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AUTOMATIC PLANE REFORMATTING

FOR 4D FLOW MRI USING CONTINUOUS

REINFORCEMENT LEARNING

JAVIER E BISBAL

Members of the Committee:

SERGIO URIBE

PABLO IRARRAZAVAL

JULIO SOTELO
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ABSTRACT

4D flow MRI allows the calculation of hemodynamic parameters that provide valuable

information to characterize cardiovascular diseases. One limitation is the time-consuming

and user-dependent post-processing. We developed an automated reinforcement deep

learning framework for plane reformatting of 4D flow data using the Asynchronous Ad-

vantage Actor Critic algorithm to train a 2D convolutional network that sequentially up-

dates plane parameters towards a target plane based on a continuous policy. We processed

4D flow data from GE, Siemens and Philips MRI scans of 67 healthy volunteers and 20

patients with congenital heart defects (47 men, 34 ± 12.4 years of age). All datasets were

split in 50% training, 25% validation and 25% testing and validated with 4 fold cross val-

idation. Our method achieved excellent results in terms of angulation and distance errors

(average 7.88 ± 4.33 degrees and 3.46 ± 3.25 mm) with a flow correlation of 0.82. We suc-

cessfully adapted a continuous reinforcement learning method to plane reformatting in 4D

Flow suited for data from different scanner vendors, with promising results in healthy vol-

unteers and patients. Future work with public data and more planes is needed for clinical

validation.

Keywords: 4D flow MRI, Deep Learning, (Reinforcement Learning, Plane reformat-

ting).
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RESUMEN

La resonancia magnética de flujo 4D permite calcular parámetros hemodinámicos que

proporcionan información valiosa para caracterizar las enfermedades cardiovasculares.

Una de las limitaciones es el post procesamiento, el cual requiere mucho tiempo y de-

pende del usuario. En esta investigación desarrollamos un método de aprendizaje pro-

fundo reforzado para el reformateo automático de planos en datos de flujo 4D utilizando

el algoritmo Asynchronous Advantage Actor Critic para entrenar una red convolucional

2D que actualiza secuencialmente los parámetros del plano hacia un plano objetivo una

polı́tica de acciones continua. Procesamos datos de flujo 4D de escáneres de resonancia

magnética de GE, Siemens y Philips de 67 voluntarios sanos y 20 pacientes con defectos

cardı́acos congénitos (47 hombres, 34 ± 12,4 años de edad). Todos los conjuntos de datos

se dividieron en 50% para entrenamiento, 25% para validación y 25% para prueba, y se

confirmaron con validación cruzada de 4 carpetas. Nuestro método obtuvo excelentes re-

sultados en términos de errores de angulación y distancia (media de 7,88 ± 4,33 grados y

3,46 ± 3,25 mm) con una correlación de flujo de 0,82. Adaptamos con éxito un método de

aprendizaje de refuerzo continuo al reformateo de planos de flujo 4D, apto para datos de

diferentes fabricantes de escáneres de resonancia magnética, con resultados prometedores

en voluntarios sanos y pacientes. Trabajo futuro con más datos y planos es necesario para

la validación clı́nica.

Palabras Claves: Flujo 4D, Aprendizaje profundo, (Aprendizaje reforzado, Reforma-

teo de planos).
ix



1. INTRODUCTION

4D flow MRI allows the quantification of advanced hemodynamic parameters that provide

valuable information to characterize cardiovascular diseases (Markl, Frydrychowicz, Kozerke,

Hope, & Wieben, 2012). The volumetric coverage of 4D Flow MRI offers retrospective posi-

tioning of planes for flow measurements at any location within the acquired data volume. How-

ever, this task is time consuming and user-dependent, especially when analyzing multiple planes.

The 4D flow cardiovascular magnetic resonance consensus statement (Dyverfeldt et al., 2015)

declares: ”Efforts toward more standardized automated flow visualization approaches could be

helpful in certain applications and would minimize operator-dependent variation, although users

should understand the principles, strengths and limitations of different techniques”.

Although several semi-automatic methods have been proposed to asses different quantita-

tive parameter, only a few have been proposed to retrospectively reformat the 4D flow data and

quantify flux through the vessels (Bustamante et al., 2015; Corrado, Seiter, & Wieben, 2021).

Bustamante et al. (2015) proposed an automatic plane reformatting algorithm based on the reg-

istration of a vessel-specific atlas. In this method, an atlas is created from a Phase Contrast

Magnetic Resonance Angiography (PC-MRA) (Markl, Kilner, & Ebbers, 2011) of a healthy vol-

unteer , with 2D planes positioned at multiple vessel locations. In order to align vessels and

planes, the 3D PC-MRA input dataset is registered to the atlas. Despite the good results in

terms of flow correlation between the automatic and semi-automatic method (with user-defined

planes), atlas registration requires substantial computation time and depends on the similarity

between the image and the atlas.

Deep Learning has shown promising results with high reproducibility and low variability

for biomedical image processing tasks with different frameworks and architectures (Marrone,

Olivieri, Piantadosi, & Sansone, 2019). Corrado et al. (2021) recently proposed a deep learning-

based method for plane reformatting in 4D flow. This algorithm samples 3D patches from the

input 4D flow data and uses a 3D convolutional neural network (CNN) to predict the patch most

likely to contain the reformatted planes, along with the plane reformatting parameters (plane
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center and normal direction). Regardless of the promising results, the 3D CNN only computes the

plane parameters of the plane reformatting from the 3D patches and not the plane reformattting

itself. This implies that there is information from the plane reformatting in 2D that is not being

used to solve the plane reformatting task. In addition, Corrado et al. only used 4D flow scans

from one scanner vendor (GE Healthcare).

Blansit et al. (2019) proposed a deep learning method for plane reformatting in cardiac

cine images that uses three short-axis localization models. The first model locates the mitral

valve slice using a 2.5 dimensional VGG-19/LSTM (Simonyan & Zisserman, 2014; Hochreiter

& Schmidhuber, 1997) ensemble network. The second model locates a bounding box around the

heart with a 2.5 dimensional U-net (Ronneberger, Fischer, & Brox, 2015). The final model uses

a U-net modified for heatmap regression (Payer, Štern, Bischof, & Urschler, 2016) to localize

for 4 landmarks on the mitral valve slice for plane reformatting. This method could be used for

plane reformatting in 4D flow, however, not all vessels have specific landmarks in one particular

plane (mitral valve slice in the case of short-axis cardiac cine images) to compute the plane

reformatting. In 4D flow, multiple planes are needed within the volume to locate reference points

that allow the computation of the plane reformatting in each vessel. This adds extra difficulty to

perform 4D flow plane reformatting using landmarks in specific planes.

Another approach to solve the plane reformatting task is using Reinforcement Learning (RL).

In RL an agent learns how to make comprehensive decisions by mimicking navigation processes

of an expert solving the plane reformattting task. RL allows agents to learn complex tasks that

may need several steps to find a solution (Sutton & Barto, 2018). For plane reformatting we

start with an initial plane in a specific position within the volume data and the agent sequentially

updates the plane parameters using rotations and translations towards a target position. Alansary

et al. (2018) developed a RL agent using a Deep Q-Network (DQN) (Mnih et al., 2015) to solve

the plane reformatting task in brain and cardiac cine MRI images. This method achieved good

performance and more comprehensive results because the RL agent performs actions similar to

those an expert would use for the plane reformatting.
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In this work, we adapted the RL framework (Alansary et al., 2018) to be used in 4D flow

images from different scanner vendors. A limitation of using DQN as a RL agent is that only one

action (rotation or translation) can be performed at the time of updating the parameters of each

plane and must have a discrete size. In order to have more degrees of freedom over rotations

and translations, our method trains a RL agent using the Asynchronous Advantage Actor Critic

(A3C) (Mnih et al., 2016) algorithm to estimate a continuous action policy for rotations and

translations. With this policy the agent rotates and moves three ortogonal planes within the 4D

flow data towards a target vessel location.
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2. METHODS

2.1. Data sets and image processing

We processed a total of 87 scans from different scanners including healthy volunteers and

patients with congenital heart defects. The details of each dataset are in Table 2.1:

We preprocessed the data with an in-house developed MATLAB toolbox (MathWorks, Nat-

ick, MA, USA), and it involves 6 steps: isotropic interpolation, computation of angiography

volume, segmentation, field of view (FOV) reduction, contrast enhancement and registration.

(i) Isotropic interpolation: linear interpolation to transform all datasets to a resolution of

2x2x2mm3.

(ii) Angiography volume: computation of Phase Contrast Magnetic Resonance Angiogra-

phy (PC-MRA) (Markl et al., 2011) images for Philips and Siemens scanners (43 scans)

and complex difference (Bernstein & Ikezaki, 1991) images from data acquired in GE

scanner (44 scans). Complex difference and PC-MRA are two types of angiography

images in MRI. From this point on we will refer to PC-MRA and complex difference

images as angiography images.

(iii) Segmentation: segmentation on angiography images with a manually adjusted thresh-

old for each image. From the segmentation we keep the largest connected element that

corresponds to the whole heart and great vessels.

(iv) FOV reduction: reduction of field of view (FOV) using the smallest bounding box

around vessels segmentation to confine the whole heart and great vessels. In some

cases the segmentation was connected to areas that did not correspond to the heart and

great vessels. This occurred in cases of data with higher noise (about 8 to 12 scans

from GE scanner). To solve this issue we manually reduced the FOV to confine the

heart and great vessels.

4



(v) Contrast enhancement: Contrast limited adaptive histogram equalization (CLAHE)

(Reza, 2004) in angiography images. This method improves local contrast and en-

hance the definition on edges of the heart and great vessels.

(vi) Registration: Rigid registration to align all angiography data in the same orienta-

tion. This registration maximizes the mattes mutual information (Pluim, Maintz, &

Viergever, 2003) between a fixed angiography volume and a moving angiography vol-

ume using a evolutionary optimization strategy (Styner, Brechbuhler, Szckely, & Gerig,

2000) using rotations and translations.

Table 2.1. 4D flow data description

MRI scanner Description

GE 1.5T 32 scans from healthy volunteers

GE 1.5T 8 scans from patients with aortic coarctation

GE 1.5T 4 scans from patients with tetralogy of fallot

Siemens 3T 17 scans from healthy volunteers

Siemens 3T 8 scans from patients with bicuspid aortic valve (BAV)

Philips 3T 18 scans from healthy volunteers

2.2. Reinforcement learning (RL) framework

RL is a type of machine learning technique which an agent learns to behave in an environment

by performing actions that maximize a reward signal. The agent is not told which actions to take,

but must discover, by trying different actions, which ones produce the greatest reward. (Sutton

& Barto, 2018). For the task of plane reformatting, an agent sequentially modifies the position

and direction of a plane in state s. If the next state plane is closer to the target plane, a positive

reward signal is granted, otherwise the agent gets a negative reward signal. Since the goal is

to maximize the total reward, the agent will learn to navigate to the target plane within the 3D

volume. At each time step t the agent gets a new state s and chooses an action following a policy
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π. The agent attempts to learn a policy that maximizes both immediate and subsequent future

rewards.

Deep reinforcement learning (DRL) combines Deep Learning with RL, where deep learn-

ing allows agents to make decisiones from unstructured data without knowing all posible states

and transitions (Torres, 2021). For the task of plane reformatting an infinite number of planes

can be computed from a single volume. Even if we discretize the problem, a large number of

possible states and transitions makes it complex to compute a function that allows us to map

all the states to the actions that will allow us to reach the target plane. With the Asynchronous

Advantage Actor Critic (A3C) algorithm (Mnih et al., 2016) we can estimate this function using

a Convolutional Neural Network (CNN) without knowing all possible states and transitions.

Figure 2.1 shows the proposed DRL framework. Number (1) denotes the state s, which con-

sists of three ortogonal planes where the desired plane is the first plane. At each time step a

grid of size 70x70x3 from each state is sampled using bilinear interpolation from the angiogra-

phy volume. 70x70 denotes the width and height of the sampled images and 3 the number of

ortogonal planes. The parameters of the desired plane in cartesian coordinates are,

cos(α)x+ cos(β)y + cos(ϕ)z + d = 0 (2.1)

where n⃗ = (cos(α), cos(β), cos(ϕ)) is the normal vector of the plane with α, β and ϕ the angles

between the plane and the cartesian axes x, y and z, respectively. d is the distance from the

plane to the volume center. The action space is defined as {aα, aβ, aϕ, ad}, where {aα, aβ, aϕ} ∈
(−ωmin, ωmax) degrees and{ad} ∈ (−dmin, dmax) mm. (−ωmin, ωmax) and (−dmin, dmax) are

the lower and upper bounds for the action space. Each action updates the state plane parameters

as αt = αt−1+aα, βt = βt−1+aβ, ϕt = ϕt−1+aϕ, dt = dt−1+ad. The reward of each transition

is

rt = (D (Pt−1, PT )−D (Pt, PT ))+

λ (NMI (Pt, PT )−NMI (Pt−1, PT ))
(2.2)
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where Pt represents the plane parameters in step t and PT the target plane, D is the Euclidean

distance between the parameters of the two planes, NMI is the normalized mutual information

(Studholme, Hill, & Hawkes, 1999) between the plane in step t and the target plane and λ is a

scalar weight to balance each term of the reward.

Figure 2.1. RL framework for 4D flow plane search. An initial stack of images (1)
pass through 4 convolutional layers (2) and 1 fully-connected layer. The output
of this layer enters a LSTM cell with the previous LSTM hidden and cell state
(3). The LSTM calculates the policy (π(at, st)) and value function (V (st)) (4).
(5) CNN parameters are updated with equation 2.4. Finally, the policy rotates and
moves the grid to reach a new state (6).

The objetive is to maximize the expected return defined as Rt =
∑∞

k=0 γ
krt+k, where γ =

0.99 is a discount factor that allow the summation to converge within a finite number of steps. We

also defined a value function V π(s) = E [Rt | st = s] following an action policy π (at | st). If

we maximize V π(s), we also maximize the expected return. One way to estimate V π(s) is using

a parametrization of the policy π (at | st; θ) and an estimation of the value function V π(s; θv),

with parameters θ and θv. The A3C algorithm (Mnih et al., 2016) estimates the parameters θ

and θv with a neural network. We trained the network in order to find the optimal policy that

maximizes the estimation of V π(s; θv).
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The network consists of four 2D convolutional layers (number 2 in Figure 2.1), a Long short-

term memory (LSTM) cell, and two fully-connected layers (number 3 in Figure 2.1). The LSTM

cell connects the previous and present LSTM hidden and cell states to exploit information be-

tween time steps. The last fully-connected layer estimates the policy π(st, at) and state value

V (st) (number 4 on Figure 2.1). The policy is parameterized as a normal distribution

π(a | s, θ) .
=

1

σ(s, θ)
√
2π

exp

(
−(a− µ(s, θ))2

2σ(s, θ)2

)
. (2.3)

Here σ(s, θ) and µ(s, θ) are the parameters estimated by the last layer of the neural network.

Each parameter of the network is updated every tmax actions or in a terminal state. A terminal

state is reached when the following two conditions are fulfilled in ten consecutive steps. First,

if the agent reaches a state with a distance from the target plane lower than 3 mm and less than

4 degrees of angle error. In this case the agent a bonus of 1 to the reward. Second, if the agent

continues to approach the target plane. The following equation updates the network parameters

(number 5 in Figure 2.1):

∇θ′ log π (at | st; θ′) (A(st, at; θv) + η∇θ′H (π (st; θ
′)) . (2.4)

∇θ′ log π (at | st; θ′) denotes the direction of largest gradient of the probability of action at in the

state st, which is weighted by A(st, at; θv), an estimate of the advantage function defined as

A(st, at; θv) =
k−1∑

i=0

γirt+i + γkV (st+k; θv)− V (st; θv) , (2.5)

where k is upper-bounded by tmax, in this implementation set to 8 steps. The gradient of an

entropy estimate of the action policy denoted by η∇θ′H (π (st; θ
′)) is added to improve explo-

ration, preventing premature convergence to suboptimal policies. η adjusts the magnitude of the

entropy regularization term. After the network parameters are updated, the policy distribution is
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sampled to obtain the actions that rotate and move the grid and sample the next state from the

3D angiography data (number 6 n Figure 2.1).

2.3. Experimental setup

2.3.1. Data division and validation

To train our network we split each dataset in Table 2.1 in 50% training, 25% validation and

25% testing. To validate our results we performed a 4 folder cross validation. This process

consists of 4 iterations, where in each iteration a different training, validation and test set is

chosen, until each of the data is used for both training and testing. This allows us to evaluate the

stability of the network by training with different scans within the datasets.

2.3.2. Manual annotations

We used the software Paraview (Kitware, Clifton Park, NY12065, USA) to generate 3D

contours of the segmentation of the vessels and the velocity streamlines within the segmentation.

Then, two observers with training in MR images visualization placed 1 perpendicular plane to

the wall in 4 vessels: pulmonary artery (PA), right pulmonary artery (RPA), left pulmonary artery

(LPA) and ascending aorta (AAsc). Each plane was located placing a point on the middle of the

vessel and defining a normal vector. The 3D point coordinates were normalized between 0 and

1.

From these planes, we use inter-observer variability as a reference for later comparison with

our algorithm.

2.3.3. Flow measurement

To measure hemodynamic parameters such as flow from the reformatted planes, we need a

segmentation of the vessel to which the plane is perpendicular. To compute this segmentation we

trained 2D U-net (Ronneberger et al., 2015) with the manually placed planes of each vessel. We
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trained 4 networks (one for each vessel) for 40 epochs in Google Colab GPU (Nvidia K80 / T4)

with Keras library (Chollet et al., 2015). We also applied affine transformations to the training

dataset, including shear, rotation and scaling, to prevent overfitting. To measure the performance

of the 2D U-Net segmentation we compute intersection over union (IoU) and Dice coefficient

(equations 2.6 and 2.7) between U-net segmentation (x̂) and manual segmentation (x) of vessels

on the reformatted planes

Dice =
2|x ∩ x̂|
|x|+ |x̂| (2.6)

IoU =
|x ∩ x̂|
|x ∪ x̂| (2.7)

For statistical analyses of flow, we used Shapiro-Wilk (Shapiro & Wilk, 1965) test to de-

termine the normality of flow data, and non-parametric Mann-Whitney test (Mann & Whitney,

1947) to measure the significance of the difference in flow between observers and between ob-

server and algorithm.

2.3.4. Asynchronous training

The A3C algorithm has the advantage of training multiple agents asynchronuosly and up-

dating the parameters of a shared model. For our model we trained 15 different agents, each

one with a different training volume. This allows the network to learn from transitions across

multiple volumes, decreasing training time and data overfitting. Data augmentation and dropout

layers (Srivastava, Hinton, Krizhevsky, & Salakhutdinov, 2014) was used to prevent additional

overfitting. Data augmentation consisted on random scaling, translations and rotations between

(0.9,1.1), (-5.5) mm and (-5.5) degrees, respectively. These transformations allows the network

to have invariance to small location and scaling variations, and they were implemented with Tor-

chIO python library (Pérez-Garcı́a, Sparks, & Ourselin, 2021). The dropout layers were used in

the convolutional layers with probability 0.4.
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Table 2.2 contains the chosen RL and networks hyperparameters for training and evaluation.

We chose small action spaces for rotations and translations to make the transition between states

slower, but more precise. For λ, a value was chosen so that the error range of the plane parameters

and the error range of NMI in equation (2.2) were similar. The optimizer, tmax and the learning

rate were chosen empirically to converge to a good solution in a short training time.

The network was trained using PyTorch library (Paszke et al., 2019) with A3C implementa-

tion code taken from (Kostrikov, 2018). Training was done on a Linux server with a NVIDIA

Quadro RTX 8000 GPU for 150 epochs per plane. An epoch in this case consists of one agent

training with all the volumes of the training set.

Table 2.2. RL and network hyperparameters

Hyperparameter value
(−dmin, dmax) (−3, 3) mm

(−ωmin, ωmax) (−3, 3) degrees

λ 3

β 0.01

tmax 8

Optimizer Adam

Learning rate 0.00001

2.3.5. Plane reformatting evaluation

For validation and test data, the network is evaluated with a sequence of 100 steps, being

the final plane directly selected from the last step. We measured three metrics on the estimated

planes.

(i) Distance error: defined as the Euclidean distance between a point in the ground truth

plane in the middle of the vessel and the nearest point on the estimated plane.

(ii) Angle error: angle between estimated and ground truth normal vectors.

11



(iii) Normalized mutual information (NMI): Same NMI used in equation (2.2) to mea-

sure the correlation between ground truth plane and estimated plane. The range of

NMI goes from 1 (no correlation between images) to 2 (perfect correlation between

images).

To choose the model for test data evaluation, we chose the network with better performance

in validation data. The best performance was calculated with the lower average distance between

the parameters of the ground truth (manually placed) planes and the estimated planes.
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3. RESULTS

3.1. Plane reformatting performance

Figure 3.1 shows two representative test samples of a healthy volunteer and a patient with

BAV. The network was trained with observer 1 manually placed planes. We observed that the

difference between the estimated planes and their respective labels is similar to the difference

between observers in terms of distance, but slightly higher in terms of angle error.

Figure 3.2 shows the 4 folder cross validation performance metrics on each plane. Cross val-

idation iterations revealed similar performance in terms of mean and interquartil range. Also, the

size of interquatil range of the different folders has similar values to inter-observer differences.

This suggests stability of the proposed method among all data samples compared to human error.

Figure 3.1. Visualization of plane localization shown as lines on two orthonormal
images to the observer 1 plane. Estimated planes are shown in red and observers
planes in blue and yellow.
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Table 3.1 shows the average and deviation of angle error, distance error and NMI for all

planes. The average and deviation of the performance metrics on all planes were 7.88 ± 4.33

degrees for angle error, 3.46 ± 3.25 mm for distance and 1.31 ± 0.08 for NMI . The best

performance for angle error and distance error was on RPA plane and for NMI on PA plane. On

the other hand, the worst performance for angle error was on LPA plane, and for distance error

and NMI on AAsc plane. In AAsc plane we achieved low angle error, but with slightly higher

distance error and lower NMI . This happens because AAsc is the bigger vessel and the plane

planning has higher distance variation. This also impacts SSIM because the distance variations

allow other tissues to show in the plane reformatting. Nevertheless, in 4D flow, a low angle error

is sought in order to be able to recover well the flow values in the vessels, as long as the distance

error is small enough not to leave the vessel. In the opposite case, in LPA plane we achieved

slightly higher angle error with low distance error. LPA, being a small vessel, causes a small

distance error, however, it is the one with the fewest tissues nearby, so the right angulation is

more challenging to obtain.

Table 3.1. Performance metrics between observer 1 and the algorithm for all cross
validation iterations. Average value in each plane and standard deviation in paren-
thesis.

Performance metric PA RPA LPA AAsc Average
Angle between normals (degrees) 7.90 (4.44) 7.18 (3.86) 9.22 (5.21) 7.22 (3.35) 7.88 (4.33)

Distance error (mm) 3.47 (2.84) 2.19 (1.94) 2.97 (2.58) 5.18 (4.40) 3.46 (3.25)
Normalized mutual information 1.36 (0.06) 1.31 (0.06) 1.29 (0.10) 1.26 (0.06) 1.31 (0.08)

Table 3.2. Performance metrics between observers. Average value in each plane
and standard deviation in parenthesis.

Performance metric PA RPA LPA AAsc Average
Angle between normals (degrees) 4.23 (4.05) 2.57 (2.26) 6.08 (4.96) 4.82 (5.36) 4.44 (4.4)

Distance error (mm) 2.03 (2.03) 1.70 (1.50) 2.46 (2.27) 4.69 (4.47) 2.72 (3.03)
Normalized mutual information 1.40 (0.10) 1.39 (0.09) 1.37 (0.11) 1.32 (0.10) 1.37 (0.10)
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Figure 3.2. 4 folder cross validation performance metrics between observer 1
planes and algorithm estimated planes (first row), and between observer 1 and
observer 2 planes (second row) . Green triangules show the mean of each boxplot
and black diamonds the outliers. First column: angle error, second column: dis-
tance error and third column: Normalized mutual information

Comparing observer v/s algorithm errors with inter-observer errors (Table 3.2), we observed

that our algorithm has great agreement in terms of distance, but there is still room to improve in

terms of angulation error to get close to inter-observer variablity. Furthermore, the same pattern

of errors as in the previous paragraph is observed in the inter-observer errors. With the best angle

error performance in RPA and the worst in LPA, and the best distance error performance in RPA

and the worst in AAsc. This suggests that both, the network and the observers, face similar visual

problems when locating the planes.
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3.2. Flow measurement

Figure 3.3 shows Bland-Altman plots for observer v/s algorithm and inter-observers differ-

ences. Inter-observer limits of agreement and average difference are lower than the limits of

agreement and average difference between observer and algorithm. Nevertheless, difference be-

tween observer and algorithm is significant (p < 0.05) only on plane LPA (Table 3.3). We used

Mann-Whitney non parametric test to measue difference beween flows because Shapiro-Wilk test

revealed that flow data did not followed a normal distribution (p < 0.05). In addition, we found

a flow agreement between observer and algorithm estimated planes with an average correlation

of 0.82.

In terms of performance of the 2D U-Net segmentation (Table 3.4), the average and deviation

of IoU on all planes was 0.89 ± 0.04 and for dice 0.91 ± 0.03. This values show high quality of

segmentation using the 2D U-net network.

Table 3.3. Flow measurement. Flow values in L/min for both observers and the
algorithm. Pearson correlation and Mann-Whitney test p-value between observers
and observer v/s algorithm

Metric PA RPA LPA AAsc Average
Flow Observer 1 (L/min) 5.14 (2.57) 2.05 (2.41) 2.99 (1.45) 4.79 (1.94) 3.74 (2.49)

Flow Observer 2 (L/min) 4.96 (2.57) 2.06 (2.35). 2.96 (1.45) 4.87 (1.90) 3.71 (2.45)

Flow Algorithm (L/min) 5.61 (2.48) 5.14 (2.57). 3.58 (1.9) 5.13 (2.31) 4.09 (2.63)

Correlation (Observer 1 v/s Algorithm ) 0.80 0.82 0.86 0.80 0.82

Correlation (Observer 1 v/s Observer 2) 0.97 0.98 0.97 0.97 0.97

P-value (Observer 1 v/s Algorithm ) 0.10 0.76 0.04 0.29 0.30

P-value (Observer 1 v/s Observer 2) 0.53 0.94 0.96 0.75 0.80

Table 3.4. U-net vessel segmentation performance. Average value in each plane
and standard deviation in parenthesis.

Segmentation metric PA RPA LPA AAsc Average
Dice coefficient 0.95 (0.02) 0.93 (0.04) 0.88 (0.01) 0.87 (0.04) 0.91 (0.03)

IoU 0.95 (0.01) 0.88 (0.07) 0.80 (0.02) 0.93 (0.03) 0.89 (0.04)
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Figure 3.3. Bland–Altman plots comparing flow values in L/min. The first col-
umn shows the Bland-Altman plots for observer 1 v/s algorithm and the second
column for observer 1 v/s observer 2. Each row shows the results for one plane.
For each graph, the solid line represent the bias (average difference between the
2 measurements) while the dotted lines represent the limits of agreement (mean
1.96*SD of the differences between the 2 measurements).
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3.3. Processing times

The longest step in our plane reformatting framework is the rigid registration of the angiogra-

phy data that takes 20 seconds on average. With the trained CNN, plane search takes less than 5

seconds to find each plane. This task can be parallelized for all planes summing up to less than a

30 seconds for the complete plane reformatting. This is a significant reduction of time compared

to manual plane reformatting which takes several minutes.

Training, regardless of the plane in which the networks were trained, took 4 GPU hours on

average to converge to a stable performance in validation. The training of the 2D U-nets took 20

minutes per network.

18



4. DISCUSSION

Our results demonstrated a promising performance in terms of angulation and distance errors

compared to other deep learning methods for 4D flow plane reformatting. According to the last

reported method (Corrado et al., 2021), we improved the average accuracy of PA and AAsc plane

reformatting by 10.93 and 5.18 mm for distance error, and 2.9 and 5.68 degrees for angle error,

respectively. However, this comparison involves different training and test samples. Corrado

et al. (2021) used 241 scans for training and 40 for testing without cross validation. Also,

they reported higher inter-observer errors than ours (5.58 mm higher for distance error and 9.46

degrees for angle error) with a flow correlation of 0.81. Our correlation between the algorithm

and one observer was similar to previous study inter-observer correlation and we improved the

average correlation between flow and previous algorithm for plane reformatting. Our goal is

to reach a higher correlation at the level between observers in our study (average correlation of

0.97) that shows almost perfect agreement in flow between the observers in the reformatting task.

Our next step will be to apply our method on bigger public datasets for a fair benchmarking and

on additional planes for a better clinical validation.

Whitehead et al. found a weak but significant correlation between angle and flow In (Whitehead,

Doddasomayajula, Harris, Gillespie, & Fogel, 2009). For 15 degrees of angle error the flow is

under or overestimated on 7% ± 5% on average. For our plane localization, average angle and

distance error are below the limits for appropiate calculation of the vessels hemodynamic param-

eters. Also, the value of correlation between flow measurements (average value of 0.82) indicates

high agreement between observer and the algorithm for further clinical diagnostic. In addition,

the value of the NMI index indicates high structure correlation between the manually defined

and estimated planes, maintaining considerable part of the anatomy of the different planes of the

heart.
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Regarding the choice of the hyperparameters of the network, we experimented with different

number of layers, filter sizes in the convolutional layers and output vector size of the convolu-

tional layer. Our experiments showed that these changes converged to similar performances, but

with different training times.

One limitation of our method is the dependency on the data pre-processing, in which seg-

mentation and registration may produce errors that propagate and impact the final results. If the

threshold-based segmentation fails, a manual FOV reduction is necessary, adding extra time to

the plane reformatting processing time. Also, it is an indicator that the data has more signal noise

than an average 4D flow acquisition. On the other hand, if the registration does not get the vol-

ume in the proper orientation, the transitions between different states will tend to fail. This occurs

because the set of actions to move and rotate the planes are defined in a single set of coordinates.

Therefore, when trying to change between states in a volume with a different orientation of the

data which the network was trained with, the results are unpredictables. To face this problem we

add random scaling, rotations and translations in the training to grant invariance of different loca-

tions to the network. However, this invariance only works for small variations. If the orientation

and position are inconsistent from the one sought to obtain the registration, the network will not

be able to converge to the desired plane. In the case of the data used in this work, part of them

had greater signal loss that generated a worse registration and therefore greater plane location

error. To overcome this problem we propose to use more advanced registration techniques like

DeepReg (Fu et al., 2020) to converge to a good registration despite having different noise levels

and data orientation.

Furthermore, we can improve our method with other plane reformatting methods. For exam-

ple, the method described in (Corrado et al., 2021) finds 3D patches that isolates each vessel. If

we use these patches instead of the full volume, the plane reformatting could be faster and more

precise.

In this research we developed a fast and automatic deep learning framework for plane refor-

matting on 4D flow data that is suitable for data acquired from different MRI scanners vendors

and for both healthy volunteers and patients.
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Pérez-Garcı́a, F., Sparks, R., & Ourselin, S. (2021). Torchio: a python library for efficient load-

ing, preprocessing, augmentation and patch-based sampling of medical images in deep learn-

ing. Computer Methods and Programs in Biomedicine, 106236. Retrieved from https://

www.sciencedirect.com/science/article/pii/S0169260721003102 doi:

https://doi.org/10.1016/j.cmpb.2021.106236

Pluim, J. P., Maintz, J. A., & Viergever, M. A. (2003). Mutual-information-based registration of

medical images: a survey. IEEE transactions on medical imaging, 22(8), 986–1004.

Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization (clahe)

for real-time image enhancement. Journal of VLSI signal processing systems for signal, image

and video technology, 38(1), 35–44.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical

image segmentation. In International conference on medical image computing and computer-

assisted intervention (pp. 234–241).

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete

samples). Biometrika, 52(3/4), 591–611.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Srivastava, N., Hinton, G., Krizhevsky, I., Alex and. Sutskever, & Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. The journal of machine

learning research, 15(1), 1929–1958.

Studholme, C., Hill, D. L., & Hawkes, D. J. (1999). An overlap invariant entropy measure of 3d

medical image alignment. Pattern recognition, 32(1), 71–86.

Styner, M., Brechbuhler, C., Szckely, G., & Gerig, G. (2000). Parametric estimate of intensity

23

https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://doi.org/https://doi.org/10.1016/j.cmpb.2021.106236


inhomogeneities applied to mri. IEEE transactions on medical imaging, 19(3), 153–165.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Torres, J. (2021). Introducción al aprendizaje por refuerzo profundo. teorı́a y práctica en python.
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Automatic plane reformatting for 4D flow MRI
using continuous reinforcement learning

Javier Bisbal, Julio Sotelo, Cristobal Arrieta, Pablo Irarrazaval, Cristian Tejos, Marcelo E Andia, Denis
Parra, and Sergio Uribe

Abstract—4D flow MRI allows the calculation of hemodynamic parameters that provide valuable information to characterize cardio-
vascular diseases. One limitation is the time-consuming and user-dependent post-processing. We developed an automated reinforced
deep learning framework for plane reformatting of 4D flow data using the Asynchronous Advantage Actor Critic algorithm to train a 2D
convolutional network that sequentially updates plane parameters towards a target plane based on a continuous policy. We processed
4D flow data from GE, Siemens and Philips MRI scans of 67 healthy volunteers and 20 patients with congenital heart defects (47 men,
34 ± 12.4 years of age). All datasets were split in 50% training, 25% validation and 25% testing and validated with 4 fold cross validation.
Our method achieved excellent results in terms of angulation and distance errors (average 7.88 ± 4.33 degrees and 3.46 ± 3.25 mm)
with a flow correlation of 0.82. We successfully adapted a continuous reinforcement learning method to plane reformatting in 4D Flow
suited for data from different scanner vendors, with promising results in healthy volunteers and patients. Future work with more data and
planes is needed for clinical validation.

Index Terms—4D flow MRI, Reinforced learning, Deep learning, Localization, Plane reformatting.

✦

1 INTRODUCTION

4D flow MRI allows the quantification of advanced hemo-
dynamic parameters that provide valuable information

to characterize cardiovascular diseases [1]. The volumetric
coverage of 4D Flow MRI offers retrospective positioning
of planes for flow measurements at any location within the
acquired data volume. However, this task is time consuming
and user-dependent, especially when analyzing multiple
planes. The 4D flow cardiovascular magnetic resonance
consensus statement [2] declares: ”Efforts toward more stan-
dardized automated flow visualization approaches could
be helpful in certain applications and would minimize
operator-dependent variation, although users should under-
stand the principles, strengths and limitations of different
techniques”.
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Although several semi-automatic methods have been
proposed to asses different quantitative parameter, only a
few have been proposed to retrospectively reformat the 4D
flow data and quantify flux through the vessels [3], [4].
Bustamante et al. proposed an automatic plane reformatting
algorithm based on the registration of a vessel-specific atlas
[3]. In this method, an atlas is created from a Phase Con-
trast Magnetic Resonance Angiography (PC-MRA) [5] of a
healthy volunteer , with 2D planes positioned at multiple
vessel locations. In order to align vessels and planes, the
3D PC-MRA input dataset is registered to the atlas. Despite
the good results in terms of flow correlation between the
automatic and semi-automatic method (with user-defined
planes), atlas registration requires substantial computation
time and depends on the similarity between the image and
the atlas.

Deep Learning has shown promising results with high
reproducibility and low variability for biomedical image
processing tasks with different frameworks and architec-
tures [6]. Corrado et al. recently proposed a deep learning-
based method for plane reformatting in 4D flow [4]. This
algorithm samples 3D patches from the input 4D flow data
and uses a 3D convolutional neural network (CNN) to pre-
dict the patch most likely to contain the reformatted planes,
along with the plane reformatting parameters (plane center
and normal direction). Regardless of the promising results,
the 3D CNN only computes the plane parameters of the
plane reformatting from the 3D patches and not the plane
reformattting itself. This implies that there is information
from the plane reformatting in 2D that is not being used to
solve the plane reformatting task. In addition, Corrado et
al. only used 4D flow scans from one scanner vendor (GE
Healthcare).

Blansit et al. proposed a deep learning method for plane
reformatting in cardiac cine images that uses three short-axis
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localization models [7]. The first model locates the mitral
valve slice using a 2.5 dimensional VGG-19/LSTM [8], [9]
ensemble network. The second model locates a bounding
box around the heart with a 2.5 dimensional U-net [10]. The
final model uses a U-net modified for heatmap regression
[11] to localize for 4 landmarks on the mitral valve slice
for plane reformatting. This method could be used for
plane reformatting in 4D flow, however, not all vessels have
specific landmarks in one particular plane (mitral valve slice
in the case of short-axis cardiac cine images) to compute the
plane reformatting. In 4D flow, multiple planes are needed
within the volume to locate reference points that allow the
computation of the plane reformatting in each vessel. This
adds extra difficulty to perform 4D flow plane reformatting
using landmarks in specific planes.

Another approach to solve the plane reformatting task is
using Reinforced Learning (RL). In RL an agent learns how
to make comprehensive decisions by mimicking navigation
processes of an expert solving the plane reformattting task.
RL allows agents to learn complex tasks that may need
several steps to find a solution [12]. For plane reformatting
we start with an initial plane in a specific position within the
volume data and the agent sequentially updates the plane
parameters using rotations and translations towards a target
position. Alansary et al. developed a RL agent using a Deep
Q-Network (DQN) [13] to solve the plane reformatting task
in brain and cardiac cine MRI images [14]. This method
achieved good performance and more comprehensive re-
sults because the RL agent performs actions similar to those
an expert would use for the plane reformatting.

In this work, we adapted the RL framework [14] to be
used in 4D flow images from different scanner vendors.
A limitation of using DQN as a RL agent is that only
one action (rotation or translation) can be performed at
the time of updating the parameters of each plane and
must have a discrete size. In order to have more degrees of
freedom over rotations and translations, our method trains
a RL agent using the Asynchronous Advantage Actor Critic
(A3C) [15] algorithm to estimate a continuous action policy
for rotations and translations. With this policy the agent
rotates and moves three ortogonal planes within the 4D flow
data towards a target vessel location.

2 METHODS

2.1 Data sets and image processing

We processed a total of 87 scans from different scanners
including healthy volunteers and patients with congenital
heart defects. The details of each dataset are in Table 1:

We preprocessed the data with an in-house developed
MATLAB toolbox (MathWorks, Natick, MA, USA), and it
involves 6 steps: isotropic interpolation, computation of
angiography volume, segmentation, field of view (FOV)
reduction, contrast enhancement and registration.

1) Isotropic interpolation: linear interpolation to trans-
form all datasets to a resolution of 2x2x2 mm3.

2) Angiography volume: computation of Phase Con-
trast Magnetic Resonance Angiography (PC-MRA)
[5] images for Philips and Siemens scanners (43
scans) and complex difference [16] images from

TABLE 1
4D flow data description

MRI scanner Description

GE 1.5T 32 scans from healthy volunteers

GE 1.5T 8 scans from patients with aortic coarctation

GE 1.5T 4 scans from patients with tetralogy of fallot

Siemens 3T 17 scans from healthy volunteers

Siemens 3T 8 scans from patients with bicuspid aortic valve (BAV)

Philips 3T 18 scans from healthy volunteers

data acquired in GE scanner (44 scans). Complex
difference and PC-MRA are two types of angiog-
raphy images in MRI. From this point on we will
refer to PC-MRA and complex difference images as
angiography images.

3) Segmentation: segmentation on angiography im-
ages with a manually adjusted threshold for each
image. From the segmentation we keep the largest
connected element that corresponds to the whole
heart and great vessels.

4) FOV reduction: reduction of field of view (FOV)
using the smallest bounding box around vessels
segmentation to confine the whole heart and great
vessels. In some cases the segmentation was con-
nected to areas that did not correspond to the heart
and great vessels. This occurred in cases of data with
higher noise (about 8 to 12 scans from GE scanner).
To solve this issue we manually reduced the FOV to
confine the heart and great vessels.

5) Contrast enhancement: Contrast limited adaptive
histogram equalization (CLAHE) [17] in angiogra-
phy images. This method improves local contrast
and enhance the definition on edges of the heart
and great vessels.

6) Registration: Rigid registration to align all angiog-
raphy data in the same orientation. This registration
maximizes the mattes mutual information [18] be-
tween a fixed angiography volume and a moving
angiography volume using a evolutionary optimiza-
tion strategy [19] using rotations and translations.

2.2 Reinforced learning (RL) framework
RL is a type of machine learning technique which an agent
learns to behave in an environment by performing actions
that maximize a reward signal. The agent is not told which
actions to take, but must discover, by trying different ac-
tions, which ones produce the greatest reward. [12]. For the
task of plane reformatting, an agent sequentially modifies
the position and direction of a plane in state s. If the next
state plane is closer to the target plane, a positive reward
signal is granted, otherwise the agent gets a negative reward
signal. Since the goal is to maximize the total reward, the
agent will learn to navigate to the target plane within the
3D volume. At each time step t the agent gets a new state
s and chooses an action following a policy π. The agent
attempts to learn a policy that maximizes both immediate
and subsequent future rewards.
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Deep reinforcement learning (DRL) combines Deep
Learning with RL, where deep learning allows agents to
make decisiones from unstructured data without knowing
all posible states and transitions [20]. For the task of plane
reformatting an infinite number of planes can be computed
from a single volume. Even if we discretize the problem,
a large number of possible states and transitions makes it
complex to compute a function that allows us to map all
the states to the actions that will allow us to reach the tar-
get plane. With the Asynchronous Advantage Actor Critic
(A3C) algorithm [15] we can estimate this function using a
Convolutional Neural Network (CNN) without knowing all
possible states and transitions.

Fig. 1 shows the proposed DRL framework. Number (1)
denotes the state s, which consists of three ortogonal planes
where the desired plane is the first plane. At each time step
a grid of size 70x70x3 from each state is sampled using
bilinear interpolation from the angiography volume. 70x70
denotes the width and height of the sampled images and
3 the number of ortogonal planes. The parameters of the
desired plane in cartesian coordinates are,

cos(α)x+ cos(β)y + cos(ϕ)z + d = 0 (1)

where n⃗ = (cos(α), cos(β), cos(ϕ)) is the normal vector of
the plane with α, β and ϕ the angles between the plane
and the cartesian axes x, y and z, respectively. d is the
distance from the plane to the volume center. The action
space is defined as {aα, aβ , aϕ, ad}, where {aα, aβ , aϕ} ∈
(−ωmin, ωmax) degrees and{ad} ∈ (−dmin, dmax) mm.
(−ωmin, ωmax) and (−dmin, dmax) are the lower and upper
bounds for the action space. Each action updates the state
plane parameters as αt = αt−1 + aα, βt = βt−1 + aβ , ϕt =
ϕt−1 + aϕ, dt = dt−1 + ad. The reward of each transition is

rt = (D (Pt−1, PT )−D (Pt, PT ))+

λ (NMI (Pt, PT )−NMI (Pt−1, PT ))
(2)

where Pt represents the plane parameters in step t and
PT the target plane, D is the Euclidean distance between
the parameters of the two planes, NMI is the normalized
mutual information [21] between the plane in step t and the
target plane and λ is a scalar weight to balance each term of
the reward.

The objetive is to maximize the expected return defined
as Rt =

∑∞
k=0 γ

krt+k, where γ = 0.99 is a discount
factor that allow the summation to converge within a finite
number of steps. We also defined a value function V π(s) =
E [Rt | st = s] following an action policy π (at | st). If we
maximize V π(s), we also maximize the expected return.
One way to estimate V π(s) is using a parametrization of the
policy π (at | st; θ) and an estimation of the value function
V π(s; θv), with parameters θ and θv . The A3C algorithm [15]
estimates the parameters θ and θv with a neural network.
We trained the network in order to find the optimal policy
that maximizes the estimation of V π(s; θv).

The network consists of four 2D convolutional layers
(number 2 in Fig. 1), a Long short-term memory (LSTM)
cell, and two fully-connected layers (number 3 in Fig. 1). The
LSTM cell connects the previous and present LSTM hidden
and cell states to exploit information between time steps.
The last fully-connected layer estimates the policy π(st, at)

and state value V (st) (number 4 on Fig. 1). The policy is
parameterized as a normal distribution

π(a | s, θ) .
=

1

σ(s, θ)
√
2π

exp

(
− (a− µ(s, θ))2

2σ(s, θ)2

)
. (3)

Here σ(s, θ) and µ(s, θ) are the parameters estimated
by the last layer of the neural network. Each parameter of
the network is updated every tmax actions or in a terminal
state. A terminal state is reached when the following two
conditions are fulfilled in ten consecutive steps. First, if the
agent reaches a state with a distance from the target plane
lower than 3 mm and less than 4 degrees of angle error. In
this case the agent a bonus of 1 to the reward. Second, if the
agent continues to approach the target plane. The following
equation updates the network parameters (number 5 in Fig.
1):

∇θ′ log π (at | st; θ′) (A(st, at; θv) + η∇θ′H (π (st; θ
′)) .

(4)
∇θ′ log π (at | st; θ′) denotes the direction of largest gradient
of the probability of action at in the state st, which is
weighted by A(st, at; θv), an estimate of the advantage
function defined as

A(st, at; θv) =
k−1∑

i=0

γirt+i+γkV (st+k; θv)−V (st; θv) , (5)

where k is upper-bounded by tmax, in this implementation
set to 8 steps. The gradient of an entropy estimate of the
action policy denoted by η∇θ′H (π (st; θ

′)) is added to
improve exploration, preventing premature convergence to
suboptimal policies. η adjusts the magnitude of the en-
tropy regularization term. After the network parameters are
updated, the policy distribution is sampled to obtain the
actions that rotate and move the grid and sample the next
state from the 3D angiography data (number 6 n Fig. 1).

TABLE 2
RL and network hyperparameters

Hyperparameter value
(−dmin, dmax) (−3, 3) mm
(−ωmin, ωmax) (−3, 3) degrees

λ 3
β 0.01

tmax 8
Optimizer Adam

Learning rate 0.00001

2.3 Experimental setup
2.3.1 Data division and validation
To train our network we split each dataset in Table 1 in
50% training, 25% validation and 25% testing. To validate
our results we performed a 4 folder cross validation. This
process consists of 4 iterations, where in each iteration a
different training, validation and test set is chosen, until
each of the data is used for both training and testing. This
allows us to evaluate the stability of the network by training
with different scans within the datasets.
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Fig. 1. RL framework for 4D flow plane search. An initial stack of images (1) pass through 4 convolutional layers (2) and 1 fully-connected layer.
The output of this layer enters a LSTM cell with the previous LSTM hidden and cell state (3). The LSTM calculates the policy (π(at, st)) and value
function (V (st)) (4). (5) CNN parameters are updated with equation 4. Finally, the policy rotates and moves the grid to reach a new state (6).

2.3.2 Manual annotations

We used the software Paraview (Kitware, Clifton Park,
NY12065, USA) to generate 3D contours of the segmenta-
tion of the vessels and the velocity streamlines within the
segmentation. Then, two observers with training in MR
images visualization placed 1 perpendicular plane to the
wall in 4 vessels: pulmonary artery (PA), right pulmonary
artery (RPA), left pulmonary artery (LPA) and ascending
aorta (AAsc). Each plane was located placing a point on the
middle of the vessel and defining a normal vector. The 3D
point coordinates were normalized between 0 and 1.

From these planes, we use inter-observer variability as a
reference for later comparison with our algorithm.

2.3.3 Flow measurement

To measure hemodynamic parameters such as flow from
the reformatted planes, we need a segmentation of the
vessel to which the plane is perpendicular. To compute this
segmentation we trained 2D U-net [10] with the manually
placed planes of each vessel. We trained 4 networks (one for
each vessel) for 40 epochs in Google Colab GPU (Nvidia K80
/ T4) with Keras library [22]. We also applied affine transfor-
mations to the training dataset, including shear, rotation and
scaling, to prevent overfitting. To measure the performance
of the 2D U-Net segmentation we compute intersection over
union (IoU) and Dice coefficient (equations 6 and 7) between
U-net segmentation (x̂) and manual segmentation (x) of
vessels on the reformatted planes

Dice =
2|x ∩ x̂|
|x|+ |x̂| (6)

IoU =
|x ∩ x̂|
|x ∪ x̂| (7)

For statistical analyses of flow, we used Shapiro-Wilk
[23] test to determine the normality of flow data, and non-
parametric Mann-Whitney test [24] to measure the signif-
icance of the difference in flow between observers and
between observer and algorithm.

2.3.4 Asynchronous training

The A3C algorithm has the advantage of training multiple
agents asynchronuosly and updating the parameters of a
shared model. For our model we trained 15 different agents,
each one with a different training volume. This allows the
network to learn from transitions across multiple volumes,
decreasing training time and data overfitting. Data augmen-
tation and dropout layers [25] was used to prevent addi-
tional overfitting. Data augmentation consisted on random
scaling, translations and rotations between (0.9,1.1), (-5.5)
mm and (-5.5) degrees, respectively. These transformations
allows the network to have invariance to small location
and scaling variations, and they were implemented with
TorchIO python library [26]. The dropout layers were used
in the convolutional layers with probability 0.4.

Table 2 contains the chosen RL and networks hyper-
parameters for training and evaluation. We chose small
action spaces for rotations and translations to make the
transition between states slower, but more precise. For λ,
a value was chosen so that the error range of the plane
parameters and the error range of NMI in equation (2)
were similar. The optimizer, tmax and the learning rate were
chosen empirically to converge to a good solution in a short
training time.

The network was trained using PyTorch library [27] with
A3C implementation code taken from [28]. Training was
done on a Linux server with a NVIDIA Quadro RTX 8000
GPU for 150 epochs per plane. An epoch in this case consists
of one agent training with all the volumes of the training set.



5

2.3.5 Plane reformatting evaluation
For validation and test data, the network is evaluated with
a sequence of 100 steps, being the final plane directly se-
lected from the last step. We measured three metrics on the
estimated planes.

1) Distance error: defined as the Euclidean distance
between a point in the ground truth plane in the
middle of the vessel and the nearest point on the
estimated plane.

2) Angle error: angle between estimated and ground
truth normal vectors.

3) Normalized mutual information (NMI): Same
NMI used in equation (2) to measure the corre-
lation between ground truth plane and estimated
plane. The range of NMI goes from 1 (no cor-
relation between images) to 2 (perfect correlation
between images).

To choose the model for test data evaluation, we chose
the network with better performance in validation data. The
best performance was calculated with the lower average dis-
tance between the parameters of the ground truth (manually
placed) planes and the estimated planes.

3 RESULTS

3.1 Plane reformatting performance
Fig. 2 shows two representative test samples of a healthy
volunteer and a patient with BAV. The network was trained
with observer 1 manually placed planes. We observed that
the difference between the estimated planes and their re-
spective labels is similar to the difference between observers
in terms of distance, but slightly higher in terms of angle
error.

Fig. 3 shows the 4 folder cross validation performance
metrics on each plane. Cross validation iterations revealed
similar performance in terms of mean and interquartil
range. Also, the size of interquatil range of the different
folders has similar values to inter-observer differences. This
suggests stability of the proposed method among all data
samples compared to human error.

Table 3 shows the average and deviation of angle error,
distance error and NMI for all planes. The average and
deviation of the performance metrics on all planes were 7.88
± 4.33 degrees for angle error, 3.46 ± 3.25 mm for distance
and 1.31 ± 0.08 for NMI . The best performance for angle
error and distance error was on RPA plane and for NMI
on PA plane. On the other hand, the worst performance
for angle error was on LPA plane, and for distance error
and NMI on AAsc plane. In AAsc plane we achieved low
angle error, but with slightly higher distance error and lower
NMI . This happens because AAsc is the bigger vessel and
the plane planning has higher distance variation. This also
impacts NMI because the distance variations allow other
tissues to show in the plane reformatting. Nevertheless, in
4D flow, a low angle error is sought in order to be able
to recover well the flow values in the vessels, as long as
the distance error is small enough not to leave the vessel.
In the opposite case, in LPA plane we achieved slightly
higher angle error with low distance error. LPA, being a
small vessel, causes a small distance error, however, it is the

Fig. 2. Visualization of plane localization shown as lines on two orthonor-
mal images to the observer 1 plane. Estimated planes are shown in red
and observers planes in blue and yellow.

one with the fewest tissues nearby, so the right angulation
is more challenging to obtain.

Comparing observer v/s algorithm errors with inter-
observer errors (Table 4), we observed that our algorithm
has great agreement in terms of distance, but there is still
room to improve in terms of angulation error to get close
to inter-observer variablity. Furthermore, the same pattern
of errors as in the previous paragraph is observed in the
inter-observer errors. With the best angle error performance
in RPA and the worst in LPA, and the best distance error
performance in RPA and the worst in AAsc. This suggests
that both, the network and the observers, face similar visual
problems when locating the planes.

3.2 Flow measurement

Fig. 4 shows Bland-Altman plots for observer v/s algo-
rithm and inter-observers differences. Inter-observer limits
of agreement and average difference are lower than the lim-
its of agreement and average difference between observer
and algorithm. Nevertheless, difference between observer
and algorithm is significant (p < 0.05) only on plane LPA
(Table 5). We used Mann-Whitney non parametric test to
measue difference beween flows because Shapiro-Wilk test
revealed that flow data did not followed a normal distri-
bution (p < 0.05). In addition, we found a flow agreement
between observer and algorithm estimated planes with an
average correlation of 0.82.

In terms of performance of the 2D U-Net segmentation
(Table 6), the average and deviation of IoU on all planes was
0.89 ± 0.04 and for dice 0.91 ± 0.03. This values show high
quality of segmentation using the 2D U-net network.
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Fig. 3. 4 folder cross validation performance metrics between observer 1 planes and algorithm estimated planes (first row), and between observer
1 and observer 2 planes (second row) . Green triangules show the mean of each boxplot and black diamonds the outliers. First column: angle error,
second column: distance error and third column: Normalized mutual information

TABLE 3
Performance metrics between observer 1 and the algorithm for all cross validation iterations. Average value in each plane and standard deviation

in parenthesis.

Performance metric PA RPA LPA AAsc Average
Angle between normals (degrees) 7.90 (4.44) 7.18 (3.86) 9.22 (5.21) 7.22 (3.35) 7.88 (4.33)

Distance error (mm) 3.47 (2.84) 2.19 (1.94) 2.97 (2.58) 5.18 (4.40) 3.46 (3.25)
Normalized mutual information 1.36 (0.06) 1.31 (0.06) 1.29 (0.10) 1.26 (0.06) 1.31 (0.08)

TABLE 4
Performance metrics between observers. Average value in each plane and standard deviation in parenthesis.

Performance metric PA RPA LPA AAsc Average
Angle between normals (degrees) 4.23 (4.05) 2.57 (2.26) 6.08 (4.96) 4.82 (5.36) 4.44 (4.4)

Distance error (mm) 2.03 (2.03) 1.70 (1.50) 2.46 (2.27) 4.69 (4.47) 2.72 (3.03)
Normalized mutual information 1.40 (0.10) 1.39 (0.09) 1.37 (0.11) 1.32 (0.10) 1.37 (0.10)

3.3 Processing times

The longest step in our plane reformatting framework is
the rigid registration of the angiography data that takes 20
seconds on average. With the trained CNN, plane search
takes less than 5 seconds to find each plane. This task can
be parallelized for all planes summing up to less than a
30 seconds for the complete plane reformatting. This is a
significant reduction of time compared to manual plane
reformatting which takes several minutes.

Training, regardless of the plane in which the networks
were trained, took 4 GPU hours on average to converge to
a stable performance in validation. The training of the 2D
U-nets took 20 minutes per network.

4 DISCUSSION

Our results demonstrated a promising performance in terms
of angulation and distance errors compared to other deep
learning methods for 4D flow plane reformatting. According
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Fig. 4. Bland–Altman plots comparing flow values in L/min. The first column shows the Bland-Altman plots for observer 1 v/s algorithm and the
second column for observer 1 v/s observer 2. Each row shows the results for one plane. For each graph, the solid line represent the bias (average
difference between the 2 measurements) while the dotted lines represent the limits of agreement (mean 1.96*SD of the differences between the 2
measurements).
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TABLE 5
Flow measurement. Flow values in L/min for both observers and the algorithm. Pearson correlation and Mann-Whitney test p-value between

observers and observer v/s algorithm

Metric PA RPA LPA AAsc Average
Flow Observer 1 (L/min) 5.14 (2.57) 2.05 (2.41) 2.99 (1.45) 4.79 (1.94) 3.74 (2.49)
Flow Observer 2 (L/min) 4.96 (2.57) 2.06 (2.35). 2.96 (1.45) 4.87 (1.90) 3.71 (2.45)
Flow Algorithm (L/min) 5.61 (2.48) 5.14 (2.57). 3.58 (1.9) 5.13 (2.31) 4.09 (2.63)

Correlation (Observer 1 v/s Algorithm ) 0.80 0.82 0.86 0.80 0.82
Correlation (Observer 1 v/s Observer 2) 0.97 0.98 0.97 0.97 0.97

P-value (Observer 1 v/s Algorithm ) 0.10 0.76 0.04 0.29 0.30
P-value (Observer 1 v/s Observer 2) 0.53 0.94 0.96 0.75 0.80

TABLE 6
U-net vessel segmentation performance. Average value in each plane and standard deviation in parenthesis.

Segmentation metric PA RPA LPA AAsc Average
Dice coefficient 0.95 (0.02) 0.93 (0.04) 0.88 (0.01) 0.87 (0.04) 0.91 (0.03)

IoU 0.95 (0.01) 0.88 (0.07) 0.80 (0.02) 0.93 (0.03) 0.89 (0.04)

to the last reported method [4], we improved the average
accuracy of PA and AAsc plane reformatting by 10.93 and
5.18 mm for distance error, and 2.9 and 5.68 degrees for
angle error, respectively. However, this comparison involves
different training and test samples. Corrado et al. used 241
scans for training and 40 for testing without cross validation.
Also, they reported higher inter-observer errors than ours
(5.58 mm higher for distance error and 9.46 degrees for
angle error) with a flow correlation of 0.81. Our correlation
between the algorithm and one observer was similar to pre-
vious study inter-observer correlation and we improved the
average correlation between flow and previous algorithm
for plane reformatting. Our goal is to reach a higher corre-
lation at the level between observers in our study (average
correlation of 0.97) that shows almost perfect agreement in
flow between the observers in the reformatting task. Our
next step will be to apply our method on bigger public
datasets for a fair benchmarking and on additional planes
for a better clinical validation.

Whitehead et al. found a weak but significant correlation
between angle and flow In [29]. For 15 degrees of angle error
the flow is under or overestimated on 7% ± 5% on average.
For our plane localization, average angle and distance error
are below the limits for appropiate calculation of the vessels
hemodynamic parameters. Also, the value of correlation
between flow measurements (average value of 0.82) indi-
cates high agreement between observer and the algorithm
for further clinical diagnostic. In addition, the value of the
NMI index indicates high structure correlation between
the manually defined and estimated planes, maintaining
considerable part of the anatomy of the different planes of
the heart.

Regarding the choice of the hyperparameters of the
network, we experimented with different number of layers,
filter sizes in the convolutional layers and output vector size
of the convolutional layer. Our experiments showed that
these changes converged to similar performances, but with
different training times.

One limitation of our method is the dependency on the
data pre-processing, in which segmentation and registration

may produce errors that propagate and impact the final
results. If the threshold-based segmentation fails, a manual
FOV reduction is necessary, adding extra time to the plane
reformatting processing time. Also, it is an indicator that
the data has more signal noise than an average 4D flow
acquisition. On the other hand, if the registration does not
get the volume in the proper orientation, the transitions
between different states will tend to fail. This occurs because
the set of actions to move and rotate the planes are defined
in a single set of coordinates. Therefore, when trying to
change between states in a volume with a different ori-
entation of the data which the network was trained with,
the results are unpredictables. To face this problem we add
random scaling, rotations and translations in the training
to grant invariance of different locations to the network.
However, this invariance only works for small variations.
If the orientation and position are inconsistent from the one
sought to obtain the registration, the network will not be
able to converge to the desired plane. In the case of the data
used in this work, part of them had greater signal loss that
generated a worse registration and therefore greater plane
location error. To overcome this problem we propose to use
more advanced registration techniques like DeepReg [30]
to converge to a good registration despite having different
noise levels and data orientation.

Furthermore, we can improve our method with other
plane reformatting methods. For example, the method de-
scribed in [4] finds 3D patches that isolates each vessel. If
we use these patches instead of the full volume, the plane
reformatting could be faster and more precise.

In this research we developed a fast and automatic deep
learning framework for plane reformatting on 4D flow data
that is suitable for data acquired from different MRI scan-
ners vendors and for both healthy volunteers and patients.
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