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ABSTRACT

Representational State Transfer (REST) services and Web Application Programming
Interfaces (APIs) have gained considerable attention as service implementation choices,
since they favor massive scalability and evolvability. However, most providers of this kind
of services describe the rules that must be followed to interact with such services through
ad-hoc documentation often written in natural language. Due to the heterogeneity of REST
APIs documentation and the lack of a widely accepted standard, automatic REST service
composition is difficult to implement. Various approaches for service documentation have
been proposed, mainly in the academia; however, due to the industry needs, lightweight
Web API documentations have been promoted inside companies. In this thesis we extend
and combine various proposals in order to define RAD (REST API description), a light-
weight REST API documentation model that allows a graph representation of documented
services. We built a case study by documenting real Web APIs with RAD. We populated a
graph database from such descriptions and used it to successfully implementing automatic

REST service composition.

Keywords: Web API, REST, Service composition, Control flow patterns.
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RESUMEN

Los servicios REST y las APIs Web han ganado considerable atencion como eleccion
para implementar servicios, dado que favorecen la escalabilidad y evolucion. Sin embargo,
la mayoria de los proveedores de este tipo de servicios describen las reglas para interac-
tuar con los servicios a través de documentacion ad-hoc, generalmente escrita en lenguaje
natural. Dada la heterogeneidad de la documentacion de las APIs REST, y la falta de un
estandar vastamente aceptado por la comunidad, la composicion automaética de servicios
REST es dificil de implementar. Varios intentos de documentacion de servicios han sido
propuestos, especialmente en la academia; sin embargo, debido a las necesidades de la in-
dustria, algunas propuestas de documentacion ligera para APIs Web han sido promovidas
dentro de las compaiiias. En esta tesis extendemos y combinamos varias propuestas, para
asi generar RAD (REST API Description), un modelo de documentacién ligero para APIs
REST, que permite una representacion de grafo para los servicios documentados. Con-
struimos un caso de estudio al documentar APIs Web reales con RAD. Poblamos una base
de datos de grafo a partir de estas descripciones, y la utilizamos para soportar composicion

automatica de servicios REST.

Palabras Claves: API Web, REST, Composicién de servicios, Control de patrones de

flujo.



1. INTRODUCTION

Representational State Transfer (REST) (Fielding, 2000) is the architectural style that
underlies the Web. It has proved the benefits of its design choices by supporting massive
scalability and evolvability, among other advantages. A REST service is a collection of
identified resources which are manipulated by a well known set of methods, like the Hy-
pertext Transfer Protocol (HTTP) methods (Fielding et al., 1999). The semantics of these
methods are clear to the architectural components (e.g. clients, servers, caches, proxies,

etc.).

The previous characteristics facilitate REST services evolvability and scalability in the
same way as they do for the Web. Nonetheless, one limitation arises when the consumer
of the service is a machine client instead of a Web client driven by a human user. The
latter merely exposes the resources and leaves the human-user with the responsibility of
understanding the underlying semantics at a business level. Since such semantics are
presented in natural language, a machine client is not able to understand the business level
semantics of a resource. Therefore, it is also impossible to determine the actions a machine
client needs to perform in order to accomplish certain business goal. For instance, a client
must understand that by following certain link or submitting a certain form, a payment is
performed. However, following another link could simply add another item to a shopping
cart. Both actions differ at the business semantics level, even though at a Web application

level they are just HTTP POST methods on different resources.

Interaction between services is desirable since it encourages software reuse and service
composition providing aggregated business value at lower cost than building applications
from scratch. Automatic service composition will further reduce development cost and
time-to-market of composed applications. This purpose has motivated service providers
to publish service semantics at business level. Nowadays, a popular approach is the so
called Web Application Programming Interface (API) (Richardson et al., 2013), which

are a collection of resources and methods typically documented through ad-hoc HTML



pages. These documents describe in more or less detail which methods can be performed
on the resources, the required parameters, the restrictions on their values, and the expected
results at business level (e.g. examples of the responses). Since the documentation is ad-
hoc, machine clients must encapsulate all the Web API logic required to interact with a
service. Furthermore, changes on the Web API will break the client or, even worse, lead to
underlying inconsistencies. The lack of a machine readable Web API description becomes
a severe limitation of automatic REST service composition. Moreover, advanced scenarios

(such as dynamic composition at runtime) become very difficult to support.

Various REST service description have been proposed by the academia and recently,
some alternatives have been also proposed in the industry (e.g. RAML!, Swagger’, re-
cently adopted by the Open API Initiative’, and Blueprint*). Even though they present a
step forward towards supporting REST service standardized description, current proposals
are operation-centric which hampers hypermedia and hence limiting automatic service dis-
covery, and evolvability. They do not support machine readable, explicit service semantics

at business level which makes automatic service composition difficult to implement.

In a previous work (Alarcén et al., 2015), we presented REST API Description (RAD)
and demonstrated its benefits to discover the right resource and method required to ob-
tain certain information. This thesis refines and further exploit RAD in order to discover
service compositions, that is, workflow fragments that implement more complex business
scenarios. We implemented an architecture able to parse RAD service descriptions and
generate a graph. The graph is queried to automatically discover service compositions. A
REST service composition is a workflow or path of methods performed on resources and
chained following certain control-flow patterns. We implemented a test scenario consid-
ering 3 popular Web services (i.e. Spotify’, Songkick® and Uber’).

IRAML: http://raml.org/

*Swagger: http://swagger.io/

3Open API Initiative: https://openapis.orqg/

“Blueprint: https://apiblueprint.org/

5Spotify: https://developer.spotify.com/web—api/
®Songkick: https://www.songkick.com/developer/

"Uber: ht tps://developer.uber.com/docs/api-overview/
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1.1. Summary of contributions

Our key contributions in this thesis are fourfold:

(1) We propose a metamodel for describing REST services. This representation allows
to capture the semantics of a service, in addition to its logic.

(i1)) We propose an algorithm to dynamically and automatically compose REST Web
services described with our metamodel. This algorithm is designed to quickly find
all possible compositions of services, according to their descriptions.

(iii)) We implement a case study using real Web services, adapting their descriptions to
our meta-model. This experiment allowed us to validate the capability of RAD for
representing the constraints and needs of existing Web services. Also, we validated
the capability of the algorithm for finding plausible service composites on runtime.

(iv) We evidenced challenges that must be resolved in order to improve automatic and

dynamic composition of REST Web services.

1.2. Organization of this document

The remainder of the thesis is organized as follows: in Chapter 2, we present related
work of REST Web services description and composition. In Chapter 3, we introduce
the RAD metamodel for describing REST Web services, specifying its main features. In
Chapter 4, we present the algorithm to compose RAD-based services. In Chapter 5, we
explain the implementation of the dataset, the studied scenarios and the results of our
experiments. Finally, we conclude in Chapter 6 with insights of this work and future

challenges.



2. RELATED WORK

Traditionally, Web services are described by WSDL (Web Service Description Lan-
guage), a XML-based document (Chinnici et al., 2007). WSDL describes the service in-
terface (operations, parameters and an endpoint URL) and its conditions to be consumed.
Messages interchanged between clients and services must be encoded following the XML-

based Simple Object Access Protocol (SOAP) schema (Box et al., 2000).

Traditional Web services are focused on operations, whereas REST services consider
resources as its cornerstone. Resources are identified by resource identifiers (e.g. Uni-
form Resource Identifiers); resource representations are a set of bytes (e.g. an HTML

document) conveying information about the resource state at a particular time.

Another REST foundation is the Uniform Interface constraint. It determines that REST
components must support the same interface, that resources are manipulated through rep-
resentations (e.g. retrieve or update a resource state with a new representation), and that
REST components (e.g. clients, servers) interact trough self-descriptive messages (e.g.
HTTP messages) that include all the information necessary to process such message. Also,
the engine of a REST application must follow a hypermedia constraint, that is, a resource’s
representation must embed the necessary controls (e.g. a submit button) and links that in-

form the client the set of actions available at the current application state.

In traditional Web services, a single endpoint encapsulates an arbitrary number of user-
defined operations whose semantics, pre and post-conditions are defined by each service
provider. In REST, a service is a collection of identified resources that can be manipulated
by a well defined set of methods (e.g. HTTP methods), which facilitates service evolvabil-
ity by leveraging Web standards (e.g. data formats, network protocols, etc.), and service

scalability by exploiting REST architectural constraints (layers, caches, etc.).



2.1. REST service description

In contrast to traditional Web services, REST resources are explicit, methods are finite
and representations clearly encapsulate fragments of the business process. The limitation
for machine clients is that the semantics of such elements are not defined in a machine

processable-way at business level.

Proposals for machine friendly service descriptions that encapsulate service semantics
have been made for traditional services. For instance, OWL-S (Martin et al., 2004) is a
semantic service description based on ontological models. An ontology is a formal and
explicit specification of a shared conceptualization of a certain domain (Gruber, 1993). It
typically comprehends a set of concepts, their properties as well as the relationships among
them. OWL-S proposes a set of ontologies describing the service domain (e.g. banking),
the Web service mechanisms (e.g. operations according to WSDL), the Web service com-
munication protocol (according to SOAP standards) and the control-flow that regulates
services compositions (e.g. parallel, alternative, loops, etc.). On one hand, OWL-S is a
highly expressive and rich conceptualization of the services domain widely used in se-
mantic service research. On the other hand, OWL-S is highly complex and does not fit
the REST service model (i.e. resources, hypermedia or HTTP methods semantics are not
supported). A lightweight approach, SAWSDL (Kopecky et al., 2007), is a W3C rec-
ommendation for semantic service description that consists of a minimal set of elements
that can be used to annotate standard WSDL. The approach is to include references (i.e.
URIs) to concepts described on a separate ontology; the standard does not prescribe nei-
ther the domain ontology, nor the service semantic model nor the ontology representation

language.

For the case of REST services, the Web Application Description Language (WADL)
(Hadley, 2006) has been proposed for a description document. This document is equiv-
alent to WSDL for traditional services, and should be annotated with semantic refer-

ences following the SAWSDL approach. Resulting Web services will be manipulated



through SPARQL queries, and the authors propose a mapping between HTTP methods
and SPARQL commands. However the semantics of such actions are not considered at
business levels. The semantics of the data were only considered as being manipulated.
This proposal also requires the developer to encode on the client all the business logic
in order to interact with a service. Similarly to WSDL, WADL has been criticized by its
complexity and verbosity (Kopecky et al., 2008; Verborgh et al., 2013; Gregorio, 2007), it
resembles WSDL operation-centric approach and ignores REST’s hypermedia constraint.
WADL representation for hypermedia and links decouples such elements from the repre-

sentation that contains them making hypermedia a forced and complex paradigm.

Other approaches, such as hRESTs (Kopecky et al., 2008), propose an HTML micro-
format to annotate the actual HTML pages typically used to describe Web APIs. How-
ever, actions’s semantics are not considered and the approach can hardly cope with the
complexity that current Web APIs present (e.g. optional parameters, optional media type
responses, metadata, etc.). Additionally, ReLL (Alarcén & Wilde, 2010) is a REST ser-
vice description that fully considers REST principles. In an experiment, it was used by
a crawler in order to navigate the resources of some REST services, demonstrating the
description capability for exploiting the REST hypermedia constraint. ReLL. descriptions
semantics were also obtained through an additional layer (Alarcén & Wilde, 2010) which
was used to obtain the semantic dataset equivalent to the crawled data. ReLLL. considered
one type of action, the GET method, and assumed a single interpretation of such kind of
action (i.e. reading the resources’ state) and the service interface was also simple (i.e.
a set of parameters), but it considered the representation’s semantics and embedded hy-
permedia controls. HAL (Kelly, 2015) is a JSON description language that focuses on
hypermedia considering only GET methods. Hydra (Lanthaler & Giitl, 2013), goes fur-
ther by considering resources, operations, and hyperlinks represented as templated links.
These templates are a property class that relates certain operation to IRI templates and are
mapped (through IriTemplateMapping) to a set of supported variables (URI parameters).

IRIs are minted at runtime since parameters values are determined also at runtime. Hydra



is based on JSON-LD (Sporny et al., 2014) that adds lightweight semantics to the descrip-
tion. However, this proposal becomes complex due to the RDF model it is also based

on.

A proposal that has gained a lot of traction is Swagger (currently adopted by the Open
API Initiative as its core specification). Swagger can be represented as JSON or YAML
formats, and it allows to describe resources, operations, and responses. It provides sup-
port for specifying operations parameters (optional or required) and responses schemas
(including headers) in a simple and intuitive way. The downside is that Swagger does
not support semantic associations to its elements nor hypermedia. A similar initiative
is RAML, based on YAML, that provides additional support through the provision of a
rich data type definitions, as well as URI specification (URI parameters), query parame-
ters specification and various security schemas. RAML is much more expressive but also

more complex and less intuitive than Swagger.

2.2. REST service composition

A service composition is typically considered as a combination of service’s operations
following an specific execution order. If a service does not depend on other services to
complete its execution, then it is considered an atomic service, otherwise it is composed
(Dustdar & Schreiner, 2005). Service composition can be static if the composition model
is defined during the service’s design time, or dynamic if it is defined at runtime. The com-
position model is a representation of the set of services to be internally invoked, as well as
the data and control-flow that determine its interaction (Dustdar & Schreiner, 2005). The
dynamic approach facilitates service composition when there are many candidate services
available to be part of a composition, reducing development costs and time. It can also
facilitate the rapid reaction to failure, business goal changes and personalization. Static or
dynamic composition could be defined automatically or manually depending on whether

an algorithm chooses service components (automatic service selection) and defines the



control/data flow graph. Finally, if a composed service coordinates the components invo-
cation in a centralized way, it is called an orchestration, and choreography if each compo-

nent determines the next participant in the coordination (decentralized).

In REST, resources and resource collections are the components (Pautasso, 2009).
Servers embed in representations of resources the set of possible links and controls re-
quired to execute a method a resource (i.e. state transition). Clients are responsible for
choosing the actual link or control to be executed. This hypermedia approach resembles
a choreography where clients and servers cooperate to actually execute certain business
process. Naturally, it is possible to hardcode such coordination into a single service imple-
menting this way an orchestration and enforcing a business process completion. However,

this approach seriously compromises service scalability (Bellido et al., 2013).

Various strategies have been proposed to implement REST service composition. For
instance, Bite (Rosenberg et al., 2008) is a composition language and lightweight frame-
work to create Web-scale workflows based on RESTful services. JOpera (Pautasso, 2009)
follows a similar approach but using a visual modeler to specify control and data flow. In
(Alarcén et al., 2010), control and data flow is modeled and implemented using a Petri
Net, whereas interaction and communication with the resources themselves is mediated
by a ReLL service description. JOpera supports dynamic binding of services (Pautasso
& Alonso, 2005) whereas the other approaches require static and manual identification of
service components. All these approaches follow a centralized orchestration strategy, and
assume users consider implicit service semantics to manually design the service composi-

tion.

Semantic approaches for machine driven REST service composition rely on semantic
Web technologies (e.g. RDF, OWL, N3, etc.) for specifying service semantics and rea-
soners to implement the composition. For instance, SRSM (Xie et al., 2013) identify a
service information (entities) and a transactional layer for resource-oriented service com-
position. The layers contain specialized resources (i.e. Entity Oriented Resources and
Transition Oriented Resources) and services semantics is represented through an OWL

8



ontology. Automatic service composition depends on OWL-SWRL rules defining the pre-
conditions and effects to be achieved by a search algorithm. RESTdec (Verborgh et al.,
2015) proposes the use of N3 language and N3 Logic framework (rules) to create REST
service compositions on RDF-based resources. The idea is to define N3 formulas con-
sisting of: a precondition, an HTTP request class, and a postcondition, that are evaluated
by an N3-based reasoner called EYE (Verborgh & De Roo, 2015), to create proof-based

compositions.

A lightweight approach is proposed in (Bennara et al., 2014), where REST service se-
mantics are modeled as an associated resource. This resource contains both service infor-
mation and transitions (supported HTTP methods) using JSON-LD. Service composition
is achieved by a conversational approach where the client progressively inspects possible
actions supported by the retrieved resources. This approach uses lightweight semantic
representations, favors dynamic late binding and service evolvability. On the downside,
a client cannot know in advance the path of resources and transitions required to achieve
a state, and if methods such as POST, PUT or DELETE are required along the way, they
cannot be undone. Therefore, the client must know out-of-band (i.e. hard-coded in the

client) the required path, at least at a semantic level.

RAD (REST API description) (Alarcon et al., 2015) is another lightweight approach
proposing a metamodel to describe Web APIs. It models resources, methods, parame-
ters, responses, links and controls embedded in responses (hypermedia). It is based on
a popular Web API description called Swagger, but complements its lack of support for
complex parameter management with the corresponding RAML approach. It also allows
API developers to annotate resources, parameters and methods with semantic references
following the SAWSDL and JSON-LD approach, but keeping the description as minimal
as possible. RAD descriptions are translated into a graph that can be queried to discover

specific services.



3. RAD: REST API DESCRIPTION

RAD descriptions separate REST service elements into two layers: semantic and ac-
tivity (figure 3.1). The semantic layer captures the meaning and purpose of resources,
parameters and actions. The activity layer contains elements that are realizations of the se-
mantic layer. A RAD description can be implemented in different formats, from annotated
HTML with microdata, to JSON, YAML or XML documents (among others). Compared
with our previous work (Alarcon et al., 2015), in this thesis we refine the metamodel by
eliminating redundant concepts. For instance, actions and method elements were decou-
pled in the previous activity layer, whereas in this version they correspond to the Method
element. The Representation element was also refined to explicitly support hypermedia

controls that refer to a resource and a method. Cardinality among elements were also

revised since the model’s elements are much more reusable.

Semantic
Layer
<<BDomain>> | o.. 0.n, <<BDomain>>| 1.n <<BDomain>>
Parameter Resource Action
14 & &
Activity in 9.0 0.n_
Layer il SV 1.0 I
Parameter Resource T Operation
0.n 1 Ja 0..n 1
i 1.n
D..ni (LO..n
<<State>> L o Response
0.n | Representation | 0.n - p
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Figure 3.1. RAD metamodel




For the semantic layer, Resources, Parameters and Actions are concepts in the busi-
ness domain that can be semantically related. These concepts represent the semantic as-
pect of the elements in the activity layer, but they are not bound to any particular knowl-
edge representation formalism. The semantic layer is bound to the activity layer through
the description implementation following the SAWSDL approach (i.e. a lightweight ref-
erence), without overloading the description. The semantic layer is used to relate different
services based on their meaning and purpose. Notice that Actions are related to at least

one Resource and vice versa.

The activity layer is bound to REST Web services. Resource elements are identified
by their URI and are related to at least one Method element (e.g. GET, PUT, POST,
DELETE, etc. for the case of the HTTP protocol). In order to execute these operations,
the Operation element may require Parameter elements. Input Parameters can be pro-
vided in different ways inside a request: as part of the URI itself (URI variables), headers,
query or body. Parameters can be reused by many operations. After executing an opera-
tion, a Web service may return a Response element that represents the response message
(including the HTTP code). These responses also include the resources’ state in the form
of a Representation element. A Representation is comprised of the expected informa-
tion to be returned by a service and may include output Parameter and other Methods

(hypermedia).
3.1. RAD Concept Vocabulary

As described before, resources, parameters and actions have associated concepts in
the business domain that are described in a separate document, a vocabulary. The vo-
cabulary relates the reference values to URIs describing concepts unambiguously. In our
approach we considered and extended the concepts defined by the Schema.org' specifi-
cation. Schema.org is promoted by Microsoft, Google and Yahoo and can be used as

HTML markup that enriches the search results snippets. It comprehends a set of entities

1Schema.org: http://schema.org/
11
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and extension mechanisms. In this thesis, we used the old mechanism (changed on May
2015), that allows to extend a concept by adding properties following the pattern "BaseC-
oncept/newProperty”. That is, append the property name, starting with a lowercase, after
the concept name followed by a ”/” character. Similarly, a class can be refined by an
specialized concept name, starting with uppercase: “BaseConcept/SpecializedConcept”.

Camel case is requested.

{
“name": "RAD-S5chema.org",
"wversion": "1.8",
"description": "Extension and adaptation of Schema.org's dictionary for RAD.Y,

“created_at": "3/9/2815",
"updated_at": "@3/02/2816",
"baselri": "http://schema.org",
"prefixes": {

"resources":{

"@Place": {
"reference": " /Place",
"parameters": {
"@placeLatitude": "/latitude",
"gplaceLongitude": "/longitude",

"@placeGeo": "Jfgeo",
"@placelpvd": "Sipv4",

"@placeldentifier": "/identifier",
"@placeName": "/fname",
"@placeAdress": "Jadress",

"@placeStreet": "/Sstreet",
"gplaceZip": "/Jszip"
}
o
+
"actions": {
"@AchieveAction": " SAchieveAction",
"@AddAction": "/AddAction",
"@hAssessAction": "fAssessAction",
"@CheckAction": "/SCheckAction",

Figure 3.2. Associated Schema.org based vocabulary snippet

The vocabulary was designed as a JSON document (Figure 3.2). The required keys
are name, version, baseUri and prefixes. Prefixes are abbreviations of conceptual entities
such as resources, parameters and actions. They must start with a *@’ symbol and are
related to explicit URIs through the reference key. Each entity property can be defined
trough a parameter key, which value is the URI fragment that must be appended to the

base concept, as defined by Schema.org extension mechanism.

12




3.2. RAD as a JSON document

name
baseURI
version
description e.g.:"/vl/albums/{@musicAlbumIdentifier}/tracks" |
using
resources
-1 URI pattern

K_L\ e.g.:"get"

name

reference

description

| operations  J<-{ operation

’ e.g.:"limit"

s N )
description name
reference description
additional_doc reference
required_params . type
parameters < | parameter % example

minimun

maximun

default
_

type
— reference
description properties
headers t t
responses <- - - -| response bod o
| ) y items

Figure 3.3. JSON implementation schema of RAD

In this section we present an implementation of the RAD metamodel as a JSON docu-
ment (see figure 3.3 for an overview of the corresponding JSON schema). A RAD JSON
description serves two purposes. On one hand it serves as the basis for a documenta-
tion. On the other hand it serves as a machine-readable description for machine-clients.
In figure 3.3, the keys that are destined to document the service are presented in italics
in the figure (name, description, additional_doc, and example) and they are considered as

optional keys. Also, the semantic relation between Parameters, Resources and Methods

13




are modeled as reference keys (in blue in the figure) and specialized modifiers for output

parameters are presented in green.

A RAD JSON description must have baseURI, version, using and resources keys.
The baseURI key refers to the root of the service’s entry-points (Webber et al., 2010),
the version key represents an identifier for modifications in the description, the using key
specifies the referenced semantic vocabulary and the resources key describes each resource
of the Web service. A resource object is identified by its URI template, used as the key
of the object. It is possible to include semantic references to URI variables using the
”@” modifier as seen in figure 3.3 (/v1/albums/{@musicAlbumIdentifier}),
where @musicAlbumldentifier indicates that the variable part of the URI is associated to

a concept, defined in the semantic vocabulary referenced in the description.

{
“"name": "Spotify",
"baselRI": "https:/fapi.spotify.com"
“"yersion": "w1",
“"description": "0Our Web API endpoints give external applications access to Spotify cataleg and user data.',
“"using": "rad-schema-1.8.json",
"resources": {
"svlfalbums™: {
"name": "Collection of Albums",
“"reference": "@MusicAlbumCollection",
“"description": "Spotify's albums.",
“operations": {

}
1
"fvlfalbums/{@musicAlbumIdentifier}": {

}

Figure 3.4. Spotify Web API described as RAD JSON: resources key snippet

A resource object (see figure 3.4 for an example) must have a semantic reference and
related method keys. A reference key associates the resource with a concept in the vocab-
ulary. The method key refers to the network protocol method available for the resource

(e.g. GET, POST, etc. for the case of HTTP).

Method keys are reference, required_params, parameters and responses (figure 3.5).
The reference key associates the method to the corresponding semantic element as de-
scribed in the vocabulary. The required_params key comprehends boolean expressions

to be evaluated for the parameters (URI variables are always required). The parameters
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“"pperations": {

“get": {
1,
"post": {
"description": "Add one or more tracks to a user's playlist.",
"reference": "@AddAction",
"additional_doc": "https://developer.spotify.com/web-api/add-tracks—-to-playlist/",
"required_params": "!Authorization AMND ((#uris AND !Content-Type) OR MNOT #uris)",

"parameters": {
“"lAauthorization": {

"mame": "Authorization Access Token",
"description": "A wvalid access token from the Spotify Accounts service.",
"reference": "@webApplicationApiKey",
"type": "string"
1,
"IContent-Type": {
"mame": "Content Type",
"description": "Required if the IDs are passed in the request body.",
"reference": "@webApplicationContentType",
"example": "application/json",
"type": "string"
1
"uris": {
"name": "Uris",
"description": "A comma-separated list of Spotify track URIs to add.",
"reference": "@musicRecordingCollectionUri",
"type": "string",
"example": "spotify:track:4iVSWOuYEdYUVaT79AxbTRR"
1
"position": {
"mame": "Playlist ID",
"description": "The position to insert the tracks, a zero-based index.",
"reference": "@musicPlaylistPosition",
"type": "integer",
"example": "2"
1,
“guris": {
"name": "Uris",
"description": "A JSOMN array of the Spotify track URIs to add.",
"reference": “@mu5icRecnrdhng[nllectinnUri“.
"type": "array",
"example": [
"spotify:track:4iVSWOuYEdYUVaT9AxbTRR",
"spotify:track:1301WleyTOBMSxVHPZCABM"
]
}

iy

“"responses": {

Figure 3.5. Spotify Web API described as RAD JSON: operation and pa-
rameter keys snippet

object is a set of descriptions of the required and optional input parameters required to
perform the method. Parameters can be part of the URI, the body (requires a "#’ prefix)
or the header (requires a ’!” prefix). The responses object is the set of possible response

message whose semantics are relevant for the API. Optional attributes of a method object
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are description and additional_doc for documentation purposes. The additional_doc value

represents a link where to find more information about the method.

The required keys for a parameter object are reference and type. Again, the reference
key associates the parameter with a semantic concept in the vocabulary. The fype repre-
sents the programmatic type of the variable, possible values are string, integer, boolean
and array. Optional attributes are name, description and example for documentation pur-
poses. Parameter values can be also restricted by the following keys: enum (indicating a
restricted set of possible values), default (indicating a default value), minimum indicating

a minimum value and maximum value for integers.

"responses”: {

nzeet: |
"description": "On success, the HTTP status code in the response header is 2080 0K.",
"headers": [1,
"body": {
"type": "object",
"reference": "@MusicAlbum",

"properties": {
"album_type": {
"type": "string",
"reference": "@musicAlbumType"
H
"artists": {
"type": "array",
"reference": "@MusicGroupCollection",
"items": {
"type": "object",
"reference": "@MusicGroup",
"properties": {
“"href": {
"type": "hyperlink",
"target": “/vlfartists/{@musicGroupIdentifier}"

“idv: {

"type": "string",

"reference": "@musicGroupIldentifier”
H
“name": {

"type": "string",

"reference": "@musicGroupMame"

hH

Figure 3.6. Spotify Web API described as RAD JSON: response key snippet

A response object is identified, for the case of HTTP, by the response code. The
required keys in this case are headers and body (figure 3.6). The headers key is an array

containing the relevant message headers expected in the response (e.g. HTTP headers).
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The body value describes our expectation regarding the response. The body has three
mandatory keys associated: reference, that relates a resource representation to a concept
in the vocabulary; media that specifies the response media type; and type that determines
the data type of the information contained in the body. In the current version we only
support the application/json media type. Accepted values for type are those defined by
JSON Schema’ (i.e. string, integer, number, object, array, boolean, null) and hyperlink.
The hyperlink value requires an additional farget key to indicate the URI of a referenced

resource in the response (hypermedia controls).

3.3. RAD as a graph

We chose to use a graph database for storing RAD descriptions because the relation-
ships between the RAD elements form a graph of arbitrary topology. Figure 3.7 presents
the graph model that represents a RAD description and mimics the RAD metamodel shown

in figure 3.1.

<<BDomain>>
Action

Operation produces

Resource
Response

contains

Representation
contains
iSA -
<<BDomain>>
Parameter

<<BDomain>>
Parameter
Resource

contains

Figure 3.7. RAD graph model

2JSON Schema: http://json-schema.orqg/
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4. RAD-BASED SERVICES COMPOSITION

We consider a REST composition as a workflow (or a path in the RAD graph) com-
prehending a set of methods that allow a client to reach a goal (or final state). Such goal
comprises the set of output parameters produced when executing the path’s methods. The
methods are executed following certain control-flow patterns. In this thesis, we identify
only three control-flow patterns, namely sequence, alternative and parallel split - synchro-

nization (parallel for short) (Bellido et al., 2013).

A sequence pattern defines the consecutive invocation of methods, without any guard
condition associated. A sequence can be inferred from the methods’ dependency of input

and output parameters as exploited in (Vairetti et al., 2016).

An alternative pattern allows the execution of only one of two possible services de-
pending, in our case, on the user decision. Our approach consists on creating a workflow
plan that include all possible choices (methods) but let the user to choose. Again, an alter-
native pattern can be inferred from the method signature (i.e. if two methods produce the

same output but differ in their input, they may indicate an alternative pattern).

A parallel split allows a single thread of execution to be split in two or more branches.
The synchronization pattern requires that the execution thread is halted until it receives
all the results from previous methods executed in parallel. Two or more methods that do
not depend among them and have access to all of their input parameters are considered as

following the parallel-split pattern.

Automatic RAD services composition is implemented by a backtracking algorithm
(see figures 4.1 and 4.2). In order to manage data heterogeneity, we consider the seman-
tic equivalent of input and output parameters (i.e. parameter concept), instead of each

particular parameter. The algorithm Input is a client’s composition request specifying the
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required goal: the set of concepts in the vocabulary associated to output parameters (out-
put_concepts). The client may optionally indicate a set of concepts associated to input

parameters (input_concepts), that represent information that the client has.

Parallel and alternative paths can be reduced to a sequence model in order to calculate
a critical execution path (Bellido et al., 2013). We consider such critical sequence as steps
(a path is a sequence of steps). A step is a set of operations that do not depend among
them, and their output parameters are required by the following step in a path (or this set of
operations satisfies the client’s goal). Operations in a final step must produce all the output
concepts required. Operations in a first step must be executable with the input concepts
supplied by the client (if needed). Along a path, each operation must be executed at most

once.
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Input: input_concepts, output_concepts

Output: solution_paths

1:

10:
11:
12:
13:
14:
15:

16:

goal_operations < All operations that return at least one concept of

output_concepts

. final_steps < Steps containing combinations of goal_operations, that executed in

parallel return all output_concepts (excluding redundant operations for each concept)

: banned_steps < final_steps (or super-sets of each one) banned from being used

inside a path
for step in final_steps do
step.required_param_concepts <— All the combinations of parameters concepts
required to execute all the operations of step
path < Create path from step
for combination in step.required_param_concepts do
if combination is subset of input_concepts then
Add path to solution_paths
break
end if
end for
if path not in solution_paths then
Add path to candidates
end if

end for

Figure 4.1. Pseudo-code of composition algorithm: part 1
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17:
18:
19:
20:

21:

22:

23:

24:

25:

26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

38:

while candidates do
for path in candidates do
Remove path from candidates
for combination in path. first_step.required_param_concepts do
previous_operations <— All operations that return a parameter concept from
combination, not available in input_concepts
end for
previous_steps <— Steps containing combinations of previous_operations, that
executed in parallel return all parameter concepts in combination (excluding redun-
dant operations for each concept and banned operations of the path), and different to
banned_steps
for step in previous_steps do
step.required_param_concepts <— All the combinations of parameters con-
cepts required to execute all the operations of step
new _path < Create new path from path and prepend step to it
for combination in step.required_param_concepts do
if combination is subset of input_concepts then
Add new_path to solution_paths
break
end if
end for
if new_path not in solution_paths then
Add new_path to candidates
end if
end for
end for

end while

return solution_paths

Figure 4.2. Pseudo-code of composition algorithm: part 2
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The algorithm starts by identifying the operations (goal_operations) that produce at
least one output_concept (line 1). Then, the set of possible final _steps is created from
goal_operations (line 2). A final step is the combination of operations (or a single opera-
tion) that produces all the output concepts. An operation is included in a step if it returns
a parameter concept expected from the step, given that no other operation of that step re-
turns the same concept (no redundancy). Then, for each operation in each final_step, the
algorithm finds all the combinations of required input concepts needed to execute the step

(line 5).

It may be the case that a particular combination includes additional parameters than
those provided by the client. In that case, the algorithm determines that such step requires
further analysis and marks the step as a candidate (line 14). Candidates are paths contain-
ing operations that can produce all the output concepts, but require more input concepts
than those defined by the client. Candidates are explored in a backward chaining way.
Since the backward chaining process can consume a high number of resources and time,
process limits may be required (e.g. timeout, max. number of steps, max. number of
operations, max. number of solutions, etc.). If all the input concepts of a step are known,
each operation of the step can be fully executed, so the path that the step belongs to is

considered a valid solution path (line 9).

Then, all candidates are evaluated (line 17). In order to evaluate a candidate, the algo-
rithm identifies the first_step in the candidate’s path (the step further from the final step,
i.e. the newer step), and the combination of all input parameters for the step’s operations
(line 20 to 22). Then, the algorithm finds possible previous_steps (line 23) that return the
input concepts required by the first_step. For instance, lets suppose that an operation in
the first_step requires input parameter concepts A, B and C. The algorithm finds as pre-
vious operation OpI(returns {A}), Op2(returns {B,C}) and Op3(returns {A,C}). Hence,
the previous_steps would be Stepl(Opl and Op2) and Step2(Op2 and Op3). Note that
Opl and Op3 would not be part of a same step due to the redundancy of the concept A.

However, Op2 and Op3 are part of Step2 even if there is redundancy of concept C because
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each operation provides at least a third required concept. As said before, operations inside
a step (e.g. Opl and Op2) can be executed in parallel (they do not depend among them).

Each step of a path is executed before the following steps (sequence pattern).

In order to determine if a candidate is a solution, the algorithm evaluates whether
the operations in a previous_step have available all the required input concepts (line 28).
In such case, the previous_step is added as first_step to the candidate, which is now a
solution (line 29). If the previous_step can not be executed, the new path is considered as
a candidate, and the candidates evaluation continues. The evaluation of candidates stops
when there are no more candidates, or the whole graph has been traversed so there are no

more operations that can be added to a path.

The complexity of the algorithm depends mainly on the number of operations that
return at least one output_concept. Also, it is influenced by the number of required pa-
rameters concepts in each final_step. More combinations of required parameters concepts
could produce more candidates to evaluate, because there could be more alternatives to
reach each final_step. Additionally, the number of alternatives between an executable step
only with input_concepts and a final_step increases the number of candidates, and hence

the complexity.
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S. IMPLEMENTATION AND EVALUATION

In order to create a proof-of-concept prototype, we searched for real Web APIs. These
services have to adhere to REST constraints, provide comprehensive documentation and
fall into a related domain. Even though some REST constraints are violated, we selected
the following three Web services: Spotify, Songkick and Uber. The Spotify API provides
access to its music streaming service’s catalogue. The Songkick API grant access to a live
music database with information about upcoming and past concerts, as well as setlists.
The Uber API allows a client to ask for types of transportation services, estimate price and

arrival time of a ride, as well as a user’s profile and activity information.

We manually created RAD JSON descriptions for each Web API, as well as a vo-
cabulary based on Schema.org. We had to extend the vocabulary to model the concepts
considered in the Web APIs. We implemented our approach by refining the RAD parser
presented in (Alarcon et al., 2015). The parser, written in Python, transforms RAD JSON
descriptions and vocabulary files into a RAD graph. JSON files are validated by a JSON
Schema template before being parsed. We chose the popular database Neo4j' to store
the dataset because it provides a native graph model. Also, with the help of Py2Neo? li-
brary, both loading and interacting with data is effortless. The composition algorithm was

implemented also in Python and use the Py2Neo library to access the database.

5.1. Characteristics of the dataset

Table 5.1 presents a summary of the generated nodes and edges in the graph. Tables
5.2 and 5.3 present further detail of the generated nodes. Tables 5.4 and 5.5 presents
the number of shared concepts among Web APIs in terms of resources (Table 5.4) and
parameters (Table 5.5). Songkick and Spotify share the major number of concepts, as

expected since they address the same business domain.

'Neodj: http://neodj.com/
2Py2Neo: http://py2neo.org/2.0/
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Table 5.1. Nodes and edges in the graph database

Nodes | Edges
Vocabulary | 173 130
Spotify 611 1189
Uber 175 304
Songkick 318 579
Total 1277 | 2202

Table 5.2. Activity layer nodes

API Resources | Operations | Parameters | Responses | Representations
Spotify 20 27 513 28 23
Uber 10 11 129 15 10
Songkick 15 15 260 15 13

Table 5.3. Semantic layer nodes

API Resource Concepts | Actions | Parameter Concepts
Spotify 10 9 63
Uber 7 4 46
Songkick 6 3 39

Table 5.4. Shared resource concepts

Songkick
3

Uber
Songkick

Songkick
10

Uber
Songkick 10
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5.2. Scenarios of evaluation

In order to test our approach, we defined three evaluation scenarios that differ on the

composition goal and the expected number of involved APIs (scope). The scenarios are:

e Scenario 1:
— Scope: 2 Web APIs, Goal: Obtaining the name of a music group.
In this case, it is expected that only the two APIs related to music (Spotify and
Songkick) are involved in the solution. The expected output parameter must cor-

respond to the concept: http://schema.org/MusicGroup/name/.

e Scenario 2:
— Scope: 2 Web APIs, Goal: Obtaining the name and popularity of a music
group.
We modify the previous scenario and ask for an additional output concept related
to the popularity of a music group (http://schema.org/MusicGroup/
popularity/). Again, we expect that only Songkick and Spotify APIs are

part of the solution.

e Scenario 3:
— Scope: 3 Web API, Goal: Obtaining an estimated fare for a taxi ride to a
music group’s concert.
In this case, we expect that the three APIs, Spotify, Songkick and Uber are in-
volved in the solution. The corresponding concept for the goal is http://
schema.org/Estimate/value/. This concept corresponds to an estima-
tion of a product’s price. In the dataset, the only service that returns this concept

is Uber.
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5.3. Input configuration

For each scenario, it is mandatory an access token provided by the Web service to

identify the client. We considered 3 cases for input concepts:

e | parameter: No additional parameter is provided other than the API key (i.e.
http://schema.org/WebApplication/apiKey/).

e 2 parameters: A concept closely related to the scenarios goal is provided. We
considered the concept of a music group identifier since it should be used in
some solutions (http://schema.org/MusicGroup/identifier/).

e 3 parameters: The client does not know the input concepts, but knows how to
find them through the APIs search capability. Parameters related to the search
concept (http://schema.org/Search/type/ and http://schema
.org/Search/query/) are considered as input concepts, in this case. We

choose this configuration since it is a very common scenario.

5.4. Results

We ran our experiments on an Intel Xeon processor with Turbo up to 3.3GHz, 1 vCPU
and 1 GB of RAM, running on Ubuntu 14.04. We performed the tests 10 times and we
averaged the execution time in order to obtain a reliable measure. We present the results
of the algorithm to find solutions with increasing steps, in three scenarios. We also present
the average search time for each scenario, as well as the number of valid paths (i.e. those
that produce the requested goal). For long running executions we defined a limit of 7 steps
to stop the algorithm. Remaining candidates represent paths that could be solutions for a
composition request, but have not yet reached an executable first step when the algorithm

was halted.
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5.4.1. Scenario 1

Table 5.6 presents the results for the evaluation of scenario 1. As the search algorithm
incorporate more steps, the number of solutions increases quickly. The solutions’ growth
is due to the presence of alternative steps to obtain the required output concept. The
number of solutions found involve 4 steps at most (there are no more candidates pending
to examine). As shown in Table 5.7, the algorithm is able to find all the answers in less
than 2 seconds, independently of the number of input concepts. The solutions for 1 and
2 steps for 1 input concept are presented in Figure 5.1. As in Figures 5.2 and 5.3, black
nodes correspond to the Spotify API, red nodes to the Songkick API and green nodes to
the Uber API. Concepts are presented in blue. Arrows represent GET operations, and
they follow a sequence pattern. There are 10 alternative solutions considering 2 steps.

Unexpectedly, Uber API resources are also part of a viable solution for the 2 steps set.

Table 5.6. Solutions by number of steps for scenario 1

Steps

2134
http://schema.org/WebApplication/apiKey/ | 1 | 10 | 18 | 18
http://schema.org/WebApplication/apiKey/ 61511813
http://schema.org/MusicGroup/identifier/
http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/ 311211918
http://schema.org/Search/type/

Input Parameter Concepts

Table 5.7. Summary of solutions for scenario 1

Execution Time

Input Parameter Concepts Total Solutions | Candidates
(seconds)
http://schema.org/WebApplication/apiKey/ 47 0 1.3590 4 0.1423
http://schema.org/WebApplication/apiKey/ 57 0 1.3154 & 0.0232

http://schema.org/MusicGroup/identifier/

http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/ 52 0 1.3712 + 0.1206
http://schema.org/Search/type/
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|dent|f||(er}/ identifier} identifier}/tracks json
tracks

1 Step 2 Steps

Figure 5.1. Compositions found for scenario 1, with 1 and 2 steps for 1
input concept

5.4.2. Scenario 2

In Table 5.8, the number of solutions increases for 1 parameter compared to scenario 1
since the input concepts for the target resources were not provided. Through backtracking,
the algorithm identifies the operations that produce the required input, but they require
additional input concepts, creating more candidates with more steps. In this scenario, the

limit of 7 steps is reached, remaining various candidate compositions to solve.

Independently of the input concepts, the algorithm correctly finds the only two oper-
ations that return the popularity of a music group and the music group’s name as can be
seen in Figure 5.2. When we compare Figures 5.2.a and 5.2.b, we can identify a signif-
icant difference. In the later case, the provided concept already refers to a music group

identifier, so that, finding the resource and operation is straightforward.

For scenarios 1 and 2, the paths created by the algorithm allow to answer these business

cases (among others):

e Name (and popularity) of a user’s favorite tracks music groups.
e Name (and popularity) of music groups in new releases or featured playlists.

e Name (and popularity) of a user’s event calendar music groups.
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Table 5.8. Solutions by number of steps for scenario 2

Steps
1(2/3| 4 |5 6 7
http://schema.org/WebApplication/apiKey/ | 0 | 2 | 36 | 326 | 2.834 | 22.398 | 148.190
http://schema.org/WebApplication/apiKey/ slol ol o 0 0 0
http://schema.org/MusicGroup/identifier/
http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/ 1/4]54]516|4.682|37.192 | 241.774
http://schema.org/Search/type/

Input Parameter Concepts

Table 5.9. Summary of solutions for scenario 2

Input Parameter Concepts Total Solutions | Remaining Candidates Execution Time

(seconds)
http://schema.org/WebApplication/apiKey/ 173.786 954.996 103.2259 £ 1.0574
http://schema.org/WebApplication/apiKey/ ) 0 0.0733 4+ 0.0012

http://schema.org/MusicGroup/identifier/

http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/ 284.223 1.024.054 89.6786 £ 1.5204
http://schema.org/Search/type/

e Name (and popularity) of a user’s playlist music groups.
e Name (and popularity) of an album’s music groups.

e Name (and popularity) of music groups similar to one another.

5.4.3. Scenario 3

Table 5.10 presents the results for the evaluation of scenario 3. As in previous cases,
we vary the number of input concepts. Table 5.11 presents a summary of the execution.
We can observe a large number of solutions in all cases. This behavior is due to the
existence of only one operation returning an estimate of a ride, but none of its required
parameters are supplied as part of the initial input. Hence, the algorithm must find many
alternatives to supply such input concepts. Hence, there are no solutions of one step (see

Table 5.10): the shortest path involves at least two steps.

Figure 5.3 presents the compositions found with 2 and 3 steps. For example, a solution

for 2 input concepts is highlighted with dotted lines. It begins requesting artists similar to a
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Figure 5.2. Compositions found for scenario 2, with 1, 2 and 3 steps

Table 5.10. Solutions by number of steps for scenario 3

Steps
Input Parameter Concepts 1 37 4 5 6 -
http://schema.org/WebApplication/apiKey/ | 0 | 1 | 11 | 132 | 1.726 | 25.539 | 336.803
http://schema.org/WebApplication/apiKey/
http://schema.org/MusicGroup/identifier/ 03|20 178 2.016 | 18.083 | 103.672
http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/ 0132213501 5.525|78.364 | 1.010.114
http://schema.org/Search/type/
particular one (GET on the resource api.spotify.com/vl/artists/{http://

schema.org/MusicGroup/identifier/}/related-artists), followed by

requesting the planned concerts for such artists (GET on resource api . songkick.com/
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Table 5.11. Summary of solutions for scenario 3

Input Parameter Concepts Total Solutions | Remaining Candidates Execution Time

(seconds)
http://schema.org/WebApplication/apiKey/ 364.212 4.663.031 394.1312 £ 11.9393
http://schema.org/WebApplication/apiKey/ 123.972 343.197 78,4665 & 0.9224

http://schema.org/MusicGroup/identifier/

http://schema.org/WebApplication/apiKey/
http://schema.org/Search/query/ 1.094.378 5.322.899 288.9120 £ 2.6779
http://schema.org/Search/type/

api/3.0/events. json), and then requesting an estimated taxi fare for a chosen event

(GET on resource api.uber.com/vl/estimates/price).

Independently of the input parameters, the algorithm finds the resource that provides
the expected output (GET on the Uber resource: estimates/price). Only for the input in-
cluding the music group name concept, a POST operation (blue arrow) is considered in the
3 steps solution set. Again the only patterns identified are sequence and alternative. Par-
allel patterns were found in solution sets with more steps (not shown). The compositions

found in this scenario represent the following situations:

e Cost of going to a venue
e Cost of going to an artist’s future events
e Cost of going to a user’s upcoming events

e Cost of going to concerts of similar artists to another that a user likes
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Figure 5.3. Compositions found for scenario 3, with 2 and 3 steps
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6. CONCLUSIONS

One of the contributions of this thesis is the RAD description metamodel for REST
services and its implementation using JSON. This proposal results in a lightweight ap-
proach that is capable of modeling well-know, industry level Web APIs. We reviewed
various Web APIs in order to find those services closest to the REST style and test our ap-
proach. Our implementation was able to support most of the common practices followed
by Web APIs when dealing with their input and output parameters in a lightweight style.
That is, some parameters are optional, some are mandatory, some are present in the header,
others in the body, others in the URI scheme, and some require certain data types as seen
in figures 3.5 and 3.6. One property we did not support, however, was the dependency
between the response and particular values of the input parameters. In some services, the

response’s structure may vary depending on the values of the input parameters.

A second contribution is the lightweight metagraph based on the proposed metamodel.
The metagraph made possible not only to discover specific services (Alarcon et al., 2015)
but also to support a complex task such as automatic and dynamic service composition
with reasonable performance. The metamodel can be implemented in various ways, for

instance as an RDF ontology, or as any other graph-based approach.

One advantage of our lightweight approach for the semantic layer is that it can be
integrated with existing Web services descriptions, regardless of their format (e.g. HTML,
JSON, YAML, XML, etc.), without interfering with the exposed information. It can also
refer to specific semantic models such as existing ontologies and Linked Data'. This
layer makes possible to bind different services, based on the meaning and purpose of their
exchanged information and hence make possible a rich service composition as can be seen

in the results in figures 5.1, 5.2 and 5.3.

However, one of the disadvantages of our proposal is that the description is separated

from the service itself, as an additional layer. This factor increases coupling between

ILinked Data: http://linkeddata.org/
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services and their descriptions and limits service evolvability. A way to lessen this disad-
vantage is to implement clients that consider service descriptions as information models

of what they can expect, instead of guaranteed contracts during execution time.

Also, when a large number of compositions are generated, a ranking strategy is re-
quired for a client to effectively use the proposed compositions. For instance, solutions
with fewer steps may be preferred since they may be executed faster. However, a proper

quality model representing client’s interest (such as the cost of a service) is required.

In addition, more complex control flow patterns could be supported by the algorithm,
which would yield in even more solutions. Also, the removal of some restrictions in the

composition algorithm could lead to more interesting solutions.

Our proposal is based on services signature such as input and output parameter con-
cepts, however, other elements to consider could be the semantics of the actions, the status
codes of responses and the response metadata. This extension may result in solutions clos-
est to the client’s goal. For instance, a client’s goal to change a resource’s state may be

satisfied by a solution that do not return the changed state itself, but a HT'TP code.

Composition results would improve with a better definition and use of concepts. Some
concepts could be too general for some cases, so it would require the creation of more
specific concepts. These new concepts should be related with the generic one, and their
bound should be taken into account while composing services. Also, some concepts were
assumed to be equivalent (e.g. identifiers and tokens). Generally, however, this is far from
trivial in real applications. A further refinement of the concept hierarchy may be required

leading to less solutions for a composition request, but with more business value.

As for future work, we will focus on supporting the implementation and execution of
the compositions themselves. Again, this is far from trivial since it will require to face
differences in variable’s types; even though they are semantically equivalent, data types

may be drastically different.
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