suitable to assess not only

the cardiac function but also to evaluate other organs (X. Liu & Prince, 2010; Lefebvre et

al., 2019), its use remains limited for clinical applications due to the prolonged scan times.

Additionally, images obtained from CSPAMM data can suffer from off-resonance effects

generated during the tagging preparation. In this investigation a new acquisition sequence

called ORI-O-CSPAMM was proposed to tackle these issues. ORI-O-CSPAMM allows

the acquisition of a tagging grid free of DC frequencies and free of off-resonance effects

in half of the acquisition time compared to the CSPAMM and ORI-CSPAMM sequences.

Furthermore, ORI-O-CSPAMM is suitable to obtain MICSR images, which cannot be

obtained with O-CSPAMM and could be beneficial to improve the tagging contrast for

some clinical applications.

The most used tagging sequence is SPAMM, which can be used to obtain taglines or

grids using only one acquisition. In the latter case, the grid modulation is obtained by

two consecutive orthogonal SPAMM prepulses applied in the same preparation (Axel &

Dougherty, 1989b), which does not affect the scan time. Compared to SPAMM, the pro-

posed ORI-O-CSPAMM sequence takes twice the scan time to acquire a tagging grid with

the benefit of removing the DC component, the off-resonance artifacts, and the spurious

readout phases (in the case of MICSR images). In the same way, O-CSPAMM takes twice

the scan time, and CSPAMM and ORI-CSPAMM take four times.

In healthy people, the primary source of off-resonance artifacts in cardiac tagged MR

images is the epicardial fat, which can bias the estimation of motion and related param-

eters such as strain and twist. Nevertheless, if the heart is correctly segmented, the fat

should not play a role in the estimation of strain parameters. However, in patients with

fatty infiltration of the LV, i.e., where the fat is inside the cardiac tissue, sequences such as

ORI-CSPAMM and ORI-O-CSPAMM could improve the cardiac motion and strain esti-

mations. Moreover, a recent study has demonstrated that the strain estimated from tagged
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MR images is a valuable marker for staging non-invasively liver fibrosis (Lefebvre et al.,

2019) in Non-Alcoholic Fatty Liver Disease (NAFLD) patients. As the NAFLD stages

are an inflammatory process in the presence of fat, we hypothesize that the use of ORI

sequences can be helpful at the early stages of the disease. Even more, ORI-O-CSPAMM

can be used in clinical protocols replacing SPAMM, which would increase the scan time

of tagging grids by a factor two instead of four as it would be done with ORI-CSPAMM.

In phantom and in-vivo data, ORI-CSPAMM and the proposed ORI-O-CSPAMM se-

quences corrected the distortions generated by the vegetable oil and epicardial and subcu-

taneous fat (see Figures 4.3, 4.6, and 4.7). Also, we found that O-CSPAMM was particu-

larly sensitive to unwanted high-frequency spectral peaks, which distorted the grid in the

water part of the phantom images (see Fig. 4.3). The same behavior was not observed on

in-vivo data. We hypothesize that although the complex difference did not remove these

spectral peaks, the distortion generated in the water part of the phantom was not visible

in tissues with shorter relaxation times such as those scanned in the in-vivo experiments

due to the signal decay. Additionally, we demonstrated that the signal obtained with the

ORI-O-CSPAMM sequence was comparable to ORI-CSPAMM and no major differences

were observed (see Fig. 4.5).

In this investigation we could not reproduce the results obtained in (Reyhan et al.,

2014) for ORI-CSPAMM in which the spurious phase gained during the readout was con-

verted into a cosine modulation in complex difference images. However, this was also

an issue with the three other sequences. In Fig. 4.8, the phase of the complex difference

phantom images is non-zero due to the off-resonance effects and non-idealities during the

readout. Here we showed that this adverse condition can only be corrected using MICSR.
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Figure 4.8. Phase of the complex difference (upper row) and MICSR im-
ages (bottom row) obtained from (A) CSPAMM, (B) ORI-CSPAMM, (C)
O-CSPAMM, and (D) ORI-O-CSPAMM sequences. In complex difference
images the phase is always non-zero while in MICSR images the phase is
zero and π (the last is due that MICSR images have only real part that varies
from positive to negative values).

Concerning the image quality obtained with MICSR images, in Fig. 4.6, results ob-

tained from ORI-O-CSPAMM data showed low image quality compared to complex dif-

ference. This behavior is expected with MICSR because the term f2 is close to zero for

short times (see 4.2b). In fact, for the trigger time of 36 ms showed in Fig. 4.6, the term

1 − exp(−t/T1) takes a value of 0.042, which makes the signal became much smaller.

The low-quality images are less evident in the phantom data (see Fig. 4.3) as the coil was

closer to the scanned bottle. In contrast, the quality of MICSR images in Fig. 4.7 looks

better than the complex difference due to its signal behavior, which is bigger for a trigger

time of 293 ms (see Figure Fig. 4.5).

When the maximum gradient of an MR system is limited by the hardware, ORI-O-

CSPAMM also allowed the reduction of the gradient amplitude (or duration) into a 70%

of the strength needed to generate the same tag periods with the other sequences. This was

predicted by Eqs. 4.9a and 4.9b and confirmed by the phantom and in-vivo acquisitions

(see Figures 4.3, 4.4, 4.6, and 4.7).
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For the imaging parameters described in Table 4.1 for the acquisition of the volunteers,

the average breath-hold duration with O-CSPAMM and ORI-O-CSPAMM sequences was

16 seconds, which is tolerable for almost any person, including patients with cardiopathies.

With the CSPAMM and ORI-CSPAMM sequences, on the other hand, the average breath-

hold needed to obtain 2D information would be around the 32 seconds (twice the time

needed for the CSPAMM and ORI-CSPAMM scans in this investigation). The 16 seconds

breath-hold duration could be further reduced using acceleration techniques such as half-

scan (Feinberg, Hale, Watts, Kaufman, & Mark, 1986; MacFall, Pelc, & Vavrek, 1988),

SENSE (Pruessmann, Weiger, Scheidegger, & Boesiger, 1999), and compressed sensing

(Lustig, Donoho, & Pauly, 2007), or using faster readouts such as spirals (Ahn, Kim, &

Cho, 1986; Börnert, Schomberg, Aldefeld, & Groen, 1999).

It must be noticed that the tagging preparation time needed to acquire ORI-O-CSPAMM

data is a few milliseconds longer than with the other sequences due to the duplicated

preparation. This is better appreciated in Figures 4.3, 4.6, and 4.7, were the trigger de-

lay time of the first cardiac phase of the data acquired using ORI-O-CSPAMM was 5

ms longer than the CSPAMM and ORI-CSPAMM sequences. The total duration of the

ORI-O-CSPAMM preparation for the imaging parameters given in Table 4.1 was 7.8 ms,

whereas for CSPAMM, ORI-CSPAMM, and O-CSPAMM was 3.1, 3.9, and 3.1 ms re-

spectively.

Although not considered in this study, ORI-O-CSPAMM can be made more robust by

adding slice-selective RF pulses during the tagging preparation to obtain a Slice-Following

sequence (Fischer et al., 1994), which handles the through-plane motion of the heart dur-

ing the acquisition. Additionally, variable flip angle strategies can be used in the readout

to improve the tagging contrast at the end of the scanned temporal window.

Strain analysis from MR images has been extensively used to assess the cardiac func-

tion (Smiseth, Torp, Opdahl, Haugaa, & Urheim, 2016). Feature tracking (Wu et al.,

2014; Amzulescu et al., 2019) has gained a particular interest lately because it allows the

strain analysis from bSSFP cine images, in detriment of techniques such as tagging MRI
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(SPAMM and CSPAMM), Displacement Encoding with Stimulated Echoes (DENSE)

(Aletras et al., 1999), and Strain-Encoded MRI (SENC) (Osman et al., 2001; Neizel et

al., 2009). The advantage of feature tracking over the other techniques is that it does

not need an additional image for strain analysis, although it can suffer from poor repro-

ducibility for regional estimation (Bucius et al., 2020). Even though tagging (particularly

CSPAMM), DENSE, and SENC are robust and highly reproducible for regional strain es-

timation (Bucius et al., 2020; Haggerty et al., 2013), they suffer from long scan time that

difficult their translation to clinical protocols. The long scan time can be handled with

ORI-O-CSPAMM, which allows the obtention, in only two scans, of grids suitable for any

tagging post-processing method. Even for 3D scans, ORI-O-CSPAMM would still need

two acquisitions to obtain a 3D grid by adding a third tagging preparation in the slice di-

rection (for 3D images, CSPAMM and DENSE need 6 and 4 acquisitions, respectively).

Compared to feature tracking, strain analysis from ORI-O-CSPAMM data would improve

the regional strain estimation without a considerable increase of the scan time. Compared

to SPAMM, it would remove biases related to off-resonance artifacts, DC contamination,

and spurious readout phases.

In conclusion, we introduced a novel and fast sequence designed to remove off-resonance

effects during the tagging preparation, obtain complex difference grids, and obtain MICSR

grids in half of the scan time, which could allow its application to clinical protocols. The

proposed ORI-O-CSPAMM sequence could be especially useful to study the function of

organs suffering from diseases involving fat, such as fatty LV infiltration or NAFLD.
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5. FUTURE WORK AND PERSPECTIVES

Additional work not listed in the publications’ chapters is presented in this section.

Three research ideas regarding the heart’s and other organs’ biomechanical quantification

are divided into short-term and mid-term works. The investigation in a more advanced

state is shown as short-term work.

5.1. Short-term: A Phase Complementary SPAMM (PCSPAMM) acquisition to quan-

tify simultaneously tissue motion and flow velocity

The cardiac function can be assessed using regional and simultaneous measurements

of motion and velocities in the left-ventricle (Zhang et al., 2013). Previously, SPAMM

EGG’s (Sampath, Kim, Lederman, & McVeigh, 2008) and SPAMM-PAV (Zhang et al.,

2011) have demonstrated to be useful techniques to obtain temporally correlated measures

of both motion and velocity by combining a tagged MR acquisition with Phase-Contrast

(PC) MRI. However, both approaches do not allow the measurement of early-systolic ve-

locities and late-diastolic motion. In this work a new technique is presented, which com-

bines a CSPAMM acquisition (Fischer et al., 1993) with PC, allowing the measurement of

both motion and velocity across the whole cardiac cycle.
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Figure 5.1. Pulse sequence diagram of the proposed PCSPAMM sequence.
Bipolar gradients with opposite polarities are applied after the excitation
RF pulse during the readout in each SPAMM acquisition.

Similarly to SPAMM-PAV, a 1-1 CSPAMM acquisition was combined with PC-MRI

by adding a bipolar gradient with alternate polarities to each SPAMM acquisition (see

Fig. 5.1). Two images containing information of the position and velocity of the tissue are

measured, whose intensities are given by:

I1 = a+ b cos(ϕx(p, t))e
+iϕine−iϕv , (5.1a)

I2 = a− b cos(ϕx(p, t))e
+iϕine+iϕv , (5.1b)

where a and b are increasing and decreasing functions depending on the position of the

underlying tissue p, the relaxation time T1, and the acquisition time t. In the previous

expressions, cos(ϕx) denotes the sinusoidal tagging pattern, ϕin the phase induced by field

inhomogeneities, and ϕv the phase induced by the bipolar gradients. From the expressions

given in the Eq. 5.1, ϕin and ϕv are estimated using the following expressions:

ϕin = ∠(I1 + I2), (5.2a)

ϕv = ∠(I1e
−iϕin + conj(I2e−iϕin)). (5.2b)

With both phases estimated using Eq. 5.2, the images I1 and I2 are phase-corrected,

allowing the generation of a CSPAMM image (Fischer et al., 1993).
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Preliminary results consisting of a 4-chambers view of a healthy volunteer acquired

in a 1.5T Achieva MR scanner (Philips, Best, Netherlands) are presented. Two sets of

PCSPAMM images which allowed the obtention of tagged images in the read-out and

phase directions and velocity encoded images in the phase and through-plane directions

were acquired.

Figure 5.2. MICSR and real part of the CSPAMM image reconstructed
from PCSPAMM data at end-systole. After the inhomogeneity correction,
the CSPAMM image did not showed lines distortions, leading to a sinu-
soidal pattern similar to MICSR.

In Fig. 5.2 a comparison between the estimated CSPAMM image obtained with our

proposal and the respective MICSR (NessAiver & Prince, 2003) image is presented. As
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MICSR is a magnitude reconstruction, the phase of the acquisition did not distort the tag

lines. In the case of the estimated CSPAMM image, the tagging pattern is similar to the

obtained with MICSR, which means that the phase correction proposed in (5.2) works

properly.

Fig. 5.3 shows the PC images obtained with our technique and a SPAMM-PAV-like

reconstruction at the earliest systolic cardiac phase. Fig. 5.4 shows the mean velocities

estimated using a SPAMM-PAV-like reconstruction and our proposal through the whole

cardiac cycle. The mean values were calculated on a ROI positioned near the mitral valve

(see Fig. 5.3). The estimated velocity with PCSPAMM was close to the SPAMM-PAV

results, giving mean peak velocity magnitudes of 57± 10 and 55± 11cm/s respectively.

Figure 5.3. PC images estimated using PCSPAMM (top row) and a
SPAMM-PAV-like reconstruction for trigger times of (a) 10 msec and (b)
505 ms. In both cases the velocity is shown in the AP and FH directions,
and the red circle denotes the ROI placed near the mitral valve. In our
proposal the phase is almost free of artifacts generated by the sinusoidal
tagging modulation.
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Figure 5.4. Mean velocity magnitude in a ROI placed close to the mitral
valve obtained from PCSPAMM and SPAMM-PAV.

The proposed technique allows the estimation of a PC and a CSPAMM using two

complementary acquisitions for each encoding direction. The estimated PC images were

similar to the SPAMM-PAV estimations, but with our technique less artifacts were found

at early diastolic cardiac phases (see Fig. 5.3). In the case of the CSPAMM image, the tag

persistence is improved as the DC spectral component is removed, allowing the estimation

of motion through the whole cardiac cycle.

5.2. Mid-term

We want to apply the proposed ORI-O-CSPAMM sequence and the HARP-I motion

estimation technique to liver tagging MR images in the medium term. Recently, the

connection between the liver strain obtained from tagged MR images and the stages of

Non-Alcoholic Fatty Liver Disease (NAFLD) was investigated (Lefebvre et al., 2019),

obtaining an excellent correlation between them. As the early stages of the NAFLD are
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associated with the amount of fat in the liver, we hypothesize that off-resonance insen-

sitive acquisition sequences such as the proposed ORI-O-CSPAMM would improve the

estimation of liver strain as would reduce the off-resonance artifacts produced by fat.

Additionally, we want to investigate and improve the estimation of the Lagrangian

strain tensor components that currently are not correctly estimated from MR images due

mainly to technical limitations (Augustine et al., 2013; Swoboda et al., 2011; Haggerty et

al., 2013). Remarkably, the radial cardiac strain is often misestimated due to the limited

resolution through the left ventricle’s radial direction. We hypothesize that the radial com-

ponent can be estimated indirectly from the other tensor components, which do not suffer

from the resolution issue.
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6. CONCLUSIONS

A complete framework for estimating the cardiac motion and strain using tagged MR

images was developed in this investigation. The presented methodologies represent novel

quantitative tools for assessing the cardiac function, although they could also be applied

to other organs. This research will help to scan faster and better tagging MR images and

get better information from its processing.

Although the three research articles were not tested together, they can improve the

tagged MR images’ quality and the tissue motion and strain estimation using a joint frame-

work. The first article elucidate which imaging and processing techniques work better

under certain imaging conditions, which helps set the correct imaging parameters in the

scanner and correctly choose the processing tools to be used.

The second article introduced a novel motion estimation technique called HARP-I

that enhanced the motion and strain estimation from tagged MR images. The proposed

technique handled some known issues of the current processing techniques such as large

frame-to-frame displacements, through-plane displacements, and DC contamination. In

combination with optimally acquired tagging images (i.e., using ORI-O-CSPAMM with

parameters chosen according to the first publication), HARP-I would allow even more

precise and accurate estimations.

The third article introduced a novel and fast acquisition sequence called ORI-O-CSPAMM,

which allowed the acquisition of tagging grids in half of the scan time. Combined with tag

periods and pixel sizes discussed in the first article, the proposed sequence would allow

the acquisition of high-quality tagging images free of DC frequencies and off-resonance

artifacts and with image characteristics that make it suitable for motion estimation tech-

niques.
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Overall, the methods proposed in this thesis are an improvement to the state-of-the-art

tagging acquisition and processing techniques and could improve the study of the cardiac

function as well as other organs.
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A. APPENDIX FOR PUBLICATION 1

A.1. Motion model

The two-dimensional motion model of the idealized left-ventricle (LV) used in the ex-

periments was introduced in (Gilliam & Epstein, 2012) and depends on several parameters

defining both the geometry and its behaviour. Let t ∈ [0, 1] denote the time through the

cardiac cycle. The position of the deformed LV tissue is given by the polar pair (r, θ): r(t)

θ(t)

 =

 rED

θED

+

 ur(t)

uθ(t)

 , (A.1)

where r, θ denotes the position of the deformed tissue at the time t, (rED, θED) the end-

diastolic position of the tissue (the reference position at t = 0), and (ur, uθ) the radial

and angular displacement of the tissue at the time t which are defined through the set of

parameters [dep, φep] and [den, φen] via:

Figure A.1. Modulation function used to weight the cardiac motion.

 ur(t)

uθ(t)

 = Γ(t)

 (1− µ)dep + µden

(1− µ)φep + µφen,

 (A.2)
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where Γ(t) is a modulation function used to emulate the cardiac cycle (see Figure A1)

given by:

Γ(t) =


0 if t < tA

1.005− 1.005e−5(t−tA)/(tB−tA) if tA ≤ t < tB

e−11(t−tC) if t ≥ tB

(A.3)

The µ parameter given in (A.2) is calculated as:

µ =

(
Rep − rED

Rep −Ren

)σ

, (A.4)

where rep represents the epicardial radius, Ren the endocardial radius, and σ ∈ [0,∞[ a

parameter that skews the motion towards the epicardial (σ > 1) or endocardial (σ < 1)

wall. Thus, the end-sytolic position of the LV is obtained using: rES

θES

 =

 rED

θED

+

 (1− µ)dep + µden

(1− µ)φep + µφen,

 . (A.5)

For patient data, the displacement given in (A.2) is slightly modified to obtain an abnormal

motion pattern using: upr(t)

upr(t)

 = Γ(t)

Ψ(θED)

 rES

θES

−

 rED

θED

 , (A.6a)

Ψ(θ) =
χ(1− cos(θ − ψ))

2
, (A.6b)

where Ψ is a weighting function that reduces the tissue motion in the direction ψ ∈ [0, 2π]

by a factor χ ∈ [0, 1].

The set of parameters used in this study are presented in Table A.1.

For the three-dimensional simulations, the through plane component of the motion is

completely described in the article.
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Table A.1. Set of parameters used to generate the synthetic geometries and
motion patterns. The notation x ∼ U(a, b) means that for every simulation,
the variable x was selected from a uniform distribution on the range (a, b).
The epicardial radius is calculated using Rep = Ren + τ , den = (1 −
Sen)Ren, and dep was calculated to obtain the change in left-ventricular
area imposed by Sar.

Parameter name Parameter symbol and value

End-diastolic endocardial radius Ren ∼ U(10, 30) mm
End-diastolic wall thickness τ ∼ U(7.5, 12.5) mm
End-systolic endocardial scaling Sen ∼ U(0.6, 0.8)
End-systolic area scaling Sar ∼ U(0.6, 0.8)
End-systolic endocardial twist φen ∼ U(−10o, 10o)
End-systolic epicardial twist φep = 0o

Γ(t) parameters (see Fig. A.1) tA ∼ U(0.05, 0.15)
tB ∼ U(0.35, 0.45)
tC ∼ U(0.5, 0.6)

Abnormal angle (if present) ψ ∼ U(0o, 360o)
Abnormal scale (if present) χ ∼ U(0.5, 1.5)
Motion skew parameter σ ∼ U(0.5, 1.7)
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B. APPENDIX FOR PUBLICATION 2

B.1. Exact interpolation condition

To determine the RBF weights associated with the interpolation function g(·) in Eq.

3.7, satisfying the exact interpolation condition g(XV (xi, tk)) = xi, the following linear

system must be solved (Buhmann, 2003):

Ψλ = G (B.1)

where λ is a column vector of RBF weights, G a column vector containing the deformed

positions of each pixel (observations), and each element of the matrix Ψ, for m,n ∈

{1, · · · , Npixels}, is given by:

Ψmn = ψ(∥XV (xm, tk)−XV (xn, tk)∥). (B.2)

B.2. Evaluated norms in the RBF interpolator

As the deformation map φ(X, t) is invertible (Gurtin et al., 2010), there are two points

P ∈ R0 and p ∈ Rk satisfying X(x(p), tk) = X(P , t0) (see Figure 3.1). Therefore, the

next relation holds:

XV (P , t0)−XV (x(p), tk) = ∆nϕ (B.3)

where ∆nϕ(x) = nϕ(P , t0)− nϕ(p, tk) represents a noise difference.

Considering that the euclidean norm of the relation Eq. B.3 relates to the noise differ-

ence, the evaluation of XV (X, t0) in the interpolator in Eq. 3.7 gives an estimate of the

target function on the reference domain.
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