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ABSTRACT

Deformable image registration allows studying lung mechanics in a non-invasive way,

providing additional information on respiratory behavior that can positively impact the

diagnosis of lung-related diseases. The first part of this thesis focuses on assessing the

regional deformation that occurs in normal human lungs. To this end, we combine free

form deformable image registration (FFD) models with finite-element (FE) stress recov-

ery techniques. Spatial distributions of length, surface, and volumetric deformation are

estimated by computing the invariants of the right stretch tensor. Normalized maps of de-

formation show a common spatial pattern of deformation among all subjects studied. All

three invariants of deformation display a noticeable gradient of lung deformation along the

ventral-dorsal direction, highlighting the role of gravity in the normal lung under sponta-

neous respiration. A significant limitation showed by the B-Spline-based FFD model was

the inability to account for sliding mechanisms. This issue results in misleading estima-

tions of lung deformation near discontinuity regions. Therefore, the second part of this

work introduces an inelastic deformable image registration (i-DIR) model with the ability

to automatically capture sliding surfaces without any knowledge of the spatial location

of discontinuous boundaries. Using an inelastic regularizer, the registration problem is

thoroughly described as a variational problem. The model is validated using synthetic im-

ages and further applied to lung CT images to demonstrate its clinical applicability. The

inelastic model detects regions of high shear-induced deformation associated with slid-

ing mechanisms and locally modifies effective mechanical properties. As a result, high

levels of shear deformation are allowed without adding non-physiological levels of stress

in localized domains, such as boundaries and fissures of the lung. The model produces

accurate local lung strain estimates similar to those reported in the literature and does not

exhibit spurious oscillatory patterns near discontinuities, typically observed in B-Spline

or elastic DIR methods.
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Keywords: deformable image registration, computational inelasticity, image-based lung
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RESUMEN

Los modelos de registro deformable de imágenes permiten estudiar la mecánica aso-

ciada a los pulmones de forma no-invasiva. Tienen la capacidad de medir la deformación

que se desarrollan a nivel regional del tejido, proporcionar información en cuanto al

correcto funcionamiento respiratorio y el potencial de mejorar el diagnóstico de enfer-

medades. Esta tesis se enfoca en estudiar los mecanismos de deformación regional que

se desarrollan en pulmones humanos sanos usando un modelo de registro deformable de

código abierto. La deformación pulmonar es descrita mediante las tres invariantes del ten-

sor de estiramiento derecho, las cuales se asocian a deformación longitudinal, superficial

y volumétrica, respectivamente. Mapas normalizados muestran un patrón espacial de de-

formación que es común entre todos los sujetos analizados. Los mapas de deformación

asociado a las tres invariantes muestran un notorio gradiente en la dirección ventral-dorsal,

destacando el rol de la gravedad durante el proceso de respiración espontánea. Sin em-

bargo, el estudio dejó en evidencia la incapacidad del modelo de registro en capturar

deslizamiento de tejido, generando errores de medición cerca de discontinuidades. La

segunda parte de este trabajo presenta un modelo de registro inelástico (i-DIR) cuya ca-

racterı́stica principal es la capacidad de capturar automáticamente superficies deslizantes

sin ningún conocimiento sobre la ubicación espacial de las zonas discontinuas. El modelo

es validado mediante imágenes sintéticas y luego utilizado en imágenes de tomografı́a de

tórax para demostrar su aplicabilidad clı́nica. El modelo inelástico detecta regiones de

alta deformación inducida por cizalla, las cuales se asocian a deslizamiento, y modifica

localmente propiedades mecánicas. Como resultado, el modelo permite altos niveles de

deformación por cizallamiento sin agregar altos niveles de estrés en regiones localizadas,

tales como las fronteras y fisuras del pulmón.

Palabras Claves: registro deformable de imágenes, inelasticidad computacional, mode-

lamiento biomecánico pulmonar.
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1. INTRODUCTION

Regardless of the nature, there is a massive concern by society and the medical com-

munity around respiratory diseases since they have been among the top leading causes

of death throughout humankind’s history (World-Health-Organization, 2020; Office-For-

National-Statistics, 2020). The impact of respiratory diseases on public health and their

relation on pulmonary mechanics has motivated the development of this thesis and the

study on the biomechanical analysis of lungs based on medical images.

To answer the question: What is biomechanics and, how does it relate to lung func-

tion? this work begins with a quick review of lung physiology and how the field of me-

chanics can contribute to the study of its behavior and provide information to specialists

for the diagnosis of diseases.

1.1. Lung physiology and mechanics

1.1.1. Lung physiology

In few simple words, the respiratory system is responsible for gas exchange necessary

for our cells to sustain life. It is a system of organs which includes, the nose, nasal cav-

ities, pharynx, larynx, trachea, bronchi, and lungs. The latter are vital structures much

more complex than mere air sacs that inflate and deflate cyclically throughout life. From

a macroscopic and microscopic perspective, the lungs are part of a complex and sophis-

ticated system, that requires the coordinated participation of various organs. Its function

is not limited to pulmonary ventilation (mechanical phenomenon) but also the distribu-

tion and ventilation/perfusion ratio, diffusion of gases between air and blood, transport of

molecules of O2 and CO2, metabolic regulation, mechanical and cellular defense mech-

anisms, and hemodynamics of the pulmonary circulation (Cruz Mena & Moreno Bolton,

1999).
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The basic microscopic unit where gas exchange occurs are small air sacs called alveoli.

Gas exchange takes place thanks to the large diffusion area of 40 to 100m2 available in the

lungs, made up of hundred of million of alveoli. These alveoli are air sacs of a diameter of

250µm surrounded by a dense layer of capillaries, where oxygen and carbon dioxide move

between air and blood by simple diffusion through an extremely thin barrier (Cruz Mena &

Moreno Bolton, 1999). The blood vessels surrounding the alveolar wall are so thin that a

single blood cell can travel at a time, creating enormous blood exposure to the gas within

the alveoli space. However, because the barrier is so thin, they can be easily damaged

by the internal pressure of the capillaries or the exposure to large volumes of air in the

lungs. As a result, plasma and blood cells leak into the alveolar space directly affecting

the process of oxygenation (West, 2012). Therefore, the alveolar air sacs are an efficient

but fragile gas exchange system.

As the name implies, the airways are paths that connect the alveoli with the exterior.

They are made up of a sequence of branching tubular structures that become narrower

until they reach the alveolar sacs. The conducting zone starts with the nose, acting as

a front door capable of warming the air to about 37◦C thanks to a rich vascularization.

Moreover, it provides an essential barrier to aerosols, thanks to the adhesiveness of the

mucus layer and the presence of hairs. The mouth becomes an alternative air intake when

having a nasal obstruction. The airway continues with the pharynx that connects with

the larynx responsible for phonation. The larynx also contains the crucial junction of the

respiratory and digestive tracts (Cruz Mena & Moreno Bolton, 1999). The airways directly

associated with the respiratory process adopt a tree-like composition as shown in Figure

1.1, with the trachea as the main trunk. The trachea is then divided into a right and left

main bronchus, which in turn divides into lobar and segmental bronchi. These branches

continue dividing, becoming narrower until they reach the terminal bronchioles, which

constitute the thinnest airways with no alveoli. From this point onward, the conducting

zone ends. The respiratory zone begins with the respiratory bronchioles characterized by

a sporadic presence of alveoli that sprout from their walls. The airway system ends with

the gas exchange area composed of alveolar ducts filled with alveoli (West, 2012).
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Figure 1.1. Representation of the airways within the human lung. The
alveoli sacs have been removed, allowing to see the conducting airways,
from the trachea to the terminal bronchioles. Image taken from (West,
2012)

From a macroscopic view, the alveolar tissue and the airways (from the distal portion

of the main bronchi) are carefully arranged with a fibrous septum which confers structural

support, giving rise to the left and right lung. They are independently enclosed within a

double membrane called pleura, and between these membranes, we can find pleural fluid

that serves as a lubricant, allowing the pleura to slide smoothly against each other during

respiration. In humans, the right lung is shorter and broader than the left and can handle a

larger volume of air. It is divided by a transverse and oblique fissures into three portions or

lobes: upper, middle and lower. In contrast, the left lung is divided by an oblique fissure

into two lobes: upper and lower; and has a cardiac notch where the heart accommodates

(Lew, 2010; Whittemore, 2004; Cruz Mena & Moreno Bolton, 1999; Ward, 2010).

The thoracic cage is composed of a bony and cartilaginous structure, including ribs,

the sternum, and thoracic vertebrae. They surround the thoracic cavity giving support to
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the pectoral girdle, and due to their rigidity provide protection to all organs within the tho-

rax. The process of lung deformation use various muscles intertwined with the rib cage.

During inspiration, the thoracic cage expands due to the contraction of the intercostal mus-

cles and the diaphragm, resulting in an upward and outward movement of the ribs and a

downward movement of the diaphragm, respectively. When the thorax expands, the pleu-

ral surface pressure reduces relative to the atmospheric pressure, allowing the air to enter

the lungs. This process, however, is not heterogeneous throughout the lung. For instance,

when inspiration begins from a state of functional residual capacity, a person in an up-

right position experiences more deformation at the base of the lung (near the diaphragm).

However, when inspiration follows from a state of full expiration, the apex of the lung (up-

per portion) initially undergo a more significant expansion than at the base. By contrast,

expiration is a passive process characterized by the relaxation of the diaphragm and inter-

costal muscles. This results in an intrapleural pressure higher than the external pressure

producing the deflation of the lungs to a resting state due to elastic recoil. The internal

deformation of the lung is affected by a combination of gravitational, elastic, resistive,

and inertial forces, which leads to a complex and not trivial mechanism of deformation

(Cotes, Chinn, & Miller, 2006; Whittemore, 2004).

1.1.2. Lung mechanics

Spontaneous breathing is regulated and controlled by the medulla oblongata located in

the upper brainstem. The control system responds to the levels of CO2 in the bloodstream,

involving an intricate interaction between chemoreceptors and mechanoreceptors scattered

throughout the body. This region of the central nervous system send signals to various

muscles causing a synergistic contraction in the thorax and abdomen, that results in the

expansion of the rib cage (Rogers, 2011). As a result, differences in internal and external

pressure arise, causing the lung to expand and relax.

Inside the pleural cavity, a thin layer of pleural liquid composed of proteins and blood

cells reduces the friction between the visceral and parietal pleura. While breathing, this
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allows energy dissipation and protection from shear-induced abrasion (Lai-Fook, 2004;

D’Angelo, Loring, Gioia, Pecchiari, & Moscheni, 2004). As illustrated in Figure 1.2,

this lubricant allows the lung to effortlessly glide freely with its surroundings and provide

cohesion between the lung surface and the thoracic wall. In addition to pleural sliding,

the contact surfaces between each lobe also exhibit sliding during respiration (Rodarte,

Stamenovic, & Walters, 1985; Yin, Hoffman, & Lin, 2010). The absence of lung sliding

may indicate the presence of pneumothorax, or it may manifest in patients with severe

acute lung injury (Mallow & Isakow, 2019). Lobular and pleural gliding is a constant and

intrinsic feature during normal respiration and plays a key role in lung behaviour.

Upper lobe

Lower 
lobe

Right lung Left lung

Middle 
lobe

Upper lobe

Lower 
lobe

Diaphragm

Lobar sliding Pleural sliding

Cardiac
notch

Visceral pleura

Pleural cavity

Parietal pleura

Figure 1.2. Schematics of lobar and pleural sliding in the human lung

The ability of the lung to stretch and expand can be measured by the slope of the

pressure-volume curve. A particular characteristic of this curve in the lungs is that it ex-

hibits hysteresis, that is, the trajectory that the curve follows during inspiration is different

from the trajectory on expiration. The normal human lung is very distensible (easily de-

formed) in the normal range of pressure (expanding pressure of −5 to −10 cm water) and

becomes stiffer at high expanding pressures (West, 2012). Overall the normal human lung

is a very deformable organ. From a global deformation point of view, the lung can easily
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accommodate twice the volume of air, that is, from a residual functional capacity of 3500

ml (resting state) it can expand to a total lung capacity of 7300 ml (Ward, 2010). Even

though the lung is highly deformable, it is well known that deformation is not homoge-

neous inside the lung, largely due to the effect of gravity (Mitzner, 2011).

A pressure-volume curve that exceeds the typical values described for a healthy lung is

sufficient evidence that the lung is not working correctly. An excessively distensible lung

is a sign of loss of elastic capacity of the lung, frequently characterized by damage to the

inner wall of the alveolus. In contrast, a stiff lung that cannot deform adequately suggests

fibrosis or even pulmonary edema. (West, 2012, 2013). In an injured lung, structural and

mechanical alterations reduce the magnitude of deformation experienced by the lung and

alveoli. For example, in a common lung condition known as acute respiratory distress

syndrome (ARDS), the alveoli and capillary inflammation cause a buildup of fluid within

the air sacs that progressively prevent gas exchange. The large-scale manifestation is the

hardening of the lung and, as a result, the inability to expand. This condition ultimately

leads to a severe impact on the mechanical performance and physiological function of the

lung, resulting in reduced lung capacity (abnormal compliance) (Gattinoni et al., 1998,

2006; Roan & Waters, 2011). During mechanical ventilation excessive lung deformation

commonly known as ventilator-induced lung injury (VILI) can trigger damage and inflam-

mation at the cellular level of the lungs (Dreyfuss & Saumon, 1998; Vlahakis, Schroeder,

Limper, & Hubmayr, 1999). In (Retamal et al., 2018a), an experimental porcine study

correlates local strain with inflammatory processes of the lung. Results show a positive

spatial correlation between local strain and inflammation. Conclusions are that strain is

one of the main determinants of VILI and are consistent with previous statements on the

matter (Gattinoni et al., 2003; Valenza et al., 2005; Mentzelopoulos, Roussos, & Zakynthi-

nos, 2005). The use of non-invasive (i.e., image-based) methods to measure mechanical

changes within the lung can enrich our understanding of how local deformation occurs

in a healthy and diseased lung, directly impacting early diagnosis. Also, improve our

knowledge in VILI development and establish more conservatively and safely mechanical

ventilation therapies.
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1.2. Image registration

Medical imaging techniques are widely employed in medicine, with applications in

treatments, diagnostics, surgical planning, and radiation therapy procedures. In general,

the imaging modalities used in these applications are classified into anatomical and func-

tional. The first group provides structural details within the body, including ultrasound,

X-rays, computed tomography (CT), and magnetic resonance imaging (MRI). The second

group provides information on biological behavior by providing metabolic information

from the underlying anatomy. Common functional modalities include single-photon emis-

sion computed tomography (SPECT), positron emission tomography (PET), and func-

tional magnetic resonance imaging. The integration of images from different modalities

or acquired at different time periods provides useful information to improve the ability

to identify lesions, influence treatment decisions, and patient management. This requires

a process of spatial image alignment commonly known as image registration (Maintz &

Viergever, 1998; Crum, Hartkens, & Hill, 2004; Viergever et al., 2016).

Image registration aims to find an optimal spatial transformation capable of correlating

information in one image with others. In practice, no measurement is completely accurate

and there is some error or tolerance associated with this estimated match, especially on

finer scales (Hajnal, Hawkes, & Hill, 2001). The above gives the transformation a quality

of asymmetry, where there is no guarantee that a point in one image can be related to its

corresponding location in the other (Crum et al., 2004).

According to Crum and coworkers, image registration requires the definition of three

elements: a similarity measure, a transformation model, and an optimization algorithm

(Crum et al., 2004).

The similarity measure quantifies the difference between the images to be aligned. The

similarity metric of choice depends on the application. These include the sum of squared

differences (SSD), cross-correlation (CC), and mutual information (MI) or normalized

mutual information (NMI). SSD assumes that the tissues have the same intensities between
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images, as in the case of mono-modal applications. CC used in multimodal registration

assumes that the intensities within the images have a linear relationship. MI/NMI used for

multimodal applications arises from information theory and seeks to minimize the joint

entropy of gray values within images (Schmidt-Richberg, 2014; Crum et al., 2004).

The transformation model describes how an image is modified to align it with the oth-

ers and characterize it by the number and type of deformations. The number of parameters

that are used to define the spatial transformation during registration is called the number

of degrees of freedom (DOF). Depending on the deformations they capture, the trans-

formation models can be classified into: rigid and nonrigid (Hajnal et al., 2001). Rigid

registration originates from the definition of rigid-body transformation and is the simplest

form of image registration. Rigid models have global DOF that includes translational and

rotational transformation. However, by definition, these parameters are expanded to de-

scribe scaling and shear deformation, as in affine transformations (Hajnal et al., 2001).

Specifically, rigid registration is well suited to handle minor changes between the images,

as in the case of structures with rigid morphological attributes such as brain images (Crum

et al., 2004). By contrast, nonrigid models also known as Deformable Image Registration

(DIR) models are adequate to characterize soft tissue deformation. Unlike rigid registra-

tion, nonrigid models allow a non-linear form of local deformation in the tissue. Usually,

penalty terms or constraints must be considered to confer a physically plausible defor-

mation in DIR models. These constrains, however, depend on the application at hand

(Hajnal et al., 2001). Having more degrees of freedom, though, comes at some expense.

The more parameters involved in the process, the higher the computational cost, both in

memory consumption and computing time. Rigid registration takes a very small fraction

of time compared with nonrigid models to estimate results (Crum et al., 2004). Nonrigid

models often need a good initial estimation in order to have proper convergence. Several

algorithms include a preliminary registration using rigid transformations followed by a

nonrigid transformation model (Maintz & Viergever, 1998).
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The registration model can be formulated as an optimization problem that seeks to

measure the ”optimal” transformation that maps one image onto another. This process

aims to minimize a cost or objective function. Usually, DIR models are ill-posed because

they do not have a unique solution or the solution may be too sensitive to input data,

i.e. image noise (Abidi & Singh, 2020). To address this issue, in addition to a similar-

ity distance, the objective function must consider an additional energy term that acts as a

regularizer which constrains the domain of valid deformations. In most cases, the opti-

mization process starts with an initial guess close enough to converge on an accurate result.

Then the registration algorithm computes the similarity function and evaluates how well

the images align. The procedure continues through an iterative process until achieving

an optimal registration. This is done by processing several transformations that increase

(or decrease) the objective function until reaching a maximum (or minimum) tolerance

(Hajnal et al., 2001). Deciding the optimization strategy suitable for a particular applica-

tion depends on the objective/cost function, the transformation model, the constraints, and

the accuracy requirements (Crum et al., 2004).

1.2.1. A variational approach for deformable image registration (DIR)

This thesis aims to add physiologically plausible transformations to the image regis-

tration process. A particular type of registration model based on elastic deformations of

the body helps to engage the challenge. By providing material properties using the Lamé

parameters, the image domain is modeled as an elastic solid based on the Navier-Cauchy

equations (Broit, 1981; Schmidt-Richberg, 2014). In such cases, the cost function be-

comes an energy functional. The image similarity metric acts as an external force and an

elastic penalty term acts as an internal regularization force. The balance of these forces

drives the deformation within the image. Typically, the solution of such type of registra-

tion techniques is computed by the minimization of the energy functional (Crum et al.,

2004).
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Following the mathematical approach set forth in (Modersitzki, 2003), the purpose

of this section is to define a general framework of the registration problem, which lays

the basis for an elastic formulation described in Section 3.2.1. The first step is to define

the registration problem using a variational formulation that seeks to minimize a DIR

functional. It is important to mention that although digital images are discrete domains

that live in the space defined by the set of all integers (Z), in this thesis, the images will be

defined within the domain of the reals (R). In this way, let Ω ⊂ Rn be a domain of interest

(i.e. image domain), where R : Ω −→ R is a reference (fixed) image and T : Ω −→ R

a target (moving) image. Then a transformation mapping ϕ : Ω −→ Rn is defined, such

that Tϕ(x) := T (ϕ(x)) resembles R(x), with x ∈ Ω. Conveniently, the deformation

mapping field can be expressed in terms of a displacement field u : Ω −→ Rn, such that

ϕ(x) = x+ u(x) ∀x ∈ Ω. (1.1)

In medical imaging, an important assumption when using images of the same patient

and acquired in short periods of time is to conceive ϕ as a diffeomorphic transforma-

tion. Diffeomorphic transformations are advantageous since they preserve the topology

of the deformation (tissue folding is not allowed). They are characterized by a continu-

ous and smooth bijective mapping field, with derivatives that are invertible (i.e., nonzero

Jacobian)(Ashburner, 2007). Next, let V := H1(Ω,Rn) be a functional space, where a sim-

ilarity metric D : V −→ R helps to seek the minimum distance (minimum dissimilarity)

between R and Tu with respect to the displacement field u,

D[R, T ;u] := D[R, Tu]
u−→ min (1.2)

with Tu := T (x + u(x)). As stated earlier, in practice a direct minimization of D is ill-

posed leading to several drawbacks (e.g., no unique solution). Therefore, it is convenient

to include a penalty term S : V −→ R which ensures a smooth transformation. Now, it

is possible to define the registration problem as an energy minimization functional. The

problem reads: Given two images: R and T ; and a positive scalar weighting parameter
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α ∈ R+, find a displacement field u, such that

Π[u] := αD[R, T ;u] + S[u]
u−→ min (1.3)

Traditional choices of elastic regularization are based on symmetric bi-linear forms of

a : V × V −→ R, with A : V −→ V ′ as a partial differential operator, such that

a[u,v] :=< Au,v >. Given this understanding of bi-linearity, the regularizing term

becomes

S[u] :=
1

2
a[u,u] ∀u ∈ V . (1.4)

By now, the minimization functional becomes

min
u∈V

Π[u] = min
u∈V

αD[R, T ;u] +
1

2
a[u,u] ∀u ∈ V (1.5)

A helpful way to solve (1.5), consists in finding the Gateaux derivatives of Π[u] for all

suitable perturbations v ∈ V , such that

dS[u;v] := a[u,v] =

∫
Rn
< A[u](x), v(x) >Rn dx (1.6)

and

dD[R, T,u;v] := Fu(v) =

∫
Rn
< f(x, u(x)), v(x) >Rn dx. (1.7)

The term Fu : V −→ R is linear given u and represents the so-called force f , which

depends on the similarity measure. These first order conditions (1.6), (1.7) gives rise to

the following non-linear problem: Find u ∈ V , such that

a[u,v] = αFu(v) ∀v ∈ V (1.8)

The preceding definition constitutes the simplest form of a variational framework associ-

ated with the registration problem. A variety of numerical schemes can be applied to find

its solution, such as gradient-based descent methods or even higher order schemes (e.g.,

Newton-Raphson method)(Modersitzki, 2003; Barnafi, Gatica, & Hurtado, 2018).
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1.3. Image-based quantification of pulmonary deformation

The gold-standard in the assessment of lung respiratory function is spirometry. This

test uses a spirometer, an instrument that provides relevant information on impaired respi-

ratory function by measuring tidal volume and vital capacity. However, given the global

measurements found in these types of instruments, they cannot determine how the lung is

deformed locally (West, 2012). The use of image-based techniques brings relevant data

related to the spatial heterogeneity of the lung’s deformation. One of the first attempts in

measuring local lung deformation date back to the work of Rodarte et al., where lead mark-

ers were implanted percutaneously in the lung parenchyma of adult dogs and then tracked

using fluoroscopic signals. Their results suggest that an important interaction between the

lung and thoracic cage exists and that thoracic cavity shape is an important determinant of

regional volume distribution. However, according to the authors, without a better defini-

tion of the lobe shape and the location of the interlobar surfaces, the displacement in these

surfaces and its importance with respect to the stress and volume distributions cannot be

determined (Rodarte et al., 1985).

The need of a regional assessment of lung deformation motivated the development

of computational techniques and improved imaging equipment. Today, image registration

techniques allow for the assessment of displacement fields from two ventilatory levels (i.e.

inspiration and expiration), providing useful information of the complex mechanisms of

lung deformation. Variants of image registration methods that allows for the quantifica-

tion of regional deformation in the lungs are deformable image registration (DIR) models

(see Figure 1.3). In DIR, the lung tissue is assumed to be a continuum subject to contin-

uous (and differentiable) deformation fields (Reinhardt et al., 2008; Amelon, Cao, Rein-

hardt, Christensen, & Raghavan, 2012; Jahani et al., 2015). Using non-rigid image-based

registration techniques, Reinhardt and coworkers measured lung expansion (volumetric

change) in sheeps by means of the Jacobian. Later, using human lung CT images the au-

thors characterized regional lung deformation by quantifying: a) the Jacobian (J), b) the

anisotropic deformation index (ADI), which measures the magnitude of the orientational
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preference of volume change and c) the slab-rod index (SRI), which is a measure of the

nature of directional preference in the volume change. These three indexes were selected

so that different, but complimentary features of regional lung deformation could be iden-

tified independently. Results showed that for different subjects, spatial distribution can be

highly non-homogeneous in terms of J , ADI and SRI. In terms of J , subjects presented

high values at the dorsal-inferior regions, suggesting a localized region of high volumetric

change (Amelon et al., 2011). Abnormally high values of ADI were present in the fissures

of the lung, which has been attributed to registration artifacts and the inability of the DIR

method to capture lobar sliding without resulting in spurious shear deformation (Amelon

et al., 2012; Amelon, Cao, Reinhardt, Christensen, & Raghavan, 2014).

Figure 1.3. 3D visualization schematics of regional deformation in human
lungs, computed from image-based registration models. Left: strain fields
interpolated over a tetrahedral finite element mesh. Right: displacement
field vectors overlapped on a finite element mesh.

To improve the accuracy and robustness of DIR-based biomechanical analysis,

(Hurtado, Villarroel, Retamal, Bugedo, & Bruhn, 2016) introduced a computational

method for the analysis of regional deformations based on finite element (FE) projec-

tions. The combination of non-rigid registration, FE interpolation and a variational re-

covery approach show that regional strain maps in synthetic images, and in particular

volumetric strain, result in more accurate predictions without spurious oscillations. With
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this method, the levels of ADI deformation around lobar fissures are reduced. However,

it still remained high compared to regions without sliding surfaces, as one of the main

assumptions of the method is the continuity of displacement fields (Hurtado et al., 2017).

In spite of the novel methods described above, DIR methods for image-based biomechan-

ical analysis of lungs are far from perfection and several limitations are evidenced. For

example, registration methods based on B-Splines interpolations cannot capture material

interfaces due to the complex organ geometry. This results in misleading image regis-

tration errors, directly affecting regional lung deformation estimations, which possess no

physiological basis (Amelon et al., 2011; Hua, Pozo, Taylor, & Frangi, 2015; Hurtado et

al., 2017; Al-Mayah, Moseley, Velec, & Brock, 2009; Ding et al., 2009). While there are

some promising attempts that incorporate additional constraints that accounts for organ

sliding (Hua et al., 2015; Pace, Aylward, & Niethammer, 2013; Delmon, Rit, Pinho, &

Sarrut, 2013; Schmidt-Richberg, Werner, Handels, & Ehrhardt, 2012), several limitations

are evidenced that preclude them from their direct applicability to the analysis of regional

strain deformation in tissue. Moreover, despite the advances in terms of biomechanical

quantification in lungs, most studies have been focused on volumetric changes, and they

do not include any other metric that describes the energy of a solid (i.e. preferential ori-

entation of deformation). In this context, a promising research area is an image-based

method for biomechanical analysis of the lung that may include other deformation metrics

(e.g., length and surface deformation), along with the ability to capture sliding on irreg-

ular geometries such as pleural space and lobe fissures without a priori knowledge of the

position of such discontinuities.

1.4. Objectives

Due to the complex nature of lung kinematics, where lobular and pleural sliding play

a key role in regional lung deformation, questions arise: Are there any additional metrics,

other than volumetric deformation, that might help describe regional strain in the lungs?

Is it possible to capture the deformation mechanisms that reveal lobular and pleural sliding
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within the image registration process? This doctoral thesis aims to answer these questions

by studying the spatial patterns of distributions of regional lung deformation in normal

lungs and developing an inelastic deformable image registration model capable of captur-

ing tissue sliding.

1.5. Thesis structure

The structure of this thesis is as follows: Chapter 2 describes the study of spatial

distributions of regional deformation in normal lungs using computed tomography (CT)

images. It introduces the mechanical framework of how regional deformation is measured

and presents a novel score that facilitates a better inter-subject comparison. Chapter 3

describes the theory, motivation, and development of an inelastic deformable image reg-

istration (i-DIR) model that can automatically detect sliding surfaces, which has direct

applicability in the analysis of deformation mechanisms on lung CT images. Chapter 4

summarizes the conclusions and future work relevant to the biomechanical analysis of

lungs.
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2. SPATIAL DISTRIBUTION OF REGIONAL DEFORMATION IN NORMAL

HUMAN LUNGS

Abstract Understanding regional deformation in the lung has long attracted the med-

ical community, as parenchymal deformation plays a key role in respiratory physiology.

Recent advances in image registration make it possible to noninvasively study regional

deformation, showing that volumetric deformation in healthy lungs follows complex spa-

tial patterns not necessarily shared by all subjects, and that deformation can be highly

anisotropic. In this work, we systematically study the regional deformation in the lungs

of eleven human subjects by means of in vivo image-based biomechanical analysis. Re-

gional deformation is quantified in terms of 3D maps of the invariants of the right stretch

tensor, which are related to regional changes in length, surface and volume. Based on

the histograms of individual lungs, we show that log-normal distributions adequately rep-

resent the frequency distribution of deformation invariants in the lung, which naturally

motivates the normalization of the invariant fields in terms of the log-normal score. Nor-

malized maps of deformation invariants allow for a direct intersubject comparison, as they

display spatial patterns of deformation in a range that is common to all subjects. For the

population studied, we find that lungs in supine position display a marked gradient along

the gravitational direction not only for volumetric but also for length and surface regional

deformation, highlighting the role of gravity in the regional deformation of normal lungs

under spontaneous breathing.

2.1. Introduction

The ability of lung tissue to cyclically deform is fundamental to life, as tens of millions

of respiratory cycles are needed during a lifetime to uninterruptedly supply the lungs with

air for gas exchange. The underlying mechanisms of lung deformation and its relation

to airway flow and alveolar ventilation during breathing have long attracted respiratory

physiologists. Indeed, the quantitative characterization of functional parameters that de-

scribe the global biomechanical behavior of the lung constitutes the basis for many tests
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routinely performed in the clinical practice to study pulmonary function and diagnose res-

piratory disease in patients, such as the spirometry and gas diffusion tests (West, 2012).

Despite the usefulness of current pulmonary function tests, there is an increasing interest

in obtaining respiratory functional information at a regional level, as global pulmonary

parameters are not capable of detecting the onset of several pathologies. One particular

example is chronic obstructive pulmonary disease, a progressive disease that severely di-

minishes pulmonary capacity. It has been shown that the measurement of emphysema

through a regional intensity analysis of CT images can be more sensitive than spirometry,

reducing the number of false negatives as well as allowing for earlier diagnosis (Spaggiari

et al., 2005; Lynch & Newell, 2009).

Deformable image registration based on computed tomography (CT) imaging of the

lung provides a noninvasive tool to study the motion and deformation of the lung at a

regional level (Sotiras, Davatzikos, & Paragios, 2013a). Using a continuum mechanics

approach a handful of attempts have been made to study the regional deformation of the

human lung parenchyma from chest CT images, predominantly focussing on volumetric

change (Christensen, Song, Lu, El Naqa, & Low, 2007; Reinhardt et al., 2008; Jahani,

Yin, Hoffman, & Lin, 2014). (Amelon et al., 2011) proposed the use of deformation-

based indices to characterize the anisotropy of regional deformation in six human healthy

subjects. In a larger study, (Choi et al., 2013) employed image registration tools to quanti-

tatively study the regional distribution of volumetric deformation, air volume change and

the anisotropic deformation index for 14 normal subjects and 30 severe asthmatics. When

comparing between normal and severe asthmatic populations, they were able to describe

significant regional differences in anisotropy and air volume change, demonstrating the

potential of image-based biomechanical analysis in distinguishing normal from diseased

lungs. In chronic obstructive pulmonary disease, the spatial distribution, anisotropy and

magnitude of regional volumetric strain has been shown to be significantly different de-

pending on the level of severity of the disease (Bodduluri, Newell, Hoffman, & Reinhardt,

2013). In the case of ventilator-induced lung injury, local parenchymal inflammation has
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been shown to develop proportional to the regional tidal volumetric strain induced by me-

chanical ventilation (Wellman et al., 2014) and may occur even in cases where global

values of tidal volumetric strain are below what is considered to be critical (Paula et al.,

2016).

As the examples mentioned above clearly confirm, a quantitative characterization of

the regional lung mechanics does have profound medical implications. We note that,

to date, regional characterization of lung mechanics has mainly focussed on volumetric

deformation and anisotropic indices for deformation. Biomechanical testing has shown

that parenchymal tissue displays a marked isotropic constitutive behavior (Hoppin, Lee,

& Dawson, 1975), which has been also suggested based on the randomly oriented mi-

crostructural arrangement of collagen and elastin fibers observed through electron mi-

croscopy (Mercer & Crapo, 1990). Considering the hyperelastic behavior, and the

isotropic architecture of lung tissue, it can be shown that the deformation energy density,

and the constitute response in general depends not only on the local volumetric deforma-

tion, but also on other deformation invariants of the stretch tensor that are related to surface

and length deformation (Ogden, 1984). Further, mechanical testing of lung tissue samples

has revealed that not only volumetric deformation, but also length deformation governs

the constitutive response of the lung parenchyma (Rausch, Martin, Bornemann, Uhlig, &

Wall, 2011). Thus, from a biomechanical perspective, the spatial characterization of not

only regional volumetric deformation, but also invariants related to the surface and length

deformation are crucial to better understand lung mechanics. Further, a complete in vivo

quantification of relevant metrics of local deformation in terms of invariants may serve as

validation to continuum constitutive models of lung parenchyma (Freed & Einstein, 2012).

In light of the clinical and biomechanical relevance of regional deformation in the

lung, the fundamental question that motivates this investigation is: Do regional deforma-

tion metrics in healthy human lung parenchyma follow common spatial pattern, or fre-

quency distribution that can be quantitatively described? In this work, we study the spatial

patterns and distribution of relevant deformation metrics of regional deformation in 11
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healthy human subjects. To this end, we use the image-based finite-element biomechan-

ical analysis introduced by the authors in a previous contribution (Hurtado, Villarroel, et

al., 2016), which has been shown to drastically improve the accuracy of regional deforma-

tion estimates. With the resulting regional maps of deformation, we perform an analysis of

possible spatial patterns and frequency distributions of different measures of deformation.

2.2. Materials and methods

Eleven healthy subjects, 2 females and 9 males, were recruited for this study and un-

derwent a protocol approved by the institutional review board of the Pontificia Universi-

dad Católica de Chile. All subjects declared to be non-smokers and did not report any

pulmonary disease or condition at the time of the study, nor that they have suffered any

major illness in the past that could leave a lung sequelae (e.g., pneumonia). Complete in-

formation about the age, gender and other anthropometric data for the population studied

is included in Table 2.1. Two CT thorax data sets were acquired in all subjects who re-

mained in supine position during the entire acquisition time. First, subjects were directed

to take a full inspiration (total lung capacity, TLC) and hold their breath for the first im-

age acquisition. Then, a spontaneous expiration (functional residual capacity, FRC) was

directed for the second image acquisition. The size of the CT images at TLC and FRC

was 512 × 512 × 285 voxels, with a voxel spatial resolution of 0.73[mm], 0.73[mm] and

1.25[mm] in the x, y, z direction, respectively. In all subjects, the data acquisition was

performed using a CT scanner (LightSpeed VCT, GE Healthcare, UK) with the following

settings: collimation, 1.25; interval, 1.25[mm]; bed speed, 27.5[mm] per second; voltage,

100[kV]; and current, 150[mA].
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Table 2.1. Anthropometric information of the population studied. TLC and
FRC are computed from CT image analysis

Subject Gender Age (yr) Weight (kg) Height (m) BMI
( kg

m2

)
TLC (L) FRC (L)

S01 M 30 73 1.80 22.5 5.68 2.97

S02 M 31 61 1.65 22.4 5.93 2.71

S03 M 35 85 1.80 26.2 6.21 3.09

S04 M 25 75 1.83 22.4 5.84 3.16

S05 M 26 84 1.84 24.8 8.07 2.41

S06 F 30 70 1.69 24.5 5.15 1.59

S07 M 22 66 1.73 22.1 5.31 2.71

S08 M 32 89 1.65 32.7 6.06 2.04

S09 M 43 76 1.71 26.0 5.56 3.83

S10 F 24 62 1.70 21.5 4.91 1.97

S11 M 25 71 1.72 24.0 7.53 2.64

Mean 29.4 73.8 1.74 24.5 6.02 2.65

Std 6.0 9.2 0.07 3.2 0.97 0.63

M: Male, F: female, BMI: body-mass index, TLC: total lung capacity, FRC: functional

residual capacity.

To study the regional deformation in lung parenchyma, we adopt a nonlinear con-

tinuum mechanics framework (Ogden, 1984). Because FRC is associated with a resting

state of the diaphragm and other respiratory muscles that can be naturally achieved by

all healthy subjects, we consider the domain of the lung at FRC as the reference config-

uration, represented by the open set B ∈ R3. Likewise, we identify the lung domain

at the inspiration phase as the current configuration and define the deformation mapping

ϕ : B −→ R3 as the field that transforms all points from the reference to the current
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configuration. We further define the deformation gradient tensor as

F := ∇Xϕ, (2.1)

where ∇X represents the gradient operator with respect to the reference coordinates X .

Given a unitary vector in the reference configuration M ∈ R3, we compute the stretch

ratio along such direction as

λ(M) :=
√
‖FM‖2. (2.2)

The stretch ratio delivers the change of length of a segment originally in the direction M

normalized by its length in the reference configuration. The volumetric deformation or

volume change is given by the determinant of the deformation gradient tensor, also known

as the Jacobian,

J := detF . (2.3)

Figure 2.1. Sketch of the polar and spectral decomposition of the deforma-
tion gradient tensor
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It follows from the polar decomposition theorem (Ogden, 1984) that the deformation

gradient can be uniquely decomposed as

F = RU , (2.4)

where R ∈ SO(3) is a rotation tensor and U is a symmetric positive-definite tensor, also

known as the right stretch tensor. Further, the spectral decomposition theorem allows for

the expansion

U =
3∑

α=1

λαNα ⊗Nα, (2.5)

where {λ1, λ2, λ3}with λ1 ≥ λ2 ≥ λ3 > 0 are the principal stretches, and {N 1,N 2,N 3}

are the material principal directions, depicted in Figure 2.1. To study the anisotropy of

deformation, we consider the anisotropic deformation index (ADI) and the slab-rod index

(SRI) defined as (Amelon et al., 2011; Jahani et al., 2015)

ADI :=

√(
λ1 − λ2

λ2

)2

+

(
λ2 − λ3

λ3

)2

(2.6)

SRI :=
tan−1

(
λ3(λ1−λ2)
λ2(λ2−λ3)

)
π
2

(2.7)

An ADI value of 0 implies an isotropic deformation, i.e., λ1 = λ2 = λ3 , while departure

from zero indicates that deformation is anisotropic. The SRI ranges from 0 to 1, with

values closer to 0 indicating a slab-like deformation, and values closer to 1 indicate a

rod-like deformation, given that ADI is not close to zero.

Assuming a hyperelastic constitutive behavior for the parenchymal tissue, it follows

that the biomechanical response can be modeled by a deformation energy density W (F ).

From isotropy and objectivity considerations and the isotropic function representation the-

orem (Truesdell & Noll, 1965) it follows that

W (F ) = W̃ (I1, I2, I3) (2.8)
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that is, the deformation energy density will only depend on the invariants of the right

stretch tensor U , which can be defined as

I1 :=
1

3
trace(U) ≡ 1

3
(λ1 + λ2 + λ3), (2.9)

I2 :=
1

6

(
(trace(U))2 − trace(U 2)

)
≡ 1

3
(λ1λ2 + λ2λ3 + λ3λ1), (2.10)

I3 := det(U) ≡ λ1λ2λ3. (2.11)

We note here that our definition of invariants differs by a constant of 1
3

from standard def-

initions of the first and second invariants for normalization purposes, i.e., all invariants

will take a unitary value when no deformation is applied (F = I). From a kinematic per-

spective, we note from Figure 2.1 that I1 corresponds to a length deformation measured in

terms of the Manhattan distance, i.e., the ratio of the sum of edge lengths in the deformed

configuration over the sum of edge lengths in the undeformed configuration. Further, I2

corresponds to a surface deformation, i.e., the ratio of the surface area in the deformed

configuration over the surface area of the undeformed unitary cube. Finally, we note that

I3 ≡ J , i.e., the third invariant is equal to the volumetric deformation, or Jacobian.

To construct 3D maps of the deformation gradient tensor and its associated defor-

mation measures, we perform biomechanical analysis on the acquired data sets using the

finite-element (FE)-based method proposed in (Hurtado, Villarroel, et al., 2016). FE meth-

ods have been widely employed in the field of biomechanics, ranging from modeling the

mechanical behavior of complex alveolar structures (Hobrack, Haberthür, Stampanoni,

Schittny, & Wall, 2011) and respiratory airways (Eskandari, Kuschner, & Kuhl, 2015)

up to understanding the physiological behavior of tissue and organs in the cardiovascu-

lar system (Hurtado & Henao, 2014; Hurtado, Castro, & Gizzi, 2016), mainly due to its

capability to accurately represent intricate geometries spanning several scales in the hu-

man body. Further, the quantification of biomechanical properties using FE analysis has

proven to be robust to the inherent image noise in many applications (Sotelo et al., 2015,

2016). For the particular case of lung tissue, FE-based biomechanical analysis delivers
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deformation gradient maps that are more accurate than those obtained by direct differen-

tiation of the transformation mapping resulting from image registration, as demonstrated

in (Hurtado, Villarroel, et al., 2016).

In order to perform the biomechanical analysis, CT datasets are first registered using

the free-form deformation non-rigid registration Nifty-Reg package (Modat, Ridgway, et

al., 2010). The Nifty-Reg package finds an optimal transformation between two CT im-

ages by minimizing a cost function that includes different voxel-based similarity measure,

as well as an elastic regularization to ensure smoothness of the optimal transformation.

The transformation model is based on cubic B-spline basis functions that deliver a C2

continuous image transformation. Convergence issues may arise during the optimization

as the deformation levels experienced by the lung parenchyma can be large. To improve

the convergence and accuracy of the registration, we adopted the recommendations of

(Modat, Mcclelland, & Ourselin, 2010) on control-point spacing, registration parameters

and solution strategy (further details in A.1). During the registration process (non-rigid

model), two penalty terms were used. The first, known as ”bending energy”, favors a

smooth mapping between both images, and the second, based on the Jacobian, ensures a

one-to-one mapping to avoid folding problems. Although these parameters were adjusted

to generate adequate results, it is worth mentioning that the Jacobian constraint could

cause a certain degree of bias when quantifying regional volumetric strain. At the end

of the registration process, all results were verified to have converged correctly. Clinical

experts also performed a visual inspection to confirm that the results were reasonable.

To construct the FE discretization of the lung domain, we use the active contour seg-

mentation method implemented in ITK-Snap (Yushkevich et al., 2006) (www.itksnap.org).

ITK-Snap implements an active contour algorithm using a geodesic flow formulation, a

particular case of an ”energy snakes” model to detect edges that is based on finding a

geodesic curve in a Riemannian space derived from the content of an image (Caselles,

Kimmel, & Sapiro, 1997). Regarding the segmentation procedure, first, the lung under
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study is isolated by defining a region of interest, and a threshold filter is used to differ-

entiate the lung from the surrounding tissue. Then, seeds are manually planted inside the

lung domain, and the active contour tool is executed. The resulting segmented image is vi-

sually checked, and manual segmentation is performed in regions where semi-automated

methods could not correctly resolve the lung anatomy. Final image segmentation is al-

ways checked by clinical experts. Tetrahedral FE meshes are then constructed from the

segmented lung images using automated mesh generation libraries (Computational ge-

ometry algorithms library, 2016) (http://www.cgal.org). In particular, 3D triangulation

functions were used to mesh the surface of the segmented image and then tetrahedraliza-

tion functions to generate the full mesh. The parameter that controls the tetrahedron size

in the mesh is called ”cell size” and was set to 8 for all cases. This process resulted in un-

structured meshes with a tetrahedron mean size of 29.6[mm3] with a standard deviation of

20.1[mm3]. To ensure a good mesh quality, the minimum dihedral angle for each tetrahe-

dral element is tracked during the mesh generation. A variational strain recovery method

is then employed to obtain a continuous FE approximation to the deformation gradient

tensor field (Hurtado, Villarroel, et al., 2016), from which regional volumetric strain and

principal stretch ratios are computed.

Histograms of all three deformation invariants are constructed from the 3D maps of

regional deformation. To this end, we consider the value of the field of interest at the

barycenter for each element of the mesh and its associated element volume. Statistical de-

scriptors typically employed in nonparametric analysis are computed for all the histograms

generated. In particular, we compute kurtosis to understand how localized around the

mean value are the distributions. Skewness is also computed for all histograms, in order

to assess the asymmetry of the resulting distributions. After inspecting the resulting his-

tograms and associated statistical descriptors, a parametric distribution function is sought

in order to explain the frequency distribution of the deformation metric under analysis.

To compare the spatial patterns of regional deformation along the dorsal-ventral direc-

tion between all subjects in an average sense, we divide each lung domain in ten regions
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of interest (ROI). A ROI is defined by the intersection of one rectangular cuboid with

the lung domain, where cuboids are contiguously stacked along the dorsal-ventral direc-

tion and have the same height, see inset in Figure 2.7(a). For each ROI, we compute the

weighed mean value of the deformation metric under study using all the nodes that are

located within a particular ROI and their corresponding adjacent element volumes.

All models, such as FE discretization (meshing), biomechanical analysis, image pro-

cessing, and statistics, were coded in Python using a processor Intel Core i7-4710MQ

CPU @ 2.50GHz × 8.

2.3. Results

The results obtained from the biomechanical analysis were all volumetric in nature,

as shown in Figure 2.2; however, for a matter of practicality and clinical reasoning, the

results shown in the following figures consider a single plane (i.e., sagittal). The coronal

and axial planes did not show relevant deformation trends (results not shown). Moreover,

to avoid the bias that can occur when displaying results on color maps that do not have

a linear scale, the results shown in this chapter differ from the images in the published

article. In particular, the biomechanical results are presented in a gray-scale palette instead

of the original rainbow-type color-map. However, the Supplementary Material in the First

Appendix includes the original version of the figures.
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Figure 2.2. Schematic of regional volumetric deformation of the right lung
for an arbitrary subject showing the different anatomical planes.

Sagittal planes of I1 , I2 and J for the right lung of two representative subjects are

shown in Figure 2.3. A highly heterogeneous spatial distribution is observed for all defor-

mation metrics and all subjects under analysis (see Supplementary Material 1 in Appendix

A.2). In particular, subject 05 shows markedly high levels of Jacobian (J > 3) in a signif-

icant portion of the section, located predominantly in the dorsal region but without a clear

pattern. For the planes shown, subject 05 displays J > 1 everywhere, which are indicative

of a predominant parenchymal expansion. In contrast, Subject 02 displays small regions of

volumetric compression (J < 1) associated with alveolar compression. A similar trend is

observed for the case of surface deformation I2 , where higher values are located close to

the dorsal region in both lungs shown, with Subject 05 always showing I2 > 1 everywhere,

and greater values of I2 than Subject 02 for a similar location in space.
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Figure 2.3. Deformation invariant maps for the right lung of two represen-
tative subjects. Black arrows indicate the direction of gravity

The ADI and SRI index maps for the same representative lungs are shown in Fig-

ure 2.4. The ADI index is significantly greater than zero in a considerable region of the

slice shown, with no clear spatial trend. The SRI randomly oscillates between 0 and 1

throughout the lung, a trend also observed in all other subjects studied (see Supplemen-

tary Material 1 in Appendix A.2).
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Figure 2.4. ADI and SRI maps for the right lung of two representative
subjects. Black arrows indicate the direction of gravity

Table 2.2 reports the sample mean, standard deviation, kurtosis and skewness of the

Jacobian field for the left and right lungs of all subjects. The mean Jacobian ranges from

1.45 to 3.41 for the left lung, and from 1.41 to 3.12 for the right lung, which confirms a

large intersubject variability. The standard deviation also shows intersubject variability,

but with less spread than the sample mean. In contrast with intersubject dispersion, the

mean and standard deviation values for the left and right lung of each subject were very

similar. A marked positive skewness is found in all cases, with the exception of the left

lung of S06, for which skewness is roughy zero. Deformation invariants I1 and I2 display

also display marked positive skewness, with a few exceptions where skewness is roughly

zero (See Tables A.4 and A.5 of Supplementary Material 2 for the case of I1 and I2,

respectively in Appendix A.3).
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Table 2.2. Statistical measures for the left lung (LL) and right lung (RL)
Jacobian distributions

Subject Mean Std Kurt. Skew.

LL RL LL RL LL RL LL RL

S01 1.87 1.80 0.62 0.55 2.36 6.07 1.22 1.58

S02 2.15 2.19 0.50 0.60 1.78 1.78 0.92 0.77

S03 1.96 1.97 0.56 0.68 3.43 1.85 1.06 1.12

S04 1.87 1.74 0.40 0.33 2.13 2.03 0.75 0.57

S05 3.41 3.01 0.86 0.79 1.07 0.98 0.53 0.44

S06 3.22 3.13 0.62 0.66 0.84 1.06 −0.02 0.32

S07 1.96 1.83 0.48 0.43 2.58 1.53 0.94 0.18

S08 2.89 2.82 1.02 0.87 0.82 0.28 0.40 0.27

S09 1.45 1.41 0.28 0.31 2.49 4.15 0.64 1.00

S10 2.48 2.37 0.63 0.57 1.08 1.04 0.54 0.17

S11 2.92 2.75 1.13 1.23 3.50 4.71 1.49 1.62

To validate our method, we computed the relative error between the average Jacobian

value obtained from the FE biomechanical analysis and the FRC-TLC volumetric defor-

mation for each lung, defined as the ratio of the inspired volume over the expired volume

estimated directly from CT lung images, see Table 2.3. We note that the average error val-

ues are 2.5% and 2.3% for the left and right lung, respectively, with a maximum relative

error of 4% for subject S08.
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Table 2.3. Method validation: comparison between average Jacobian and
volumetric deformation obtained from image segmentation

Subject Ins.-Exp. ratio Error (%)

LL RL LL RL

S01 1.94 1.88 3.9 3.9

S02 2.17 2.21 0.8 0.9

S03 2.03 2.00 3.1 1.5

S04 1.93 1.79 3.2 3.1

S05 3.54 3.21 3.6 3.3

S06 3.29 3.18 1.9 1.8

S07 2.02 1.91 2.2 1.9

S08 3.02 2.92 4.0 3.5

S09 1.47 1.44 1.5 1.6

S10 2.55 2.44 3.0 2.8

S11 2.94 2.77 0.8 0.8

Average 2.5 2.3

Based on the histograms obtained from the biomechanical analysis for the deformation

invariants, which were unimodal and positively skewed, we propose a log-normal distri-

bution to explain them. The associated probability distribution functions take the form

pdf(x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 , (2.12)

where µ and σ are the location and scale parameters, respectively. The maximum-

likelihood estimators for these parameters read

µ̂ =

∑n
k=1 lnxk
n

, (2.13)

σ̂2 =

∑n
k=1(lnxk − µ̂)2

n
. (2.14)
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Table 2.4. Log-normal fit: location and scale parameters, and fit error for J

Subject µ̂ σ̂ Error (%)

LL RL LL RL LL RL

S01 0.574 0.548 0.318 0.283 9.5 11.1

S02 0.739 0.746 0.228 0.279 10.7 20.0

S03 0.636 0.622 0.280 0.333 12.5 12.5

S04 0.604 0.533 0.213 0.190 13.5 13.1

S05 1.196 1.097 0.259 0.268 14.7 20.0

S06 1.150 1.117 0.207 0.217 20.3 18.7

S07 0.657 0.584 0.230 0.324 17.8 31.6

S08 0.992 0.984 0.394 0.342 21.9 16.7

S09 0.353 0.322 0.198 0.219 13.8 19.0

S10 0.874 0.832 0.261 0.262 9.8 23.7

S11 1.004 0.919 0.366 0.437 17.9 22.6

Average 14.8 18.9

Table 2.4 shows the values for these estimators for the Jacobian distribution of all sub-

jects analyzed. The relative error between the histograms and the frequency distribution

functions was computed as

error =
‖pdf− hist‖L2(I)

‖pdf‖L2(I)

, (2.15)

where I is the support of the frequency distribution function, pdf : I −→ R is the fre-

quency distribution function, hist : I −→ R is the histogram, and the L2 norm is defined

by

‖f‖L2(I) :=

(∫
I

f 2(x)dx

) 1
2

(2.16)
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Table 2.4 reports the fit error for the Jacobian distributions. We observe that the fit error

ranges between 9.5% (left lung of subject S01) and 31.6% (right lung of subject S07), with

average values of 14.8% and 18.9% for the left and right lungs, respectively.

Figure 2.5. Histograms for the Jacobian, and log-normal fit: (a) best fit,
left lung, S01, (b) worst fit, right lung, S07

The histograms and log-normal fit for the best and worst cases are shown in Figure 2.5.

Average fit errors for the case of I1 are 14.4% (LL) and 14.9% (RL), while for I2 average fit

errors are 14.7% (LL) and 16.2% (RL), see Tables A.6 and A.7 of Supplementary Material

2 in Appendix A.3.

Based on the overall good fit of the log-normal distribution to the frequency distri-

butions of the deformation invariants, we propose normalizing the deformation invariant

fields obtained for each subject using the score of the log-normal distribution, i.e.,

�̂(X) :=
log(�(X))− µ̂

σ̂
, (2.17)

where �(X) represents the deformation invariant field, and µ̂ and σ̂ are the location and

scale parameters, respectively, for the subject under analysis.
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Figure 2.6. Normalized deformation invariant maps for the right lung of
two representative subjects. Black arrows indicate the direction of gravity.
Yellow lines indicate contour lines at values −2,−1, 0, 1, 2.

Figure 2.6 shows the maps of Î1, Î2 and Ĵ for the right lung of the same representative

subjects analyzed in Figure 2.3. Similar to the case of non-scaled maps, a high spatial

variation of all three normalized invariants is clearly observed for all subjects (see Supple-

mentary Material 3 in Appendix A.4). However, in the normalized form, it is now possible

to recognize common spatial patterns of deformation shared by subjects. More precisely,

a vertically elongated region of high values for all three deformation invariants is consis-

tently found in the dorsal regions of both subject lungs. Zones of low invariant values

are found in the ventral region. These observations suggest an overall spatial gradient

of normalized deformation invariants the dorsal-ventral direction, which coincides with

the gravitational direction. Further, we note that in normalized form, the three invariant

fields characterizing normalized length, surface and volume deformation take very similar

values in space for the same subject.



35

Figure 2.7. Dorsal (D) - ventral (V) distributions of ROI normalized in-
variants: (a) Î1, (b) Î2 and (c) J . Error bars show 95% confidence interval
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For clarity, the sagittal slices of the two representative subjects (Figures 2.3 and 2.6)

and the slices shown in the Supplementary Material A.2 and A.4 often present holes.

During the semi-automatic segmentation process, these holes correspond to areas that are

not considered part of the lung tissue (i.e., large blood vessels), mainly due to the threshold

established in terms of the HU (Hounsfield Units) scale within the CT image. Expert

physicians supervised this earlier definition regarding the image intensity threshold.

Figure 2.7 shows the distribution of ROI-averaged normalized deformation invariants

along the dorsal-ventral direction for the left and right lungs of all subjects. For all three

normalized deformation invariants, higher values are consistently found in the dorsal ROI,

whereas lower values are observed in the ventral ROI, both in left and right lungs of all

patients. While individual ROI distributions were not all strictly monotonically decreasing

(not shown), we do confirm an overall gradient of normalized invariants which decreases

in the dorsal-ventral direction. Higher intersubject dispersion is found at the ventral and

dorsal ROIs, while interior ROIs present low dispersion around the mean value.

To assess the potential impact of lobar sliding on our results, we performed lobe-by-

lobe analysis for the lungs of subject S02. To this end, the lobes of both lungs were

segmented in FRC and TLC lung images, to then perform image registration and biome-

chanical analysis on individual lobes as described in the Methods section.

Figure 2.8(a) shows a slice of the Î1 map, where we observe, in broad terms, a simi-

lar spatial pattern as found in the whole-lung analysis, i.e., zones of high invariant values

close to the dorsal region, and zones of low invariant values close to the ventral region,

confirming a spatial gradient in the gravitational direction. Figure 2.8(b) shows the com-

parison between the histograms and log-normal fits for the I1 distribution of the right lung

for the lobe-by-lobe analysis and the whole-lung analysis. Minor differences are found be-

tween the approaches when comparing their distributions. However, small differences can

be observed near the borders of the lobes when comparing Figure 2.8(a) and 2.6. Similar

results were obtained for I2 and J (not shown).
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Figure 2.8. Lobe-by-lobe analysis for Subject S02: (a) Î1 for right lung,
(b) Comparison of histograms and log-normal fit between lobe-by-lobe and
whole-lung analysis for I1. Yellow lines in (a) indicate contour lines at
Î1 : −2,−1, 0, 1, 2.

2.4. Discussion

In this work, we systematically performed image-based biomechanical analyses to

study the regional deformation in healthy human lungs from CT images, in the search of

common spatial patterns of deformation and other statistical information that could poten-

tially characterize healthy lungs in a general manner. At a global scale, our results show

that relative volume changes of the left and right lungs are very similar for the subjects

under study. This conclusion is reinforced by the results for global volumetric deforma-

tion computed directly from image analysis, which also shows small differences between

left and right lungs (Table 2.3). Such observation correlates well with the high similarity

of ventilation levels between left and right lung found in previous studies using Xenon

tests on healthy human subjects (Milic-Emili, Henderson, Dolovich, Trop, & Kaneko,

1966). At a regional level, our study confirms that local volumetric deformation in the lung

parenchyma displays marked spatial variations in healthy human subjects spontaneously
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breathing in supine position. Spatial variations of regional volumetric deformation have

been reported in the literature from studies based on image registration techniques for

healthy ovine (Reinhardt et al., 2008), canine (Kaczka, Cao, Christensen, Bates, & Simon,

2011) and human lungs (Amelon et al., 2011; Cao et al., 2012; Jahani et al., 2014; Choi et

al., 2013). Similar to the findings reported these studies, our ROI analysis (see Figure 2.7)

confirms a marked gradient in regional volumetric deformation along the ventral-dorsal

direction, which coincides with the direction of gravity. These results are consistent with

the distribution of ventilation in human lungs in supine position, where ventilation in the

dorsal regions of the lung is higher than in the ventral regions due to gravity (West, 2012).

A novel conclusion of our work is that not only regional volumetric deformation, but also

length and surface deformation displays a strong gradient in the gravity direction.

Another key contribution of this work is the quantitative analysis of regional deforma-

tion in terms of frequency distributions. In particular, our findings strongly suggest that

length, surface and volumetric regional deformation in normal human lungs in supine po-

sition follow a log-normal distribution. In turn, this finding motivates the introduction of a

simple subject-specific normalization of the regional measures of deformation that allows

for a better intersubject spatial comparison, given by Equation 2.17. When maps and dis-

tributions are studied without normalization, we observe large variations between subjects

that make the direct comparison difficult. We attribute these large variations both to body

anatomical differences, as reflected by individual BMI and TLC (Table 2.1), and to the

natural variability in the respiratory effort of each subject to reach and maintain TLC dur-

ing CT acquisition. When normalization is applied, common spatial patterns of regional

deformation are readily observed for all three deformation invariants analyzed. In effect,

the distribution of normalized Jacobian shown in sagittal planes displays consistent spatial

patterns of deformation across all subjects analyzed, with areas of high Jacobian values,

above the location parameter (or logarithmic average), consistently found in the dorsal

region, see Figure 2.6. Similarly, lower values of volumetric deformation, below the lo-

cation parameter, are observed in the ventral region in all subjects studied. Interestingly,



39

spatial fields of length and surface deformation metrics in normalized form have very sim-

ilar spatial pattern and values to the case of normalized Jacobian (Figure 2.6), confirming

a strong correlation with the gravity direction. It is important to remark that normalization

of deformation maps removes global information that may be used as a descriptor of lung

disease. For example, in the case of air trapping, average volumetric deformation varies

between normal and asthmatic lungs (Choi et al., 2013). In asthmatic patients, decreased

Jacobian values have been associated with increased air trapping (Choi, Hoffman, Wenzel,

Castro, & Lin, 2014) and segmental airway narrowing (Choi et al., 2015). Such features

will not be displayed by normalized maps, as we subtract the logarithmic mean value of

deformation invariants. Thus, we expect normalized maps to contribute with additional

regional information to previously proposed deformation measures, e.g., by identifying

local alterations in the spatial patterns of regional deformation.

Throughout this work, we have advocated for the characterization of not only regional

volumetric deformation and anisotropy, but also of regional surface and length defor-

mation through the first and second invariants of the right stretch tensor. We note that

ADI can be high in many regions of the lung, confirming that regional deformation is

anisotropic and cannot be expressed solely in terms of volumetric deformation. Due to the

isotropy and objectivity considerations, and the isotropic function representation theorem

(Truesdell & Noll, 1965), length and surface deformation, measured in terms of the first

and second invariant of the right stretch tensor take special relevance in the constitutive

modeling of lung parenchyma. In the case where regional deformation is isotropic, the

first and second deformation invariants can be expressed in terms of the Jacobian, i.e., all

three invariants would be dependent, and constitutive relations may be expressed only in

terms of volumetric deformation. In this work we have confirmed that regional deforma-

tion in the in vivo lung parenchyma can be highly anisotropic with random distribution

in space (Figure 2.4), a behavior also found in previous in vivo studies of human lungs

(Amelon et al., 2011; Choi et al., 2013; Jahani et al., 2014). Thus, one cannot assume

that only volumetric deformation will govern the mechanics of parenchyma and should
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also consider the role of the first and second deformation invariants. In effect, experi-

mental evidence has shown, through mechanical testing, that the constitutive response of

murcine lung parenchyma is highly dependent not only on the Jacobian but also on the

first invariant of the square of the right stretch tensor (Rausch et al., 2011), confirming the

importance of studying regional length deformation in the lung.

The present study suffers from certain limitations. First, our study considers a small

population and does not differentiate gender, age, and physical activity, among many other

possible classifications, thus limiting our conclusions about distribution or spatial patterns

in general terms. Future contributions should consider larger and more specific popula-

tions, in order to be able to characterize deformation metric ranges more accurately, and

before attempting to use them as a descriptor of lung disease. Second, small regions of

highly localized regional deformation were found close to the lung fissures in some sub-

jects. As recently reported (Amelon et al., 2014), fissure sliding can induce artificially

high values of shear strain, which may have a considerable impact in the accuracy of the

estimation of maximum and minimum stretch ratios. This effect is directly related to the

inherent C2 -continuity imposed by the B-spline interpolation of the deformation mapping

field, which is not capable of accommodating sliding or material interface strain jumps, as

explained in (Hurtado, Villarroel, et al., 2016). Fissure sliding effect may have an impact

in the determination of the principal stretches, potentially raising the deformation invari-

ants to unrealistic levels in regions close to a fissure. However, using lobe-by-lobe analysis

we have shown for one subject that the impact of eliminating the lobar fissure region from

the registration and biomechanical analysis does not importantly alter the invariant maps,

neither the frequency distribution. We attribute this small effect to the fact that regions

with high values of regional deformation due to lobar sliding are very localized and within

small volumes of tissue. Slight differences of regional deformation near the boundaries

of the lobes when comparing the lobe-by-lobe analysis and whole-lung analysis are not

entirely clear and may be due to boundary effects. Future contributions should focus in

deformable image registration methods that are capable of distinguishing shear strains due

to sliding from actual shearing deformation. While sliding has been preliminary addressed
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in some recent works (Yin et al., 2010; Pace et al., 2013), a biomechanical analysis that

can effectively eliminate spurious shear distortion in the estimation of regional deforma-

tion remains an open avenue of research. Third, a limitation related to the method of

biomechanical analysis is the potentially poor estimation of strain in regions adjacent to

anatomical boundaries, such as the lung surface, small airways and small vessels. For the

case of airways and vessels, since the FE mesh is constructed from the segmented lung im-

age, small airways and vessels that are not segmented out will be considered as lung tissue

by the FE method, and consequently continuous strain maps will be displayed in those

areas. For the case of the lung surface, errors inherent to the semiautomatic segmentation

process may result in a FE surface representation that can leave some portions of the lung

surface outside the FE mesh, thus inducing to errors by not considering the deformation

of the tissue left out the segmentation. We believe this effect may also be responsible for

the large deviations from the mean found in the ROI analysis (Figure 2.7) in those regions

close to the dorsal and ventral surfaces. This same effect may be responsible for the differ-

ences that arise when comparing regional deformation differences between the lobe-by-

lobe and whole-lung analyses (see Figure A.1 in the Supplementary Material A.5). Future

contributions should focus on developing meshing methods that can effectively capture

the lung surface, small airways and vessels, in order to improve the estimation of regional

deformation in the surrounding areas. Fourth, the field normalization scheme is limited.

Due to the shape of the invariants’ frequency distributions (i.e., unimodal and positively

skewed), this work proposed a logarithmic normalization and was further used to normal-

ize the 3D maps of regional deformation. However, other normalization alternatives such

as Rayleigh or Gamma distributions could also be used for the same purposes. Future con-

tributions should focus on developing new forms of subject-specific normalization or even

population-specific normalization. In this regard, a thorough sensitivity analysis between

different normalization models could provide a better solution when comparing between

subjects.
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3. INELASTIC DEFORMABLE IMAGE REGISTRATION

Abstract Deformable image registration (DIR) is an image-analysis method with a

broad range of applications in biomedical sciences. Current applications of DIR on

computed-tomography (CT) images of the lung and other organs under deformation suf-

fer from large errors and artifacts due to the inability of standard DIR methods to capture

sliding between interfaces, as standard transformation models cannot adequately handle

discontinuities. In this work, we aim at creating a novel inelastic deformable image reg-

istration (i-DIR) method that automatically detects sliding surfaces and that is capable of

handling sliding discontinuous motion. Our method relies in the introduction of an in-

elastic regularization term in the DIR formulation, where sliding is characterized as an

inelastic shear strain. We validate the i-DIR by studying synthetic image datasets with

strong sliding motion, and compare its results against two other elastic DIR formulations

using landmark analysis. Further, we demonstrate the applicability of the i-DIR method

to medical CT images by registering lung CT images. Our results show that the i-DIR

method delivers accurate estimates of local lung strain that are similar to fields reported

in the literature, and that do not exhibit spurious oscillatory patterns typically observed in

elastic DIR methods. We conclude that the i-DIR method automatically locates regions of

sliding that arise in the dorsal pleural cavity, delivering significantly smaller errors than

traditional elastic DIR methods.

3.1. Introduction

Deformable image registration (DIR) is an image-analysis technique used to deter-

mine the optimal transformation that establishes the spatial correspondence of a point

between two images. When constructing a DIR method, three key elements need to be

defined: i) the transformation model, ii) the regularizer, and iii) the similarity measure

(Sotiras, Davatzikos, & Paragios, 2013b). These elements allow for the classification of

DIR methods, and the reader is referred to (Modersitzki, 2003) for a complete review. In

particular, in this work we are concerned with the ability of the method to capture large
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displacements in the optimal transformation between medical images. From this perspec-

tive, transformation models can be divided into continuous-displacement transformations

(Rueckert et al., 1999), which are suitable for small-deformation problems, and incremen-

tal diffeomorphic transformations based on the integration of flow equations (Ashburner,

2007; Christensen, Rabbitt, & Miller, 1996), which can capture large deformations in DIR

problems. While diffeomorphic methods have proven advantageous in capturing the large-

displacement kinematics in DIR, continuous displacement models have been preferred in

the field of medical imaging, as they provide a simple and efficient computational frame-

work to DIR (Reinhardt et al., 2008).

DIR has essential applications in radiology, such as the fusion of an anatomical image

with a functional image (Oliveira & Tavares, 2014), image-guided radiotherapy (Foskey

et al., 2005), and in treatment and surgery planning (Gering et al., 1999). DIR has proven

fundamental in the study of the deformation mechanisms that take place at a regional

level in human lungs, where the primary inputs for determining regional strain are de-

formation measures based on the Jacobian matrix of the optimal transformation resulting

from DIR of lung computed-tomography (CT) images (Reinhardt et al., 2008; Amelon

et al., 2011). DIR-based biomechanical analysis has revealed significant spatial differ-

ences in the magnitude, anisotropy, and heterogeneity of regional deformation in the lung

of normal human subjects (Amelon et al., 2011; Hurtado, Villarroel, et al., 2016), mea-

sured in terms of volumetric change expressed either as a Jacobian (Jahani et al., 2015) or

as regional volumetric strain and deformation invariants that quantify linear and surface

changes (Hurtado et al., 2017). Further, spatial patterns of regional deformation obtained

from DIR have been found to significantly differ from normal lungs in asthmatic patients

(Choi et al., 2013) and patients with chronic obstructive pulmonary disease (Bodduluri

et al., 2017), highlighting the potential of biomechanical analysis in understanding, and

potentially detecting disease progression. Estimates of volumetric strain have been corre-

lated with lung inflammation and injury in mechanically-ventilated lungs, suggesting that

regional deformation obtained from DIR can be useful in the prevention of ventilation-

induced lung injury in critical-care patients (Retamal et al., 2018b; Hurtado et al., 2020;
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Cruces et al., 2020). A fundamental limitation of current DIR techniques and libraries

is the poor performance experienced when images display motion discontinuities such as

contact and organ sliding. Sliding typically occur inside the human body due to the exist-

ing lubricated interfaces between internal structures in the thoracic cage (e.g., lungs, chest

wall, heart) (Amelon et al., 2011; Rodarte et al., 1985; Yin et al., 2010); and between the

liver and other abdominal organs (e.g., kidney, diaphragm) (von Siebenthal et al., 2007;

Hua, Pozo, Taylor, & Frangi, 2017). Interestingly, sliding in the lung fissures has been

detected from computed-tomography (CT) images of the lungs using DIR methods, where

supraphysiological levels of shearing deformation colocalize with the fissures (Amelon et

al., 2014). While useful for anatomy detection purposes, no regional tissue distortion is

expected to occur in sliding regions, which invalidates the accuracy of regional deforma-

tion estimates from traditional DIR methods in the lungs in regions close to fissures and

the pleural cavity. The main responsible for such spurious deformation levels in sliding is

the transformation model that most DIR methods assume, typically constructed using in-

terpolation schemes that deliver globally continuous and smooth transformation mappings

(Hua et al., 2015). As a consequence, traditional DIR methods cannot capture material

interface or motion discontinuities, thus hindering the accuracy of the image registration

and the associated biomechanical analysis (Hurtado, Villarroel, et al., 2016).

Traditional DIR techniques have been modified to capture sliding either by using alter-

native regularization terms, as well as enhanced transformation models (Schmidt-Richberg

et al., 2012; Pace et al., 2013; Delmon et al., 2013; Hua et al., 2015). One example of the

former is the diffusion-based approach (Thirion, 1998), where the normal component of

the displacement field near the sliding boundaries is continuous, and a direction-dependent

regularization term is assumed such that it penalizes jumps in the normal direction but al-

lows for a discontinuous displacement field in the tangential direction (Schmidt-Richberg

et al., 2012). This direction-dependent registration model shows good registration accu-

racy but underperforms when the intensity contrast near the boundaries is low, which can

be the case of lobar fissures in CT images of the lung. A similar approach that employs

local weighting and direction-dependent anisotropic diffusion smoothing resulted in more
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realistic displacement fields than methods using global smoothing regularization (Pace et

al., 2013). Alternatively, sliding motion in DIR has been approached by using novel trans-

formation models that allow for discontinuities at predefined boundaries. One such exam-

ple is the use of a linear combination of multiple B-spline functions and a sliding constraint

(Delmon et al., 2013). This enhanced formulation of the classical free-form deformation

(FFD) model (Rueckert et al., 1999) delivered accurate estimations of the displacement

deformation field in 16 patients with lung cancer. A step further is the extension of the

FFD free-form deformation method, which consists in enhancing B-spline basis functions

with discontinuous functions that have jumps defined at the discontinuity surface (Hua

et al., 2015, 2017), a formulation that has been termed extended FFD (XFFD). XFFD

has shown to deliver high accuracy when registering synthetic images with strong sliding

discontinuities, as well as lung and liver images where high levels of sliding are present.

While incorporating additional constraints that account for organ sliding results in better

deformation estimates, several limitations preclude them from their direct applicability in

the analysis of regional strain deformation in the lungs. A key limitation presented by

XFFD models, which is also shared by other B-spline methods (Delmon et al., 2013; Wu,

Rietzel, Boldea, Sarrut, & Sharp, 2008) and diffusion-based methods (Schmidt-Richberg

et al., 2012; Pace et al., 2013), is the fact that they rely on the definition of the sliding

boundaries prior to the DIR analysis, which is typically done using semi-automatic seg-

mentation methods, and largely depends on expert knowledge of the spatial location of the

discontinuity boundaries. The a-priori definition of the sliding boundaries and the need for

fine grids to capture curved surfaces where sliding occurs largely limit the applicability of

current DIR methods in registering lung images, where the pleural cavity and fissures have

intricate surface geometries and may not be easy to detect by the non-expert user.

The scientific question that motivates this work reads as follows: Is it possible to

accurately capture sliding motion in DIR without the predefined knowledge of the sliding

boundaries? To answer this question, in this work we aim at proposing and validating an

inelastic DIR (i-DIR) method that allows for the automatic detection of sliding boundaries

and that can handle discontinuous sliding motion on such surfaces.
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3.2. Materials and Methods

3.2.1. Deformable image registration elastic formulation

In the following we adopt a variational framework for DIR problems (Modersitzki,

2003; Barnafi et al., 2018), which will be the starting point of the i-DIR formulation. Let

Ω ⊂ Rn be a domain of interest (image support), R : Ω → R be the reference image

and T : Ω → R be the target image. The DIR problem aims to establish an optimal

transformation u : Ω → Rn that best aligns the reference and target images. To this

end, we consider the functional space V := H1(Ω,Rn) and define a similarity functional

D : V → R that penalizes differences between the reference image R and the resampled

target image T ◦ (id + u), where the operator ◦ denotes function composition, and id

stands for the identity function (i.e., id −→ id(x) = x). In practice, resampling an

image considers an interpolation process, which is a type of estimation method where

known data values (at the center of the pixel/voxel) are used to estimate new values at

unknown points. The scheme used for the resampling of the images considers using cubic

b-splines as the interpolation method. A popular choice for the similarity measure in

mono-modal applications of DIR (Rueckert & Schnabel, 2011; Schmidt-Richberg, 2014)

is the sum of squared-differences

D[w] :=
1

2

∫
Ω

[T (x+ w(x))−R(x)]2dΩ ,∀w ∈ V , (3.1)

which we will consider throughout this work. We remark that other choices of image sim-

ilarity models such as those based on cross-correlation and mutual information measures

can also be included in this formulation (Wells, Viola, Atsumi, Nakajima, & Kikinis, 1996;

Barnafi et al., 2018). Further, we define a regularizer S : V → R that provides smooth-

ness to the optimal transformation as well as it avoids ill-posedness of the DIR problem.

A popular choice due to its physical meaning is the elastic regularizer

S[w] :=

∫
Ω

W e(∇w)dΩ, (3.2)
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where the elastic energy density takes the form

W e(∇w) := µ‖∇w +∇wT‖2 +
λ

2
(div w)2, (3.3)

with∇ the gradient operator, div the divergence operator, and λ and µ the Lamé constants.

With these elements, we define the elastic registration functional as

Π[w] := αD[w] + S[w], (3.4)

where α > 0 is a weighting parameter. Then, the optimal transformation u is the min-

imizer of the elastic registration functional, and the DIR problem is formulated as the

following variational problem: Find u such that

Π[u] = min
w∈V

Π[w]. (3.5)

From equations 3.4 and 3.5, we remark that the similarity term is not convex, so a convex

regularizer is added. However, this does not guarantee the convexity of the problem, and,

in fact, this is true for a very small value of α. In this sense, there is no guarantee that there

will be uniqueness. Still, the problem has at least a global minimum because the similarity

is positive, and the regularizer goes to infinity when the solution goes to infinity. This

functional is said to be coercive. On the other hand, we note that the optimal transforma-

tion u can be interpreted as a displacement field that maps a point between its locations

in the reference and target images. Moreover, the choice of the elastic deformation energy

as a regularization term confers the DIR problem the physical interpretation of an elas-

ticity problem (Lu, Chen, Olivera H., Ruchala, & Mackie, 2004), which has been widely

exploited in the literature (Sotiras et al., 2013b). Further, and based upon this physical

interpretation of the optimal transformation u, we define the strain tensor operator

ε(u) :=
1

2

(
∇u+∇uT

)
, (3.6)

and we note that the elastic energy density defined in (3.3) can be rewritten as

W e(ε) = µε : ε+
λ

2
(trace ε)2, (3.7)
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where : signifies the tensor scalar (inner) product and trace represents the trace operator.

We further define the stress tensor associated to this elastic energy by

σ(ε) :=
∂W e

∂ε
= 2µε+ λ trace (ε)I, (3.8)

where I is the identity tensor.

3.2.2. The inelastic deformable image registration (i-DIR) method

As discussed in the introduction, the elastic regularizer is not suited to handle discon-

tinuities in the displacement field. As a result, sliding motion is not captured by traditional

DIR methods. To address this limitation, here we draw ideas from the mechanics of inelas-

tic solids, which aims at modeling inelastic deformation processes that result in localized

softening in a solid. In the following, we briefly summarize the main ingredients of a tra-

ditional von Mises plasticity model, for a comprehensive review of the theory of inelastic

solids we refer the reader to (Lubliner, 2013). Inelastic deformation in metals is driven

by shearing deformation mechanisms, where sliding in the plane of maximum shearing

occurs when the shear stress in that plane overcomes a critical yield stress, resembling

frictional sliding motion.

Figure 3.1. Schematics comparing the behaviour between an elastic and an
inelastic approach
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We note that the mechanical behavior of an inelastic solid is path dependent, which

we represent through a time-dependence of the associated displacement field and strain

tensors. To model inelastic deformation processes, we adopt the standard additive decom-

position of the strain tensor

ε = εe + εp (3.9)

where εe corresponds to the elastic strain tensor which is assumed to disappear as the load

is removed, and εp is the inelastic strain tensor which captures permanent deformations

(i.e. sliding) that will remain in the solid after the load is removed. A sketch of this tradi-

tional decomposition of deformations is included in Figure 3.1. For the purposes of image

registration, we note the inelastic strain tensor will capture sliding that does not generate

deformation in a tissue, and therefore we will quantify regional deformation solely based

on the elastic strain tensor. The additive decomposition carries onto the instantaneous

evolution of strain components, and we note that (3.9) implies that

ε̇ = ε̇e + ε̇p, (3.10)

where (̇) indicates partial derivatives with respect to time. To reflect the path-dependent

nature of inelastic solids, we consider the effective inelastic strain q ∈ M := L2(Ω,R) as

the hardening internal variable. Following a thermodynamic formalism, we assume a free

energy density function (for rate-independent plasticity) that extends the elastic energy

density (3.7) and takes the form

A(ε, εp, q) = W e(ε− εp) +W p(q), (3.11)

where we assume that the stored plastic energy takes the form W p = 1
2
Hq2, with H being

the hardening modulus. Then, the elastic constitutive relation reads

σ(εe) =
∂W

∂εe
= 2µεe + λ trace (εe)I, (3.12)
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and the relation between the hardening internal variable and its thermodynamic conjugate

stress is

σc(q) =
∂A
∂q

= Hq. (3.13)

The inelastic behavior of a solid is modeled by defining a inelastic potential, also known

as the yield function, which in the case of a von Mises solid takes the form

Φ(σ, σc) :=

√
3

2
sijsij − σc (3.14)

where sij are the components of the deviatoric stress tensor s defined as

s(σ) := σ − 1

2
traceσI. (3.15)

Following an associative plasticity framework (Lubliner, 2013), the evolution of the in-

elastic strain tensor is governed by the flow rule

ε̇p = γ̇
∂Φ

∂σ
(σ, σc) = γ̇

√
3

2

s

‖s‖
(3.16)

where γ̇ is the inelastic multiplier and the norm defined as ‖(·)‖ =
√

(·) : (·). The evolu-

tion of internal variables is also dictated by the gradients of the inelastic potential

q̇ = −γ̇ ∂Φ

∂σc
(σ, σc) = γ̇. (3.17)

Finally, an inelastic model must comply with the loading/unloading complimentary con-

ditions

Φ(σ, σc) ≤ 0, γ̇ ≥ 0, γ̇Φ(σ, σc) = 0. (3.18)

Complimentary conditions (3.18) are interpreted as follows: Inelastic deformations will

occur (γ̇ > 0) only when the current stress state reaches the yield surface Φ(σ, σc) = 0.

Otherwise, the inelastic evolution must be null to comply with (3.18), i.e., γ̇ = 0, which

in turn implies that the change in total deformation will correspond only to changes in

elastic deformation, as governed by (3.10).
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In general, the relationship between ε̇p and q is not independent. Let σ̄ be the effective

stress defined as

σ̄ =

√
3

2
sijsij. (3.19)

Then, the relation between ε̇p and q is assumed to follow the Prandtl-Reuss flow rule that

reads

ε̇pij = ˙̄εp
(

3

2

sij
σ̄

)
, (3.20)

where ˙̄εp stands for the evolution of the accumulated plastic strain.

In view of the plastic flow rule, the accumulated plastic strain is equivalent to q, so by

integration of (3.20) and assuming isotropic hardening, we have the following relation,

ε̄p =

∫ t

0

√
2

3
ε̇pij ε̇

p
ij dt ≡ q (3.21)

(see appendix B.1.1 for details).

3.2.3. Time and space discretization

Given ε̇, the set of equations (3.10), (3.12), (3.13), (3.16) and (3.18) constitutes an

inelastic constitutive initial value problem, which has been traditionally solved using a

return-mapping algorithm based on an implicit backward-Euler temporal discretization.

To this end, the time variable is discretized in generic subintervals [tn, tn+1]. Then, a series

of incremental problems are obtained, where the main variables of the inelasticity model

are assumed to be known at the time t = tn, and need to be solved for t = tn+1, giving rise

to classical return-mapping algorithms. The details about the numerical discretization of

return mapping algorithms can be found elsewhere (De Souza Neto, Perić, & Owen, 2008).

Conveniently, the elastoplastic incremental problems can be reformulated as incremental

variational (minimization) problems, which gives rise to the theory of variational updates

in the computational solid mechanics community (Radovitzky & Ortiz, 1999; Ortiz &

Stainier, 1999; Hurtado & Ortiz, 2013). In the following, we draw ideas from the theory

of variational updates in plasticity to formulate the inelastic DIR model. The general
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framework consists in formulating the evolution of an elastoplastic solid as a sequence

of incremental variational minimization problems. To this end, we first integrate the flow

rule (3.16) using a Backward-Euler scheme to obtain

εpn+1 − εpn = (qn+1 − qn)

√
3

2

s(εn+1 − εpn+1)

‖s(εn+1 − εpn+1)‖
(3.22)

Solving for εpn+1 from the non-linear equation (3.22) delivers an incremental update for

the inelastic strain tensor, which we express as

εpn+1 = ε∗pn+1(εn+1, qn+1) (3.23)

which depends solely of εn+1 and qn+1. Based on this flow-rule update, we define the

effective incremental energy density for t = tn as (Ortiz & Stainier, 1999),

Wn(ε) = inf
qn+1

gn(ε, qn+1) (3.24)

where,

gn(ε, qn+1) = A(ε, ε∗pn+1(ε, qn+1), qn+1)− An + ∆t · ψ∗
(
|qn+1 − qn|

∆t

)
(3.25)

where ∆t = tn+1 − tn, and ψ∗ stands for the dual dissipation potential (Ortiz & Stainier,

1999) that governs the time evolution of the hardening variable, which in our case is

defined as ψ∗ = σy|∆q|, with ∆q = qn+1− qn. The minimization problem involved in the

definition (3.25) is equivalent to the stationary condition

0 ∈ ∂A
∂qn+1

+ ∂ψ∗
(
|qn+1 − qn|

∆t

)
(3.26)

which, for the rate-independent case reads (see details in appendix B.1.2),

σ̄pren+1 − 3µ∆q − σc(qn+1) = ∂ψ∗
(
|qn+1 − qn|

∆t

)
(3.27)

where σ̄pren+1 is the elastic predictor for σ̄n+1. Substituting (3.13) into (3.27) we obtain

σ̄pren+1 − 3µ∆q −H(qn + ∆q)− ∂ψ∗ |∆q|
∆t

= 0 (3.28)
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where the sub-differential of ψ∗ is defined as:

∂ψ∗ =


[−σy, σy] if ∆q = 0

σy if ∆q > 0

−σy if ∆q < 0

(3.29)

The solution of ∆q from (3.28) involves two mutually exclusive steps, giving rise to

a return-mapping algorithm which involves an elastic predictor and a plastic corrector

steps, see Appendix B.1.3.

With the definition of the effective incremental energy density, we now postulate the

inelastic DIR formulation as a sequence of effective variational problems. For a generic

time step, the displacement field un is assumed to be known, and we find the displacement

field un+1 by solving the problem

Πeff
n [un+1] = min

w∈V
Πeff
n [w], (3.30)

where the inelastic DIR functional reads

Πeff
n [w] = Seff

n [w] + αD[w], (3.31)

and the inelastic regularizing term takes the form

Seff
n [w] =

∫
Ω

Wn(ε(w)). (3.32)

To solve the minimization problem (3.30) we consider the stationary condition

Rn[w;v] :=
d

dε
Πeff
n [w + εv]ε=0 = 0, ∀v ∈ V . (3.33)

The residual in (3.33) takes the form

Rn[w;v] := α

∫
Ω

v · (T (w)−R)∇T (w) +

∫
Ω

ε(v) : σn+1(ε(w)), (3.34)
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where

σn+1(ε) :=
∂Wn

∂ε
(ε), (3.35)

represents the stress tensor update (Ortiz & Stainier, 1999). The residual equation (3.33)

constitutes a nonlinear problem, which we approach by means of linearization. To this

end, we consider the Gauteaux differential defined as

TR[w,v; ∆w] := α

∫
Ω

v ·
{
∇T (w)⊗∇T (w) + (T (w)−R)∇∇T (w)

}
·∆w

+

∫
Ω

ε(v) : Dep
n+1 ε(∆w),

(3.36)

where

Dep
n+1(ε) :=

∂2Wn

∂ε2
, (3.37)

is the consistent tangent tensor, see Appendix B.1.4. Thus, the linearized version of the

residual problem reads: Given an initial guess w ∈ V , find the increment ∆w such that

Rn[w;v] + TR[w,v; ∆w] = 0 ∀ v ∈ V , (3.38)

and we iterate over this linearized problem until a convergence criterion is reached.

To solve the continuous linear variational problem defined in (3.38) we adopt a Ritz-

Galerkin finite-element approach. To this end, we construct the finite-element space

Vh =

{
vh : Ωh → Rn | vh :=

m∑
A=1

NAvA,with vA ∈ Rn

}
⊂ V , (3.39)

where {N1, . . . , Nm} is the set of basis functions. Using this finite-element space, we

approximately solve the variational problem (3.38), i.e., we solve the problem: Given an

initial guess uh, find the increment ∆uh such that

Rn[uh;vh] + TRn[uh,vh; ∆uh] = 0 ∀ vh ∈ Vh. (3.40)
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Using standard arguments (e.g., see (Hurtado & Henao, 2014)) we can show that (3.40) is

equivalent to solving the linear system of equations

Kn∆u = Fn, (3.41)

where ∆u is a vector with the nodal values of the increment ∆uh, Kn is the tangent

matrix and Rn is the residual for the previous guess, all of which are defined in Appendix

B.1.5. After convergence is reached for the Newton step, the internal variables q at tn+1

are updated and stored at the element level. We further note that, in order to provide

stability and unisolvence of the problem, we adopt the approach set forth in (Barnafi et al.,

2018), where we impose orthogonality conditions to the displacement fields and assume

Neumann boundary conditions. We test other alternatives of boundary conditions such

as Dirichlet conditions. However, the results were not successful. In particular, we aim

to develop a model in which the mesh was not fixed in space and could deform without

restrictions (in terms of embedment).

3.2.4. Performance assessment and metrics

The i-DIR method was implemented using an in-house Python code. In order to

contrast the results of the i-DIR method with other DIR methods, we considered the open

source Nifty Reg library (Modat, Mcclelland, & Ourselin, 2010) which efficiently imple-

ments the FFD method (Rueckert et al., 1999) with elastic regularization. To understand

the effect of the inelastic regularization term over the purely elastic counterpart for a FE

method, we also consider the comparison with an Elastic FEM registration, also coded

in Python. To study the performance of the three methods considered here (FFD, Elastic

FEM, and i-DIR), we constructed synthetic reference and target images that simulated

planar sliding over a chessboard-like image studied by Hua and co-workers (Hua et

al., 2017), which we refer to as the synthetic dataset with sliding motion, see Figure

3.2. The synthetic images have a size of 80 × 80 pixels (with an isotropic pixel spatial

resolution of 1[mm] in the x, y direction), and the target image is constructed in such a

way that it resembled a dislocation or sliding motion, with a known displacement of 5
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pixels. We remark that, as the motion corresponds to a uniform vertical displacement

(i.e., rigid body motion in both blocks) of the right-hand side of the image, the exact

strain field is equal to zero, as rigid motions do not generate strain. To assess the method’s

performance on anatomical images, we considered sagittal planes of CT thorax images

of a normal volunteer under spontaneous breathing at total lung capacity (reference

image) and functional residual capacity (target image), see Figure 3.3. The images

were randomly selected from a small CT lung dataset of normal subjects employed in a

previous study (Hurtado et al., 2017), and the sagittal planes were arbitrarily chosen so

that large deformations were explicitly depicted to capture sliding. The image size of the

sagittal slice is 247× 346 pixels, where each pixel has an anisotropic spatial resolution of

0.008[mm] and 0.006[mm] in the x, y direction, respectively.

Figure 3.2. Synthetic dataset with sliding motion: Reference (left) and tar-
get (right) images. Landmarks used for computing the TRE are shown in
red for the reference image and in green for the target image.
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Figure 3.3. Lung dataset: Reference (left) and target (right) images. Row
A: TRE analysis using landmarks inside the lung. Row B: TRE analysis
using using landmarks on the dorsal ribs. Red and green marks indicate
landmarks in the reference and target images, respectively.

To quantitatively evaluate the performance of the DIR methods, we considered the

traditional residual sum of squared differences (RSS) between the reference and resampled

images, defined as:

RSS =
m∑
i=1

n∑
j=1

(Rij − (T ◦ (id+ u))ij)
2. (3.42)

In practice, the resampling process considers an interpolation method using cubic b-

splines. In addition, the normalized target registration error (TRE) was also computed.

The TRE is defined as

TRE =

∑N
i=1

√
(pi − qi)2

N
(3.43)

where pi(x, y) and qi(x, y) are the ith landmark in the target image (fixed landmark)

and the moving landmark, respectively, and N is the total number of landmarks. For

the synthetic dataset, 375 landmarks were positioned around the discontinuity surface,

as shown in Figure 3.2. In the case of the lung dataset, two sets of landmarks were
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considered, to analyze the effect of landmark selection and position regarding the sliding

surface. The first case considered 9 landmarks positioned entirely inside the lung (Figure

3.3, top row). The second case considered 12 landmarks placed in the ribs of the dorsal

region (Figure 3.3, bottom row).

In addition to the RSS and TRE metrics, the resampled image (T ◦(id+u)), difference

image (R−T ◦ (id+u)), and warped reference image ((ϕ, R)) are reported for all cases.

To study the mechanical performance of all the methods studied, we constructed images

of the elastic volumetric strain, defined as

εevol := trace(εe), (3.44)

and images of the elastic von Mises strain, which takes the form

εevm :=

√
2

3
εe : εe. (3.45)

We note that for purely elastic methods (FFD, Elastic FEM), the elastic strain tensor εe

is replaced by the total strain tensor ε in (3.44) and (3.45). Finally, a sensitivity analysis

is conducted for the i-DIR method on the synthetic dataset to understand the effect of

the initial yield stress on its registration performance. Throughout this chapter, the DIR-

based 2D imaging biomechanical models assume to have no out-of-plane deformations.

In mechanics, this condition is known as plane strain, in which there is zero strain in the

direction normal to the axis of the applied forces (i.e., uz = 0). Therefore, although it

is a 2D domain, the deformation can be considered volumetric. It is imperative to point

out that this assumption is only a hypothesis and that it is not necessarily always fulfilled,

which constitutes a limitation of the biomechanical model.

3.2.5. Parameter settings

For the FEM models (elastic FEM and i-DIR), we established an incremental approach

for the weighting parameter α. We set an initial value of α = 0.01, and once a convergence
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tolerance was exceeded, we systematically increased α, until we reach a value of α =

1400. Since the problem is not convex, it is necessary to define small increments of α. In

practice, the increment (∆α) is variable and depends on the magnitude of α. For example:

if α ≤ 1 −→ ∆α = 11% of α

if 1 < α ≤ 10 −→ ∆α = 8% of α

if 10 < α ≤ 20 −→ ∆α = 5% of α

if 20 < α ≤ 80 −→ ∆α = 4% of α

if 80 < α ≤ 150 −→ ∆α = 2% of α

if 150 < α ≤ 300 −→ ∆α = 0.8% of α

if 300 < α ≤ 1000 −→ ∆α = 0.2% of α

if α > 1000 −→ ∆α = 0.07% of α

An L-curve analysis was attempted to find an optimal value for α; however, the results

were erratic. No other sophisticated method was used to find an optimal α, just by trial and

error. For the Lamé constants (µ, λ), the initial yield limit (σ0) and the hardening modulus

(H), we adopted the following heuristic values:

Table 3.1. Parameter settings

Parameter Value

µ 1.36

λ 0.34

σ0 0.1

H 0.3

We did not perform any sensitivity analysis regarding parameters µ, λ, and H . We

chose them arbitrarily. However, we test different values for σ0. In particular, we vary
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σ0 between 0.005 and 10 to assess its effect on the performance of the model through the

RSS error.

Following the pyramidal approach described in (Modat, Mcclelland, & Ourselin,

2010), the entire registration model consisted of an initial global registration (i.e., affine

transformation) and three consecutive local registration processes (FFD algorithm). In the

FFD algorithm, cubic B-Spline are used to deform a source image to optimize an objective

function based on a normalized mutual information similarity measure and a penalty term.

The penalty term associated with the FFD model, also known as bending energy (BE),

was set to: BE1 = 1× 10−9, BE2 = 2.5× 10−6 and BE3 = 1× 10−4, for the three local

registration respectively. For clarity, when the FFD model is mentioned throughout this

chapter, it refers to the full pyramidal model (both global and local registration).

In terms of numerical discretization, both the elastic FEM and i-DIR models, em-

ployed structured triangular finite element meshes. As shown in Figure 3.4, the synthetic

dataset used a mesh of 5618 elements and a mesh of 18860 elements for the lung dataset,

leaving a triangle size of 1.139[mm2] and 4.531[mm2] for the synthetic and the lung cases,

respectively. For visualization purposes, we further refined our results into structured

meshes of size 64800 and 28800 elements for the synthetic and lung dataset, respectively.

As for the FFD model, we projected the deformation mapping field (output) and compute

the mechanical measures into a refined structured triangular finite element mesh of the

same size as the FEM DIR models, in order to have a fair comparison. We remark that for

the lung images, we consider the entire image domain in the mesh. Motivated by evalu-

ating how the deformation between the lung and its environment behaves, we decided to

mesh the whole domain and not just the isolated lung.
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Figure 3.4. Numerical discretization of the synthetic and lung datasets.
(Column A) Structured triangular meshes and (Column B) refined struc-
tured triangular meshes.

All models, FE discretization, biomechanical analysis, image processing, and statis-

tics, were coded in Python using a processor Intel Core i7-8750H CPU @ 2.20GHz ×

12.

3.3. Results

In terms of image color maps, as in Chapter 2, the results shown in this chapter differ

from the images in the published article. Its original form can be found in the Supplemen-

tary Material B.2.

3.3.1. Synthetic dataset with sliding motion

The performance of each registration model using the synthetic dataset with sliding

motion is reported in terms of resampled and difference images in Figure 3.5. The i-DIR

method accurately captures the vertical sliding and delivers the best resampled image,
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when compared to the other elastic methods (Figure 3.5, top row). Most of the errors

in the resampled images are located in a small neighborhood of the line where sliding

takes place. When analyzing the difference images (Figure 3.5, bottom row), the FFD

method results in considerable voxel-wise differences at the boundaries of the squares

that propagate from the sliding line throughout the checkerboard domain. In contrast,

small differences are observed around the sliding line in the elastic FEM case. No visible

differences are observed for the i-DIR case when compared to the other two methods.

0.10

0.00

0.05

0.2

0.0

-0.2

Reference image is included for comparison purposes.

Figure 3.5. Registration of synthetic dataset with sliding motion. (Top
row) resampled images using FFD, Elastic FEM and i-DIR methods and
Reference image, (bottom row) difference images. Colorbar indicates the
intensity (normalized between [−1, 1]) difference between images.

Warped reference images showing the resulting displacement field for each method

are reported in Figure 3.6. A close-up around the sliding region shows a continuous dis-

placement field with a vortex-like pattern over the sliding line that slowly dissipates to

the right for the FFD case. A similar displacement field pattern is observed for the elastic

FEM case, but with an attenuated vortex pattern. In contrast, the i-DIR method delivers a
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uniformly vertical displacement field on the region to the right of the sliding line, and zero

displacements to the left of the sliding line, being able to identify the discontinuity surface

as well as capturing the discontinuous displacement field.

Figure 3.6. Warped reference image and displacement field for the syn-
thetic dataset with sliding motion. Red arrows show the displacement field
in a neighborhood of the sliding plane

The RSS and TRE metrics for all three methods are shown in Table 3.2. The i-DIR

method delivers the lowest values for these performance metrics, followed by the Elastic

FEM method.

Table 3.2. Performance metrics for the synthetic dataset

Model RSS TRE

FFD 16.32 1.17

Elastic FEM 3.19 0.46

i-DIR 0.28 0.22

Figure 3.7 shows the elastic deformation fields associated to the three registration

methods. The elastic volumetric strain displayed by the FFD model, shows an erratic

pattern throughout the entire image, with high values of both compressive (peak value of -

1.22) and expansive (peak value of 0.83) deformation near the vicinity of the discontinuity
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surface. The case of the elastic FEM model delivers a volumetric strain field with local-

ized strain concentrations around the sliding surface with peak values of -0.75 and 1.27.

In contrast, the i-DIR model delivers a volumetric strain field that is zero in the majority

of the region of analysis, with small concentrations around the sliding surface with peak

values of -0.39 and 0.63. The resulting elastic von Mises strain field, which characterizes

shear distortions, is shown in the bottom row of Figure 3.7. Similarly to the case of vol-

umetric strain, the FFD method results in a highly oscillating field that take on non-zero

values everywhere in the image domain, reaching peak values of 1.72. The Elastic FEM

method displays high strain concentrations around the sliding plane with peak von Mises

strain values that are similar to the FFD case (2.38), but the strain field rapidly dissipate

away from the discontinuity plane. In contrast, the i-DIR results in a narrow region around

the sliding plane with low values (peak value of 0.38), with the rest of the image domain

resulting in zero von Mises strain.
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Figure 3.7. Elastic deformation fields for the synthetic dataset with sliding
motion resulting from the different registration methods: elastic volumetric
strain (top row, colorbar displays strain magnitude), and elastic von Mises
strain (bottom row, colorbar displays strain magnitude).

The sensitivity of the RSS error to the value of the initial yield stress in the i-DIR

method is shown in Figure 3.8. Yield stress values smaller that 0.1 result in RSS errors

that do no change considerably, delivering the highest accuracy observed for all three

methods. In contrast, yield stress values above 1.0 deliver a much higher RSS error, which

approaches that of the Elastic FEM method, see Table 3.2.
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Figure 3.8. Sensitivity of the i-DIR method, measured in terms of RSS
error, to the choice of initial yield stress value.

3.3.2. Registration of lung CT images

Resampled and difference images for the lung CT dataset are shown in Figure 3.9, top

row. All three methods deliver similar results of the resampled image. We note however,

that resampled images from both the FFD and Elastic FE methods show distorted rib

cuts in the dorsal region, while the ribs are accurately resampled in the case of the i-DIR

method. The misalignment of the ribs is also observed in the difference images of the FFD

and Elastic FEM cases, see Figure 3.9, bottom row. In contrast, the i-DIR case reports zero

difference values in the regions where ribs are located.
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Reference image is included for comparison purposes.

Figure 3.9. Registration of the lung dataset and comparison between meth-
ods. (Top row) resampled images, (bottom row) difference images. Color-
bar indicates the intensity (normalized between [−1, 1]) difference between
images.

Warped reference images are shown in Figure 3.10, where a close-up shows the dis-

placement fields around the sliding pleural cavity. A continuous, and almost uniform

upward displacement field is observed for the case of the FFD and Elastic FE methods.

In contrast, the i-DIR method delivers an upward displacement field inside the lung, right

next to a region comprising the ribs with null displacement, with the jump in displacement

magnitude located on the sliding pleural cavity.
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Figure 3.10. Warped reference image and displacement field for the lung
dataset. Red arrows show the displacement field in a neighborhood of the
sliding surface.

Performance metrics for the lung dataset are included in Table 3.3. We note that all

three methods result in similar values for the case of RSS and TRE using inside-lung

landmarks. However, the i-DIR method shows a remarkable advantage over the other

methods for the case of TRE using rib landmarks.

Table 3.3. Performance metrics for the lung dataset.

Model RSS TRE TRE

(inside-lung landmarks) (rib landmarks)

FFD 11.64 6.82 13.98

Elastic FEM 13.25 6.74 13.68

i-DIR 12.24 6.99 0.77

The elastic volumetric strain distribution resulting from the registration of lung images

are shown in Figure 3.11, top row. The FFD model delivers a highly oscillating field that

results in excessive strain values with peaks as high as -1.68 and 1.02, located both inside

and outside the lung domain. In contrast, the Elastic FEM model displays a more uniform

volumetric strain distribution inside the lung, with a smooth pattern of strain. However,

high strain localizations are observed outside the lung in the dorsal region where the ribs
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are located, with oscillating values. The i-DIR model delivers a smooth distribution of

volumetric strain inside the lung, that quickly transitions to small levels of strain immedi-

ately outside the lung. Further, the largest strain levels are found in the regions near the

diaphragm. Outside the lung, we mostly observe zero volumetric deformation throughout

the remaining image domain. The von Mises strain fields are shown in Figure 3.11, bottom

row. Similarly to the case of volumetric strain, the FFD model delivers a highly oscillating

field with a peak value in the order of 1.7 both outside and inside the lung. The Elastic

FEM method results in a distribution with smaller strain magnitudes, which in some parts

of the lung boundary are rapidly reduced to zero. In the case of the i-DIR method, a

smooth distribution of non-zero strain is observed inside the lung with the highest values

close to the diaphragm and dorsal region. The von Mises strain distribution sharply decays

to zero in the regions outside the lung.
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-0.2

-0.5

Figure 3.11. Elastic deformation fields for the lung dataset resulting from
the different registration methods: elastic volumetric strain (top row, col-
orbar displays strain magnitude), and elastic von Mises strain (bottom row,
colorbar displays strain magnitude).
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3.4. Discussion

The results for the synthetic dataset with sliding motion show that among the

three DIR methods studied, the i-DIR delivers the best resampled image, accurately

accommodating the sliding motion, see Figure 3.5, top row. We note that the elastic

DIR methods suffer from spurious displacements around the sliding line that result in

distorted resampled images, see Figure 3.5, bottom row. Further, the i-DIR method

is capable of capturing the discontinuous displacement field imposed by the sliding

motion, while elastic DIR methods fail to capture the jump in displacements and result

in spurious displacement fields, see Figure 3.6. Further, we have shown that for this

example, the i-DIR method consistently delivers RSS and TRE metrics that confirm

the superior performance of the i-DIR method when compared to the Elastic FEM

and FFD methods, see Table 3.2. Other methods proposed in the literature have also

shown a remarkable performance in the registration of the synthetic dataset with sliding

motion. In particular, the XFFD method has shown to be capable of accurately capture

the sliding motion by introducing a discontinuous transformation model that delivers

an optimal resampling (Hua et al., 2017). To this end, the XFFD method necessitates

the definition of the sliding surface a priori in order to deliver accurate and efficient

results. Here, we have shown that the i-DIR method does not require a priori infor-

mation about the sliding surface. Further, the sliding plane did not coincide with any

element edges in the discretization. This feature represents an important advantage over

existing methods, as the i-DIR is capable of detecting sliding discontinuities in an auto-

matic way, lending itself to the registration of images with arbitrary sliding discontinuities.

From the perspective of quantifying local deformation by means of DIR, we remark

that the sliding mechanism present in the synthetic dataset corresponds to a rigid (sliding)

motion between two adjacent blocks, and therefore no deformation is expected to occur in

any of the blocks after sliding. Figure 3.7 shows that the FFD method induces spuriously

high levels of both volumetric and deviatoric deformations around the sliding plane,
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which is consistent with previous findings for the synthetic dataset with sliding motion

(Hua et al., 2017). Similarly to the case of the displacement field, the strong warping

and deformation propagates throughout the image domain, creating nonphysical high

volumetric and deviatoric strain levels away from the discontinuity. The error in the

strain predictions is strongly attenuated by the elastic FE method, which still concentrates

high values in a neighborhood of the sliding plane. In contrast, the i-DIR method reports

low levels of deviatoric deformation on a narrow band around the discontinuity surface,

and negligible errors in the estimation of volumetric strain, see Figure 3.7. This result

shows that the i-DIR method not only automatically captures the sliding motion with

accuracy, but also delivers precise estimates of the strain fields, even in the present of

strong discontinuities.

The sensitivity of the iDIR model to the yield stress parameter shows that for

parameter values σy ≤ 10−2 no appreciable improvement is obtained in terms of the RSS

error. Further, we note that high values of yield stress deliver errors that are equal to

those reported by the Elastic FEM method. These results show that tuning the yield stress

parameter is essential for obtaining accurate results from the registration process.

The i-DIR method was also assessed in the analysis of medical CT images of the lung,

where sliding is expected to occur when registering images from resting states to maximal

inspiration effort (Amelon et al., 2014). When comparing resampled images, we showed

that the i-DIR method delivered errors in registering the domains inside the lung that are

comparable to those found in elastic DIR methods, see Figure 3.9. This conclusion is

supported by the performance metrics RSS and TRE for the case of inside-lung landmarks

reported in Table 3.3, where no marked differences are observed among the FFD, Elastic

FEM and i-DIR methods. However, when assessing anatomical structures that are outside

the lung, i.e. ribs, we observe that the i-DIR accurately resamples them to the correct

location, whereas elastic DIR methods fail to achieve a reasonable result, see Figure 3.9,
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bottom row. This observation is confirmed by the results obtained in the TRE when using

rib landmarks, where the i-DIR delivers errors that are one order of magnitude smaller

than the error provided by elastic DIR methods, see Table 3.3. Once again, we attribute

the good performance of the i-DIR method to its ability to handle discontinuous sliding

motion by considering inelastic deformations in those regions, a feature not displayed by

elastic methods, see Figure 3.10. We note that none of the models perceives the sliding

between the lobes. This shortcoming is partly due to the resolution of the meshes that

cannot distinguish the thin boundaries of the lung lobes and the fact that part of this

sliding mechanism is volumetric, which is ignored as it is a 2D analysis. This issue

constitutes one of the main limitations of the current model, and it is one of the reasons

why we emphasize the sliding between the lung and the ribs.

The evaluation of the elastic strain fields from registering lung CT images results

in conclusions similar to those obtained in the case of the synthetic image: elastic

DIR methods introduce highly oscillating fields both for the volumetric and deviatoric

components of the elastic strain tensor, see Figure 3.11. We remark here that previous

works on lung image registration have reported oscillatory strain fields when using elastic

DIR methods that employ B-splines or other smooth and continuous basis functions for

the construction of the deformation model (Cao et al., 2012; Hua et al., 2017). However,

these oscillations have been shown to hinder the accuracy of the estimations of local

pulmonary deformation, as they arise due to the inability of the deformation model

to capture discontinuities in the displacement field (Hurtado, Villarroel, et al., 2016).

Notably, the i-DIR method delivers a smooth distribution of elastic strain inside the lung

domain, with a sharp decay outside that approaches a state of no deformation. Further, the

spatial patterns of volumetric strain delivered by the i-DIR method are in good agreement

with those reported in the literature for normal human lungs that have been analyzed

by isolating the lung domain (Hurtado et al., 2017), where larger volumetric strains are

observed in the dorsal (dependent) and basal regions of the lung.
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In conclusion, we have introduced a novel inelastic model for DIR that automatically

captures sliding without a priori knowledge or assumptions about the spatial location

of discontinuities or the need of a segmentation to denote the slipping domain. We

note that other DIR formulations have been proposed in the literature to handle motion

discontinuities without the need of segmenting the sliding region before the analysis

(Schmidt-Richberg et al., 2012) In order to do so, these methods consider some as-

sumptions related to the specific physiological behavior of the organ. For the case of

the lungs, slipping motion is restricted to the edges of the image, and slippage occurs

along the edge of the image. We note that these assumptions are not required by the

i-DIR method, and therefore it represents a truly automatic technique for the detection of

discontinuities in DIR of arbitrary images. The key ingredient to achieve this performance

is the introduction of an inelastic energy term, which automatically locates regions of high

shearing deformation associated to sliding and locally modifies the effective mechanical

properties, allowing for higher levels of shear deformation in localized domains. We

remark that, while inelastic formulations are standard in the field of computational

mechanics (Ortiz & Stainier, 1999), the inclusion of inelastic energy regularizers is novel

in the field of image analysis, and, to the best of our knowledge, has not been pursued in

the past in the field of DIR. For the application of lung images, it is worth mentioning that

we aim at automatically capture sliding, particularly between the lung boundary and the

ribs (clearly identified within the images), and not necessarily improve the registration

accuracy inside the lung. The above is supported by the results obtained when measuring

the RSS error, which demonstrates that our i-DIR model holds a comparable perfor-

mance with traditional DIR methods, especially in areas with no sliding. However, the

inelastic model is considerably superior in capturing slippage at the lung edges, which is

again substantiated by a better performance when measuring the TRE using rib-landmarks.

The present work can be extended in several directions. One limitation of the current

computer implementation of the i-DIR method is the large wall-clock time required to

solve the optimization problem, which can take up to 40 times the time required by
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optimized elastic DIR methods (see Appendix B.3). This limitation may be alleviated by

implementations that leverage the power of GPUs in DIR libraries (Modat, Mcclelland, &

Ourselin, 2010). In addition, due to the high computational demands, the current version

of the i-DIR method has only been applied to 2D images. We remark that the motion and

deformation analysis based on 2D images of the thorax constitutes an important limitation

of this work in the biomechanical characterization of the lung. However, we also remark

that under normal conditions, the dominant orientation of displacements in the lung is in

the apico-basal direction (Amelon et al., 2011), which is included in the sagittal images

considered in this study. Future extensions should focus on DIR implementations for 3D

CT thoracic images, based on which a complete biomechanical study can be performed

to fully understand the 3D nature of deformations in the lung. In addition, we note

that due to the large level of strains experienced by the lung under full inspiration, the

elastic energy component employed in the i-DIR formulation may not be suitable, as it

corresponds to the elastic deformation energy for small strain levels (Lubliner, 2013). To

overcome this limitation, hyperelastic warping formulations have been proposed which

employ elastic energy terms that are compatible with large deformation (Genet, Stoeck,

von Deuster, Lee, & Kozerke, 2018). The use of hyperelastic energy terms in the future

versions of the i-DIR method constitutes a promising avenue of research.
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4. CONCLUSIONS AND OUTLOOK

4.1. Conclusions

The use of continuum mechanics in conjunction with advanced medical imaging pro-

vides the necessary components to develop a quantitative framework for estimating re-

gional deformations in lungs. In this regard, deformable registration models are useful to

estimate transformation mapping fields which leads to the study of deformation mecha-

nisms in lungs. The study of the mechanical behavior of the lung parenchyma is some-

thing that the scientific community is working on and where promising results have been

obtained regarding the possibility of classifying healthy and diseased subjects. Various

lung conditions and lung diseases manifests by a structural and mechanical alteration.

Furthermore, the non-physiological levels of lung strain and stress that develop during

mechanical ventilation commonly develop inflammation at the cellular level, resulting in

tissue damage. Consequently, knowledge of lung biomechanics may be beneficial for the

diagnosis of lung diseases and the development of safer strategies during ventilatory sup-

port therapies.

Chapter 2 describes an image-based biomechanical quantification model that measures

regional deformation in normal human lungs. This work adds the concept of surface and

length deformation to volumetric and anisotropy regional deformation. The results show

spatial variations of regional volumetric deformation and distribution of regional volu-

metric deformation in supine human lungs that are consistent with the literature. This

indicates greater deformation in the dorsal regions of the lung due to the effects of gravity.

The normalized distribution of length and surface deformation are similar to the spatial

pattern observed in the normalized Jacobian, suggesting a strong correlation with the di-

rection of gravity. High values of anisotropy were shown in various regions of the lung

without any spatial trend, confirming that the regional deformation of the lung is spatially

heterogeneous. Since deformation energy in soft tissues not only depends on volumetric

deformation, but also on surface and linear stretch, the confirmation that these additional
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metrics are not uniform in the normal lung highlights the importance of assessing the 1st

and 2nd invariants of the right stretch tensor and their relationship with disease onset and

progression in futures studies.

During the study of regional deformation in the normal lung, we encountered an im-

portant limitation in the analyses performed. B-spline-based registration models that do

not take into account the sliding kinematics of the organs, cannot accurately measure strain

near the boundaries and fissures of lungs. For example, the intrinsic C2- continuity estab-

lished by the B-spline interpolation of the deformation mapping field observed in spline-

based DIR models, results in a pointless effort when measuring discontinuities and ma-

terial interface. As a result, non-physiological deformations arise near sliding surfaces

within the lung. These deformations are characterized by regions with highly localized

regional deformation near discontinuous surfaces where deformation is not expected to

occur.

To address the problem of tissue sliding, Chapter 3 introduces a novel inelastic DIR

model with the ability to automatically capture discontinuous boundaries in the context of

regional lung deformation. An inelastic regularizer is introduced into the DIR model that

automatically detects sliding surfaces by directly assessing the shear-induced deformation

and modifying the elastic response in regions where high shearing occurs. Although in-

elastic formulations are widely used in the field of computational plasticity, the inclusion

of an inelastic energy regularizer is a highly novel approach within the field of image

analysis. The results show that the i-DIR model provides accurate estimates of local strain

in the boundaries of the lung without spurious oscillatory patterns that are frequently ob-

served in conventional elastic DIR methods without the need of defining the sliding surface

before the analysis. However, the i-DIR model reveals various deficiencies in its applica-

bility to a large-scale analysis of pulmonary deformations. The main limitation is the large

number of degrees of freedom that the model holds, resulting in a high computational cost

when solving the optimization problem. Consequently, the current i-DIR model is limited
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and only supports 2D images. This restriction makes the characterization of regional lung

deformation suboptimal since the volumetric nature of the deformation is neglected.

4.2. Future work

Extending the i-DIR model to support 3D images should produce a more comprehen-

sive representation of regional lung deformation. This is a key aspect of lung biomechan-

ical quantification since the deformation of the lung is known to be volumetric in nature.

Future efforts should focus on developing a parallel implementation using GPUs and pos-

sibly migrating the source code to another language, such as native C/C++. Once the i-DIR

supports the use of 3D images, the model should be applied and validated in the study of

early disease biomarkers related to mechanical changes (deformation) of lung tissue. This

study should consider healthy and diseased subjects to establish and identify differences

in regional deformation within the lung. Considering sliding mechanisms inside the lung,

a thorough description of regional deformation should include anisotropic indices, length,

surface and volumetric deformation.

In many applications of mechanical engineering, the theory of infinitesimal deforma-

tions (small deformations) cannot be applied without introducing significant errors, es-

pecially in problems where the underlying deformation processes are described by large

deformations, as in the case of lung deformations (Modersitzki, 2003). In the context of

lung mechanics, additional improvement of the i-DIR model could focus on developing an

inelastic model using a large deformation framework, such as a finite strain elastoplastic

or hyperelastic model.

The clinical diagnosis of diseases can benefit in many ways from technological and

computational advances. The integration of different medical image-based analysis meth-

ods is expected to help improve the clinical diagnosis of lung diseases. With the aim of

causing synergies in the early detection of lung damage, it would be interesting to comple-

ment the information from image-based models of different nature. In this sense, once the
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clinical validation of the i-DIR model has been carried out, the additional information that

the pulmonary biomechanical analysis could offer might likely complement computational

techniques focused on the extraction of biomarkers that indicate pulmonary abnormalities.

Complementary image-based techniques that may be valuable to the study of the state

of lung tissue are focused on the extraction of biomarkers directly from the anatomical im-

age. This feature extraction process, known as Radiomics or Texture Image Analysis, has

great potential in terms of disease diagnosis and prognosis (Mao, 2010; Parekh & Jacobs,

2016). Quantification models based on statistical metrics attempt to study the distribution

of intensities in the image (texture pattern analysis) or the morphology of previously seg-

mented structures (shape-analysis). Conveniently, machine learning models are combined

with feature extraction techniques to analyze the pixel information within the image in an

entirely automatic procedure. The extraction of meaningful biomarkers is accomplished

by systematically training large image datasets from healthy and diseased patients. In this

context, Yang et al. work on the quantification and classification of pulmonary emphy-

sema from chest tomography images. Their model consists of segmenting and quantifying

emphysema and then training unsupervised models. Ultimately, the trained texture pattern

model can classify the disease by defining emphysema subtypes. The automatic model can

code standard emphysema subtypes, holding a significant correlation with clinical charac-

teristics (Yang et al., 2017). In the same line of research, Wang and colleagues developed

an artificial intelligence model based on convolutional neural networks (CNN) capable

of classifying texture patterns in lung images. The model showed a notable classifica-

tion performance (higher than 83%) to differentiate five types of tissue patterns: healthy,

emphysema, ground glass, fibrosis, and micronodules (Wang et al., 2018). Expanding

the research areas for the study of lung function, future work on the subject should aim

to improve and validate automatic texture-based quantification models to detect particu-

lar anomalies inside predefined regions of interest and establish a strong correlation with

mechanical changes inside the lung.
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A. FIRST APPENDIX

A.1. Registration parameters

As described in (Modat, Mcclelland, & Ourselin, 2010), the entire image registration

process included four sequential stages: one global registration and three local registra-

tions. All parameters used in each of the stages is described below.

1st step: Global registration.

An affine transformation based on a block matching algorithm is used for an

initial global registration. The size of the block was set to 43 voxels and the

neighbourhood area of a block has been defined such that the block in the ref-

erence image and the block in the floating image always overlap by at least one

voxel. A cross-correlation metric is used, as a similarity measure.

2nd step: First local registration.

First local registration stage considers only 2 registration levels of a 4-level pyra-

midal approach. In other words, warping was performed on 3-time and twice

downsampled images. The control point spacing has been set to 6 voxel-width.

The maximal number of iterations per level was set to 500 and the weight of

the bending-energy penalty term to 0.01%. After computation of the NMI gra-

dient, it is smoothed using a Gaussian kernel with standard deviation set to half

the control point spacing size (3 voxels width). No penalty term based on the

Jacobian determinant has been used for this stage. The aim of the initial local

registration was to quickly register the main structures in the lung.
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Table A.1. Parameters for first local registration.

Parameter Value

”-maxit” ”500”

”-ln” ”4”

”-lp” ”2”

”-smoothGrad” ”3”

”-be” ”0.0001”

”-sx” ”-6”

”-sy” ”-6”

”-sz” ”-6”

3rd step: Second local registration.

The second local registration stage was performed on twice down-sampled in-

put images. The NMI gradient is still smoothed with the same kernel size, the

bending-energy weight is set the 0.1% and the Jacobian-based penalty term is

introduced with the same weight. The maximal number of iteration is set to 500.

The aim of this stage was to quickly align the border of the lung.
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Table A.2. Parameters for second local registration.

Parameter Value

”-maxit” ”500”

”-ln” ”3”

”-lp” ”1”

”-smoothGrad” ”3”

”-be” ”0.001”

”-jl” ”0.001”

”-sx” ”-6”

”-sy” ”-6”

”-sz” ”-6”

4th step: Third local registration.

This last stage was performed using three levels in the pyramidal approach: 3-

time, twice and once down-sampled images. The penalty term weights were

both set to 0.1% and no smoothing was performed on the NMI gradient field.

The maximal number of iterations was set to 300 for each of the three levels.

The goal of the final stage was to established a detailed alignment of the entire

lung.
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Table A.3. Parameters for third local registration.

Parameter Value

”-maxit” ”300”

”-ln” ”4”

”-lp” ”3”

”-be” ”0.001”

”-jl” ”0.001”

”-sx” ”-6”

”-sy” ”-6”

”-sz” ”-6”
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A.2. Supplementary Material 1

Left Right Left Right
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Supplementary Material 1: Invariant + SRI + ADI maps for all subjects



97

A.3. Supplementary Material 2

Table A.4. Statistical measures for the left lung (LL) and right lung (RL)
distributions of I1

Subject Mean Std Kurt. Skew.

LL RL LL RL LL RL LL RL

S01 1.249 1.236 0.135 0.117 0.717 1.972 0.738 0.933

S02 1.303 1.319 0.093 0.107 0.940 1.065 0.731 0.543

S03 1.273 1.286 0.114 0.142 0.885 0.219 0.579 0.723

S04 1.245 1.218 0.092 0.068 1.537 1.272 0.568 0.536

S05 1.552 1.491 0.122 0.122 0.763 0.487 0.422 0.203

S06 1.502 1.498 0.097 0.099 1.200 0.939 -0.057 0.176

S07 1.260 1.253 0.098 0.096 1.896 2.045 0.408 0.368

S08 1.460 1.466 0.165 0.154 0.046 1.904 -0.042 0.428

S09 1.140 1.136 0.073 0.079 1.433 2.171 0.346 0.681

S10 1.376 1.362 0.112 0.101 0.522 1.136 0.216 -0.040

S11 1.460 1.445 0.171 0.184 0.961 1.209 0.869 0.704
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Table A.5. Statistical measures for the left lung (LL) and right lung (RL)
distributions of I2

Subject Mean Std Kurt. Skew.

LL RL LL RL LL RL LL RL

S01 1.538 1.503 0.334 0.291 1.425 3.425 0.978 1.240

S02 1.681 1.710 0.249 0.294 1.331 1.382 0.822 0.637

S03 1.593 1.609 0.290 0.359 1.861 0.901 0.821 0.902

S04 1.535 1.463 0.223 0.171 1.816 1.630 0.680 0.589

S05 2.338 2.171 0.371 0.360 0.864 0.661 0.503 0.326

S06 2.218 2.189 0.283 0.294 0.992 0.991 -0.026 0.258

S07 1.577 1.531 0.249 0.233 2.083 1.738 0.681 0.184

S08 2.079 2.068 0.474 0.414 0.313 0.651 0.191 0.227

S09 1.291 1.274 0.166 0.180 1.942 3.094 0.494 0.874

S10 1.862 1.817 0.305 0.276 0.738 1.043 0.393 0.089

S11 2.085 2.021 0.511 0.549 1.959 2.489 1.154 1.130
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Table A.6. Log-normal fit: location and scale parameters, and fit error for I1

Subject µ̂ σ̂ Error (%)

LL RL LL RL LL RL

S01 0.217 0.208 0.106 0.092 10.1 14.7

S02 0.262 0.273 0.070 0.080 10.2 11.2

S03 0.237 0.245 0.089 0.107 13.9 14.8

S04 0.216 0.196 0.073 0.055 16.0 18.1

S05 0.436 0.396 0.078 0.082 14.1 18.0

S06 0.405 0.402 0.065 0.066 15.4 14.5

S07 0.228 0.223 0.077 0.076 24.6 20.3

S08 0.372 0.377 0.115 0.105 18.0 10.3

S09 0.129 0.125 0.063 0.068 9.1 12.1

S10 0.316 0.306 0.081 0.075 7.4 12.4

S11 0.372 0.360 0.114 0.125 20.1 17.7

Average 14.4 14.9
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Table A.7. Log-normal fit: location and scale parameters, and fit error for I2

Subject µ̂ σ̂ Error (%)

LL RL LL RL LL RL

S01 0.408 0.390 0.209 0.184 9.4 13.2

S02 0.509 0.522 0.144 0.171 9.9 14.6

S03 0.450 0.452 0.178 0.214 12.2 13.5

S04 0.418 0.374 0.143 0.115 14.7 14.9

S05 0.837 0.761 0.158 0.168 15.3 18.9

S06 0.788 0.774 0.132 0.136 18.7 16.8

S07 0.443 0.414 0.158 0.157 25.8 24.4

S08 0.704 0.705 0.239 0.208 18.0 13.1

S09 0.247 0.233 0.128 0.138 11.0 14.0

S10 0.608 0.585 0.165 0.157 8.3 16.1

S11 0.707 0.669 0.232 0.263 17.9 19.2

Average 14.7 16.2
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A.4. Supplementary Material 3

Supplementary Material 3: Normalized invariant maps for all subjects

Left Right Left Right Left Right
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A.5. Supplementary Material 4

Figure A.1. Side by side between the whole-lung analysis and lobe-by-
lobe analysis in terms of Î1.
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B. SECOND APPENDIX

B.1. Mathematical definitions and demonstrations

B.1.1. Relation between the rate of plastic strain and the internal variables.

In general, the relationship between ε̇p and q is not independent and is given by the

Prandtl-Reuss flow rule:

ε̇pij = ˙̄εp
(

3

2

sij
σ̄

)
(B.1)

where ˙̄εp stands for the evolution of the accumulated plastic strain and σ̄ for the effec-

tive stress, which for the von Mises model takes the form

σ̄ =

√
3

2
sijsij. (B.2)

For multi-axial plasticity we can rewrite the flow rule (3.20) as,

ε̇pij = ˙̄εpMij (B.3)

where M ≡ Mij = 3
2

sij
σ̄

stands for the instantaneous direction of plastic flow. Simi-

larly, the effective stress (B.2) can be expressed as

σ̄ = σijMij. (B.4)

Going a step back and clearing ˙̄εp from (B.1) we have,

˙̄εp =

√
2

3
ε̇pij ε̇

p
ij (B.5)
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which in view of the plastic flow rule, is analogous to

˙̄εp = q̇ (B.6)

Then by integration of (B.5) and again, assuming isotropic hardening, we have the

following relation,

ε̄p =

∫ t

0

√
2

3
ε̇pij ε̇

p
ij dt ≡ q (B.7)

Finally, we compute the driving forces for q as,

y = −∂A
∂q

=
∂W e

∂εeij
Mij −

∂W p

∂q
(q) = σijMij −

∂W p

∂q
(q) (B.8)

y = σ̄ − σc. (B.9)

B.1.2. Incremental flow rule update

Following an incremental flow rule of the type,

εpn+1 = εpn + ∆qM (B.10)

= εpn + ∆q
3

2

sn+1

σ̄n+1

(B.11)

let

gn(εn+1, qn+1) = A(εn+1, ε
p
n+1(qn+1), qn+1)− An + ∆t · ψ∗

(
|qn+1 − qn|

∆t

)
(B.12)

Then we seek to minimize (B.12) with respect to qn+1, such that,

∂gn
∂qn+1

= 0 =⇒ inf
qn+1

gn(εn+1, qn+1) (B.13)
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we solve the above in a sub-differential way, such that

0 ∈ ∂A
∂qn+1

+ ∂ψ∗
(
|qn+1 − qn|

∆t

)
(B.14)

0 ∈ ∂W e

∂εen+1

·
∂εen+1

∂qn+1

(εn+1 − εpn − (qn+1 − qn)M) +
∂W p

∂q
(qn+1) + ∂ψ∗

(
|qn+1 − qn|

∆t

)
(B.15)

0 ∈ −σn+1 ·M +
∂W p

∂q
(qn + ∆q) + ∂ψ∗

(
|∆q|
∆t

)
(B.16)

0 ∈ −σ̄n+1 +
∂W p

∂q
(qn + ∆q) + ∂ψ∗

(
|∆q|
∆t

)
(B.17)

Recalling that the von Mises flow vector is purely deviatoric (De Souza Neto et al.,

2008), we have that

sn+1 = 2µεen+1

= 2µ(εn+1 − εpn+1)

= 2µ

(
εn+1 − εpn −∆q

3

2

sn+1

σ̄n+1

)
= 2µ (εn+1 − εpn)− 2µ∆q

3

2

sn+1

σ̄n+1

sn+1 = spren+1 − 3µ∆q
sn+1

σ̄n+1

(B.18)

Since the predictive and updated deviatoric stress are co-linear (sn+1 ‖ spren+1), we can

state that,

M =
3

2

sn+1

σ̄n+1

=
3

2

spren+1

σ̄pren+1

(B.19)
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=⇒ sn+1 =
spren+1

σ̄pren+1

σ̄n+1 (B.20)

From the above we can re-write (B.18) as,

sn+1 = spren+1 − 3µ∆q
spren+1

σ̄pren+1

(B.21)

sn+1 =

(
1− 3µ∆q

σ̄pren+1

)
spren+1 (B.22)

Now replacing (B.20) in (B.22), we have,

spren+1

σ̄pren+1

σ̄n+1 =

(
1− 3µ∆q

σ̄pren+1

)
spren+1 (B.23)

=⇒ σ̄n+1 = σ̄pren+1 − 3µ∆q (B.24)

Going a step back to (B.17) we can explicitly define,

σ̄pren+1 − 3µ∆q ∈ ∂W
p

∂q
(qn + ∆q) + ∂ψ∗

(
|∆q|
∆t

)
(B.25)

Finally, assuming that W p = 1
2
Hq2

n+1 and ψ∗ = σy|∆q|, we can rewrite (B.25) as:

σ̄pren+1 − 3µ∆q −H(qn + ∆q)− σy = 0 (B.26)

which eventually delivers,

∆q =
σ̄pren+1 −Hqn − σy

3µ+H
(B.27)

B.1.3. Return mapping algorithm

The solution of ∆q in (B.27) involves a two mutually exclusive steps:
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i) An elastic predictor, such that,

∆q = 0

qpren+1 = qn

σ̄pren+1 = {2µ(εn+1 − εpn+1(qpren+1)) + λ trace(εn+1 − εpn+1(qpren+1))I} ·M

=
√

3
2
spren+1 · s

pre
n+1

(B.28)

replacing in (B.26), we have

σ̄pren+1 −Hqn − [−σy, σy] = 0 (B.29)

=⇒

 σ̄pren+1 ≤ Hqn + σy

σ̄pren+1 ≥ −Hqn − σy
(B.30)

and

ii) A plastic corrector, where we have two possible cases:

a) if the elastic trial lies within the elastic domain

Φ(σ̄pren+1) ≤ 0 =⇒ σ̄pren+1 ∈ [−σy, σy] (B.31)

there is no plastic evolution within the time interval (tn, tn+1), and therefore we update

our variables:

(·)n+1 = (·)pren+1 (B.32)

and

b) otherwise, we have plastic flow (or elasto-plastic evolution). By a traditional

Newton-Raphson linearization we solve the following

σ̄pren+1 − 3µ∆q −H(qn + ∆q)− σy = 0 (B.33)
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and then we update the following variables at tn+1,

εpn+1 = εpn + ∆q
3

2

sn+1

σ̄n+1

(B.34)

qn+1 = qn + ∆q (B.35)

εen+1 = εn+1 − εpn+1 (B.36)

σn+1 = λ trace(εen+1)I + 2µεen+1 (B.37)

Dep
n+1 = 2µ

(
1− 3µ∆q

σ̄pren+1

)
Id + 6µ2

(
∆q

σ̄pren+1

− 1

3µ+H

)
M̄n+1 ⊗ M̄n+1 +KI ⊗ I

(B.38)

where K is the bulk modulus, M̄n+1 ≡
√

2
3
Mn+1 =

spren+1

‖spren+1‖
is the unit plastic flow vector

and Id is the fourth order deviatoric projection tensor defined as,

Id ≡ IS −
1

3
I ⊗ I (B.39)

with IS = 1
2
(δikδjl + δilδjk) as the fourth order symmetric identity tensor.

B.1.4. Effective incremental energy

The effective incremental energy can be defined as follows,

Wn(ε) = inf
qn+1

gn(ε, qn+1) = gn(ε, q∗n+1(ε)) (B.40)

where,

q∗n+1(ε) ∈ argmin gn(ε, qn+1) (B.41)

such that,
∂gn
∂qn+1

(ε, q∗n+1(ε)) = 0 (B.42)
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Conveniently know the effective potential depends solely in ε = εn+1. Following this

definition, we compute the first and second derivative of Wn, where,

DWn(ε) =
∂gn
∂ε

(ε, q∗n+1(ε)) (B.43)

=
∂gn
∂ε

(ε, q∗n+1(ε)) +
∂gn
∂qn+1

(ε, q∗n+1(ε)) ·
∂q∗n+1

∂ε
(ε) (B.44)

but since ∂gn
∂qn+1

(ε, q∗n+1(ε)) = 0, we have that for a fully implicit scheme,

DWn(ε) =
∂gn
∂ε

(ε, q∗n+1(ε)) ≡ σn+1 (B.45)

where σn+1 are the stresses at t = tn+1.

Then we compute,

D2Wn(ε) =
∂2gn
∂ε∂ε

(ε, q∗n+1(ε)) +
∂2gn

∂ε∂qn+1

(ε, q∗n+1(ε)) ·
∂q∗n+1

∂ε
(ε) (B.46)

where we can redefine ∂q∗n+1

∂ε (ε) deriving (B.42) by ∂
∂ε , such that,

∂2gn
∂qn+1∂ε

(ε, q∗n+1(ε)) +
∂2gn

∂qn+1∂qn+1

(ε, q∗n+1(ε)) ·
∂q∗n+1

∂ε
(ε) = 0 (B.47)

=⇒
∂q∗n+1

∂ε
(ε) = −

{
∂2gn

∂qn+1∂qn+1

(ε, q∗n+1(ε))

}−1

· ∂2gn
∂qn+1∂ε

(ε, q∗n+1(ε)) (B.48)

replacing in (B.46), we have that for a fully implicit scheme,

D2Wn(ε) =
∂2gn
∂ε∂ε

(ε, q∗n+1(ε))− ∂2gn
∂ε∂qn+1

(ε, q∗n+1(ε)) ·

{
∂2gn

∂qn+1∂qn+1

(ε, q∗n+1(ε))

}−1

· ∂2gn
∂qn+1∂ε

(ε, q∗n+1(ε))

(B.49)

D2Wn(ε) ≡ Dep
n+1 (B.50)
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where Dep
n+1 is known as the consistent tangent modulus at t = tn+1.

B.1.5. Finite-element discretization of the i-DIR formulation

Let:

u ≈ uhi :=
n∑

A=1

NAuiA = N(x)u (B.51)

v ≈ vhj :=
n∑

A=1

NAvjA = N(x)v (B.52)

ε(∇u) ≈ ε(∇uh) :=
n∑

A=1

BAuiA = B(x)u (B.53)

ε(∇v) ≈ ε(∇vh) :=
n∑

A=1

BAvjA = B(x)v (B.54)

where NA are the shape functions, N is the matrix of global shape functions, and B is the

global strain-displacement matrix.

N =


N1 0 0 N2 · · · Ni 0 0

0 N1 0 0 · · · 0 Ni 0

0 0 N1 0 · · · 0 0 Ni

 (B.55)

B =
[
B1 B2 B3 · · ·Bi

]
(B.56)
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Bi =



∂Ni
∂x

0 0

0 ∂Ni
∂y

0

0 0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂x

0

0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂z

0 ∂Ni
∂x


(B.57)

Substituting the approximations (B.51)-(B.54) into the linear variational problem

(3.40) we obtain the linear system of equations defined in (3.41), where the tangent matrix

and residual vector are defined as

Kn := α

∫
Ωh

NT
{
∇T (uhn)⊗∇T (uhn) + (T (uhn)−R)∇∇T (uhn)

}
N

+

∫
Ωh

BTDep
n+1(ε(uhn))B,

(B.58)

Fn := α

∫
Ωh

NT (T (uhn)−R)∇T (uhn) +

∫
Ωh

BTσn+1(ε(uhn)), (B.59)

which are constructed by numerically evaluating the element expressions and assem-

bling their contributions into the global matrix and vector using standard finite-element

techniques, see, e.g., (Hurtado & Henao, 2014).
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B.2. Images in its original version (article version)

0.10

0.00

0.05

Reference image is included for comparison purposes.

Figure B.1. Registration of synthetic dataset with sliding motion. (Top
row) resampled images using FFD, Elastic FEM and i-DIR methods and
Reference image, (bottom row) difference images. Colorbar indicates the
absolute intensity difference between images.
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Figure B.2. Elastic deformation fields for the synthetic dataset with sliding
motion resulting from the different registration methods: elastic volumetric
strain (top row, colorbar displays strain magnitude), and elastic von Mises
strain (bottom row, colorbar displays strain magnitude).
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Figure B.3. Registration of the lung dataset and comparison between meth-
ods. (Top row) resampled images, (bottom row) difference images. Color-
bar indicates the absolute difference between images.
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Figure B.4. Elastic deformation fields for the lung dataset resulting from
the different registration methods: elastic volumetric strain (top row, col-
orbar displays strain magnitude), and elastic von Mises strain (bottom row,
colorbar displays strain magnitude).
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B.3. Processing time

Table B.1. Processing time of the lung dataset considering the meshing
and the optimization scheme.

Model Time [min]

FFD 46.3

Elastic FEM 1759.4

i-DIR 1828.8


