
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

SCHOOL OF ENGINEERING

TOWARDS AUTOMATIC SERVICE

COMPOSITION IN REST

RODRIGO ARTURO SAFFIE KATTAN

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

ROSA ALARCÓN

Santiago de Chile, September 2016

c� MMXVI, RODRIGO SAFFIE

Gratefully to my parents and

siblings

ACKNOWLEDGEMENTS

I would like to thank my Graduate Committee, profs. Jaime Navón, Hernán Astudillo

and Carlos Bonilla. I am grateful for their time in reviewing this work. I also thank my col-

leagues for their companionship and advices, specially Martin Acuña, Patricio Benavente,

Nikolas Bravo, Nebil Kawas and Adrián Soto.

I thank my advisor Rosa Alarcón. Rosa’s help, patience, kindness and encouragement

have been priceless.

I would like to thank my family. Without Eduardo, Fernanda, Felipe, Cristina and

Gonzalo, I would not be who I am now.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

LIST OF TABLES viii

ABSTRACT ix

RESUMEN x

1. INTRODUCTION 1

1.1. Summary of contributions . 3

1.2. Organization of this document . 3

2. RELATED WORK 4

2.1. REST service description . 5

2.2. REST service composition . 7

3. RAD: REST API DESCRIPTION 10

3.1. RAD Concept Vocabulary . 11

3.2. RAD as a JSON document . 13

3.3. RAD as a graph . 17

4. RAD-BASED SERVICES COMPOSITION 18

5. IMPLEMENTATION AND EVALUATION 24

5.1. Characteristics of the dataset . 24

5.2. Scenarios of evaluation . 26

5.3. Input configuration . 27

5.4. Results . 27

5.4.1. Scenario 1 . 28

5.4.2. Scenario 2 . 29
v

5.4.3. Scenario 3 . 30

6. CONCLUSIONS 34

REFERENCES 36

vi

LIST OF FIGURES

3.1 RAD metamodel . 10

3.2 Associated Schema.org based vocabulary snippet 12

3.3 JSON implementation schema of RAD . 13

3.4 Spotify Web API described as RAD JSON: resources key snippet 14

3.5 Spotify Web API described as RAD JSON: operation and parameter keys

snippet . 15

3.6 Spotify Web API described as RAD JSON: response key snippet 16

3.7 RAD graph model . 17

4.1 Pseudo-code of composition algorithm: part 1 20

4.2 Pseudo-code of composition algorithm: part 2 21

5.1 Compositions found for scenario 1, with 1 and 2 steps for 1 input concept . . 29

5.2 Compositions found for scenario 2, with 1, 2 and 3 steps 31

5.3 Compositions found for scenario 3, with 2 and 3 steps 33

vii

LIST OF TABLES

5.1 Nodes and edges in the graph database . 25

5.2 Activity layer nodes . 25

5.3 Semantic layer nodes . 25

5.4 Shared resource concepts . 25

5.5 Shared parameter concepts . 25

5.6 Solutions by number of steps for scenario 1 28

5.7 Summary of solutions for scenario 1 . 28

5.8 Solutions by number of steps for scenario 2 30

5.9 Summary of solutions for scenario 2 . 30

5.10 Solutions by number of steps for scenario 3 31

5.11 Summary of solutions for scenario 3 . 32

viii

ABSTRACT

Representational State Transfer (REST) services and Web Application Programming

Interfaces (APIs) have gained considerable attention as service implementation choices,

since they favor massive scalability and evolvability. However, most providers of this kind

of services describe the rules that must be followed to interact with such services through

ad-hoc documentation often written in natural language. Due to the heterogeneity of REST

APIs documentation and the lack of a widely accepted standard, automatic REST service

composition is difficult to implement. Various approaches for service documentation have

been proposed, mainly in the academia; however, due to the industry needs, lightweight

Web API documentations have been promoted inside companies. In this thesis we extend

and combine various proposals in order to define RAD (REST API description), a light-

weight REST API documentation model that allows a graph representation of documented

services. We built a case study by documenting real Web APIs with RAD. We populated a

graph database from such descriptions and used it to successfully implementing automatic

REST service composition.

Keywords: Web API, REST, Service composition, Control flow patterns.

ix

RESUMEN

Los servicios REST y las APIs Web han ganado considerable atención como elección

para implementar servicios, dado que favorecen la escalabilidad y evolución. Sin embargo,

la mayorı́a de los proveedores de este tipo de servicios describen las reglas para interac-

tuar con los servicios a través de documentación ad-hoc, generalmente escrita en lenguaje

natural. Dada la heterogeneidad de la documentación de las APIs REST, y la falta de un

estándar vastamente aceptado por la comunidad, la composición automática de servicios

REST es difı́cil de implementar. Varios intentos de documentación de servicios han sido

propuestos, especialmente en la academia; sin embargo, debido a las necesidades de la in-

dustria, algunas propuestas de documentación ligera para APIs Web han sido promovidas

dentro de las compañı́as. En esta tesis extendemos y combinamos varias propuestas, para

ası́ generar RAD (REST API Description), un modelo de documentación ligero para APIs

REST, que permite una representación de grafo para los servicios documentados. Con-

struimos un caso de estudio al documentar APIs Web reales con RAD. Poblamos una base

de datos de grafo a partir de estas descripciones, y la utilizamos para soportar composición

automática de servicios REST.

Palabras Claves: API Web, REST, Composición de servicios, Control de patrones de

flujo.

x

1. INTRODUCTION

Representational State Transfer (REST) (Fielding, 2000) is the architectural style that

underlies the Web. It has proved the benefits of its design choices by supporting massive

scalability and evolvability, among other advantages. A REST service is a collection of

identified resources which are manipulated by a well known set of methods, like the Hy-

pertext Transfer Protocol (HTTP) methods (Fielding et al., 1999). The semantics of these

methods are clear to the architectural components (e.g. clients, servers, caches, proxies,

etc.).

The previous characteristics facilitate REST services evolvability and scalability in the

same way as they do for the Web. Nonetheless, one limitation arises when the consumer

of the service is a machine client instead of a Web client driven by a human user. The

latter merely exposes the resources and leaves the human-user with the responsibility of

understanding the underlying semantics at a business level. Since such semantics are

presented in natural language, a machine client is not able to understand the business level

semantics of a resource. Therefore, it is also impossible to determine the actions a machine

client needs to perform in order to accomplish certain business goal. For instance, a client

must understand that by following certain link or submitting a certain form, a payment is

performed. However, following another link could simply add another item to a shopping

cart. Both actions differ at the business semantics level, even though at a Web application

level they are just HTTP POST methods on different resources.

Interaction between services is desirable since it encourages software reuse and service

composition providing aggregated business value at lower cost than building applications

from scratch. Automatic service composition will further reduce development cost and

time-to-market of composed applications. This purpose has motivated service providers

to publish service semantics at business level. Nowadays, a popular approach is the so

called Web Application Programming Interface (API) (Richardson et al., 2013), which

are a collection of resources and methods typically documented through ad-hoc HTML

1

pages. These documents describe in more or less detail which methods can be performed

on the resources, the required parameters, the restrictions on their values, and the expected

results at business level (e.g. examples of the responses). Since the documentation is ad-

hoc, machine clients must encapsulate all the Web API logic required to interact with a

service. Furthermore, changes on the Web API will break the client or, even worse, lead to

underlying inconsistencies. The lack of a machine readable Web API description becomes

a severe limitation of automatic REST service composition. Moreover, advanced scenarios

(such as dynamic composition at runtime) become very difficult to support.

Various REST service description have been proposed by the academia and recently,

some alternatives have been also proposed in the industry (e.g. RAML1, Swagger2, re-

cently adopted by the Open API Initiative3, and Blueprint4). Even though they present a

step forward towards supporting REST service standardized description, current proposals

are operation-centric which hampers hypermedia and hence limiting automatic service dis-

covery, and evolvability. They do not support machine readable, explicit service semantics

at business level which makes automatic service composition difficult to implement.

In a previous work (Alarcón et al., 2015), we presented REST API Description (RAD)

and demonstrated its benefits to discover the right resource and method required to ob-

tain certain information. This thesis refines and further exploit RAD in order to discover

service compositions, that is, workflow fragments that implement more complex business

scenarios. We implemented an architecture able to parse RAD service descriptions and

generate a graph. The graph is queried to automatically discover service compositions. A

REST service composition is a workflow or path of methods performed on resources and

chained following certain control-flow patterns. We implemented a test scenario consid-

ering 3 popular Web services (i.e. Spotify5, Songkick6 and Uber7).
1RAML: http://raml.org/
2Swagger: http://swagger.io/
3Open API Initiative: https://openapis.org/
4Blueprint: https://apiblueprint.org/
5Spotify: https://developer.spotify.com/web-api/
6Songkick: https://www.songkick.com/developer/
7Uber: https://developer.uber.com/docs/api-overview/

2

http://raml.org/
http://swagger.io/
https://openapis.org/
https://apiblueprint.org/
https://developer.spotify.com/web-api/
https://www.songkick.com/developer/
https://developer.uber.com/docs/api-overview/

1.1. Summary of contributions

Our key contributions in this thesis are fourfold:

(i) We propose a metamodel for describing REST services. This representation allows

to capture the semantics of a service, in addition to its logic.

(ii) We propose an algorithm to dynamically and automatically compose REST Web

services described with our metamodel. This algorithm is designed to quickly find

all possible compositions of services, according to their descriptions.

(iii) We implement a case study using real Web services, adapting their descriptions to

our meta-model. This experiment allowed us to validate the capability of RAD for

representing the constraints and needs of existing Web services. Also, we validated

the capability of the algorithm for finding plausible service composites on runtime.

(iv) We evidenced challenges that must be resolved in order to improve automatic and

dynamic composition of REST Web services.

1.2. Organization of this document

The remainder of the thesis is organized as follows: in Chapter 2, we present related

work of REST Web services description and composition. In Chapter 3, we introduce

the RAD metamodel for describing REST Web services, specifying its main features. In

Chapter 4, we present the algorithm to compose RAD-based services. In Chapter 5, we

explain the implementation of the dataset, the studied scenarios and the results of our

experiments. Finally, we conclude in Chapter 6 with insights of this work and future

challenges.

3

2. RELATED WORK

Traditionally, Web services are described by WSDL (Web Service Description Lan-

guage), a XML-based document (Chinnici et al., 2007). WSDL describes the service in-

terface (operations, parameters and an endpoint URL) and its conditions to be consumed.

Messages interchanged between clients and services must be encoded following the XML-

based Simple Object Access Protocol (SOAP) schema (Box et al., 2000).

Traditional Web services are focused on operations, whereas REST services consider

resources as its cornerstone. Resources are identified by resource identifiers (e.g. Uni-

form Resource Identifiers); resource representations are a set of bytes (e.g. an HTML

document) conveying information about the resource state at a particular time.

Another REST foundation is the Uniform Interface constraint. It determines that REST

components must support the same interface, that resources are manipulated through rep-

resentations (e.g. retrieve or update a resource state with a new representation), and that

REST components (e.g. clients, servers) interact trough self-descriptive messages (e.g.

HTTP messages) that include all the information necessary to process such message. Also,

the engine of a REST application must follow a hypermedia constraint, that is, a resource’s

representation must embed the necessary controls (e.g. a submit button) and links that in-

form the client the set of actions available at the current application state.

In traditional Web services, a single endpoint encapsulates an arbitrary number of user-

defined operations whose semantics, pre and post-conditions are defined by each service

provider. In REST, a service is a collection of identified resources that can be manipulated

by a well defined set of methods (e.g. HTTP methods), which facilitates service evolvabil-

ity by leveraging Web standards (e.g. data formats, network protocols, etc.), and service

scalability by exploiting REST architectural constraints (layers, caches, etc.).

4

2.1. REST service description

In contrast to traditional Web services, REST resources are explicit, methods are finite

and representations clearly encapsulate fragments of the business process. The limitation

for machine clients is that the semantics of such elements are not defined in a machine

processable-way at business level.

Proposals for machine friendly service descriptions that encapsulate service semantics

have been made for traditional services. For instance, OWL-S (Martin et al., 2004) is a

semantic service description based on ontological models. An ontology is a formal and

explicit specification of a shared conceptualization of a certain domain (Gruber, 1993). It

typically comprehends a set of concepts, their properties as well as the relationships among

them. OWL-S proposes a set of ontologies describing the service domain (e.g. banking),

the Web service mechanisms (e.g. operations according to WSDL), the Web service com-

munication protocol (according to SOAP standards) and the control-flow that regulates

services compositions (e.g. parallel, alternative, loops, etc.). On one hand, OWL-S is a

highly expressive and rich conceptualization of the services domain widely used in se-

mantic service research. On the other hand, OWL-S is highly complex and does not fit

the REST service model (i.e. resources, hypermedia or HTTP methods semantics are not

supported). A lightweight approach, SAWSDL (Kopecky et al., 2007), is a W3C rec-

ommendation for semantic service description that consists of a minimal set of elements

that can be used to annotate standard WSDL. The approach is to include references (i.e.

URIs) to concepts described on a separate ontology; the standard does not prescribe nei-

ther the domain ontology, nor the service semantic model nor the ontology representation

language.

For the case of REST services, the Web Application Description Language (WADL)

(Hadley, 2006) has been proposed for a description document. This document is equiv-

alent to WSDL for traditional services, and should be annotated with semantic refer-

ences following the SAWSDL approach. Resulting Web services will be manipulated

5

through SPARQL queries, and the authors propose a mapping between HTTP methods

and SPARQL commands. However the semantics of such actions are not considered at

business levels. The semantics of the data were only considered as being manipulated.

This proposal also requires the developer to encode on the client all the business logic

in order to interact with a service. Similarly to WSDL, WADL has been criticized by its

complexity and verbosity (Kopecky et al., 2008; Verborgh et al., 2013; Gregorio, 2007), it

resembles WSDL operation-centric approach and ignores REST’s hypermedia constraint.

WADL representation for hypermedia and links decouples such elements from the repre-

sentation that contains them making hypermedia a forced and complex paradigm.

Other approaches, such as hRESTs (Kopecky et al., 2008), propose an HTML micro-

format to annotate the actual HTML pages typically used to describe Web APIs. How-

ever, actions’s semantics are not considered and the approach can hardly cope with the

complexity that current Web APIs present (e.g. optional parameters, optional media type

responses, metadata, etc.). Additionally, ReLL (Alarcón & Wilde, 2010) is a REST ser-

vice description that fully considers REST principles. In an experiment, it was used by

a crawler in order to navigate the resources of some REST services, demonstrating the

description capability for exploiting the REST hypermedia constraint. ReLL descriptions

semantics were also obtained through an additional layer (Alarcón & Wilde, 2010) which

was used to obtain the semantic dataset equivalent to the crawled data. ReLL considered

one type of action, the GET method, and assumed a single interpretation of such kind of

action (i.e. reading the resources’ state) and the service interface was also simple (i.e.

a set of parameters), but it considered the representation’s semantics and embedded hy-

permedia controls. HAL (Kelly, 2015) is a JSON description language that focuses on

hypermedia considering only GET methods. Hydra (Lanthaler & Gütl, 2013), goes fur-

ther by considering resources, operations, and hyperlinks represented as templated links.

These templates are a property class that relates certain operation to IRI templates and are

mapped (through IriTemplateMapping) to a set of supported variables (URI parameters).

IRIs are minted at runtime since parameters values are determined also at runtime. Hydra

6

is based on JSON-LD (Sporny et al., 2014) that adds lightweight semantics to the descrip-

tion. However, this proposal becomes complex due to the RDF model it is also based

on.

A proposal that has gained a lot of traction is Swagger (currently adopted by the Open

API Initiative as its core specification). Swagger can be represented as JSON or YAML

formats, and it allows to describe resources, operations, and responses. It provides sup-

port for specifying operations parameters (optional or required) and responses schemas

(including headers) in a simple and intuitive way. The downside is that Swagger does

not support semantic associations to its elements nor hypermedia. A similar initiative

is RAML, based on YAML, that provides additional support through the provision of a

rich data type definitions, as well as URI specification (URI parameters), query parame-

ters specification and various security schemas. RAML is much more expressive but also

more complex and less intuitive than Swagger.

2.2. REST service composition

A service composition is typically considered as a combination of service’s operations

following an specific execution order. If a service does not depend on other services to

complete its execution, then it is considered an atomic service, otherwise it is composed

(Dustdar & Schreiner, 2005). Service composition can be static if the composition model

is defined during the service’s design time, or dynamic if it is defined at runtime. The com-

position model is a representation of the set of services to be internally invoked, as well as

the data and control-flow that determine its interaction (Dustdar & Schreiner, 2005). The

dynamic approach facilitates service composition when there are many candidate services

available to be part of a composition, reducing development costs and time. It can also

facilitate the rapid reaction to failure, business goal changes and personalization. Static or

dynamic composition could be defined automatically or manually depending on whether

an algorithm chooses service components (automatic service selection) and defines the

7

control/data flow graph. Finally, if a composed service coordinates the components invo-

cation in a centralized way, it is called an orchestration, and choreography if each compo-

nent determines the next participant in the coordination (decentralized).

In REST, resources and resource collections are the components (Pautasso, 2009).

Servers embed in representations of resources the set of possible links and controls re-

quired to execute a method a resource (i.e. state transition). Clients are responsible for

choosing the actual link or control to be executed. This hypermedia approach resembles

a choreography where clients and servers cooperate to actually execute certain business

process. Naturally, it is possible to hardcode such coordination into a single service imple-

menting this way an orchestration and enforcing a business process completion. However,

this approach seriously compromises service scalability (Bellido et al., 2013).

Various strategies have been proposed to implement REST service composition. For

instance, Bite (Rosenberg et al., 2008) is a composition language and lightweight frame-

work to create Web-scale workflows based on RESTful services. JOpera (Pautasso, 2009)

follows a similar approach but using a visual modeler to specify control and data flow. In

(Alarcón et al., 2010), control and data flow is modeled and implemented using a Petri

Net, whereas interaction and communication with the resources themselves is mediated

by a ReLL service description. JOpera supports dynamic binding of services (Pautasso

& Alonso, 2005) whereas the other approaches require static and manual identification of

service components. All these approaches follow a centralized orchestration strategy, and

assume users consider implicit service semantics to manually design the service composi-

tion.

Semantic approaches for machine driven REST service composition rely on semantic

Web technologies (e.g. RDF, OWL, N3, etc.) for specifying service semantics and rea-

soners to implement the composition. For instance, SRSM (Xie et al., 2013) identify a

service information (entities) and a transactional layer for resource-oriented service com-

position. The layers contain specialized resources (i.e. Entity Oriented Resources and

Transition Oriented Resources) and services semantics is represented through an OWL

8

ontology. Automatic service composition depends on OWL-SWRL rules defining the pre-

conditions and effects to be achieved by a search algorithm. RESTdec (Verborgh et al.,

2015) proposes the use of N3 language and N3 Logic framework (rules) to create REST

service compositions on RDF-based resources. The idea is to define N3 formulas con-

sisting of: a precondition, an HTTP request class, and a postcondition, that are evaluated

by an N3-based reasoner called EYE (Verborgh & De Roo, 2015), to create proof-based

compositions.

A lightweight approach is proposed in (Bennara et al., 2014), where REST service se-

mantics are modeled as an associated resource. This resource contains both service infor-

mation and transitions (supported HTTP methods) using JSON-LD. Service composition

is achieved by a conversational approach where the client progressively inspects possible

actions supported by the retrieved resources. This approach uses lightweight semantic

representations, favors dynamic late binding and service evolvability. On the downside,

a client cannot know in advance the path of resources and transitions required to achieve

a state, and if methods such as POST, PUT or DELETE are required along the way, they

cannot be undone. Therefore, the client must know out-of-band (i.e. hard-coded in the

client) the required path, at least at a semantic level.

RAD (REST API description) (Alarcón et al., 2015) is another lightweight approach

proposing a metamodel to describe Web APIs. It models resources, methods, parame-

ters, responses, links and controls embedded in responses (hypermedia). It is based on

a popular Web API description called Swagger, but complements its lack of support for

complex parameter management with the corresponding RAML approach. It also allows

API developers to annotate resources, parameters and methods with semantic references

following the SAWSDL and JSON-LD approach, but keeping the description as minimal

as possible. RAD descriptions are translated into a graph that can be queried to discover

specific services.

9

3. RAD: REST API DESCRIPTION

RAD descriptions separate REST service elements into two layers: semantic and ac-

tivity (figure 3.1). The semantic layer captures the meaning and purpose of resources,

parameters and actions. The activity layer contains elements that are realizations of the se-

mantic layer. A RAD description can be implemented in different formats, from annotated

HTML with microdata, to JSON, YAML or XML documents (among others). Compared

with our previous work (Alarcón et al., 2015), in this thesis we refine the metamodel by

eliminating redundant concepts. For instance, actions and method elements were decou-

pled in the previous activity layer, whereas in this version they correspond to the Method

element. The Representation element was also refined to explicitly support hypermedia

controls that refer to a resource and a method. Cardinality among elements were also

revised since the model’s elements are much more reusable.

Figure 3.1. RAD metamodel

10

For the semantic layer, Resources, Parameters and Actions are concepts in the busi-

ness domain that can be semantically related. These concepts represent the semantic as-

pect of the elements in the activity layer, but they are not bound to any particular knowl-

edge representation formalism. The semantic layer is bound to the activity layer through

the description implementation following the SAWSDL approach (i.e. a lightweight ref-

erence), without overloading the description. The semantic layer is used to relate different

services based on their meaning and purpose. Notice that Actions are related to at least

one Resource and vice versa.

The activity layer is bound to REST Web services. Resource elements are identified

by their URI and are related to at least one Method element (e.g. GET, PUT, POST,

DELETE, etc. for the case of the HTTP protocol). In order to execute these operations,

the Operation element may require Parameter elements. Input Parameters can be pro-

vided in different ways inside a request: as part of the URI itself (URI variables), headers,

query or body. Parameters can be reused by many operations. After executing an opera-

tion, a Web service may return a Response element that represents the response message

(including the HTTP code). These responses also include the resources’ state in the form

of a Representation element. A Representation is comprised of the expected informa-

tion to be returned by a service and may include output Parameter and other Methods

(hypermedia).

3.1. RAD Concept Vocabulary

As described before, resources, parameters and actions have associated concepts in

the business domain that are described in a separate document, a vocabulary. The vo-

cabulary relates the reference values to URIs describing concepts unambiguously. In our

approach we considered and extended the concepts defined by the Schema.org1 specifi-

cation. Schema.org is promoted by Microsoft, Google and Yahoo and can be used as

HTML markup that enriches the search results snippets. It comprehends a set of entities

1Schema.org: http://schema.org/

11

http://schema.org/

and extension mechanisms. In this thesis, we used the old mechanism (changed on May

2015), that allows to extend a concept by adding properties following the pattern ”BaseC-

oncept/newProperty”. That is, append the property name, starting with a lowercase, after

the concept name followed by a ”/” character. Similarly, a class can be refined by an

specialized concept name, starting with uppercase: ”BaseConcept/SpecializedConcept”.

Camel case is requested.

Figure 3.2. Associated Schema.org based vocabulary snippet

The vocabulary was designed as a JSON document (Figure 3.2). The required keys

are name, version, baseUri and prefixes. Prefixes are abbreviations of conceptual entities

such as resources, parameters and actions. They must start with a ’@’ symbol and are

related to explicit URIs through the reference key. Each entity property can be defined

trough a parameter key, which value is the URI fragment that must be appended to the

base concept, as defined by Schema.org extension mechanism.

12

3.2. RAD as a JSON document

name
baseURI
version
description
using
resources

URI pattern

name
reference
description
operations operation

description
reference
additional_doc
required_params
parameters

responses

parameter

name
description
reference
type
example
minimun
maximun
default

response

description
headers
body

type
reference
properties
target
items

e.g.:"/v1/albums/{@musicAlbumIdentifier}/tracks"

<e.g.:"get"

<e.g.:"limit"

<e.g.:"200"

Figure 3.3. JSON implementation schema of RAD

In this section we present an implementation of the RAD metamodel as a JSON docu-

ment (see figure 3.3 for an overview of the corresponding JSON schema). A RAD JSON

description serves two purposes. On one hand it serves as the basis for a documenta-

tion. On the other hand it serves as a machine-readable description for machine-clients.

In figure 3.3, the keys that are destined to document the service are presented in italics

in the figure (name, description, additional doc, and example) and they are considered as

optional keys. Also, the semantic relation between Parameters, Resources and Methods

13

are modeled as reference keys (in blue in the figure) and specialized modifiers for output

parameters are presented in green.

A RAD JSON description must have baseURI, version, using and resources keys.

The baseURI key refers to the root of the service’s entry-points (Webber et al., 2010),

the version key represents an identifier for modifications in the description, the using key

specifies the referenced semantic vocabulary and the resources key describes each resource

of the Web service. A resource object is identified by its URI template, used as the key

of the object. It is possible to include semantic references to URI variables using the

”@” modifier as seen in figure 3.3 (/v1/albums/{@musicAlbumIdentifier}),

where @musicAlbumIdentifier indicates that the variable part of the URI is associated to

a concept, defined in the semantic vocabulary referenced in the description.

Figure 3.4. Spotify Web API described as RAD JSON: resources key snippet

A resource object (see figure 3.4 for an example) must have a semantic reference and

related method keys. A reference key associates the resource with a concept in the vocab-

ulary. The method key refers to the network protocol method available for the resource

(e.g. GET, POST, etc. for the case of HTTP).

Method keys are reference, required params, parameters and responses (figure 3.5).

The reference key associates the method to the corresponding semantic element as de-

scribed in the vocabulary. The required params key comprehends boolean expressions

to be evaluated for the parameters (URI variables are always required). The parameters

14

Figure 3.5. Spotify Web API described as RAD JSON: operation and pa-
rameter keys snippet

object is a set of descriptions of the required and optional input parameters required to

perform the method. Parameters can be part of the URI, the body (requires a ’#’ prefix)

or the header (requires a ’!’ prefix). The responses object is the set of possible response

message whose semantics are relevant for the API. Optional attributes of a method object

15

are description and additional doc for documentation purposes. The additional doc value

represents a link where to find more information about the method.

The required keys for a parameter object are reference and type. Again, the reference

key associates the parameter with a semantic concept in the vocabulary. The type repre-

sents the programmatic type of the variable, possible values are string, integer, boolean

and array. Optional attributes are name, description and example for documentation pur-

poses. Parameter values can be also restricted by the following keys: enum (indicating a

restricted set of possible values), default (indicating a default value), minimum indicating

a minimum value and maximum value for integers.

Figure 3.6. Spotify Web API described as RAD JSON: response key snippet

A response object is identified, for the case of HTTP, by the response code. The

required keys in this case are headers and body (figure 3.6). The headers key is an array

containing the relevant message headers expected in the response (e.g. HTTP headers).

16

The body value describes our expectation regarding the response. The body has three

mandatory keys associated: reference, that relates a resource representation to a concept

in the vocabulary; media that specifies the response media type; and type that determines

the data type of the information contained in the body. In the current version we only

support the application/json media type. Accepted values for type are those defined by

JSON Schema2 (i.e. string, integer, number, object, array, boolean, null) and hyperlink.

The hyperlink value requires an additional target key to indicate the URI of a referenced

resource in the response (hypermedia controls).

3.3. RAD as a graph

We chose to use a graph database for storing RAD descriptions because the relation-

ships between the RAD elements form a graph of arbitrary topology. Figure 3.7 presents

the graph model that represents a RAD description and mimics the RAD metamodel shown

in figure 3.1.

Operation Resource

Response

<<BDomain>>
Resource

Representation

Parameter

<<BDomain>>
Parameter

<<BDomain>>
Action

produces

contains
uses contains

isA

isA
contains

contains

Figure 3.7. RAD graph model

2JSON Schema: http://json-schema.org/

17

http://json-schema.org/

4. RAD-BASED SERVICES COMPOSITION

We consider a REST composition as a workflow (or a path in the RAD graph) com-

prehending a set of methods that allow a client to reach a goal (or final state). Such goal

comprises the set of output parameters produced when executing the path’s methods. The

methods are executed following certain control-flow patterns. In this thesis, we identify

only three control-flow patterns, namely sequence, alternative and parallel split - synchro-

nization (parallel for short) (Bellido et al., 2013).

A sequence pattern defines the consecutive invocation of methods, without any guard

condition associated. A sequence can be inferred from the methods’ dependency of input

and output parameters as exploited in (Vairetti et al., 2016).

An alternative pattern allows the execution of only one of two possible services de-

pending, in our case, on the user decision. Our approach consists on creating a workflow

plan that include all possible choices (methods) but let the user to choose. Again, an alter-

native pattern can be inferred from the method signature (i.e. if two methods produce the

same output but differ in their input, they may indicate an alternative pattern).

A parallel split allows a single thread of execution to be split in two or more branches.

The synchronization pattern requires that the execution thread is halted until it receives

all the results from previous methods executed in parallel. Two or more methods that do

not depend among them and have access to all of their input parameters are considered as

following the parallel-split pattern.

Automatic RAD services composition is implemented by a backtracking algorithm

(see figures 4.1 and 4.2). In order to manage data heterogeneity, we consider the seman-

tic equivalent of input and output parameters (i.e. parameter concept), instead of each

particular parameter. The algorithm Input is a client’s composition request specifying the

18

required goal: the set of concepts in the vocabulary associated to output parameters (out-

put concepts). The client may optionally indicate a set of concepts associated to input

parameters (input concepts), that represent information that the client has.

Parallel and alternative paths can be reduced to a sequence model in order to calculate

a critical execution path (Bellido et al., 2013). We consider such critical sequence as steps

(a path is a sequence of steps). A step is a set of operations that do not depend among

them, and their output parameters are required by the following step in a path (or this set of

operations satisfies the client’s goal). Operations in a final step must produce all the output

concepts required. Operations in a first step must be executable with the input concepts

supplied by the client (if needed). Along a path, each operation must be executed at most

once.

19

Input: input concepts, output concepts

Output: solution paths

1: goal operations All operations that return at least one concept of

output concepts

2: final steps Steps containing combinations of goal operations, that executed in

parallel return all output concepts (excluding redundant operations for each concept)

3: banned steps final steps (or super-sets of each one) banned from being used

inside a path

4: for step in final steps do

5: step.required param concepts All the combinations of parameters concepts

required to execute all the operations of step

6: path Create path from step

7: for combination in step.required param concepts do

8: if combination is subset of input concepts then

9: Add path to solution paths

10: break

11: end if

12: end for

13: if path not in solution paths then

14: Add path to candidates

15: end if

16: end for

Figure 4.1. Pseudo-code of composition algorithm: part 1

20

17: while candidates do

18: for path in candidates do

19: Remove path from candidates

20: for combination in path.first step.required param concepts do

21: previous operations All operations that return a parameter concept from

combination, not available in input concepts

22: end for

23: previous steps Steps containing combinations of previous operations, that

executed in parallel return all parameter concepts in combination (excluding redun-

dant operations for each concept and banned operations of the path), and different to

banned steps

24: for step in previous steps do

25: step.required param concepts All the combinations of parameters con-

cepts required to execute all the operations of step

26: new path Create new path from path and prepend step to it

27: for combination in step.required param concepts do

28: if combination is subset of input concepts then

29: Add new path to solution paths

30: break

31: end if

32: end for

33: if new path not in solution paths then

34: Add new path to candidates

35: end if

36: end for

37: end for

38: end while

return solution paths

Figure 4.2. Pseudo-code of composition algorithm: part 2
21

The algorithm starts by identifying the operations (goal operations) that produce at

least one output concept (line 1). Then, the set of possible final steps is created from

goal operations (line 2). A final step is the combination of operations (or a single opera-

tion) that produces all the output concepts. An operation is included in a step if it returns

a parameter concept expected from the step, given that no other operation of that step re-

turns the same concept (no redundancy). Then, for each operation in each final step, the

algorithm finds all the combinations of required input concepts needed to execute the step

(line 5).

It may be the case that a particular combination includes additional parameters than

those provided by the client. In that case, the algorithm determines that such step requires

further analysis and marks the step as a candidate (line 14). Candidates are paths contain-

ing operations that can produce all the output concepts, but require more input concepts

than those defined by the client. Candidates are explored in a backward chaining way.

Since the backward chaining process can consume a high number of resources and time,

process limits may be required (e.g. timeout, max. number of steps, max. number of

operations, max. number of solutions, etc.). If all the input concepts of a step are known,

each operation of the step can be fully executed, so the path that the step belongs to is

considered a valid solution path (line 9).

Then, all candidates are evaluated (line 17). In order to evaluate a candidate, the algo-

rithm identifies the first step in the candidate’s path (the step further from the final step,

i.e. the newer step), and the combination of all input parameters for the step’s operations

(line 20 to 22). Then, the algorithm finds possible previous steps (line 23) that return the

input concepts required by the first step. For instance, lets suppose that an operation in

the first step requires input parameter concepts A, B and C. The algorithm finds as pre-

vious operation Op1(returns {A}), Op2(returns {B,C}) and Op3(returns {A,C}). Hence,

the previous steps would be Step1(Op1 and Op2) and Step2(Op2 and Op3). Note that

Op1 and Op3 would not be part of a same step due to the redundancy of the concept A.

However, Op2 and Op3 are part of Step2 even if there is redundancy of concept C because

22

each operation provides at least a third required concept. As said before, operations inside

a step (e.g. Op1 and Op2) can be executed in parallel (they do not depend among them).

Each step of a path is executed before the following steps (sequence pattern).

In order to determine if a candidate is a solution, the algorithm evaluates whether

the operations in a previous step have available all the required input concepts (line 28).

In such case, the previous step is added as first step to the candidate, which is now a

solution (line 29). If the previous step can not be executed, the new path is considered as

a candidate, and the candidates evaluation continues. The evaluation of candidates stops

when there are no more candidates, or the whole graph has been traversed so there are no

more operations that can be added to a path.

The complexity of the algorithm depends mainly on the number of operations that

return at least one output concept. Also, it is influenced by the number of required pa-

rameters concepts in each final step. More combinations of required parameters concepts

could produce more candidates to evaluate, because there could be more alternatives to

reach each final step. Additionally, the number of alternatives between an executable step

only with input concepts and a final step increases the number of candidates, and hence

the complexity.

23

5. IMPLEMENTATION AND EVALUATION

In order to create a proof-of-concept prototype, we searched for real Web APIs. These

services have to adhere to REST constraints, provide comprehensive documentation and

fall into a related domain. Even though some REST constraints are violated, we selected

the following three Web services: Spotify, Songkick and Uber. The Spotify API provides

access to its music streaming service’s catalogue. The Songkick API grant access to a live

music database with information about upcoming and past concerts, as well as setlists.

The Uber API allows a client to ask for types of transportation services, estimate price and

arrival time of a ride, as well as a user’s profile and activity information.

We manually created RAD JSON descriptions for each Web API, as well as a vo-

cabulary based on Schema.org. We had to extend the vocabulary to model the concepts

considered in the Web APIs. We implemented our approach by refining the RAD parser

presented in (Alarcón et al., 2015). The parser, written in Python, transforms RAD JSON

descriptions and vocabulary files into a RAD graph. JSON files are validated by a JSON

Schema template before being parsed. We chose the popular database Neo4j1 to store

the dataset because it provides a native graph model. Also, with the help of Py2Neo2 li-

brary, both loading and interacting with data is effortless. The composition algorithm was

implemented also in Python and use the Py2Neo library to access the database.

5.1. Characteristics of the dataset

Table 5.1 presents a summary of the generated nodes and edges in the graph. Tables

5.2 and 5.3 present further detail of the generated nodes. Tables 5.4 and 5.5 presents

the number of shared concepts among Web APIs in terms of resources (Table 5.4) and

parameters (Table 5.5). Songkick and Spotify share the major number of concepts, as

expected since they address the same business domain.

1Neo4j: http://neo4j.com/
2Py2Neo: http://py2neo.org/2.0/

24

http://neo4j.com/
http://py2neo.org/2.0/

Table 5.1. Nodes and edges in the graph database

Nodes Edges
Vocabulary 173 130

Spotify 611 1189
Uber 175 304

Songkick 318 579
Total 1277 2202

Table 5.2. Activity layer nodes

API Resources Operations Parameters Responses Representations
Spotify 20 27 513 28 23
Uber 10 11 129 15 10

Songkick 15 15 260 15 13

Table 5.3. Semantic layer nodes

API Resource Concepts Actions Parameter Concepts
Spotify 10 9 63
Uber 7 4 46

Songkick 6 3 39

Table 5.4. Shared resource concepts

Spotify Uber Songkick
Spotify 1 3
Uber 1 0

Songkick 3 0

Table 5.5. Shared parameter concepts

Spotify Uber Songkick
Spotify 8 10
Uber 8 8

Songkick 10 8

25

5.2. Scenarios of evaluation

In order to test our approach, we defined three evaluation scenarios that differ on the

composition goal and the expected number of involved APIs (scope). The scenarios are:

• Scenario 1:

– Scope: 2 Web APIs, Goal: Obtaining the name of a music group.

In this case, it is expected that only the two APIs related to music (Spotify and

Songkick) are involved in the solution. The expected output parameter must cor-

respond to the concept: http://schema.org/MusicGroup/name/.

• Scenario 2:

– Scope: 2 Web APIs, Goal: Obtaining the name and popularity of a music

group.

We modify the previous scenario and ask for an additional output concept related

to the popularity of a music group (http://schema.org/MusicGroup/

popularity/). Again, we expect that only Songkick and Spotify APIs are

part of the solution.

• Scenario 3:

– Scope: 3 Web API, Goal: Obtaining an estimated fare for a taxi ride to a

music group’s concert.

In this case, we expect that the three APIs, Spotify, Songkick and Uber are in-

volved in the solution. The corresponding concept for the goal is http://

schema.org/Estimate/value/. This concept corresponds to an estima-

tion of a product’s price. In the dataset, the only service that returns this concept

is Uber.

26

http://schema.org/MusicGroup/name/
http://schema.org/MusicGroup/popularity/
http://schema.org/MusicGroup/popularity/
http://schema.org/Estimate/value/
http://schema.org/Estimate/value/

5.3. Input configuration

For each scenario, it is mandatory an access token provided by the Web service to

identify the client. We considered 3 cases for input concepts:

• 1 parameter: No additional parameter is provided other than the API key (i.e.

http://schema.org/WebApplication/apiKey/).

• 2 parameters: A concept closely related to the scenarios goal is provided. We

considered the concept of a music group identifier since it should be used in

some solutions (http://schema.org/MusicGroup/identifier/).

• 3 parameters: The client does not know the input concepts, but knows how to

find them through the APIs search capability. Parameters related to the search

concept (http://schema.org/Search/type/ and http://schema

.org/Search/query/) are considered as input concepts, in this case. We

choose this configuration since it is a very common scenario.

5.4. Results

We ran our experiments on an Intel Xeon processor with Turbo up to 3.3GHz, 1 vCPU

and 1 GB of RAM, running on Ubuntu 14.04. We performed the tests 10 times and we

averaged the execution time in order to obtain a reliable measure. We present the results

of the algorithm to find solutions with increasing steps, in three scenarios. We also present

the average search time for each scenario, as well as the number of valid paths (i.e. those

that produce the requested goal). For long running executions we defined a limit of 7 steps

to stop the algorithm. Remaining candidates represent paths that could be solutions for a

composition request, but have not yet reached an executable first step when the algorithm

was halted.

27

http://schema.org/WebApplication/apiKey/
http://schema.org/MusicGroup/identifier/
http://schema.org/Search/type/
http://schema.org/Search/query/
http://schema.org/Search/query/

5.4.1. Scenario 1

Table 5.6 presents the results for the evaluation of scenario 1. As the search algorithm

incorporate more steps, the number of solutions increases quickly. The solutions’ growth

is due to the presence of alternative steps to obtain the required output concept. The

number of solutions found involve 4 steps at most (there are no more candidates pending

to examine). As shown in Table 5.7, the algorithm is able to find all the answers in less

than 2 seconds, independently of the number of input concepts. The solutions for 1 and

2 steps for 1 input concept are presented in Figure 5.1. As in Figures 5.2 and 5.3, black

nodes correspond to the Spotify API, red nodes to the Songkick API and green nodes to

the Uber API. Concepts are presented in blue. Arrows represent GET operations, and

they follow a sequence pattern. There are 10 alternative solutions considering 2 steps.

Unexpectedly, Uber API resources are also part of a viable solution for the 2 steps set.

Table 5.6. Solutions by number of steps for scenario 1

Input Parameter Concepts Steps
1 2 3 4

http://schema.org/WebApplication/apiKey/ 1 10 18 18
http://schema.org/WebApplication/apiKey/
http://schema.org/MusicGroup/identifier/ 6 15 18 18

http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/
http://schema.org/Search/type/

3 12 19 18

Table 5.7. Summary of solutions for scenario 1

Input Parameter Concepts Total Solutions Candidates Execution Time
(seconds)

http://schema.org/WebApplication/apiKey/ 47 0 1.3590± 0.1423
http://schema.org/WebApplication/apiKey/
http://schema.org/MusicGroup/identifier/ 57 0 1.3154± 0.0232

http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/
http://schema.org/Search/type/

52 0 1.3712± 0.1206

28

2 Steps 1 Step

me/
tracks

browse/
featured-
playlists

users/{User/
identifier}/
playlists/

{MusicPlaylists/
identifier}

users/{User/
identifier}/playlists/

{MusicPlaylists/
identifier}/tracks

albums/
{MusicAlbum

/identifier}

browse/
new-

releases

albums/
{MusicAlbum/

identifier}/
tracks

me

users/{User/
identifier}/
calendar.

json

me

users/{User/
identifier}/

gigography.
json

Figure 5.1. Compositions found for scenario 1, with 1 and 2 steps for 1
input concept

5.4.2. Scenario 2

In Table 5.8, the number of solutions increases for 1 parameter compared to scenario 1

since the input concepts for the target resources were not provided. Through backtracking,

the algorithm identifies the operations that produce the required input, but they require

additional input concepts, creating more candidates with more steps. In this scenario, the

limit of 7 steps is reached, remaining various candidate compositions to solve.

Independently of the input concepts, the algorithm correctly finds the only two oper-

ations that return the popularity of a music group and the music group’s name as can be

seen in Figure 5.2. When we compare Figures 5.2.a and 5.2.b, we can identify a signif-

icant difference. In the later case, the provided concept already refers to a music group

identifier, so that, finding the resource and operation is straightforward.

For scenarios 1 and 2, the paths created by the algorithm allow to answer these business

cases (among others):

• Name (and popularity) of a user’s favorite tracks music groups.

• Name (and popularity) of music groups in new releases or featured playlists.

• Name (and popularity) of a user’s event calendar music groups.

29

Table 5.8. Solutions by number of steps for scenario 2

Input Parameter Concepts Steps
1 2 3 4 5 6 7

http://schema.org/WebApplication/apiKey/ 0 2 36 326 2.834 22.398 148.190
http://schema.org/WebApplication/apiKey/
http://schema.org/MusicGroup/identifier/ 2 0 0 0 0 0 0

http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/
http://schema.org/Search/type/

1 4 54 516 4.682 37.192 241.774

Table 5.9. Summary of solutions for scenario 2

Input Parameter Concepts Total Solutions Remaining Candidates Execution Time
(seconds)

http://schema.org/WebApplication/apiKey/ 173.786 954.996 103.2259± 1.0574
http://schema.org/WebApplication/apiKey/
http://schema.org/MusicGroup/identifier/ 2 0 0.0733± 0.0012

http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/
http://schema.org/Search/type/

284.223 1.024.054 89.6786± 1.5204

• Name (and popularity) of a user’s playlist music groups.

• Name (and popularity) of an album’s music groups.

• Name (and popularity) of music groups similar to one another.

5.4.3. Scenario 3

Table 5.10 presents the results for the evaluation of scenario 3. As in previous cases,

we vary the number of input concepts. Table 5.11 presents a summary of the execution.

We can observe a large number of solutions in all cases. This behavior is due to the

existence of only one operation returning an estimate of a ride, but none of its required

parameters are supplied as part of the initial input. Hence, the algorithm must find many

alternatives to supply such input concepts. Hence, there are no solutions of one step (see

Table 5.10): the shortest path involves at least two steps.

Figure 5.3 presents the compositions found with 2 and 3 steps. For example, a solution

for 2 input concepts is highlighted with dotted lines. It begins requesting artists similar to a

30

3 Steps 2 Steps

me/
tracks

browse/
featured-
playlists

users/{User/
identifier}/
playlists/

{MusicPlaylists
/identifier}

users/{User/
identifier}/
playlists/

{MusicPlaylists
/identifier}/

tracks

albums/
{MusicAlbum

/identifier}

browse/
new-

releases

albums/
{MusicAlbum
/identifier}/

tracks

me

users/
{User/

identifier}/
calendar.

json

me

users/
{User/

identifier}/
gigography

.json

artists/
{MusicGroup

/identifier}

artists/
{MusicGroup
/identifier}/

related-
artists

artists/
{MusicGroup/

identifier}/
related-artists

artists/
{MusicGroup/

identifier}

me/
tracks

artists/
{MusicGroup
/identifier}/

calendar.json
artists/

{MusicGroup
/identifier}/

gigography.j
son

artists/
{MusicGroup
/identifier}/
top-tracks

events.j
son

tracks/
{Music

Recording
/identifier}

artists/
{MusicGroup/

identifier}/
similar_artists

.json

2 Steps 1 Step

search me/tracks

artists/{MusicGroup/
identifier}/related-artists

artistis/
{MusicGroup/

identifier}

search/
artists.json

1 Step

artists/
{MusicGroup/

identifier}/
related-artists

artistis/
{MusicGroup/

identifier}

c. Input: APIKey + Search parameters b. Input: APIKey + MusicGroup/identifier

a. Input: APIKey

Figure 5.2. Compositions found for scenario 2, with 1, 2 and 3 steps

Table 5.10. Solutions by number of steps for scenario 3

Input Parameter Concepts Steps
1 2 3 4 5 6 7

http://schema.org/WebApplication/apiKey/ 0 1 11 132 1.726 25.539 336.803
http://schema.org/WebApplication/apiKey/
http://schema.org/MusicGroup/identifier/ 0 3 20 178 2.016 18.083 103.672

http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/
http://schema.org/Search/type/

0 3 22 350 5.525 78.364 1.010.114

particular one (GET on the resource api.spotify.com/v1/artists/{http://

schema.org/MusicGroup/identifier/}/related-artists), followed by

requesting the planned concerts for such artists (GET on resource api.songkick.com/

31

api.songkick.com/api/3.0/events.json
api.songkick.com/api/3.0/events.json

Table 5.11. Summary of solutions for scenario 3

Input Parameter Concepts Total Solutions Remaining Candidates Execution Time
(seconds)

http://schema.org/WebApplication/apiKey/ 364.212 4.663.031 394.1312± 11.9393
http://schema.org/WebApplication/apiKey/
http://schema.org/MusicGroup/identifier/ 123.972 343.197 78.4665± 0.9224

http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/
http://schema.org/Search/type/

1.094.378 5.322.899 288.9120± 2.6779

api/3.0/events.json), and then requesting an estimated taxi fare for a chosen event

(GET on resource api.uber.com/v1/estimates/price).

Independently of the input parameters, the algorithm finds the resource that provides

the expected output (GET on the Uber resource: estimates/price). Only for the input in-

cluding the music group name concept, a POST operation (blue arrow) is considered in the

3 steps solution set. Again the only patterns identified are sequence and alternative. Par-

allel patterns were found in solution sets with more steps (not shown). The compositions

found in this scenario represent the following situations:

• Cost of going to a venue

• Cost of going to an artist’s future events

• Cost of going to a user’s upcoming events

• Cost of going to concerts of similar artists to another that a user likes

32

api.songkick.com/api/3.0/events.json
api.songkick.com/api/3.0/events.json
api.uber.com/v1/estimates/price

3 Steps 2 Steps

history
browse/featured-

playlists
history me

users/{User/
identifier}/

calendar.json

me

users/{User/
identifier}/

gigography.jsonestimates
/price

me/tracks

artists/
{MusicGroup/

identifier}/
calendar.json

artists/
{MusicGroup/

identifier}/
gigography.json

events.
json

2 Steps

artists/
{MusicGroup/

identifier}/
gigography.

json

artistis/
{MusicGroup
/identifier}/
calendar.

json

b. Input: APIKey + MusicGroup/identifier

a. Input: APIKey

estimates
/price

requests/
{Request/
identifier}

requests

history

estimates
/price

3 Steps

browse/
featured-
playlistshistory

me

users/
{User/

identifier}/
calendar.

json

me

users/
{User/

identifier}/
gigography.

json

me/
tracks

venues/
{EventVenue
/identifier}/
calendar.

json

artists/
{MusicGroup/

identifier}/
gigography.

json
events.

json

estimates
/price

requests/
{Request/
identifier}

requests

artists/
{MusicGroup/

identifier}/
calendar.

json

artists/
{MusicGroup
/identifier}/

similar_
artists.json

artists/
{MusicGrou
p/identifier}/

related_
artists

artists/
{MusicGroup

/identifier}

events/
{MusicEvent
/identifier}

2 Steps

search/
venues.

json

search/
locations.

json
history

estimates
/price

3 Steps

browse/
featured-
playlists

history me

users/
{User/

identifier}/
calendar.

json

me

users/
{User/

identifier}/
gigography.

json

me/
tracks

venues/
{EventVenue
/identifier}/
calendar.

json

artists/
{MusicGroup/

identifier}/
gigography.

json

events.
json

estimates
/price

requests/
{Request/
identifier}

requests

c. Input: APIKey + Search parameters

searchsearch/
artists.
json

search/
locations.

json

metro_areas/
{Place/

identifier}/
calendar.json

search/
venues.

json

Figure 5.3. Compositions found for scenario 3, with 2 and 3 steps

33

6. CONCLUSIONS

One of the contributions of this thesis is the RAD description metamodel for REST

services and its implementation using JSON. This proposal results in a lightweight ap-

proach that is capable of modeling well-know, industry level Web APIs. We reviewed

various Web APIs in order to find those services closest to the REST style and test our ap-

proach. Our implementation was able to support most of the common practices followed

by Web APIs when dealing with their input and output parameters in a lightweight style.

That is, some parameters are optional, some are mandatory, some are present in the header,

others in the body, others in the URI scheme, and some require certain data types as seen

in figures 3.5 and 3.6. One property we did not support, however, was the dependency

between the response and particular values of the input parameters. In some services, the

response’s structure may vary depending on the values of the input parameters.

A second contribution is the lightweight metagraph based on the proposed metamodel.

The metagraph made possible not only to discover specific services (Alarcón et al., 2015)

but also to support a complex task such as automatic and dynamic service composition

with reasonable performance. The metamodel can be implemented in various ways, for

instance as an RDF ontology, or as any other graph-based approach.

One advantage of our lightweight approach for the semantic layer is that it can be

integrated with existing Web services descriptions, regardless of their format (e.g. HTML,

JSON, YAML, XML, etc.), without interfering with the exposed information. It can also

refer to specific semantic models such as existing ontologies and Linked Data1. This

layer makes possible to bind different services, based on the meaning and purpose of their

exchanged information and hence make possible a rich service composition as can be seen

in the results in figures 5.1, 5.2 and 5.3.

However, one of the disadvantages of our proposal is that the description is separated

from the service itself, as an additional layer. This factor increases coupling between

1Linked Data: http://linkeddata.org/

34

http://linkeddata.org/

services and their descriptions and limits service evolvability. A way to lessen this disad-

vantage is to implement clients that consider service descriptions as information models

of what they can expect, instead of guaranteed contracts during execution time.

Also, when a large number of compositions are generated, a ranking strategy is re-

quired for a client to effectively use the proposed compositions. For instance, solutions

with fewer steps may be preferred since they may be executed faster. However, a proper

quality model representing client’s interest (such as the cost of a service) is required.

In addition, more complex control flow patterns could be supported by the algorithm,

which would yield in even more solutions. Also, the removal of some restrictions in the

composition algorithm could lead to more interesting solutions.

Our proposal is based on services signature such as input and output parameter con-

cepts, however, other elements to consider could be the semantics of the actions, the status

codes of responses and the response metadata. This extension may result in solutions clos-

est to the client’s goal. For instance, a client’s goal to change a resource’s state may be

satisfied by a solution that do not return the changed state itself, but a HTTP code.

Composition results would improve with a better definition and use of concepts. Some

concepts could be too general for some cases, so it would require the creation of more

specific concepts. These new concepts should be related with the generic one, and their

bound should be taken into account while composing services. Also, some concepts were

assumed to be equivalent (e.g. identifiers and tokens). Generally, however, this is far from

trivial in real applications. A further refinement of the concept hierarchy may be required

leading to less solutions for a composition request, but with more business value.

As for future work, we will focus on supporting the implementation and execution of

the compositions themselves. Again, this is far from trivial since it will require to face

differences in variable’s types; even though they are semantically equivalent, data types

may be drastically different.

35

REFERENCES

Alarcón, R., Saffie, R., Bravo, N., & Cabello, J. (2015). REST Web Service Description

for Graph-Based Service Discovery. In Engineering the Web in the Big Data Era

(pp. 461–478). Springer.

Alarcón, R., & Wilde, E. (2010). Linking data from restful services. In Third Workshop

on Linked Data on the Web, Raleigh, North Carolina (April 2010).

Alarcón, R., & Wilde, E. (2010). RESTler: crawling RESTful services. In Proceedings

of the 19th international conference on World wide web (pp. 1051–1052). ACM.

Alarcón, R., Wilde, E., & Bellido, J. (2010). Hypermedia-driven RESTful service compo-

sition. In Service-Oriented Computing (pp. 111–120). Berlin, Heidelberg: Springer.

Bellido, J., Alarcón, R., & Pautasso, C. (2013). Control-flow patterns for decentralized

restful service composition. ACM Transactions on the Web (TWEB), 8(1), 5.

Bennara, M., Mrissa, M., & Amghar, Y. (2014). An approach for composing RESTful

linked services on the web. In Proceedings of the companion publication of the

23rd international conference on World wide web companion (pp. 977–982). Inter-

national World Wide Web Conferences Steering Committee.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., . . .

Winer, D. (2000). Simple object access protocol (SOAP) 1.1.

Chinnici, R., Moreau, J.-J., Ryman, A., & Weerawarana, S. (2007). Web services descrip-

tion language (wsdl) version 2.0 part 1: Core language. W3C recommendation, 26,

19.

Dustdar, S., & Schreiner, W. (2005). A survey on web services composition. International

journal of web and grid services, 1(1), 1–30.

Fielding, R. (2000). Architectural styles and the design of network-based software archi-

tectures (Unpublished doctoral dissertation). University of California, Irvine.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T.

(1999). Hypertext transfer protocol–http/1.1. RFC 2616, June.
36

Gregorio, J. (2007). Do we need WADL. http://bitworking.org/news/193/

Do-we-need-WADL.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowl-

edge acquisition, 5(2), 199–220.

Hadley, M. J. (2006). Web application description language (WADL). Sun Microsystems,

Inc.

Kelly, M. (2015). JSON hypertext application language. https://tools.ietf

.org/html/draft-kelly-json-hal-02.

Kopecky, J., Gomadam, K., & Vitvar, T. (2008). hrests: An html microformat for de-

scribing restful web services. In Web Intelligence and Intelligent Agent Technology,

2008. WI-IAT’08. IEEE/WIC/ACM International Conference on (Vol. 1, pp. 619–

625).

Kopecky, J., Vitvar, T., Bournez, C., & Farrell, J. (2007). Sawsdl: Semantic annotations

for wsdl and xml schema. Internet Computing, IEEE, 11(6), 60–67.

Lanthaler, M., & Gütl, C. (2013). Hydra: A Vocabulary for Hypermedia-Driven Web

APIs. LDOW, 996.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., . . . others

(2004). OWL-S: Semantic markup for web services. W3C member submission, 22,

2007–04.

Pautasso, C. (2009). RESTful Web service composition with BPEL for REST. Data &

Knowledge Engineering, 68(9), 851–866.

Pautasso, C., & Alonso, G. (2005). Flexible binding for reusable composition of web

services. In International conference on software composition (pp. 151–166).

Richardson, L., Amundsen, M., & Ruby, S. (2013). Restful web apis. ” O’Reilly Media,

Inc.”.

Rosenberg, F., Curbera, F., Duftler, M. J., & Khalaf, R. (2008). Composing restful services

and collaborative workflows: A lightweight approach. Internet Computing, IEEE,

12(5), 24–31.

Sporny, M., Kellogg, G., Lanthaler, M., & W3C RDF Working Group. (2014). JSON-LD
37

http://bitworking.org/news/193/Do-we-need-WADL
http://bitworking.org/news/193/Do-we-need-WADL
https://tools.ietf.org/html/draft-kelly-json-hal-02
https://tools.ietf.org/html/draft-kelly-json-hal-02

1.0: a JSON-based serialization for linked data. W3C Recommendation, 16.

Vairetti, C., Alarcón, R., & Bellido, J. (2016). A Semantic Approach for Dynamically

Determining Complex Composed Service Behaviour. Journal of Web Engineering,

15(3-4), 310–338.

Verborgh, R., Arndt, D., Van Hoecke, S., De Roo, J., Mels, G., Steiner, T., & Gabarró, J.

(2015). The Pragmatic Proof: Hypermedia API Composition and Execution. CoRR,

abs/1512.07780.

Verborgh, R., & De Roo, J. (2015). Drawing Conclusions from Linked Data on the Web:

The EYE Reasoner. IEEE Software, 32(3).

Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R., & Vallés, J. G.

(2013). Capturing the functionality of Web services with functional descriptions.

Multimedia tools and applications, 64(2), 365–387.

Webber, J., Parastatidis, S., & Robinson, I. (2010). Rest in practice: Hypermedia and

systems architecture. ” O’Reilly Media, Inc.”.

Xie, C., Cai, H., & Jiang, L. (2013). Ontology Combined Structural and Operational

Semantics for Resource-Oriented Service Composition. Journal of Universal Com-

puter Science, 19(13), 1963–1985.

38

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	1. INTRODUCTION
	1.1. Summary of contributions
	1.2. Organization of this document

	2. RELATED WORK
	2.1. REST service description
	2.2. REST service composition

	3. RAD: REST API DESCRIPTION
	3.1. RAD Concept Vocabulary
	3.2. RAD as a JSON document
	3.3. RAD as a graph

	4. RAD-BASED SERVICES COMPOSITION
	5. IMPLEMENTATION AND EVALUATION
	5.1. Characteristics of the dataset
	5.2. Scenarios of evaluation
	5.3. Input configuration
	5.4. Results
	5.4.1. Scenario 1
	5.4.2. Scenario 2
	5.4.3. Scenario 3

	6. CONCLUSIONS
	REFERENCES

