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The classical dynamics of two interacting particles of equal mass and equal or opposite charge,
moving in a plane and a perpendicular magnetic field, is discussed. The simplest trajectories are
similar to those of a single particle in the presence of crossed electric and magnetic fields~Hall
configuration!. Such motion occurs over a ribbon that may be straight~for opposite charges!, or bent
into a circle~for identical particles!. © 1997 American Association of Physics Teachers.

I. INTRODUCTION

Since the discovery of the quantum Hall effect there has
been much interest in understanding the dynamics of elec-
trons confined to move in two dimensions in the presence of
a magnetic field perpendicular to the plane of motion.1 The
confinement is possible at the interface between two materi-
als, typically a semiconductor and an insulator such as GaAs
and AlGaAs, where a quantum well that traps the particles is
formed, forbidding their motion in the direction perpendicu-
lar to the plane of the interface at low energies. The integral
quantum Hall effect has been explained using a free electron
model, while a proper treatment of the fractional effect re-
quires that the electron–electron interaction be included.2

The interacting quantum problem has been treated in the
Hartree–Fock3,4 and variational5 approximations, as well as
with numerical methods.6 It is a difficult many-body problem
for which a further understanding than that provided by the
approximate treatments is needed. The simplest case, that of
just two interacting particles in an additional confining para-
bolic potential has been treated by Taut.7 He found exact
analytical solutions for selected values of the magnetic field.
Why other values do not lend themselves for such solutions
is unclear.
In this paper we present a complete solution of the classi-

cal two-body problem ignoring radiation and relativistic ef-
fects. Our purpose is to provide information on the trajecto-
ries in order to guide further efforts in the understanding of
the quantum effects. Also, there have been recent experi-
ments involving interesting phenomena such as the Weiss
oscillations,8 in which electrons behave semiclassically. Al-
though these effects may be explained using noninteracting
electrons, it is possible that the interaction becomes relevant
in the limit of very dilute electron systems, as is the case in
the fractional quantum Hall effect~low-filling fraction!.
In Sec. II we study the case of two identical particles. The

problem is separable in center of mass and relative coordi-
nates. The center of mass moves as a free particle in the
magnetic field, of twice the charge and mass as each con-
stituent of the pair. The Coulomb repulsion affects the rela-
tive motion. We find that this motion is similar to that of a
single particle in crossed electric and magnetic fields~Hall
configuration!, only that the rectilinear strip in which this
latter motion takes place is bent into a circle. In Sec. III we
discuss the case of two particles of the same mass and op-
posite charge. The problem is nonseparable, yet becomes one

dimensional in a special case for which we find solutions
also similar to those in the Hall configuration over a rectilin-
ear strip.

II. IDENTICAL PARTICLES

We consider two identical particles of massm and charge
e in a uniform magnetic fieldB. We are interested in the
motion in a plane perpendicular to the magnetic field. The
particles interact with the field, and with each other through
the Coulomb repulsion. The dynamics is derived from the
Lagrangian~we use the Gaussian system of units!:

L~r1 ,r2 , ṙ1 , ṙ2!5 1
2mṙ1

21 1
2mṙ2

21
e

c
A~r1!• ṙ1

1
e

c
A~r2!• ṙ22e2/kur12r2u. ~1!

Here,r1 ~r2! is the position vector of particle 1~2!, A is the
vector potential, andk is the dielectric constant of the me-
dium in which the particles move. The problem is separable
if center of mass~CM! and relative coordinates are used. Let
R5~r11r2!/2 denote the position of the CM andr5r22r1
the relative position vector. In the symmetric gaugeA~r !
51

2B3r , we obtainL5Lcm1Lrel , where

Lcm~R,Ṙ;ucm ,u̇cm!5
1

2
M ~Ṙ21R2u̇cm

2 !1
1

2

Q

c
BR2u̇cm

~2!

describes the dynamics of the CM, and

Lrel~r , ṙ ;u rel ,u̇ rel!5
1

2
m~ ṙ 21r 2u̇ rel

2 !

1
1

2

q

c
Br2u̇ rel2qQ/kr ~3!

describes the relative motion, all in polar coordinates. From
these Lagrangians we see that the CM motion is that of a
single particle with chargeQ52e and massM52m in the
presence of a magnetic fieldB. It describes a circle with an
angular frequencyu̇52vc , with vc5eB/mc the cyclotron
frequency. The relative motion is, in turn, that of a particle
with chargeq5e/2 and massm5m/2 in the presence of an
external magnetic field, and the electric field produced by a
chargeQ52e fixed at the origin.
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We will use the dimensionless notationj5R/ l B , r5r / l B ,
ṙ5(dr/dt)/vc , where l B5(mc2/B2)1/3 is the natural clas-
sical length scale. Time, energy, and angular momentum are
expressed in units of 1/vc , e

2/ l B , andmvcl B
2, respectively.

The Lagrangians~2! and ~3! do not contain the azimuthal
angle. The conjugate momenta

pu
cm52j2S u̇cm

vc
1
1

2D ~4!

and

pu
rel5

1

2
r2S u̇ rel

vc
1
1

2D ~5!

are therefore constants of motion. The energies associated
with the classical motion are

ecm5 j̇21
1

4 S pu
cm

j
2j D 2, ~6!

e rel5
1

4
ṙ21S pu

rel

r
2
1

4
r D 21 1

kr
. ~7!

The form ofecm anderel differ by the presence of a Coulomb
term inerel , making the relative and CM motion very differ-
ent.
Integrating Eq.~6! with the aid of Eq.~4!, we obtain for

the radial coordinate of the CM, the equation

j222jAecm1pu
cm cos~ucm2u0!1pu

cm50, ~8!

whereu0 is a constant of integration. Equation~8! represents
a circle of radiusAecm centered atj0 5 Aecm1pu

cm, so that
ecm defines the orbit radius, whilepu

cm and ecm together fix
the position of its center.
The integral of motion for the relative coordinate is ob-

tained from Eqs.~5! and ~7!. We get,

Du rel~r!

54E
r,

r
dr8S pu

rel

r8
2
1

4
r8D

A2r841~16e18pu
rel!r82216r8/k216pu

rel2
.

~9!

Herer,,r,r. , wherer. andr, are the extreme values of
the relative coordinate of the orbit. They are determined by
the two real and non-negative solutions of Eq.~7! under the
condition ṙ50. The other two solutions arec6 ~see the Ap-
pendix!. In terms of these constants we can rewrite Eq.~9! in
the form

Du rel~r!52
c12r,

A~r.2c1!~r,2c2!

3H 2pu
relPFl~r!,h

c1

r,
,sG1P@l~r!,h,s#J

12
1

A~r.2c1!~r,2c2!
S 2 pu

rel

c1
2c1D

3F@l~r!,s#, ~10!

whereF(a,b) andP(a,b,c) are elliptic integrals of the first
and third kind, respectively, and

l~r!5arcsinA~r.2c1!~r2r,!

~r.2r,!~r2c1!
, ~11!

h5
r.2r,

r.2c1
, ~12!

s5A~r.2r,!~c12c2!

~r.2c1!~r,2c2!
. ~13!

The classical motion of the pair is the composition of the
circular CM motion and the relative motion. The latter is in
general noncircular and is not necessarily periodic. A simpli-
fying property common to pairs of particles of equal mass is,
however, that in the CM system both particles describe iden-
tical orbits with a phase difference ofp.
The simplest possible classical orbit one can obtain for

this system is the circle. It corresponds to a situation in
which the magnetic force and Coulomb repulsion combine to
exactly produce the centripetal acceleration necessary to
maintain a circular motion. The condition is

2
v2

r
5v2

1

kr2
, ~14!

wherev5ruu̇ relu/2vc is the dimensionless constant speed of
each particle. If the CM is at rest the motion is truly circular
in the laboratory frame, while only the relative motion is
circular if the CM moves. The constant relative distance may
be obtained from our formalism by noting that Eq.~7! is the
sum of a kinetic energy term and the effective potential

Veff~r!5S pu
rel

r
2
1

4
r D 21 1

kr
. ~15!

This potential has a minimum at which the relative motion is
circular. Setting the derivative to zero one then obtains Eq.
~14! with the aid of Eq.~5!. One also obtains for the distance
between the particles,

rm5v1Av21
1

kv
. ~16!

In ordinary units the radius of the circle is thenRm5rml B/2.
With the aid of Eqs.~5! and ~16! one obtains for the fre-
quency of the circular motion in terms of the parameterrm ,

u̇ rel
vc

55
2
1

2
1
1

2
A128

1

krm
3
, pu

rel.0,

2 1
2
, pu

rel50,

2
1

2
2
1

2
A128

1

krm
3
, pu

rel,0.

~17!

The role of pu
rel is clear in the noninteracting limit, for

which there is relative motion between the particles if
pu
rel,0 only. Then the center of mass and the particles them-

selves describe concentric circles with the same angular fre-
quency2vc , and radiiAecm and uAecm 6 rm/2u, respec-
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tively. This is shown in Fig. 1~a!. Whenpu
rel.0 in the same

limit, there is no relative motion and the particles and center
of mass all describe circles of the same radius. Their centers
are then aligned and a distancerm/2 apart, as shown in Fig.
1~b!. When the interaction is turned on, however, the motion
is more complex. An example is shown in Fig. 1~c!, drawn
for pu

rel51. The trajectory of only one particle is exhibited,
enough to illustrate the complexity of motion in general.
The equations of motion in the interacting case are greatly

simplified whenpu
rel50. The trajectory in the CM frame is a

circular orbit of radius rm52/k1/3 and frequency
u̇ rel52vc/2. Since the CM moves with angular frequency
2vc then the frequencies are commensurate and the orbits
are closed, as shown in Fig. 1~d!, for the case in which both
particles have the same initial velocity. If the CM is at rest
then, as mentioned above, the particles are always at dia-
metrically opposite points of a circle. This is shown in Fig.
1~e!. The frequency of the small oscillations about the circu-
lar motion is easily obtained and we getvr 5 A6/krm

3 .
When the motion is such that the distance between the

particles is not constant one has, always forpu
rel50, that the

general integral of motion Eq.~9! is reduced to

Du rel52
2r,

Ar.~2r.1r,!

3PS arcsinAr.~r2r,!

r~r.2r,!
,

r.2r,

r.
,

A r.
2 2r,

2

r.~2r.1r,!
D , ~18!

whereP(a,b,c) is the elliptic integral of the third kind,

r,54A2e rel
3 S) sin

a

3
2cos

a

3 D , ~19!

r.58A2e rel
3

cos
a

3
, ~20!

and cosa 5 2(2A3/2e rel)/k, withp/2,a<p.
A general statement about the motion is that it is confined

in spite of the Coulomb repulsion. This may be seen by

Fig. 1. Various orbits for which the separation between the particles is
unchanged.~a! and ~b! are for the noninteracting case, whereas in~c!–~e!
the particles interact. In~d! they are given the same initial velocity, while in
~e! the speed is the same but the motion is in opposite directions.
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noting that the effective potential~15! diverges both at the
origin and in the limitr→`, at the separation~16!. Confine-
ment is provided by the magnetic field.
A special point in the relative motion is the separation at

which the parentheses in Eq.~15! vanishes, that is, atr0
5 2Apu

rel. Then, the potential is just the Coulomb repulsion.
Figure 2 shows the possible orbits in the relative coordinates,
which we shall describe assuming the CM to be at rest. Fig-
ure 2~a! is for erel51/kr0 and is obtained when the particles
are released from rest at an initial separationr0. They move
instantaneously apart and then the Lorentz force curves the
trajectories. The orbit is closed or open depending on
whether or not Eq.~9! is an integral multiple of 2p. Figure
2~b! is for erel.1/kr0 and corresponds to equal and opposite
initial velocities in the direction perpendicular to the line
joining the particles and directed such that the initial motion

is counterclockwise. Note that the sense of rotation is
changed wheneverr5r0. Finally, Fig. 2~c! is for erel,1/kr0
and is obtained, always with the CM at rest, when the initial
motion is as before, but the initial sense of rotation is clock-
wise. In this caseu̇ rel does not change sign. When the CM is
moving, the above orbits are superimposed on the uniform
rotation of the CM. Also, while the three kinds of motion are
possible forpu

rel.0, in the casepu
rel,0 they are all, in their

relative motion, of the type shown in Fig. 2~b!.
The curves in Fig. 2 correspond qualitatively to the pos-

sible trajectories of a particle in crossed magnetic and elec-
tric fields in the usual Hall configuration.9 While in the stan-
dard Hall effect the field sources are fixed and the motion is
over a straight strip, in our case they move over a circular
strip. The observed curvature is produced by the motion of
the field sources.

III. PARTICLES WITH OPPOSITE CHARGE

Another simple case is that of two particles that differ only
in the sign of the charge, such as a particle and its antipar-
ticle. Consider two particles of massm and chargee and2e,
respectively. As before the motion is limited to a planar sur-
face and a magnetic fieldB perpendicular to this plane is
present. The particles interact with the magnetic field and
with each other through the Coulomb attraction
V~ur12r2u!52e2/kur12r2u. As before we use CM and rela-
tive coordinates. In the symmetric gauge the Lagrangian is

L~R,r ;Ṙ, ṙ !5
1

2
M Ṙ21

1

2
m ṙ2

1
1

2

e

c
~B3R• ṙ1B3r•Ṙ!1e2/kr . ~21!

As before,r5r22r1 and we have assumed particle 1~2! to
carry negative~positive! charge. In terms of the dimension-
less units defined in Sec. II a first constant of motion is

22ẑ3 j̇1r5r0 . ~22!

The CM positionj and the relative position vectorr are
coupled in this equation. In fact, in contrast to the case of
identical particles, now the Lagrangian~21! is not separable
and the CM and relative motions are coupled.
A second constant of motion is the energy, which may be

written in terms of relative coordinates only in the form,

e5
1

4
ṙ21

1

4
~r2r0!

22
1

kr
. ~23!

Note that information about motion of the CM is contained
in this expression through the constantr0.
Motion is, in general, quite complex in this case. Simple

trajectories are however obtained whenu̇ rel50 andpu
rel50

in polar coordinates, since then the problem becomes one
dimensional. This meansuucm2u relu5p/2, so the relative
position vectorr does not change direction in time, though
in general its length changes. The integral of motion is given
by

Dt~r!5
2

vc

r.

A~r.2c2!r,

PS l~r!,12
r.

r,
,r D , ~24!

wherer,<r<r. . Herer, and r. are the extremes of the
orbit in the relative coordinate,c2 is a constant~see the

Fig. 2. Orbits for the energies~a! erel51/kr0, ~b! erel.1/kr0, ~c!
erel,1/kr0. The CM is at rest.
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Appendix! and l~r! is given by Eq. ~11! with c150.
P(a,b,c) is the elliptic integral of the third kind.
As is apparent from Eq.~22! the family of solutions just

discussed corresponds to a situation in which the CM veloc-
ity j̇ does not change direction in time and so the CM moves
in a straight line. We also note that since all vectors in Eq.
~23! keep their direction fixed one may treat this expression
as the energy function of a one-dimensional problem with an
effective potential

veff~r!5
1

4
~r2r0!

22
1

kr
. ~25!

The simplest case occurs at the minimum of this function.
The particles then move along parallel straight lines, with the
Coulomb attraction perfectly balanced by the outward mag-
netic force. The constant separation between the particles is
then

rm5
r0
3 S 112 cos

a

3 D , ~26!

and they move with the CM speedj̇5(rm2r0)/2. Herea is
given by the relation cosa51227/kr0

3. This parallel motion
is not always possible, however. In fact, for Eq.~25! to have
extrema the conditionr0.3/~2k!1/3 must be fulfilled. The
dashed line in Fig. 3 showsveff when this condition is not
met, while the full line is for the case when both a relative
minimum and a relative maximum are present. The distance
to the origin in this latter case is given by

rM5S 11) sin
a

3
2cos

a

3 D r0
3
. ~27!

In Fig. 4 we show trajectories whenr0<3/~2k!1/3 and there
are no extrema in the effective potential~the dashed line in
Fig. 3!. In this case onlyr. is real and positive, while the
other extremum of the orbit isr,50. The magnetic field is
assumed to come out of the paper toward the reader. In Fig.
4 the motion of only one particle is shown, since the second
particle follows a trajectory that is the mirror image about a
vertical line passing through the center of the trajectory of
the first. The particles start their motion a distancer. apart
and oscillate about this vertical line with an average drift in
the upward direction. The shoulders that appear at the center
of Fig. 4 are regions where the Coulomb attraction domi-

nates and the particles speed up toward each other in a col-
lision course. The potential is divergent upon touching and in
the immediate neighborhood of this point our solution is an
extrapolation. Three different cases may be distinguished.

~i! For e521/kr0 motion starts from rest at an initial
maximum separationr.5r0. The initial radial motion
due to the Coulomb attraction is deflected by the mag-
netic field @Fig. 4~a!#.

~ii ! For e.21/kr0, the maximum separation is always
greater thanr0. The particles have equal initial ve-
locities in the downward direction@Fig. 4~b!#.

Fig. 3. Effective potential whenr0<3~1/2k!1/3 ~dashed line!, and
r0.3~1/2k!1/3 ~full line!.

Fig. 4. Trajectories for the potential of Fig. 3, dashed line, and~a!
erel521/kr0, ~b! erel.21/kr0, ~c! erel,21/kr0. pu

rel50 in each case. The
trajectory of only one particle is shown~see the text!.
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~iii ! For e,21/kr0, one hasr.,r0. It corresponds to par-
ticles with equal initial velocities in the upward direc-
tion @Fig. 4~c!#.

Whenr0.3/~2k!1/3 and the potential has a minimum~the
full line in Fig. 3!, motion is still as described above. A
special case is when motion is bounded about the relative
minimum of the potential, however, and the particles move
in nonoverlapping parallel strips~Fig. 5!.

IV. CONCLUSIONS

In summary, we have shown that the planar motion of two
interacting charged particles in a uniform perpendicular mag-

netic field is bounded even when the Coulomb force is re-
pulsive. We have ignored radiation and relativistic effects.
When the particles are identical, the center of mass describes
a circle with the single particle cyclotron frequency, while
the pair move over a bounded circular ribbon in the relative
coordinates. The simplest trajectory is a circle with the par-
ticles always in diametrally opposite points. When the par-
ticles have opposite charges the simplest trajectory is straight
parallel motion with constant velocity. More complex trajec-
tories include a family in which there is a parallel drift with
periodic oscillations about the average direction of motion.
The dynamics of interacting particles in a magnetic field is

a fundamental problem both in classical and quantum phys-
ics. It is hoped that the insight gained by our classical solu-
tion for the interacting pair will be helpful in the search for a
better understanding of its quantum counterpart.
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APPENDIX: ROOTS OF THE ORBIT EQUATION

1. Identical particles

The equation for the extremes of the orbit is

r428~2e1pu
rel!r2116

1

k
r116pu

rel250 ~28!

with roots10 r.5a1b, r,5a2b, c152a1b, and
c252a2b, where

a5 1
2A8~2e1pu

rel!1u1, ~29!

b5
1

2
A8~2e1pu

rel!2u114Au1
2

4
216pu

rel2. ~30!

Hereu1 is given by

u15~r1Aq31r 2!1/31~r2Aq31r 2!1/31 8
3~2e1pu

rel!,
~31!

where

r5
2048

9 S pu
rel2e1

2

3
pu
rel32

2

3
e32e2pu

relD1128/em
2 ,

~32!

q52
256

9
~pu

rel21e21epu
rel!. ~33!

2. Particles of opposite charge

The equation for the extremes of the orbit is

r322r0r
21~r0

224e!r24ec50. ~34!

The roots are10

r.5 f11 f21 2
3r0 , ~35!

r,52
1

2
~ f11 f2!1

2

3
r01

) i

2
~ f12 f2!, ~36!

c252
1

2
~ f11 f2!1

2

3
r02

) i

2
~ f12 f2!, ~37!

Fig. 5. Trajectories for the potential of Fig. 3, full line, and~a!
erel521/kr0, ~b! 21/kr0,erel,veff~rrM!, and ~c! veff(rm),e rel,1/kr0,
for r.3~1/2k!1/3. As in Fig. 4 the trajectory of only one particle is shown.
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where f1 and f2 are given by

f65S 2em1
4

3
r0e2

1

27
r0
3

6AS 2em1
4

3
r0e2

1

27
r0
3D 22S 43 e1

1

9
r0
2D 3D 1/3.

~38!
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THE FUTURE OF TRANSISTOR ELECTRONICS

It may be appropriate to speculate at this point about the future of transistor electronics. Those
who have worked intensively in the field share the author’s feeling of great optimism regarding the
ultimate potentialities. It appears to most of the workers that an area has been opened up compa-
rable to the entire area of vacuum and gas-discharge electronics. Already several transistor struc-
tures have been developed and many others have been explored to the extent of demonstrating
their ultimate practicality, and still other ideas have been produced which have yet to be subjected
to adequate experimental tests. It seems likely that many inventions unforeseen at present will be
made based on the principles of carrier injection, the field effect, the Suhl effect, and the properties
of rectifying junctions. It is quite probable that other new physical principles will also be utilized
to practical ends as the art develops.

William Shockley,Electrons and Holes in Semiconductors~D. Van Nostrand Co., Inc., New York, 1950!, p. 349.

NOHOW

How, finally, do we teach why? How do we teach logic and mathematics, how do we teach
abstract concepts and the relations among them, how do we teach intuition, recognition, under-
standing? How do we teach these things so that when we are done our ex-student can not only pass
an examination by naming the concepts and listing the relations, but he can also get pleasure from
his insight, and, if he is talented and lucky, be vouchsafed the discovery of a new one? The only
possible answer that I can see is: nohow. Don’t do nuttin’; just wait. The only way I know of for
an individual to share in humanity’s slowly acquired understanding is to retrace the steps. Some
old ideas were in error, of course, and some might have become irrelevant to the world of today,
and therefore no longer fashionable, but on balance every student must repeat all the steps—
ontogeny must recapitulate philogeny every time.

Paul R. Halmos, ‘‘What is Teaching?,’’ The American Mathematical Monthly101 ~9!, 848–854~1994!.
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