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We have studied resonant tunneling through an asymmetric double barrier in the presence of a magnetic field
in the direction of the current flow. The electron-electron interaction as well as coupling to a longitudinal-
optical phonon field are included. The main resonance peak in theI -V characteristic is followed by a phonon-
induced peak, both showing a structure at finite magnetic field. We find a bistable region whose width
oscillates with magnetic field, in accordance with experiment. This region is expected in the main resonance,
yet, as we show, it may also be present in the phonon peak in the limit of large asymmetry.

I. INTRODUCTION

Since the seminal work of Tsu and Esaki, double-barrier
resonant tunneling structures~DBRTS! have been the subject
of much interest for their physical properties and applica-
tions as electronic devices.1 After some of the more basic
aspects of charge transport in DBRTS were addressed both
theoretically and experimentally, other phenomena associ-
ated with such tunneling phenomena have attracted attention.
One example is the intrinsic bistability caused by the space-
charge formation in the well. The space charge alters the way
in which the voltage drop is distributed across the device,
which in turn modifies the tunneling current, allowing for the
existence of two different states of the system in some range
of bias.2,3

Other important issues in the study of electron tunneling
in nanostructures is the inelastic scattering through the
electron-phonon interaction. Goldman, Tsui, and Cunning-
ham provided experimental evidence that the longitudinal-
optical phonon assists in tunneling in the valley current re-
gion of a DBRTS.4 There have been several theoretical
studies of this problem.5–7 Also, in recent years there has
been an increased interest in magnetotunneling studies in
DBRTS with the magnetic field parallel or perpendicular to
the current flow.3,8–11 Magnetotunneling experiments in a
parallel magnetic field have been reported by many authors
and have provided useful information. In the resonant re-
gime, weak oscillations are observed in the current versus
magnetic field curves from which it is possible to deduce the
charge buildup in the well and the effective dimensionality
of the emitter.12 In the off-resonance regime, the analysis of
the valley current magneto-oscillations provides a very good
determination of the different scattering mechanisms contrib-
uting to this current.8 Translational invariance in the plane of

the layers implies conservation of Landau-level index for
coherent tunneling from the emitter into the well. Breakdown
of this selection rule is only observed in the valley current
and is due to incoherent elastic- or inelastic-scattering pro-
cesses. Also, Leadbeater and Eaves reported the observation
of an enhancement in the intrinsic bistability region of the
I -V curve.9

In this paper we study the steady-state solutions of the
DBRTS in the presence of a magnetic field parallel to the
direction of current flow. In our treatment we include
electron-electron interactions and the coupling of electrons
and phonons in the space between the barriers. We allow the
collector barrier width to vary in order to assess the enhance-
ment of both interaction processes, as more charge is trapped
in such space. In Sec. II we describe our model and derive
the general expressions needed to calculate the charge den-
sity along the sample, and the current. In Sec. III a self-
consistent numerical procedure is defined and in Sec. IV it is
applied to a specific sample. Our conclusions are presented
in the summary in Sec. V.

II. THE MODEL

We consider the transport properties of a double-barrier
heterostructure in the presence of a longitudinal magnetic
field. A tight-binding model is used for the electron Hamil-
tonian, and coupling to longitudinal-optical~LO! phonons is
included within the Fro¨hlich formalism. The response of the
system is studied, introducing a fully self-consistent scheme
to treat the electron-electron interaction in the steady state
when the bias is applied. Inclusion of a longitudinal mag-
netic fieldB ~in the growth direction, henceforth called the
z direction! is simple if a parabolic energy dispersion parallel
to the interfaces is assumed. The field quantizes the motion
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of the electrons in thexy plane, giving rise to Landau levels
with energieseN5(N11/2)\vc , whereN50,1,2, . . . is the
Landau index andvc5eB/m* c is the cyclotron frequency.
Assuming that the longitudinal degree of freedom is decou-
pled from the transverse motion and that a simple optical
phonon mode of frequencyv0 is relevant the Hamiltonian
takes the form

H5(
l

~e l1eN!cl
†cl1t(

^ l l 8&
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where the operatorcl
† creates an electron at sitel , b† creates

a phonon,t is the hopping matrix element between nearest
neighborŝ l l 8&, e l the site energy, andU andg the electron-
electron and the electron-phonon coupling constants, respec-
tively. For simplicity we have restricted the Coulomb inter-
action to the intrasite contribution and we ignored the spin
degree of freedom.

The eigenstate may be expanded in an orthonormal basis
of localized states of the noninteracting systemu l ,n&,
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phonons. Here

al
n5^ l ,nuc&5

1

An!
^0uQ l

nuc&, ~3!

with u0& the vacuum andQ l
n5cl

†bn. Introducing these latter
operators in~1! we find they obey the equation of motion
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wherenl 85cl 8
† cl 8 and ^nl&n5(bual

n(b)u2, the sum overb
covering all occupied electron states in the system.

We have used a mean-field approximation~Hartree! to
treat the electron-electron interaction. From Eqs.~2!–~4! we
get for the coefficients of a stationary state of frequencyv
the equation
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where the energye is measured from the bottom of the band.
This is a nonlinear difference equation for the coefficients
al
n , its nonlinear character arising from the last term in the
right-hand side. The equation of motion for the charge op-

eratorsQl5ecl
†cl gives for the current operator at sitel ,

Jl5dQl /dt5(et/ i\)(cl
†cl112cl11

† cl). Taking the expecta-
tion value of this equation we obtain for the contribution of a
state of energye to the average current,
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The total current is calculated integrating this expression
over all available states with energy below the Fermi energy.

III. SELF-CONSISTENT LOOP

As is known, the electron-electron interaction in a double-
barrier system is responsible for the formation of an accumu-
lation layer at the emitter interface, and a charge buildup
between the barriers during resonant tunneling. The latter
may cause hysteresis in theI -V curve.4 In our calculations
we include the electron-electron interaction in a region of
length 2Ld, whered is the lattice constant. In this region the
charge fluctuations are expected to be important, while out-
side the electrons effectively behave as free particles. Away
from this region we setU50. Also, as the emission of
phonons is more likely between the barriers where the elec-
trons spend a long time under resonant conditions, we will
take gÞ0 there only. Figure 1 shows the built-in potential
profile of the device and the geometry and notation we use.

We first consider the regionzl,2Ld. SinceU5g50 in
this region the solutions to Eq.~5! are just planes waves,

al
n5I ne

iknzl1Rne
2 iknzl, zl,2Ld, ~7!

wherekn is defined by the relation

e5n\v01eN12t~cosknd21!, ~8!

with t,0. Notice that we have chosen the origin of energy so
that e l50 in this region. Forkn real the first and second
terms in Eq.~7! represent an incident and a reflected wave of
amplitudesI n andRn , respectively. The last term in Eq.~8!
represents the kinetic energy. Forn greater than some
n0(e,B) this energy becomes negative. This means that
kn5 ikn and the general solution takes the form

al
n5I ne

2knzl1Rne
knzl, zl,2Ld. ~9!

In order to assure a regular behavior forz→2` the ampli-
tudesI n have to be set equal to zero for theses modes. They

FIG. 1. Built-in potential profile and positive background charge
of the device.
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are vanishing modes at the left. On the other hand, for
zl.Ld we havee l52V, whereV is the applied bias, and
the solutions have the form

al
n5Tne

ik8nzl, zl.Ld, ~10!

with kn8 defined by

e52V1n\v01eN12t~coskn8d21!. ~11!

Knowing the form of the right (zl.Ld) and left
(zl,2Ld) asymptotic solutions the problem is reduced to
making them compatible, which is done by iterating numeri-
cally Eq. ~5! in its slightly rearranged form:
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The iteration is performed from right to left by choosing
arbitrary values for the coefficientsTn . Applying Eq. ~12!
until the end point (z2L52Ld) is reached we then obtain
the incident and reflected amplitudes by comparing the am-
plitudes given by the iteration at the two last points with Eq.
~7!.

In general both the transmission and reflection coeffi-
cients are linear functions of the amplitude of incidence. This
is expressed by the relations

Tn5(
m

Mnm
T Im ,

Rn5(
m

Mnm
R Im , ~13!

or

T5MTI ,

R5MRI . ~14!

Since we start from the right we have to expressI andR as
a function ofT,

I5MT
21T,

R5MRMT
21T. ~15!

These relations are convenient in our scheme of computation
since they give the reflected and transmitted amplitudes for
each choice of theTn . We now have to determine the ma-
trices MT and MR . For simplicity we begin the iteration
choosingT051 andTn50, n51,2, . . . . With these initial
values we get

~MT
21!n05I n

0 ,

~MRMT
21!n05Rn

0 , ~16!

where the superscript means that the coefficients were ob-
tained makingT051. We next makeT151 andTn50 for
n50,2,3,4, . . . and get

~MT
21!n15I n

1 ,

~MRMT
21!n15Rn

1 . ~17!

The procedure is repeated up ton5nmax, wherenmax is the
number of channels available in the system. In this way we
can calculate all matrix elements, (MT

21)nm and
(MRMT

21)nm , from which we can in turn get the matrices
MT andMR . This allows us to obtain the physical ampli-
tudesTn andRn using Eq.~13!. We are interested in the low
carrier density limit, for whiche f,\v0 . In such a case the
physical running waves correspond toI 051 and I n50,
n51,2, . . . so wehave

Tn5~MT!n0 ,

Rn5~MR!n0 . ~18!

Once the transmission amplitudesTn are obtained self-
consistently we may calculate the currentj l in the collector
region. From Eqs.~6! and ~10! we have

j l5
2et

\ (
n

sin~kn8d!uTnu2. ~19!

Summing over all occupied states one gets for the total cur-
rent the expression

JB5
etV

2\~p l m!2(N,n E0
kN f
sin~k8d!uTn~k8!u2dk, ~20!

where l m5(\c/eB)1/2 is the magnetic length andV is the
volume of the sample.

IV. RESULTS

In this section we show numerical results for theI -V char-
acteristics of an asymmetric DBRTS in the presence
of a longitudinal magnetic field. We have chosen a GaAs/
Al xGa12xAs structure at 0 K, with a fixed emitter thickness
of We51.12 nm, a variable collector thicknessWc , and a
well thickness of 11.2 nm. The conduction-band offset is set
at V05300 meV. The system is uniformly doped up to
3.36 nm from either barrier, with a density of ionized donors
of 231017 cm23. In equilibrium and at zero magnetic field
the Fermi level lies 19.2 meV above the asymptotic
conduction-band edge. The electron potential due to the ap-
plied bias is taken into account through a linear dependence
of e l with l , which is assumed to arise from fixed external
charges. This site energy includes the potential due to the
barriers. The total potential profile seen by the electron is
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calculated self-consistently adding to the fixed values ofe l
the nonlinear Hartree term appearing in Eq.~5!. For the hop-
ping constant in Eq.~12! we use the approximation
t5\2/2m* d2, which for GaAs has the valuet52.16 eV and
U510 meV. For the LO phonon frequency we take the bulk
GaAs value\v0536 meV, and for the strength of the
electron-phonon interaction,g520 meV ~Ref. 13!. In our
computations we normalize the self-consistent solutions so
as to neutralize the fixed positive charge background of the
ionized donors at edgesz6L56Ld.

Figure 2 shows our self-consistent results for theI -V
curve at zero magnetic field and different collector barrier
thicknesses. Solid~dashed! lines are for increasing~decreas-
ing! bias. There are two peaks, the highest one due to trans-
port with no emission of phonons, while the second peak
involves the emission of one phonon. In Fig. 2~a! the barriers
have equal thicknesses, while in Figs. 2~b! and 2~c!
Wc52.5We and 10We , respectively. Hysteresis is clearly
seen in the asymmetric cases and is absent in the symmetric
case. We find that the width of the bistable region increases
as the above ratio increases, and saturates at about
Wc55.88We . Also, while the phonon peak remains basi-
cally unchanged in this process, the height of the first peak is
reduced since transmission in this single channel is less prob-
able with a wider collector barrier. Note the different scales
in the vertical axis. In the limit of strong asymmetry, hyster-
esis is present in the phonon peak as well. Turning off the
electron-electron and electron-phonon interactions has the ef-
fect of eliminating the bistable region as well as the phonon
peak, as shown by the long-dashed curve in Fig. 2~b!. It is
important to mention that the resonant peak appears higher in
energy when the many body effects are neglected@long
dashed curve in Fig. 2~b!#, than in the case where thee-e and
e-ph interactions are taken into account. Although thee-e
interaction alone shifts the peak to higher energies19 the
strong renormalization of the electronic energies due to the

presence of phonons in the system compensates this shift and
produces an overall opposite effect.17

In support of the interpretation that the bistability is
physically due to coexisting states with different charge in
the space between the barriers2,14,15,16we show in Fig. 3 the
charge densitŷ nl& at several values of the bias. We use
arbitrary units. Here and belowWc53We . The charge in the
well increases steadily with the voltage, and then drops
abruptly when the threshold valueVth

↑ is reached. If, after
going beyond this threshold, the bias is decreased@dashed
line in the inset of Fig. 3~c!# no significant charge buildup is
present up to a biasVth

↓,Vth
↑ , exhibiting the existence of a

second stable solution in the regionVth
↓,V,Vth

↑ . At the bias
Vth
↓ the charge builds up again and the two solutions merge.

The charge in the well increases the local potential, thus
allowing the resonance to keep its alignment with the Fermi
sea in the emitter. When the well is empty this effect is
absent. The phonon peak is accompanied by a similar in-
crease of charge in the well. It is much smaller, however, and
only in the limit of strong asymmetry does it produce a
bistable region.

In Fig. 4 we show results for finite values of the magnetic
field. Notation is as in Fig. 2. The presence of a bistable
region and a phonon peak is apparent in all cases. The main
qualitative difference with the zero magnetic field results is
the presence of structure in the curves. These plateaulike
features are due to resonant levels in the space between the
barriers, crossing the Fermi energy in the emitter. The mag-
netic field quantizes the motion in the transverse plane, forc-
ing transport to take place between regions of one-
dimensional character at either side of the sample, through a
region of zero-dimensional character in the well space be-
tween the barriers. Each Landau level gives rise to a para-
bolic dispersion law in the emitter and collector regions, and
a single resonant level in the well. These parabolas and iso-

FIG. 2. Current-voltage characteristics at 0 T
for ~a! Wc5We , ~b! Wc52.5We , and ~c!
Wc510We . Dashed lines are for decreasing bias.
Long-dashed line in~b! is the free-electron ap-
proximation.
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lated resonances form ladders with the energy step\vc . As
the bias is increased, the resonant energy levels in the well
move down with respect to the Fermi energy, crossing it and
thus opening a channel for transport, whenever the conser-
vation of Landau index condition is fulfilled. Because the
separation between levels scales with the magnetic field, the
increase in bias necessary to open a new channel increases
with the field also. This effect may be appreciated by com-
paring the various curves in the figure.

Another manifestation of the opening of new transport
channels is the oscillation with magnetic field that is ob-
served in the threshold voltageVth

↑ . This is shown in Fig. 5.
At very high fields only the first Landau level is an open
channel. As the field decreases new channels come into play
one after the other, each entrance marked by a maximum in

Vth
↑ . These oscillations correspond to fluctuations of the

Fermi energy, which in turn produce oscillations in the
charge that gets trapped in the well region. Similar oscilla-
tions have been observed experimentally.9 At very large
magnetic fields, when only one Landau channel is open, we
found instabilities in our self-consistent numerical calcula-
tions, probably due to an enhanced nonlinearity in the equa-
tions. The physical implications of these instabilities are cur-
rently under investigation.

V. SUMMARY

In summary, we have studied the transport through an
asymmetric double barrier in the presence of a longitudinal
magnetic field. We include both the electron-electron and

FIG. 4. Current-voltage characteristics for fi-
nite magnetic field.~a! B53 T, ~b! B54 T, ~c!
B56 T, and~d! B59 T.

FIG. 3. Dimensionless charge density^nl& at
0 T for ~a! 0.02 V, ~b! 0.05 V, ~c! 0.21 V, and~d!
0.3 V.
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electron-phonon interactions. The first produces bistable re-
gions in theI -V characteristics while the second opens an
inelastic channel for resonant tunneling with the creation of
phonons, giving rise to another peak in the current. In the

bistable region two solutions coexist, one with a large charge
density in the space between the barriers and a second with
essentially no charge in that space. The width of this region
depends on the ratio of the barrier thicknesses. It is absent
when these are equal, and we predict that it saturates to a
fixed finite value atWc;6We . Also, the height of the main
peak decreases as the collector barrier is increased, while the
phonon peak remains essentially unchanged. We predict that
in the limit of large asymmetry a bistable solution is also
possible in the phonon peak.

The magnetic field produces oscillations in the current
when the bias is changed at fixed field, and in the width of
the bistable region at fixed bias when the magnetic field
changes. Both these effects have been seen in experiment.3,9

They are due to the peculiar density of states that arises from
quantization of the motion perpendicular to the field. Each
feature in the structure corresponds to a channel being
opened or closed as the bias or magnetic field are changed.
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