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Dynamics of two interacting particles in a magnetic field in two dimensions
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The classical dynamics of two interacting particles of equal mass and equal or opposite charge,
moving in a plane and a perpendicular magnetic field, is discussed. The simplest trajectories are
similar to those of a single particle in the presence of crossed electric and magneti¢Hialds
configuration. Such motion occurs over a ribbon that may be straffgittopposite chargesor bent

into a circle(for identical particles © 1997 American Association of Physics Teachers.

[. INTRODUCTION dimensional in a special case for which we find solutions
also similar to those in the Hall configuration over a rectilin-

Since the discovery of the quantum Hall effect there hagar strip.
been much interest in understanding the dynamics of elec-
trons confined to move in two dimensions in the presence of
a magnetic field perpendicular to the plane of mofiothe  II. IDENTICAL PARTICLES
confinement is possible at the interface between two materi- _ ) ) )
als, typically a semiconductor and an insulator such as GaAs We consider two identical particles of massand charge
and AlGaAs, where a quantum well that traps the particles i€ in @ uniform magnetic field8. We are interested in the
formed, forbidding their motion in the direction perpendicu- motion in a plane perpendicular to the magnetic field. The
lar to the plane of the interface at low energies. The integraparticles interact with the field, and with each other through
quantum Hall effect has been explained using a free electroff® Coulomb repulsion. The dynamics is derived from the
model, while a proper treatment of the fractional effect re-L@grangian(we use the Gaussian system of uhits
quires that the electron—electron interaction be inclufded. o ) e .
The interactin? quantum problem has been treated in the L(ry,ra,f1,i2)=3mi+3mis+—= A(ry) i,
Hartree—Fock® and variational approximations, as well as ¢
with numerical method81t is a difficult many-body problem e )
for which a further understanding than that provided by the +ZAr)- ro—€lk|ri—rol. 1)
approximate treatments is needed. The simplest case, that of
just two interacting particles in an additional confining para-Here,ry (r,) is the position vector of particle @), A is the
bolic potential has been treated by Taute found exact Vector potential, and is the dielectric constant of the me-
analytical solutions for selected values of the magnetic fielddium in which the particles move. The problem is separable
Why other values do not lend themselves for such solution¥ center of mas¢CM) and relative coordinates are used. Let
is unclear. R=(r,+r,)/2 denote the position of the CM and=r,—r;

In this paper we present a complete solution of the classithe relative position vector. In the symmetric gaule)
cal two-body problem ignoring radiation and relativistic ef- =2BXr, we obtainL =L+ L, where

fects. Our purpose is to provide information on the trajecto- , , 1 . . 1Q .

ries in order to guide further efforts in the understanding of  L¢m(R\R; fem, Oem) = = M(R?+R262 )+ = — BR?6¢
: 2 e 2c

the quantum effects. Also, there have been recent experi- @

ments involving interesting phenomena such as the Weiss
oscillations? in which electrons behave semiclassically. Al- describes the dynamics of the CM, and
though these effects may be explained using noninteracting _ 1 _
electrons, it is possible that the interaction becomes relevant L .,(r,f;6,¢,60;0)= = u(r2+r26%,))
in the limit of very dilute electron systems, as is the case in 2
the fractional quantum Hall effe¢tow-filling fraction). 1q ]

In Sec. Il we study the case of two identical particles. The + = = Br26,o;— qQ/ kr 3
problem is separable in center of mass and relative coordi- 2¢
nates. The center of mass moves as a free particle in thgescribes the relative motion, all in polar coordinates. From
magnetic field, of twice the charge and mass as each conhese Lagrangians we see that the CM motion is that of a
stituent of the pair. The Coulomb repulsion affects the relasingle particle with charg®=2e and massM =2m in the
tive motion. We find that this motion is similar to that of a presence of a magnetic fieBl It describes a circle with an
single particle in crossed electric and magnetic fidldall ~ angular frequency= — w., with w.=eB/mc the cyclotron
configuration, only that the rectilinear strip in which this frequency. The relative motion is, in turn, that of a particle
latter motion takes place is bent into a circle. In Sec. Il wewith chargeq=e/2 and masg+=m/2 in the presence of an
discuss the case of two particles of the same mass and opxternal magnetic field, and the electric field produced by a
posite charge. The problem is nonseparable, yet becomes onbkargeQ = 2e fixed at the origin.

244 Am. J. Phys65 (3), March 1997 © 1997 American Association of Physics Teachers 244



~ We will use the dimensionless notatigsR/lg, p=r/lg,
p=(dp/dt)/w., wherelg=(mc*/B?)? is the natural clas-

sical length scale. Time, energy, and angular momentum are

expressed in units of af, €’/lg, andmw |3, respectively.
The Lagrangiang2) and (3) do not contain the azimuthal
angle. The conjugate momenta

0
cm_ o g2| ZCM, —
pﬁ 25 we + 2 (4)
and
1 [0 1
rel_— 2 rel |~

whereF(a,b) andIl(a,b,c) are elliptic integrals of the first
and third kind, respectively, and

(p>—cCci)(p—p<)

Mp)=arcsin (p>—p<)(p—cCy)’ 19
_P>7p<

" p>—Cy’ 12

o= (p>—p<)(Cy—cC_) (13)

B (p>=—cCi)(p<—cC_)

The classical motion of the pair is the composition of the
circular CM motion and the relative motion. The latter is in

are therefore constants of motion. The energies associatggneral noncircular and is not necessarily periodic. A simpli-

with the classical motion are

Lo 1(pe" )\

fcm:§2+z = ¢ (6)
1., (g 1\ 1

€rel=7 p>+ & 4P Ty ()

The form ofe,,, ande,, differ by the presence of a Coulomb
term in €, making the relative and CM motion very differ-
ent.

Integrating Eq.(6) with the aid of Eq.(4), we obtain for
the radial coordinate of the CM, the equation

52_2§V6cm+ pzm cog Ocm— 00)+p((:}m: 0, (8)
where6, is a constant of integration. Equati®8) represents

a circle of radius/e., centered aty = \e.m+ p5", SO that
€.m defines the orbit radius, whilp§™ and e, together fix
the position of its center.

The integral of motion for the relative coordinate is ob-
tained from Eqs(5) and (7). We get,

Abrei(p)

rel

! pe 1 i
[’ vl
pe N —p'4+ (16e+8p'e)p'2— 16p' [k — 16p""

9

Herep_<p<p-, wherep- andp_ are the extreme values of

fying property common to pairs of particles of equal mass is,
however, that in the CM system both particles describe iden-
tical orbits with a phase difference af.

The simplest possible classical orbit one can obtain for
this system is the circle. It corresponds to a situation in
which the magnetic force and Coulomb repulsion combine to
exactly produce the centripetal acceleration necessary to
maintain a circular motion. The condition is

2

2v 1
R ,
P Kkp?

(14)

wherev = p| ,¢1|/2w, is the dimensionless constant speed of
each particle. If the CM is at rest the motion is truly circular
in the laboratory frame, while only the relative motion is
circular if the CM moves. The constant relative distance may
be obtained from our formalism by noting that K@) is the
sum of a kinetic energy term and the effective potential

2
)+
This potential has a minimum at which the relative motion is
circular. Setting the derivative to zero one then obtains Eq.

(14) with the aid of Eq(5). One also obtains for the distance
between the particles,

1
=v+\[ v+ —.
Pm=V % P

In ordinary units the radius of the circle is thBy,= p | g/2.

py' 1

4P

1

Vei(p) = prs (15

(16)

the relative coordinate of the orbit. They are determined byith the aid of Egs.(5) and (16) one obtains for the fre-

the two real and non-negative solutions of Eg). under the
condition p=0. The other two solutions a®. (see the Ap-
pendiX. In terms of these constants we can rewrite @gin
the form

Cy—p<
Abrei(p)=2
* Vip=—c)(p=—c)
rel C+
X1 2py 1 k(p),np—,rr +II[\(p),n,0]
<
1 rel
+2 (2pi—c+)
\/(P>_C+)(P<_C—) C+
XF[A(p),c], (10)
245 Am. J. Phys., Vol. 65, No. 3, March 1997

quency of the circular motion in terms of the parameter

( 1

rel

! + ! 1-8— >0
. 575 PP Py ,
0
ALY S pi'=0, (17)
We

11 /1 8 1 o<

\ 2 2 KPm ’ .
The role ofprae' is clear in the noninteracting limit, for

which there is relative motion between the particles if
p''<0 only. Then the center of mass and the particles them-

selves describe concentric circles with the same angular fre-
quency —w,, and radiiVe., and |\e.m = pw/2|, respec-
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(d)
(e)

Fig. 1. Various orbits for which the separation between the particles is
unchanged(a) and (b) are for the noninteracting case, whereagady-(e)

the particles interact. Itd) they are given the same initial velocity, while in
(e) the speed is the same but the motion is in opposite directions.

tively. This is shown in Fig. (). Whenp'f'>0 in the same

limi . . . . 2p-

imit, there is no relative motion and the particles and center Af,, = - ————

of mass all describe circles of the same radius. Their centers Vp=(2p=+p<)

are then aligned and a distangg/2 apart, as shown in Fig.

1(b). When the interaction is turned on, however, the motion <11l arcsin [p>(p—p<) p>—p<

is more complex. An example is shown in Figc)l drawn p(p=—p<) p= '

for pr(,e'zl. The trajectory of only one particle is exhibited, P

enough to illustrate the complexity of motion in general. [ pP>—p< (19
The equations of motion in the interacting case are greatly p-(2p~+po))’

simplified whenp'#'=0. The trajectory in the CM frame is a
circular orbit of radius p,=2/k"* and frequency wherell(a,b,c) is the elliptic integral of the third kind,
0..1= — w /2. Since the CM moves with angular frequency
—w, then the frequencies are commensurate and the orbits [2€.e (
p<=4
3

L« a
V3 sinz—cos+ |, (19

are closed, as shown in Fig(d), for the case in which both 3 3

particles have the same initial velocity. If the CM is at rest
then, as mentioned above, the particles are always at dia-
metrically opposite points of a circle. This is shown in Fig. _g [2€e a 20
1(e). The frequency of the small oscillations about the circu- p>= 3 COS3 ' (20
lar motion is easily obtained and we gejf = \/6/Kp3m.
When the motion is such that the distance between thand cosx = —(2/3/2¢¢))/ k, with m/2<a<r.
particles is not constant one has, alwaysgfi =0, that the A general statement about the motion is that it is confined
general integral of motion Eq9) is reduced to in spite of the Coulomb repulsion. This may be seen by
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is counterclockwise. Note that the sense of rotation is
changed whenevegr=p,. Finally, Fig. 2c) is for €. <1/kpq

and is obtained, always with the CM at rest, when the initial
motion is as before, but the initial sense of rotation is clock-
wise. In this casé,., does not change sign. When the CM is
moving, the above orbits are superimposed on the uniform
rotation of the CM. Also, while the three kinds of motion are
possible forp'$'>0, in the case'?'<0 they are all, in their
relative motion, of the type shown in Fig(t3.

The curves in Fig. 2 correspond qualitatively to the pos-
sible trajectories of a particle in crossed magnetic and elec-
tric fields in the usual Hall configuratichwWhile in the stan-

(a) dard Hall effect the field sources are fixed and the motion is
over a straight strip, in our case they move over a circular
strip. The observed curvature is produced by the motion of
the field sources.

lll. PARTICLES WITH OPPOSITE CHARGE

Another simple case is that of two particles that differ only
in the sign of the charge, such as a particle and its antipar-
ticle. Consider two particles of massand charge and—e,
respectively. As before the motion is limited to a planar sur-
face and a magnetic fielB perpendicular to this plane is
present. The particles interact with the magnetic field and
with  each other through the Coulomb attraction

(b) V(r;—r,))=—e?«lr,—r,|. As before we use CM and rela-
tive coordinates. In the symmetric gauge the Lagrangian is

.11
L(R,r;R,r)zE MR +§,ur

le ) .
e (BXR-r+BXr-R)+e?/«r. (21)
As before,r=r,—r; and we have assumed particlg2) to
carry negativgpositive) charge. In terms of the dimension-
less units defined in Sec. Il a first constant of motion is

—2zX :g"+ P=pPo- (22
The CM position& and the relative position vectgs are
(c) coupled in this equation. In fact, in contrast to the case of

identical particles, now the Lagrangi@®l) is not separable

Fig. 2. Orbits for the energieda) €®'=1/kpy, (b) €*'>1lkpy, (0) and the CM and relative motions are coupled.

&< 1/kp,. The CM is at rest. A second constant of motion is the energy, which may be
written in terms of relative coordinates only in the form,
— 1 -2 1 2
noting that the effective potential5) diverges both at the €=z P Tz (P=po)°- xp’ (23

origin and in the limitp—o, at the separatiofil6). Confine-
ment is provided by the magnetic field.

A special point in the relative motion is the separation at
which Eze parentheses in _Eq_lS? vanishes, that is, a;bo_ trajectories are however obtained whep,=0 andp's'=0
= 2yp, - Then, the potential is just the Coulomb repulsion.; “"hojar coordinates, since then the problem becomes one
Figure 2 shows the possible orbits in the relative coordinategjimensional. This mean,,— 6,q|= /2, so the relative
which we shall describe assuming the CM to be at rest. F'gposition vectorp does not change direction in time, though

ure 2a) is for e¢=1/kpy and is obtained when the particles jn general its length changes. The integral of motion is given
are released from rest at an initial separafignThey move |

instantaneously apart and then the Lorentz force curves the

Note that information about motion of the CM is contained
in this expression through the constagt
Motion is, in general, quite complex in this case. Simple

trajectories. The orbit is closed or open depending on 2 [ [
whether or not Eq(9) is an integral multiple of . Figure At(p)= @ Jo—o)ns I} N(p),1— 0P (24)
> - <

2(b) is for €,,>1/kpy and corresponds to equal and opposite
initial velocities in the direction perpendicular to the line wherep_<p<p. . Herep_. andp- are the extremes of the
joining the particles and directed such that the initial motionorbit in the relative coordinate;_ is a constant(see the

247 Am. J. Phys., Vol. 65, No. 3, March 1997 S. Curilef and F. Claro 247



Veff(p)

Fig. 3. Effective potential whenp,<3(1/2«x)*® (dashed ling and
po>3(1/21)*R (full line).

AppendiXy and \(p) is given by Eg.(11) with ¢, =0.
II(a,b,c) is the elliptic integral of the third kind.

As is apparent from Eq22) the family of solutions just
discussed corresponds to a situation in which the CM veloc-
ity £ does not change direction in time and so the CM moves
in a straight line. We also note that since all vectors in Eq.
(23) keep their direction fixed one may treat this expression
as the energy function of a one-dimensional problem with an
effective potential

1 1
vei(p) =7 (p— po)°— prs (25)
The simplest case occurs at the minimum of this function.
The particles then move along parallel straight lines, with the
Coulomb attraction perfectly balanced by the outward mag-
netic force. The constant separation between the particles is
then

Po
pm 3

142 cosg) (26)

and they move with the CM speefd:(pm po)/2. Herea is
given by the relation coa=1- 27/kps. This parallel motion

is not always possible, however. In fact, for EB5) to have
extrema the conditiorp,>3/(2«)"® must be fulfilled. The
dashed line in Fig. 3 shows.; when this condition is not
met, while the full line is for the case when both a relative
minimum and a relative maximum are present. The distance

(a) B

(b)

(c)

to the origin in this latter case is given by qu 4. Trajectorlels for the potenltlal of Fig. ?I: dashed line, dad
€¢'=—1/kpy, (b) €¢'>—1/kpy, (C) €€'<—1/kp,. ply' =0 in each case. The

Po trajectory of only one particle is show(see the text

1+v3 sm 3 cos3 3 (27
In Fig. 4 we show trajectories whep<3/(2«)™~ and there
are no extrema in the effective potent{gthe dashed line in
Fig. 3. In this case onlyp.. is real and positive, while the
other extremum of the orbit is.=0. The magnetic field is
assumed to come out of the paper toward the reader. In Fig.
4 the motion of only one particle is shown, since the secondi)
particle follows a trajectory that is the mirror image about a
vertical line passing through the center of the trajectory of
the first. The particles start their motion a distapceapart
and oscillate about this vertical line with an average drift in(ii)
the upward direction. The shoulders that appear at the center
of Fig. 4 are regions where the Coulomb attraction domi-

)1/3

248 Am. J. Phys., Vol. 65, No. 3, March 1997

nates and the particles speed up toward each other in a col-
lision course. The potential is divergent upon touching and in
the immediate neighborhood of this point our solution is an
extrapolation. Three different cases may be distinguished.

For e=—1/kpy motion starts from rest at an initial
maximum separatiop..= py. The initial radial motion
due to the Coulomb attraction is deflected by the mag-
netic field[Fig. 4(a)].

For e>—1/kpy, the maximum separation is always
greater tharpy. The particles have equal initial ve-
locities in the downward directiofFig. 4b)].

S. Curilef and F. Claro 248



ticles always in diametrally opposite points. When the par-
ticles have opposite charges the simplest trajectory is straight
parallel motion with constant velocity. More complex trajec-
tories include a family in which there is a parallel drift with
periodic oscillations about the average direction of motion.
The dynamics of interacting particles in a magnetic field is

netic field is bounded even when the Coulomb force is re-
pulsive. We have ignored radiation and relativistic effects.
When the particles are identical, the center of mass describes
a circle with the single particle cyclotron frequency, while
the pair move over a bounded circular ribbon in the relative
coordinates. The simplest trajectory is a circle with the par-
a fundamental problem both in classical and quantum phys-

08 ics. It is hoped that the insight gained by our classical solu-
(a) B tion for the interacting pair will be helpful in the search for a
(b)
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APPENDIX: ROOTS OF THE ORBIT EQUATION
1. Identical particles

better understanding of its quantum counterpart.
% The equation for the extremes of the orbit is

1
p'—8(2e+pi)p? 16~ p+ 16p'¢°=0 (29)

with roots® p.=a+b, p_.=a—-b, c,=-a+b, and
c_=-—a—b, where

a=3\8(2e+py)+uy, (29

1 rel Ui rel?
b=§ 8(2e+p,)—u+4 Z—lea . (30
Hereu, is given by

= (4 VT (1~ VG2 Y 2ek pi),

(31
where
2048 2 2 3 2
(c) r=—g- (proe' e+ 3 piel— 3 - ezpr;") +128/e2,
(32)
Fig. 5. Trajectories for the potential of Fig. 3, full line, an@) 256
¢e'=—1/kpy, (0) —Likpp<€®'<ven(ppm)s and () ver(pm) <€™®'<Likpy, q=— — (prEIZ—I— +ep'eh. (33
for p>3(1/2)*%. As in Fig. 4 the trajectory of only one particle is shown. 9 0 0
(i) Fore<—1/kpy, one hap-<py. It corresponds to par- 2- Particles of opposite charge
ticles with equal initial velocities in the upward direc-  The equation for the extremes of the orbit is
tion [Fig. 4(32 . B 2 2?4 (- ey e, 0 34
When p,>3/(2)*® and the potential has a minimufthe p-—4PoP T {Po p— €=
full line in Fig. 3), motion is still as described above. A The roots ar¥
special case is when motion is bounded about the relative o 42 35
minimum of the potential, however, and the particles move P>~"'+"1-"3Po; (35
in nonoverlapping parallel stripg-ig. 5). 1 2 V3i
V. CONCLUSIONS P<:_§(f++f7)+§PO+7(f+_f—)1 (36)
In summary, we have shown that the planar motion of two c =— E (fF,+f )+ E _ @ (f.—f) 37)
interacting charged particles in a uniform perpendicular mag- 2 VT TP R e
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wheref, andf_ are given by

e (2.4 1,

t_e_m 3 Po€7 57 Po
+\/ 2 4 1 ,\% (4
=Nl T3P 27) T3
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THE FUTURE OF TRANSISTOR ELECTRONICS

It may be appropriate to speculate at this point about the future of transistor electronics.
who have worked intensively in the field share the author’s feeling of great optimism regardin
ultimate potentialities. It appears to most of the workers that an area has been opened up
rable to the entire area of vacuum and gas-discharge electronics. Already several transisto
tures have been developed and many others have been explored to the extent of demorn
their ultimate practicality, and still other ideas have been produced which have yet to be suhb
to adequate experimental tests. It seems likely that many inventions unforeseen at present
made based on the principles of carrier injection, the field effect, the Suhl effect, and the proy
of rectifying junctions. It is quite probable that other new physical principles will also be utili
to practical ends as the art develops.

William Shockley,Electrons and Holes in SemiconductdB. Van Nostrand Co., Inc., New York, 195(. 349.
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NOHOW

How, finally, do we teach why? How do we teach logic and mathematics, how do we teach
abstract concepts and the relations among them, how do we teach intuition, recognition, under-
standing? How do we teach these things so that when we are done our ex-student can not only pass
an examination by naming the concepts and listing the relations, but he can also get pleasure from
his insight, and, if he is talented and lucky, be vouchsafed the discovery of a new one? The only

possible answer that | can see is: nohow. Don’t do nuttin’; just wait. The only way | know o

for

an individual to share in humanity’s slowly acquired understanding is to retrace the steps. |Some
old ideas were in error, of course, and some might have become irrelevant to the world of {oday,

and therefore no longer fashionable, but on balance every student must repeat all the s
ontogeny must recapitulate philogeny every time.

Paul R. Halmos, “What is Teaching?,” The American Mathematical Monfty (9), 848—854(1994).

teps—
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