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Abstract

Can farmers mitigate the impact of climate change? Using medium-term

fluctuations of temperature and precipitation in Chile, this research tests the

hypothesis of factor adjustment as a mechanism to attenuate the effects of

extreme heat. I find that extreme heat leads to reallocation of land from fruit to

forestry and primary activities. This readjustment leads to a reduction in labor

and physical capital allocation in agriculture but also increases labor productivity

and aggregate agricultural output. I conclude that this result is due to fruit sector

is more labor-intensive than forestry and primary sectors, thus a reduction of this

subsector drives away labor from the agriculture, but also leads to reallocation

gains sufficiently high to compensate the direct losses due to extreme heat. These

findings are consistent with farmers using input adjustments as a medium-term

mechanism to attenuate the effects of extreme heat and highlight that accounting

for land reallocation is essential to quantify the mitigation of the damages

associated with climate change.
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1 Introduction

Climate change is predicted to increase the incidence of extreme weather events, rising

temperatures and changing precipitation patterns (Collins et al. 2013; Hartmann et

al. 2013; Wuebbles et al. 2017; IPCC 2014). Literature suggests significant losses of

agricultural productivity in this process (Dell, Jones and Olken 2014), which are hardly

avoided by a lack of adaptability on the part of farmers (Burke and Emerick 2016; Taraz

2018; Schlenker and Roberts 2009; Schlenker and Lobell 2010).1 However, some recent

studies find that there are more adaptive strategies to climate change than previously

documented. People and firms may adapt to climate change not only through the adoption

of new technologies or heat-resistant varieties (Meyer and Keiser 2018; Meyers and Rhode

2020) but also adjusting input allocation in agriculture (Aragon, Oteiza and Rud 2020),

reallocating factors from agriculture to other productive sectors (Jessoe, Manning and

Taylor 2018; Colmer 2020) or migrating to less temperature-sensitive regions (Cattaneo

and Peri 2016; Feng, Oppenheimer and Schlenker 2015). Therefore, if we expect large

economic losses from climate change in the future, they cannot come just from the direct

effect of temperature rises on land productivity, but also from a lack of agents adaptation

within agriculture and a limited reallocation of factors through sectors and space.

In particular, farmers may respond to temperature changes by adjusting their land

use, labor and physical capital to maximize profit. In the absence of frictions, the factors

released in the more affected sectors might be reassigned to the sectors relatively more

resistant to climate change until the new value of the marginal product is equalized across

sectors.2 These adjustments could lead to reallocation gains, which may substantially

reduce the direct losses from climate change in the long-run. Nevertheless, if there are

frictions involved, this response could not have the desired effects. For example, if there

are frictions adjusting land but not labor, labor outflows from areas experiencing adverse

productivity shocks would further reduce the marginal product of land. Consequently,

even if farmers adjust their input use in response to climate change, the net impact of

this mechanism depends on the reallocation capability of the economy.

In contrast to most the previous research, which focuses on outcomes that already

include farmer responses such as crop yields or profits, this study focuses on the

reallocation of inputs within agriculture and also in the productive responses of

agriculture as a whole. In particular, this research studies if farmers respond to weather

1Long term climate change has the potential to affect agricultural production through alterations in
the soil environment that may include organic matter content and quality, as well as the soil temperature
regime and soil hydrology. See Wahid et al. (2007) for a review of the biological evidence.

2Under the assumption of pareto-efficient equilibrium.
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shocks or climate change3 by adjusting its land use, hired labor and physical capital,

and if these factors reallocate across agricultural subsectors or leave agriculture.

Furthermore, I test whether adaptative responses reduce the effect of extreme heat on

agricultural output.

For this purpose, I combine the agricultural census with weather data in Chile, a

country where 14.36% of its total GDP comes from agriculture or forestry,4 and

compute the elasticity of input use to extreme heat changes through a long differences

approach. This empirical strategy offers substantial advantages over cross-sectional and

panel approaches to understand medium-term adaptation responses, since people and

firms may respond differently to permanent changes in the expected distribution of

weather than to short-term and unanticipated fluctuations in the climate variables.

To assess the factors reallocation importance as an adaptation mechanism, I build

a simple model of three sectors and two inputs to illustrate the effects of a shift in

productivity caused by climate change. In this model, the agricultural sector has two

subsectors: heat-sensitive (e.g., fruit) and heat-resistant (e.g., forestry),5 both use land

and labor, and the non-agricultural sector uses only labor.

The model predicts that a reduction of the heat-sensitive sector productivity induces

a decrease in the size of this sector and an increase of the heat-resistant sector, as land

reallocates from the former to the latter. Furthermore, if the heat-sensitive sector is more

labor intensive than heat-resistant sector, workers leave agriculture.6 These adjustments

result in reallocation gains that counteract direct losses due to extreme heat, which under

3Despite that some early authors argue that short averaging periods (e.g., annual) only describe the
“weather” or “climate variability” and thus have little to say about the impact of climate, most frontier
climate change researchers do not agree with this view (Burke, Hsiang and Miguel 2015; Schlenker and
Lobell 2010; Hsiang 2016; Dell, Jones, and Olken 2014). The explanation for this, is that societies
experience climatic variables in continuous time and respond to both short-lived and long-term changes,
making the frequency of short-lived events an economically-relevant feature of the climate. For example,
if hot temperatures harm crops, even if hot temperatures are only experienced for a few hours, then this
is important for understanding climate impacts because the frequency of these momentary events might
change if the distribution of daily temperatures changes (Burke, Hsiang and Miguel 2015). This suggests
that climate need not have a fundamental timescale and econometricians might study periods of varying
lengths of time (Hsiang 2016).

4This includes the backward and forward linkages of the primary sectors (ODEPA 2019).
5Fruit trees are considered particularly vulnerable to climate change. Temperature increase directly

affects its photosynthesis, causing alterations in sugars, organic acids, flavonoid contents, firmness, and
antioxidant activity. These alterations can reduce the fruit’s growth and even cause sunburn, where
the skin of the fruit turns brown due to pigment synthesis inhibition (see Moretti et al. 2010 for an
agronomical review of the impact of climate change on fruit). In contrast, the forestry industry is not
sensitive to extreme heat unless wildfires or outbreaks of insects and pathogens (Kirilenko and Sedjo
2007; Nabuurs et al. 2002).

6This is because of Rybczynski Theorem: An increase in the relative supply of a factor generates an
increase of sector using that factor intensively.
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certain conditions, could lead to a positive impact on aggregate sales.

My empirical findings provide direct evidence of adaptation in the agricultural sector.

I find that municipalities facing an increase in extreme heat reallocated the land use

from fruit, to forestry and primary activities. Additionally, I document that extreme

heat reduced the total hired labor and physical capital allocation in agriculture. These

adjustments led to a slight speed-up in its aggregated agricultural output growth7 and

output per worker. Overall, these findings suggest that farmers may substantially reduce

the negative effects of extreme heat on output reallocating the land use, but also this

adjustment may reduce employment in agriculture.

In addition, I provide an array of robustness exercises and tests of the validity of my

empirical strategy. The results are very similar when I change controls, add agro-climatic

zone fixed-effects, use spatially correlated errors, use different weights schemes and use

alternative thresholds to define the treatment variables.

This work contributes to the climate change adaptation literature and documents a

novel case where reallocation gains are slightly higher than the direct losses from extreme

heat. Understanding the underlying mechanisms of these results can be increasingly

important in a context where global temperatures are expected to rise substantially in

the following decades, especially in developing countries located in low latitudes which will

experience rises in temperature earlier (Harrington et al. 2016), and where agriculture is

a large portion of the GDP.

The rest of the paper proceeds as follows: Section 2 expose the literature review.

Section 3 describes the theoretical framework. Section 4 describes the data. Section 5

presents and discusses the econometric specification of the relationship between extreme

heat and input adjustment. Section 6 shows the main results. Section 7 shows a set of

robustness checks. Finally, Section 8 concludes. Further robustness checks and proofs are

given in the Appendix.

2 Related Literature

This research contributes to three strands of the economics literature: the literature

about climate change impact on crops and other output measures, the literature on

adaptation to climate change, and the literature on the impact of agricultural technical

changes.

There is an extensive body of research which documents that climate change has a

negative impact on several economic outcomes. In a novel work, Schlenker and Roberts

7Hereafter, I refer as output to the value of the production or sales (i.e., paQa).
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(2009) examine a panel model which allows for non-linearities of U.S. agricultural yields

using daily temperature data. They find a threshold in output effects starting between

29–32oC, depending on the crop, with temperature being moderately beneficial at

temperatures lower than the threshold and sharply harmful above the threshold. In the

same line, Guiteras (2009) and Feng, Krueger, and Oppenheimer (2010) show that

higher temperatures in a given year reduce agricultural output in India and Mexico,

respectively. Moreover, going beyond the subnational level, Schlenker and Lobell (2010)

find robust negative impacts of climate change on yields in African countries, and Dell

et al. (2012), Hsiang, Burke, and Miguel (2015) and Burke and Tanutama (2019) find

negative impacts of temperature in economic growth rates for different panels of

countries.8

Overall, these studies document that temperature, precipitation, and extreme weather

events exert economically meaningful and statistically significant influences on a variety of

economic outcomes. Nevertheless, they have little to say about how to deal with climate

change in the coming decades. Motivated by this, more recent studies have developed

different approaches to test the existence of mitigation responses and their effects.

On the one hand, the influential work of Burke and Emerick (2016) use U.S. yield

data to compare estimates of the long run weather–yield relationships through a long

differences approach, to estimates based on year-to-year fluctuations with a fixed-effects

model. The authors find that the coefficient on temperature trends is statistically the

same as on year-to-year fluctuations, interpreting this finding as suggestive evidence of

limited long-term adaptation to higher temperatures. Similarly, Taraz (2018) compares

crop yields of districts that experience high temperatures more or less frequently to test

adaptation. She finds that adaptation appears to be modestly effective only for moderate

levels of heat, while extremely high temperatures do grave damage to crops, even in places

that experience these extreme temperatures regularly.

On the other hand, some studies test specific mechanisms to deal with extreme heat.

In particular, Meyers and Rhode (2020) find evidence of the adoption of hybrid corn

seed, a heat-resistant variety, mediated the adverse effects of extreme heat in Iowa, and

Meyer and Keiser (2018) document that the adoption of tile drainage may reduce the

impact of climate change. Moreover, some studies suggest that a possible response to

climate change would be the economic activity reallocation in the form of change in

8Despite, Dell et al. (2012) document that annual economic growth rates in poor countries are
negatively correlated with annual variations, but no statistically significant correlation appears to exist
for richer countries, Hsiang, Burke, and Miguel (2015) and Burke and Tanutama (2019) show that
independently of the wealth of the country, workers and crops exhibit highly non-linear responses to
temperature.
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sectoral employment shares (Jessoe et al. 2018; Colmer, 2020; Liu et al. 2020). For

example, Colmer (2020) shows that temperature-driven reductions in the demand for

agricultural labor are associated with an increase in manufacturing and services

employment shares, benefits which appear to be attenuated by direct adverse effects of

temperature on manufacturing activity.9 Taking a slightly different approach, Aragon et

al. (2020) test the hypothesis of input adjustments as a short-term mechanism to

attenuate the effect of extreme heat on output. They find that extreme heat reduces

agricultural productivity, induces farmers to increase the land use and to change their

crop mix during the agricultural season, and a slight tendency to use more intensively

domestic and child labor.

Other authors have argued that over the longer run, migration might be an

important channel through which people respond. In particular, Feng, Krueger, and

Oppenheimer (2010), Cattaneo and Peri (2016) and Feng, Oppenheimer, and Schlenker

(2015) document an increase of out-migration as a response to temperatures and

precipitation shocks, results that are driven by a change in agricultural productivity

rather than direct preference for climate. However, the net impact on welfare of this

response is not clear.

Finally, this paper also relates to the rising empirical studies on the impact of

agricultural technical change. In a novel work, Foster and Rozenweig (2004, 2008) study

the effects of the adoption of high-yielding-varieties (HYV) for some cereals during the

Green Revolution in India. They find that villages with larger improvements in crop

yields experienced lower manufacturing growth. In this line, Bustos, Caprettini and

Ponticelli (2016) provided evidence of the impact on labor and land reallocation of a

labor-augmenting technical change as the engineered soybean seed adoption, and a

land-augmenting technical change as the introduction of a second harvesting season for

maize. Their estimates document that a soy technical change caused the expansion in

the share of agricultural area planted with genetically engineered soy, while a maize

technical change had a positive effect on the area planted with maize. Additionally, they

show that when technical change in agriculture is strongly labor-saving, as in the case of

genetically engineered soy, it can foster industrialization, instead, when technical change

9There is also evidence about the opposite effect of temperature on labor reallocation in India. Using
a panel data between 1961 and 2011, Liu et al. (2020) find that rising temperatures are associated
with higher shares of workers in agriculture, lower rates of urbanization, and lower shares of workers
in non-agriculture, effects which are concentrated in districts with sparse road infrastructure networks,
suggesting that higher temperatures exacerbate liquidity constraints faced by rural, isolated households,
and subsequently limit rural-urban and sectoral mobility. The conflicting results between these papers
might be due to labor markets are likely to be more integrated in the most recent decades than in the
second half of twenty century.
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is land-augmenting, as in the case of the production of a second harvesting season in

maize, agricultural productivity growth can retard industrialization.

3 Theoretical Framework

In this section, I develop a sectors model that gives rise to a set of predictions that are

useful to interpret the empirical evidence. For this, I use the key insights from the models

in Bustos et al. (2016) and Bustos et al. (2020), and outline a simple model with three

sectors: agricultural heat-sensitive, agricultural heat-resistant and non-agriculture; and

two factors: land and labor, which are assumed to be mobile between sectors, immobile

across regions and supplied inelastically.

In this framework, an increase in extreme heat implies a negative shock relatively

higher in heat-sensitive agricultural activities, such as fruit production, than in

heat-resistant activities, such as forestry,10 or non-agricultural activities. Therefore,

extreme heat reduces the relative profitability of the agricultural heat-sensitive sector

and generates reallocation of factors away from it. Furthermore, this shock leads to

direct losses and reallocation gains, and the net impact on aggregate agricultural sales

depends on its relative magnitude.

3.1 Setup

Consider that each municipality is a small open economy where prices of final goods

are determined by world markets, and production factors are immobile. Each municipality

has an endowment T of land and L residents, which are used in two agricultural activities,

heat-sensitive and heat-resistant, or in non-agricultural activities.

There are two production technologies in agriculture:

qs = AsT
γs
s L

1−γs
s

qr = ArT
γr
r L

1−γr
r

(3.1)

where Ai is a Hicks-neutral level of productivity of sector i = {s, r}, Ti and Li denotes

land and labor, and γi ∈ (0, 1) is the land share.

10In Ponce, Blanco and Giupponi (2014) authors find fruits producer being substantially worst-off
than crop producers in Chile. Additionally, as mentioned above, fruit trees are considered particularly
vulnerable to climate change (Moretti et al. 2010) while forestry is not sensitive to extreme heat unless
wildfires or outbreaks of insects and pathogens (Kirilenko and Sedjo 2007; Nabuurs et al. 2002).
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On the other hand, the non-agricultural sector only uses labor:11

Qn = AnL
αn
n (3.2)

Market clearing in land and labor requires that the amount of land and labor supplied

equals the total demand by the producers of heat-sensitive, heat-resistant and the non-

agricultural sector:

Ts + Tr = T

Ls + Lr + Ln = L
(3.3)

Note that, since only agricultural activities use land as input whereas labor is used in

all sectors: Ts + Tr ≡ Ta = T and Ls + Lr ≡ La.

3.2 Equilibrium

As each municipality is considered as a small open economy and all goods are tradable,

the equilibrium production can be determined independently of consumption and income.

Profit maximization implies that the value of the marginal product of land must equal

the land wage in both agricultural sectors:

psMPTs = prMPTr = wT (3.4)

and the value of the marginal product of labor must equal the labor wage in all sectors,

considering the non-agricultural sector:

psMPLs = prMPLn = pnMPLn = wL (3.5)

Then, these optimality conditions and the endowment clearing conditions determine

the equilibrium allocation of land and labor in each sector {T ∗s , L∗s, T ∗r , L∗r, L∗n} and

prices of factors {w∗T , w∗L}, taking as given the productions functions {qs(.), qr(.), Qn(.)},
technological parameters {As, Ar, An, γs, γr, αn}, and world prices {ps, pr, pn}.

11I assume this for simplicity. Hence, to ensure a downward slope demand for labor, this sector has
decreasing returns to scale. Nevertheless, this assumption is equivalent to think that this sector has
constant returns to scale, but uses another factor which is fixed (e.g., physical capital):

Qn = AnL
αn
n K̄1−αn

n
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3.3 Predictions

If all three sectors are active, the effect of a reduction in the productivity of heat-

sensitive sector dAs < 012 leads to the following predictions:

(i) Reduces the land share in the heat-sensitive sector: dT
∗
s

Ta
< 0

(ii) Increases the land share in the heat-resistant sector: dT
∗
r

Ta
> 0

(iii) Does not change the total amount of land used in agriculture as a whole: dT ∗a = 0

(iv) Reduces employment in the heat-sensitive sector: dL∗s < 0

Proof: See Appendix B

These predictions are due to extreme heat reduces, unambiguously, the marginal

product of land and labor in the heat-sensitive sector.13 Then, under the assumption of

a pareto-efficient equilibrium, the inputs released in this sector reallocate towards the

other sectors.

Additionally, if the heat-sensitive is more labor intensive than the heat-resistant

γs < γr, a reduction in the productivity of heat-sensitive dAs < 0:

(v) Push workers out of agriculture as a whole: dL∗a < 0

(vi) Reduces the labor intensity in agriculture as a whole: dL
∗
a

Ta
< 0

Proof: See Appendix B

The prediction (v) essentially comes from Rybczynski Theorem: the release of workers

from the heat-sensitive sector expands the sector that uses labor more intensively, which

may be the non-agriculture if γs < γr. The prediction (vi) comes from the fact that land is

reallocated within the agricultural sector as whole (due to non-agriculture use only labor

as input), whereas workers released from the heat-sensitive can not reallocate within

the agriculture since the heat-resistant sector do not absorb them under the condition

described above.

12More generally, extreme heat can be conceptualized as reduction in productivity relatively higher in
the heat-sensitive sector: dAs < dAr ≤ 0. However, for simplicity I assume that only hits one sector in
the predictions.

13This prediction is due to extreme heat is modeled as a Hick-neutral shock in the particular context
with Cobb-Douglas production functions (i.e., the elasticity of substitution between land and labor is
equal to one). However, if extreme heat would be modeled as a land-bias shock in a context with CES
production functions, it reduces land allocation in the affected sector s as long as the land share of output
is high (land and labor are sufficient substitutes).
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Moreover, if all sectors are active, these predictions together imply that a reduction

in the productivity of heat-sensitive dAs < 0, reduces the output of the heat-sensitive

dq∗s < 0, whereas increases output of the heat-resistant sector dq∗r > 0.

Due to in the empirical analysis I do not observe each sector’s output, qs and qr, but

rather its “sales”, the adjustments showed above imply that:

∂log(Ya)

∂As
= ηs

∂log(Ys)

∂As︸ ︷︷ ︸
direct losses

+ ηr
∂log(Yr)

∂As︸ ︷︷ ︸
reallocation gains

where Ys ≡ psqs, Yr ≡ prqr are the sales by agricultural subsector, Ya ≡ Ys + Yr the

aggregate agricultural sales, and ηs = psqs
psqs+prqr

and ηr = prqr
psqs+prqr

the sales shares.

Then, as a result of this setting, it is crucial to understand how a decrease in the

productivity of the heat-sensitive sector may impact the aggregate sales. I summarize

this framework with the following theorem.

Theorem 1: A decrease in the heat-sensitive productivity leads to an increase in

aggregate sales, provided that:

1. The increase in output of the resistant sector is large enough to compensate the

decrease in the output of the sensitive sector.

2. Prices of the sensitive sector are not sufficiently high relative to the resistant sector

to absorb this effect.

Proof: See Appendix B

This is due to prices could amplify or reduce the effect of the changes in output

depending on its relative size. In particular, if the changes in output are exactly

compensated − ∂q∗s
∂As

= ∂q∗r
∂As

, the net effect on sales depends on the international prices.

Then, if ps < pr the shock implies an increase in aggregate sales. On the contrary, if

ps > pr implies a reduction.

With this conceptual framework in mind, in the following sections I will quantify the

impact of these effects and test if they display the sign patterns predicted by the model.
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4 Data and Summary Statistics

4.1 Data

The empirical analysis utilizes different datasets to obtain agricultural, temperature,

precipitation and development measures. First, I obtain information about the factors

use and output in agriculture from the Chilean Agricultural Census.14 This dataset

has disaggregated measures at municipality level in 1997 and 2007 of the number of

agricultural workers, the number of agricultural machinery, the planted area by crop,

number of livestock, and amount harvested by crop, such as fruits, forestry and other

primary products.15 To study the different impacts of extreme heat in agriculture, I group

these products in four subsectors: fruit, primary, forestry and livestock. However, this

dataset has the main limitation that I do not observe the number of agricultural workers or

machinery by subsector. Additionally, to obtain a measure of sales for each agricultural

subsector, I complement this data with Cuesta, Gallego and González (2015) dataset,

where the products of the Agricultural Census are valued at long-term undistorted prices

(i.e., the average price in chilean peso (CLP) of each type of product over the 1993-2006

period16). Then, for each municipality, I compute the use of factors, its relative intensity,

output by subsector, and as productivity measures, output per worker and output per

hectare (yield).

Second, I obtain measures of temperature from University of Berkeley dataset, which

includes information of daily average, maximum and minimum temperature on a grid of

1×1 degree, and precipitation from University of Delaware database (Willmott, Matsuura

and Legates 2010) which provides monthly estimates on a 0.5×0.5 degree scale. Due to

this research aims to study the impact of climate on agriculture, I collapse these gridded

data at municipality level weighting by crops presence.17

Third, I use the household survey CASEN collected by the Chilean National

Statistical Institute (INE ). This survey includes economic variables such as income,

years of education, poverty rate, and demographic characteristics such as population

density, percentage of male and the share of rural population at the municipality level.

In the climatic databases, as in the CASEN survey, there are 343 modern

municipalities, which are collapsed to the 264 pristine municipalities, those that appear

14I thank to Felipe González, Francisco Gallego and José Ignacio Cuesta for allowing me use their clean
agricultural census data.

15Primary products include alfalfa, rice, oats, barley, beans, corn, potatoes, beets and wheat.
16The information on prices is taken from INE’s wholesale prices series.
17See Appendix A.2 for a detailed description of weather variables.
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in the old agricultural censuses and later were subdivided.18 Due to five municipalities

have missing in weather, agricultural, or development variables, the final sample is 259.

I use pristine municipalities (just municipalities hereafter) as an approximation of the

local market. They can be thought of as small open economies that trade in agricultural

goods.

4.2 Summary Statistics

Summary statistics for weather and agricultural variables are presented in Table 1.

For each variable, I report the mean and standard deviation of their level in the baseline

year 1997 and of their change between 1997 and 2007.19

Panel A presents summmary statistics for weather data. Heat refers to the yearly

average maximum temperature over the growing season, while GDD and HDD refer to

growing degree-days and harmful degree-days, respectively. Using growing degree-days

is a standard practice in agronomics to estimate the growth and development of plants

during the growing season and has become popular in economic climate change research.20

Furthermore, Table A.1 shows the correlation among maximum, minimum and average

temperature, and precipitation in 1997 and 2007. See Appendix A for more details of the

weather variables and a description of Chile’s climate.

Panel B presents summmary statistics for agricultural data such as total planted land,

the number of workers and machinery in agriculture, the output by agricultural subsector,

the aggregate output per worker and per hectare.21 In the baseline year, fruit crops

represented the 12% of the total planted land, whereas primary and forestry the 41.5%

and 49%, respectively. In average, the fruit share increased 5 percentage points which is

equivalently to 527 hectares, whereas primary share decreased 15 percentage points and

forestry increase 9 percentage points.

Additionally, Figure 1 presents the geographical distribution of changes of the main

variables. Panel A shows for each agro-climatic zone the change in the number of harmful

degree-days HDD, Panel B the change in precipitation in mm and Panel C the change

of agricultural workers in percentage.

18For example, Lo Prado, Pudahuel, Cerro Navia, Renca, Barrancas and Quilicura compose the pristine
municipality number 69 and La Reina, Nuñoa, Peñalolen and Macul compose the pristine municipality
number 72. The data has a set of counties that keep the same information over the time period included
in the analysis. This implies that in some cases the data merge modern municipalities to make the data
consistent with the old censuses municipalities definitions and boundaries.

19Hereafter, 4x ≡ x2007 − x1997.
20See for instance Burke and Emerick (2016); Feng, Oppenheimer and Schlenker (2019); Aragon et al.

(2020); Colmer (2020) and Meyers and Rhode (2020).
21Changes of variables in logs are: log(variable2007 + 1)− log(variable1997 + 1)
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Finally, Figure A.2 shows variables histograms, Figure A.3 the basic correlations in

the data and Figure A.4 the annual average precipitation time series.

4.3 Input Intensity

As described in the theoretical framework, a key factor to understand the responses to

climate change is to know the factor intensity by subsector at baseline. Since data includes

the total number of workers and agricultural machinery in agriculture as a whole, but not

by subsector, I recover the labor and capital intensity for fruit, primary and forestry with

a regression model.

The total labor (capital) allocated in agriculture is composed of fruit, primary and

forestry workers

La = Lfru + Lpri + Lfor

Hence I can exploit that the data includes the number of hectares planted by

agricultural activity as follows:

La =
Lfru
Tfru

Tfru +
Lpri
Tpri

Tpri +
Lfor
Tfor

Tfor

Then, I estimate the following equation to recover the labor (capital) intensity

La;m = δ + ωfruTfru;m + ωpriTpri;m + ωforTfor;m + ζm (4.1)

where La;m is the total amount of agricultural workers in the municipalitym in the baseline

year 1997 and Ti;m is the total surface planted with variety i = {fruit, primary, forestry}.
The coefficient ωi captures the labor (capital) intensity for sector i, δ is a constant which

captures the labor intensity in other agricultural activities such as livestock, and ζm is

the error term.

The results in Table 2 show that the fruit sector is the more labor intensive, followed

by the primary and forestry sectors:
Lfor
Tfor

<
Lpri
Tpri

<
Lfru
Tfru

. On the other hand, primary

sector is the more machinery intensive, followed by the fruit and forestry sectors:
Kfor
Tfor

<
Kfru
Tfru

<
Kpri
Tpri

. These results are according to the literature that shows fruits

crops (as perennial crops), being more labor intensive and less capital intensive than

primary crops (Nolte and Ostermeier 2017).22

22In general, fruit harvesting is characterized as non-mechanizable process because of tree damage,
fruit damage, non-selectivity, efficiency and cost. For example, almost all citrus fruit, berries and grapes,
for both raisins and wine, are typically hand harvested (Li, Lee and Hsu 2011).
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Note that in the theoretical framework the total amount of labor in agriculture is

composed of heat-sensitive and heat-resistant workers, while in the empirical analysis, it

is composed of fruit, primary, and forestry. Then, hereafter the primary sector could be

thought as a “medium-sensitive” sector.

With these results in mind, the following section quantifies the productive responses

to extreme heat of the different subsectors, which, as mentioned in Section 3, depends

substantially on factor intensity of the damaged sector.

5 Empirics

The objective of the empirical exercise is to estimate the response of the agricultural

sector to climate change. I start describing the existing approaches measuring the climate

change impact in Section 5.1. Then, in Section 5.2 I describe my identification strategy

to measure the causal impact of climate change on input adjustment. Finally, in Section

5.3 I discuss additional concerns of the empirical approach.

5.1 Existing Approaches

The early literature of the economic effects of climate change on agriculture has

followed one of two methodologies, commonly known as the hedonic approach and the

Ricardian approach. The first one is based on controlled agricultural laboratory or field

experiments, where specific crops are exposed to varying climates, and yields are then

compared across climates. The second one, pioneered by Mendelsohn, Nordhaus, and

Shaw (1994), estimate a cross-sectional relationship between land values (representing

the present discontinued value of the future stream of profits) and climate while

controlling for other factors.

To deal with the strong assumption of cross-sectional models, that average climate

is not correlated with other unobserved factors that also affect the outcomes of interest,

most recent researchers have turned to a panel data approach, using presumably random

year-to-year variation in temperature and precipitation across counties to estimate the

impact of weather on agricultural crop yield and profits (Deschênes and Greenstone 2007;

Schlenker and Roberts 2009; Dell et al. 2012). Moreover, some recent studies use a

semi-parametric specification, which defines temperature and precipitation variables as

the number of days in a specific bin (e.g., bins of 3oC and 40mm wide, respectively. See

Deschênes and Greenstone 2011; Deryugina and Hsiang 2017; Baysan et al. 2019; Aragon

et al. 2020). This approach is useful for identifying nonlinearities and non-marginal effects
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of weather variables, but not may be the best to study medium or long-run adaptation

responses.23

Motivated by that panel models solve identification problems in the cross-sectional

approach at the cost of more poorly approximating the idealized parallel worlds

experiment, some recent studies as Dell et al. (2012), Burke and Emerick (2016), and

Burke and Tanutama (2019), argue that exploiting longer-run climate fluctuations

through a long differences approach provides a better estimate of how agents will

respond to climate change.24 I proceed to discuss this method below.

5.2 Identification Strategy

There are two advantages to use a long differences approach. First, it simulates better

a parallel world’s natural experiment, because people and firms may respond differently

to permanent changes in the expected distribution of weather than to short-term and

unanticipated fluctuations changes in the climate variables, so long differences estimates

capture any adaptations that farmers have undertaken to recent trends, unlike panel

models, which have little to say about medium or long-term readjustment response since

they use year-to-year weather variation.25 Second, is immune to time-invariant omitted

variables, which cross-sectional methods are plagued.

Therefore, using a long difference approach to estimate the climate change impact on

input adjustment would be more trustworthy in external validity than panel methods,

and in internal validity than those based on cross-sectional methods. To have a better

understanding of this specification, I proceed to obtain it as follows.

For each cross-section, variance can be described according to the following process:

ym,t = φt + λm + Zm,tβ + εm,t for t = {1997, 2007} (5.1)

23Additionally, I am unable to implement this approach since semi-parametric estimates need a large
number of observations in each cross-section as well as a large number of cross-sections to estimate the
large number of parameters involved, besides the tails of temperature distributions in Chile are too thin
to detect the nonlinearities.

24When long-differences has been implemented to measure the effects of climate on growth (Dell et
al. 2012) and crop yields (Burke and Emerick 2016; Lobell and Asner 2003), authors have found that
long differences estimate is almost identical to panel estimate, leading them to conclude that gradual
changes in climate variable likely induce similar effects to more rapid changes in this climate variable.
On the other hand, in Burke and Tanutama (2019) authors find that long difference estimates of the
impact of longer-term trends in temperature on per-capita GDP are larger than estimates from annual
panel models, suggesting that short-run panel estimates understate the longer-term effects of warming
hot years (See Hsiang 2016 and Dell et al. 2014 for a discussion in this topic).

25The econometrician’s choice of a weather versus a climate measure as an explanatory variable critically
affects the interpretation of the estimated coefficients in the econometric model: whether the outcome is
an actual climate response or a short run weather elasticity (Hsiang 2016).
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where ym,t is some outcome of interest in municipality m at year t, φt are time-variant

factors common through all municipalities i.e. aggregated shocks, λm are time-invariant

factors for each municipality, Zm,t is a row vector of time-variant weather treatment

variables defined below and εm,t is an idiosyncratic error term of time-variant ommited

characteristics. If I exploit the time-varying nature of the data in the way of Deschênes

and Greenstone (2007), the resulting panel fixed-effects approach is:

ym,t = φt + λm + Zm,tβ + εm,t (5.2)

This fixed-effects approach has the advantage of controlling for time-invariant

municipality-level unobservables such as farmer quality, labor productivity or

unobservable aspects of soil quality and should better approximate the true effect of

climate change than a cross-section approach that does not allow for adaptation.

Due to I have only two periods in the case of agricultural outcomes (one for each

agricultural census year), this approach leads to the same estimates if I substract both

cross-sections described by equation (5.1)26

ym,2007 − ym,1997 = (φ2007 − φ1997) + (λm − λm) + (Zm,2007 −Zm,1997)β + (εm,2007 − εm,1997)

the time fixed-effects collapse to a constant α, the time-invariant factors drop out and

using Zm,t = [f(Hm,t) g(Pm,t)], I can rewrite (5.2) as a long-difference equation

4ym = α + [4f(Hm) 4g(Pm)] β + ξm (5.3)

where 4ym is the change in outcome variable between the last two census years in

the municipality m (e.g., input measures), and f(.) and g(.) are vector functions of heat

H and precipitation P , both weighted by crop area. To deal with non-linearities in the

effect of weather variables,27 I use growing degree-days with an upper threshold, which

measure the exposition to extreme heat over the growing season, and use a second order

polynomial in the case of precipitation.28 Additionally, to capture more effectively the

change in average climate over time, I use weather variables as a three-years average.29

26Note that First Difference, Within (also know as demeaning or fixed effects) and Least Squared
Dummy Variables (LSDV) estimators are exactly equivalent for two periods. This proposition is derived
from Frisch–Waugh–Lovell theorem, see Lovell, M. (2008) for the proof.

27See Burke, Hsiang and Miguel (2015) for a discussion about non-linear effects of climate variables.
28See Appendix A.1 for the formal definition of growing season degree-days. Figure A.1 graphically

shows the construction of this variable.
29This is 4zm = zm,2007 − zm,1997 where zm,1997 =

∑1997
t=1995

zm,t

3 and zm,2007 =
∑2007
t=2005

zm,t

3 .
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Therefore, I can rewrite the equation (5.3) in the way of Burke and Emerick (2016)

4ym = α+β1 4HDDm; `1:∞+β2 4GDDm; `0:`1 +β3 4Pm+β4 4P 2
m+Xm1965/96 ψ+ξm

(5.4)

where GDDm; `0:`1 is the sum over the growing season of degree-days between the

temperature bounds `0 and `1, and HDDm; `1:∞ is a measure of the harmful

degree-days, which are defined as those upper a threshold `1. The vector Xm1965/96

contains a set of municipality controls at baseline obtained in 1965 and 1996 such as

population density, rural population share, mean income, mean years of education,

poverty rate, percentage of males and the number of agricultural machinery (e.g.,

tractors, plows and harvesters).30 This vector should not include time-varying controls if

these are endogenous and affected by climatic events (e.g., the adoption of new

technologies), although this might introduce new biases, a situation known as “bad

control” (Angrist and Pischke 2008; Hsiang 2016). If changes in climate variables were

randomly assigned through municipalities, I can estimate its effect on the outcome with

no need to control for any other variable, and the estimates of β have a causal

interpretation. Nevertheless, I include baseline controls to increase the precision of the

estimates and also to control for differential trends across municipalities with different

initial levels of development. The initial share in rural population and population

density captures differential trends in the outcome variable between rural and urban

municipalities, whereas the number of agricultural machinery captures the differential

trends between municipalities that are more capital intensive. I also control for the

lagged level of income per capita in logs, poverty rate, mean years of education and

percentage of males to capture differential trends across municipalities with different

initial levels of income, human capital and size of the agricultural labor supply. Finally,

ξm is the error term capturing all omitted factors, which I allow to be correlated at

province level, a larger level of geographic aggregation.31

A key issue is to define the value of the upper threshold `1. Previous studies in U.S.

set this value between 28-32oC (Deschênes and Greenstone 2007; Schlenker and Roberts

2009, Burke and Emerick 2016, Colmer 2020). Nevertheless, these estimates are likely

30The inclusion of baseline controls in equation (5.3), is identical to the inclusion of baseline controls in
the equation (5.2) interacted with a linear time trend: ym,t = φt+λm+Zm,tβ+(Xm1965/96× t) ψ+εm,t

31As Figure 1 shows, temperature is strongly correlated across moderate distances, so when a
specific municipality has warm temperatures it is likely that neighboring municipalities also have warm
temperatures. This spatial correlation motivates the use of standard errors that are clustered by province.
In the data there are 51 provinces, where each one is composed of 5 municipalities on average. In Section
7 I show the results when I allow errors to be spatially correlated with different geographic cutoffs using
Conley’s (1999) method.
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to be crop and context dependent and hence might not be transferable to this case. For

this reason, I prefer to use a threshold according to the literature, and then show the

robustness of the main results looping over all possible thresholds `1.32

5.3 Additional Concerns

The identifying assumption in equation (5.4) relies on that temperature and

precipitation trends at the municipality level are uncorrelated with other factors that

affect trends in agricultural inputs, once baseline controls are accounted for. A first,

concern is that emissions of pollutants could be correlated with both agricultural land

planted and weather variables (e.g., the emission of manufacturing plants leads in a

change in the temperature, which leads to a change in the productivity of land).

However, long-lived greenhouse gases (e.g., CO2), are rapidly mixed in the atmosphere,

so local emissions lead to a global stock of pollution, which in turn changes local

temperatures, but it is not true that they could stay in one municipality for a long time

and affect the climate.

Furthermore, changes in temperature and precipitation in Chile are hardly due to

endogenous factors. Instead, they mainly relate to large events of variation in ocean

temperature such as El Niño, which relates with more precipitation and higher

temperatures and La Niña, which relates with dryer and cooler temperatures (Minetti et

al. 2003; Haylock et al. 2006). Since future trends and frequency of these events are not

possible to predict,33 the trends in temperature and precipitation in Chile appear to

represent a true natural experiment.

Another concern is that differential trends in temperature across municipalities, even

exogenous, could just be driven by short-run variation in weather around the chosen

endpoint year. Hence, there could have been little “true” medium-run change in

temperature to adapt to. To deal with the potential abnormal variation in endpoint

year, I use the treatment variables as three-year average changes. However, this could be

a key decision, thus, in Section 7 I show the main results under different number of

years on the average to construct the treatment variables.

Moreover, Chile is a country with a considerable variation in geographical qualities

from north to south. The omission of geographic variables could bias the estimates even

after accounting for the economic controls if these relates with the trends in climate

variables and the outcome. In Section 7, I address this concern controlling for agro-

climatic zone fixed effects.

32In Section 7 I show the results under different thresholds.
33See Collins et al. (2010) for a discussion about its predictability.
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Finally, climate measures introduce large measurement errors because of the

interpolation through climate stations. Even if the measurement erros are non-classical,

the resulting bias will be towards zero as long as the error is not too severe

(Auffhammer et al. 2013; Hsiang 2016).34 This could cause attenuation bias, leading to

under-rejection of the null hypothesis. Therefore, hereafter my estimates serve as lower

bounds on the true climate change effect.

6 Results

The first part of the analysis focuses on the effect of medium-run changes in the

climate on each agricultural sector. In Section 6.1, I document that extreme heat caused

a reduction in the fruit land share and an increase in the share of primary and forestry

subsectors, which is consistent with a negative productivity shock in the fruit subsector

(conceptualized as heat-sensitive) and a reallocation of this land towards the other sectors.

Next, in Section 6.2 I document that these land adjustments led to a reduction of the

output of fruit subsector in absolute and relative terms, and a slight increase in the output

of primary and forestry sectors.

The second part of the analysis examines agriculture as a whole. In Section 6.3, I

document that the aggregate land use remains unchanged, whereas there were outflows of

workers and physical capital from agriculture. Finally, in Section 6.4 I document a slight

positive net-of-adaptation effect on aggregate agricultural output and labor productivity.

6.1 Effects on Land Use by Sector

As discussed in Section 3, a negative shock in the heat-sensitive sector would release

land in this sector which may be absorbed by the heat-resistant sector. The results shown

in Table 3 go in this direction.

The first two columns show the impact of climate variables on fruit land share. In the

most conservative specification, municipalities with an increase of one harmful degree-day

experienced a decrease of 0.4 percentage points in the fruit land share (3.3 percent of their

initial share, around to 67.5 hectares in average35). The point estimate remains stable

when controlling for initial municipality characteristics, which suggests that the estimates

are not capturing differential growth trends across municipalities.36

34Formally, this condition is Pr(Type I error) + Pr(Type II error) < 1
35Taking an initial fruit land share of 12.3%, the reduction is given by (0.123−0.004)−0.123

0.123 = −0.033
36To address the concern about the non-significance of controls jointly, in Section 7 I add the initial

agro-climatic zone fixed-effects, which leads to a joint significance with p-value less than 5% and keeps
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In addition, columns (4) and (6) show that extreme heat increased the land share of

primary and forestry subsectors 0.2 percentage points each. Despite their point estimate

is non-significant, if they would be put together as a “non-fruit” category, they would

increase 4 percentage points (significant at 1%), since the reduction in fruit share increases

the share in the others sectors (4Tfru
Ta

+4Tpri
Ta

+4Tfor
Ta

= 0).

Overall, this table suggests responses to climate change according to the predictions of

the theoretical framework. There are, however, two important caveats in this approach.

First, I observe the area planted by sector, but not the composition of the varieties of each

crop. Thus, I cannot distinguish adaptation by planting crops with different advantages

or sensitivities to extreme temperature within each subsector. For example, Meyers and

Rhode (2020) document that the substitution from open pollinated varieties of corn to

hybrid corn seeds, led heat tolerance, or Aragon et al. (2020) show an increase in the

use of tubers in response extreme heat.37 Second, I do not observe the intensive margin

use of these planted areas. This implies that I assume that each unit of land within each

subsector has the same yield. Therefore, it is impossible to rule out that behind these

results there is another type of adaptation besides extensive land use.

6.2 Effects on Output by Sector

Given the evidence presented above, in Table 4 I also study the effect of extreme heat

in aggregate output and output by sector.38 Columns (1) and (2) show a slight significant

increase in the aggregate output in municipalities more exposed to extreme heat. In terms

of magnitude, the exposure to each additional harmful degree-day results in an increase

in overall agricultural output of 0.61 percent. This strange estimates raises doubts about

which sector is driving this result. Then in columns (3)-(10) I show the results at the

disaggregated level.

Although the estimates at the disaggregated level are not statistically significant, the

point estimate of the fruit sector is negative as expected. In contrast, the point estimates

of primary and forestry are positive, with the last being substantially higher than the

others. However, this coefficient is very imprecise. Hence, it is not possible to reject

the null hypothesis at any standard levels of confidence, but suggests that forestry sector

the point estimate unchanged.
37This research highlights that the increase in tubers is due to its advantages over other crops, such

as short maturity, sequential harvesting, low water and fertilizer requirements, more reliability, and high
nutritional content, but not necessary due to heat-tolerance.

38As explained above, I refer as output to the value of production or sales. Therefore, to use this
outcome, a key assumption is that prices are determined exogenously (i.e. determined by “world” makets),
then, only quantities but not prices are a function of extreme heat (i.e., paQa(Z)).
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could be the main driver of the result in the aggregate output.39

Moreover, columns (11) and (12) show a statistical reduction in the relative size of the

fruit sector. Each additional harmful degree-day results in a decrease of 0.16 percentage

points in the share of the fruit sector in agricultural output. This implies a reduction of

1.6%, considering an initial output share of 10%.

Taken together, the estimates presented in Table 3 and Table 4, show that the fruit

sector experienced not only a reduction in the land share but also a reduction in its

relative size in output terms.

6.3 Effects on Aggregate Input Use

As discussed above, there is also relevant to study the aggregate input use adjustments

in agriculture in response to extreme heat. Table 5 shows these results.

In Panel A, the columns (1) and (2) show the effect on workers, (3) and (4) on

agricultural machinery (i.e. capital), and (5) and (6) in the aggregate planted surface.

In the most conservative specification, exposure to each additional harmful degree-day

results in a decrease in overall hired labor of 2.44 percent, and a decrease of 2.7 percent in

agricultural machinery. Both point estimates remain stable when controlling for lagged

municipality characteristics, controls that have a joint significance with a p-value less

than 1% in all the models. Furthermore, the estimates reported in columns (5) and (6)

show that the aggregate supply of land do not change (i.e, there is not a reduction of the

agricultural frontier) which is consistent with a fixed land endowment in the economy.

Next, Panel B shows the change in the relative use of factors. The first two columns

show a significant reduction in the labor intensity in municipalities with a larger exposure

to extreme heat, and columns (5) and (6) shows a significant reduction in the capital

intensity. In contrast, columns (3) and (4) shows that the relative use of capital and labor

remain unchanged.

To interpret these findings, I turn to the theoretical framework discussed in Section

3. The model shows that a negative shock in the heat-sensitive sector decreases labor

demand, thus labor reallocates away from this sector. Then, the ability of the

agricultural sector as a whole to absorb these workers depends on the labor intensity of

the heat-resistant sector (i.e., primary or forestry in this case). Additionally, in Section

4, I provided evidence that the fruit sector is more labor intensive than the primary and

forestry sectors. These insights together imply that labor release by the fruit sector will

not be absorbed for the primary or forestry sectors. Complementing this, if workers are

39Biological litertature show that the forestry sector is resistant to extreme heat unless wildfires or
outbreaks of insects and pathogens (Kirilenko and Sedjo 2007; Nabuurs et al. 2002).
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driven out from agriculture, but land reallocates within agricultural sectors and its

endowment is fixed, the overall labor intensity decreases. The results presented above

confirm these predictions.40

However, in the case of the capital, the argument is a little bit more nuanced, since

fruit sector is not the most capital intensive. This reduction can be explained from a

decrease in the use of capital in the fruit activities, but also from substitution within

the primary sector from high capital intensive to low capital intensive crops or varieties.

Nevertheless, the data do not allow me to test this hypothesis directly.

6.4 Effects on Aggregate Output and Input Productivity

Finally, to analyze the net-of-adaptation impact of extreme heat, I estimate the main

specification (5.4) using aggregate output, output per worker, and yields (i.e., output per

hectare) as outcomes. Table 6 shows the results.

Columns (1) and (2) show a slight but significant increase in the aggregate sales in

municipalities more exposed to extreme heat of 0.61 percent per each degree-day above

26oC. Despite this effect is small, it suggests that the reallocation gains are higher than

the direct losses from extreme heat. As exposed in Section 3, this particular case requires

two conditions described by the Theorem 1: The increase in the output of primary and

forestry sectors should be large enough to compensate the decrease in the output of the

fruit sector, and prices of the fruit sector should not be sufficiently high relative to the

prices of primary and forestry sectors to absorb this effect.

Since each agricultural subsector is an aggregate, I cannot explore the changes in

quantities or prices separately. Nevertheless, alternative explanations to these results

could be thinking that extreme heat generates a positive effect on the plants by itself,

which may be substantially less trustworthy considering the bast literature that documents

the negative impact.

Next, in columns (3)-(6) I present the results of the measures of input productivity.

Columns (3) and (4) show that municipalities more exposed to extreme heat experienced a

larger increase in the labor productivity, while columns (5) and (6) show a non-significant

effect on aggregated yield.41

The results presented above should be interpreted with caution. They do not suggest

that climate change leads to an increase in agricultural output and productivity by itself.

40See predictions (v) and (vi) of Section 3.
41Using crop yields and output per worker as productivity measures may be less informative in contexts

in which farmers respond to weather shocks by changing land and labor use, but do not require the
assumption of a production function form. A limitation of this approach is that yields are a measure of
partial productivity that reflect changes in TFP and land use.
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In contrast, they support the hypothesis of an increase in aggregate agricultural output

and labor productivity caused by adaptation responses, such as land reallocation across

sectors and its consequent impact on the agricultural output composition. In particular,

the increase in labor productivity is not due to each worker has become more productive,

but because there was a reduction of the labor intensive sector, so there were outflows of

workers from the agriculture.42

In sum, these findings suggest that responses such as adjustment within the

agricultural subsectors and changes in input allocation in the agricultural sector as

whole, have the capability to attenuate the negative effect of extreme heat on output.

7 Robustness Checks

7.1 Controlling for Initial Dependent Variable

A relevant concern regarding previous estimations is that results are driven by mean-

reversion or conditional convergence effects. Therefore, even after controlling for a large

set of controls, my estimates could be capturing differential input adjustment trends across

municipalities that differ in their initial level of agricultural development. To address this

concern, I add as a control the initial level of the outcome as follows:

4ym = ρ ym1997 + α + β1 4HDDm; `1:∞ + β2 4GDDm; `0:`1

+β3 4Pm + β4 4P 2
m + Xm1965/96 ψ + ξm

(7.1)

where all the variables remain the same as in the main equation (5.4) and ym1997 is the

initial level of the outcome. In Table 7 I report the main results controlling for this

variable. The estimated effects of extreme heat in the fruit share, labor, capital, output

and output per worker remain significant and unchanged, and in the case of column (5)

the estimates improves its significance to 1%. The estimates of land use and yield (i.e.,

output per hactare) remain non-significant. Finally, note that the inclusion of this variable

as a control improves the joint significance of controls.

42In terms of the theoretical framework, the sales per worker are defined as Ya

La
= Ys

Ls

Ls

La
+ Yr

Lr

Lr

La
, then

if the heat-resistant sector is less labor intensive Tr

Lr
> Ts

Ls
, and due to zero profit conditions imply that

Yi

Li
= wT

Ti

Li
+ wL for i = {s, r}, the sales per worker are higher in the heat-resistant sector Yr

Lr
> Ys

Ls
.

Therefore, land reallocation towards the heat-resistant sector increases sales per worker (Bustos et al.
2016).
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7.2 Controlling for Common Trends Across Agro-climatic Zones

Since Chile is a country with a large variation in geographical qualities from north

to south, a relevant concern regarding previous estimations is they would be biased in

the presence of across zone time-varying unobservables correlated with both climate and

input adjustment measures. A possible approach to deal with this concern is with an

agro-climatic zone fixed-effect model.

Including agro-climatic fixed-effects, not only helps to address ommited variable

concerns, but also can indicate what type of adaptation we are in the presence of. If the

main coefficients decrease significantly in the fixed-effect estimates, this could suggest

that the effects reported above come from adaptations across agro-climatic zones. In

contrast, if the estimates remain unchanged, this suggest that the effects come from

within-agro-climatic zone adaptation.

Normally, Chile is divided into 5 agro-climatic zones: Far North, Near North, Central

Zone, Southern Zone and Austral Zone (see Figure 1).43 I use this grouping to estimate

the following fixed-effects model:

4ym,z = µz + β1 4HDDm,z; `1:∞ + β2 4GDDm,z; `0:`1

+β3 4Pm,z + β4 4P 2
m,z + Xm,z1965/96 ψ + ξm,z

(7.2)

where all the variables remain the same as in the main equation (5.4) and µz is a set of

agro-climatic zone fixed-effects which controls for any unobserved zone-level trends. This

implies that identification comes only from within-zone variation, eliminating any concerns

of time-trending unobservables at the zone level. Therefore, β is now identified off within-

zone differences in climate changes over time, after having accounted for any differences in

trends common to all zones and any differences in initial levels of development captured

for the controls vector Xm,z1965/96. In Table 8, I report the main results with agro-climatic

zone fixed-effects. In all models the effects of extreme heat β1 remains with the same sign

and significant after the inclusion of zone fixed-effects. Although the point estimates are

slightly smaller, these estimators are not statistically different from the main ones. This

suggest that the main estimates are not biased from within-zone time-varying ommited

variables and also, that the effects reported in Section 6 come from within-agro-climatic

zone adaptation.

The inclusion of zone-level fixed-effects as a robustness exercise is very challenging to

the main specification because it absorbs a significant amount of weather variance and

could amplify the measurement error (Fisher et al. 2012; Auffhammer and Schlenker

43The sample is divided in 5 zones. Each zone is composed by 52 municipalities in average.
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2014), which could lead to under-rejection of the null hypothesis, specially in a context

with a reduced number of the sample. Nevertheless, it provides an insight about how

robust are the main estimates, because an omitted relevant variable in equation (7.2)

would need to be a zone-level variable whose trend over time differs across the period

1997-2007 in a way correlated with the zone-level difference in climate changes and is not

captured for the initial development controls, which is hard to imagine.

Finally, an alternative method to control for climatic heterogeneity could be adding

latitude and longitude as controls to the main equation (5.4). In Table A.2, I show these

results. Comparing both methods provides evidence of the fixed-effects approach being

more challenging.

7.3 Spatial Correlation

Figure 1 suggests that temperature and precipitation are correlated across space.

Therefore, in this section I show that the main estimates of the effect of climate change

reported above remain statistically significant when I correct standard errors for

heteroskedasticity and spatial dependence as suggested by Conley (1999) using Collela

et al. (2019)’s program which builds arbitrary clusters within a given distance. Table 9

report my results. The first row shows for each variable the standard errors clustered at

the province level as a benchmark, while the second, third, fourth and fifth rows show

Conley standard errors assuming spatial correlation within 25, 50, 100 and 150

kilometers, respectively.44 In the case of HDD coefficient, the table shows that,

although standard errors tend to slightly increase after accounting for spatial correlation

within 50 km, all the coefficients which are significant with clusters at province level

remain statistically significant with Conley standard errors.

7.4 Sensitivity to Upper Threshold and Number of Year

Average Election

In Section 5 I defined the harmful degree-days as those above a threshold `1, and

established the number of years used to calculate the average in the case of weather

variables. These decisions, however, may be key in the results presented above.

In Figure 2 I show the sensitivity of the main results to the upper threshold `1 election.

Each dot shows the point estimate of the coefficient of HDD obtained in the estimate

of equation (5.4) with a different `1 ranging from 24 to 30, and the red dot indicates the

main estimation presented in Tables 3, 5 and 6 (i.e., `1 = 26). Higher thresholds increase

44These distances are calculated between the centroids of each municipality.
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the magnitude of the estimates but reduce their precision due to a reduction in the “take

up” of the treatment.45

On the other hand, in Figure 3 I show the sensitivity of the results to the election of the

number of years average in the climatic variables. Estimates using a three-year average

(in red) do not lead to statistically different results from estimates that use a two-year

average or no average.46 However, the use of a three-year average increase the precision of

the estimates and helps to capture medium-term changes variation in average conditions

(i.e., climate change) instead of a short-run variation (i.e., weather shock). The increase in

precision is because of two main reasons: First, hot years have persistent effects, thus lags

of extreme heat matter accounting for inputs adjustments (Burke and Tanutama 2019;

Aragon et al. 2020) and also provide information to farmers about the future trends of

extreme heat. Second, averaging the weather variables reduces the abnormal variation in

weather variation (e.g., if one year has exceptionally high temperatures), which may not

impact the outcomes and adds noise (Burke and Emerick 2016).

In Appendix A.3, I provide additional robustness checks such as alternative weight

schemes and dropping outliers in aggregate output.

8 Final Remarks

This paper provides empirical evidence of an unexplored adaptation mechanism,

such as land reallocation across agricultural sectors. Using medium-term variation in

temperature and precipitation in Chile, I find that farmers change land use, hired labor,

and capital to attenuate the effects of extreme heat. These adjustments, drive to

reallocation in the land use from the most sensitive sectors to the more resistant.

Overall, this response mitigates extreme heat on output and highlights that accounting

for land reallocation is essential to quantify the mitigation of the losses associated with

climate change.

The advantage of the mechanism highlighted in this research is that individuals and

firms make their own decisions in response to climate change, and without the need for

coordination, reallocation gains can lead to substantial mitigation of damage.

However, this mechanism may not operate in the future if climate change exacerbate

frictions to the reallocations of factors (Liu et al. 2020). In that case, the policy design

45If `1 increases, each municipality suffer less harmful degree-days, but each harmful degree-day is more
intense, then, in the extensive margin, fewer municipalities are treated.

46Despite three coefficients are not statistically significant when I do not use three-years average (fruit
and output), they are not statistically different from the main estimates (red points). Note that, due
to statistical issues, all the panels of this figure should be interpreted together to get a notion of the
performance of this approach.
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should go in the direction to remove these frictions.

Finally, it is crucial to acknowledge that there are several unsolved issues. First, the

reallocation of land presented above does say nothing about if reallocation of workers

exists, which raises doubts about the net impact of these findings in the overall economy

and welfare. Second, due to data limitations, I cannot investigate adaptation through

other margins, such as defensive investments or the adoption of new technologies. This

implies that behind the results there could be another type of adaptation that

complements input adjustment. Third, the estimates capture only the impact of shifting

temperature distributions, although climate change may influence other climatic factors

such as drought, wildfires and storm frequencies. In principle, it is straightforward to

extend this approach to additional dimensions of the climate. Exploring these issues

warrants future research.
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Figure 1: Spatial Distribution of Changes
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Notes: Changes are computed by subtracting the value of each variable in 2007 from the corresponding

value in 1997 in levels in Panels A and B, and in logs in Panel C. Harmful degree-days are computed over

the growing season, as a three-year average and using maximum temperature with a threshold of `0 = 0 and

`1 = 26.
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Figure 2: Sensitivity of Results to Upper Threshold Election
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Notes: This figure shows the sensitivity of the coefficient of HDD to the election of the upper threshold `1.

In each Panel, the red dot is the point estimate of HDD of the main specification using `1 = 26 (e.g., in Panel

A, the red dot shows the point estimate of column (2) in Table 3). Harmful degree-days are computed over the

growing season and using maximum temperature with a threshold of `0 = 0 and `1 = 26. Whiskers are 95 percent

confidence intervals of the point estimate. All the models include the full set of controls.
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Figure 3: Sensitivity of Results to n-year Average
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Notes: In each Panel, the red dot is the point estimate using three-year average (main specification), the

second dot is the estimate using two-years average (i.e. 4zm =
∑2007
t=2006

zm,t

2 −
∑1997
t=1996

zm,t

2 ) and the third dot is

the estimate using only 2007-1997 differences. Whiskers are 95 percent confidence intervals of the point estimate.

All the models include the full set of baseline controls.
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Table 1: Summary Statistics of the Sample

1997 2007-1997

Mean SD Mean SD Observations

Panel A. Weather Data

Temperature
Heat (oC) 20.69 3.16 0.07 0.127 259
GDD`0:`1 4327.43 629.00 5.34 20.33 259
HDD`1:∞ 64.64 57.66 4.34 13.09 259

Average Precipitations (100mm) 3.70 2.18 -0.088 0.61 259

Panel B. Agricultural Data

Land Use (1000 ha)
Planted Land 25.42 26.08 -0.56 8.14 259

Fruit 2.047 1.867 0.527 1.18 259
Primary 8.18 10.48 -3.592 6.751 259
Forestry 18.188 20.97 2.498 6.403 259
Fruit Share 0.123 0.218 0.058 0.117 259
Primary Share 0.415 0.325 -0.153 0.189 259
Forestry Share 0.490 0.363 0.095 0.187 259

Log Aggregate Input Use
Planted Land 9.10 2.19 -0.071 0.546 259
Number of Workers 8.16 0.93 -0.257 0.940 259
Number of Machinery 6.28 1.10 -0.846 0.931 259

Log Output and Productivity
Aggregate 23.79 1.42 0.146 0.386 259

Fruit 16.75 6.35 0.127 4.763 259
Primary 20.32 2.31 -0.482 1.318 259
Forestry 19.45 7.22 1.248 4.349 259
Livestock 22.27 2.32 -1.103 2.986 259

Output per Worker 15.63 1.72 0.397 1.088 259
Output per Hectare 14.68 2.87 0.212 0.605 259

Notes: The data source is the Berkeley University and Delaware University databases in Panel
A, and Agricultural Census (1997, 2007) in Panel B. The unit of observation is the municipality.
All variables are weighted by agricultural output in 1965. Weather variables are calculated over
the main growing season and as a three-year average. GDD refers to growing degree-days while
HDD refers to harmful degree-days, see Appendix A.1 for a formal definition of these variables.
Thresholds in GDD and HDD variables are `0 = 0 and `1 = 26.
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Table 2: Input Intensity by
Sector

1997

Li
Ti

Ki
Ti

Fruit 823.545∗∗∗ 20.874
(164.081) (23.412)

Primary 347.817∗∗∗ 80.065∗∗∗

(103.976) (25.466)
Forestry 44.177 11.058

(27.819) (7.214)
Other -98.679 17.195

(861.088) (215.587)
Observations 259 259
Adjusted R2 0.572 0.561

Notes: Results come from the estimation
of equation (4.1). The “other” category
is the intercept. The unit of observation
is the pristine municipality. All regressions
are weighted by agricultural output in 1965.
Standard errors clustered at province level
reported in parentheses. Significance levels: ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: The Effect on Land Use

4Tfru
Ta

4Tpri
Ta

4Tfor
Ta

(1) (2) (3) (4) (5) (6)

4HDD`1:∞ -0.0039∗∗∗ -0.0040∗∗∗ 0.0013 0.0020 0.0025∗∗ 0.0020

(0.0007) (0.0008) (0.0013) (0.0017) (0.0012) (0.0014)

4GDD`0:`1 -0.0018∗∗∗ -0.0016∗∗ 0.0014∗ 0.0027∗ 0.0004 -0.0013

(0.0005) (0.0007) (0.0008) (0.0014) (0.0008) (0.0013)

Controls No Yes No Yes No Yes

p-value Controls 0.059 0.008 0.024

Observations 259 259 259 259 259 259

Adjusted R2 0.410 0.422 0.286 0.329 0.320 0.391

Notes: Ta = Tfru +Tpri +Tfor. The unit of observation is the pristine municipality. Changes
are computed by subtracting the value of each variable in 2007 from the corresponding value
in 1997. All regressions are weighted by agricultural output in 1965, include precipitation, its
square and constant. The regression with controls includes the lagged population density (in
logs), the share of rural population, poverty rate, mean education level, percentage of males,
mean income (in logs), and the number of agricultural machinery in 1965 (in logs). The p-value
of the controls comes from the joint significance test of all the baseline controls. Thresholds in
GDD variables are `0 = 0 and `1 = 26. Standard errors clustered at province level reported in
parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: The Effect on Agricultural Output by Sector

4 log(Ya) 4 log(Yfru) 4 log(Ypri) 4log(Yfor) 4 log(Ylivestock) 4 Yfru

Ya

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

4HDD`1:∞ 0.0097∗∗∗ 0.0061∗∗ -0.0173 -0.0052 0.0204∗∗ 0.0031 -0.0038 0.0158 0.0231∗ -0.0031 -0.0022∗∗∗ -0.0016∗∗

(0.0020) (0.0024) (0.0338) (0.0371) (0.0076) (0.0092) (0.0264) (0.0236) (0.0128) (0.0182) (0.0005) (0.0006)

4GDD`0:`1 0.0003 0.0025 -0.0426 -0.0572 -0.0118∗ -0.0088 -0.0332 -0.0980∗ 0.0398∗∗ 0.0490∗∗ -0.0022∗∗∗ -0.0033∗∗∗

(0.0020) (0.0030) (0.0303) (0.0449) (0.0067) (0.0072) (0.0364) (0.0507) (0.0163) (0.0233) (0.0007) (0.0009)

Controls No Yes No Yes No Yes No Yes No Yes No Yes

p-value Controls 0.018 0.526 0.000 0.043 0.049 0.046

Observations 259 259 259 259 259 259 259 259 259 259 259 259

Adjusted R2 0.091 0.104 0.019 0.076 0.033 0.109 0.270 0.377 0.083 0.146 0.223 0.253

Notes: Ya = Yfru + Ypri + Yfor + Ylivestock. Each of the products are valued at long-term undistorted prices (i.e., the average price in chilean peso (CLP)
of each type of product over the 1993-2006 period). Information on prices taken from INE’s wholesale prices series. Aggregate output includes forestry,
fruits and other primary products such as alfalfa, rice, oats, barley, beans, corn, potatoes, beets, wheat and livestock. The unit of observation is the pristine
municipality. Changes are computed by subtracting the value of each variable in 2007 from the corresponding value in 1997. All regressions are weighted
by agricultural output in 1965, include precipitation, its square and constant. The regression with controls includes the lagged population density (in logs),
the share of rural population, poverty rate, mean education level, percentage of males, mean income (in logs), and the number of agricultural machinery in
1965 (in logs). The p-value of the controls comes from the joint significance test of all the baseline controls. Thresholds in GDD variables are `0 = 0 and
`1 = 26. Standard errors clustered at province level reported in parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: The Effect on Aggregate Input Use

Panel A: Input Use

4 log(La) 4 log(Ka) 4 log(Ta)

(1) (2) (3) (4) (5) (6)

4HDD`1:∞ -0.0319∗∗∗ -0.0244∗∗∗ -0.0400∗∗∗ -0.0273∗∗∗ 0.0048∗ 0.0007

(0.0061) (0.0067) (0.0058) (0.0061) (0.0027) (0.0023)

4GDD`0:`1 -0.0065 -0.0114∗∗ 0.0009 -0.0029 -0.0043∗ -0.0055

(0.0059) (0.0046) (0.0055) (0.0055) (0.0025) (0.0041)

Controls No Yes No Yes No Yes

p-value Controls 0.000 0.000 0.000

Observations 259 259 259 259 259 259

Adjusted R2 0.288 0.483 0.293 0.715 0.357 0.424

Panel B: Input Intensity

4 log(LaTa ) 4 log(KaLa ) 4 log(KaTa )

(1) (2) (3) (4) (5) (6)

4HDD`1:∞ -0.0367∗∗∗ -0.0250∗∗∗ -0.0081 -0.0029 -0.0448∗∗∗ -0.0280∗∗∗

(0.0063) (0.0070) (0.0052) (0.0052) (0.0067) (0.0070)

4GDD`0:`1 -0.0022 -0.0058 0.0074∗∗∗ 0.0084∗∗ 0.0052 0.0026

(0.0075) (0.0061) (0.0023) (0.0040) (0.0073) (0.0068)

Controls No Yes No Yes No Yes

p-value Controls 0.000 0.000 0.000

Observations 259 259 259 259 259 259

Adjusted R2 0.324 0.551 0.056 0.201 0.316 0.723

Notes: The unit of observation is the pristine municipality. Changes are computed by subtracting
the value of each variable in 2007 from the corresponding value in 1997. All regressions are weighted
by agricultural output in 1965, include precipitation, its square and a constant. The regression with
controls includes the lagged population density (in logs), the share of rural population, poverty rate,
mean education level, percentage of males, mean income (in logs), and the number of agricultural
machinery in 1965 (in logs). The p-value of the controls comes from the joint significance test of all the
baseline controls. Thresholds in GDD variables are `0 = 0 and `1 = 26. Standard errors clustered at
province level reported in parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: The Effect on Aggregate Output and Input Productivity

4 log(Ya) 4 log( YaLa ) 4 log(YaTa )

(1) (2) (3) (4) (5) (6)

4HDD`1:∞ 0.0097∗∗∗ 0.0061∗∗ 0.0416∗∗∗ 0.0305∗∗∗ 0.0049 0.0055

(0.0020) (0.0024) (0.0067) (0.0066) (0.0035) (0.0034)

4GDD`0:`1 0.0003 0.0025 0.0068 0.0138∗∗ 0.0046∗ 0.0080∗

(0.0020) (0.0030) (0.0070) (0.0058) (0.0026) (0.0047)

Controls No Yes No Yes No Yes

p-value Controls 0.018 0.000 0.029

Observations 259 259 259 259 259 259

Adjusted R2 0.091 0.104 0.327 0.495 0.299 0.350

Notes: Ya = Yfru+Ypri+Yfor+Ylivestock. The unit of observation is the pristine municipality.
Changes are computed by subtracting the value of each variable in 2007 from the corresponding
value in 1997. All regressions are weighted by agricultural output in 1965, include precipitation,
its square and a constant. The regression with controls includes the lagged population density
(in logs), the share of rural population, poverty rate, mean education level, percentage of males,
mean income (in logs), and the number of agricultural machinery in 1965 (in logs). The p-value
of the controls comes from the joint significance test of all the baseline controls. Thresholds in
GDD variables are `0 = 0 and `1 = 26. Standard errors clustered at province level reported in
parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: Robustness to Initial Dependent Variable as a Control

4Tfru
Ta

4 log(La) 4 log(Ka) 4 log(Ta) 4 log(Ya) 4 log( YaLa )

(1) (2) (3) (4) (5) (6)

4HDD`1:∞ -0.0040∗∗∗ -0.0245∗∗∗ -0.0144∗∗∗ 0.0007 0.0063∗∗∗ 0.0315∗∗∗

(0.0009) (0.0068) (0.0035) (0.0024) (0.0023) (0.0073)

4GDD`0:`1 -0.0017∗∗ -0.0114∗∗ 0.0015 -0.0055 0.0054 0.0184∗∗

(0.0008) (0.0047) (0.0036) (0.0041) (0.0042) (0.0084)

ym1997 -0.0205 -0.0195 0.5855∗∗∗ -0.0031 -0.0567 -0.0834

(0.0462) (0.1378) (0.0634) (0.0349) (0.0465) (0.0965)

Controls Yes Yes Yes Yes Yes Yes

p-value Controls 0.097 0.000 0.000 0.000 0.034 0.000

Observations 259 259 259 259 259 259

Adjusted R2 0.420 0.481 0.808 0.421 0.115 0.497

Notes: The table shows the estimates of the following regression:

4ym = ρ ym1997 +α+β1 4HDDm; `1:∞+β2 4GDDm; `0:`1 +β3 4Pm+β4 4P 2
m+Xm1965/96 ψ+ ξm

The unit of observation is the pristine municipality. Changes are computed by subtracting the value
of each variable in 2007 from the corresponding value in 1997. All regressions are weighted by agricultural
output in 1965, include precipitation, its square a constant, and the full set of baseline controls which are
population density (in logs), the share of rural population, poverty rate, mean education level, percentage
of males, mean income (in logs), and the number of agricultural machinery in 1965 (in logs). Thresholds
in GDD variables are `0 = 0 and `1 = 26. Standard errors clustered at province level reported in
parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: Robustness to Agro-climatic Zone Fixed Effects

4Tfru
Ta

4 log(La) 4 log(Ka) 4 log(Ta) 4 log(Ya) 4 log( YaLa )

(1) (2) (3) (4) (5) (6)

4HDD`1:∞ -0.0044∗∗∗ -0.0239∗∗∗ -0.0285∗∗∗ 0.0025 0.0042∗ 0.0281∗∗∗

(0.0008) (0.0064) (0.0078) (0.0024) (0.0021) (0.0064)

4GDD`0:`1 -0.0017∗∗ -0.0052 0.0016 0.0009 0.0026 0.0078

(0.0007) (0.0070) (0.0081) (0.0054) (0.0022) (0.0070)

Controls Yes Yes Yes Yes Yes Yes

Zone FE Yes Yes Yes Yes Yes Yes

p-value Controls and FE 0.027 0.000 0.000 0.000 0.000 0.000

Observations 259 259 259 259 259 259

Adjusted R2 0.447 0.512 0.720 0.439 0.185 0.548

Notes: The table shows the estimates of the following regression:

4ym,z = µz + β1 4HDDm,z; `1:∞ + β2 4GDDm,z; `0:`1 + β3 4Pm,z + β4 4P 2
m,z + Xm,z1965/96 ψ + ξm,z

The unit of observation is the pristine municipality. Changes are computed by subtracting the value of each
variable in 2007 from the corresponding value in 1997. All regressions are weighted by agricultural output in 1965
and include precipitation, its square and a constant. The p-value of the controls comes from the joint significance
test of all the baseline controls and the zone fixed-effects. Thresholds in GDD variables are `0 = 0 and `1 = 26.
Standard errors clustered at province level reported in parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01
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Table 9: Robustness to Spatial Correlation

4Tfru
Ta

4 log(La) 4 log(Ka) 4 log(Ta) 4 log(Ya) 4 log( YaLa )

(1) (2) (3) (4) (5) (6)

4HDD`1:∞ -0.00395 -0.02436 -0.02730 0.00065 0.00614 0.03050

Clusters (0.00083)∗∗∗ (0.00675)∗∗∗ (0.00609)∗∗∗ (0.00235) (0.00236)∗∗ (0.00663)∗∗∗

25 km [0.00077]∗∗∗ [0.00631]∗∗∗ [0.00541]∗∗∗ [0.00295] [0.00210]∗∗∗ [0.00622]∗∗∗

50 km {0.00082}∗∗∗ {0.00657}∗∗∗ {0.00609}∗∗∗ {0.00303} {0.00195}∗∗∗ {0.00659}∗∗∗

100 km 〈0.00079〉∗∗∗ 〈0.00524〉∗∗∗ 〈0.00660〉∗∗∗ 〈0.00214〉 〈0.00224〉∗∗∗ 〈0.00597〉∗∗∗

150 km |0.00054|∗∗∗ |0.00343|∗∗∗ |0.00605|∗∗∗ |0.00199| |0.00155|∗∗∗ |0.00565|∗∗∗

4GDD`0:`1 -0.00163 -0.01138 -0.00295 -0.00553 0.00247 0.01385

Clusters (0.00074)∗∗ (0.00459)∗∗ (0.00548) (0.00411) (0.00295) (0.00583)∗∗

25 km [0.00060]∗∗∗ [0.00405]∗∗∗ [0.00472] [0.00375] [0.00245] [0.00499]∗∗∗

50 km {0.00070}∗∗ {0.00408}∗∗∗ {0.00501} {0.00384} {0.00186} {0.00465}∗∗∗

100 km 〈0.00068〉∗∗ 〈0.00477〉∗∗ 〈0.00397〉 〈0.00393〉 〈0.00251〉 〈0.00596〉∗∗

150 km |0.00050|∗∗∗ |0.00498|∗∗ |0.00338| |0.00372| |0.00266| |0.00645|∗∗

Controls Yes Yes Yes Yes Yes Yes

Observations 259 259 259 259 259 259

Notes: The unit of observation is the pristine municipality. Changes are computed by subtracting the value of
each variable in 2007 from the corresponding value in 1997. All regressions are weighted by agricultural output in
1965, include a constant, precipitation, its square and the full set of baseline controls which are population density
(in logs), the share of rural population, poverty rate, mean education level, percentage of males, mean income (in
logs), and the number of agricultural machinery in 1965 (in logs). Thresholds in GDD variables are `0 = 0 and
`1 = 26. Standard errors clustered at province level in round parentheses and Conley standard errors within 25
km in square brackets, 50 km in curly brackets, 100 km in angle brackets and 150 km in vertical bars. Significance
levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A Appendix: Empirics

A.1 Definition of Climate Treatment Variables

To capture nonlinear effects of the temperature, is a standard practice in

agronomics converting daily mean temperatures to degree-days (See Schlenker and

Roberts 2009 for more details). The variable GDDm,t; `0:`1 is the number of

growing season degree-days and HDDm,t; `1:∞ is the number of harmful heating

degree-days, also know as killing degree-days. This transformation has became

very popular in climate change economic research. See for instance Burke and

Emerick 2016, Feng, Oppenheimer and Schlenker 2019, Aragon et al. 2020, Jessoe

et al. 2018, Colmer 2020 and Meyers and Rhode 2020.

In particular, the construction of these variables is described by the following

formula:

GDDm; `0:`1 =


0 if H ≤ `0

H − `0 if `0 < H < `1

`1 − `0 if `1 ≤ H

(A.1)

HDDm; `1:∞ =

0 if H ≤ `1

H − `1 if `1 < H

Where H is the heat (maximum temperature) in the geographic region m, and `0

and `1 are endogenous lower and upper thresholds, respectively (e.g., 0oC and 26oC).

For example, one day of 10oC contributes 10 degree days, a day of 11oC contributes

11 degree days, up to a temperature of 26oC, which contributes 26 degree days.

All the days with temperatures above 26oC contributes 26oC degree days, and the

difference with the upper threshold `1, is the number of harmful degree-days. Figure

A.1 shows graphically the use of an upper threshold to construct of this variable.

Then, degree-days are summed over the growing season in Chile (September-April),

following Hajek and Gutierrez (1979). Note that the agricultural year in Chile is

cut by the calendar year, so all the agricultural variables are calculated for the

“agricultural year”. For example, the growing season of the year 1997, is composed

of September, October, November and December of 1996, and January, February,

March and April of 1997. Nevertheless, for the years where I have census data (1997

and 2007), I use every month of growing season in that year, because the census is

computed throughout the year until December. Furthermore, the precipitation are

summed over the growing season and its squared is added to deal with its potential
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nonlinear effect.

Therefore, weather treatment variables vector has the following form:

Zm,t = [f(Hm,t) g(Pm,t)]

where f(.) and g(.) are functions that capture nonlinearities of heat and

precipitation

f(Hm,t) = [HDDm,t; `1:∞ GDDm,t; `0:`1 ]

g(Pm,t) = [Pm,t P 2
m,t]

When I take first differences:

Zm,2007−Zm,1997 = [4f(Hm) 4g(Pm)] = [4HDDm; `1:∞ 4GDDm; `0:`1 4Pm 4P 2
m]

An implicit assumption is the effect of weather variables can be approximated

to a linear in parameters function: F (Zmt) = Zmtβ. This assumption relies on the

empirical results of Schlenker and Roberts (2009).

Furthermore, a possible concern of this empirical strategy is that the differential

trends in temperature and precipitation across municipalities are driven by short-run

variation in weather around the chosen endpoints years (i.e. 1997 and 2007). In an

effort to capture more effectively the change in “average” climate over time, I use

weather variables as a n-years average:

4zm = zm,2007 − zm,1997 where zm,1997 =
n−1∑
l=0

zm,1997−l

n
and zm,2007 =

n−1∑
l=0

zm,2007−l

n

The main specification uses n = 3, however, as I show in Figure 3, the results do

not depend on this sum, but improves the precision of the estimates because the

lags are relevant measuring the impact of extreme heat.
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Figure A.1: Construction of Harmful Degree-Days Measure

Notes: Construction of harmful degree-days measure using hourly temperature data

interpolated between daily minimum and maximum temperature in Schlenker & Roberts (2009).

Source: Hsiang (2016)
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A.2 Understanding Weather and Economic Variables

This section aims to understand the patterns of the changes in the main weather

and economic variables and the relationship between them.

Figure A.2 shows the distributions of the changes between 1997 and 2007 of

GDD and HDD in days, precipitation in 100’s mm, fruit land share in percentage

points, and agricultural workers, machinery, total planted land and aggregate output

in percentage. Figure A.3 plots the basic correlations in the data between 1997-

2007. Panel A plots the changes in GDD and HDD for the sample municipalities.

This plot shows that increases in “beneficial” days GDD and harmful days HDD

are positively correlated. However, there are also municipalities that experienced

increases in HDD and decreases in the GDD. Panel B and C show that there is

a negative correlation between the changes in GDD and the porcentual change in

agricultural workers, as well as with HDD. This suggest that an increase in the

numbers of GDD may not be good for labor intensive crops. Next, Panel D shows

that a decrease in HDD is related with an increase in the share of fruit planted land.

Finally, Panels E and F show the correlations of changes in HDD with changes in

log capital use and log aggregate ouput, respectively.

Finally, to understand the climate patterns in Chile, Table A.1 shows the

correlations among minimum, maximum and average temperature, and

precipitation in 1997 and 2007. A positive correlation between average

temperature and precipitation is generally observed in cooler areas because

increased precipitation is associated with the import of warm and humid tropical

air, and cloud cover keeps the underlying surface warmer. In order to obtain

unbiased estimates of the effects of changes in temperature and precipitation,

which are historically correlated, both variables must be included in the regression

equation (Auffhammer et al. 2013). On the other hand, a negative correlation

between average temperature and precipitation indicates that warmer zones tend

to be dryer, which is the case of Chile due to its long coastline, the arid deserts

and dry summers. Additionally, Figure A.4 plots the time series of annual average

precipitation between 1950 and 2013 for top fruit producers and for a random

sample municipalities for each climatic zone. In the period under study (marked

with dashed lines), the precipitation does not appear to have particular patterns

such as drought. However, from 2007, there is a clear pattern of drought in the top

fruit producer municipalities and other municipalities belonging to northern and

central zones.

48



Figure A.2: Histograms
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Notes: Each municipality is an observation. Changes are computed by subtracting the value of each

variable in 2007 from the corresponding value in 1997. Panel A, B and C show histograms of the growing

degree days, harmful heating degree days, and precipitation (mm), respectively. Panels D, E, F and G show

the change in the input use. Finally, Panel H shows the change in the agricultural output. Weather variables

are calculated over growing season and as a three-year average.
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Figure A.3: Basic Correlations in the Data
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Notes: Each dot is a municipality and the red lines are the fitted values of the linear regression weighted

by agricultural output in 1965. Panel A show the correlation among GDD and HDD, Panel B show the

correlation among GDD and agricultural workers, whereas Panels C, D, E and F show the correlation among

the change HDD and fruit land share, agricultural workers, capital and agricultural output. These changes

are computed by subtracting the value of each variable in 2007 from the corresponding value in 1997. Weather

variables are calculated as three-year average and thresholds in GDD variables are `0 = 0 and `1 = 26.
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Figure A.4: Municipality Annual Average Precipitation Time Series 1950-
2014
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Notes: Dashed vertical lines show the period under study. Panel A show the precipitation time series for

top fruit producers, while Panels B, C and D show a random sample of municipalities from each zone in Chile.

Table A.1: Correlations
Among Weather Variables

1997

Hmin Hmax Havg

Hmax 0.509 - -

Havg 0.840 0.825 -

P -0.207 -0.437 -0.222

2007

Hmax 0.449 - -

Havg 0.823 0.808 -

P -0.223 -0.474 -0.263

Notes: The unit of observation is
the municipality. All variables are
calculated over growing season and
as a three-year average.
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A.3 Additional Robustness Checks

In Section 7 I diccussed about that the fixed-effects approach could absorb a

significant amount of weather variance and amplify the measurement error, which

could lead to under-rejection of the null hypothesis (Fisher et al. 2012;

Auffhammer and Schlenker 2014). Another possible method to control for

geographical heterogeneity is adding latitude and longitude as controls. Table A.2

shows these results. The points estimates and their significance are very similar to

the main results.

The use of weights aims to compare agricultural municipalities in the estimates

and avoid to include in the analysis entirely urban or arid municipalities.

Nevertheless, another concern is that the use of weights by agricultural output in

1965 is driving the results due to an overweight of the crops with higher prices. In

Table A.3, I show that the main results remain unchanged using weights by

aggregate planted land in 1965 instead of agricultural output.

However, although the use of weights by the lagged agricultural output or planted

area is standard in agricultural economics literature, doubts may persist about its

use. Therefore, in Table A.4 I show the robustness of the main estimates to remove

weights. The results remain unchanged except for the value of the output coefficient

and its standard error. This point estimate increases twice and its standard error

about four times. These changes avoids rejecting the null hypothesis due to a

dramatic decrease in the precision of the estimate, but no due to a (precise) reduction

of the point estimate. Note that these models have a poor performance in goodness

of fit relative to the models with output or land weights. Therefore, these results do

not invalidate the arguments previously raised, because it is still striking that when

the inputs decrease, the change in the output is non-negative.

Finally, Figure A.3 Panel F, could raise concerns that outliers drive the results.

Table A.5 shows that the main results remain unchanged when I trim the 2% tails

of changes in log. agricultural output.
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Table A.2: Robustness to Controlling for Latitude and Longitude

4Tfru
Ta

4 log(La) 4 log(Ka) 4 log(Ta) 4 log(Ya) 4 log( YaLa )

(1) (2) (3) (4) (5) (6)

4HDD`1:∞ -0.0036∗∗∗ -0.0208∗∗∗ -0.0229∗∗∗ 0.0017 0.0057∗∗ 0.0266∗∗∗

(0.0008) (0.0075) (0.0049) (0.0028) (0.0024) (0.0077)

4GDD`0:`1 -0.0016∗∗ -0.0074 0.0087 0.0019 0.0050∗ 0.0125∗

(0.0007) (0.0063) (0.0078) (0.0066) (0.0028) (0.0062)

Controls Yes Yes Yes Yes Yes Yes

Latitude and Longitude Yes Yes Yes Yes Yes Yes

p-value Controls 0.000 0.000 0.000 0.002 0.000 0.000

Observations 259 259 259 259 259 259

Adjusted R2 0.457 0.526 0.770 0.444 0.124 0.546

Notes: All regressions are weighted by agricultural output in 1965, include a constant, precipitation, its square
and the full set of baseline controls which are population density (in logs), the share of rural population, poverty
rate, mean education level, percentage of males, mean income (in logs), and the number of agricultural machinery
(in logs). The p-value of the controls comes from the joint significance test of baseline controls and geographic
controls. Thresholds in GDD variables are `0 = 0 and `1 = 26. Standard errors clustered at province level
reported in parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.3: Robustness to Alternative Weighting Scheme

4Tfru
Ta

4 log(La) 4 log(Ka) 4 log(Ta) 4 log(Ya) 4 log( YaLa )

(1) (2) (3) (4) (5) (6)

4HDD`1:∞ -0.0038∗∗∗ -0.0200∗∗∗ -0.0250∗∗∗ -0.0003 0.0052∗∗ 0.0251∗∗∗

(0.0009) (0.0072) (0.0059) (0.0023) (0.0020) (0.0076)

4GDD`0:`1 -0.0025∗∗ -0.0135∗ -0.0001 0.0060∗ 0.0044 0.0179∗∗

(0.0011) (0.0078) (0.0081) (0.0034) (0.0033) (0.0083)

Controls Yes Yes Yes Yes Yes Yes

Observations 259 259 259 259 259 259

Adjusted R2 0.423 0.533 0.752 0.275 0.125 0.557

Notes: All regressions are weighted by agricultural output in 1965, include a constant, precipitation,
its square and the full set of baseline controls which are population density (in logs), the share of
rural population, poverty rate, mean education level, percentage of males, mean income (in logs),
and the number of agricultural machinery (in logs). The p-value of the controls comes from the joint
significance test of all the baseline controls. Thresholds in GDD variables are `0 = 0 and `1 = 26.
Standard errors clustered at province level reported in parentheses. Significance levels: ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01

53



Table A.4: Robustness to Removing Weights

4Tfru
Ta

4 log(La) 4 log(Ka) 4 log(Ta) 4 log(Ya) 4 log( YaLa )

(1) (2) (3) (4) (5) (6)

4HDD`1:∞ -0.0033∗∗ -0.0217∗∗∗ -0.0251∗∗∗ -0.0002 0.0117 0.0334∗∗∗

(0.0014) (0.0065) (0.0047) (0.0037) (0.0081) (0.0107)

4GDD`0:`1 -0.0013 -0.0156∗∗∗ -0.0070 -0.0019 -0.0078 0.0078

(0.0014) (0.0050) (0.0043) (0.0055) (0.0067) (0.0089)

Controls Yes Yes Yes Yes Yes Yes

Observations 259 259 259 259 259 259

Adjusted R2 0.128 0.375 0.760 0.194 0.170 0.257

Notes: All regressions include a constant. The regression with controls includes the lagged
population density (in logs), the share of rural population, poverty rate, mean education level,
percentage of males, mean income (in logs), and the number of agricultural machinery (in logs). The
p-value of the controls comes from the joint significance test of all the baseline controls. Thresholds
in GDD variables are `0 = 0 and `1 = 26. Standard errors clustered at province level reported in
parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.5: Robustness to Dropping Outliers in Output

4Tfru
Ta

4 log(La) 4 log(Ka) 4 log(Ta) 4 log(Ya) 4 log( YaLa )

(1) (2) (3) (4) (5) (6)

4HDD`1:∞ -0.0040∗∗∗ -0.0244∗∗∗ -0.0273∗∗∗ 0.0010 0.0060∗∗∗ 0.0303∗∗∗

(0.0008) (0.0069) (0.0060) (0.0024) (0.0021) (0.0069)

4GDD`0:`1 -0.0015∗ -0.0117∗∗ -0.0023 -0.0060 0.0022 0.0140∗∗∗

(0.0008) (0.0047) (0.0055) (0.0043) (0.0021) (0.0050)

Controls Yes Yes Yes Yes Yes Yes

Observations 248 248 248 248 248 248

Adjusted R2 0.427 0.484 0.715 0.438 0.143 0.518

Notes: This table shows the main result with the trimmed sample after dropping the top and
bottom two percentiles of agricultural output. All regressions are weighted by agricultural output
in 1965, include a constant, precipitation and its square. The regression with controls includes the
lagged population density (in logs), the share of rural population, poverty rate, mean education level,
percentage of males, mean income (in logs), and the number of agricultural machinery (in logs). The
p-value of the controls comes from the joint significance test of all the baseline controls. Thresholds
in GDD variables are `0 = 0 and `1 = 26. Standard errors clustered at province level reported in
parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B Appendix: Theory

B.1 Equilibrium

Non-Agricultural sector: Profit maximizing implies

max
Ln

Πn = pnQn − wLLn (B.1)

Ln =
(pnAnαn

wL

) 1
1−αn (B.2)

Inserting (B.13) in (B.2)

L∗n =

(
pnAnαn(

Ψs
psAs

) γr
γs−γr

(
prAr
Ψr

) γs
γs−γr

) 1
1−αn

(B.3)

Q∗n = An

(
pnAnαn(

Ψs
psAs

) γr
γs−γr

(
prAr
Ψr

) γs
γs−γr

) αn
1−αn

(B.4)

Agriculture: Heat-sensitive and Heat-resistant goods

For each sector i = {s, r}, minimizing costs implies

min
Ti,Li

Ci = wTTi + wLLi s.t. AiT
γi
i L

1−γi
i = q̄i (B.5)

Using Lagrange multiplier implies

max
Ti,Li
Li = −wTTi − wLLi + λi[AiT

γi
i L

1−γi
i − q̄i] (B.6)

Li = Ti

(1− γi
γi

)wT
wL

(B.7)
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As q̄i = AiT
γi
i L

1−γi
i , the conditional factor demands are

TCi =
q̄i
Ai

( γi
1− γi

)1−γi(wL
wT

)1−γi

LCi =
q̄i
Ai

(1− γi
γi

)γi(wT
wL

)γi (B.8)

Then, the minimum cost (value) function is

CT ∗i =
q̄i
Ai
wγiT w

1−γi
L Ψi (B.9)

with Ψi = 1
γ
γi
i (1−γi)1−γi

to save space.

In equilibrium, the zero profit conditions in each sector implies MCi = pi, then

wL = w
−γi
1−γi
T

(piAi
Ψi

) 1
1−γi (B.10)

Using simmetry between s and r

MCs
MCr

=
ps
pr
⇒

1
As
wγsT w

1−γs
L Ψs

1
Ar
wγrT w

1−γr
L Ψr

=
ps
pr

(B.11)

Hence, rearranging terms

wT = wL

[psAsΨr

prArΨs

] 1
γs−γr (B.12)

Then, inserting (B.10) in (B.12)

w∗L =
( Ψs

psAs

) γr
γs−γr

(prAr
Ψr

) γs
γs−γr

w∗T =
( Ψs

psAs

) γr−1
γs−γr

(prAr
Ψr

) γs−1
γs−γr

(B.13)

On the other hand, profit maximizing in each sector implies

max
Ti,Li

Πi = piqi − wTTi − wLLi (B.14)

∂Πi

∂Ti
= 0 ⇒ MPTi =

wT
pi

(B.15)
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Then

Li = Ti

[ wT
piAiγi

] 1
1−γi (B.16)

Inserting (B.16) for each sector i = {s, r} and (B.3) in the endowment of labor

restriction L = Ls + Lr + Ln:

L = Ts

[ wT
psAsγi

] 1
1−γs︸ ︷︷ ︸

Ls

+Tr

[ wT
prArγr

] 1
1−γr︸ ︷︷ ︸

Lr

+

(
pnAnαn(

Ψs
psAs

) γr
γs−γr

(
prAr
Ψr

) γs
γs−γr

) 1
1−αn

︸ ︷︷ ︸
Ln

(B.17)

Then, rearranging terms:

Tr =

{
L− Ts

[ wT
psAsγi

] 1
1−γs −

(
pnAnαn(

Ψs
psAs

) γr
γs−γr

(
prAr
Ψr

) γs
γs−γr

) 1
1−αn

}[prArγr
wT

] 1
1−γr

(B.18)

Moreover, inserting (B.18) in the endowment of land restriction T = Ts + Tr

T = Ts +

{
L− Ts

[ wT
psAsγi

] 1
1−γs −

(
pnAnαn(

Ψs
psAs

) γr
γs−γr

(
prAr
Ψr

) γs
γs−γr

) 1
1−αn

}[ wT
prArγr

] 1
1−γr

(B.19)

Therefore, rearranging terms:

T ∗s =

{
T − L

[prArγr
w∗T

] 1
1−γr

+
(pnAnαn

w∗L

) 1
1−αn

[prArγr
w∗T

] 1
1−γr

}

× (psAsγs)
1

1−γs

(psAsγs)
1

1−γs − (w∗T )( 1
1−γs

− 1
1−γr

)(prArγr)
1

1−γr

(B.20)

where w∗T and w∗L are given by the equation (B.13).

Since s and r are symmetric, obtaining T ∗r is trivial. Additionally, L∗s can be

obtained using (B.20) and (B.16).
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B.2 Proofs

Prediction (i) : A reduction in the agricultural heat-sensitive land productivity

As, leads to a reduction in the land allocation the heat-sensitive sector.

Proof: From the production function of the heat-sensitive sector, I can compute

the marginal product of land

MPTs = AsγsT
γs−1
s L1−γs

s

Therefore,

∂MPTs
∂As

= γsT
γs−1
s L1−γs

s > 0 (B.21)

Prediction (ii): A reduction in the agricultural heat-sensitive productivity As,

increase the land share in the heat-resistant sector.

Proof: Land market clearing requires Ts + Tr = Ta, thus and reduction in Ts

is compensated with and increase of Tr such that dTs + dTr = dT = 0 if land

endowment is fixed: dTa = dT = 0

Prediction (iii): A reduction in the agricultural heat-sensitive productivity As,

remain unchanged the total amount of land used in agriculture as a whole.

Proof: Similar argument to prove prediction (ii). It is sufficient to assume that

there is no waste, nor is there expansion of the supply of land.

Prediction (iv): A reduction in the agricultural heat-sensitive productivity As,

reduces the land share in the heat-sensitive sector:

Proof: Since 0 < γs < 1

∂MPLs
∂As

= (1− γs)L−γss T γss > 0 (B.22)

Prediction (v): A reduction in the agricultural heat-sensitive productivity As,

leads to an increase in labor allocation in non-agricultural sector whether heat-

sensitive is more labor intensive than heat-resistant sector. Thus, reduces the labor

allocation in agriculture as a whole Ls + Lr.
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Proof: Using equation (B.3)

Ln = (pnAnαn)
1

1−αn

( Ψr

prAr

) γs
γr−γs

× −1
1−αn︸ ︷︷ ︸

=c1 >0

(psAs
Ψs

) γr
γr−γs

× −1
1−αn

= c1

( Ψs

psAs

) γr
(γr−γs)(1−αn)

(B.23)

∂Ln
∂As

= c1
γr

(γr − γs)(1− αn)

( Ψs

psAs

) γr
(γr−γs)(1−αn)

−1 Ψs

ps
(−1)A−2

s (B.24)

Then

∂Ln
∂As

> 0 if γs > γr

< 0 if γs < γr
(B.25)

Therefore, if the heat-resistant sector is more land intensive than the heat-sensitive

sector γs < γr, a decrease in the productivity of the latter leads to an increase in

the allocation of labor in the non-agricultural sector.

Prediction (vi): A reduction in the agricultural heat-sensitive productivity As,

reduces the labor intensity in agriculture as a whole.

Proof: As land supply in agriculture is fixed (non-agriculture do not use land),

a reduction in Ls +Lr implies a reduction in (Ls +Lr)/Ta. (See proof of predictions

(ii) and (iii))

Theorem 1: The reallocation gains could increase aggregate sales only if the

increase in output of the heat-resistant is large enough, and prices in the heat-

sensitive sector are not sufficiently high relative to the heat-resistant good to absorb

this effect.

Proof:

∂log(Ya)

∂As
=
∂log(psqs + prqr)

∂As

=
1

psqs + prqr

(∂psqs
∂As

+
∂prqr
∂As

)
=

1

psqs + prqr

∂psqs
∂As

+
1

psqs + prqr

∂prqr
∂As

=
ps

psqs + prqr

∂qs
∂As︸︷︷︸
<0

+
pr

psqs + prqr

∂qr
∂As︸︷︷︸
>0

(B.26)
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Then, ∂log(Ya)
∂As

> 0 iff

∂log(Ya)

∂As
=

ps
psqs + prqr

∂qs
∂As

+
pr

psqs + prqr

∂qr
∂As

>0

pr
psqs + prqr

∂qr
∂As

>
−ps

psqs + prqr

∂qs
∂As

pr
∂qr
∂As

> −ps
∂qs
∂As

(B.27)

therefore, the net impact on aggregate sales depends on the magnitude of the changes

in output and the international prices, which could amplify or reduce this effect.

Hence, in the particular case that changes in output are exactly compensated

− ∂qs
∂As

= ∂qr
∂As

, aggregate sales could increase iff

pr > ps (B.28)

This mechanism can be summarized as

∂log(Ya)

∂As
=

psqs
psqs + prqr

1

psqs

∂psqs
∂As

+
prqr

psqs + prqr

1

prqr

∂prqr
∂As

(B.29)

as 1
piqi

∂piqi
∂As

= ∂log(piqi)
∂As

, rearranging terms of (B.29)

∂log(Ya)

∂As
=

psqs
psqs + prqr

∂log(psqs)

∂As︸ ︷︷ ︸
direct losses

+
prqr

psqs + prqr

∂log(prqr)

∂As︸ ︷︷ ︸
reallocation gains

(B.30)

where Ys ≡ psqs, Yr ≡ prqr , Ya ≡ Ys + Yr, ηs = psqs
psqs+prqr

and ηr = prqr
psqs+prqr

.
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