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ABSTRACT

The electrophysiological behavior of excitable biological media has been tradition-

ally modeled using the cable equation. To account for the propagating nature of electrical

waves, virtually all cardiac electrophysiology formulations proposed to date consider a lin-

ear diffusion flux motivated by ohmic materials, a constitutive relation known in biology

as Fick’s law. In this work, inspired by the porous nature of gap junctions at intercalated

discs in cardiomyocytes that mediate intercellular flux, we propose a novel formulation of

cardiac electrophysiology that incorporates a nonlinear diffusion term of the porous-media

kind. The resulting system of non-linear partial differential equations are solved using a

non-linear implicit finite-element scheme that is suitable for simulations of large-scale

cardiac domains. We show that the proposed porous-medium electrophysiology model

results in propagating action potentials that have well-defined wavefronts. We also show

that the proposed model captures the restitution properties of cardiac tissue in similar way

as the cable model does. We demonstrate the capabilities of our method by simulating the

activation sequence of a three-dimensional human biventricular heart geometry, where im-

portant microstructural features like cardiomyocyte fiber orientation and the His-Purkinje

activation network can be succesfully incorporated into the simulation.

Keywords: cardiac electrophysiology, nonlinear diffusion, porous medium equation, His-

Purkinje network.
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RESUMEN

El comportamiento electrofisiológico de componentes biológicas ha sido, tradicional-

mente, modelado utilizando el modelo de cable. Para representar la naturaleza de las

ondas eléctricas, practicamente todas las formulaciones electrofisiológicas propuestas a la

fecha consideran una difusión lineal del flujo basada en materiales óhmicos, conocida en

biologı́a como la ley de Fick. En este trabajo, inspirados por la naturaleza porosa de las

uniones gap ubicadas en los discos intercalados de los cardiomiocitos, los cuales controlan

el flujo intercelular, proponemos una nueva formulación de electrofisiologı́a cardiaca que

incorpora un término de difusión no lineal del tipo medio-poroso. El sistema resultante de

ecuaciones diferenciales parciales no lineales es resuelto utilizando un método implı́cito

con elementos finitos, el cual es adecuado para simulaciones a gran escala. Los resultados

obtenidos con la utilización del modelo de medio poroso muestran potenciales de acción

con frentes de onda bien definidos y que viajan con una velocidad finita. También se

muestra que este modelo captura las caracterı́sticas de restitución de un músculo cardiaco

de igual manera que la ecuación de cable lo hace. Finalmente mostramos las capacidades

de nuestro método simulando la secuencia de activación en un modelo tridimensional del

corazón humano, donde importantes microestructuras fueron incorporadas, como la ori-

entación de los cardiomiocitos, el haz de His y la red de Purkinje.

Palabras claves: electrofisiologı́a cardiaca, difusión no-lineal, ecuación de medio poroso,

red de Purkinje.
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1. INTRODUCTION

1.1. Motivation

Since the last six decades, the interaction between mathematics and biology has grown

considerably. The number of physiological functions that can be described in mathe-

matical terms is summarized by Keener and Sneyd (2008a): physiology is the biological

science where mathematics has played the greatest role.

However, in order to model the physiology of systems, it is necessary to recognize

that every system is composed by different levels working together, from microscopic to

macroscopic scales, and that every scale has to be modeled in an accurate way. These com-

plex phenomena are usually classified as chemical, electrical or mechanical effects, and

are studied in the different organs of the human body. For the chemical scale some options

are the Hodgkin-Huxley model (Hodgkin & Huxley, 1952), the ten Tusscher model (ten

Tusscher, Noble, Noble, & Panfilov, 2004) or the Aliev-Panfilov model (Aliev & Panfilov,

1996). For the electrical part the options are the cable model (Hodgkin & Huxley, 1952)

or the bidomain and monodomain model (Tung, 1978), and for the mechanical behavior

several models of the elasticity of the myocardium are available, including isotropic mod-

els (Demiray, 1976), transversely isotropic models (Guccione, McCulloch, & Waldman,

1991; Costa et al., 1996) and orthotropic models (Schmid, Nash, Young, & Hunter, 2006;

Holzapfel & Ogden, 2009). A complete review of mathematical models in cardiology can

be found in Schmid and Hunter (2009).

In this work, we propose a computational approach to study the electrical behavior

of the heart. In particular, we focus on the sole electrical and chemical behaviors, where

several mathematical models have attemped to reproduce the complex behavior of both

cardiac cells and tissue.
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Although these models have successfully reproduced many of the features of the elec-

trical behavior of cardiac cells, complex behaviors such as alternans and arrhythmias ne-

cessitate further advances from the mathematical point of view. This introduces the pos-

sibility to use a generalization of the standard model of the electrical flux as seen in the

porous medium equation (Vasquez, 2006).

1.2. Cardiac electrophysiology

The heart is located in the centre of the chest cavity between the right and left lungs,

and it consists of four chambers: the right and left ventricle, and the right and left atrium.

In Figure 1.1 these chambers are shown in detail. The heart’s pumping function depends

on the contraction and relaxation of the atria and ventricles.

Figure 1.1. Heart anatomy

The cardiac cycle is coordinated by a series of electrical impulses that start from the

sinoatrial node, located in the right atrium of the heart. This impulspe propagates through

the atrial wall, generating a coordinated contraction that ejects the blood from the atria

to the ventricles. The electrical pulse reaches the atrioventricular node, between the right

atrium and the right ventricle. From this node, the electrical impulse enters to the Bundle

2



of His and the Purkinje fibers, where it is propagated through the ventricular myocardium,

producing the contraction of the right and left ventricles. The blood in the right ventricle

is pumped up through the pulmonary valve and the pulmonary artery to the lungs, while

the left ventricle pumps oxygenated blood to tissues all over the body. These phases are

called atrial and ventricular systole, respectively. When the heart starts to relax, first the

ventricular muscles and then the atrium muscles, the phase is named diastole. Finally, this

process is repeated about 80 times per minute in a healthy subject under resting conditions,

although it varies according to the physiological conditions.

The electrical activity of the heart is analyzed at different scales. First the cellular

scale, where the behavior of individual myocytes is studied, and later the tissue scale, at

which the interaction between all the cells in the muscle is observed.

1.2.1. Cellular scale

Similarly to all electrically active cells in the human body, cardiac cells are caracter-

ized by a membrane potential (action potential) that governs their electrical activity. In

particular, it is a balance between the electrical and chemical gradients across the cell

membrane. While the electrical gradient, or capacitive current, is generated by the move-

ments of electrons relative the membrane surface, chemicals gradients are associated to

the ions present in both inside and outside of the cell, and the permeability of the cell

membrane. Despite the several different ions present inside and outside the cell, three ions

species are more important for the membrane voltage dynamics, i.e.: Na+, K+ and Ca++.

The flux of such ion species across the cell membrane is typically known as ionic currents.

The ionic currents are responsible for the onset, development and return to resting state

of an action potential in the cell. An inward current, according to electrophysiological con-

vention (Katz, 2006), is the flux of charge that would occur if a positive ion moved across

the membrane into the cell, while an outward current occur when a positively charged ion

leaves the cell interior. The inward and outward currents can be generated by the opposite

movement of negative ions, i.e. when a negative ion leaves the cell it corresponds to an

3



inward current and when a negative ion enters to the cell is a outward current. Table 1.1

shows a detailed description of the three principal ion currents cited.

Action potentials are normally initiated by capacitive currents that are generated when

a depolarization wave approaches to a resting cell. When the membrane depolarizes, the

voltage-gated ion channels open and allow for the inward and outward current movement.

Table 1.1. Principal ion currents for an action potential. Values of concen-
tration from Klabunde (2005)

Ion Charge Inside Outside Current Effect on
Concentration Concentration Generated Membrane Potential

Calcium Positive 0.0001 mM 2.5 mM Inward Depolarization
Sodium Positive 20 mM 145 mM Inward Depolarization

Potasium Positive 150 mM 4 mM Outward Repolarization

After this rapid depolarization, an initial repolarization occurs caused by the potas-

sium channels and the inactivation of the sodium channels. However, the calcium inward

current is slower than the sodium one and the repolarization is delayed until the channels

of calcium are blocked and the cell returns to the resting potential. This interaction can be

seen in Figure 1.2.

The flow of current across the cell membrane is usually modeled as an electric circuit,

see in Figure 1.3. Considering that the different ion channels work in parallel, the total

ionic current is the sumation over all the contributions, i.e.

Iion =
∑
x

Ix. (1.1)

The action potential inside (φi) and outside of the cell (φe), the ionic currents (Iion)

and the capacitive current (Is) are related according to the Equation (1.2)

dVm
dt

= −(Iion + Is)

Cm
(1.2)

4



Ventricular Cell

gK+

gNa+

3

2
1

0

4 4

200 ms

0

–50

–100

gCa++

m
V

Io
n

C
o

n
d

u
ct

a
n

ce
s

ERP

Figure 1.2. Changes in ion conductances associated with a ventricular
myocite action potential. Phase 0 (depolarization) is due to the rapid in-
crease in sodium conductance and the fall in potasium conductance. Phase
1 (initial repolarization) is due to the opening of special potassium chan-
nels and the inactivity of the sodium channels. Phase 2 (plateu) is due to
the slow inward current of the calcium. Phase 3 (repolarization) results
from the decrease of calcium and increase of potasium. Phase 4 (resting
potential) occurs when channels and concentrations returns to their initial
conditions. Figure extracted from Klabunde (2005)

where Cm is the capacitance and the transmembrane potential is defined as

Vm = φi − φe. (1.3)

gK+

EK+

gNa+

ENa+

gCa++

ECa++

Cm
Vm

φe

φi

Figure 1.3. Electric circuit analogy to cardiac cell behavior
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There are several models that attemp to describe the interaction between the different

ionic species across the cell membrane, generally called biophysical models. However,

these models present a high level of complexity in order to recover a realistic response

of the action potential. For thit reason, simplified models have been proposed, known

as phenomenological models. These type of models are simpler and more efficient in a

computational perspective, although they do not recover all the nonlinear dynamics char-

acteristic of the cardiac action potential. In the following sections, some models of both

types are briefly described.

1.2.1.1. Biophysical models

• Hodgkin and Huxley model

One of the most important works in the field of electrophysiology is the model

presented by Hodgkin and Huxley (1952). That work has been the basis of

virtually all biophysical models of cardiac cells. This model separates the ionic

current into three components: current carried by sodium ions (INa), current

carried by potasium ions (IK) and a leakage current that represent other ions

(IL). In this case, Equation (1.1) is expresed as

Iion = INa + IK + IL (1.4)

where

INa = ḡNam
3h (Vm − ENa) , (1.5)

IK = ḡKn
4 (Vm − EK) , (1.6)

IL = ḡL (Vm − EL) . (1.7)

6



The variables h, m and n are dimensionless gating variables controlled by

dh

dt
= 0.07 exp

[
Vm
20

]
(1− h)− h

exp [0.1 (Vm + 30)] + 1
(1.8)

dm

dt
=

(
0.1 (Vm + 25)

exp [0.1 (Vm + 25)]− 1

)
(1−m)− 4 exp

[
Vm
18

]
m (1.9)

dn

dt
=

(
0.02 (Vm + 10)

exp [0.1 (Vm + 10)]− 1

)
(1− n)− 0.125 exp

[
Vm
80

]
n (1.10)

• Ten Tusscher model

The ten Tusscher model (ten Tusscher et al., 2004) is one of the most accurate

biophysical description of the cardiac action potential. In this model, the total

ionic current is the sum of the following contributions

Iion = INa + IK1 + Ito + IKr + IKs + ICaL + INaCa

+ INaK + IpCa + IpK + IbCa + IbNa

(1.11)

where INaCa is Na+/Ca2+ exchanger current, INaK is Na+/K+ pump current,

IpCa, IpK are plateu Ca2+ and K+ currents, and finally IKr and IKs are the rapid

and slow delayed rectifier current. The other currents are referred to the original

paper. This model has a total of 17 variables.

Though these models allow to explain some differences between endocardial and epi-

cardial cells, they require a considerable level of computational power, making them diffi-

cult to use for large scale simulations. For this reason, phenomenological models arise as

a reliable option if a macroscopic analysis is required instead of a very detailed description

of the ion channels.

1.2.1.2. Phenomenological models

• FitzHugh-Nagumo model

The FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo, Arimoto, & Yoshizawa,

1962) is a polynomial model with a recovery variable. This model represents

one of the most adopted mathematical description for excitable cells. The ionic
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current is given by

Iion = −Cm (Vm − Vr)
du

dt
(1.12)

with the nondimensional membrane potential given by

u =
Vm − Vr
Vp − V r

and

du

dt
= c1u (u− α) (u− 1) + c2ν , (1.13)

dν

dt
= b (u− dν) . (1.14)

The parameters Vr and Vp are used to indicate the resting and plateu potential,

while α indicates the threshold where the cell activates.

• Aliev-Panfilov model

Following the FitzHugh-Nagumo model as a basis, Aliev and Panfilov (1996)

proposed a modification of the recovery variable ν. In Equation (1.13) and for

the recovery variable in Equation (1.14) they proposed to use the following ex-

pressions:

du

dt
= c1u (u− α) (u− 1) + c2uν , (1.15)

dν

dt
=

[
γ +

µ1

µ2 + u
ν

]
[−ν − c1u (u− b− 1)] (1.16)

• Minimal model

The minimal model (Bueno-Orovio, Cherry, & Fenton, 2008) is able to recover

the general behavior of inward and outward currents, defining three currents:

fast inward (Ifi), slow outward (Iso) and slow inward (Isi):

Ifi = −vH (u− θv) (u− θv) (uu − u) /τfi (1.17)

Iso = (u− uo) (1−H (u− θw)) /τo +H (u− θw) /τso (1.18)

Isi = −H (u− θw)ws/τsi (1.19)

8



where H is the Heaviside step function. The differential equations for v, w and

s are

dv

dt
= (1−H (u− θv)) (v∞ − v) /τ−v −H (u− θv) v/τ+

v (1.20)

dw

dt
= (1−H (u− θw)) (w∞ − w) /τ−w −H (u− θw)w/τ+

w (1.21)

ds

dt
= ((1 + tanh (ks (u− us))) /2− s) /τs (1.22)

This model is called Minimal because it requires only three additional variables

to recover a realistic shape of the action potential, similar that obtained with

physiological models.

Many other electrophysiology models, biophysical and phenomenological, haven been

proposed in the literature. For more information, Pullan, Cheng, and Buist (2005) and

Fenton and Cherry (2008) present a large review of different cardiac cell models.

1.2.2. Tissue scale

In this section we describe the interaction between the different cells in the myocardium.

From this point there is a spatial component associated to the location of the cell in the

heart. To understand its interaction, it is necessary to see how cells are distributed in

the organ structure. Figure 1.4 shows how cardiac cells are connected by gap junctions

arranged within sheets containing collagen and extracellular fluids.

The orientation of the cardiac cells gives the first microstructural axis called the fibre

axis. These fibres lie on a network of sheets, where it is possible to define a second

direction called sheet axis. Finally, a third direction is defined as the cross product between

the fibre axis and the sheet axis, known as the cross-sheet axis.

9



Figure 1.4. Cardiac cell coupling. Figure extracted from Guyton and Hall (2006)

1.2.2.1. Cable model

To describe the propagation of an action potential along the length of a muscle fibre

in a continuum framework, the electrical circuit in Figure 1.5 is usually adopted. Cardiac

cells are modeled as described in Section 1.2.1 with an equivalent resistance Rm and a

capacitance Cm. The intracellular and extracellular space are modeled using resistances

in series Ri and Re respectively.

Ri Ri Ri Ri

Re Re Re Re

Rm

Cm

Rm

Cm

Rm

Cm

Vm

Figure 1.5. Circuit representation of the cable model
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Considering a length of fibre l with an intracellular cross sectional area Ai and an

extracellular cross sectional Ae, we can define the resistivities by

ri =
RiAi
l

and re =
ReAe
l

. (1.23)

Using the Ohm’s law, the change in the intracellular field φi over a small length along

the fibre ∆x is given by

∆φi
∆x

= −Iiri ===⇒
∆x→0

dφi
dx

= −Iiri (1.24)

and similarly for the extracellular potential φe

dφe
dx

= −Iere. (1.25)

Aplying now the Kirchhoff’s first law in the intra and extracellular spaces we have

Ii = (Ii + ∆Ii) + Im∆x =⇒ ∂Ii
∂x

= −Im (1.26)

Ie = (Ie + ∆Ie)− Im∆x =⇒ ∂Ie
∂x

= Im (1.27)

where Im is the transmembrane current per unit length. Using the definition in Equation

(1.3) and performing the balance of currents across the cell membrane, we get

∂2Vm
∂x2

=
∂2φi
∂x2
− ∂2φe

∂x2

=
∂

∂x
(−Iiri + Iere)

= Im (ri + re) (1.28)

For the circuits that represent the cardiac cells, the total current I is equal to the sum

of each current, i.e.

I =
Vm
Rm

+ Cm
∂Vm
∂t

. (1.29)
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This can be expressed as a current per unit volume by multiplying by the surface area

for a given length of fibre and dividing by the volumen enclosed by this surface (Pullan et

al., 2005), denoted as Am. In addition, Vm/Rm is the sum of the ionic currents described

before, i.e. Iion, so Equation (1.29) yields

Im = Am

(
Iion + Cm

∂Vm
∂t

)
(1.30)

Replacing Equation (1.30) in Equation (1.28), the cable model is given by

1

ri + re

∂2Vm
∂x2

= Am

(
Cm

∂Vm
∂t

+ Iion

)
(1.31)

or, in terms of the intra and extracellular conductance σi and σe, the final form of the active

cable equation is
σiσe
σi + σe

∂2Vm
∂x2

= Am

(
Cm

∂Vm
∂t

+ Iion

)
. (1.32)

1.2.2.2. Bidomain model

To extend the cable theory to a more physical interaction between intracellular and

extracellular spaces, the bidomain model, first formulated by Tung (1978), is usually

adopted. The bidomain model considers an intracellular and extracellular domains that

occupy the same physical space according to the classical homogeneization theories. By

using Ohm’s law, the current density vector J is defined as

J = σE (1.33)

where σ is the conductivity tensor and E is the electric field vector. Considering a quasi-

static assumption, and the corresponding Maxwell-Faraday equation, it is possible to de-

fine the electric field as the gradient of a scalar potential field, i.e. E = −∇φ, so the intra

and extracellular current density are defined as

J i = −σi∇φi (1.34)

J e = −σe∇φe. (1.35)
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Any current that leaves one of the two domains must cross the cell membrane and flow

into the other domain. Therefore, the change in current density in each domain must be

equal in magnitude and opposite sign, and also equal to the flow across the cell membrane.

−∇ · J i = ∇ · J e = AmIm (1.36)

where Am is the surface to volume ratio and Im is the transmembrane current density per

unit area.

Substituting (1.34) and (1.35) in (1.36), a system of two coupled equations is generated

∇ · (σi∇φi) = AmIm (1.37)

∇ · (σe∇φe) = −AmIm . (1.38)

In addition, the transmembrane current density per unit area can be written as

Im = Cm
∂Vm
∂t

+ Iion . (1.39)

So to combine the Equations (1.37) and (1.38) with (1.39). The detailed derivation

of the bidomain equations can be found in several books (Pullan et al., 2005; Keener &

Sneyd, 2008b). Here, the classical equations are presented:

∇ · ((σi + σe)∇φe) = −∇ · (σi∇Vm) , (1.40)

∇ · (σi∇Vm) +∇ · (σi∇φe) = Am

(
Cm

∂Vm
∂t

+ Iion

)
. (1.41)

If the domains are assumed to be equally anisotropic (σi = kσe), and considering

an external stimulus current Is, the bidomain equations can be simplified in to the mon-

odomain equation given by

∇ · (σ∇Vm) = Am

(
Cm

∂Vm
∂t

+ Iion

)
− Is (1.42)

where we recover the single field Vm described by the cable model.
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1.3. Porous medium equation

The porous medium equation,

∂u

∂t
=

1

m+ 1
∆x

(
um+1

)
, m > 0 , (1.43)

is one of the simplest examples of nonlinear evolution equation of parabolic type (Vasquez,

2006). Here, u = u(x, t) is a nonnegative scalar function of space and time. It is clear to

see that for m = 0 we recover the classical heat equation, its most famous relative.

Applying the porous medium formulation to cardiac electrophysiology model, we can

write Equation (1.43) in its complete version as

∂u

∂t
= div (D(u)∇u) + f(u) (1.44)

whereD(u) is the diffusion coefficient. In this case we have that

D(u) = Dum. (1.45)

Expanding the divergence term we obtain

∂u

∂t
= mDum−1||∇u||2 +Dum∆u+ f(u) (1.46)

it is possible to note that for u 6= 0 the right side of the equation is controlled by the term

Dum∆u, but for u → 0 the equation simplifies to ∂tu ∼ mDum−1||∇u||2, a modified

eikonal equation.

The principal characteristic that can be found in the porous medium equation is the

property called finite propagation. This property is in strong contrast to the infinite propa-

gation obtained in the heat equation. A simple explanation is given by Vasquez (2006):

• Heat Equation: A non-negative solution of the heat equation is automatically

positive everywhere in its domain of definition, and
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• Porous Medium Equation: Disturbances from the level u = 0 propagate in time

with finite speed for solutions of the porous medium equation.

The finite propagation can be seen as a free boundary, or interface, that separates

regions where the solution is positive from the regions where u = 0. It is clear that

this property supports the physical soundness of the porous medium equation to model

diffusion as the electrical wave in the cardiac tissue.

1.4. Thesis structure

This document is divided into four chapters, which are briefly explained below.

In Chapter 1, the motivation and the theorical framework are presented. The main

concepts of cardiac electrophysiology and the porous medium equation are explained, and

their governing equations are formulated.

Chapter 2 consists of the article written based on this research, being the principal

section of the thesis. The article is composed by an introduction, then the mathematical

formulation of the porous medium equation and the geometrical characteristics. Finally,

the results of some simulations are shown and an analysis is done.

In Chapter 3 the conclusions are presented with some ideas in Chapter 4 of possible

future work in relation with the article.
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2. POROUS MEDIUM: A NON-LINEAR DIFFUSION APPROACH TO THE

ELECTRICAL EXCITATION OF CARDIAC TISSUE

2.1. Introduction

Excitable biological tissues features a strong microstructural complexity, resulting in

a highly heterogeneous and anisotropic behavior both at the macroscopic and microscopic

scales (Khaled & Vafai, 2003). However, the phenomenological and biophysical electro-

physiology models proposed to date for the dynamic characterization of excitable media

are typically formulated in terms of averaged, or homogenized properties of continuum

media (Pullan et al., 2005). Upon these assumptions, single-cell models have been ex-

tended to the tissue level by incorporating spatial flux terms, to reflect the propagating

nature of electrical waves.

In the cardiac electrophysiology field, the last two decades have been characterized by

a fast-paced growth of sophisticated mathematical models that can accurately reproduce

several electrophysiological features observed in isolated cardiomyocytes, both in healthy

and pathological conditions (Clayton et al., 2011). Remarkable advances have been also

conducted at the tissue level by means of phenomenological models able to reproduce se-

veral spatio-temporal experimental observations (Fenton & Karma, 1998; Bueno-Orovio

et al., 2008). However, the complete characterization and understanding of complex phe-

nomena in the cardiac electrical activity, e.g. cardiac alternans and arrhythmias (Watanabe,

Fenton, Evans, Hastings, & Karma, 2001; Cherry & Fenton, 2004; Gizzi et al., 2013), re-

mains an open avenue of research, and poses many challenges both at the experimental

and theoretical level. Cardiac muscle, as a highly nonlinear excitable media, allows for

the propagation of solitary excitation waves and supports spiral waves during arrhyth-

mic events (Bini, Cherubini, Filippi, Gizzi, & Ricci, 2010; Winfree, 1987, 2001), i.e.

tachycardia and fibrillation (Cherry & Fenton, 2008; Davidenko, Pertsov, Salomonz, Bax-

ter, & Jalife, 1992). Action potential wavefront propagation as well as repolarization ti-

ming, therefore, assume a key role in the onset and development of arrhythmias (Glukhov,
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Egorov, Efimov, & Rosenshtraukh, 2012; Fenton, Gizzi, Cherubini, Pomella, & Filippi,

2013; Hurtado & Kuhl, 2014).

Virtually all mathematical models of excitable media derive from the seminal work of

Hodgkin and Huxley (1952) on the squid giant axon and are typically formulated in terms

of the cable equations, either in their monodomain (Niebur, 2008) or bidomain (Tung,

1978) version. The resulting set of equations constitute a nonlinear reaction-diffusion sys-

tem (Turing, 1952) in which spatial propagation of electrical potentials are coupled to evo-

lution equations describing the ion-channel, exchanger and pump gate dynamics. The clas-

sical cable theory describes the propagation of electric currents along the cell membrane

by assuming the excitable cells as Ohmic cylindrical conductors, characterized by seg-

ments with transmembrane nonlinear resistances and capacitances, and axially connected

via linear resistances, i.e., the gap junctions (Alberts et al., 2007). The bidomain formu-

lation, specifically developed for reproducing electrical propagation in syncytia, consists

in a two- or three-dimensional cable model, still assuming that the average behavior spans

over the intracellular and extracellular spaces following a linear Fickian diffusion process

(Tung, 1978; Henriquez, 1993).

It is currently well established from histological studies that both the intracellular

and extracellular spaces in myocardium constitute a highly heterogeneous and anisotropic

medium, mainly composed of blood vessels, collagen, fibroblasts, and fat, among others.

On such a basis, the homogenization assumptions (Pavliotis & Stuart, 2008) usually made

on the monodomain and bidomain formulations have limitations in reproducing the highly

nonlinear dynamics emerging from the ensemble of connected cells. Ionic flux in the

longitudinal direction of cardiomyocytes, for example, has long been recognized as a

continuous-discontinuous process (Spach et al., 1981; Spach, Heidlage, Dolber, & Barr,

1998), with the cytoplasmic domain having a low resistivity, and the intercalated discs

presenting a high resistivity. At a submicron scale, intercalated discs can be considered as

a porous membrane, where ions can only pass through gap junctions, which are embed-

ded in the non-conductive sarcolemma. Figure 2.1 shows a representative example of the

17



irregular distribution of Connexin 43 (gap-junction main protein), as well as the porous

structure formed at the intercalated discs. The non-smooth nature of ion conduction at

Figure 2.1. Confocal micrograph showing the distribution of gap junctions
(Connexin 43, in green) in rat atrial myocytes, predominantly in step-like
and straight-end intercalated discs configurations. Reproduced with per-
mission from Severs et al. (2008).

the sub-cellular level is in contrast with the standard linear-diffusion flux employed in the

cable theory, for which a natural solution are propagating waves with smooth Gaussian

profiles that exhibit an infinite propagation of the information (Friedman, 1964). Such a

lack of proper mathematical representation for the spatial propagation of ionic flux calls

for novel approaches in the modelling of the intra- and extra-cellular ionic flow in order

to take into account the intrinsic tissue multiscale architecture, always focussed on local

heterogeneities and applied to realistic scenarios (Fenton et al., 2009; Krishnamurthy et

al., 2013; Luther et al., 2011; Nordsletten, Niederer, Nash, Hunter, & Smith, 2011).

Recently, a fractional diffusion formulation has been proposed to model cardiac action

potential propagation (Bueno-Orovio, Kay, Grau, Rodriguez, & Burrage, 2014). Non-

integer spatial derivatives were introduced in order to reproduce the multiscale effects of

transport processes taking place into the heart tissue, with particular interest in the mod-

ulation of the total electric field by the secondary electrical sources associated with tis-

sue inhomogeneities. Bueno-Orovio and co-workers showed that structural heterogeneity
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modeled by a fractional operator accurately recovers several features of cardiac propaga-

tion, as well as naturally incorporating dispersion of repolarization.

The porous medium equation, first proposed by Oleinik, Kalashnikov, and Juj-lin

(1958), is a simple and mathematically sound generalization of the heat equation, where

the linear diffusion term that results from Fourier’s law of heat conduction is replaced by a

nonlinear constitutive relation for the heat flux that depends on the magnitude of the field

of interest (Vazquez, 1992). Generalizations of the PME have been developed elsewhere

(Friedman, 1964; Ladyzhenskaia, Solonnikov, & Ural’ceva, 1968) and successful appli-

cations of the PME are found in many areas of the applied sciences and engineering in

problems involving fluid flow (Leibenzon, 1930; Muskat & Wyckoff, 1937), heat transfer

(Zeldovich & Raizer, 1966) and diffusion (Smoller, 1982). Perhaps one of the most at-

tractive features of the porous medium equation is the fact that the associated solutions are

travelling waves that possess a well defined speed of propagation (Vasquez, 2006). Appli-

cations of the porous-medium equation in the mathematical biology context, however, are

indeed very limited to population dispersal models, i.e. tumor growth (Cherubini, Gizzi,

Bertolaso, Tambone, & Filippi, 2012; Murray, 2003), and to the author’s knowledge this

work constitutes the first use of the porous-medium diffusion in the context of electrical

propagation in excitable biological media, such as cardiac tissue. Similarly, very few at-

tempts have been made to describe the behavior of the cardiac tissue as a porous medium

from a mechanical point of view (Cookson et al., 2012; Huyghe, Arts, van Campen, &

Reneman, 1992).

Drawing ideas from the porous-medium equation, in this work we propose a non-linear

diffusion model of cardiac electrophysiology that alleviates some of the theoretical defi-

ciencies of the traditional cable model. To this goal, we propose a modification of the

spatial flux term of the cable equation, and study its implications on the electrophysio-

logical response of cardiac tissue by means of numerical simulation of the propagation

of action potentials in both simplified 1-D cases, as well as in 3-D media with realistic

biventricular geometries.
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The manuscript is organized as follows. In Sec. 2.2 we introduce the mathematical

formulation of the porous medium model and the numerical scheme adopted. In Sec. 2.2.3

we describe the human heart geometry reconstruction focusing on the algorithms adopted

for generating the tissue anisotropy and the specialized activation network. In Sec. 2.3 we

compare the numerical simulations between the classical cable theory and the generalized

porous-medium formulation of cardiac electrophysiology by considering a simplified phe-

nomenological model for the ventricular wall and the Purkinje network. Discussions and

future perspectives are drawn in Sec. 2.4.

2.2. Materials and Methods

2.2.1. Porous-medium model of cardiac electrophysiology

Let Ω ∈ R3 be the cardiac domain where we are interested in modeling the propa-

gation of action potentials during the time interval [0, T ], and Vm : Ω × [0, T ] → R the

transmembrane potential. Following a monodomain approach, from charge conservation

we obtain the governing equation

Am

(
Cm

∂Vm
∂t

+ Iion(Vm, r)

)
+ div(j) = 0, (x, t) ∈ Ω× [0, T ], (2.1)

where Am, Cm are the surface-to-volume ratio and membrane capacitance, respectively,

Iion is the ionic current depending on the transmembrane voltage Vm and a set of state

variables r : Ω → Rm which may include gating variables and ion concentrations, and

j is the ionic flux spatially propagating through the medium. A common practice is to

normalize the transmembrane voltage and rearrange (2.1) to obtain the non-dimensional

equation
∂φ

∂t
+ div(q)− f(φ, r) = 0, (x, t) ∈ Ω× [0, T ], (2.2)

where φ is the normalized transmembrane potential, q the normalized flux, and f(φ, r)

the normalized ionic current.
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In addition to equation (2.2), a set of evolution equations for the state variables must

be provided, typically of the form

dr

dt
= g(φ, r), (x, t) ∈ Ω× [0, T ]. (2.3)

The form of f(φ, r) and g(φ, r) depends on the electrophysiological model chosen to rep-

resent the ionic currents of a single cell. The standard assumption in virtually all models

based on the monodomain description is the adoption of a constitutive law of the Fick’s

type, namely

q = −D∇φ, (2.4)

where D is the normalized conductivity tensor. This assumption leads to the standard

cable model of cardiac electrophysiology,

∂φ

∂t
= ∇ · (D∇φ) + f(φ, r), (x, t) ∈ Ω× [0, T ].

In this work, for the reasons explained in the introduction, and other that will be ap-

parent later, we propose a functional relation for the constitutive equation of the kind

q = q(φ,∇φ). In particular, we choose

q = −Dφm∇φ, (2.5)

with m ∈ R+. We note here that taking the divergence of (2.5) lead us to the porous-

medium diffusion term (Vasquez, 2006). In the sequel, we will refer to (2.2) combined

with (2.5), and (2.3) as the porous-medium electrophysiology (PME) model. We assume

transversely-isotropic electrical conduction, and thus define the normalized conductivity

tensor as

D = dtransI + (dlong − dtrans)n⊗ n,

where dtrans, dlong are the normalized conductivities in the transversal and longitudinal

directions of the fiber, respectively, and n is the fiber normal vector. For the case of the

standard cable model with linear diffusion, as considered in (2.4), typical values for human

cardiac tissue are dtrans = 0.012576 mm2/ms and dlong = 0.0952 mm2/ms. However, we
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note here that in the case of the porous-medium diffusion law, the conductivities dtrans and

dlong do not necessarily take on the same values reported in the literature for the standard

diffusion models, and therefore conduction velocity tests must be conducted in order to

determine their values.

Governing equations (2.2) and (2.3) are complemented with Dirichlet and Neuman

boundary conditions,

φ = φ̄, (x, t) ∈ ∂Ωφ × [0, T ], (2.6)

q · n = q̄, (x, t) ∈ ∂Ωq × [0, T ], (2.7)

respectively, as well as initial conditions

φ(x, 0) = φ0(x), x ∈ Ω,

r(x, 0) = r0(x), x ∈ Ω.

In this work, we have chosen the Aliev-Panfilov phenomenological model (Aliev &

Panfilov, 1996) which considers one recovery variable r and the following expressions for

the ionic current and kinetics:

f(φ, r) = c1φ(φ− α)(1− φ)− c2φr , (2.8)

g(φ, r) = [γ + rγ̄(φ)][−r − c1φ(φ− b− 1)] , (2.9)

with

γ̄(φ) =
µ1

µ2 + φ
.

The Aliev-Panfilov model has the advantage of being a simple and computationally-

tractable celullar model that can be easily incorporated in organ-level simulations (Hurtado

& Kuhl, 2014). Further, it has been shown to capture correct restitution curves, while

keeping the number of parameters to a small number (Aliev & Panfilov, 1996). The pa-

rameter values for the Aliev-Panfilov model employed in all simulations are detailed in
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Table 2.1. It is important to remark that some parameters have been adjusted and differ

from the original values in order to obtain a correct initial maximum slope of the action

potential of 230 mV/ms typically in human ventricular cardiomyocytes (Drouin, Charp-

entier, Gauthier, Laurent, & Le Marec, 1995). The initial-boundary value problem just

Table 2.1. Parameter values considered for the Aliev-Panfilov model of
ionic current

α c1 c2 µ1 µ2 b γ

0.05 52 8 0.1 0.3 0.25 0.002

described is solved by means of a numerical discretization based on a nonlinear implicit

finite-element formulation (Göktepe & Kuhl, 2009; Hurtado & Henao, 2014). The details

of the numerical scheme developed to integrate the governing equations proposed for this

model can be found in Appendix A.

2.2.2. Simplified cardiac-tissue models

To study the fundamental electrophysiological properties of the proposed PME model,

we have first considered a 1-D cardiac fiber with a length of 20 mm. In such model,

the transverse area has been considered to be constant and unitary. The corresponding

finite element model considered an element size of ∆x = 0.01 mm and a time step

size of ∆t = 0.01 ms to ensure that the measured conduction velocity does not have a

dependence on the mesh size. Prescribed flux boundary conditions have been considered

for both ends of the cardiac fiber, with the right having a zero-flux boundary condition

at all times. In the case of the PME model, the normalized conductivities for each value

of the m-parameter are fitted in order to obtain a 1-D conduction velocity of 42.7 cm/s.

To elicit an action potential, the left end of the fiber was stimulated with an electrical

current of 2, 100µA/cm3 for 2 ms. For the case of standard linear diffusion (m = 0), we

considered a normalized conductivity of 0.0952 mm2/ms, in line with the values assumed

for the longitudinal direction along the fiber. To assess the arrhythmogenic properties of
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the PME model, restitution curves for the action-potential duration (APD) and conduction

velocity (CV) were generated and compared with the linear diffusion case. To this end, a

standard pacing down protocol (Bueno-Orovio et al., 2008) was adopted.

To study the three - dimensional features of the electrical propagation of the PME

model, a cuboid cardiac tissue model frequently used as a benchmark (Niederer et al.,

2011) was generated. The cuboid has dimensions of 20 × 7 × 3 mm, and the domain

was discretized using tetrahedral elements with an average edge length of 0.1 mm. Car-

diac fibers were oriented in the longest axis direction. A cubic subdomain with dimensions

1.5×1.5×1.5 mm located at one of the corners of the cuboid was stimulated with an elec-

trical current density of 50, 000µA/cm3 for 2 ms. The normalized conductivity constants

for the standard diffusion case (m=0) are then amplified according to the conductivity

values found in the 1-D case for m = 4.

2.2.3. Human biventricular model

A detailed biventricular finite-element model has been constructed based on human

heart magnetic-resonance images oriented in the short axis. After a semi-automatic seg-

mentation and smoothing processes, the cardiac muscle was identified and a tetrahedral

mesh was created, see Figure 2.2(a). The tetrahedral mesh contains over 1.5 million ele-

ments and 320,000 nodes.

The preferential orientation of cardiac myocytes was addressed in this work by defin-

ing a fiber orientation at each point of the mesh, and later interpolating the fiber orientation

to the integration points. To determine the fiber orientation at all nodes, we have imple-

mented the rule-based algorithm proposed by Bayer, Blake, Plank, and Trayanova (2012),

where a series of Laplace problems were solved using a finite-element approach on the

mesh shown in Figure 2.2(a). Different Dirichlet boundary conditions were prescribed for

the different regions of the biventricular boundary, as indicated by Bayer and co-workers.

After some vector operations, a continuous fiber orientation map is recovered, and the

fiber vector n was then computed at all nodes of the biventricular mesh. The validation of
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this method using diffusion-tensor MRI has been addressed in Bayer et al. (2012). Figure

2.2(b) shows the final 3D reconstruction of the fiber orientation map used in this work.

To account for the His-Purkinje network found in the endocardium of human ventri-

cles, we followed the procedural method developed by Ijiri et al. (2008). In brief, the

Purkinje fibers are modeled as an L-system, which is a parallel rewriting system that fol-

lows a set of rules specified by the user to create complex branching three-dimensional

structures composed by 1-D line elements. The fractal growth process is then pursued on

the endocardial surface of the left and right ventricles. It is important to remark that in

our model, only the terminals of the generated Purkinje network are connected to cardiac

tissue only at the endocardium, following the anatomical observations made in healthy

hearts (Pullan et al., 2005). Figure 2.2(c) shows the Purkinje network generated for our

biventricular geometry.

(a) (b) (c)

Figure 2.2. Three-dimensional human biventricular model: (a) finite-
element tetrahedral mesh, (b) cardiomyocyte fiber orientation, and (c) His-
Purkinje network.
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2.3. Results

2.3.1. 1-D wave propagation, conduction velocity, wave profiles and restitution prop-

erties

A single propagating AP resulting from the solution of the PME model was solved for

the 1-D cardiac segment using different values of the conductivity, until the propagating

wave attained a CV of 42.7 cm/s, measured at the center of the segment. For all values

of m, the AP wavefront was considered to reach a point whenever the normalized voltage

value at that point was equal to φ = 0.1 (10% of the AP amplitude), which is above the

usual threshold values defined for onset of an AP in several electrophysiology models. The

resulting conductivites are summarized in Table 2.2, where it can be observed that PME

conductivities are always greater than the conductivity value typically considered for the

cable model. The wavefront and waveback for a single propagating AP as dictated by the

Table 2.2. Longitudinal and transversal conductivities for the cable model
and the PME model using different exponent values.

m = 0 (Cable) m = 1 m = 2 m = 3 m = 4

dlong [mm2/ms] 0.0953 0.2037 0.3525 0.5440 0.7803
dtrans [mm2/ms] 0.0126 0.0269 0.0465 0.0718 0.1030

cable model (m = 0) and four cases of the PME model (m = 1, 2, 3, 4) can be observed in

Figures 2.3(a) and 2.3(b). For the wavefront, all waves coincide at a normalized potential

value of φ = 0.1 for the same simulation time, and we observe that there is a sustancial

difference in shapes between the cable model and the PME model. First, the cable model

results in a Gaussian profile with a long front tail that extends infinitely ahead of the

wavefront, as expected from theory. In contrast, for all the PME cases the wave has a

sharper front, with steepness increasing with higher m-power values. While the PME

waves sharply reach the resting potential at around X = 10, the cable-model smoothly

tends to φ = 0 far to the right of X = 10. The inset of Figure 2.3(a) shows the normalized

potential values in logarithmic scale for the region ahead of the wavefront, from which we
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observe that the cable wave displays an exponential decay, whereas the PME wave takes

the null value for all practical purposes (φ < 10−60 in that region). We have measured the

distance between the wavefronts of cases m = 0 and m = 4 for φ = 0.7, and found that

the cable wavefront lags behind the PME wavefront, with spatial gaps that can be as high

as 0.6 mm. The comparison of the waveback can be found in Figure 2.3(b), where it can be

observed that the PME model results in a steeper waveback as the m-exponent increases.

We have also examined the rear-tail behavior away from the AP wave (see inset in Figure

2.3(b)) and found that the PME waves do approach φ = 0 two orders of magnitude faster

than the cable-model wave.

The APD and CV restitution curves obtained from the simulation of the 1-D cardiac

segment are included in Figure 2.4(a) and 2.4(b). For the case of the APD restitution curve,

no significant differences are observed among the standard cable and the PME models. For

the CV restitution curves, the shape is the same in all cases, but for a fixed cycle-length,

CV may differ by at most 1 cm/s depending on the model considered. No clear trend is

observed as the m−exponent is changed.
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Figure 2.3. Comparison of wave profiles for the 1-D PME model using
different m−exponent values and the cable model (m = 0). (a) Wavefront
and (b) waveback. Insets show a close-up of regions in semilog scale ahead
(a) and behind (b) the propagating wave.
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Figure 2.4. APD and conduction velocicty restitution curves. The case
m = 0 represents the standard linear-diffusion model. Nomenclature: CL
= cycle length.

2.3.2. Three-dimensional propagation in a cardiac slab

Figure 2.5 shows the normalized potential distribution for the three-dimensional slab

of cardiac tissue described in Section 2.2.2 using a PME model with m = 4 and with

conductivities as detailed in Table 2.2, for a time instant of 20 ms after the initial excitation

of the cardiac tissue at the bottom left corner. The propagating wavefronts display an

ellipsoidal shape, which is in line with the observed features of propagating wavefronts

obtained from cable models. We also observe that the ellipsoid’s longest axis is aligned

with the direction of the assigned cardiac fibers.

To understand the wavefront differences of the PME model with the cable model, we

have computed the normalized potential distribution in the slab top surface as predicted by

both models for the same time instant, see Figure 2.6. Similar to the 1-D case, the PME

wave ends sharply into the resting potential condition, while the cable wave smoothly (ex-

ponentially) decays to the resting potential. While both models result in wavefronts with

ellipsoidal shape and similar local propagation directions, we observe from the level sets
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Figure 2.5. PME wave (m = 4) propagating in a cardiac slab. An el-
lipsoidal wavefront propagates in the three-dimensional medium, with the
major axis being aligned with the cardiac fibers in the long-axis direction.

marked in Figure 2.6 that the cable-wave crest-to-trough length is 50% larger than the

PME crest-to-trough length. We do observe, however, that the distance between wave-

fronts φ = 0.9 and φ = 0.5 are very similar for both models. We also observe that

level sets in the cable model are very smooth for all normalized potential values, while in

the PME model small oscillations may arise in a small and bounded region ahead of the

wavefront.

2.3.3. Biventricular human heart PME model activation

Figure 2.7 shows the activation sequence of the ventricles of a human heart using

the PME model with an exponent m = 2 for a time series with increments of 20 ms.

The excitation starts at the atrioventricular node, and propagates through tissue and the

His-Purkinje network down the septum, predominantly in the apico-basal direction.The

His-Purkinje system rapidly conducts the electrical impulse on the endocardium, from

where activation spreads at the network terminals inside the myocardium. The random

location of terminals on the endocardium produces a non-smooth and highly anisotropic

wavefront. Conduction velocity in the His-Purkinje was verified to be 3-4 times faster than
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1.2 mm

0.8 mm

Figure 2.6. Comparison of the normalized potential wavefronts on the top
surface for the cable model (left, m = 0) and the PME model (right, m =
4) in a region of the 3D cardiac slab. Selected level sets are marked in white
solid lines.

conduction velocity in cardiac tissue. The total activation sequence takes approximately

120 ms to fully activate all regions of the ventricular chambers, which is within the time

range of normal ventricular depolarization times (Klabunde, 2005).

2.4. Discussion

In this work, we propose a novel cardiac electrophysiology model that features a

non-linear diffusion term for the study of the propagation of electrical waves through ex-

citable media. The microstructural features of cardiac conductive tissue, like the porous-

membrane structure of intercalated discs, is taken into account in the proposed model by

replacing the spatial flux term of the standard cable equations by a porous-medium diffu-

sive term that better reflects the propagation nature of electrical waves at the cellular level

while being suitable for tissue- and organ-level simulations.

We have tested the PME model in simplified domains to assess its electrophysiological

properties and compare them to those found in the standard cable model. In all the cases

considered in this work, the PME model resulted in propagating waves with a well-defined
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t= 20 ms t= 40 ms

t= 100 mst= 80 ms

Figure 2.7. Activation sequence of a human biventricular domain using
the PME model (m=2). Only half of the biventricular domain is shown for
clarity.

and sharp wavefront for which a finite propagation speed could be determined, and for

which tissue ahead of the wavefront displays a resting potential. This finding is in contrast

with the propagating waves arising from the cable equation, where the wavefront decreases

asymptotically to the resting potential, making it difficult to precisely define the wave

velocity and wavefront. The m-exponent in the PME model was found to modulate both

the front and back of the action potential wave, with higher exponents resulting in steeper

wavefronts and wavebacks. The arrhythmogenic properties of the PME model were also

analyzed through the construction of APD and CV restitution curves from the 1-D model.

No marked differences were found when comparing the PME model curves with those

coming from the standard cable model, and therefore we conclude that the PME capture
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the restitution properties of cardiac tissue in the same way models based on the cable

equation do.

Three-dimensional studies on a cardiac slab showed that the PME model is able to

incorporate anisotropic wave propagation. In particular, for a transversely-isotropic tis-

sue architecture we recover ellipsoidal wavefronts similar to those produced by the cable

model. Along the principal direction of propagation, PME waves exhibit a crest-to-trough

length that is 33% shorter than the cable wave, for the highest m−exponent studied in this

work. Similar to the 1-D case, the wavefront in the PME model has a well defined location,

with tissue ahead of the wavefront that exactly takes on the resting potential value.

The spatio-temporal differences introduced by the PME model suggest important im-

plications concerning repolarization dynamics and morphology. The modifications of the

wavefront and waveback dynamics are in fact tightly linked with several pathological con-

ditions known in cardiac tissue electrophysiology leading to sudden cardiac death, e.g.

Brugada syndrome (Brugada, Brugada, & Roy, 2013). Moreover, dispersion of repolar-

ization in larger portions of the heart (Coronel, Wilms-Schopman, Opthof, & Janse, 2009),

and in the ventricular wall in particular, have been shown to be an important factor leading

to the onset of arrhythmias both in healthy and diseased hearts, as well as to represent the

key element for sustained fibrillation scenarios (Fenton, Cherry, Hastings, & Evans, 2002).

Thus, the differences in wavefront and waveback steepness open novel interesting ques-

tions about the spatio-temporal dispersion of repolarization characters that we propose to

explored via the PME model formulation. The constitutive nonlinear flux assumption, in

fact, introduces an additional multiscale feedback in the membrane potential dynamics.

Finally, we have demonstrated that the PME model is amenable to large-scale 3D

whole-heart simulations. In particular, activation sequences in the human ventricles can

be simulated using the PME model, in which the heterogeneous fiber orientation of car-

diomyocytes can be incorporated in a similar fashion standard cable models incorporate

anisotropic conduction. The PME model for cardiac tissue works well when coupled with
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a 1-D His-Purkinje network, which is fundamental to better reflect the ventricular acti-

vation that mainly starts at the terminals embedded in the endocardium. The resulting

wavefront is non-smooth and heterogeneous, which reflects well the experimental obser-

vations of the propagation of action potentials, as found in optical mapping experiments

(Gizzi et al., 2013). We conclude that the PME model is amenable to simulations in re-

alistic cardiac geometries and well suited for applications in the study of excitation in

complex heterogeneous and anisotropic biological media.

2.4.1. Limitations and Outlook

From a physiological point of view, one limitation of this work is the admittedly sim-

ple electrophysiological model adopted. The reason for adopting a phenomenological

model with a simple AP morphology was to avoid the highly complex dynamics that a

biophysical ionic model introduces into the simulation, and thus concentrate on the effects

of the non-linear diffusion term introduced in this work. In a forthcoming contribution,

we plan to validate our generalized approach using well-established phenomenological

(Bueno-Orovio et al., 2008) and biophysical cardiac ionic models (Clayton et al., 2011),

in order to quantify the sensitivity of realistic models with respect to the nonlinear diffu-

sion flux of the PME model. With better ionic models, one objective is the study of the

onset of arrhythmias and the different fibrillation scenarios (Cherry & Fenton, 2008) and

how these phenomena are affected by the non-linear diffusion flux in terms of wavefront

steepening and wave tail fastening as the key features of the PME formulation. A deeper

understanding of the possible effects linked to finite speed wave propagation can also be

explored in direct comparison with experimental evidences. Qualitative and quantitative

analysis addressing spatio-temporal alternans dynamics and conduction blockage that aim

at reproducing such complex behaviors not fully recovered by the current cable-like math-

ematical formulations are certainly another interesting avenue of research.

From a numerical analysis viewpoint, we consistently found oscillations in a small

region ahead of the wavefront that quickly dissipates for regions farther ahead from the
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wavefront. Oscillations and their magnitude were highly dependant on the mesh size, and

for meshes with characteristic lengths in the order of 0.1 mm were found to be negligible,

as can be seen in 1-D simulations. The existence of small oscillations, which are not

found in the cable model, are a purely numerical artefact that can be explained by loss

of symmetry of the weak form due to the existence of a convective term, a feature not

present in standard linear-diffusion problems (Donea & Huerta, 2003). In the future, we

plan to use Petrov-Galerkin schemes that stabilize oscillations, but that may increase the

computational efforts needed to solve the PME model. Another important point to remark

is that the numerical solution of the PME model takes longer computing times than the

solution of the cable model. This additional computing time is attributed to the fact that,

when solving for the current state inside an iteration of the implicit scheme adopted, a non-

symmetric linear system must be solved in the PME model, in contrast with the symmetric

linear system that was found for the cable model using the Aliev-Panfilov ionic current.

Thus, efficient algorithms commonly used to solve symmetric linear systems do not apply

for the case of the PME equation. This additional cost may be drastically reduced when

considering explicit integration schemes, at the expense of smaller time steps that are

typically constrained by the mesh size.

Bioengineering computational applications of the PME model can be extended to mul-

tiphysics problems, not limited to the sole electrical excitation of cardiac tissue. We expect

that the PME formulation can be applied to a wide range of excitable syncytia spanning

from single cell excitation-contraction and cell-to-cell dynamics (Ruiz-Baier et al., 2014)

to thermo-electro-mechanic tissue and organ models (Filippi, Gizzi, Cherubini, Luther,

& Fenton, 2014; Cookson et al., 2012; Huyghe et al., 1992; Altomare et al., 2014). In

conclusion, we propose the PME model approach as a possible and reliable theoretical

generalization of the classical electrophysiological cable model that could open new per-

spectives in the mathematical modeling of complex biological excitable media.
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3. CONCLUSIONS

In the present work, the standard flux term for the monodomain model is changed

by a porous-medium diffusive term. This change, as expected, provides a more physical

solution with respect the propagation of the wavefront through the cardiac cells.

As said in Chapter 1, the porous medium equation has the advantage to recover a finite

speed in the wavefront, on the contrary that the standard monodomain model. In order to

analyze the changes obtained with the PME model we have run simulations in simplified

domains. We note that, as expected, the action potencial after the wavefront is equal to

zero in the PME model but positive in the standard cable model. In addition, analyzing

how the m−exponent affects to the wavefront, we note that using a higher value for m

the wavefront is steepter. However, these changes do not affect to the arrhythmogenic

properities as the APD and CV restitution curves from the 1-D model. The same analysis

is made in a three-dimensional cardiac slab, considering an anisotropic diffusion. As like

the 1-D case, the wavefront in the PME is well defined along all directions.

Finally, we run 3D simulations in a whole-heart, studying the activation sequence in

the human ventricles. We can see that the PME model works well for the cardiac tissue

coupled with the His-Purkinje network and the myocardial fibers. The wavefront recovers

well the experimental observations of the propagation of action potentials. We conclude

that the PME model is suitable for simulations in realistic geometries.
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4. FUTURE WORK

The topic addressed in the present work is strongly multidisciplinar and open several

perspectives of improvement. Some ideas are listed below.

The first point to analyze is the limitation imposed by the phenomenological model

employed in this work. A straightforward extention of the present work consists in fact in

analyzing the PME formulation in a more sotisficated models as exposed in Chapter 1. For

example the Minimal model (Bueno-Orovio et al., 2008) or the ten Tusscher model (ten

Tusscher et al., 2004) arise as good candidates as more accurate ionic models. Specific

studies would then address the onset of arrhythmias and the different fibrillation scenarios

(Cherry & Fenton, 2008) and how these phenomena are affected by the non-linear diffu-

sion flux in terms of wavefront steepening and wave tail fastening as the key features of

the PME formulation. Moreover, deeper analysis of the effects of the finite speed wave

propagation can also be made, in comparison of experimental results.

From a numerical point of view there are several options to improve the present work.

The first one is about the oscillations that we found in the wavefront, and that get larger

as we increase the m−exponent. In order to solve this problem we foresee the analysis of

finer meshes or the use of discontinuous finite element methods. If refinement of the mesh

is required, an interesting project would consists in refining around the wavefront i.e., to

use adaptive mesh refinement, in order to reduce the oscillations without increasing the

computational cost. Other options to analyze the non-symmetric system and optimize the

computational time required. Explicit schemes, with smaller time step, could be a possible

strategy.

The PME model is not limited to the electrical propagation only. This formulation

can be extended to multiphysics couplings as the thermo-electro-mechanical problem of

the cardiac tissue. Therefore, we foresee a wide applicability of the PME model in the

mathematical biology and physiology fields.
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A. SPATIO-TEMPORAL DISCRETIZATION: NON-LINEAR IMPLICIT FINITE-

ELEMENT FORMULATION

We start by considering a partition of the time interval [0, T ] into nstp subintervals

[tn, tn+1] such that t0 = 0, tnstp = T and [0, T ] =
⋃nstp−1
n=1 [tn, tn+1]. For a generic subin-

terval [tn, tn+1] we define ∆t = tn+1 − tn, and assume that the field φn(x) = φ(x, tn) is

known at t = tn, and look to solve for φn+1(x). For the sake of simplicity, in the following

we omit the index (◦)n+1 of the current time field of interest, i.e. φn+1 ≡ φ. Adopting a

backward Euler time integration scheme for the temporal discretization, we approximate

time derivatives by

φ̇ ≈ φ− φn
∆t

, (A.1)

ṙ ≈ r − rn
∆t

. (A.2)

We now focus on the numerical approximation of the evolution equation for the recovery

variable. We note that (2.3) depends only locally on φ and does not involve spatial gradi-

ents. Therefore, we solve the time integration pointwise using a standard backward Euler

scheme for (2.3) which results in

Rr = r − rn −∆t g(φ, r) = 0. (A.3)

Given a fixed value of φ, we use a Newton iteration to solve (A.3), and therefore we require

to compute its tangent, which is given by

DRr =
∂Rr

∂r
= 1−∆t

∂g

∂r
(φ, r) = 0. (A.4)

Thus, given an initial guess for r, we recursively update the recovery variable r ← r −

(DRr)−1Rr until a convergence criteria based on the residual norm is met. The converged

value of the recovery variable is denoted r∗(φ). We denote the algorithm just described

is general for any cellular electrophysiology model. We will also be interested in the

sensitivity of the recovery variable with respect to the potential variable. Observing that
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r∗(φ) satisfies (A.3), we use implicit differentiation to obtain

dr∗

dφ
(φ) = −(DRr)−1

(
∂g

∂φ

) ∣∣∣
φ,r∗(φ)

(A.5)

Finally, for the particular case of the Aliev-Panfilov model, we have (Göktepe & Kuhl,

2009)

Rr = r − rn − [ [ γ + r γ̄ ] [−r − c φ [φ− b− 1]] ]∆t, (A.6)

DRr = 1 + [γ + γ̄(φ) [ 2 r + c φ [φ− b− 1] ] ] ∆t (A.7)

∂g

∂φ
= [[γ + r γ̄(φ)] c [ 2φ− b− 1 ] + r

∂γ̄

∂φ
[ r + c φ [φ− b− 1 ]] ]∆t (A.8)

with
∂γ̄

∂φ
= − µ1

(µ2 + φ)2 .

We now turn our attention to the spatial discretization of equation (2.2) using an elec-

tric flux of the kind (2.5). To this end, we start by constructing the weak form of the

PME problem. With a slight abuse of notation, let φ : Ω → R be a trial function satisfy-

ing the Dirichlet boundary condition (2.6), and δφ : Ω → R be a test function satisfying

δφ
∣∣∣
x∈∂Ωφ

= 0. By multiplying equation (2.2) by an arbitrary test function δφ, integrating it

over the domain Ω, applying the standard integration by parts, and including the Neumann

boundary conditions (2.7), we arrive at the following weak form:

find φ such that∫
Ω

{
φ̇δφ− q(φ,∇φ) · ∇δφ− f(φ, r)δφ

}
dx+

∫
∂Ωq

q̄δ φdS = 0, ∀δφ.
(A.9)

We now proceed to approximately solve (A.9) using a finite-element approach. To this

end, we consider a discretization Ωh ⊂ Ω which is composed by finite-element domains

Ωe such that Ωh =
⋃nel

e=1 Ωe. Trial functions φh : Ωh × [0, T ] → R and test functions
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δφh : Ωh → R are defined as

φh(x, t)
∣∣
Ωe

=
nem∑
a=1

N e
a(x)φa(t), (A.10)

δφh(x)
∣∣∣
Ωe

=
nem∑
a=1

N e
a(x)δ φa (A.11)

respectively, where N e
a(x) is the element shape function, φa the trial function nodal value

and δφa the test function nodal value defined for all element nodes a = 1, . . . , nem. In

this particular work, linear isoparametric shape functions on tetrahedral elements are em-

ployed, but the formulation here described is general, and can be used for other basis

functions. For the generic time interval [tn, tn+1], we substitute temporal (A.1) and spatial

(A.10), (A.11) discretizations into the weak form (A.9) to obtain a set of equations of the

form

Rφ
A = Anel

e=1

∫
Ωe

{
N e
a

φh − φhn
∆t

−∇N e
a · q(φh,∇φh)−N e

a f(φh, r∗)

}
dx

+

∫
∂Ωeq

N e
a q̄ dS = 0

(A.12)

where the assembly operator A adds the element contributions at the element nodes a =

1, . . . , nen to the global residual at the global nodes A = 1, . . . , nnd. The set of non-

linear equations implied in (A.12) are commonly solved using gradient-descent iterative

schemes, for which the tangent may be required. A straightforward calculation yields the

following expression for the tangent components

DRφ
AB =

∂Rφ
A

∂φB
= Anel

e=1

∫
Ωe

{
1

∆t
N e
aN

e
b −∇N e

a ·
∂q

∂φ
N e
b

−∇N e
a ·
[
∂q

∂∇φ
∇N e

b

]
−N e

aN
e
b Df

}
dx,

(A.13)

where the sensitivity of the ionic flux is

Df =
df(φ, r∗(φ))

dφ
=

{
∂f

∂φ
+
∂f

∂r

dr∗

dφ

} ∣∣∣
φh,r∗

, (A.14)
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which in the particular case of the Aliev-Panfilov model takes the form

Df = c [−3φ2 + 2 [1 + α]φ− α ]− r − φ dr∗

dφ
. (A.15)

For the porous-medium diffusion law (2.5) we finally have

∂q

∂φ
= −mφm−1D∇φ (A.16)

∂q

∂∇φ
= −φmD (A.17)

Denoting by Φ = [φ1, . . . , φnnd
] the vector of the nodal potentials, for each iteration of the

Newton-Raphson scheme we have the update

Φ← Φ−
{
DRφ

}−1

Rφ (A.18)

which is performed until a convergence criteria is met, tipically based on the L2 norm of

Rφ.
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