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Abstract

Using a robust method of discrete choice analysis proposed by Barseghyan (2021), I estimate

parents’ preferences in the context of school choice. To account for information costs, I develop a

model where parents only know about a subset of all available schools. Choice sets are unobservable

and can have different sizes. I partially identify my model using Pre-K applications from Chile’s

new centralized school admissions system. My results suggest that current assumptions on the

observability of agents’ choice sets are too strong. However, the estimation method I use lacks

computational tractability, so the challenge of finding an alternative approach to estimate parents’

preferences in contexts of incomplete information remains.



1 Introduction

The concept of “rational” consumer is what lies at the core of classic economic theory. Although this

concept has been given a much more specific definition over the years, it can be broadly summarized as

the idea that the consumer is a maximizer. As Daniel McFadden explains in his Nobel Prize Lecture

(McFadden, 2001), in the 1960s, advances in technology increased the amount of microeconomic data on

individual behavior and the capacity with which researchers could process it. With this newly available

data, economists re-examined the way they had, until then, modeled individual agent behavior in the

context of consumer theory. In turn, this new framework led to the development of the now prominent

discrete choice literature.

The pioneering work of Daniel McFadden lay the theoretical basis for discrete choice by leveraging

the principle of revealed preference to learn about agents’ (unobserved) preferences using data on

their observed choices. In the tradition of McFadden (1973), most discrete choice models rely on the

assumption that the econometrician observes the choice set of the consumer. Using this assumption,

together with some restrictions on the structure of agents’ preferences, the model’s parameters can be

point identified by the econometrician.

However, the assumption on the observability of agents’ choice sets is unlikely at best. Sometimes

choice sets are not observed by the econometrician because data on choice sets is not available but

could be in principle. In other words, it is a matter of having the necessary resources to collect the

data. Nevertheless, in some cases, choice sets can never be observed because they are complex mental

constructs that are subject to each agents’ individual characteristics.

Consumers may face information costs, cognitive limitations, or idiosyncratic preferences, leading

them to choose from a random (unobservable) subset of the feasible set (see Matějka and McKay

(2015)). For example, Goeree (2008) studies the U.S. personal computer market. He uses a discrete-

choice model of limited consumer information arguing that when information costs are high, one cannot

assume perfect information in markets where prices constantly change.1

I argue that in the context of the Chilean School Admission System, parents’ choice sets are unob-

servable because parents’ choice sets are mental constructs because such data cannot be collected. In

a city with many schools, information costs can be high, especially if a centralized database containing

each school’s relevant information is not available. Parents may be unaware of every school in their

city (let alone their city), but are likely familiar with the most emblematic schools or those near their

homes. Parents’ knowledge of schools could also depend on each family’s network since they may know

a school either because a neighbor or relative has attended it.

Furthermore, although a family may be aware of the existence of a school, it does not mean they

possess all the relevant information to consider applying to it.2 Acquiring information about relevant

school attributes is no easy task for parents; they could search online, but information on specific

school attributes is not always readily available. Therefore, parents may have to go to each school,

which is a costly alternative, especially if they want information about more than one school. Further,

1For a more comprehensive review of the literature on preference estimation with unobserved choice sets see Crawford
et al. (2021).

2Information on prices, standardized test score results, or religious orientation, amongst others.
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families could also have location preferences (other than wanting a school near their homes) and only

consider schools within specific areas.3

A common way to circumvent the unobservability of the agents’ choice set is to assume that it per-

fectly coincides or is a subset of the feasible set. Econometricians can also use auxiliary information on

the composition, distribution, or formation process of choice sets to work around this limitation. Be

that as it may, these types of discrete choice models use revealed preferences at their core. Therefore,

making erroneous assumptions about consumers’ choice sets fundamentally conflicts with the theoret-

ical basis of discrete choice models. Naturally, making wrong assumptions about their composition

becomes more likely as its formation processes become more and more complex.

In all, correctly specifying each family’s choice set seems nearly impossible in practice. Thus, the

econometrician must make additional (and usually heroic) assumptions to achieve the classic discrete

choice point identification. These approaches may appear very compelling due to their straightfor-

ward implementation. However, I argue that these assumptions significantly bias the econometrician’s

conclusions because they do not accurately represent agents’ real choice sets.

A common approach is to define each family’s’ choice set as a function of their geographic location.

For example, the econometrician could define a family’s’ choice set as the union of every school in

an X-mile radius of their home. However, parents may be willing to commute a long distance for a

school with specific attributes that they value. Therefore, when specifying each family’s choice set, the

econometrician may be leaving out families that commute to far schools because they are willing to

trade-off distance for quality. For example, Chumacero et al. (2011) find that parents consider quality

and location when choosing schools and they quantify the relevant trade-offs.

To challenge the current literature on school choice, I rely heavily on a recent paper by Barseghyan

(2021), hereafter, Barseghyan et al. They propose a robust method of discrete choice analysis when

agents’ choice sets are unobserved using partial identification. Using their method, I show how in the

context of Chile’s new Centralized School Admissions System, mainstream assumptions on unobserved

choice sets lead to results that are not robust.

In 2016 the Chilean Government implemented a new school admission system called “Sistema de

Admisión Escolar” (SAE), radically changing how the public school admissions system works in Chile.

This new policy introduced a deferred acceptance mechanism that reduced parents’ application costs,

created special quotas for students from lower-income families, and ended schools’ ability to choose

their students, among other things.

The reform publicized that this new system would reduce socio-economic segregation across schools.

The logic behind it was that children from lower-income families would not be discriminated against

and rejected by the “good quality” schools.4 Additionally, they would have access to priority admission

and, with the voucher system, could now afford to go to better schools, which typically have higher

tuition costs.

3Parents could have trouble getting their kids to and from school, so they may only choose from a subset of schools
near their workplace to reduce commuting costs, which is not observable by the econometrician.

4When referring to school quality, I am using standardized test scores as a proxy.
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This policy choice suggests that the Chilean Government is working under the assumption that

school supply is the primary driver of school segregation. Focusing exclusively on school supply to

fight segregation leads policymakers to overlook a crucial aspect of the problem: parents’ demand for

schools is key because choice sets result from complex socio-economic, demographic, and idiosyncratic

interactions unique to each family. I explore how assumptions about choice sets constrain estimation

results of parents’ preferences in practice.

2 Literature Review

School choice is a heavily discussed topic in education, debates around it have been around for more

than 60 years and will most likely not die out soon. In the United States, school choice originated with

the history of school desegregation; the historic Brown v. Board of Education decision in 1954 ruled

that separating children in public schools based on race was unconstitutional. It signaled the end of

legalized racial segregation of schools in the United States and got massive media attention. This case

is arguably one of the most significant milestones regarding school choice and schooling systems.

Parties for and against racial school segregation would argue in their favor by making welfare,

efficiency, and moral arguments. Many focused on how this ruling would affect students’ future earnings

because of possible (good or bad) spillover effects. For example, Billings et al. (2012) studied the impact

of school Segregation on Educational Attainment and Crime and found that segregation widened racial

gaps in middle school and high school math scores.

Modeling how parents choose and rank schools using empirical tools that leverage the principle of

revealed preferences and data from matching markets, has been a central topic in this literature. These

empirical methods build on the existing literature that estimates random utility models of consumer

preferences (see Berry et al. (1995)).

McFadden’s pioneering work developed the theoretical basis of discrete choice models, where he

outlines a general procedure to formulate econometric models of aggregate choice behavior from indi-

vidual choices. He develops a conditional logit analysis that has useful empirical properties (McFadden,

1973). These models are used to study which and how parents value different school attributes 5 (see

Holme (2002), Hastings et al. (2005) and Bosetti (2004)).

In analyzing how parents choose schools, Hastings et al. (2009) investigate the importance of socio-

economic heterogeneity in preferences to explain inequality in enrollment at good schools. Along the

same lines, using a random utility model that allows for choice-specific unobservable characteristics

and deals with potential endogeneity, Gallego and Hernando (2010) study how parents choose schools.

They find that the two crucial school attributes are test scores and distance to school. Their results

suggest there is much heterogeneity in preferences and that the valuation of most school attributes

depends on household characteristics.6

Classic discrete choice models, such as Logit, Probit, Multinomial Logit, and Mixed Logit, among

many others, require the econometrician specify the agent’s choice set to achieve point identification.

5Such as test scores, tuition, commuting time, number of students per class, number of teachers per student, curricu-
lum, and religious orientation, among many others.

6This and similar literature motivates my utility function specification and why I argue that accounting for hetero-
geneity in preferences is necessary.
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However, assumptions must be made because a common challenge in the school choice literature is

that agents often have imperfect information about the available schools and their characteristics.

Nevertheless, assumptions about what information the agent has or does not have can bias results

because agents knowing all relevant alternatives is vital when using a revealed preference approach.

For example, Hastings et al. (2007) use a field experiment to examine the degree to which infor-

mation costs impact parental choices and their revealed preferences for academic achievement. They

find that providing families with simplified information significantly increases the average test score of

their chosen school.

Along the same lines, Neilson et al. (2019) study how a personalized information provision inter-

vention that targets families of public schools Pre-K students entering elementary schools in Chile

changes parents’ choices. This intervention resulted in parents’ choices shifting toward schools with

higher average test scores, higher value-added, higher prices, and ones further from their homes.

Nevertheless, when analyzing parents’ decision-making process, school attributes are not the only

variables at play because there can also be a strategic component. Depending on each cities’ school

admission system, some students may have strong incentives to game the system, which can be enor-

mously prejudicial to non-strategic students (see Abdulkadiroğlu et al. (2009)). Thus, designing these

systems is a challenge for policymakers because efficiency is not their only desirable attribute.7

In one of their seminal papers, Abdulkadiroğlu and Sönmez (2003) were the first to formulate

the school choice problem as a mechanism design problem. They analyzed existing school choice

plans (Boston, Columbus, Minneapolis, and Seattle) and exposed profound shortcomings such as their

vulnerability to preference manipulation and inefficiency.8 They proposed a practical solution for these

critical issues in the form of two alternative mechanisms; the Gale-Shapley Student Optimal Stable

Mechanism and Top Trading Cycles Mechanism, both of which are strategy-proof and Pareto efficient.

Although mechanisms being strategy-proof is important from a social welfare point of view, it

can also affect research studies because strategic games are not always truth-telling. In other words,

parents have incentives to lie about their preferences when ranking schools in the application process

to secure a place in more popular schools (see Abdulkadiroğlu and Sönmez (2003)).

Parents lying about their true preferences is problematic because most discrete choice models use

revealed preferences at their core. The Chilean Centralized School Admissions System uses the Gale-

Shapley Deferred Acceptance Algorithm (see Abdulkadiroğlu and Sönmez (2003)), which is strategy-

proof and Pareto efficient. Thus, truth-telling and strategic behavior are not a direct concern for the

time being.9

In all, the school choice literature has relied almost exclusively on observable family and school

attributes to model parents’ decision-making process. I argue that accounting for heterogeneity and

incomplete information, as some previously mentioned work, is vital when modeling parents’ behavior

7Efficiency in terms of the allocation being Pareto-optimal.
8In terms of school seats allocation.
9It is worth noting that although an admission mechanism may be strategy-proof, agents making the decision must

be aware of it for them to be truth-telling. nevertheless, analyzing possible strategic behaviors of parents goes beyond
the scope of this paper.
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because parents’ choice sets can ultimately drive their choice. My contribution to the literature is

studying the effect that accounting for parents’ limited access to information has on preference esti-

mation. I assume parents’ choice sets are unobservable and estimate a model that allows for this using

partial identification. These new insights could help shape future policies by highlighting the crucial

role of information in parents’ school choices.

3 Model and Partial Identification of its Parameters

I infer parents’ preferences for schools without explicitly defining their choice sets using the random

utility model developed by McFadden (1974) as my general framework. However, I modify the key

assumption that states the econometrician observes agents’ choice sets. In doing so, I do not find exact

parameters (i.e., my model’s parameters will not be point identified) but rather a partial identification

region containing the set of parameter values compatible with the available data (hereafter the identified

set).

Starting from the random utility model developed by McFadden(1974), consider that each parent

i applies their child to school c ∈ D, where D is the feasible set of schools.10 There exists a function

Ui drawn from U according to some probability distribution such that:

d ∈∗ Ci ⇔ Ui(d) > Ui(c) ∀c ∈ Ci, c 6= d (1)

where ε∗ denotes “is chosen from” and Ci ⊆ D denotes the agent’s choice set.

Each student has a vector of observable attributes xic = (ti, Zic) where ti denotes a socioeconomic

indicator that classifies students as a priority, preferential or regular student. Zic is a student-school

specific variable which represents the distance from student i’s home to school c. Additionally, schools

have an array of observable attributes: the schools’ score on a national standardized test (SIMCE),

the schools’ tuition costs, and the schools’ percentage of priority students, denoted by Sc, Pc and Rc

respectively.

My baseline model assumes parents only value the quality of the school (for which I use SIMCE

scores as a proxy) and its student body composition (the ratio of priority to regular students). Later I

expand my baseline model to include tuition costs, a socioeconomic indicator, and parents’ commuting

time as explanatory variables.

The utility function of my baseline model is:

Uic = δ1 · Sc − δ2 ·Rc + νic

Additionally, I assume that each parent i ∈ I is further characterized by a real valued vector of

unobservable attributes νi, which are idiosyncratic to the parent. Let X and V denote the supports of

xic and νi respectively.

Following the distributional assumptions in standard discrete choice models 11, I impose the fol-

lowing restrictions on the distribution of Ui.

10This set consists of every school located in the students’ city offering spaces during the 2020 admissions cycle.
11such as the conditional logit model (McFadden, 1974) and mixed logit model (McFadden and Train, 2000)
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Assumption 1:

(I) There exists a function W : X × V 7→ R, known up to a finite dimensional parameter vector

δ ∈ ∆ ⊂ Rk, where ∆ is a convex compact parameter space, and continuous in each of its

arguments such that Ui(c) = W (xic, νi; δ) for all c ∈ D, (xic,νi) - a.s.

Most discrete choice models also make the two following assumptions:

(i) A random sample of choice sets Ci, choices di, and attributes xi {(Ci, di,xi) : di ∈∗ Ci, i ∈ I ⊂ I} ,
is observed.

(ii) |Ci| > 2 for all i ∈ I, where | · | denotes set cardinality.

The key difference between my approach and the mainstream discrete choice literature lies in the

econometrician’s assumptions about choice set observability. I make the following assumption:

Assumption 2:

1. A random sample of choices di and attributes xi, {(di,xi) : i ∈ I ⊂ I} , is observed.

2. Pr (|Ci| > κ) = 1 for all i ∈ I, where κ > 2 is a known scalar.

While Assumption 2.2(II) is comparable to (ii), assumption 2.2(I), omits the requirement that the

agents’ choice sets are observed, making it the key point of departure from McFadden.

I assume that Pr (`i > κ) = 1 for every student i ∈ I, where `i = |Ci|, κ > 2 and that `i conditional

on (xi, νi) follows a discrete distribution.12 Because the number of inequalities grow superlinearly with

|C|, I can only work with relatively small choice sets for the time being. In particular each parents’

choice sets consists of seven alternatives, i.e. |Ci| = 7 (See section 4 for details on the sample used for

estimation).

Following Barseghyan et al., my final assumption is:

Assumption 3:

Agent i draws a choice set of size `i such that:

Pr (`i = q|νi) = Pr (`i = q) = π (q) , q = κ, . . . , |D|

where π (q) > 0 for q > κ and
|D|∑
q=κ

π (q) = 1.

It is worth mentioning that although π(q) is a parameter in my model, 13 one could define a function

in which families with different observable attributes observe choice sets of specific sizes with different

probabilities.14

12This is, parents can observe different schools and have choice sets of different sizes.
13In section 5.3 I use comparative statics to show how the identified set changes with different values of π(q).
14This is motivated by the idea that the parents of priority students have less access to information about schools (due

to lack of technology, time, or skills, among many others) and will therefore choose, on average, from smaller choice sets
compared to parents from higher socioeconomic classes.
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The only restriction this assumption posits is that the distributional family of `i is a known para-

metric class and that `i is independent of νi. This independence assumption could be problematic

because it implies that each parents’ choice set size is independent of their unobservable attributes,

which may not always be accurate. For example, parents who give more importance to their children’s

education will likely research available schools more and thus have larger choice sets.

Heroic as this assumption may be, it is somewhat analogous to many econometric models’ common

unconfoundedness and exogeneity assumption used for causal inference. Furthermore, conditional on

`i, the model continues to allow for any dependence structure, without restriction, between parents’

choice sets and their observable attributes and, conditional on observables, between parents’ choice

sets and their unobservable attributes. Moreover, agents may have choice sets that have different

compositions even when they are the same size.

In all, I assume school choices and observable attributes, {(di,xi) : i ∈ I} , for a random sample

of students I ⊂ I, |I| = n, are observed, but that the parents’ choice sets, {Ci : Ci ⊆ D, i ∈ I} , are

unobserved. Given (xi, νi) and choice set Ci = G ⊆ D, if the model is correctly specified, the agent’s

observed choice di satisfies:

d∗i (G;xi, νi) = arg max
c∈G

U (xic, νi)

for the data generating process of the model’s parameters θ = [δ1, δ2]

Given κ, the set of optimal choices for all possible realizations G ⊆ D, |G| > κ, is:

D∗κ (xi, νi) =
⋃

G⊆D:|G|>κ

{d∗i (G;xi, νi)} =
⋃

GvD:|G|=κ

{d∗i (G;xi, νi)}

This model implies a set of multiple optimal choices D∗κ (xi, νi) for each parent as a result of the

multiple possible realizations of their choice set. This multiplicity is precisely what precludes point

identification of the model’s parameters in the absence of additional restrictions on the choice set

formation process. I can only partially identify my model for this very reason.

Following Barseghyan et al., I use a result in Artstein (1983), that translates equation (1) into a

finite number of conditional moment inequalities that fully characterize the sharp identification region

θ as the set of values of the parameter vector θ for which the inequalities hold. Thus, the sharp

identification region ΘI of the parameter vector θ = [δ1, δ2] is given by:

ΘI =

θ ∈ Θ : Pr(d ∈ K | x) 6
|D|∑
q=κ

π(q)P
(
D∗q (x, ν; δ) ∩K 6= ∅; γ

)
,∀K ⊂ D,x− a.s.

 (2)

For each K ⊂ D, I estimate the left hand side of inequality (2) from data on students’ applications

by city from the Chilean centralized admission system. The right hand side is a model defined function
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of xi known up to θ, and thus, a “theoretical probability” in the sense that data to compute such

probabilities does not exist.15 To compute P (D∗κ (xi,νi; δ) ∩K 6= ∅; γ) I exploit the logit closed-form

choice probabilities. Note that 127 inequalities must be satisfied when D = |7|.16 The identified set

contains all and only those values of the parameter for which these inequalities hold. The MATLAB

code for the baseline model can be found in the Appendix.The codes for the model’s extensions are

analogous to that of the baseline model and are available upon request.17

4 Data Description

Because of the computational issues I discuss in section 5.1, I only use data from the city of Ovalle

to estimate my model. Ovalle is a city in the Coquimbo Region with a population of more than

112.000.18 The centralized admissions system platform had 4,689 establishments offering spaces for

Pre-Kinder students in the 2019 application cycle, of which 42 were in Ovalle. I use data from the

twenty two establishments located inside the city and leave out twenty schools located in rural areas.

I do not use data from rural schools because they are smaller than non-rural schools and are located

outside the city. On average, rural schools have classes that are less than half the size of non-rural

schools.

During this admissions cycle, Ovalle had 655 students applying to pre-Kinder using the centralized

admissions system and on average parents applied to three schools.19 It is worth noting that the

number of schools parents apply to does not necessarily coincide with the size of their choice sets.

For example, parents may not rank and apply to all feasible schools if they believe their child has no

chance of getting into a certain school20 or if the child will be accepted by one of the first few schools

on their list

I construct my database using several administrative data sources from the Ministry of Education of

Chile (MINEDUC) which can be found at their website 21. First, I use records containing student-level

information of basic demographic information such as home address and parent’s income. Using these

demographic characteristics, I control for observed heterogeneity non-parametrically when estimating

parents’ school preferences.

My second source of data is individual-level eligibility for the Subvención Escolar Preferencial (SEP)

targeted voucher system and the student’s socio-economic level (priority, preferential or non-vulnerable

student).

My third source of administrative data is the average test scores for different subjects from the 2nd,

4th, 6th, and 8th-grade SIMCE test.22 In section 5, I use this variable as a proxy for school quality

which is a school attribute that directly affects parents’ utility function.

15I refer to these probabilities as the model implied probabilities.
16The number of possible subsets for a set of seven elements is 27 − 1. The empty subset is redundant because the

inequality for K = {∅} will always hold; therefore, there is one subset that is subtracted from the total.
17dmselman@uc.cl
18According to the 2017 census of the National Statistics Institute.
19compared to the two and a half country average.
20Schools offer limited spots each year and some schools are more popular than others.
21https://datosabiertos.mineduc.cl/
22These include math, language, social and natural science, history, and geography.
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Finally, I use parents’ application submissions made on the centralized admissions system platform

(applications made in 2019 for 2020 admission). I only use the first preference declared in each student’s

application because exploiting the richness of the information in how parents rank schools within their

applications goes beyond the scope of this paper.23

Although the data contains applications to Pre Kinder (PK), Kindergarten, 1st grade, 7th grade,

and 9th grade, I only consider students enrolling in PK to exclude strategic decisions or students

changing schools for endogenous reasons.24 Finally, I only analyze the “regular” process applications,

leaving out the “complementary” process ones. The “complementary” process is the second round

of applications for families who want to change their previous one or did not apply in the first one.

Parents’ applications from these cycles are not comparable because the information available during

each process is entirely different, leading to a possible strategic component behind parents’ applications

in the complementary round.

5 Main Results

5.1 Computational Challenges

The number of inequalities my algorithm must check to find the identified set increases non-linearly

with every additional school the feasible set has. Since larger cities often have more schools, I cannot

use data from big cities, and I can only estimate my model for a specific subset of them for the time

being.

For example, if I were to expand the size of the choice set from |D| = 7 to |D| = 8, instead of having

to check 128 inequalities, I would have to check 256. Further, 512 inequalities have to be checked if

|D| = 9, and so on. In all, my method quickly loses computational tractability as parents’ feasible

choice set grows.25

Another dimension in which my method loses computational tractability is the density of the

parameters’ grid. Since the algorithm must check every possible combination of parameters to find the

partial identification region, marginally increasing the number of points in my grid disproportionately

increases the number of times the algorithm must loop. Suppose I choose a grid for δ1 and δ2 of 10

points evenly spaced between (-1,1). This grid composition means that there are 10∗10 = 100 possible

combinations of parameters that the algorithm must check to find the partial identification region.

If I increase the density of both grids to 20, there would be 400 combinations of δ1 and δ2 that the

algorithm must check.

Along the same lines, if I were to increase the number of parameters in my model, possible parameter

combinations would increase even faster. When the model has three parameters, 1000 combinations

must be checked for each inequality when grids have 10 points. For grids of 20 points, 8000 combinations

must be checked and so on. This superlinear increase complicates marginal extensions of my model.

23It would be interesting to see if something like a Multinomial Logit Model fits in this application of partial identifi-
cation.

24Parents may transfer their children to other schools for geographic, socio-economic or other personal reasons.
25It is worth noting that my algorithm works so that as soon as one inequality is not satisfied for a given set of

parameters, the loop breaks and moves one to another combination of parameters. However, as κ decreases, more
inequalities are satisfied because the model becomes more flexible, which means that although the loop eventually
breaks, it still has to check a substantial amount of inequalities before it does.
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Table 1 shows how computation time grows as the model becomes more complex. I estimated all

models using three different grid sizes. The first three rows shows how long the algorithm takes to

estimate the model when the feasible choice set has seven, eight and nine schools, using grids of 50

points for each model parameter. The following three rows show how long it takes when the grid

has 100 points, and the last three, when each grid has 200 points. Columns denote the number of

parameters being estimated in the model. As the size of the feasible set grows, so does computation

time, however, this increase becomes more relevant as the number of parameters being estimated in

the model grow. When grid density increases, the differences in time between estimating a model with

an additional parameter or increasing the choice set size become significant.

Table 1: Time it takes to estimate different models

|D| δ1 δ1, δ2 δ1, δ2, δ3 δ1, δ2, δ3, δ4

7 0.013 sec 1.11 sec 29.31 sec 9 hours
8 0.04 sec 1.13 sec 37.02 sec 10 hours
9 0.07 sec 1.4 sec 56.1 sec 13 hours

7 0.02 sec 3.26 sec 5.4 min 7 days
8 0.05 sec 3.9 sec 6.7 min *
9 0.1 sec 4.6 sec 8.3 min *

7 0.04 sec 12.6 sec 37.1 min *
8 0.07 sec 13.39 sec 48.5 min *
9 0.15 sec 18.44 sec 1.4 hours *

*Estimation takes more than one week.

With this in mind, to be included in the sample, a city must meet two criteria; have at least 400

students applying to one or more schools, and its seven most popular schools must cover more than

70% of the total applications in that city. These seven schools compose the feasible set D. Alto

Hospicio, Buin and Ovalle are the only counties that meet both requirements. Thus far, I have only

estimated my model using the data available from the city of Ovalle. Therefore, for context, all results

showed hereafter are from this city’s data set.

Finding cities that meet these criteria is challenging because counties that have a relatively small

number of schools that cover 70% of applications often have less than 400 students, but bigger counties

(with more than 400 students) have too many schools to find any seven of them that cover 70% of all

applications. The ideal city is one with a lot of students but with big schools. On average, a city’s

nine most popular schools cover more than 70% of its applications.

If I modify the requirements and made 350 the minimum number of students per city, five counties

would have seven schools covering more than 70% of the city‘s applications. Further, if the minimum

number of students per city were 300, nine counties would meet the criteria. If I were to maintain

the requirement of counties having a least 400 students, but I lowered the percentage of applications

the seven most popular schools must cover from 70% to 65%, then six counties would be eligible. If I

lowered that percentage to 60%, then sixteen counties would meet the criteria.

My results suggest that assumptions on agents’ choice sets play a crucial role in my model’s esti-
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mation. Under the assumption that agents choose from the full choice set (κ = 7),26 there is no set of

parameters for which any of the models below can rationalize the data.27 However, as I relaxed the

assumption that agents only draw full choice sets and introduced the possibility that agents’ minimum

choice set size is five (full minus two), my model can rationalize the data.28 Nevertheless, the proba-

bilities with which agents draw full, full minus two, or full minus one choice sets affect the existence

and size of non-empty identified sets.

To better understand how the estimation behind my model works, I show how the parameters that

can rationalize the data respond to changes in the amount and type of variables I add to the model.

As illustrated in the diagram below, I start with a baseline model and extend it in four main ways.

The rest of this paper is organized as follows; in section 5.1, I use my baseline model to show how

the probabilities of drawing choice sets of a specific sizes (π(q)) affect the partial identification region.

In section 5.2, I continue by adding a third school-specific variable to illustrate how adding a (relevant)

variable expands the identification region because the model gains explanatory power. In section 6.1

I extend the model to account for observed student heterogeneity by adding an interaction between

the ratio of priority students and the type of student. Finally, in section 6.2 I extend the model by

adding a student-school specific variable to my baseline model to account for parents commuting time

to school.

[5.1] Baseline Model (BM) [5.2] BM + Tuition Costs

[6.1] BM + Tuition Costs+ Interaction[6.2] BM + Commuting Time

+ Tuition Costs

+ Commuting Time + Interaction (Type · Priority %)

5.2 Estimation Restrictions and Flexibility

Before presenting the results from my baseline model, I explain how I can make my model more

flexible with κ or restrict it using student-specific or student-school-specific variables. Recall that

every combination of δ1 and δ2 that satisfies inequality (3) forms the partial identification region. Its

left-hand side is the empirical probability that a parent chooses a specific school from a subset K of

schools, while the right-hand side is the model implied probability. As κ decreases, the right-hand side

increases for a given set of parameters and schools, while the left-hand side remains constant.

Whenever agents do not observe the complete choice set, their probability of choosing a given school

increases because the school removed from the choice set is its strongest competitor.29 In other words,

26The standard assumption in most discrete choice models.
27To rule out the possibility of this being due to programming issues, I simulated data consistent with a set of model

parameters to make sure my algorithm was correctly coded.
28When agents draw choice sets with κ = 6, my baseline model could not rationalize the data for any combination of

probabilities, so I relaxed κ even more. My baseline model only begins to rationalize the data when the minimum choice
set size is |C| = 5 (full minus two).

29In terms of their utility for a given set of model parameters. Thus, a school’s strongest competitor may change for
different sets of model parameters. Because every school has different observable attributes (such as tuition, test scores,
and priority ratios), the “best” and “worst” competitors for a given school can change depending on which attributes
have relatively more weight in the utility function.
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as κ decreases, the probability of a parent choosing a given school increases because it competes against

“worst” schools. For example, if an agent chooses from a set of only one school (κ = 1), inequality (2)

is always satisfied because any set of parameters can rationalize a school being chosen if it is the only

available one.

Furthermore, as the probability with which parents observe smaller choice sets increases (π(q) <

π(q−1)), the right-hand side of inequality (2) also increases. The mechanism behind this is as follows;

the probability of a given school being chosen grows as choice sets get smaller, thus, if the probability

of drawing the relatively smaller choice sets is bigger, the weighted probability of that school being

chosen is bigger. Recall that parents are more likely to choose a given school when the choice set is

relatively smaller because it faces weaker competitors as it shrinks.

Therefore, the partial identification region grows when κ is smaller, or the cases in which a given

school is chosen with higher probability have relatively more weight. The region grows because it is

more likely that a combination of parameters will satisfy the inequality for every K as the right-hand

side grows and the left-hand side does not change.

In the first extension of my baseline model I add tuition costs and in the second one I account

for observed heterogeneity parametrically by adding an interaction between the schools’ priority to

non-priority student ratio and the type of student applying to that school.

For the third extension, I include a variable that accounts for parents’ commuting time to each

school. I do so by clustering students into ten groups based on where they live. Then, I calculate the

distance between the center of each cluster and every school in the feasible set. Figure 1 shows Ovalle

divided into the ten clusters I used to estimate the model in section 6.2. I use these clusters because

I cannot estimate the model at an individual level30 because I would lack statistical power, so I use

clusters to represent different “types” of students based on their geographic location.

Figure 1: Map of Ovalle divided into the ten clusters used for the estimation. The first two quadrants were left out because no
students nor schools were inside of either of them. Triangle and circle symbolize students and schools, respectively. The

delimitation used to cluster Ovalle is a function of the distance between schools.

30Where each student would be a cluster and I would calculate the distance between their homes to every school, as
most discrete choice models do.
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Because these variables are student-school-specific, I must consider a trade-off before adding them

to my baseline model. On the one hand, the model has more explanatory power because of the

additional variable (assuming it is relevant to the model). On the other hand, accounting for said

heterogeneity increases the number of moment inequalities that need to be satisfied for each set of

parameters. In particular, the number of moment inequalities that need to be satisfied doubles when

I add the interaction variable because every condition that needed to be satisfied before needs to be

satisfied for the group of priority students and the non-priority students now.

To illustrate this trade-off, consider the extension in section 6.2, that consists on adding a proxy

for commuting time to the baseline model. When this variable is included, the same set of parameters

must allow the simultaneous rationalization of the choices made by every group.31 Therefore, although

including a variable that adds explanatory power seems like an obvious thing to do in some models,

one must determine if the marginal information it provides out-weights the restrictions it imposes.

The increase of the amount of moment inequalities is not the only problem these student-school-

specific variables posit. If some clusters are sufficiently small (in terms of students), a couple of students

applying to one school makes the empirical probability of that school being chosen relatively high. If

some clusters have schools that are chosen with disproportionately high probabilities, it is harder for a

model to rationalize data from different clusters using the same set of parameters. The model’s inability

to rationalize data from small clusters when I add these student-school-specific variables shrinks the

identification region, as I show in section 6.

5.3 Baseline Model

Recall my baseline model from section 3:

Uic = δ1 · Sc − δ2 ·Rc + νic

Figure 2 shows that the identification region is empty for κ = 7, which illustrates how my baseline

model cannot rationalize the data under the assumption that parents observe every school in the

feasible set.32 Nevertheless, once I relax the assumption that parents’ choice sets coincide with their

feasible set (i.e., κ < |D|), my model can rationalize the data, thus, a non-empty identification region

exists.

31Computationally speaking, this means that a set of parameters must hold for all 1270 inequalities in order to form
part of the identification region.

32This model cannot rationalize the data under the assumption that parents observe the full minus one choice set
or the full minus two choice set either. As I show below, the model needs more flexibility in terms of κ because no
combination of probabilities π(q) can explain the data when κ = 7, κ = 6 or κ = 5.
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Figure 2: π1 = 1

Figure 3 shows the identified set when κ = 4, where agents draw choice sets of a specific size with

probability π1 = 0, 1, π2 = 0, 1, π3 = 0, 4, π4 = 0, 4. These probabilities mean that parents draw choice

sets with seven schools (full choice set) 10% of the time. Along the same lines, parents draw choice

sets of five schools (full minus two) 40% of the time, and so on. The positive slope of the identified

set suggests that as the priority ratio matters more to parents, so does the schools’ test scores, and

vice-versa.

Figure 3: π1 = 0.1 ; π2 = 0.1 ; π3 = 0.4 ; π4 = 0.4

Figures 4, 5, 6 and 7 illustrate how the partial identification region changes when modifying the

distribution of the probabilities (figures 4 and 5) and the support of the probabilities (figures 6 and 7).

Figures 4 and 5 show that as it becomes less likely that parents observe the full choice set, the partial

identification region grows but maintains its shape for the most part, so its interpretation is the same

as that of figure 3. Note that these new partial identification regions grow, but there is no shift of the

original identified set; all parameter values that could rationalize the data before, still can.
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Figure 4: π1 = 0.1 ; π2 = 0.1 ; π3 = 0.4 ;
π4 = 0.4

Figure 5: π1 = 0.025 ; π2 = 0.025 ; π3 = 0.45 ;
π4 = 0.5

Figures 6 and 7 show how as the minimum choice set size decreases (now agents can draw smaller

choice sets), the partial identification region also grows. Even though the (positive) relationship

between parents’ preferences on schools’ priority ratio and test scores remains, the shape of the partial

identification region does change. The new parameter combinations that become part of the partial

identification region introduce the possibility of a trade-off in which parents may highly value schools’

tests scores but do not care about its priority ratio, and vice-versa.

This new trade-off may seem paradoxical because, according to this figure, parents can have strong

preferences for school test scores and strong preferences for a high priority ratio or a low one. How-

ever, in this case, the probabilities are such that the most likely scenario is that parents are only

choosing schools from choice sets with three of the seven alternatives, which in the absence of addi-

tional restrictions gives so much flexibility to the mode that it can rationalize almost any parameter

combination.

Figure 6: π1 = 0.05 ; π2 = 0.1 ; π3 = 0.2 ;
π4 = 0.25 ; π5 = 0.4

Figure 7: π1 = 0.025 ; π2 = 0.025 ; π3 = 0.05
; π4 = 0.1 ; π5 = 0.8

5.4 Baseline Model with tuition costs

For my first extension, I add tuition costs, a school-specific variable, to the baseline model. The

new utility function is defined by:

Uic = δ1 · Sc − δ2 ·Rc − δ3 · Pc + νic
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Figure 8 shows the new model’s identified set when κ = 4 and is analogous to figure 3. However

now the figure is three-dimensional because this model partially identifies three parameters.

Figure 8: π1 = 0.025 ; π2 = 0.025 ; π3 = 0.45 ; π4 = 0.5

Figure 10 shows the partial identification region of this new model in two of its three dimensions to

compare it to the baseline model. The positive correlation between preferences on a schools’ priority

ratio and test scores from the baseline model (Figure 9) remains when I add tuition costs to my baseline

model (Figure 10). However, the identified region for δ1 and δ2 grows, which means this new variable

adds relevant information to the model because now the model can rationalize the data for a broader

set of parameters.

This extension has the same implications for the partial identification region as changing the prob-

ability support (see figure 6) but through a different mechanism. For this extension, I add a variable

that can explain choices that could not be rationalized by a model that only considered priority ratio

and test scores as relevant attributes for parents. After changing the minimum choice set size, the

model can rationalize choices it could not before. For example, it can rationalize cases in which parents

choose a school that is strictly dominated, by allowing for the possibility that parents were not aware

that this better school existed or that it was a feasible option.

Figure 9: π1 = 0.025 ; π2 = 0.025 ; π3 = 0.45 ;
π4 = 0.5

Figure 10: π1 = 0.025 ; π2 = 0.025 ; π3 = 0.45 ;
π4 = 0.5
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6 Extended Model Results

6.1 Baseline Model with tuition costs and student specific interaction

For my second extension, I add a student-school-specific variable that accounts for student hetero-

geneity. Using an interaction between a schools’ priority ratio and the type of student applying to that

school. The new utility function is:

Uic = δ1 · Sc − δ2 ·Rc − δ3 · Pc + δ4 ·Rc · ti + νic

To account for heterogeneity in preferences of student body composition by type of student, I use

a dummy variable ti that equals one if the student applying is part of the “priority students group” or

zero if the applicant is a regular student. Parameter δ4 captures the additional effect that a schools’

demographic composition has on a priority student choosing a school over regular students.

Comparing figures 11 and 12 we see that the partial identification region also grows with this exten-

sion, and the positive relationship between δ1 and δ2 remains.33 The fact that the partial identification

region grew with this extension illustrates how the explanatory power gained by this additional vari-

able more than compensates its additional restrictions. Nevertheless, the partial identification region’s

shift suggests that parents value a schools’ test scores more when the type of student is accounted for.

Figure 11: π1 = 0.025 ; π2 = 0.025 ; π3 = 0.45 ; π4 = 0.5 Figure 12: π1 = 0.025 ; π2 = 0.025 ; π3 = 0.45 ; π4 = 0.5

Note that this shift does not contradict that when extending a model, all points that were part of

the partial identification region before must continue to be. In this case, I am adding an interaction

between the student’s type and the school’s student body composition ratio student-specific variable,

which introduces new restrictions to the model, as opposed to my first extension, where I added a new

variable that was not specific to students nor schools.

33When running the algorithm, I used grids that were less dense I added more parameters with each extension of the
baseline model because the time it took to run grew rapidly (see section 5.1). I run the baseline model again for each
extension using the same grid density to make the figures comparable, which is why the baseline model identified set
may appear to change throughout the paper.
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6.2 Baseline Model with commuting time

My last extension includes a variable that accounts for parents’ commuting time to and from school.

This variable is often used in discrete choice models of school choice because evidence suggests it is

an important driver behind the parents’ decision (see section 2). The utility function, in this case, is

given by:

Uic = δ1 · Sc − δ2 ·Rc − δ3 · Pc − δ4 · Zic + νic

Commuting distance, denoted by Zic, is a student-school-specific variable.34 Note that commuting

distance is different for each student across clusters and across schools. I group students in clusters

because I use school-level data for my estimation. Logit models can account for each student’s com-

muting distance and do not need to cluster them because their estimation is done using student-level

data.

Figure 13: π1 = 0.025 ; π2 = 0.025 ; π3 = 0.05 ; π4 = 0.1 ;
π2 = 0.8

Figure 14: π1 = 0.025 ; π2 = 0.025 ; π3 = 0.05 ; π4 = 0.1 ;
π2 = 0.8

Comparing figures 13 and 14 it is clear that the explanatory power added by this new variable does

not compensate for its additional restrictions. The identified set significantly shrinks when I account

for commuting time (as opposed to the extension in section 6.1) because the amount of inequalities

that need to be satisfied for each set of parameters significantly increases. In extension 6.1, the amount

of inequalities doubles when accounting for student type, whereas it multiplies by ten when accounting

for commuting time.35 As I explain in section 5.1) , the mechanism behind this is that now the same

set of parameters must rationalize ten times more data than before, which inevitably shrinks the set of

parameters that can do so. Therefore, the restrictions that result from adding an interaction between

student type and priority ratio are not enough to compensate the explanatory power gained. However,

accounting for commuting distance, one can see that this variable imposes such strong restrictions on

the estimation that the explanatory power it brings to the model cannot compensate them.

34Parents’ commuting distance to school is the shortest distance between the center of the cluster they belong to and
the school.

35The amount it multiplies by depends on the number of clusters. In this case it multiplies by ten because there are
ten clusters

18



7 Concluding Remarks

The current literature on school choice has, for the most part, circumvented the challenges of

preference estimation with unobserved choice sets by making strong assumptions about their formation

process and composition. Using a frontier robust method of discrete choice analysis proposed by

Barseghyan et al., I show how assumptions on parents’ choice sets have important implications when

estimating parents’ preference parameters. I analyze these implications by studying the effects of

marginally changing the minimum size of the choice sets parents drew from (and the probabilities they

did so with) and extending my baseline model in two main ways.

With my first extension, I show how adding relevant variables to the model increase its explanatory

power, and therefore, its partial identification region. My second extension illustrates the trade-off

associated with adding student-school-specific interactions to the model. Moreover, when adding

student-school-specific variables in my last extension, I find the model can no longer rationalize the

data using the probability distribution from the other model’s extensions. Further, none of my models

can rationalize the data under the assumption that agents observe a full, full minus, or full minus two

choice sets, no matter how much flexibility the probability distribution of choice set size gives to the

model, when |D| = 7.

These findings suggest that mainstream assumptions on the observability of choice sets in standard

school choice models may be too strong. I find that small changes in my model’s assumptions can

significantly alter its results. With this I argue why discrete choice models might not always be

robust to the general on agents’ choice sets used in the literature. Standard Logit Models always find

parameters to fit the data, therefore recognizing that a model is incorrectly specified is less obvious

than when the estimation result is an empty set of parameters.

Although authors can (and often do) robustness checks by estimating the same model using different

ways to define each parents’ choice set and analyzing how these estimations change, the idea behind

my model is conceptually different. Using different choice sets still assumes that parents are aware of

all feasible schools, so it does not account for agents’ imperfect information.

Assuming perfect information is problematic because it can affect the model’s ability to rationalize

the data; Parents may seem to behave irrationally only because the model does not take the possibility

that parents did not know about all feasible schools into consideration. Some parents may choose

schools that are strictly dominated by others because they did not know they could apply to the

better one. My estimation method allows for this possibility, so what other models may categorize as

an irrational choice can be completely rational in mine.

To account for parents’ imperfect information on school supply, I estimate my model using partial

identification, which allows me to work under assumptions that are much weaker than those used in

most point identifying methods. Nevertheless, what makes my model flexible, translates into its esti-

mation being computationally challenging. The algorithm can quickly solve the optimization problem

if the model is constrained enough because few optimal choices exist for each agent. However, the

amount of model implied optimal choices grows as the minimum number of schools parents observe

grows. This means the algorithm must find and compute a larger array of solutions, which in turn

increases estimation time.
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Further, as discussed in section 5.1, I run into other limitations when accounting for students’

observable heterogeneity (see models from sections 6.1 and 6.2). When using clusters for accounting

for said heterogeneity, the algorithm must find a set of parameters that hold for each group of agents,

which becomes more and more difficult as the number of clusters increase. Therefore, even though I

can make my model flexible enough to rationalize data for different agents using the same parameters,

I run into a wall where the model’s flexibility no longer allows the algorithm to find an identification

region when I use too many clusters.

Therefore, although my model helps argue against strong assumptions on agents’ choice sets, it does

not provide a plausible alternative way of estimating preferences under weaker assumptions. First, the

model cannot be used in contexts where choice sets are too big. Be that as it may, one could argue

that in some cases working with big choices is not necessary, nevertheless, not being able to account

for observed heterogeneity is a big problem in most cases. Thus far, I have argued that valuable

information is lost when the econometrician makes strong assumptions about agents’ choice sets.

However, I recognize that not making these assumptions and using alternative estimation methods

leads to loss of information on preference heterogeneity, which is an essential aspect of consumer

behavior.

In all, my contribution to the literature is methodological. Rather than focusing on the more

studied aspects of school choice, such as quantifying the trade-off between different school attributes

or specifying the determinants of school choice, I focus on the method behind all of it. Although I am

aware of my model’s many limitations due to its simplistic specification, applying the methodology

proposed by Barseghyan et al. to the Chilean School Admission system brings attention to a critical

aspect often overlooked in school choice models; choice sets are unobservable by the econometrician

because parents have imperfect information about schools. To illustrate this I show how assumptions

made by the econometrician have non-trivial implications when estimating different models. All things

considered, I believe that we could learn a lot from a thorough examination and reconsideration of the

literature’s current mainstream practices.
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Appendix: Matlab Codes

Main Code:

c l c

c l e a r v a r i a b l e s

c l o s e a l l

% Data

temp prob schoo l s = readtab l e ( ’ LHS Ovalle . csv ’ , ’ ReadVariableNames ’ , t rue ) ;

p rob schoo l= tab l e2a r ray ( temp prob schoo l s ( : , 2 ) ) ; % Data vec to r o f e m p i r i c a l

p r o b a b i l i t i e s

data 1 = readtab l e ( ’ RHS Oval le S imce Pr ior i . csv ’ , ’ ReadVariableNames ’ , t rue ) ;

p r i o r i=tab l e2a r ray ( data 1 ( : , 5 ) ) ; % Data Vector o f each school ’ s t u i t i o n co s t

simce=tab l e2a r ray ( data 1 ( : , 4 ) ) ; % Data Vector o f each school ’ s SIMCE s c o r e s

% Parameters

C = { ’ 1 ’ ’ 2 ’ ’ 3 ’ ’ 4 ’ ’ 5 ’ ’ 6 ’ ’ 7 ’ } ; % F e a s i b l e Set

nGroups = 2ˆnumel (C) − 1 ; % Number o f p o s s i b l e subse t s

K matrix= dec2bin ( 1 : nGroups ) == ’ 1 ’ ; % Matriz o f a l l p o s s i b l e va lue s o f K

f u l l c h o i c e s e t=ones (1 , l ength (C) ) ;

% Var iab l e s

de l t a1=l i n s p a c e ( −1 ,1 ,50) ’ ; % P o s s i b l e parameter va lue s f o r de l t a1 (SIMCE)

de l t a2=l i n s p a c e ( −1 ,1 ,50) ’ ; % % P o s s i b l e parameter va lue s f o r de l t a2 ( P r i o r i t y

r a t i o )

% P r o b a b i l i t i e s o f drawing a cho i c e s e t o f s i z e X

pi1 =0.01; % Prob o f 7 s c h o o l s ( f u l l cho i c e s e t )

p i2 =0.01; % Prob o f 6 s c h o o l s ( f u l l −minus−one cho i c e s e t )

p i3 =0.08; % Prob o f 5 s c h o o l s ( f u l l −minus−two cho i c e s e t )

p i4 =0.9 ; % Prob o f 4 s c h o o l s

p i5 =0; % Prob o f 3 s c h o o l s

p i6 =0; % Prob o f 2 s c h o o l s

p i7 =0; % Prob o f 1 s c h o o l s

p i =[ p i1 p i2 p i3 p i4 ] ; % Vector o f p r o b a b i l i t i e s (Must conta in a l l p r o b a b i l i t i e s

b i gge r than zero )

kappa=4; % Minimun cho i c e s e t s i z e

n bes t =( l ength (C)−kappa ) ; % Number o f model impl i ed optimal c h o i c e s

rhs=ze ro s ( nGroups , 1 ) ; % Vector f o r the va lue s from the RHS o f equat ion (2 )

l h s=ze ro s ( nGroups , 1 ) ; % Vector f o r the va lue s from the LHS o f equat ion (2 )

% Matrixes used in the main loop

mat fu l l m inus n=ze ro s ( l ength (C) , l ength (C) , n bes t +1) ;

a u x f u l l m i n u s k=ze ro s ( l ength (C) , n bes t +1) ;

P=ze ro s ( n bes t +1 ,1) ;
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cond i t i on=ze ro s ( l ength ( de l t a1 ) , l ength ( de l t a2 ) ) ;

va lue s=ze ro s (7 , 7 ) ;

f o r d1=1: l ength ( de l t a1 ) % For each p o s s i b l e va lue o f de l t a1

f o r d2=1: l ength ( de l t a2 ) % For each p o s s i b l e va lue o f de l t a2

f o r j =1: l ength (C) % Find the best compet i tor o f each schoo l f o r a

g iven s e t o f parameters de l t a1 and de l t a2

mat fu l l m inus n ( j , : , : )=f b a s e l i n e ( j , d e l t a1 ( d1 ) , de l t a2 ( d2 ) ,

simce , p r i o r i ,C, kappa ) ’ ;

[ sets kappa , ut ] = f b a s e l i n e ( j , d e l t a1 ( d1 ) , de l t a2 ( d2 ) , simce ,

p r i o r i ,C, kappa ) ;

va lue s ( j , : , : )=ut ;

end

f o r b=1: n bes t+1 % For a l l the model impl i ed optimal c h o i c e s f o r a

g iven cho i c e s e t s i z e

f o r j =1: l ength (C)

% Pr o b ab i l i t y that s choo l j s choo l i s chosen

a u x f u l l m i n u s k ( j , b )=p rhs ( j , mat fu l l m inus n ( j , : , b ) ,

de l t a1 ( d1 ) , de l t a2 ( d2 ) , simce , p r i o r i ) ;

end

end

reg i on =0;

f o r i =1:nGroups % For a l l p o s s i b l e va lue s o f K

f o r b=1: n bes t+1

P(b , 1 )=K matrix ( i , : ) ∗ a u x f u l l m i n u s k ( : , b ) ;

end

rhs ( i )= pi ∗P;

l h s ( i )=p l h s ( K matrix ( i , : ) , p rob schoo l ) ;

i f l h s ( i )>rhs ( i ) && i s r e a l ( rhs ( i ) )

break % The loop breaks i f one i n e q u a l i t y i s not s a t i s f i e d

f o r a g iven s e t

e l s e i f l h s ( i )<=rhs ( i ) && i s r e a l ( rhs ( i ) ) % The i n e q u a l i t y i s

s a t i s f i e d

r eg i on=reg ion +1;

end
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end

cond i t i on ( d1 , d2 )=reg i on ;

end

end

% Find s e t o f parameters that s a t i s f y a l l 127 moment i n e q u a l i t i e s

idx = f i n d ( cond i t i on ==127) ;

[ i , j , k ] = ind2sub ( s i z e ( cond i t i on ) , idx ) ;

B = [ i j k cond i t i on ( idx ) ] ;

s e t 1=de l ta1 ( i ) ;

s e t2=de l ta2 ( j ) ;

% P lo t t i ng the i d e n t i f i e d s e t / P a r t i a l i d e n t i f i c a t i o n reg i on

f i g u r e (1 )

s c a t t e r ( set1 , s e t2 )

xlim ([ −1.3 1 . 3 ] )

yl im ([ −1.3 1 . 3 ] )

x l a b e l ( ’ $\ d e l t a 1$ (SIMCE) ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

y l a b e l ( ’ $\ d e l t a 2$ ( P r i o r i t y r a t i o ) ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

t i t l e ( ’ I d e n t i f i e d Set f o r $\kappa=7$ (BM) ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

g r i d on ;
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Script for Function 1 (f baseline.m)

% This func t i on f i n d s the ” f u l l minus k” cho i c e s e t s f o r a g iven schoo l and

% a given kappa when parents ’ u t i l i t y func t i on have 2 parameters (SIMCE sco r e

% and p r i o r i t y r a t i o ) . For example , i f we are working woth schoo l ” i ” and

% kappa=5, t h i s func t i on gene ra t e s a matrix that conta in s the f u l l cho i c e

% set , the f u l l −minus−1 cho i c e s e t ( e l i m i n a t e s the best compet i tor o f

% schoo l ” i ”) , and the f u l l −minus−2 cho i c e s e t ( e l i m i n a t e s the best and

% second best compet i tor o f s choo l ” i ”) .

f unc t i on [ sets kappa , ut ] = f b a s e l i n e ( rbd , de l ta1 , de l ta2 , simce , p r i o r i ,C, kappa )

f u l l s e t=ones ( l ength (C) ,1 ) ; % Vector f o r the f u l l cho i c e s e t

f u l l s e t ( rbd )=NaN; % An inte rmed ia t e cho i c e s e t without s choo l ” i ”

ut =(( de l t a1 ∗ s imce )+( de l t a2 ∗ p r i o r i ) ) .∗ f u l l s e t ; % Computes the o b j e c t i v e

% u t i l i t y f o r each schoo l in

% the in te rmed ia t e cho i c e s e t

n bes t =( l ength (C)−kappa ) ; % Number o f compet i tor s that need to be removed

[ ˜ , p o s i t i o n s ] = maxk( ut , n bes t ) ; % Finds s c h o o l s with the n bes t u t i l i t y

mat=ones ( n best , l ength (C) ) ; % Matrix where each row i s a cho i c e s e t and

% each column i s a s choo l

% Now the n bes t s c h o o l s are removed from t h e i r r e s p e c t i v e cho i c e s e t s

mat (1 , p o s i t i o n s (1 ) )= 0 ;

f o r irow= 2 : n bes t

mat( irow , : )= mat( irow −1 , : ) ;

mat( irow , p o s i t i o n s ( irow ) )= 0 ;

end

f i l a=ones (1 , 7 ) ; % The number o f columns i s 7 because |C|=7

set s kappa =[ f i l a ; mat ] ; % Matrix conta in ing the 7 minus kappa cho i c e s e t s
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Script for Function 2 (p rhs.m)

% This func t i on computes the p r o b a b i l i t y that s choo l ”n” i s chosen from a

% given cho i c e s e t g iven the parameters o f a u t i l i t y func t i on that

% c o n s i d e r s 2 s choo l a t t r i b u t e s (SIMCE and p r i o r i t y r a t i o ) .

% Note that ”rbd” i s used as a s choo l id .

f unc t i on [ prob rbd ] = p rhs ( rbd , c h o i c e s e t , de l ta1 , de l ta2 , simce , p r i o r i )

num=exp ( ( de l t a1 ∗ s imce )+( de l t a2 ∗ p r i o r i ) ) ; % Numerator o f the l o g i t formula

% to compute the p o b a b i l i t y that a

% schoo l i s chosen .

den=c h o i c e s e t ∗num; % Denominator o f the l o g i t formula used to compute

% the p o b a b i l i t y that a s choo l i s chosen .

i f c h o i c e s e t ( rbd )==0 % I f s choo l ” i ” i s not part o f the cho i c e set ,

prob rbd =0; % the p r o b a b i l i t y that i t w i l l be chosen i s ze ro .

e l s e

prob rbd=num( rbd ) /den ; % P r o ba b i l i t y o f choos ing s choo l ” i ”

end

end

Script for Function 3 (p lhs.m)

% This func t i on f i n d s the e m p i r i c a l p r o b a b i l i t y that a g iven schoo l

% be longs to subset K.

func t i on [ p rob lh s ] = p l h s ( subset , p rob schoo l )

p rob lh s= subset ∗ prob schoo l ; % M u l t i p l i e s the vec to r that r e p r e s e n t s

% subset K with the vec to r conta in ing the

% e m p i r i c a l p r o b a b i l i t y that a g iven schoo l

% i s chosen , f o r every s choo l .

end
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