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Self-consistent calculation of resonant tunneling in asymmetric double barriers
in a magnetic field
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We have studied resonant tunneling through an asymmetric double barrier in the presence of a magnetic field
in the direction of the current flow. The electron-electron interaction as well as coupling to a longitudinal-
optical phonon field are included. The main resonance peak ih-Ytheharacteristic is followed by a phonon-
induced peak, both showing a structure at finite magnetic field. We find a bistable region whose width
oscillates with magnetic field, in accordance with experiment. This region is expected in the main resonance,
yet, as we show, it may also be present in the phonon peak in the limit of large asymmetry.

[. INTRODUCTION the layers implies conservation of Landau-level index for
coherent tunneling from the emitter into the well. Breakdown
Since the seminal work of Tsu and Esaki, double-barrieiof this selection rule is only observed in the valley current
resonant tunneling structuré®@BRTS) have been the subject and is due to incoherent elastic- or inelastic-scattering pro-
of much interest for their physical properties and applica<cesses. Also, Leadbeater and Eaves reported the observation
tions as electronic devicésAfter some of the more basic of an enhancement in the intrinsic bistability region of the
aspects of charge transport in DBRTS were addressed bothV curve?
theoretically and experimentally, other phenomena associ- In this paper we study the steady-state solutions of the
ated with such tunneling phenomena have attracted attentio®BRTS in the presence of a magnetic field parallel to the
One example is the intrinsic bistability caused by the spacedirection of current flow. In our treatment we include
charge formation in the well. The space charge alters the waglectron-electron interactions and the coupling of electrons
in which the voltage drop is distributed across the deviceand phonons in the space between the barriers. We allow the
which in turn modifies the tunneling current, allowing for the collector barrier width to vary in order to assess the enhance-
existence of two different states of the system in some ranggent of both interaction processes, as more charge is trapped
of bias?® in such space. In Sec. Il we describe our model and derive
Other important issues in the study of electron tunnelinghe general expressions needed to calculate the charge den-
in nanostructures is the inelastic scattering through theity along the sample, and the current. In Sec. lll a self-
electron-phonon interaction. Goldman, Tsui, and Cunningconsistent numerical procedure is defined and in Sec. IV it is
ham provided experimental evidence that the longitudinalapplied to a specific sample. Our conclusions are presented
optical phonon assists in tunneling in the valley current rein the summary in Sec. V.
gion of a DBRTS! There have been several theoretical
studies of_ this probl_erf’l‘.7 Als_o, in recent years there has _ II. THE MODEL
been an increased interest in magnetotunneling studies in
DBRTS with the magnetic field parallel or perpendicular to We consider the transport properties of a double-barrier
the current flow’®~1! Magnetotunneling experiments in a heterostructure in the presence of a longitudinal magnetic
parallel magnetic field have been reported by many authorfeld. A tight-binding model is used for the electron Hamil-
and have provided useful information. In the resonant retonian, and coupling to longitudinal-opticéllO) phonons is
gime, weak oscillations are observed in the current versuimcluded within the Frblich formalism. The response of the
magnetic field curves from which it is possible to deduce thesystem is studied, introducing a fully self-consistent scheme
charge buildup in the well and the effective dimensionalityto treat the electron-electron interaction in the steady state
of the emitter*? In the off-resonance regime, the analysis ofwhen the bias is applied. Inclusion of a longitudinal mag-
the valley current magneto-oscillations provides a very goodhetic field B (in the growth direction, henceforth called the
determination of the different scattering mechanisms contribz direction is simple if a parabolic energy dispersion parallel
uting to this currenf. Translational invariance in the plane of to the interfaces is assumed. The field quantizes the motion
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of the electrons in they plane, giving rise to Landau levels

with energiesey=(N+1/2)iw., whereN=0,1,2 . .. is the

Landau index andv.=eB/m*c is the cyclotron frequency.

Assuming that the longitudinal degree of freedom is decou- v W, Al W,

pled from the transverse motion and that a simple optical ?

phonon mode of frequency, is relevant the Hamiltonian +—_‘_\++++ P

takes the form _r
2L

H=> (+eycic+t>, ¢l +hwgb’b
! an’ FIG. 1. Built-in potential profile and positive background charge
U of the device.
+92 clo(b’+b)+ 52> clepele, (D) , ,
[ n’ eratorsQ,=ec/c, gives for the current operator at site
where the operatar’ creates an electron at siteb’ creates  J1=dQ/d7= (e.tllh)(cﬂc,ﬂ—c,l 1€1)- Taking the expecta-
a phonont is the hopping matrix element between nearestion value of this equation we obtain for the contribution of a
neighborgll '), ¢ the site energy, and andg the electron- ~ State of energy to the average current,
electron and the electron-phonon coupling constants, respec-
tively. For simplicity we have restricted the Coulomb inter- . et wnn wn n
action to the intrasite contribution and we ignored the spin JI:@; (& "ai  —aiay). (6)
degree of freedom.
The eigenstate may be expanded in an orthonormal basiEhe total current is calculated integrating this expression
of localized states of the noninteracting systém), over all available states with energy below the Fermi energy.

I1l. SELF-CONSISTENT LOOP
|w>=§ af|l,ny, ©)

As is known, the electron-electron interaction in a double-
barrier system is responsible for the formation of an accumu-
lation layer at the emitter interface, and a charge buildup
between the barriers during resonant tunneling. The latter
may cause hysteresis in theV curve? In our calculations

N 1 N we include the electron-electron interaction in a region of
a'=(l.n[4)= W«”@I ), ©) length 2.d, whered is the lattice constant. In this region the
' charge fluctuations are expected to be important, while out-
with |0) the vacuum an®|'=c/b". Introducing these latter side the electrons effectively behave as free particles. Away
operators in1) we find they obey the equation of motion from this region we seJ=0. Also, as the emission of
phonons is more likely between the barriers where the elec-
n trons spend a long time under resonant conditions, we will
do, n n n take g#0 there only. Figure 1 shows the built-in potential
a- =(g+nfiwgten)O+t1(O,+0,, g nly. Fig 1p
profile of the device and the geometry and notation we use.
We first consider the region<—Ld. SinceU=g=0 in
+g0@N(b"+b)+ng>, n. @ t+U(n),0O", this region the solutions to E@5) are just planes waves,
T

where | is the site of localization andh the number of
phonons. Here

if

(4) a=1,e*2+Re a4 z<—Ld, (7)

wheren; =c/,c; and(n)),=34a’(8)|? the sum over8  wherek, is defined by the relation
covering all occupied electron states in the system.
We have used a mean-field approximatigthartreg to = nh ot ent 2t
. . = cok,d—1), 8

treat the electron-electron interaction. From E@3—(4) we € @oT €N ( n ) ®
get for the coefficients of a stationary state of frequency with t<<0. Notice that we have chosen the origin of energy so
the equation that =0 in this region. Fork, real the first and second
terms in Eq(7) represent an incident and a reflected wave of
amplituded,, andR,,, respectively. The last term in E(B)
represents the kinetic energy. For greater than some

U nq(e,B) this energy becomes negative. This means that

1

+g(vVn+1a] "+ Jnal) + 5% lal(B)|?a, (5) K =ix, and the general solution takes the form

€a'=(e+nhwo+ey)a+t(a' ;+af',;—2a)

Wh_er(_a the energy is m_easured from the bottom of the pgnd. a'=1,e "+ R g3, z<—Ld. (9)

This is a nonlinear difference equation for the coefficients

a/', its nonlinear character arising from the last term in theln order to assure a regular behavior fr — the ampli-
right-hand side. The equation of motion for the charge optudesl, have to be set equal to zero for theses modes. They
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are vanishing modes at the left. On the other hand, for (MFl)no=|2.
z,>Ld we havee;=—V, whereV is the applied bias, and
the solutions have the form

. (MeM1 ) no=Ry, (16)
n_ ik nz,
a=The™n%,  z>Ld, (10 where the superscript means that the coefficients were ob-
S L . tained makingTo=1. We next makel;=1 andT,=0 for
th k/, defined b 0 1 n
WIER ¥ T y n=0,2,3,4... and get
E=—V+nﬁw0+6N+2t(CO§(r’1d—l) (11) -1 1
(M1 )n=15,
Knowing the form of the right £>Ld) and left
(z7<—Ld) asymptotic solutions the problem is reduced to (MeMI1) =R: 17
making them compatible, which is done by iterating numeri- RMIT /n1™ n -
cally Eq. (5) in its slightly rearranged form: The procedure is repeated UPHe Ny, Wheren ., is the
number of channels available in the system. In this way we
(e+2t—€—ey—nhawg) can calculate all matrix elements, Mgl)nm and
a-1= t a (MRM{l)nm, from which we can in turn get the matrices
M+ and Mg. This allows us to obtain the physical ampli-
g nt1 n tudesT, andR, using Eq.(13). We are interested in the low
-7 (yn+lai 4 Jna) carrier density limit, for whiche;<#%w,. In such a case the
U physical running waves correspond tg=1 and |,=0,
n=1,2,... so wehave
— T lalp)lfal-al,. (12
The iteration is performed from right to left by choosing To=(M1)no,
arbitrary values for the coefficient,. Applying Eq. (12)
until the end point £_ = —Ld) is reached we then obtain Ry=(Mg)no- (18

the incident and reflected amplitudes by comparing the am-

plitudes given by the iteration at the two last points with Eq.  Once the transmission amplitudd@g are obtained self-

(7). consistently we may calculate the currgnin the collector
In general both the transmission and reflection coeffitegion. From Eqs(6) and(10) we have

cients are linear functions of the amplitude of incidence. This

is expressed by the relations

. 2et L
JF?E;‘ sin(k;d)| T2 (19

Tn=2 M:mlmv Summing over all occupied states one gets for the total cur-
" rent the expression

R,=> MR . (13) _ ety kaf o NT:
~ Mam Jg Zﬁ(ﬂ'lm)zNz,n | sink d)|Ta(k")|2dk, (20
or wherel = (hc/eB)*? is the magnetic length and is the
volume of the sample.
T=Myl,
IV. RESULTS
R=Mgl. (14) In this section we show numerical results for th¥ char-

acteristics of an asymmetric DBRTS in the presence
of a longitudinal magnetic field. We have chosen a GaAs/
Al,Ga _,As structure at 0 K, with a fixed emitter thickness
of We=1.12 nm, a variable collector thickne¥%., and a

Since we start from the right we have to expréessmdR as
a function of T,

=M T, well thickness of 11.2 nm. The conduction-band offset is set
at Vo=300 meV. The system is uniformly doped up to
R=MgMT. (15) 3.36 nm from either barrier, with a density of ionized donors

of 2x 10" cm~3. In equilibrium and at zero magnetic field
These relations are convenient in our scheme of computatiothe Fermi level lies 19.2 meV above the asymptotic
since they give the reflected and transmitted amplitudes foconduction-band edge. The electron potential due to the ap-
each choice of th@,,. We now have to determine the ma- plied bias is taken into account through a linear dependence
trices My and Mz. For simplicity we begin the iteration of € with I, which is assumed to arise from fixed external
choosingTy=1 andT,=0, n=1,2,....With these initial charges. This site energy includes the potential due to the
values we get barriers. The total potential profile seen by the electron is
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calculated self-consistently adding to the fixed values,of presence of phonons in the system compensates this shift and
the nonlinear Hartree term appearing in E8). For the hop-  produces an overall opposite efféét.

ping constant in Eq.(12) we use the approximation In support of the interpretation that the bistability is
t=#2/2m*d?, which for GaAs has the value=2.16 eV and  physically due to coexisting states with different charge in
U=10 meV. For the LO phonon frequency we take the bulkthe space between the barrfet$'>we show in Fig. 3 the
GaAs valuefiwy=36 meV, and for the strength of the charge density(n,) at several values of the bias. We use
electron-phonon interactiorg=20 meV (Ref. 13. In our  garpjtrary units. Here and below,=3W,. The charge in the
computations we normalize the self-consistent solutions sQue|| increases steadily with the voltage, and then drops
as to neutralize the fixed positive charge background of theolbruptly when the threshold vaIUéIh is reached. If, after

ionized donors at edges. = +Ld. going beyond this threshold, the bias is decredskghed

Figure 2 shows our s.elf—con5|st.ent results for (h¥ ._line in the inset of Fig. &)] no significant charge buildup is
curve at zero magnetic field and different collector barrier ol 1 N .
thicknesses. Solidashed lines are for increasin¢decreas- present up 10 a bia¥y;<Vy,, exhibiting the existence of a

ing) bias. There are two peaks, the highest one due to tranS€cond stable solution in the regiv<V<Vi,. At the bias

port with no emission of phonons, while the second peak’ the charge builds up again and the two solutions merge.
involves the emission of one phonon. In Figathe barriers The charge in the well increases the local potential, thus
have equal thicknesses, while in Figs(b2 and Zc) allowing the resonance to keep its alignment with the Fermi
W.=2.5W, and 10V, respectively. Hysteresis is clearly sea in the emitter. When the well is empty this effect is
seen in the asymmetric cases and is absent in the symmetiabsent. The phonon peak is accompanied by a similar in-
case. We find that the width of the bistable region increasesrease of charge in the well. It is much smaller, however, and
as the above ratio increases, and saturates at aboohly in the limit of strong asymmetry does it produce a
W,.=5.88N,. Also, while the phonon peak remains basi- bistable region.

cally unchanged in this process, the height of the first peak is In Fig. 4 we show results for finite values of the magnetic
reduced since transmission in this single channel is less prolfield. Notation is as in Fig. 2. The presence of a bistable
able with a wider collector barrier. Note the different scalesregion and a phonon peak is apparent in all cases. The main
in the vertical axis. In the limit of strong asymmetry, hyster- qualitative difference with the zero magnetic field results is
esis is present in the phonon peak as well. Turning off théhe presence of structure in the curves. These plateaulike
electron-electron and electron-phonon interactions has the efeatures are due to resonant levels in the space between the
fect of eliminating the bistable region as well as the phonorbarriers, crossing the Fermi energy in the emitter. The mag-
peak, as shown by the long-dashed curve in Fi§y).dt is  netic field quantizes the motion in the transverse plane, forc-
important to mention that the resonant peak appears higher ing transport to take place between regions of one-
energy when the many body effects are neglediedg dimensional character at either side of the sample, through a
dashed curve in Fig.(B)], than in the case where tikee and  region of zero-dimensional character in the well space be-
e-ph interactions are taken into account. Although ¢he  tween the barriers. Each Landau level gives rise to a para-
interaction alone shifts the peak to higher energighe  bolic dispersion law in the emitter and collector regions, and
strong renormalization of the electronic energies due to tha single resonant level in the well. These parabolas and iso-
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lated resonances form ladders with the energy 8tep. As v . These oscillations correspond to fluctuations of the
the bias is increased, the resonant energy levels in the weflermi energy, which in turn produce oscillations in the
move down with respect to the Fermi energy, crossing it an@harge that gets trapped in the well region. Similar oscilla-
thus opening a channel for transport, whenever the consefipns have been observed experimentallixt very large
vation of Landau index condition is fulfilled. Because the magnetic fie|dsl when on|y one Landau channel is open, we
separation between levels scales with the magnetic field, th@und instabilities in our self-consistent numerical calcula-
increase in bias necessary to open a new channel increasgsns, probably due to an enhanced nonlinearity in the equa-

with the field also. This effect may be appreciated by com+jons. The physical implications of these instabilities are cur-
paring the various curves in the figure. rently under investigation.

Another manifestation of the opening of new transport
channels is the oscillation with magnetic field that is ob-
served in the threshold voltagg),. This is shown in Fig. 5.
At very high fields only the first Landau level is an open In summary, we have studied the transport through an
channel. As the field decreases new channels come into plasymmetric double barrier in the presence of a longitudinal
one after the other, each entrance marked by a maximum imagnetic field. We include both the electron-electron and

V. SUMMARY
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FIG. 5. Threshold voltage when increasir?glrp or decreasing
(Vi) the bias.

bistable region two solutions coexist, one with a large charge
density in the space between the barriers and a second with
essentially no charge in that space. The width of this region
depends on the ratio of the barrier thicknesses. It is absent
when these are equal, and we predict that it saturates to a
fixed finite value aW,~6W,. Also, the height of the main
peak decreases as the collector barrier is increased, while the
phonon peak remains essentially unchanged. We predict that
in the limit of large asymmetry a bistable solution is also
possible in the phonon peak.

The magnetic field produces oscillations in the current
when the bias is changed at fixed field, and in the width of
the bistable region at fixed bias when the magnetic field
changes. Both these effects have been seen in experifent.
They are due to the peculiar density of states that arises from
quantization of the motion perpendicular to the field. Each
feature in the structure corresponds to a channel being
opened or closed as the bias or magnetic field are changed.
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