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Abstract

In this thesis, we propose a realizable experimental scheme to prepare a superpo-

sition of the vacuum and one-photon states using a typical cavity QED-setup. This

is different from previous schemes, where the superposition state of the field is gen-

erated by resonant atom-field interaction and the cavity is initially empty. Here, we

consider only dispersive atom-field interaction and the initial state of the cavity field is

coherent. Then, we determine the parameters to prepare the desired state via atomic

post-selection. We also include the effect of cavity losses and detection imperfections

in our analysis against which this preparation of the optical qubit in a real Fabry-Perot

superconducting cavity is robust. In addition, we show that this scheme can be used

for the preparation of other photon number Fock state superpositions. In short, our

task is achieved with high fidelity and a post-selection probability within experimental

reach. With the same scheme, we propose to cool the cavity field to its ground state

starting from a thermal distribution by a dispersive atom-field coupling followed by an

atomic post-selection. We also analyze the effect of the cavity and atomic losses. The

proposed experiment can be realized with real parameters with high fidelity.
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Chapter 1

Introduction

The generation and engineering of nonclassical states of light is central to quantum op-

tics and quantum information. Over the years, various schemes for the preparation of Fock

states [1–9] and their arbitrary finite superpositions [10–22] have been developed. Such

states have been shown to be generated by nonlinear media or by conditional measure-

ments. For example, the method proposed by Brune et al. [2,4] can generate Fock states of

a cavity field. This method is based on a quantum nondemolition measurement (QND) of

the photon number of a field stored in a high-Q cavity, where the information acquired by

detecting a sequence of atoms modifies the field step by step, until it eventually collapses

into a Fock state. This has been done experimentally by Guerlin et al. [23]. Although

the collapse of the field into a Fock state is not predictable due to the randomness of the

measurement, it is posible to prepare on demand photon number states (Fock states) using

a quantum feedback scheme in the context of a QND measurement of the photon number

of a cavity field [9, 24]. Other interesting schemes proposed by Leoński [5, 6] relies on the

nonlinearity of the time evolution of the cavity field in a Kerr medium. In these methods,

by adjusting the parameters of the Hamiltonian it is possible to generate a Fock state via

unitary time evolution of a given initial cavity field.

In the case of the preparation of a finite superposition of the number state, most of

the proposed schemes are based on a conditional measurement at the outports of beam

splitters. For example, the method proposed by Dakna et al. [15] generates an arbitrary
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CHAPTER 1. INTRODUCTION

(finite) superposition of Fock states by performing alternaly coherent displacement and

single-photon adding in a well-defined succesion via conditional measurements on beam

splitters. However, one of the simplest methods is the optical truncation of coherent light,

also referred to as quantum scissors device (QSD), proposed by Pegg, Phillips and Barnett

(PPB) [13, 14]. Later, Resch et al. proposed and experimentally demonstrated a QSD-

like state preparation technique based on conditional coherence [25]. In addition, due to

its simplicity, the basic idea of the QSD has been modified and generalized [16]. It was

shown that an optical qubit can be generated experimentally with high accuracy using

the PPB scheme with commercially available detectors and single-photon sources [20, 21].

Moreover, optical qubit generation by nonlinear quantum scissors has been proposed [22].

In addition, various schemes have been presented in the field of the QED cavity for the

generation of superpositions states of the radiation field by a conditional measurement of

the atoms. Voguel et al. have basically employed resonant atom-field interaction to build

an arbitrary field in an initial empty cavity [10]. Another proposal [11], based on [10],

has been presented considering both resonant and dispersive atom-field interaction for

preparing a reciprocal-binomial state of the radiation field from an initial empty cavity.

Moreover, a different method considers an initial coherent state and two Ramsey zones for

the generation of a general cavity field state by the conditional measurement of the atoms

interacting resonantly with the field [18].

In addition, a variety of experiments developed for generating nonclassical states of

light assume that the cavity field is initially in its vacuum state [1–4,7–12,18,19,23,24,26].

Nevertheless, in most situations, the system is unavoidable coupled to the environment,

that produces detrimental effects on the ideal realization of an experiment. In this way,

assuming that the environment is in thermal equilibrium with the system, a cavity mode

contains thermal photons on average that have to be removed at the beginning of each

experiment. One way to remove the residual thermal photons is sending across the cavity

a number of atoms initially prepared in the lower atomic level |g〉 and tuned in resonance

with the cavity mode [12,19,23]. However, in order to prepare the cavity field in its vacuum

state, a more efficient technique to absorb thermal photons is by the principle of the rapid

adiabatic passage (RAP), in which the atom-field frequency is swept [27, 28]. These two
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CHAPTER 1. INTRODUCTION

techniques employ a cooling sequence of atoms to reduce the effective field temperature by

energy exchange between the cavity field and the atoms.

In this thesis, we present a theoretical scheme for generating specific quantum states

of a cavity field by a postselective measurement. First, we prepare a superposition of the

vacuum and one-photon state which is the simplest optical qubit state. Then, we employ

the scheme scheme to create other photon number Fock states [29]. Finally, we develop a

protocol to cool-down an initial thermal field to the pure vacuum state. Similar approaches

has beed presented for creating vibrational states and cooling a nanomechanical oscillator

by performing a postselective measurement [30,31].

The main idea of our scheme is based on an initial preparation of atoms that enter

in a typical cavity QED-setup used for Ramsey interferometry and whose final states are

postselected by adjusting the various parameters in such a way that we can generate

the desired states. In particular, we consider a dispersive atom-field coupling of each

atom in the sequence and thus there is no energy exchange between the atoms and the

field which is the main difference with previous schemes presented. Hence, the process is

probabilistic due to the conditioned atomic measurements required to obtain the desired

state. Additionally, we study the feasibility of our processes in an open quantum system

under real experimental conditions.

1.1 Structure of the Thesis

In chapter 2 we present a general introduction of the main concepts and processes

relevant to the study of Cavity Quantum Electrodynamics systems. In chapter 3, we present

our cavity QED model based on Ramsey interferometry and calculate the generalized

equation of the cavity field state generated after postselection. Numerical results for the

preparation of the desired cavity field states are presented in chapter 4. In addition, in

chapter 4, we discuss the experimental feasibility of our scheme. The work we present here

is summarized in chapter 5 where conclusions and further work are discussed.
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Chapter 2

Theoretical description of atoms

and photons

Basic quantum optics experiments allow to test the most intimate behaviours of the

quantum world. In addition, these experiments opened the door to new promising tech-

nologies. For example, quantum computing and quantum communications.

In this work, we focus on Cavity Quantum Electrodynamics which is the study of the

interaction between light confined in a reflective cavity and atoms under conditions where

the quantum nature of light photons is significant. Therefore, this chapter is devoted to

the introduction of the two basic elements in a cavity QED system: photons and atoms.

First, we will review the formalism of the quantization of the electrogmagnetic field where

photons are its quanta. Then, we will describe some quantum states of light and their

properties which are of interest for this work. We will recall the phase space representation

for visualizing the non-classical aspect of quantum states. Afterwards, we will introduce the

two-level atom and its interaction with the quantized electromagnetic field in the resonant

and dispersive regimes. Finally, we will present the master equation for taking into account

the decoherence phenomena.
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CHAPTER 2. THEORETICAL DESCRIPTION OF ATOMS AND PHOTONS

2.1 Quantization of the Electromagnetic Field

The objective is to quantize the electromagnetic field in free space starting by the

classical field equations. The free electromagnetic field obeys the source free Maxwell’s

equations

∇ ·B = 0, (2.1a)

∇×E = −∂B
∂t
, (2.1b)

∇ ·B = 0, (2.1c)

∇×H =
∂D

∂t
, (2.1d)

where B = µ0H, D = ε0D, µ0 and ε0 being the magnetic permeability and electric perme-

ability of free space, obeying the relation µ0ε0 = c−2. We introduce the electromagnetic

vector and scalar potentials A and Φ defined as:

B = ∇×A, (2.2a)

E = −∂A
∂t
−∇Φ. (2.2b)

These definitions automatically satisfy equations (2.1a) and (2.1b).

As Maxwell’s equations are gauge invariant, we choose the Coulomb gauge condition

∇ ·A = 0, (2.3)

Φ = 0.

With the above gauge and substituting (2.2a) and (2.2b) into (2.1d), we find that A satisfies

the wave equation

∇2A =
1

c2

∂2A

∂t2
(2.4)

It is convenient to expand the vector potential in terms of a discrete set of orthogonal mode
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CHAPTER 2. THEORETICAL DESCRIPTION OF ATOMS AND PHOTONS

functions restricted to a certain volume of space

A(r, t) =
∑
k

ck

[
ak(t)uk(r) + a†k(t)u

∗
k(r)

]
, (2.5)

where the coefficients ck are constant for a free field. Substituting (2.5) into (2.4) gives a

separate set of equations

(
∇2 +

ω2
k

c2

)
uk(r) = 0, (2.6)(

∂2

∂t2
+ ω2

k

)
ak(t) = 0.

The mode functions uk(r), in the Coulomb gauge, must satisfy the transversality condition

∇ · uk(r) = 0. (2.7)

Also, these functions form a complete orthonormal basis

∫
V
u∗k(r)uk′(r)dr = δkk′ . (2.8)

Depending on the boundary conditions of the physical volume under consideration, the

mode functions could be travelling waves (periodic boundary conditions) or standing waves

(cavity boundary conditions). For example, planes waves may be written as

uk(r) =
ek exp (ik · r)√

V
, (2.9)

where V is the volume and ek is the unit polarization vector, which is required to be

perpendicular to k by the transversality condition (2.7). Therefore, we have two possible

and mutually orthogonal polarizations contained in a plane perpendicular to k.

Next, solving equation (2.6) for the amplitudes ak(t)

ak(t) = ak exp (−iωkt) , (2.10)

a†k(t) = a†k exp (iωkt) .

6



CHAPTER 2. THEORETICAL DESCRIPTION OF ATOMS AND PHOTONS

The potential vector can be written in the form

A(r, t) =
∑
k

√
~

2ωkε0V
ek

[
ake

i(k·r−ωkt) + a†ke
−i(k·r−ωkt)

]
. (2.11)

Then from equations (2.2a) and (2.2b), the corresponding magnetic and electric field

are

E(r, t) = i
∑
k

√
~ωk

2ε0V
ek

[
ake

i(k·r−ωkt) − a†ke−i(k·r−ωkt)

]
, (2.12)

B(r, t) =
i

c

∑
k

√
~ωk

2ε0V
(k̂ × ek)

[
ake

i(k·r−ωkt) − a†ke−i(k·r−ωkt)

]
, (2.13)

where k̂ is a normalized vector using the relation k = (ωk/c)k̂.

In the Classical Electromagnetic theory, the amplitudes ak and a†k are a pair of conjugate

complex numbers. Then, to quantize the electromagnetic field we choose ak and a†k to be

mutually adjoint operators. Since photons are bosons, these operator obey the boson

commutation relations

[ak, a
†
k′ ] = δkk′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0. (2.14)

These operators are dimensionless. Therefore, the normalization factor
√

~ωk
2ε0V

is the elec-

tric field amplitude of the vacuum in the mode k and depends only on the geometry and

on the frequency of the mode.

The Hamiltonian for the electromagnetic field is

H =

∫
1

2

(
ε0E

2 + µ0B
2
)

dr. (2.15)

Replacing equations (2.12) and (2.13), the Hamiltonian may be reduced to the form

H =
∑
k

~ωk
(
a†kak +

1

2

)
. (2.16)
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CHAPTER 2. THEORETICAL DESCRIPTION OF ATOMS AND PHOTONS

The first term of equation (2.16) represents an ensemble of independent quantum oscilla-

tors. The second term, 1
2~ωk, represents the energy of the vacuum fluctuations in each

mode.

2.2 Fock or Number States

Each mode of the Hamiltonian (2.16) has the eigenvalues ~ωk(nk + 1
2), where nk is an

integer (nk = 0, 1, 2, ...,∞). We write the eigenstates as |nk〉 and are known as Fock or

number states. They are eingestates of the number operator Nk = a†kak

a†kak|nk〉 = nk|nk〉. (2.17)

The operators a†k and ak are the raising and lowering operators for the quantum harmonic

oscillator. For this particular case, the application of the operator ak (a†k) to a Fock state

decreases (increases) the energy of kth mode of the radiation field. Hence the terminology,

annihilation and creation photon operators. The action on the Fock states of the creation

and annihilation operators is given by

ak|nk〉 =
√
nk|nk〉, a†k|nk〉 =

√
nk + 1|nk + 1〉 (2.18)

To generate any Fock state of the kth mode from the vacuum, we just have to a apply the

creation operator successively

|nk〉 =

(
a†k

)nk
√
nk!
|0〉, nk = 0, 1, 2, .... (2.19)

The number states are orthogonal

〈nk|mk〉 = δnm, (2.20)

and complete
∞∑
k=0

|nk〉〈nk| = 1. (2.21)

8



CHAPTER 2. THEORETICAL DESCRIPTION OF ATOMS AND PHOTONS

We notice that the energy of the ground state is given by

〈0|H|0〉 =
1

2

∑
k

~ωk. (2.22)

Since there is no upper bound over the sum of the electromagnetic modes, the energy

of the ground state diverges, causing a conceptual difficulty of the quantization method.

However, in practical experiments, one measures a change in the total energy. So, there

is no divergence in practice caused by the infinite zero-point energy. Moreover, for the

purpose of this work we consider single modes of the electromagnetic field confined in a

cavity.

An important property of number states |n〉 is that the expectation value of the electric

field vanishes , i.e., 〈n|E|n〉 = 0. However, these states present field fluctuations because

the expectation value of the intensity operator E2 is given by

〈n|E2|n〉 = ~ω(n+
1

2
) (2.23)

This is a peculiar effect of Fock states, where the expectation value of the electric field

vanishes no matter how many photons are contained in the state. Number states are

highly nonclassical with a well-defined amplitude and completely random phase.

2.3 Coherent States

Classical electromagnetic fields consist of waves with a well-defined amplitude and

phase. However, quantization of the electromagnetic field implies in an uncertainty rela-

tion for the conjugate field variables. Therefore, a state which minimizes the uncertainty

relation for the field conjugate variables can be interpreted as the closest to a classical

description. A coherent state, as introduced by Glauber [32], is a minimum uncertainty

state defined as an eigenstate of the annihilation operator a

a|α〉 = α|α〉, (2.24)

9



CHAPTER 2. THEORETICAL DESCRIPTION OF ATOMS AND PHOTONS

where α = |α|eiθ is complex number. Coherent states can be expanded over the Fock basis

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉. (2.25)

The probability distribution of photons P (n) in a coherent state is a Poisson distribution

P (n) = |〈n|α〉|2 =
e−|α|

2 |α|2n
n!

, (2.26)

with a mean photon number n̄ = 〈α|a†a|α〉 = |α|2 and photon number mean square-root

deviation ∆N = |α| =
√
n̄.

As we mentioned earlier, a coherent state is a minimum uncertainty state (MUS). If

we write the usual relation between a, a† and q, p

q =

√
~

2mω
(a+ a†), (2.27)

p = i

√
~mω

2
(a− a†).

Then, taking the expectation over a coherent state we get

〈q〉 =

√
~

2mω
〈α|(a+ a†)|α〉 =

√
~

2mω
(α+ α∗), (2.28)

and

〈q2〉 =

√
~

2mω
〈α|(a+ a†)2|α〉 =

√
~

2mω

(
1 + (α+ α∗)2

)
. (2.29)

Hence, calculating the variance of q, we find

∆q =
√
〈q2〉 − 〈q〉2 =

~
2mω

. (2.30)

Similarly for the variable p, we get

∆p =
~mω

2
. (2.31)

Finally, the coherent state is a minimum uncertainty state because the conjugate variables

10



CHAPTER 2. THEORETICAL DESCRIPTION OF ATOMS AND PHOTONS

q and p satisfy

∆x∆p =
~
2
. (2.32)

Another property of coherent states is the time evolution of these states |α, t〉, using

(2.16) and the Fock representation basis (2.25)

|α, t〉 = e−
i
~Ht|α〉 (2.33)

= e−|α|
2/2
∑
n

e−iωt(n+1/2) α
n

√
n!
|n〉

= e−iωt/2|αe−iωt〉.

Within a global phase factor, the state remains coherent. The evolution of the state is a

rotation in the phase space at frequency ω.

It is convenient to define the displacement operator

D(α) = e(αa†−α∗a), (2.34)

which satisfies:

D−1(α) = D†(α) = D(−α); D(0) = 1. (2.35)

As we can see, the displacement operator is unitary (D†D = 1). The application of the

displacement operator on the vacuum state generates a coherent state

|α〉 = D(α)|0〉. (2.36)

Where we used the relation e(A+B) = eAeBe−
1
2

[A,B], valid if [A[A,B]] = [B[A,B]] = 0, in

(2.34) to prove (2.36). In the case of an electromagnetic field, the displacement operation

can be done by the action of a classical field source into the cavity [33].

Also, the set of all coherent states define a complete basis

1

π

∫
d2α|α〉〈α| = 1. (2.37)

11



CHAPTER 2. THEORETICAL DESCRIPTION OF ATOMS AND PHOTONS

And, two coherent states are not orthogonal

|〈α|β〉|2 = e−|α−β|
2
. (2.38)

Further readings about the properties of coherent states can be found in [34].

2.4 Quantum states and density operator

Up to this point, we have used the state vector representation to refer to a quantum

state. A more general mathematical representation of a quantum state is given by the

density operator ρ. In this case, the state vector of a quantum system is not completely

known. More precisely, we only know that a quantum system is in the state |ψi〉 with a

respective probability pi. The density operator of a quantum system is defined as

ρ =
D∑
i=1

pi|ψi〉〈ψi|, (2.39)

where 0 ≤ pi ≤ 1 and
∑

i pi = 1.

Next, we will introduce the conditions that an operator must satisfy to be called a

density operator.

2.4.1 Properties of the density operator

Any operator satisfaying the following conditions is a valid density operator.

1. Normalization condition: Tr(ρ) = 1.

2. Hermiticity condition: ρ = ρ†.

3. Positivity condition: 〈ψ|ρ|ψ〉 ≥ 0 for all |ψ〉.

2.4.2 Pure and mixed states

A quantum system whose state |ψ〉 is known exactly is said to be pure state. Then,

the density operator is a projector ρ = |ψ〉〈ψ|, which implies that ρ2 = ρ. Therefore, due

12



CHAPTER 2. THEORETICAL DESCRIPTION OF ATOMS AND PHOTONS

to the normalization, the following condition is necessary and sufficient to identify pure

states

Tr(ρ2) = 1. (2.40)

Fock and coherent states are examples of pure states.

In general, the purity of a state is defined by [35]

P (ρ) = Tr(ρ2), (2.41)

which satisfies P (ρ) ≤ 1, with equality if and only if ρ is a pure state. Then, the states

satisfying P (ρ) < 1 are called mixed states, being P (ρ) = 1/D the value for a completely

mixed state.

An example of a mixed state is a thermal field. The density operator for a one-mode

thermal state is given by

ρth =
∑
n

nnth
(1 + nth)n+1

|n〉〈n|, (2.42)

where the photon number distribution follows a Bose-Einstein statistics and the mean

photon number is

nth =
1

exp
(

~ω
kBT

)
− 1

. (2.43)

2.4.3 Evolution

Differentiating the density operator of equation (2.39) and employing the Schrödinger

equation i~∂t|ψi〉 = H|ψi〉, we can write down the equation of motion for the density

operator:

∂ρ

∂t
=

∑
i

pi

(
∂|ψi〉
∂t

)
〈ψi|+

∑
i

pi|ψi〉
(
∂〈ψi|
∂t

)
= − i

~
H
∑
i

pi|ψi〉〈ψi|+
i

~
∑
i

pi|ψi〉〈ψi|H

= − i

~
[H, ρ]. (2.44)

This is referred to as the Schödinger-Von Neumann equation.

13



CHAPTER 2. THEORETICAL DESCRIPTION OF ATOMS AND PHOTONS

2.5 Phase space representation

In classical mechanics a useful representation is the phase space representation and the

concept of probability distributions in this space. In this representation, the state of a

system with n degrees of freedom is represented entirely by a point in a 2n-dimensional

phase space. By convention, the first n are the generalized positions (qi) of the system’s

state, and the second the conjugate momenta (pi).

In the case of n = 1, we are considering the one dimensional motion of a particle,

and thus the phase space is a plane, with the position q and conjugate momentum p as

coordinates. Analogue to a one-dimensional motion, it is possible to represent one mode

of a cavity field using two orthogonal field quadratures (equation (2.27)) as position and

momentum. In the classical world it is possible to determine precisely and simultaneously

q and p at a given point. Thus, their probability distributions are Dirac distributions.

However, if we have statistical uncertainties or lack of knowledge about the system, we

must replace the Dirac distributions associated to this point by a density of probability,

f(x, p), positive, normalizaled, and non-zero in a limited region of the phase space. The

statistical average of any observable o(x, p) is given by

ō =

∫
f(x, p)o(x, p)dxdp. (2.45)

The extension of this representation to quantum states was first discussed by Wigner in

1932. The generalization of this representation for quantum states is not trivial since

the Heisenberg uncertainty principle adds a natural blurring even in the absence of any

statistical uncertainty. However, it is possible to define a real phase space distribution for

quantum systems which preserve the main features of a classical probability distribution.

This distribution is called Wigner function (W ), and contains all the information required

for determine the expectation value of every observable of the system. Therefore, the

Wigner function representation is equivalent to the density operator representation.

There are two phase space distributions different from W, the Husimi-Q distribution

and the Glauber-Surdashan P distribution. These distributions are the Fourier transform

of different characteristic functions depending on the order of the creation and annihilation
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operators. In this work, we focus on the Wigner distribution to evidence the quantumness

of a state.

2.5.1 Characteristic functions

Previously, we mentioned that the phase space distributions W , Q and P are the Fourier

transforms of characteristic functions related to the expectation value of the displacement

operator D (see equation (2.34)). It is important to mention that when we expand a func-

tion in a power series of operators, we must address the issue of their ordering. Particularly,

there are three orderings when we deal with a function of the creation and annihilation

operators a and a†. These orderings are:

• normal order: All creation operators are placed to the left to the left of the annihi-

lation ones (a† ←→ a).

• anti-normal order: All annihilation operators are placed to the left of the creation

ones (a←→ a†).

• symmetic order: All products of creation and annihilation operators are symmetrized.

We notice that the expansion of the displacement operator is naturally in symmetric order.

Then, the characteristic function in symmetric order is defined by

C
[ρ]
S (λ) = 〈D(λ)〉 = Tr

[
ρeλa

†−λ∗a
]
, (2.46)

with λ being a complex number. The expression of the symmetric characteristic function

for a pure state |Ψ〉
C

[|Ψ〉〈Ψ|]
S = 〈Ψ|D(λ)|Ψ〉. (2.47)

It is simply the overlap between the state |Ψ〉 and its translation in the phase space by

D(λ). We say that it is an autocorrelation function.

The normal- and anti-normal-order characteristic functions are defined as

C [ρ]
n (λ) = Tr

[
ρeλa

†
e−λ

∗a
]

(2.48)
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C [ρ]
an(λ) = Tr

[
ρe−λ

∗aeλa
†
]
. (2.49)

These functions can be related using the Glauber identity eAeB = eA+Be[A,B]/2, resulting

in the relations:

C
[ρ]
S (λ) = e−|λ|

2/2C [ρ]
n (λ) = e|λ|

2/2C [ρ]
an(λ). (2.50)

2.5.2 Wigner function

The Wigner function is defined as the two-dimensional Fourier transform of the sym-

metric characteristic function

W (α) =
1

π2

∫
d2λCS(λ)eαλ

∗−α∗λ, (2.51)

where α and λ are complex numbers. This function is real and normalized which is an

essential requirement for a probability distribution, but is not positive definite. Hence,

the Wigner function cannot be though as a genuine probability, and has been defined as a

quasi-probability distribution.

Two equivalent expressions of W

The Wigner function can be written in two equivalent expressions, one related to the

elements of the density matrix in the position eigenstates basis and the other related to

the expectation value of the parity operator P .

• Position eigenstates basis

This expression is the most widely used. It directly relates the quantum state of the

system described by ρ with the Wigner function using the position eigenstates basis,

by

W (x, p) =
1

π

∫
due−2ipu〈x+

u

2
|ρ|x− u

2
〉. (2.52)

Then, W is the Fourier transform of the off-diagonal terms of the density matrix ρ

written in the position eigenstates basis. If we invert the Fourier transform we can
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get the matrix elements of ρ in terms of W

〈x+
u

2
|ρ|x− u

2
〉 =

∫
dpe2ipuW (x, p). (2.53)

Also, this expression shows us that both representations, density matrix ρ and Wign-

ert distribution W , are completely equivalent. Therefore, W contains all the infor-

mation required to determine the expectation value of any observable of the quantum

system.

• Expectation value of the parity operator

Another expression, which is of principal interest for this work, is the expression

linking the Wigner with the parity operator P by

W (α) =
2

π
Tr [D(−α)ρD(α)P ] . (2.54)

The Wigner function is the expectation value of 2P/π over the state obtained by

displacing ρ in the phase space by −α.

The hermitian parity operator P performs a symmetry in the phase space around

the origin according to

P |x〉 = | − x〉; P |p〉 = | − p〉 (2.55)

Moreover, the operator P is the photon number parity operator. This can be shown

remembering that the wavefunctions of a Fock state |n〉 in either the position or

momentum representation are

ψn(x) = 〈x|n〉 = (2/π)1/4 1√
2nn!

e−x
2
(−1)ne2x2 dn

dun
e−u

2
; with u = x

√
2. (2.56)

We write these wavefunctions as ψn(x) = (−1)nfn(x), where fn(x) is an even func-

tion. So, reversing the sign of x or p in these functions produces the effect of a

multiplication by (−1)n:

ψn(−x) = (−1)nfn(x). (2.57)
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And thus, we can write the effect of P on the Fock basis as

P |n〉 = (−1)n|n〉. (2.58)

At this stage, it is easy to conclude that the operator P is the photon number parity

observable

P = eiπaa† . (2.59)

Since W is the expectation value of an observable, W is a measurable quantity.

Hence, W can be determined experimentally using equation (2.54), allowing the

reconstruction of quantum states and the study of their decoherence process [36].

Equation (2.54) imposes boundaries to the range of values that W can take owing to

the fact that

−1 ≤ P ≤ 1 ⇒ −2

π
≤W ≤ 2

π
. (2.60)

Properties of the Wigner distribution

• Expectation value of operators: The Wigner function can be used to compute

expectation values of any operator written in symmetric ordering os:

〈os(a, a†)〉 = Tr[ρos] =

∫
dα2os(α, α

∗)W (α). (2.61)

Equation (2.61) reminds us to equation (2.45), which is used for computing the

expectation values of classical observables. W (α) plays the role of f(x, p) in the

quantum phase space.

• Marginal distributions: Using equation (2.53) with u = 0 gives the probability

distribution of the field quadrature X0, also called position quadrature:

P (x) = 〈x|ρ|x〉 =

∫
dpW (x, p). (2.62)

Similarly, the probability distribution of the field quadrature Xπ/2 (momentum) can
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be determined by

P (p) = 〈p|ρ|p〉 =

∫
dxW (x, p). (2.63)

Therefore, we obtain the marginal probability distributions of x and p by integrating

the Wigner distribution over the conjugate variable.

In general, this result is valid for any couple of orthogonal field quadratures xφ and

pφ

P (pφ) =

∫
dxφW (xφ, pφ). (2.64)

The Wigner function is the only quantum phase space distribution satisfying this

property.

For a lot of quantum states, the probability distributions P (x) or P (p) present nodes.

Since P (x0) =
∫

dpW (x0, p) = 0, it follows that W cannot be positive everywhere.

When it takes negative values in some regions of the phase space, it cannot be

regarded a genuine probability distribution. We will see next, that negativities in W

are indicators of the non-classical features of a state.

2.5.3 Examples of Wigner functions

In this section, we present examples of the Wigner distribution of some quantum states.

We can divide these states into two categories: First, the group of those states whose

Wigner distribution is positive everywhere, which we called quasi-classical states, and

then the group whose Wigner functions present negativities, called non-classical states.

Coherent states

For a coherent state |β〉, the Wigner distribution is

W [|β〉〈β|](α) =
2

π
e−2|β−α|2 . (2.65)

This function is a Gaussian centered at β, with a width of 1/
√

2. It can be observed directly

that the Wigner function of a coherent state is always positive, taking its maximum value

2/π at β = α. The coherent state is thus a quasi-classical state. Figure 2.1 (a) and (b)
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present the Wigner distributions of the vacuum state (β = 0) and a coherent state with a

mean photon number n̄ = 5 (β =
√

5), where α = x+ ip.
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Figure 2.1: Quasi-classical states Wigner functions. (a) vacuum state. (b) Coherent state
with β =

√
5. (c) Thermal state with nth = 1 mean photon number.

Thermal state

The thermal state is the steady state of the field in cavity at a finite temperature. Its

Wigner function is given by

W [ρth](α) =
2

π

1

(2nth + 1)
e−2|α|2/(2nth+1). (2.66)

It is a Gaussian centered at the origin, with a width of
√
nth + 1/2. It is positive every-

where, taking its maximum value 1/π(nth + 1/2) at the origin. Thus, the thermal state
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is a quasi-classical state. Figure 2.1 (c) shows the Wigner distribution of a thermal state

with a mean photon number nth = 1.

For these states, the Wigner function is definite and positive. It has all the properties

of a classical probability distribution in the phase space.

Fock states

The Wigner function of a Fock state reads as

W [|n〉〈n|](α) =
2

π
(−1)ne−2|α|2Ln(4|α|2), (2.67)

where Ln is the nth Laguerre polynomials. Since Ln(0) = 1:

W [|n〉〈n|](0) =
2

π
(−1)n. (2.68)

The value of the Wigner function at the origin is ±2/π. It takes its minimum value −2/π

for odd photon number states and maximum value for even photon number states. In

fact, all Fock states present some regions with negativities in the phase space, and thus

the Wigner cannot be regarded as a classical probability distribution. They evidence the

quantumness of Fock states. For example, the Wigner distribution of the single-photon

state is

W [|1〉〈1|](α) = − 2

π
(1− 4|α|2)e−2|α|2 , (2.69)

which is shown in figure 2.2 (a), also in figure 2.2 (b), the five-photon number state is

presented.

Fock states superpositions

Since this work focuses on the generation of some Fock states superpositions which are

highly non-classical states, we present some Wigner functions of Fock states superpositions

realized in [29]. The general equation of these states is given by

|ψ〉 = α|m〉+ β|n〉, (2.70)
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Figure 2.2: Fock states Wigner functions. (a) single-photon Fock state. (b) five-photon
Fock state.

with m 6= n. One of these states of interest is an optical qubit, which is a superposition of

the vacuum and the one-photon number state:

|ψ〉 = cos (θ/2) |0〉+ eiφ sin (θ/2) |1〉.

The Wigner function of the optical qubit and Fock state superpositions in general can

be determined by using equations (2.51) and (2.67). Apart of the non-classical feature of

Fock states, the quantum nature of superposition states arise from the interference terms

(〈m|D(λ)|n〉) when equation (2.51) is applied. Particularly, for cos (θ/2) = sin (θ/2) =

1/
√

2, the Wigner function of the optical qubit has the form

Wqubit(x, p) =
4

π
e−2(x2+p2)

[
x2 + p2 + xcos(φ) + psin(φ)

]
. (2.71)

In figure 2.3 (a) and (b), we show an optical qubit state and a superposition of states |1〉
and |3〉 states, respectively.

22



CHAPTER 2. THEORETICAL DESCRIPTION OF ATOMS AND PHOTONS

x

3 2 1 0 1 2 3 p4
2

0
2

4

W
(x
, p
)

0.2

0.0

0.2

0.4

0.2
0.1

0.0
0.1
0.2
0.3
0.4
0.5

x

3 2 1 0 1 2 3 p4
2

0
2

4

W
(x
, p
)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

Figure 2.3: Fock states superpositions Wigner functions. (a) superposition of states |0〉
and |1〉. (b) superposition of states |1〉 and |3〉.

2.6 Two-level atoms

2.6.1 A two-level atom as a spin-1/2 system

In general, we can describe a two-level system as a spin-1/2 system like the electron.

Then, we call this system a pseudo-spin S, where S = ~σ/2 and σ = (σx, σy, σz), is a

vector formed by Pauli matrices. In the basis of the σz eigenstates, the Pauli matrices are

σx =

 0 1

1 0

 ; σy =

 0 −i

i 0

 ; σz =

 1 0

0 −1

 . (2.72)

These matrices obey the commutation rule

[σi, σj ] = 2iεijkσk. (2.73)

The eigenvalues of σi are ±1, so the pseudo-spin S along one direction of the space can

take only two possible values, ±~/2.

In the case of a two-level atom with and upper state |e〉 and a ground state |g〉, we use

the states |e〉 and |g〉, as the eigenstates of the operator σz with eigenvalues +1 and −1,
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respectively. The Hamiltonian of the atom with eigenstates |e〉 and |g〉 can be written as

Hat =
~ωeg

2
σz, (2.74)

where ωeg is the angular frequency of the transition |e〉 ←→ |g〉, and σz is the Pauli matrix

from equation (2.72).

The most general pure atomic pseudo-spin state can be written as

|ψat〉 = cos (θ/2) |e〉+ eiϕ sin (θ/2) |g〉, (2.75)

with the two angles constrained by 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.

As shown in figure 2.4, when the unit vector n̂ rotates in space, the state |ψat〉 explores

the entire Hilbert space. This general state |ψat〉 is an eigenstate with eigenvalue +1 of the

spin component along the direction n̂ with polar angles θ and ϕ. If we vary the parameters

θ and ϕ, the tip of the unit vector n̂ form a spherical surface called Bloch sphere. Each

point of the Bloch sphere represents a superposition of |e〉 and |g〉.
Now lets us consider the time evolution of the state |ψat〉 under the Hamiltonian (2.74).

This state is given by

|ψat(t)〉 = e−iωegt/2
(

cos(θ/2)|e〉+ ei(ϕ+ωegt) sin(θ/2)|g〉
)
. (2.76)

In the Bloch sphere picture, this evolution is a Larmor precession of the atomic pseudo-spin

around the quantization axis z.

2.6.2 Manipulation of atomic states with a classical field

Preparation of arbitrary atomic states is essential in quantum optics experiments de-

scribed below. This can be realized performing spin rotations on the Bloch sphere by

coupling the atom with a resonant or quasi-resonant classical electric field.

We can write the usual Pauli matrices in terms of the energy eigenstates as

σx = |g〉〈e|+ |e〉〈g|; σy = i (|g〉〈e| − |e〉〈g|) ; σz = |e〉〈e| − |g〉〈g|. (2.77)
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Figure 2.4: Representation of the states of a two-level system on the Bloch sphere.

And also, define the raising and lowering operators σ±

σ+ = |e〉〈g|; σ− = |g〉〈e|. (2.78)

The atom-field Hamiltonian is

H = Ha +Hr, (2.79)

where Ha is the Hamiltonian from (2.74), and

Hr = −d ·Er, (2.80)

describes the coupling between the atom and the classical electric field in the dipole ap-

proximation. In the dipole approximation or long-wavelength approximation, we assume

that the wavelength of the field is much longer than the size of the atom so that we can

neglect any variations of the field over the extent of the atom. With this approximation,

we consider a classical time-dependent electric field given by

Er = iεr
[
ε̂re
−iωrte−iϕ0e−iϕ + ε̂∗re

iωrteiϕ0eiϕ
]
. (2.81)

εr, ωr and ε̂r represent the real amplitude, angular frequency and the polarization of the

field, respectively. Also, ϕ0 + ϕ describe the phase.
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In the dipole approximation, the atom couples to the field by the dipole operator,

d = qr. In order to determine the form of the atomic dipole operator, we invoke the

parity operator Π which flips the sign of the position operator r, and thus is defined by

the transformation

ΠrΠ† = −r. (2.82)

We note that the action of the parity operator twice returns r and thus the parity operator

is unitary (Π†Π = 1) and Π2 = 1. So, the possible eigenvalues of Π are ±1. Operating the

parity operator on the right of the transformation (2.82) gives Πr = −rΠ, and thus the

anticommutator of Π with the position operator r vanishes:

[Π, r]+ = 0. (2.83)

Then, using the basis of the atomic energy eigenstates, allows that the matrix elements of

the anticommutator to vanish,

〈i|[Π, r]+|j〉 = 0, (2.84)

these matrix elements can be written in the same basis as

〈i|[Π, r]+|j〉 = 〈i|(Πr + rΠ)|j〉 = (πi + πj)〈i|r|j〉, (2.85)

where πa and πb are the eigenvalues of Π. This is valid because Π commutes with the

atomic Hamiltonian which as the form p2/2m−α/|r|, and thus Π and H have simultaneous

eigenstates. This is because p2 = −~2∇2 in the position representation, and thus is not

affected by the parity operator. Also, the same happens to the modulus of r. We have

mentioned that the eigenvalues of the parity operator are ±1, then combining equations

(2.84) and (2.85), we have that πi + πj = 0 or 〈i|r|j〉 = 0. We can see that the diagonal

matrix elements of d vanish, since πg and πe are both nonzero,

〈g|d|g〉 = 〈e|d|e〉 = 0. (2.86)

The off-diagonal matrix elements 〈e|d|g〉 = 〈g|d|e〉∗ are nonvanishing, because πg = −πe.
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Using the Completeness property of the atomic eigenstates, i.e. |g〉〈g|+ |e〉〈e| = 1, the

dipole operator can be written as

d = (|e〉〈e|+ |g〉〈g|)d(|e〉〈e|+ |g〉〈g|)

= 〈g|d|e〉σ− + 〈e|d|g〉σ+

= d(ε̂aσ− + ε̂∗aσ+), (2.87)

where d is the dipole matrix element (assumed to be real without loss of generality) and

ε̂a the unit vector describing the atomic transition polarization.

With the matrix elements of the dipole operator, the atom-field Hamiltonian is

H =
~∆r

2
σz +

~ωr
2
σz − d(ε̂aσ− + ε̂∗aσ+) ·Er, (2.88)

where we have introduced the atom-field detuning ∆r = ωeg − ωr. Then, we apply an

unitary transformation given by

U = eiωrσzt/2. (2.89)

A Hamiltonian transforms under an unitary transformation U in the following way. Sup-

pose an unitary transformation U which induces the transformation |ψ̃〉 = U |ψ〉. Both,

original and transformed states must satisfy the Schrödinger equation

i~
∂|ψ〉
∂t

= H|ψ〉; i~
∂|ψ̃〉
∂t

= H̃|ψ̃〉, (2.90)

where H̃ is the transformed Hamiltonian. We can write the first equation here as

i~
∂(U †|ψ̃〉)

∂t
= HU †|ψ̃〉. (2.91)

By using the product rule for derivatives and operating on the left by U , one gets

i~
∂|ψ̃〉
∂t

+ i~U
∂U †

∂t
|ψ̃〉 = UHU †|ψ̃〉. (2.92)
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We can rewrite this as

i~
∂|ψ̃〉
∂t

=

[
UHU † − i~U

∂U †

∂t

]
|ψ̃〉. (2.93)

Comparting this to the Schrödinger equation in the transformed variables, one can identify

the transformation rule for the Hamiltonian

H̃ = UHU † − i~U
∂U †

∂t
. (2.94)

Using this transformation rule for the Hamiltonian in (2.88) and the unitary transformation

of (2.89), we have the Hamiltonian

H̃ =
~∆r

2
σz − d(ε̂aσ−e−iωrt + ε̂∗aσ+eiωrt) ·Er. (2.95)

The expansion of the scalar product d · Er from above has two time-independent terms

and two terms oscillating at angular frequencies ±2ωr. These two terms oscillate rapidly

and we can make the rotating-wave approximation (RWA) to neglect them. With this

approximation the Hamiltonian is

H̃ =
~∆r

2
σz − i~

Ωr

2

[
e−iϕσ+ − eiϕσ−

]
, (2.96)

where

Ωr =
2d

~
εrε̂

∗
a · ε̂reiϕ0 , (2.97)

is the classical Rabi frequency. The phase ϕ0 is adjusted to make the Rabi frequency a

positive real value. The lowering and raising also are defined by σ± = (σx ± iσy)/2, and

thus the Hamiltonian in (2.96) can be written in a compact form

H̃ =
~Ω
′
r

2
σ · n̂, (2.98)

with σ = (σx, σy, σz) being the vector of Pauli matrices, Ω
′
r =

√
Ω2
r + ∆2

r and

n̂ =
−Ωr sin(ϕ)êx + Ωr cos(ϕ)êy + ∆rêz

Ω′r
. (2.99)
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The Hamiltonian of equation (2.98) describes a rotation with angular frequency Ωr around

the n̂ axis.

Note that:

• if Ωr = 0, then n̂ = êz,

• if ∆r = 0, then n̂ is in the equatorial plane of the Bloch sphere, and Ω
′
r = Ωr.

The time evolution operator is given by

e−iΩ
′
rtσ·n̂/2 = e−iθσ·n̂/2 = cos(θ/2)1− i sin(θ/2)σ · n̂, (2.100)

where θ = Ω
′
rt, and the last identity resulting from a power series expansion of the expo-

nential, with (σ · n̂)2 = 1. Then, the resonant case (∆r = 0) provides a simple way to

prepare a state with arbitrary polar angles on the Bloch sphere. The interaction during a

time t = θ/Ωr, with a resonant field having a phase ϕ performs the rotation:

cos(θ/2)1− i sin(θ/2)σ · n̂ =

 cos(θ/2) − sin(θ/2)e−iϕ

sin(θ/2)eiϕ cos(θ/2)

 . (2.101)

This rotation transforms |e〉 into cos(θ/2)|e〉+ sin(θ/2)eiϕ|g〉, the state whose Bloch vector

points in the direction of polar angles θ, ϕ.

If we consider an atom initially in the state |e〉 or |g〉 interacting with a resonant

classical electric field during a time t which satisfies the condition Ωrt = π/2. Then, the

corresponding state is a superposition of |e〉 and |g〉 with equal probabilities

|e〉 → 1√
2

(
|e〉+ eiϕ|g〉

)
; |g〉 → 1√

2

(
−e−iϕ|e〉+ |g〉

)
. (2.102)

This manipulation of the atomic state satisfying Ωrt = π/2 is called as π/2 pulse.

The resonant interaction with a classical field is a basic ingredient in CQED experi-

ments. Particularly, we will see that the π/2 pulse plays an important role in the atomic

Ramsey interferometry.
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2.6.3 The Ramsey interferometer

The Ramsey interferometer is realized by combining two π/2 pulses applied in zones

R1 and R2 as shown in figure. 2.5.

Figure 2.5: Scheme of the Ramsey interferometer. R1 and R2 are the zones where the π/2
pulses are applied, while D is the state detector of the atom. The probability of finding
the atom in |e〉 or |g〉 is an oscillating function depending on the phase shift Φ.

First, the π/2 pulse in R1 rotates the state |e〉 to a superposition state

|e〉 → 1√
2

(|e〉+ |g〉) . (2.103)

Then, suppose that on the path to R2 the atomic state adquires a phase shift Φ

1√
2

(
|e〉+ eiΦ|g〉

)
. (2.104)

Another π/2 pulse in R2 is applied to the atomic state. We consider that R2 has a relative

phase φr with R1, and thus the transformation is the one from equation (2.102) with

ϕ = φr,
1

2

[(
1− ei(Φ−φr)

)
|e〉+ eiΦ

(
1 + ei(φr−Φ)

)
|g〉
]
. (2.105)

The probabilities for detecting |e〉 or |g〉 are given by

πe(Φ, φr) =
1

2
− 1

2
cos(Φ− φr); πg(Φ, φr) =

1

2
+

1

2
cos(φr − Φ). (2.106)

We consider the case with φr = 0. In this case, the probabilities πe and πg are oscillating

functions depending only on Φ. These oscillations in the detection probability can be
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understood as an interference process. For example, the transition from the state |e〉 to

|g〉 could take place either in R1 or R2. There are two indistinguishable quantums paths

leading the inital state to the final state so the final transition probability is obtained by

the the sum of the two corresponding amplitudes. The Ramsey fringes correspond to the

interference between these two amplitudes.

The Ramsey interferometer is a very sensitive probe to phase disturbance acting on the

atomic state while it crosses the set-up.

2.7 Atom-field coupling: Jaynes-Cummings model

In this section, we will describe the interaction of two quantum systems: one two-level

atom (spin-1/2 system) interacting with a single-mode of a quantized electromagnetic field

(quantum harmonic oscillator) confined in a cavity. As we mentioned in section 2.1, for

cavity boundary conditions, the mode functions of the electromagnetic field are standing

waves (sinusoidal functions). Thus, we write the electric cavity field as

Ec = ε0(r)(ε̂ca+ ε̂∗ca
†). (2.107)

The complete Hamiltonian of the atom-cavity system is the quantum version of equation

(2.79) and can be expressed as

H = Ha +Hc +Hac, (2.108)

where Ha and Hc = ~ωcN are the atom and cavity Hamiltonian. Note that we eliminated

the constant ~ωc/2 by redefine the zero energy level. The interaction Hamiltonian Hac

describing the coupling of the atom and the quantized electric field in the dipole approxi-

mation is

Hac = −d ·Ec. (2.109)
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Then, the total Hamiltonian is explicitly written as

H =
~ωa

2
σz + ~ωca†a− dε0(r)(ε̂aσ− + ε̂∗aσ+) · (ε̂ca+ ε̂∗ca

†). (2.110)

Performing a similar procedure as the one in section 2.6.2, we apply an unitary transfor-

mation given by

U = eiωcta†a+iωatσz/2, (2.111)

and thus the Hamiltonian transforms following the rule of equation (2.94) as

H̃ = −dε0(r)eiωatσz/2(ε̂aσ− + ε̂∗aσ+)e−iωatσz/2 · eiωcta†a(ε̂ca+ ε̂∗ca
†)e−iωcta†a. (2.112)

Making use of the property

eαABe−αA = B + α[A,B] +
α2

2
[A, [A,B]] +

α3

3!
[A, [A, [A,B]]] + ..., (2.113)

we have

eiωcta†a(a+ a†)e−iωcta†a = ae−iωct + a†eiωct. (2.114)

With the above, the atom-field Hamiltonian of equation (2.112) is

H̃ = −dε0(r)(ε̂aσ−e−iωat + ε̂∗aσ+eiωat) · (ε̂cae−iωct + ε̂∗ca
†eiωct). (2.115)

The expansion of the scalar product involves four possible processes. Two of them are

proportional to aσ− and a†σ+. The first corresponds to an atomic transition to the lower

level |g〉 together with a photon annihilation. The second is a transition of the atom the

upper level |e〉 and the creation of a photon. From the above equation (2.115), we see

that these two terms oscillate at angular frequencies ∓(ωa +ωc), and thus when the cavity

mode and the transition frequency are close, ωa ∼ ωc, they can be neglected by performing

the rotation-wave approximation. The other terms aσ+ and a†σ− correspond to the usual

processes of photon absorption or emission which dominates the evolution of the system.
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Then, under the rotating-wave approximation the Hamiltonian is

H̃ =
~Ω0(r)

2
(a†σ−eit(ωc−ωa) + aσ+eit(ωa−ωc)), (2.116)

where

Ω0(r) = −2dε0ε̂a · ε̂c
~

f(r) = Ω0f(r). (2.117)

Finally, going back to the Schödinger picture by appling the inverse transformation of

equation (2.111), we get the Hamiltonian in the dipole and rotating-wave approximation

known as the Jaynes-Cummings model

HJC =
~ωa

2
σz + ~ωca†a+

~Ω0

2
(aσ+ + a†σ−)f(r). (2.118)

A natural basis representation is by the “uncoupled” eingenstates of Ha + Hc. They

are the tensor product |e, n〉 and |g, n〉 of the atomic and cavity energy states and their

eigenenergies are (~ωa/2 + ~nωc) and (−~ωa/2 + ~nωc). These “uncoupled” states are

eigenstates of the operator M = a†a+σ+σ−, representing the number of atomic and fields

excitations, which commutes with HJC and is a constant of motion. Since, M and HJC are

two commuting Hermitian operators, they posses a common eigenbasis. However, the pairs

of eigenstates |e, n〉 and |g, n+1〉 ofM are degenerate having the same number of excitations

given by (n+1), and thus generally HJC is not diagonal in this basis representation due to

the degeneracy. In fact, the structure of the Jaynes-Cummings Hamiltonian connects the

pair of degenerate states corresponding to the excitation number (n + 1) (the state |g, 0〉
does not couple to any other state):

HJC |e, n〉 =

(
~ωa

2
+ ~ωcn

)
|e, n〉+

~Ω0f(r)

2

√
n+ 1|g, n+ 1〉,

HJC |g, n+ 1〉 =
~Ω0f(r)

2

√
n+ 1|e, n〉+

(
−~ωa

2
+ ~ωcn

)
|g, n+ 1〉. (2.119)

Then, the Hamiltonian is block diagonal, in 2x2 submatrices, making it simple to diago-

nalize because we have to solve separate two-level diagonalization problems.

Let us call Hn the restriction of the Jaynes-Cummings model to the subspace Sn =
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{|e, n〉, |g, n+ 1〉} corresponding to the nth doublet with excitation number (n+ 1). At the

center of the cavity mode, f(r) = 1 and defining the atom-cavity detuning as δ = ωa−ωc,
Hn can be expressed in the matrix form:

Hn = ~

 ωc(n+ 1/2) + δ/2 Ω0

√
n+ 1/2

Ω0

√
n+ 1/2 ωc(n+ 1/2)− δ/2


= ~ωc(n+ 1/2)1 + Vn, (2.120)

with

Vn =
~
2

[
Ω0

√
n+ 1σx + δσz

]
=

~
2

√
Ω2

0(n+ 1) + δ2σ · n̂. (2.121)

The diagonalization of Hn is equivalent to the determination of the eigenstates of a spin

placed in a magnetic field whose components along OZ and OX are proportional to δ and

Ω0

√
n+ 1. From the above, the unit vector n̂ = sin(θn)êx + cos(θn)êz is pointing along

the direction of this fictitious field which makes with Z the angle θn defined by

tan(θn) = Ω0

√
n+ 1/δ. (2.122)

Also, (σ · n̂) has ±1 eigenvalues with the corresponding eigenvectors:

|+, n〉 = cos(θn/2)|e, n〉+ sin(θn/2)|g, n+ 1〉;

|−, n〉 = sin(θn/2)|e, n〉 − cos(θn/2)|g, n+ 1〉. (2.123)

These states are called the dressed states of the atom-field system, and the corresponding

eigenenergies of Hn are

E±,n = ~ωc(n+ 1/2)± ~
2

√
Ω2

0(n+ 1) + δ2. (2.124)

Figure. 2.6 shows the eigenenergies, E±,n , of dressed states as a function of the detuning

for a given value of the ‘n-th Raby frequency’ Ωn = Ω0

√
n+ 1. From the energy spectrum,
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we can identify two regimes of the atom-field interaction. One is the dispersive regime

or far detuned regime with |δ| � Ωn, in which the uncoupled bare states remain good

approximations of the dressed states. The other is the resonant regime with δ = 0, in

which the degeneracy of the uncoupled bare states is lifted by the coupling Hamiltonian.

This results in an energy gap given by the Rabi frequency Ωn between the two dressed

states. We discuss in more detail these two regimes in the following paragraphs.

−3 −2 −1 0 1 2 3 4

δ/Ωn

−3

−2

−1

0

1

2

3

E
n

er
gy

|e, n〉

|g, n + 1〉

|+, n〉

|−, n〉

h̄Ωn

Figure 2.6: Energies of dressed states as functions of the ratio between detuning δ and the
‘n-th photon Rabi frequency’ Ωn = Ω0

√
n+ 1.

2.7.1 Resonant regime

In the resonant regime, when δ = 0, we can see from equation (2.122) that θn = π/2

for all n values. Then, the dressed states are

|±, n〉 = [|e, n〉 ± |g, n+ 1〉] /
√

2. (2.125)

Consider an atom initially in state |e〉, inside a cavity with n photons. The initial state,

|ψac(0) = |e, n〉, expanded on the dressed basis is

|ψac(0)〉 = [|+, n〉+ |−, n〉] /
√

2. (2.126)
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The time evolution of this state, neglecting a global phase factor given by the term (n +

1/2)~ωc on the equation (2.124) of the eigenenergies, is

|ψac(t)〉 =
[
|+, n〉e−iΩnt/2 + |−, n〉eiΩnt/2

]
. (2.127)

Returning to the uncoupled states basis, at a time t, |ψac(t)〉 becomes

|ψac(t)〉 = cos

(
Ωnt

2

)
|e, n〉 − i sin

(
Ωnt

2

)
|g, n+ 1〉, (2.128)

with a probability of finding the atom in |e〉 given by

Pe(t) =
1 + cos(Ω0

√
n+ 1t)

2
. (2.129)

Equation (2.129) describes a reversible energy exchange between |e, n〉 and |g, n + 1〉 at

frequency Ωn. This phenomenon is called quantum Rabi oscillations.

Now, suppose that an atom initially in |e〉, interacting with a field in a state given

by a superposition of Fock states, |ψc〉 =
∑

n cn|n〉. Using equation (2.128), we have the

atom-field state at a time t

|ψac(t)〉 =
∑
n

cn

[
cos

(
Ωnt

2

)
|e, n〉 − i sin

(
Ωnt

2

)
|g, n+ 1〉

]
, (2.130)

and a probability Pe(t) of finding the atom in |e〉 given by

Pe(t) =
∑
n

P (n)
1 + cos(Ω0

√
n+ 1t)

2
, (2.131)

where P (n) is the photon number distribution (|cn|2) of the field.

Now, the Rabi oscillation is a sum of oscillating terms at frequencies Ω0

√
n+ 1, weighted

by the corresponding probability of finding the photon number n in the initial field state.

Figure. 2.7 shows Pe(t) for an initial coherent state with n̄ = 15, where we observe a col-

lapse and a revival of the Rabi oscillations. These results are different for the oscillations

predicted by the semiclassical description (two-level atom and a classical field). First of
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all, in the quantum description, Rabi oscillations take place even for an initial field in the

vacuum state. This oscillation occurs at a frequency Ω0.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Ω0t/2π

0.0

0.2

0.4

0.6

0.8

1.0

P
e(
t)

Figure 2.7: Collapses and revivals: Probability Pe(t) of finding the atom in the state |e〉
versus time t in unit of 2π/Ω0. The cavity is initially a coherent field with mean photon
number n̄ = 15.

Quantum revivals are also a pure quantum phenomenon directly related to the discrete

energy spectrum of the electromagnetic field and, hence, to the field energy quantization

itself. These revivals are not restricted to an initial coherent state field [33].

2.7.2 Dispersive regime

In the far detuned regime, |δ| � Ωn = Ω0

√
n+ 1, the eigenenergies of the dressed

states asymptotically approximate to the uncoupled levels (figure. 2.6). Hence, the bare

states are good approximations at first order in Ωn/δ of the dressed states:

|+, n〉 ' |e, n〉 and |−, n〉 ' −|g, n+ 1〉 if δ > 0 (2.132)

|+, n〉 ' |g, n+ 1〉 and |−, n〉 ' |e, n〉 if δ < 0. (2.133)
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Then, the corresponding energies are modified at second order in Ωn/δ:

Ee,n = E0
e,n +

~Ω2
0

4δ
(n+ 1) (2.134)

Eg,n+1 = E0
g,n+1 −

~Ω2
0

4δ
(n+ 1), (2.135)

where the energies with the superscript ‘0’ correspond to the energies of the bare states.

The energy shift experienced by the system with respect to the unpertubed bare states is

known as light shift. These shifts can be described by an effective Hamiltonian with the

bare states as eigenstates:

Hdisp
JC = Hc +

~
2

[
ωa +

Ω2
0

2δ

(
a†a+

1

2

)]
σz. (2.136)

The second term of Hdisp
JC can be considered either as an energy shift of the field state or

of the atomic state. If we focus on the energy shift experienced by the atom, the atomic

frequency is displaced by

∆ωa(n) =
Ω2

0

2δ

(
n+

1

2

)
, (2.137)

with n being the photon number of the field, and the second contribution Ω2
0/2δ is the

Lamb shift due to the vacuum fluctuations in the cavity mode. Then, after an interaction

time ti of an atom with a field containing n photons, the atom will accumulate a relative

phase shift between the states |e〉 and |g〉,

∆ωa(n)ti = ϕ0

(
n+

1

2

)
≡ ϕ(n) +

ϕ0

2
, (2.138)

with

ϕ0 =
Ω2

0ti
2δ

(2.139)

being the phase shift per photon. This phase shift can be experimentally tuned by adjusting

the atom-field frequency detuning or the interaction time ti. The Lamb shift ϕ0/2, which

is independent of the photon number can be compensated by redefining a phase origin for

the atomic coherence.

If we absorb the Lamb shift into ϕ(n), then an initial atomic state (|e〉+ |g〉)/
√

2 will
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end up in a state

|+〉n =
1√
2

(
|e〉+ eiϕ(n)|g〉

)
, (2.140)

after interacting with the cavity field during a time ti. Figure 2.8 shows the Bloch sphere

representation of the state |+〉n, where the different directions in the equatorial plane

depend on the photon number.

x̂
nϕ0

|+〉0

|+〉1
|+〉2

|+〉3

ŷ

ẑ

ϕ0
ϕ0

ϕ0

Figure 2.8: Evolution of the Bloch vector after a dispersive interaction with the cavity field
in a Fock state |n〉. The global phase shift ϕ0/2 is not shown.

As we can see, the phase shift accumulated by the atomic state carries information

about the number of photons inside the cavity. Combining this effect with the Ramsey

interferometry technique explained in section 2.6.3, it is possible to realize Quantum Non-

demolition measurement (QND) of the photon number which are going to be introduced

in the next chapter [2–4].

2.8 General theory of measurement

2.8.1 Projective measumerent

Consider a system S in a pure state represented by a vector |Ψ〉 in the Hilbert space H .

The measured observable is described by a Hermitian operator O in H with eigenvalues
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oi, which are the possible measurement results. The observable O can be expressed as

O =
∑
i

oiPi,

with Pi being the projective operator onto the eigenspace with eigenvalue oi, and satisfies

P †i = Pi = P 2
i

∑
i

Pi = 1.

The postulates in quantum mechanics tell that

1. The measurement results oi are random with a probability given by

πi = 〈Ψ|Pi|Ψ〉.

2. After obtaining the result oi, the state is projected in

|Ψ〉 → Pi|Ψ〉√
πi

.

Those postulates can be generalized when the state of the system S is an statistical mixture

described by the density matrix ρ to:

1. The measurement results oi are random with a probability given by

πi = Tr(ρPi). (2.141)

2. After obtaining the result oi, the state is projected in

ρ→ ρi =
PiρPi
πi

. (2.142)

If the measurement is unread, the state becomes

ρ→
∑
i

πiρi =
∑
i

PiρPi. (2.143)
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These unread measurements preserve the diagonal terms of the density operator (spanned

by the basis of eigenstates of the observable O). The off diagonal elements are supressed.

Now let us consider a more experimental situation applying the postulates mentioned

earlier. Consider a system S interacting with a meter system A which performs a measure-

ment on S. This measurement is possible due to the entanglement produced by a proper

unitary operation UM acting on both systems. Suppose that OA is an observable of A with

eigenvalues oAi and eigenstates |uAi 〉, which are orthonormal. The unitary evolution UM

acting on the initial state |0A〉 of the meter and the state |ΨS〉 of S leads to

UM |ΨS〉 ⊗ |0A〉 =
∑
i

〈uAi |UM |0A〉|ΨS〉 ⊗ |uAi 〉

=
∑
i

Mi|ΨS〉 ⊗ |uAi 〉. (2.144)

The unitary operator UM transforms the initial system-meter state to a superposition of

the eigenstates |uAi 〉 of A and a transformation described by the operators Mi to |ΨS〉.
If we perform a projective measurement of the meter A and obtain the outcome oAi ,

the state of A is then projected onto |uAi 〉. Also, the state of S is transformed by

|ΨS〉 → Mi|ΨS〉√
πi

, (2.145)

with

πi = 〈ΨS |M †i M̂i|ΨS〉 (2.146)

being the probability of obtaining the outcome result oAi .

Generally, if the system S is in a statistical mixture ρS =
∑

i pi|ΨS
i 〉〈ΨS

i |, the unitary

evolution of the coupled system is described by

UM
(
ρS ⊗ |0A〉〈0A|

)
U †M =

∑
i,j

Miρ
SM †j ⊗ |uAi 〉〈uAj |. (2.147)

As before, if a projective measurement is performed on A obtaining the outcome oAi . Then,
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the state of S is transformed to

ρS → Miρ
SM †i
πi

, (2.148)

with

πi = Tr
(
Miρ

SM †i

)
(2.149)

being the probability of obtaining oAi .

By comparing these results with the postulates given in (2.141) and (2.142), we see

that the set of operator Mi also describes a measurement, this type of measurement is

called generalized measurement.

2.8.2 Generalized measurement

This type of measurement does not require the operators Mi to be Hermitian. However,

since the probabilities of all the possible outcomes must add up to one for any ρS , i.e.:

∑
i

Tr
(
ρSM †iMi

)
= 1 ∀ρS , (2.150)

they must satisfy ∑
i

M †iMi = 1. (2.151)

If an unread measurement occurs, the density matrix of the system is given by

ρS →
∑
i

Miρ
SM †i (2.152)

Equation (2.152) is a linear process transforming a density matrix to another. In general,

this type of transformation is known as a quantum map which is described by a superoper-

ator. Moreover, any quantum map can be expressed as a finite sum of operators products

called Kraus sum representation [33]. The expression in (2.152) is already in its Kraus

representation, with the operators Mi being the Kraus operators.

Generalized measurements are widely used to formulate measurements in practical

situations. In this work, they are useful for the formulation of QND measurements of the
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photon number using a Ramsey interferometer, and thus we can apply them for generating

quantum states of the field by a conditional measurement outcome which we call an atomic

postselection.

2.9 Decoherence: Coupling with the environment

So far we have described the essential blocks of cavity electrodynamics experiments,

which are the atoms, the quantized electromagnetic field, and their interaction. However,

we have to add another ingredient to our description for an appropriate simulation of

practical situations. In these situations, quantum systems are unavoidable coupled to the

environment and suffer from decoherence effects which means that quantum states could

have very short lifetimes due to the leakage of coherence towards the environment. In

the following section, we describe the Lindblad master equation of the atom-field system,

which allows us to model the decoherence process affecting our scheme for a more reliable

simulation of an experimental situation.

2.9.1 Lindblad master equation

The Lindblad master equation will be thoroughly used in the next chapters to treat

the realistic generation of quantum states of the field analyzed in this work.

As a general picture, if we consider the coupling between a system S and an environment

E, the exact treatment is very complex because E is a large system with many degrees of

freedom. However, when the environment E is a large system compared with the system

S, it is possible to consider the state of the environment as a steady state which is not

affected by its interaction with the system, and also uncorrelated with S. Precisely, this is

possible when the environment E is a large system with a short memory time τc compared

to Tr, which is the characteristic time of evolution of S. Hence, if τc � Tr, we can neglect

the initial fluctuations of the environment and the system-environment correlations in

an approximation known as Markov approximation. Then, if we choose a time slicing

τ satisfying τc � τ � Tr, we can obtain a coarse-grained description of the system S

evolution in an equation known as Lindblad master equation. For further readings and
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details see [33,43].

The form of the master equation describing the evolution of the system affected by an

environment is

dρS
dt

=
1

i~
[H, ρS ] +

∑
i

[
LiρSL

†
i −

1

2
(L†iLiρS + ρSL

†
iLi)

]
. (2.153)

where H is the total Hamiltonian of the system and the Li Lindblad operators de-

scribe the decoherence process. In the case of an atom-field system in the presence of a

thermal environment at a finite temperature T , the Lindblad operators are
√

Γ(1 + nt)σ−,
√

Γntσ+,
√
κ(1 + nt)a and

√
κnta

†, where Γ is the spontaneous emission rate, κ is the

cavity decay rate and nt is the average thermal photon number. The first two Lindblad

operators describe the emission and absorption thermal processes of the atom, while the

other operators describe the photon loss in the environment or the gain of a thermal photon

out of the thermal fluctuations of the environment.

Since our work is divided into two parts, we treat the master equation with different

assumptions in each part. First, we consider a scheme for preparing an optical qubit and

other Fock states superpositions in a typical microwave cavity QED system where the

relaxation of the atoms is negligible when compared to the cavity damping time Tc = 1/κ.

Therefore we will see that the dominant Lindblad operators are
√
κ(1 + nt)a and

√
κnta

†

acting on the field in the cavity as a source of losses. In the second part, we apply the same

model of the first part for cool-down the cavity field to its ground state, starting from a

thermal distribution which is thermalized with the environment at a higher temperature

compared with the first part of this work. Hence, the lifetime reduction of the atom

is reduced by a factor (1 + nt) which can be relevant in this case, so we consider more

appropriate to include the atomic and photon losses in this situation.

In the next chapter, we will present the scheme used in this thesis work for preparing

an optical qubit, other Fock state superpositions and cooling-down the photons inside a

cavity. The scheme is typically used for QND measurements of the photon number by

Ramsey interferometry.
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Chapter 3

The model: The Cavity QED

Ramsey interferometer setup

In the previous chapters, we explained the basic elements of cavity QED studies. In

this chapter, we will present a typical cavity QED setup which is based on Ramsey in-

terferometry for measuring the phase of the atomic state and enables to perform QND

measurements of the photon number of the cavity field. Moreover, this setup also enables

us to generate specific quantum states of the cavity field by tuning the interaction parame-

ters between the atoms and the electromagnetic field inside the cavity in addition to of the

number of atoms measured and finally postselecting the atomic states that we measured.

In what follows, we show the general equations for generating quantum states of light in

this setup.
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3.1 The model

Figure 3.1: (a) Cavity QED-setup used for Ramsey interferometry. The field is initially
prepared in the high-Q cavity C. The atoms are prepared and velocity-selected in the box
O. Then, each atom interacts with three cavities: R1, C and R2. In each of the zones
R1 and R2, the atom interacts with a classical microwave field. This interaction makes it
possible to manipulate the atomic state before and after the interaction with C. Finally,
after passing zone R2, the atom is detected in the state |e〉 or |g〉 by the field ionization
counter D. (b) Three-level atomic system for the experiment in the dispersive atom-field
coupling. Here, ω is the frequency of the field in cavity C which has a large detuning δ
from the atomic transition frequency ωie.

As we mentioned in chapter 2, in the dispersive regime the effective interaction between

the atoms and the field produces an energy shift to the atomic state. This energy shift leads

to a phase shift on the atomic state which can be measured by a Ramsey interferometer

setup as shown in figure 3.1 a [2]. In zone C, between the classical microwave zones R1 and

R2 used for Ramsey interferometry, we have a superconducting cavity with an initial field
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given by ρc(0) =
∑

nn′ ρnn′ |n〉〈n′| written as an expansion using a Fock basis. A sequence

of N three-level atoms, with the energy diagram shown in figure 3.1 b, is preselected in the

state ρa(0) =
⊗N

k=1 |ek〉〈ek| in box O and injected into the setup with a controlled velocity

that allows us to assume that there is only one atom flying in the setup at a given time.

Then, the initial state of the multipartite system (cavity - atoms) reads as

ρca(0) = ρc(0)⊗ ρa(0). (3.1)

For simplicity, we are going to consider only one atom flying through the setup and then

extend that result for a sequence of N atoms. Then, we denote the initial atom-field state

as ρca = ρc ⊗ |ek〉〈ek|, mantaining the subscript k for the kth atom which is going to be

useful for our description a sequence of atoms later.

Generally, in cavity QED, the atom-field interaction is described by the Jaynes-Cummings

model (equation (2.118))

H(k) =
~
2
ωieσ

(k)
z + ~ωa†a+ ~g(aσ

(k)
+ + a†σ

(k)
− ), (3.2)

where a (a†) is the cavity photon annihilation (creation) operator, whereas for the kth atom

the operators are σ
(k)
− = |ek〉〈ik|, σ(k)

+ = |ik〉〈ek|, σ(k)
z = |ik〉〈ik| − |ek〉〈ek| and g = Ω0/2

corresponds to the atom-field coupling constant, taken to be equal for all the atoms. From

the atomic operators it can be seen that only levels |ik〉 and |ek〉 are affected by the

atom-field interaction, whereas level |gk〉 is not involved in the dynamics. Particularly, in

our scheme, we are interested in considering a nonresonant interaction by taking a large

frequency detuning δ = ωie−ω � g
√
n between the cavity field frequency ω and the atomic

transition frequency ωie. Therefore, following the analysis of section 2.7.2 but restricting

to the atomic Hamiltonian spanned by the states |ek〉 and |gk〉, the effective interaction

becomes a dispersive coupling (equation (2.136)) given by

V (k) = −~g2

δ
a†a|ek〉〈ek|. (3.3)

For obtaining this result, we have performed a unitary transformation of
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U = exp
[
−iωct(a

†a+ 1/2)− iωatσ
(k)
z /2

]
on equation (2.136), neglected the Lamb shift

contribution and the projector |ik〉〈ik| in σ
(k)
z because we are focusing only on the states

|ek〉 and |gk〉.
Then, after an interaction time τk = L/vk, the evolution operator reads as

U
(k)
I = exp(−iV (k)τk/~) = exp(iϕka

†a|ek〉〈ek|). (3.4)

In equation (3.4) , L is the length of the cavity C, vk is the velocity of the kth atom

passing through the cavity and ϕk = g2τk/δ is the one photon phase shift, which charac-

terizes the coupling strength between the kth atom and the cavity field. This interaction

causes a dispersive phase shift to the |ek〉 level which is proportional to the photon number.

On the other hand, in each of the R1 and R2 zones, the kth atom interacts with

a classical microwave field tuned at a frequency νr, resonant with the atomic transition

frequency ωeg. This interaction leads to a superposition of the |ek〉 and |gk〉 levels of the

atomic state [34]. After an interaction time ∆τk = ∆L/vk, which satisfies ΩR∆τk = π/2,

the atom undergoes a U
(k)
π/2 transformation given by

U
(k)
π/2 =

1√
2

(|ek〉〈ek|+ |gk〉〈gk|+ i|ek〉〈gk|+ i|gk〉〈ek|), (3.5)

where ∆L is the length of the zones R1 and R2, vk is the velocity of the atom and ΩR is

the Rabi frequency.

Finally, in the field ionization counter D we perform a projective measurement of the

atom represented by the operators:

P (k)
m = |mk〉〈mk|, m = e, g. (3.6)

Given the outcome m, the complete operation made by one atom crossing the setup is

described by

U (k)
m = P (k)

m U
(k)
π/2U

(k)
I U

(k)
π/2. (3.7)
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After this operation, the state evolves as

ρac,m = U (k)
m ρacU

†(k)
m . (3.8)

Since we are interested in the state of the cavity field, we trace ρac,m over the atomic states

and normalize, resulting in the field of the system after the operation (3.7)

ρc,m =
Tra

(
U

(k)
m ρacU

†(k)
m

)
Tr
(
U

(k)
m ρacU

†(k)
m

) =
M

(k)
m ρcM

†(k)
m

Trc

(
M

(k)
m ρcM

†(k)
m

) , (3.9)

with

M (k)
e = 〈ek|U (k)

π/2U
(k)
I U

(k)
π/2|ek〉 =

1

2

[
exp(iϕka

†a)− 1
]

(3.10)

M (k)
g = 〈gk|U (k)

π/2U
(k)
I U

(k)
π/2|ek〉 =

1

2

[
exp(iϕka

†a) + 1
]
. (3.11)

These operators can be written in the Fock basis as

M (k)
e =

∑
n

[exp(iϕkn)− 1]

2
|n〉〈n|, M (k)

g =
∑
n

[exp(iϕkn) + 1]

2
|n〉〈n| (3.12)

Also, these operators satisfy ∑
i=e,g

M
†(k)
i M

(k)
i = 1. (3.13)

Therefore, equation (3.13) is a generalized measurement of the cavity field.

Now, if we consider the sequence of N atoms interacting with the same ϕk with the

cavity, the measurement will result in Ne atoms measured in the |e〉 state and (N − Ne)

atoms measured in the |g〉 state, generating a certain cavity field state regardless of the

order of the atoms. This situation is represented by the cavity operator

MNe =

√
CNeN MNe

e MN−Ne
f , (3.14)

where CNeN = N !
Ne!(N−Ne)! is the number of combinations of having Ne atoms on the |e〉 level

of a set of N atoms.
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As previously described in equation (3.13), these operators satisfy the generalization of

the measurement shown in equation (3.15)

N∑
Ne=0

M †NeMNe = 1. (3.15)

Generalizing equation (3.9) to N atoms gives the following result:

ρc,Ne =
MNeρcM

†
Ne

Trc

(
MNeρcM

†
Ne

) . (3.16)

The result of equation (3.16) can be derived by the action of the total evolution operator

which is given by

U = U (N)...U (1), (3.17)

being U (k) = U
(k)
π/2U

(k)
I U

(k)
π/2 the evolution of the kth atom passing through the cavities (R1,

C and R2).

After the interaction of the N atoms with the cavities, the state of the whole system

evolves to

ρ̃ca = UρcaU
† (3.18)

=
∑
nn′

ρnn′ |ψ(1)
n 〉〈ψ(1)

n′ | ⊗ ...⊗ |ψ(N)
n 〉〈ψ(N)

n′ | ⊗ |n〉〈n′|, (3.19)

with U (k)|ek〉 = |ψ(k)
n 〉 = 1

2

(
e−iϕkn|ek〉+ ie−iϕkn|gk〉+ i|gk〉 − |ek〉

)
. For simplicity, we as-

sume the same coupling ϕ for all the atoms.

Subsequently, we perform the postselection of a symmetric state of the atomic levels

on the
{
|m(1), ...,m(N)〉

}
basis, with m = {e, g}

|φpost〉 = |e1, ..., eNe , gNe+1, ..., gN ;S〉

=

(
Ne!(N −Ne)!

N !

)1/2∑
p

|m1, ...,mN 〉. (3.20)

Here, S stands for a symmetric state. Therefore, the sum is taken over all the possible
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combinations of Ne atoms on the |e〉 level and N −Ne on the |g〉 level.

Hence, the normalized state of the cavity after postselection is

ρc = CNeN

∑
nn′

ρnn′e
i
2
ϕN(n′−n)cN−Nen cN−Nen′ dNen dNen′ |n〉〈n′|, (3.21)

where the coefficients are cn = cos(ϕn/2) and dn = sin(ϕn/2). Finally, because our

work relies on a postselection process the desired field state is generated with a success

probability given by

Ppost = CNeN

∑
n

ρnnc
2(N−Ne)
n d2Ne

n . (3.22)

Following the same idea as before, we now consider the whole sequence of N atoms

divided into K groups, each group with a total of Nk atoms interacting with the same

ϕk. For each group denoted by the suscript k, the order of the measurements outcomes

is not important, only the number of atoms Ne,k detected in |e〉. The equations for the

cavity state generated and the postselection probability are basically the same as (3.21)

and (3.22) but considering the possible combinations of measurement outcomes for each

group of atoms in the sequence

ρc =
∑
nn′

ρnn′
K∏
k=1

C
Ne,k
Nk

e
i
2
ϕkNk(n′−n)c

Nk−Ne,k
n,k c

Nk−Ne,k
n′,k d

Ne,k
n,k d

Ne,k
n′,k |n〉〈n′| (3.23)

Ppost =
∑
n

ρnn

K∏
k=1

C
Ne,k
Nk

c
2(Nk−Ne,k)
n,k d

2Ne,k
n,k . (3.24)

In what follows, we show that it is possible to generate an optical qubit and cooling down

the cavity to the vacuum state with an appropiate atomic postselection.
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Chapter 4

Results and discussion

In this chapter, we will show our results on generating specific quantum cavity states

such as qubit states, Fock states supersitions and the vacuum state (zero photon state).

We present the successful probability and fidelity of our protocol. Finally, we study a more

realistic scenario taking into account the interaction of the system with the environment

(cavity losses) and imperfect measurements of the atoms.
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4.1 Preparing an optical qubit in dispersive cavity-QED

In this section, our task is to prepare a superposition of the vacuum and the one-

photon states. First, we assume that the initial state of the field is a coherent state

|α〉 =
∑

n bn|n〉, where bn = αne−|α|
2/2/
√
n! and α being a real value. Thus, equation

(3.21) reduces straighforwardly for the case of an initial pure state for the cavity field, and

for Ne = 0 (because for Ne 6= 0 the ket |0〉 is eliminated). The state of the field after the

postselection of N atoms in the |g〉 level is

|ψf 〉 =

∑∞
n=0 bne−

inϕN
2 cosN

(ϕn
2

)
|n〉[∑∞

n=0 |bn|2 cos2N
(ϕn

2

)]1/2
, (4.1)

with postselection probablity

Ppost =

∞∑
n=0

|bn|2 cos2N
(ϕn

2

)
. (4.2)

As we can see from the numerator of equation (4.19), the parameters α , ϕ and N have

to be adquate to ensure that only kets |0〉 and |1〉 survive.

We assume a target state of the form:

|ψt〉 =
|0〉+ αe−

iNϕ
2 cosN

(ϕ
2

)
|1〉√

1 + α2 cos2N
(ϕ

2

) , (4.3)

which can be written simply as |ψt〉 = |0〉+β|1〉√
1+|β|2

, with β = αe−
iϕN
2 cosN

(ϕ
2

)
.

In order to estimate how far our final state |ψf 〉 is from the target state |ψt〉, we define

a fidelity F = |〈ψt|ψf 〉|2 [37]. Using the equations (4.19) and (4.3), the fidelity reads as

F =
1 + α2 cos2N

(ϕ
2

)∑∞
n=0

α2n

n! cos2N
(ϕn

2

) . (4.4)

It can be easily seen from the above equation that a combination of α, ϕ and N

can lead to a specific optical qubit. Particularly, if we want to prepare an equiprobable
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superposition, e.g, |〈0|ψt〉|2 = |〈1|ψt〉|2 = 1/2, we require

α cosN
(ϕ

2

)
= 1. (4.5)

Solving this condition for the variable ϕ gives

ϕ(N) = 2 arccos

(
1
N
√
α

)
, (4.6)

where α is given. Replacing this condition in the expression of the fidelity in equation

(4.4), we finally obtain a fidelity depending only on the number of atoms postselected in

the |g〉 level given by

F (N) =
2

2 +
∑∞

n=2
α2n

n! cos2N
(
ϕ(N)n

2

) . (4.7)
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Figure 4.1: Fidelity given by equation (4.7) for different values of α2. Here, (a) α2 = 4.0
and (b) α2 = 3.0. Fidelity is used to quantify the closeness between the final state in
equation (4.19) and the target state given by equation (4.3).

In the above equation, the number of atoms (N) has to be larger as α grows in order

to maximize this fidelity. We plot the expression from equation (4.7) for different values

of α2 in figure 4.1. As we can see, for each α2 there is a number of atoms and a coupling

value given by condition (4.6) for which the fidelity is optimal (close to 1.0). In figure

4.2a we determine the optimal fidelity Fopt for each value of α2 and we also plot in figure
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4.2b the postselection probability given by equation (4.20) for the optimal parameters. We

found that for a range of 3.0 < α2 < 5.0, the optical qubit is generated with a fidelity and

a postselection probability of 0.976 < Fopt < 0.99 and 10.2% > Ppost > 1.36%. In figure
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Figure 4.2: (a) Optimal fidelity from equation (4.7) versus α2. (b) Postselection probability
for a set of parameters for which the fidelity is maximum (close to 1.0).

4.3a, we show the probability distribution (Pr(n) = |〈n|ψf 〉|2) of the final state given by

equation (4.19)

Pr(n) =
|bn|2 cos2N

(ϕn
2

)∑∞
n=0 |bn|2 cos2N

(ϕn
2

) . (4.8)

We consider a set of parameters α, N and ϕ that satisfy the condition (4.5) for an

equiprobable superposition (Pr(n = 0) = Pr(n = 1) = 1/2) and for which the fidelity is

maximum. However, the Hilbert space is not properly truncated up to just one photon,

having Pr(n = 2) ≈ 1.38% in the case shown in figure 4.3a. To evidence the quantumness

of the state, in figure 4.3b, we have numerically computed the Wigner quasi-probability

distribution defined as W (x, p) = 1
π

∫∞
−∞〈x + x′|ψf 〉〈ψf |x − x′〉e−2ipx′dx′ [38]. We observe

that the true quantum nature arises as a consequence of the considerable negative part of

W (x, p). To improve our results, we consider three groups of atoms crossing the cavities

with three different couplings (ϕ1, ϕ2 and ϕ3) between the atoms and the cavity field. All

atoms are postselected in the ground state |g〉, giving a final state

|ψf 〉 =

∑∞
n=0 bne−

in
2

(ϕ1N1+ϕ2N2+ϕ3N3) cosN1
(ϕ1n

2

)
cosN2

(ϕ2n
2

)
cosN3

(ϕ3n
2

)
|n〉[∑∞

n=0 |bn|2 cos2N1
(ϕ1n

2

)
cos2N2

(ϕ2n
2

)
cos2N3

(ϕ3n
2

)]1/2
(4.9)
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Figure 4.3: Generation of an optical qubit with α2 = 4.0, N = 37 and ϕ ≈ 0.386. (a)
Photon probability distribution as in equation (4.8). In (b) we show the Wigner function
for the case described in (a). This optical qubit is generated with an optimal fidelity of
Fopt ≈ 0.986 and a postselection probability of Ppost ≈ 3.72%.

for the field after postselection, with a probability

Ppost =
∞∑
n=0

|bn|2 cos2N1

(ϕ1n

2

)
cos2N2

(ϕ2n

2

)
cos2N3

(ϕ3n

2

)
, (4.10)

where N1, N2 and N3 are the number of atoms postselected with couplings ϕ1, ϕ2 and ϕ3,

respectively. Similarly to equation (4.3), our target state is

|ψt〉 =
|0〉+ αe−

i
2

(N1ϕ1+N2ϕ2+N3ϕ3) cosN1
(ϕ1

2

)
cosN2

(ϕ2

2

)
cosN3

(ϕ3

2

)
|1〉√

1 + α2 cos2N1
(ϕ1

2

)
cos2N2

(ϕ2

2

)
cos2N3

(ϕ3

2

) . (4.11)

Next, we consider N1 = 1, ϕ1 = π/2, N2 = 1 and ϕ2 = π/3 in order to kill the

n = 2 and n = 3 components. As we can see from equation (4.9) these values, ϕ1 and

ϕ2, eliminated the kets |2〉 and |3〉, respectively. Using the same method applied before to

prepare an optical qubit with an equiprobable superposition, we require

α cosN3

(ϕ3

2

)
= 4/

√
6. (4.12)

Solving this condition for the variable ϕ3, we have a fidelity depending on the number
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of atoms postselected in the |g〉 level given by

F (N3) =
2

2 +
∑∞

n=2
α2n

n! cos2
(
πn
4

)
cos2

(
πn
6

)
cos2N3

(
ϕ3(N3)n

2

) . (4.13)

As before, the number of atoms (N3) has to increase when α is larger in order to max-

imize the fidelity (equation (4.13)). Furthermore, the equation (4.13) is maximized with

less atoms than the previous case for a given value of α. In figure 4.4a we determine the

optimal fidelity Fopt for each value of α2 given that the other parameters satisfy condi-

tion (4.12). Also, we plot in figure 4.4b the postselection probability from equation (4.10)

for the parameters for which the fidelity is maximum. In this case, we found that in the

3.0 < α2 < 5.0 range, the optical qubit is prepared with a fidelity and a postselection

probability of 0.95 < Fopt < 0.999 and 10.5% > Ppost > 1.35%. Hence, we have improved

the fidelity for the generation of the optical qubit keeping almost the same postselection

probability. We show in figure 4.5a the photon probability distribution (Pr(n) = |〈n|ψf 〉|2)

calculated using the final state in equation (4.9). We consider the same initial cavity field

with α2 = 4.0 to show that we have improved the preparation of the equiprobable qubit

having a very similar postselection probability to the previous case presented in figure

4.3a. In figure 4.5b, we have displayed the Wigner function to evidence the quantumness

of the state presented in figure 4.5a. It is also important to emphasize from the examples

depicted in figure 4.3 and figure 4.5, that we require less atoms to prepare the improved

qubit, thus imply in a shorter interaction time and less dissipation. The physical process

that generates the superposition of the vacuum and one-photon states is the same involved

in the reduction of the field into a Fock state in the QND procedure [2, 4, 23]. Essentially,

after the continuous detection of the atoms, the field collapses into a coherent superposi-

tion of Fock states with amplitudes given by

bne−
in
2

(ϕ1N1+ϕ2N2+ϕ3N3) cosN1
(ϕ1n

2

)
cosN2

(ϕ2n
2

)
cosN3

(ϕ3n
2

)
(within a normalization fac-

tor). Thus, the photon probability distribution is multiplied by an oscillating function

of n. Consequently, the photon numbers for which this function is close to zero are effi-

ciently decimated. However, in our work the decimation process is not random because we

determine the parameters that efficiently decimate all the photon numbers except n = 0
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Figure 4.4: (a) Optimal fidelity from equation (4.13) versus α2. (b) Postselection proba-
bility for a set of parameters α, N3 and ϕ3 for which the fidelity is maximum.

and n = 1. Therefore, the most important ingredient is postselection.

4.1.1 A more realistic scenario

The analysis described above is most valid in an idealized experiment. In the present

section we describe a more realistic scenario and include the effects of experimental con-

straints such as cavity losses and imperfect detection of the atoms due to detection effi-

ciency and error detection. Additionally, we present some examples of the generation of

superpositions of higher-photon-number Fock states using this scheme.

This experiment can be performed in a typical microwave QED system. Here the atoms

sent across the cavity are circular Rydberg atoms. This kind of atoms have a very long

lifetime, in the order of tens of miliseconds, comparable to the lifetime of the photon in the

superconducting cavity (130 miliseconds) with a fully open structure needed for passing the

atoms through. So, we can neglect the atomic decay process during the interaction time

between the atoms and the cavity field, and also consider that the atoms fly coherently

through the cavities due to the short interaction time (∼ 0.4 miliseconds). All of the

parameters of the atomic samples are controllable (velocity, preparation time, interaction

time, etc). Therefore, the different couplings ϕk needed in our scheme to prepare the qubit

with high fidelity can be realized by controlling individually the velocity of the atoms by

laser techniques. Previously, we mentioned that we need only one atom in the setup at a
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Figure 4.5: Generation of an optical qubit with α2 = 4.0, N3 = 11 and ϕ3 ≈ 0.383. (a)
Photon probability distribution of the postselected final state in equation (4.9). In (b) we
show the Wigner function for the case depicted in (a). This qubit is prepared with an
optimal fidelity of Fopt ≈ 0.999 and a postselection probability of Ppost ≈ 3.67%.

given time. However, in real experiments, it is not readily possible to handle a deterministic

single-atom preparation. One way to simulate single-atom experiments is preparing the

atoms by weak laser excitation, producing a Poissonian statistics for the atoms (with a

mean number of atoms per sample much less than one). Then, a postselection process

takes place in which we retain only the data corresponding to the desired state. The

single-atoms events are obtained with an increase in the time of the data acquisition [33].

Nevertheless, we assume in our study a deterministic single atom preparation and there

are some proposals to achieve this preparation of Rydberg atoms making use of the called

dipole blockade effect [39,40].

In a typical experiment, the field is stored in a superconducting cavity C (cavity damp-

ing time Tc = 65 ms) cooled down to a temperature T = 0.8 K [41], and its dynamics is

described by the master equation for a reservoir at temperature T [34]

dρ

dt
= Lρ = −κ

2
(1 + nth)(a†aρ+ ρaa† − 2aρa†)

− κ

2
nth(aa†ρ+ ρa†a− 2a†ρa), (4.14)

where κ = 1/Tcav is the cavity decay rate and nth = 0.05 is the equilibrium thermal photon
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number. The atoms are sent at a Ta = 82 µs time interval [24]. Within the approximation

of small time interval, Ta � Tc, we can describe the evolution of the field due to the

cavity field relaxation during the time interval Ta between two atoms by the action of the

superoperator T [9]:

Tρ = (1 + TaL)ρ. (4.15)

As we mentioned before the atomic detection is not perfect. The detector D has a

finite detection efficiency ηd (probability of detecting an atom). Moreover, the limited

state resolution of the Ramsey interferometer introduces a detection error probability of

ηf . In our calculations we use ηd = 0.87 and ηf = 0.05.

Because of nonideal detection efficiency and nonzero effective detection errors, a mea-

surement outcome m′ = e or g corresponds to a statistical mixture of different ideal

measurement outcomes m. The conditional probabilities P (m′|m) and the ideal detection

operators Mm′ are given in [42]. We now give the explicit expression of a superoperator

Pm′ acting on ρ describing the imperfect detection of an atom

Pm′ρ =

∑
m P (m′|m)MmρM

†
m

Tr
(∑

m P (m′|m)MmρM
†
m

) . (4.16)

In our study to generate the optical qubit, we selected the measurement outcome m′ = g

using equation (4.16) the detection of this outcome is

Pgρ =
ηd(1− ηf )MgρM

†
g + ηdηfMeρM

†
e

ηd(1− ηf )Tr(MgρM
†
g ) + ηdηfTr(MeρM

†
e )

(4.17)

As previously mentioned, our initial state is coherent and the target is the pure state given

by equation (4.11). Requiring that all the atoms are detected in |g〉, we include the effect of

the cavity relaxation between each detection using equation (4.15) and (4.17). We optimize

the fidelity defined as F = 〈ψt|ρf |ψt〉 [37], where the final state after the postselection is

represented by the density matrix ρf due to the effect of the cavity losses and imperfect

detections. In figure 4.6a we show the optimal fidelity versus α2 with the parameters ϕ3 and

N3 satisfying condition (4.12). Also, in figure 4.6b the postselection probability is shown.

In figure 4.6a we observe that as α2 increases, the fidelity becomes smaller as compared
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to the result without photon losses (figure 4.4a). The reason behind this is that larger

α2 is also translated into more atomic postselection steps (N) required to generate the

optical qubit, i.e. longer interaction times are needed for our scheme to work. Therefore,

the effects of photons leaking from the cavity are more probable for larger α2. As we

can see from figure 4.6b the postselection probability is significantly reduced. However,

we have a preparation of the optical qubit with a fidelity and postselection probability

0.9 < Fopt < 0.94 and 4.28% > Ppost > 1.72%, which is still within experimental reach. At
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Figure 4.6: (a) Optimal fidelity including the effect of the cavity relaxation for each α2.
(b) Post-selection probability for a set of parameters α, N3 and ϕ3 for which the fidelity
is maximum.

this stage, we considered a more realistic scenario including the effect of the cavity losses,

detection efficiency (ηd < 1) and error detection (ηf > 0), obtaining a robust preparation

of the optical qubit in a real Fabry-Pérot superconducting cavity.

4.1.2 Other superpositions of photon number Fock states

Finally, if we postselect not only atoms in the |g〉 level, it is possible to generate other

superpositions of photon number Fock states using this scheme. A more general expression

for a pure state is derived from equation (3.23), giving us

|ψf 〉 =

∑∞
n=0 bn

∏K
k=1C

Ne,k
Nk

e−
in
2
ϕkNk cosNk−Ne,k

(ϕkn
2

)
sinNe,k

(ϕkn
2

)
|n〉[∑∞

n=0 |bn|2
∏K
k=1C

Ne,k
Nk

cos2(Nk−Ne,k)
(ϕkn

2

)
sin2Ne,k

(ϕkn
2

)]1/2
. (4.18)
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Therefore, adjusting for each group of atoms denoted by k the number of atoms detected

in each level (Ne,k in |e〉 and Nk−Ne,k in |g〉) and their interactions (ϕk), we determine the

parameters that decimate other photon number states to properly generate higher photon

number Fock state superpositions. In figure 4.7a and 4.7b, we show a superposition of

|0〉 and |2〉 states. First, one atom interacting with ϕ1 = π is detected in |g〉, then five

atoms interacting with ϕ2 = 0.535 are detected in |g〉. Also, we include the superposition

of |1〉 and |3〉 states in figure 4.7c and 4.7d. First, two atoms interacting with ϕ1 = π and

ϕ2 = π/5 are detected in |e〉 and |g〉 , respectively. Then, with ϕ3 = 0.372 we detected one

atom in |e〉 (Ne,3 = 1) and four atoms in |g〉 (N3 −Ne,3 = 4).
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Figure 4.7: Other superpositions of photon number Fock states. In (a) and (b) we show
a superposition of states |0〉 and |2〉. This state is prepared with a fidelity of 0.99 and a
probability of 10%. Figures (b) and (c) show a superposition of states |1〉 and |3〉. This
state is prepared with a fidelity of 0.97 and a probability of 5.5%.
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4.2 Photon cooling

In the following, we show how to generate the vacuum state |0〉 of the cavity field

by an appropriate atomic postselection starting from a thermal state of the field ρc =∑
n ρnn|n〉〈n|, where ρnn = nnt /[(1 + nt)

n+1] and nt being the average photon number. As

we can see from equation (3.23), we should have Ne = 0 to keep the |0〉 state. Thus, the

normalized state of the field for an initial thermal state after the postselection of N atoms

in the |g〉 level (Ne = 0) is

ρf =

∑
n ρnn

∏N
k=1 cos2 (ϕkn/2) |n〉〈n|∑

n ρnn
∏N
k=1 cos2 (ϕkn/2)

, (4.19)

with postselection probability

Ppost =
∞∑
n=0

ρnn

N∏
k=1

cos2
(ϕkn

2

)
. (4.20)

As shown in equation (4.19), the parameters ϕk have to be adequate to ensure that the

oscillatory function
∏N
k=1 cos2 (ϕkn/2) multiplying the projectors |n〉〈n| is close to zero for

all the photon numbers except n = 0. We propose a sequence of atoms where the kth atom

crosses with ϕk = π/2k−1 in order to eliminate the photon numbers n = (2m− 1)2k. Once

the process has finished, the postselection probability is Ppost → ρ00 = 1/(1 + nt). Figure

4.8 shows the fidelity between the vacuum state and the final state of the cavity field after

the postselection of a sequence of N atoms in |g〉. For an initial state with a mean photon

number nt = 100, the cooling process converges after the detection of a sequence of about

10 atoms.

In figure 4.9, we illustrate the convergence of the sequence with ϕk = π/2k−1, consid-

ering that all the atoms are postselected in the state |g〉. In the top panel (a), we plotted

an initial thermal state with nt = 3.6, whereas in the bottom panel (b), we show the final

field state after the postselection of 5 atoms in the state |g〉. As seen, the final state is

the vacuum photon state |0〉, where the Wigner function W [ρt](α) = 2
π

1
2nt+1e

−2|α|2/(2nt+1)

becomes sharper than the initial thermal state.

In a realistic scenario, the quantum system is coupled to the environment and suffers
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Figure 4.8: Fidelity between the vacuum and the final state of the cavity field given by Eq.
(4.19) using a sequence of N atoms interacting with ϕk = π/2k−1.

from decoherence effects. Since we are cooling photons, we are fighting against the ther-

malization effect of the reservoir. To simulate this scenario, we consider that the cavity

field is initially in thermal equilibrium with an average photon number nt, and that the

atom-field system evolves with the following master equation:

dρS
dt

=
1

i~
[Heff , ρS ] +

∑
i

[
LiρSL

†
i −

1

2
(L†iLiρS + ρSL

†
iLi)

]
, (4.21)

where Heff is the dispersive coupling Hamiltonian of equation (3.3) for each atom in the

sequence and the Li Lindbland operators are
√

Γ(1 + nt)σ−,
√

Γntσ+,
√
κ(1 + nt)a and

√
κnta

†.

Typically, in microwave experiments with circular Rydberg atoms, the relaxation of

these atoms is negligible, when compared to the cavity damping time Tc (equation (4.14)).

However, we did consider the lifetime reduction by a factor (1 + nt), as well as the field

losses, but neglected the losses during the transit time through the Ramsey zones. The

master equation for the period without atoms (t ∼ 82 µs), is given by:

dρc
dt

=
∑
i

[
LiρSL

†
i −

1

2
(L†iLiρS + ρSL

†
iLi)

]
, (4.22)
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where the Lindbland operators are
√
κ(1 + nt)a and

√
κnta

†. In our calculations, we used

a cavity damping time Tc = 1/κ = 130 ms [41]. Also, the atomic lifetime is Ta = 1/Γ = 30

ms for circular Rydberg atoms of rubidium with principal quantum numbers 51 or 50 [33].

We consider the cavity tuned at a frequency ω/2π = 51.1 GHz and an atom-cavity detuning

δ/2π = 245 kHz. The vacuum Rabi frequency is g/2π = 49 kHz. All of these parameters

are consistent with real experimental realizations [24].
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Figure 4.9: Cooling process of the thermal field. In (a) we show the initial initial thermal
state (nt = 3.6), whereas in the bottom panel (b), we show the final state of the field
after the postselection of a sequence of 5 atoms in |g〉. In both figures the photon number
distribution and Wigner function are shown. The vacuum photon state is generated with
a probability of Ppost ≈ 21.7%.
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The temperature of a thermal state can be determined by the relation nt = 1/[exp (~ω/kbT )−
1]. Hence, for an initial thermal state with nt = 3.6 and the above given frequency, the

corresponding bath and photon temperature is T = 10 K (figure 4.9a). After the cooling

process and considering the effect of the reservoir, the fidelity between the final state and

vacuum goes down to 98.3% (figure 4.10). In this case, the final state has a 99.7% fidelity

with respect to a thermal state with nt = 0.017 corresponding to a temperature of T = 0.6

K. This result shows that the cooling process is robust even in the presence of decoherence,

considered by the master equation in equation (4.21). As we mentioned in subsection 4.1.1,
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Figure 4.10: Cooling process of figure 4.9 considering thermal effects of the environment
at a temperature T = 10 K (mean photon number nt = 3.6). The final state is close to
a thermal state with a mean photon number nt = 0.017, corresponding to a temperature
T = 0.6 K.

this process can be done using circular Rydberg atoms. Hence, the couplings ϕk proposed

in our atomic sequence to cool down the thermal photons in the cavity can be achieved by

laser techniques. Also, we assume a deterministic preparation of single atoms.
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Conclusions and further work

5.1 Conclusions

In short, we suggest for the first time, a scheme to generate an optical qubit from

an initial coherent state of the field in a typical cavity QED setup using a dispersive

atom-field interaction and post-selection of atoms. Particularly, we study the case of an

equiprobable superposition of the vacuum and one-photon states. First, the general scheme

for the generation of a cavity field state from an initial state via atomic post-selection is

presented. Then we focus on the preparation of the optical qubit by setting the parameters

which optimize the fidelity between the final and our desired state. As seen in the previous

sections, we can achieve this goal with a high fidelity and a post-selection probability

within experimental reach. Then, we extend our study showing that this scheme can

generate other superpositions of photon number Fock states.

Finally, we suggest a protocol to cool-down a thermal field to its vacuum state. In

order to accomplish our task with a minimum number of atoms, we propose a sequence

interacting with ϕk = π/2k−1 which rapidly eliminate the nonzero photon components. The

reduction of the number of atoms needed in the process is important when the relevant

system is coupled to a thermal reservoir with T 6= 0, since the whole process takes less time.

We model this situation using the general master equation in (4.21) where we considered

atomic and field losses by taking real experimental parameters. We conclude that even in

the presence of decoherence, our protocol can be done with high fidelity.
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5.2 Further work

This work relies on postselection measurements. This means that if we obtain a different

result than the expected in an atomic detection, we have to fully reinitialize the scheme

to achieve our goal with a certain success probability. Hence, the first step in order to

improve the presented results, is to study the feasibility of a quantum feedback protocol

for on-demand preparation of the cavity field states analyzed in this work. A quantum

feedback scheme for CQED is introduced in [24]. Furthermore, we considered an interaction

between the cavity field and a single atom. In this way, there is evidence of a more efficient

generation of mesoscopic field states in CQED considering the Dicke Model, particularly

a simultaneous interaction between two atoms and the field [44]. A further work following

this advice could be beneficial for a more efficient generation of cavity field states presented,

i.e., successful results in a shorter time and with higher postselection probabilities.
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[20] Özdemir S K, Miranowicz A, Koashi M and Imoto N 2001 Phys. Rev. A 64 063818
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