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SIMPLE CURVES IN Rn

AND AHLFORS’ SCHWARZIAN DERIVATIVE

MARTIN CHUAQUI AND JULIAN GEVIRTZ

(Communicated by Juha M. Heinonen)

Abstract. We derive sharp injectivity criteria for mappings f : (−1, 1)→ Rn
in terms of Ahlfors’ definition of the Schwarzian derivative for such mappings.

1. Introduction

Because the Schwarzian derivative Sf = (f ′′/f ′)′ − 1
2 (f ′′/f ′)2 measures the

extent to which an analytic function deviates from being a Möbius transformation, it
carries information about both the local and global behavior of conformal mappings.
Although in regard to the former Sf says something about how f alters cross-ratios
and curvature, the importance it has acquired in geometric function theory and
related areas over the last 50 years or so stems primarily from Nehari’s fundamental
papers [Ne 1], [Ne 2] on univalence criteria of the form

(1.1) |Sf(z)| ≤ 2P (|z|)
for analytic functions f in the unit disk. In his most general version of this criterion
[Ne 2], P can be any even function for which (i) (1− x2)2P (x) is nonincreasing on
[0, 1), and (ii) the even solution of U ′′+PU = 0 has no zeros. It is a straightforward
consequence of condition (i) that (1.1) will imply univalence for any P for which

(1.2) ϕ : (−1, 1)→ C and |Sϕ(x)| ≤ 2P (|x|) ⇒ ϕ is injective,

so that the matter reduces in essence to showing that (1.2) holds under assumption
(ii).

In this paper we shall give a very short proof that a stronger form of (1.2)
actually holds under a weaker assumption on P , and more importantly, that such
injectivity criteria hold for f : (−1, 1) → Rn. In this wider context of curves in
space we use a corresponding version of the Schwarzian due to Ahlfors [Ah], for
which we offer a geometrically appealing definition, rather different in tenor from
his, and which makes manifest that in this extended context, Sf continues to be
a complex number invariant under Möbius transformations. Our analysis of the
injectivity of f and of the related issues of continuous extendibility to [−1, 1] and
extremal behavior is based largely on an observation implicit in [Ne 2] to the effect
that it is only the real part of Sf that is of significance in such questions.
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2. Higher-dimensional curves

In [Ah] Ahlfors generalized the Schwarzian to cover f : (a, b)→ Rn by separately
defining analogues of the 2-dimensional <{Sf} and ={Sf} as

(2.1) S1f =
〈f ′, f ′′′〉
|f ′|2 − 3

〈f ′, f ′′〉2
|f ′|4 +

3
2
|f ′′|2
|f ′|2

and

(2.2) S2f =
f ′ ∧ f ′′′
|f ′|2 − 3

〈f ′, f ′′〉
|f ′|4 f ′ ∧ f ′′ ,

respectively. Here, for ~a,~b ∈ Rn, ~a∧~b is the antisymmetric bivector with components
(~a∧~b)ij = aibj − ajbi and norm (

∑
i<j(aibj − ajbi)2)1/2. Ahlfors indicated that he

was led to these seemingly esoteric definitions by a direct identification of <{zζ}
with the inner product 〈z, ζ〉 of the 2-dimensional vectors z, ζ and the far from
obvious identification of ={zζ} with the corresponding ζ ∧ z based on the fact
that (={zζ})2 = |ζ ∧ z|2. In this section we give an equivalent but geometrically
convincing derivation of what amounts to Alhfors’ Schwarzian, very much in the
spirit of his definition of the complex cross-ratio of four points in Rn.

Let C be a curve in Rn, n ≥ 3, parametrized by the C3 function f on (a, b) with
nonvanishing f ′. It is well-known that for each t0 ∈ (a, b) on C, there is a C∞

function g : (a, b) → Rn and a 2-sphere K(t0) (the osculating 2-sphere, which can
degenerate into a plane; see, e.g., [L]) such that

g((a, b)) ⊂ K(t0)

and

(2.3) f(t) = g(t) + o(|t− t0|3) , t→ t0 .

By regarding K(t0) as C via a stereographic projection, one can identify g with a
φ : (a, b)→ C, for which the expression Sφ = (φ′′/φ′)′ − (1/2)(φ′′/φ′)2 of Section 2
is meaningful. In the case of a nondegenerate osculating sphere, one can take the
vector from the point of contact to the center as (0, 0, R), R > 0, and give to the
tangent plane, our C, its usual (to be referred to as “canonical” below) orientation
as C = R2 ⊂ R3. At points at which the osculating sphere degenerates to a plane,
however, there is no canonical orientation for this plane, nor is there any canonical
copy of R3 containing this plane. To circumvent this inherent ambiguity, we shall
define Sf(t0) to be Sφ(t0) or Sφ(t0), whichever one has a nonnegative imaginary
part. Indeed, this is consistent with the cross-ratio (~a,~b,~c, ~d) of ~a,~b,~c, ~d ∈ Rn as
defined by Ahlfors in [Ah]: any given four points are always contained in a (possibly
degenerate) 2-sphere K. One regards K as C, calculates the usual cross-ratio k,
and gives to (~a,~b,~c, ~d) the value k or k̄, whichever has a nonnegative imaginary
part.

We show that Sf(t0) = S1f(t0) + i|S2f(t0)|, thereby justifying the contention
that the single complex number Sf(t0) embodies all of the information carried by
Ahlfors’ 2-part Schwarzian. We first consider the case of a nondegenerate osculating
sphere. First of all, it is clear that both S1f(t0) and |S2f(t0)| remain unchanged
when f is replaced by ρUf+~c, where ρ ∈ R\{0}, U is a proper orthogonal transfor-
mation of Rn, and ~c ∈ Rn is a constant. Thus we may limit ourselves to the case in
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CURVES IN Rn AND AHLFORS’ SCHWARZIAN DERIVATIVE 225

which K(t0) is the 2-sphere contained in R3 = {(x1, x2, x3, 0, . . . , 0) : x1, x2, x3 ∈
R} with center at (0, 0, 1). We denote by

P (x+ iy) =
(

2x
1 + x2 + y2

,
2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
the usual stereographic projection of C onto the sphere in R3. In R3 the components
of ~a ∧ ~b are effectively those of ~a × ~b. Let h(t) = x(t) + iy(t), with h(0) = 0. A
straightforward, somewhat tedious calculation shows that

(2.4) S1(P ◦ h)(0) = <{Sh(0)}

and

(2.5) S2(P ◦ h)(0) = (0, 0,={Sh(0)}) .

In fact, these relations can be easily verified with any symbolic manipulation pro-
gram, such as Maple or Mathematica, or even on a TI-92 calculator, since one can
limit consideration to the case that x and y are cubic polynomials in t. From this
the desired relation, Sf(t0) = S1f(t0)+ i|S2f(t0)|, follows immediately. In the case
that the osculating sphere degenerates to a plane, by appropriate choices of ρ, U
and ~c, we can arrange for this plane to be R2 = {(x1, x2, 0, . . . , 0) : x1, x2 ∈ R}.
Relations (2.4) and (2.5) again follow either by a limit argument or by direct cal-
culation. We stress that in both cases the exact choice of g is irrelevant since, in
light of (2.3), only derivatives of order up to 3 enter into the calculations.

Theorem A. Let f : (a, b)→ Rn be a C3 curve with nowhere vanishing f ′.
(a) For any Möbius transformation T of Rn, S(T ◦ f) = Sf .

(f(t0 + tα), f(t0 + tβ), f(t0 + tγ), f(t0 + tδ))(b)

= (α, β, γ, δ)[1 +
1
6

(α− β)(γ − δ)S∗f(t0)t2] + o(t2) , as t→ 0 ,

where S∗f is Sf or its conjugate according to whether (α, β, γ, δ)(α − β)(γ − δ) is
nonnegative or not.

Comment. Conclusion (i) implies that Sf has meaning for C3 mappings f :
(a, b) → Rn ∪ {∞} = Sn ⊂ Rn+1. Conclusion (ii) extends a similar relation in-
volving Ahlfors’ S1f = <{Sf}.

Proof. (a) For t0 ∈ (a, b) let K(t0) be the corresponding osculating sphere and let
g = g(t) be as in (2.3). The Möbius transformation T will carry K(t0) onto the
osculating 2-sphere of T ◦ f at T ◦ f(t0), at which point this curve has contact
of order 3 with T ◦ g. According to our definition, Sf(t0) and S(T ◦ f)(t0) are
interpreted as complex numbers after stereographically projecting the respective
curves g and T ◦ g onto the complex plane. Because T is Möbius, it is clear that
the two stereographic projections are related by a planar Möbius mapping, which
will preserve the Schwarzian as defined.

(b) To show this, observe that the relevant terms in the expansion considered will
remain unchanged if we replace f by g. After a suitable stereographic projection
of the curve given by g, we can assume that we are working in C. This formula is
valid with f replaced by g and S∗f by Sg. The desired conclusion now follows by
replacing the imaginary parts on both sides by their absolute values.
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Going back to relations (2.1) and (2.2), S1f and S2f can be written in terms of
the geometry of the trace of f . We write

f ′ = vt̂ and f ′′ = v′ t̂+ v2kn̂ ,

where v > 0 and t̂, n̂ are the unit tangent and normal vectors. A third differentiation
gives

f ′′′ = v′′ t̂+ vv′kn̂+ 2vv′kn̂+ v2k′n̂+ v2kn̂′ .

Since n̂ is a unit vector, 〈n̂′, n̂〉 = 0, and upon differentiating 〈t̂, n̂〉 = 0 we see that
the component of n̂′ in the direction of t̂ must equal −vk. Thus the equation

n̂′ = −vkt̂+ vτ b̂

defines both the binormal vector b̂ and the torsion τ . From this we obtain

f ′′′ = (v′′ − v3k2)t̂+ (3vv′k + v2k′)n̂+ v3kτ b̂ ,

so that

S1f =
v′′ − v3k2

v
− 3

(v′)2

v2
+

3
2

(v′)2 + v4k2

v2
=
(
v′

v

)′
− 1

2

(
v′

v

)2

+
1
2
v2k2 .

Thus, if s(x) denotes arc length, then

(2.6) S1f = Ss(x) +
1
2
v2k2 .

Although it will not be used in the sequel, we derive a corresponding formula for
S2f . It follows from the expressions given above for f ′, f ′′ and f ′′′ that

f ′ ∧ f ′′ = v3k(t̂ ∧ n̂) and f ′ ∧ f ′′′ = v2(3v′k + vk′)(t̂ ∧ n̂) + v4kτ(t̂ ∧ b̂) .

A computation gives that

〈~a ∧~b,~a ∧ ~c〉 = |~a|2〈~b,~c〉 − 〈~a,~b〉〈~a,~c〉 ,

which implies that in the (n(n − 1)/2)-dimensional space, t̂ ∧ n̂ and t̂ ∧ b̂ are or-
thonormal. With this we now write

S2f = (3v′k + vk′)(t̂ ∧ n̂) + v2kτ(t̂ ∧ b̂)− 3v′k(t̂ ∧ n̂) = vk′(t̂ ∧ n̂) + v2kτ(t̂ ∧ b̂) .

3. Injectivity criteria and extendibility

In several places in the proofs to follow, we make use of the classical Sturm
comparison theorem, which we state here for reference.

Theorem. Let u, v be positive functions on (a, b) which satisfy u′′ + pu = 0, v′′ +
qv = 0, where p ≤ q, and u(x0) = v(x0), u′(x0) = v′(x0) for some x0 ∈ (a, b).
Then u ≥ v on (a, b).

For convenience, we use Ahlfors’ original notation S1f for <{Sf}.

Theorem B. Let P = P (x) be a continuous function defined on (−1, 1) with the
property that no nontrivial solution u of u′′ + Pu = 0 has more than one zero.
Let f : (−1, 1) → Rn ∪ {∞} be a curve of class C3 with nowhere vanishing f ′. If
S1f(x) ≤ 2P (x) on (−1, 1), then f is one-to-one.
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Proof. If not, then f(x1) = f(x2) for x1 < x2 in (−1, 1), where f is one-to-one
on [x1, x2). Let g = T ◦ f be a Möbius transformation of f that takes f(x1) to
the point at infinity, and let v = |g′|−1/2. Then v is regular in the open interval
(x1, x2), and a simple calculation shows that v′′ + qv = 0, where

(3.1) 2q =
〈g′, g′′′〉
|g′|2 +

|g′′|2
|g′|2 −

5
2
〈g′, g′′〉2
|g′|4 = S1g −

1
2

(
|g′′|2
|g′|2 −

〈g′, g′′〉2
|g′|4

)
≤ S1f ,

hence q ≤ P . A suitable solution U1 of U ′′+PU = 0 coincides with v to first order at
some point x0 ∈ (x1, x2), so that by the Sturm comparison theorem, v(x) ≥ U1(x)
on the interval containing x0 where U1(x) ≥ 0. Since by hypothesis U1 has at most
one zero in the interval (−1, 1), we conclude that v has a positive lower bound in
a neighborhood of either x1 or x2. But then |g′| will be bounded above in that
neighborhood, making it impossible for g to become infinite there.

In light of (2.6) we have

Corollary C. Let P be as in the previous theorem and let f : (−1, 1) → Rn be
an arclength parametrized curve with geodesic curvature k. If k2(s) ≤ 4P (s) on
(−1, 1), then f is one-to-one.

Interesting examples such as

P (x) =
π2

4
,

1
(1− x2)2

,
2

1− x2
,

can be obtained from conditions for univalence of analytic functions in the disk
D = {|z| < 1}. For these choices the criteria |Sf(z)| ≤ 2P (|z|) in D admit extremal
functions that are unique up to Möbius transformations and which map the interval
[−1, 1] onto a closed curve. We shall show that no new extremal functions appear
for these criteria in the context of curves in Rn. Although not necessary, to make
the discussion of this point as simple as possible, we will assume that P (x) is an even
function. This implies that the solution U0 of U ′′ + PU = 0 with initial conditions
U0(0) = 1, U ′0(0) = 0 is also even, and hence can have no zeros on (−1, 1) since
otherwise it would have at least two. We define

F (x) =
∫ x

0

U−2
0 (t)dt ,

so that F is odd and satisfies SF = 2P , F (0) = 0, F ′(0) = 1, F ′′(0) = 0. When we
regard F as a mapping of (−1, 1) into R ⊂ Rn ∪ {∞}, the mappings T ◦ F with
T Möbius are precisely those that manifest extremal behavior. More precisely, we
have

Theorem D. Let f : (−1, 1)→ Rn ∪ {∞} satisfy f(0) = 0, |f ′(0)| = 1, f ′′(0) = 0
and suppose that S1f(x) ≤ 2P (x). Let P be as in Theorem B, and in addition be
even. Then

(a) |f ′(x)| ≤ F ′(|x|) on (−1, 1) and f admits a (spherically) continuous extension
to [−1, 1].

(b) If F (1) <∞, then f is one-to-one on [−1, 1] and f([−1, 1]) has finite length.
(c) If F (1) =∞, then either f is one-to-one on [−1, 1] or, up to rotation, f = F .

Proof. It is not difficult to see that the normalization assumed in the statement
can always be achieved by composing f with a suitable Möbius transformation.
Indeed, if we map the osculating sphere of f at f(0) onto a 2-dimensional subspace
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R2 (regarded as C) with a Möbius transformation T , then, after replacing f by
T ◦ f , we can regard f(0), f ′(0), and f ′′(0) as complex numbers. After suitable
translation, rotation and dilation, we can then obtain f(0) = 0, f ′(0) = 1, and
f ′′(0) = 2α. Composition of the extension to Rn of the Möbius map z/(1 + αz)
of the plane with this f results in one with the desired properties. Again let
v = |f ′|−1/2. As pointed out in the proof of Theorem B, v′′ + qv = 0 for some
q ≤ P , and because of the normalization of f , v(0) = 1, v′(0) = 0. Thus the Sturm
comparison theorem implies that v(x) ≥ U0(x), so that |f ′(x)| ≤ F ′(|x|).

If F (1) <∞, then both integrals∫ 1

0

|f ′(x)|dx ,

∫ 0

−1

|f ′(x)|dx

are finite, which implies that f admits a continuous extension to [−1, 1] and that
f([−1, 1]) has finite length.

Suppose that F (1) = ∞, and let G(y) = F−1(y), −∞ < y < ∞. We consider
the function

(3.2) w(y) = (
v

U0
)(G(y)) .

Since G′(y) = U2
0 (G(y)), it follows easily that

w′′ = (P − q)U4
0w ,

where P, q, U0 are evaluated at G(y). Also, w(0) = 1, w′(0) = 0. Because 2q ≤
S1f ≤ 2P , w is convex. We claim that on each of the half-intervals (−1, 0] and
[0, 1), either f = F (up to rotation), or else f can be extended to the endpoint so
that the image of that half has finite length. The analysis being the same for each
half, we consider [0, 1). If q < P at a single point, then w(y) ≥ ay + b, a > 0 for all
large y. Hence for x close to 1

(3.3) |f ′(x)| = v−2(x) ≤ U−2
0 (x)

(aF (x) + b)2
=

F ′(x)
(aF (x) + b)2

= −1
a

d

dx

(
1

aF (x) + b

)
,

which implies that
∫ 1

0
|f ′|dx <∞, so that f([0, 1)) once again has finite length, and

f admits a continuous extension to [0, 1]. On the other hand, it follows from (3.1)
that q ≡ P on [0, 1) only if S1f = 2P and f ′, f ′′ are linearly dependent. But then
f maps that half onto a line, and because of the normalization at the origin and
the fact that S1f = P it follows that, up to a rotation, f = F , and again we have
a spherically continuous extension. This completes the proof of (a).

It remains only to show that this continuous extension to [−1, 1] is injective
except in the case of (c) when f coincides with the extremal F on the entire interval.
If f is not one-to-one, then either f(1) = f(−1) or there exists x0 ∈ (−1, 1) such that
f(x0) equals, say f(1) (the case f(x0) = f(−1) being the same except for notational
details). Thus, in either case there exists x0 ∈ [−1, 1) such that f(x0) = f(1) and
f is one-to-one on [x0, 1). Let T once again be a Möbius transformation such that
g = T ◦ f satisfies g(1) = ∞. Then v = |g′|−1/2 is regular on (x0, 1) and satisfies
v′′ + qv = 0, where 2q ≤ S1f ≤ 2P as in (3.1). It is easily verified that the general
solution of U ′′ + PU = 0 is αU0 + βU0F = (α + βF )U0. Let c = (1 + x0)/2.
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If we choose a, b such that v(c), v′(c) coincide with the corresponding values for
(a + bF )U0, then by Sturm comparison, v ≥ (a + bF )U0 on any subinterval of
(x0, 1) containing c on which (a + bF )U0 is positive. Since F is increasing and
a+ bF (c) = v(c)/U0(c) > 0, a+ bF will have to be positive on at least one of (x0, c)
or (c, 1). Then on this interval

|g′| ≤ 1
(a+ bF )2U2

0

=
F ′

(a+ bF )2
,

so that we will have
∫ 1

c |g′|dx < ∞ or
∫ c
x0
|g′|dx < ∞ (contradicting of the fact

that g(x0) = g(1) = ∞), unless b = 0, x0 = −1 and F (1) = F (−1) = ∞. Since in
this case g(−1) = g(1) = ∞, we can replace g by a multiple of it so that v(0) = 1
(and v′(0) = 0). We again consider the convex function w defined in (3.2), and
recall that the analysis leading to (3.3) shows that g cannot be infinite at both 1
and −1 unless S1g = 2P and g((−1, 1)) is a straight line. Because g = T ◦ f and
f(0) = 0, |f ′(0)| = F ′(0), and f ′′(0) = F ′′(0), it is clear that f is a rotation of F .

4. Final comments

1. The situation considered in part (b) of Theorem D is essentially the case of
a nonsharp univalence criterion. More precisely, it can be shown in this case that
when (1 − x2)2P (x) is nonincreasing there exists λ > 1 such that S1f ≤ 2λP still
implies injectivity [Ch]. We also point out that Theorem D is a curve analogue of
a theorem of Gehring and Pommerenke [Ge-Po].

2. The Schwarzian for curves as presented in Section 2 makes sense for C3

curves in a Hilbert space of arbitrary dimension, since the osculating sphere remains
meaningful in that context. Indeed, the normalizing procedures, as well as the
inversion operation taking a point to infinity, used in the proofs are well-defined
and continue to leave the Schwarzian unaltered. For this reason, Theorems A, B,
C, and D carry over verbatim.

3. Since, as indicated in the Introduction, injectivity for curves based on bounds
on Sf translates into injectivity for conformal mappings, Theorem B should have
a counterpart for F : D → Rn, for appropriate domains D ⊂ Rn, and indeed it
does, if one is content with bounds on SF calculated in all directions. It is easy
to see, for example, how this would work for convex D, in which case an optimal
bound would be 2π2/(diamD)2. It would be nice, however, to find a more elegant
statement to this effect, based perhaps on a bound for a single expression involving
partial derivatives of order up to 3 of F .
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