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Ground-state fluctuations reduce the zero-temperature magnetic moments of the spins in a quantum antifer-
romagnet. In the neighborhood of surfaces, interfaces, and other defects which break translational symmetry,
these fluctuations are not uniform. Because of this, the magnetic moments of up and down spins do not exactly
compensate each other—as they do in a bulk antiferromagnet. At a surface or interface this leads to a small
magnetic dipole density. The corresponding dipole field can account for the magnitude of observed exchange
anisotropies. At finite temperatures localized surface �interface� excitations are populated and change the dipole
density, making the exchange field temperature dependent. In a pure antiferromagnet fluctuations may induce
a net surface magnetization. This should be observable in clean surfaces, by means of surface-sensitive
magnetic probes such as the magneto-optic Kerr effect.
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I. INTRODUCTION

Exchange anisotropy arises when two differently ordered
magnetic materials, one ferro- and the other antiferromag-
netic, being in contact, are cooled through their ordering
temperatures in an external magnetic field. It has been ob-
served, for example, in clusters or small particles, ferromag-
netic �FM� films deposited on single-crystal or polycrystal-
line antiferromagnetic �AFM� substrates, FM or AF thin-film
bilayers, and spin glasses. In these systems the center of the
hysteresis loop is shifted by an amount called the exchange
bias field. With the convention that the positive field direc-
tion is that of the cooling field, this exchange bias is, in most
cases, negative.

Although exchange anisotropy has attracted the attention
of physicists and materials scientists for almost half a
century1–4 and has resulted in extensive technological appli-
cations in the storage and sensor industries,5 a full under-
standing of its physical origin has not been achieved.

From the experimental results it is now certain that the
effect is due to a fixed spin arrangement on the AFM side of
the interface.6–8 However, the nature of this arrangement and
the microscopic mechanism leading to the exchange bias
field are still open questions. Most of the theoretical work
has made use of the classical Heisenberg model in various
forms,4 an exception being the contribution of Suhl and
Schuller,9 who have interpreted the exchange field as a self-
energy shift due to the emission and reabsorption of AFM
spin waves. Recently, a theory based on the Dzyaloshinsky-
Moriya interaction has been developed by Ijiri et al.10

In this paper we put forward the idea that quantum fluc-
tuations lead to a two-dimensional dipole moment density in
the AF. This, in turn, generates a dipolar field which can
account for exchange bias anisotropy, and we argue here that
exchange bias thus results from quantum fluctuations. Let us
address this claim for the case of a two-sublattice antiferro-

magnet, for which the relevant order parameter is the stag-
gered magnetization �M̂AF�=g�B���Ŝ�−��Ŝ��, where Ŝ�

and Ŝ� denote the spin operators at the spin-up and spin-
down sublattices. If we assume a Heisenberg Hamiltonian
H=�ijJijŜi · Ŝ j, we can see that �M̂AF ,H��0, in other words,

that M̂AF is not constant in time. Therefore its time-averaged
value must be smaller than its maximum value, even at T
=0. �If N is the number of spins and �S�S+1� is the spin
magnitude, this maximum value is NS.� In a translationally
invariant system the reduction of the magnetization is
equally shared by all spins. Moreover, since the spin-up and

spin-down sublattices are equivalent then ���Ŝ��=−���Ŝ��,
that is, the system magnetic moment is zero. But when trans-
lational symmetry is broken by surfaces, interfaces, or other
defects, a net magnetic moment can appear because the de-
crease of spin-up averages need not equal the corresponding
spin-down reduction.11–14

In this paper we show how in an ideal FM-AFM interface
such a net magnetic moment appears. The resultant magne-
tization is confined to the interface itself and may be re-
garded, in the continuum limit, as a two-dimensional dipole
density. This dipole sheet produces a magnetic field which
interacts with the moments in the FM and contributes an
additional term to the magnetic energy. This additional en-
ergy term can explain exchange bias.

Our numerical results indicate that the magnitude of this
magnetic moment is only a few percent of that of a single
AFM spin, which leads to a magnetic anisotropy consistent
with the experimental results.

II. IDEAL FERROMAGNETIC-ANTIFERROMAGNETIC
INTERFACE

We now describe our model system, in which atomic
spins of magnitude �S�S+1� are located at the sites of a bcc
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lattice. Our system is divided in two halves by a �001� inter-
face. On one side of the interface, nearest-neighbor spins are
coupled ferromagnetically by the exchange integral −JF. On
the other, nearest-neighbor spins are coupled antiferromag-
netically by the exchange integral JA. Across the interface,
spins are coupled by the exchange integral −J0.

We decompose the bcc lattice into planes parallel to the
interface. In the AFM side, each of these planes is FM or-
dered and its spin direction alternates from one plane to the
next; we group these planes into pairs and label each pair
with the index l�0, in such a way that l=0 labels the pair of
planes closest to the interface; for each pair we label the
corresponding planes with the subscript � for spins up, and
the label � for spins down. In the FM side each index �l
�0� denotes a single, spin-up, layer. This choice of notation
reflects the fact that in the AFM the unit cell is doubled. The
Hamiltonian can be written as

H = �
l=0

+�

�
R,	

�Jl,lS��l,R� · S��l,R + 	� + Jl,l+1S��l,R + 	� · S��l

+ 1,R�� + �
l=−�

−1

�
R,	

Jl,l+1S��l,R + 	� · S��l + 1,R� , �1�

where R=a�n1x̂+n2ŷ� specifies a two-dimensional lattice
point, a is the lattice constant, n1 and n2 are integers, 	
=a�±x̂+ ± ŷ�, and Sa�l ,R� �Sb�l ,R�� is a spin in the � ���
plane of the lth pair �and at site R in that plane�.

We use the Holstein-Primakoff transformation to rewrite
the Hamiltonian in terms of boson operators a and b. Spin-
wave interactions are neglected and therefore we discard
quartic and higher-order terms. To take advantage of the in-
plane translational symmetry we write boson operators as
functions of the layer index l, and the two-dimensional wave
vector k. The Hamiltonian then decouples into a set of inde-
pendent semi-infinite chains, each one corresponding to a
wave vector k. These chains are conveniently analyzed using
Green functions, which we define as

Gll�
aa = −

i



	

−�

�

dtei�t��t���a�l,k,t�,a†�l�,k,0��� , �2�

where �A� denotes the thermal average of A and the operators
are in the Heisenberg picture. The functions Gll�

bb, Gll�
ab, and

Gll�
ba are defined in the same fashion. We use the transfer-

matrix method20,21 to calculate these G’s. When the interface
coupling is FM we find the following expressions for the
diagonal elements of the Green function:

Gll
aa�z,k� = GAF�z,k��1 − TAF

2l �z,k�fR�z,k��, l � 0, �3�

Gll
bb�z,k� = GAF�z,k��1 − TAF

2l+1�z,k�fR�− z,k��, l � 0,

�4�

Gll
aa�z,k� = GF�z,k��1 − TF

−2�l+1��z,k�fL�z,k��, l 
 − 1.

�5�

In these equations GAF�z ,k� is the diagonal �l= l�� ele-
ment of the bulk Greens function for the AFM. GF�z ,k� is
the diagonal element of the bulk Greens function for the FM.
From these diagonal elements and the transfer matrices
TAF�z ,k� and TF�z ,k� one readily obtains the full bulk Green
functions. Physically the transfer matrices describe plane-
wave propagation in one-dimensional chains. Indeed, it is
possible to define a one-dimensional wave vector kz by the
relation T=exp�ikz�. The interference effects at the right and
left sides of the interface are contained in the functions
fR�z ,k� and fL�z ,k�. More explicitly,

GAF�z,k� =
z + 2JA

QA�z,k�
, �6�

QA�z,k� = �z2 − 4JA
2�1/2�z2 − 4JA

2 + 4JA
2 
�k
2�1/2, �7�

TAF�z,k� =
1

2JA
2 
�k
2

�4JA
2 − z2 − 2JA

2 
�k
2 + QA�z,k�� , �8�

GF�z,k� =
1

QF�z,k�
, �9�

QF�z,k� = ��z − 2JF − 2JF
�k
��z − 2JF + 2JF
�k
��1/2,

�10�

TF�z,k� =
1

2JF
�k
2
�2JF − z + QF�z,k�� , �11�

fR�z,k� =
�z − 2J0 + QF���z + 2JA��z − 2J0� − QA� − 4J0

2
�k
2�z + 2JA�
�z − 2J0 + QF���z + 2JA��z − 2J0� + QA� − 4J0

2
�k
2�z + 2JA�
, �12�

and

fL�z,k� =
�z − 2J0 − QF���z + 2JA��z − 2J0� + QA� − 4J0

2
�k
2�z + 2JA�
�z − 2J0 + QF���z + 2JA��z − 2J0� + QA� − 4J0

2
�k
2�z + 2JA�
. �13�
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When the interface coupling is AFM we obtain very simi-
lar expressions, the only difference being that the exponents
of TAF in Eq. �8� and TF in Eq. �11� are shifted by −1 and +2,
respectively.

The average spin on plane l is given by

�Sl,a
z � = S + �

k

1

�
Im	

−�

�

d�
Gll

aa��,�k�
e
�/kBT − 1

, �14�

�Sl,b
z � = − S − �

k

1

�
Im	

−�

�

d�
Gll

bb��,�k�
e
�/kBT − 1

. �15�

The spectral distributions 1
� ImG in Eqs. �14� and �15�

contain the contributions of interface and bulk excitations.
The interface excitations are localized within a few layers of
the interface. They appear for all values of the model param-
eters and dominate the spin reduction, and hence the net
magnetization, at the interface. When T=0 the integrands in
Eqs. �14� and �15� are zero for ��0. The negative �-axis
gives the effect of virtual spin waves on ground-state
fluctuations.13 At finite temperatures real spin waves are ex-
cited which further change the net magnetization.

For our numerical calculations we choose units such that
JF+JA=1. We use as our parameters J0 and x�JF−JA. In
Fig. 1 we show the net magnetization in the AFM side of the
interface, as a function of x and J0�0. In Fig. 2 we show the
corresponding results for J0�0.

For this specific model we observe that the net magneti-
zation per atom is of the order of a few percent. Is this a
result that would be valid for other lattice structures and
interfaces? Bulut et al.14 investigated the magnetization
around a vacancy in a two-dimensional �2D� AFM. In this
system all the spins in the nth neighboring shells point in the
same direction. The average spins in the first and second
shells give 	S�0.03, which is consistent with our results,
but for a very different spin arrangement.

In addition, we notice that in these systems the correlation
length, away from the critical points, is of the order of the
interatomic distance. Therefore the results for the idealized
interface studied here should hold for nonideal interfaces as
well.

Surface dipole density and exchange bias

The uncompensated antiferromagnetic spins give rise to a
dipolar magnetic field BAF. This results in a Zeeman contri-
bution to the energy density inside the FM, given by
−MF ·BAF. MF is the FM magnetization field. This allows us
to estimate the interface anisotropy energy per unit area,
�E.2,3

To this end we assume a circular AFM domain of radius
R. On this domain there is a uniform dipole distribution �
�4g�B	S /a2, due to the uncompensated fluctuations �here g
is the gyromagnetic ratio, �B is the Bohr magneton, and a is
the distance between neighboring spins�. Adjacent to this do-
main there is a semi-infinite cylindrical ferromagnet, also of
radius R. This FM is assumed to be in a single domain state,
of magnetization MF parallel to the interface and at angle �
with respect to the AFM positive axis. Integration of the
Zeeman energy density over the cylinder yields

�E = ��MF�0g�B	S/a2�cos � . �16�

The constant � is the adimensional integral that results when
distances are scaled by R and angles are scaled by 2�. Nu-
merical computation yields �=0.47.

With 	S�10−2, a�0.1 nm, and MF equal to the satura-
tion magnetization of Co, we find that �E�0.08 ergs/cm2.
In Table 2 of their review,3 Nogues and Schuller have com-
piled exchange anisotropy energies for oxide antiferromag-
nets used in exchange bias. For CoO, exchange anisotropy
energies are typically in the range of �10−2–
�10−1 ergs/cm2. This is consistent with our numerical esti-
mate.

The free AFM surface is a special case, which corre-
sponds to J0=0, of the model investigated here. As can be
seen in Figs. 1 and 2, this free surface also develops a net
magnetization. Takano et al.15 have observed a thermorema-
nent magnetization at the free surface of CoO films that have
been field cooled through the Néel temperature. They also
studied bilayers of Ni81Fe19/CoO and found that the ex-
change bias field, after field cooling, has the same tempera-
ture dependence as the free film thermoremanent magnetiza-
tion. This suggests that unidirectional anisotropy arises, as
our model implies, due to the coupling between the FM and

FIG. 1. �Color online� Net magnetization in the antiferromag-
netic side of the interface as a function of x= �JF−JA� / �JF+JA� and
J0 / �JF+JA�. We choose units in which JF+JA=1. The coupling
across the interface is ferromagnetic.

FIG. 2. �Color online� Net magnetization in the antiferromag-
netic side of the interface as a function of x= �JF−JA� / �JF+JA� and
J0 / �JF+JA�. We choose units in which JF+JA=1. The coupling
across the interface is antiferromagnetic.
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the AFM net surface magnetization.
In nanoparticles, in which the surface to bulk ratio is sig-

nificant, a surface magnetization can be observed. A net mag-
netization has indeed been reported in AFM ferritin16 and
ferrihydrite17 nanoparticles.

To estimate the nanoparticle magnetization �p we use the
formula

�p = 6Np
2/3g�B	S , �17�

where we have assumed that the nanoparticles are cubes con-
taining Np particles. We have also assumed that spin fluctua-
tions are uniform on the nanoparticle surface. If we use the
free surface value 	S=0.03 and introduce the reported ex-
perimental values Np=4500, for ferritin,16 and Np=2400, for
ferrihydrite,17 we find the estimates �p�98�B, for ferritin,
and �p�65�B, for ferrihydrite. The experimental values are
345�B and 250�B for ferritin16 and ferrihydrite,17 respec-
tively.

The temperature dependence of the exchange field can be
explained as due to the thermal excitation of interface spin
waves. In Fig. 3 we show the low-temperature variation of
the net surface magnetization. For this particular geometry
the surface magnetization reverses as the temperature in-
creases. This changes the sign of the anisotropy energy and
henceforth that of the exchange field. A sign reversal has
been observed in field-cooled nanocrystalline bilayers of
CoO and NiO/permalloy.18

The exchange bias field disappears at a temperature TB,
called the blocking temperature. For some systems TB is con-
siderably lower than the Néel temperature TN. Since the en-
ergy bandwidth of interface spin waves is about half of that
of bulk spin waves, they reach a considerable thermal popu-
lation at a much lower temperature than bulk excitations.
Thus we may conjecture that with rising temperature the sur-
face disorders before the bulk. This would make the net sur-
face magnetization, and therefore exchange bias, disappear
below TN. We must recall, however, that we have discarded
quartic and higher-order terms. That is, we have used the
noninteracting spin-wave approximation. This restricts the
validity of our theory to temperatures low enough so that

	S 
 /S�1 and precludes a quantitatively meaningful calcu-
lation of the blocking temperature.

Since the dipole interaction is long-ranged, the interface
energy is sensitive to the configuration of the FM magneti-
zation, MF. Here we have assumed that the FM is in a single-
domain configuration, as is expected to be the case after
cooling in a saturating field. If there were multiple domains
in the FM, the unidirectional anisotropy would change.
Gökemeijer et al.19 have shown that the state of the magne-
tization of the FM is, indeed, an essential parameter in es-
tablishing the exchange field; this, they also show, results in
the exchange field being dependent on the accumulative
memory of the thermal and applied field history of the
sample.

III. SUMMARY AND CONCLUSION

In summary, we have put forward an alternative mecha-
nism to generate exchange bias in a system where an antifer-
romagnet �AFM� is in contact with a metallic ferromagnet
�FM�. It differs from previously studied alternatives, since it
is based on the fact that ground-state fluctuations reduce the
zero-temperature magnetic moments of the spins in a quan-
tum AFM, giving rise to an exchange field. In fact, in the
vicinity of interfaces, and other defects which break transla-
tional symmetry, the above quantum fluctuations are not uni-
form. Because of this, the magnetic moments of up and
down spins do not compensate exactly, as they do in a bulk
AFM. Thus, close to a surface or interface, this leads to a
small magnetic dipole density. At finite temperatures this ex-
change field becomes temperature dependent.

We have shown that this dipole field yields an interface
energy which is in quantitative agreement with experimental
results. In consequence, to further understand the exchange
bias phenomenon, we suggest that studies of clean AFM sur-
faces by means of magnetization measurements, Brillouin
light-scattering, and spin-polarized electron energy-loss
spectroscopy could shed new light on the precise nature of
the underlying mechanisms.
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APPENDIX: CALCULATION OF ANISOTROPY ENERGY

Consider a very long cylindrical magnet of radius R. The
bottom of this cylinder sits on the x-y plane. Its axis coin-
cides with the positive z axis. It has a single FM domain with
magnetization M at angle � from the x axis:

M = M î cos � + M ĵ sin � . �A1�

On the bottom of the cylinder there is a two-dimensional
layer with uniform dipole density:

� = − �ĵ . �A2�

FIG. 3. Surface magnetization as a function of kBT /JS. To
model the surface we take J0=0.
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The position vector of a point at the dipole layer is ex-
pressed as

r� = − ��î sin �� + ��ĵ cos ��. �A3�

Likewise, the position vector of a point inside the cylinder
is given by

r = � + zk̂ , �A4�

where

� = − �îsin � + �ĵ cos � . �A5�

We define

� = r − r�. �A6�

The contribution to the magnetic field at point r due to a
surface element at point r� is

dB fluct�r,r�� = −
�0

4�
���d��d��

3�̂�ĵ · �̂� − ĵ

	3 . �A7�

The corresponding contribution to the Zeeman energy per
unit area is

dEfluct =
�Md3r� · dB fluct�r,r��

�R2 . �A8�

Upon integration over r and r� we find, after lengthy cal-
culations, that the total energy per unit area is

Efluct =
�0�M cos �

8�2R2 	
0

R

��d��	
0

2�

d��	
0

R

�d�	
0

2�

d�	
0

�

dz

�
1

	5��2 + ��2 − 2���cos�� − ��� − 2z2� . �A9�

We now change the integration variables to �=� /R, ��
=�� /R, �=� /2�, ��=�� /2�, �=z /R. We also define �
=	 /R. The energy per unit area can be written as

Efluct =
�0�M cos �

2
I , �A10�

where

I = 	
0

1

��d��	
0

1

d��	
0

1

�d�	
0

1

d�	
0

�

d�
1

�5 
�2 + ��2

− 2���cos�2��� − ���� − 2�2� . �A11�

Numerical integration yields I=0.98.
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