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ABSTRACT

Linear algebra algorithms often require some sort of iteration or recursion as is illus-

trated by standard algorithms for Gaussian elimination, matrix inversion, and transitive

closure. A key characteristic shared by these algorithms is that they allow looping for

a number of steps that is bounded by the matrix dimension. In this thesis we extend

the matrix query language MATLANG with this type of recursion, and show that this suf-

fices to express classical linear algebra algorithms. We study the expressive power of this

language and show that it naturally corresponds to arithmetic circuit families, which are

often said to capture linear algebra. Furthermore, we analyze several sub-fragments of our

language, and show that their expressive power is closely tied to logical formalisms on

semiring-annotated relations.

Keywords: logic, matlang, linear algebra, arithmetic circuits, relational algebra.
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RESUMEN

Los algoritmos del álgebra lineal a menudo requieren algún tipo de iteración o re-

cursión, como lo ilustran los algoritmos estándar para la eliminación gaussiana, la in-

versión de matrices y la clausura transitiva. Una caracterı́stica clave compartida por estos

algoritmos es que permiten que se repitan varios pasos, pero limitados por la dimensión

de la matriz. En esta tesis, ampliamos el lenguaje de consulta para matrices MATLANG

con este tipo de recursión, y evidenciamos que esto es suficiente para expresar algoritmos

clásicos del álgebra lineal. Estudiamos el poder expresivo de este lenguaje y demostramos

que corresponde naturalmente a las familias de circuitos aritméticos, que a menudo se

dice que capturan el álgebra lineal. Además, analizamos varios sub-fragmentos de nue-

stro lenguaje, y se demuestra que su poder expresivo está estrechamente relacionado con

formalismos lógicos en las relaciones anotadas en semi-anillos.

Palabras Claves: lógica, matlang, álgebra lineal, circuitos aritméticos, álgebra relacional.
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1. INTRODUCTION

Linear algebra-based algorithms have become a key component in data analytic work-

flows. As such, there is a growing interest in the database community to integrate linear

algebra functionalities into relational database management systems (Luo, Gao, Gubanov,

Perez, & Jermaine, 2018; Boehm, Kumar, & Yang, 2019; Kunft, Alexandrov, Katsifodi-

mos, & Markl, 2016; Jankov et al., 2019; Khamis, Ngo, Nguyen, Olteanu, & Schleich,

2018). In particular, from a query language perspective, several proposals have recently

been put forward to unify relational algebra and linear algebra. Two notable examples

of this are LARA (Hutchison, Howe, & Suciu, 2017), a minimalistic language in which a

number of atomic operations on associative tables are proposed, and MATLANG, a query

language for matrices (Brijder, Geerts, den Bussche, & Weerwag, 2019).

Both LARA and MATLANG have been studied by the database theory community,

showing interesting connections to relational algebra and logic. For example, fragments

of LARA are known to capture first-order logic with aggregation (Barceló, Higuera, Pérez,

& Subercaseaux, 2020), and MATLANG has been recently shown to be equivalent to a re-

stricted version of the (positive) relational algebra on K-relations, RA+
K (Brijder, Gyssens,

& den Bussche, 2020), where K denotes a semiring. On the other hand, some standard

constructions in linear algebra are out of reach for these languages. For instance, it was

shown that under standard complexity-theoretic assumptions, LARA can not compute the

inverse of a matrix or its determinant (Barceló et al., 2020), and operations such as the

transitive closure of a matrix are known to be inexpressible in MATLANG (Brijder et al.,

2019). Given that these are fundamental constructs in linear algebra, one might wonder

how to extend LARA or MATLANG in order to allow expressing such properties.

One approach would be to add these constructions explicitly to the language. Indeed,

this was done for MATLANG by Brijder et al., 2019. In this work, the authors have extended

the core language with the trace, the inverse, the determinant, or the eigenvectors operators

and study the expressive power of the result. However, one can argue that there is nothing
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special in these operators, apart that they have been used historically in linear algebra

textbooks and they extend the expressibility of the core language. The question here is

whether these new operators form a sound and natural choice to extend the core language,

or whether they are just some particular queries that we would like to support. A similar

approach is done with LARA by Barceló et al., 2020, where instead of explicitly adding

the convolution operator, they extend the language with a lineal order over the domain,

and prove that, as a consequence, convolution can be computed.

In this thesis we take the more principled approach by studying what are the atomic op-

erations needed to define standard linear algebra algorithms. Inspecting any linear algebra

textbook, one sees that most linear algebra procedures heavily rely on the use of for-loops

in which iterations happen over the dimensions of the matrices involved. To illustrate this,

let us consider the example of computing the transitive closure of a graph. This can be

done using a modification of the Floyd-Warshall algorithm (Cormen, Leiserson, Rivest, &

Stein, 2001), which takes as its input an n⇥n adjacency matrix A representing our graph,

and operates according to the following pseudo-code:

for k = 1..n do

for i = 1..n do

for j = 1..n do

A[i, j] := A[i, j] + A[i, k] · A[k, j]

After executing the algorithm, all of the non zero entries represent the existence of an edge

in the (irreflexive) transitive closure graph.

By examining standard linear algebra algorithms such as Gaussian elimination, LU -

decomposition, computing the inverse of a matrix, or its determinant, we can readily see

that this pattern continues. Namely, we observe that there are two main components to

such algorithms: (i) the ability to iterate up to the matrix dimension; and (ii) the ability

to access a particular position in our matrix. In order to allow this behavior in a query

language, we propose to extend MATLANG with limited recursion in the form of for-loops,

2



resulting in the language for-MATLANG. To simulate the two components of standard

linear algebra algorithms in a natural way, we simulate a loop of the form for i = 1..n

do by leveraging canonical vectors. In other words, we use the canonical vectors b1 =

(1, 0, . . .), b2 = (0, 1, . . .), . . . , to access specific rows and columns, and iterate over

these vectors. In this way, we obtain a language able to compute important linear algebra

operators such as LU -decomposition, determinant, matrix inverse, among other things.

Of course, a natural question to ask now is whether this really results in a language

suitable for linear algebra? We argue that the correct way to approach this question is to

compare our language to arithmetic circuits, which have been shown to capture the vast

majority of existing matrix algorithms, from basic ones such as computing the determi-

nant and the inverse, to complex procedures such as discrete Fourier transformation, and

Strassen’s algorithm (see Shpilka & Yehudayoff, 2010; Allender, 2004 for an overview

of the area), and can therefore be considered to effectively capture linear algebra. In the

main technical result of this thesis, we show that for-MATLANG indeed computes the

same class of functions over matrices as the ones computed by arithmetic circuit families

of bounded degree. As a consequence, for-MATLANG inherits all expressiveness proper-

ties of circuits, and thus can simulate any linear algebra algorithm definable by circuits.

Having established that for-MATLANG indeed provides a good basis for a linear alge-

bra language, we move to a more fine-grained analysis of the expressiveness of its different

fragments. For this, we aim to provide a connection with logical formalisms, similarly as

was done by linking LARA and MATLANG to first-order logic with aggregates (Barceló

et al., 2020; Brijder et al., 2019). As we show, capturing different logics correspond to

restricting how matrix variables are updated in each iteration of the for-loops allowed in

for-MATLANG. For instance, if we only allow to add some temporary result to a variable

in each iteration (instead of rewriting it completely like in any programming language),

we obtain a language, called sum-MATLANG, which is equivalent to RA+
K , directly extend-

ing an analogous result shown for MATLANG, mentioned earlier (Brijder et al., 2020). We

then study updating matrix variables based on another standard linear algebra operator,

3



the Hadamard product, resulting in a fragment called FO-MATLANG, which we show to

be equivalent to weighted logics (Droste & Gastin, 2005). Finally, in prod-MATLANG

we consider updating the variables based on the standard matrix product, and link this

fragment of our language to the ones discussed previously.

1.1. Contribution and outline

After we recall MATLANG in Chapter 2, we show in Chapter 3 how for-loops can

be added to MATLANG in a natural way. We also observe that for-MATLANG strictly

extends MATLANG. In addition, we discuss some design decisions behind the definition of

for-MATLANG, noting that our use of canonical vectors results in the availability of an

order relation.

In Chapter 4 we show that for-MATLANG can compute important linear algebra algo-

rithms in a natural way. We provide expressions in for-MATLANG for LU decomposition

(used to solve linear systems of equations), the determinant and matrix inversion.

More generally, in Chapter 5 we report our main technical contribution. We show that

every uniform arithmetic circuits of polynomial degree correspond to a for-MATLANG

expression, and vice versa, when a for-MATLANG expression has polynomial degree,

then there is an equivalent uniform family of arithmetic circuits. As a consequence,

for-MATLANG inherits all expressiveness properties of such circuits.

Finally, in Chapter 6 we generalize the semantics of for-MATLANG to matrices with

values in a semiring K, and show that two natural fragment of for-MATLANG, sum-

MATLANG, and FO-MATLANG, are equivalent to the (positive) relational algebra and weigh-

ted logics on binary K-relations, respectively. We also briefly comment on a minimal

fragment of for-MATLANG, based on prod-MATLANG, that is able to compute matrix

inversion.
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1.2. Related work

We already mentioned LARA (Hutchison et al., 2017) and MATLANG (Brijder et al.,

2019) whose expressive power was further analyzed by Barceló et al., 2020; Brijder et

al., 2020; Geerts, 2019, 2020. Extensions of SQL for matrix manipulations are reported

by Luo et al., 2018. Most relevant is the work of Jankov et al., 2019 in which a recur-

sion mechanism is added to SQL which resembles for-loops. The expressive power of this

extension is unknown, however. Classical logics with aggregation (Hella, Libkin, Nurmo-

nen, & Wong, 2001) and fixed-point logics with counting (Grohe & Pakusa, 2017) can

also be used for linear algebra. More generally, for the descriptive complexity of linear

algebra we refer to the work by Dawar, Grohe, Holm, & Laubner, 2009; Holm, 2010.

Most of these works require to encode real numbers inside relations, whereas we treat real

numbers as atomic values. We refer to relevant papers related to arithmetic circuits and

logical formalisms on semiring-annotated relations in the corresponding chapters later in

the thesis.
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2. MATLANG

We start by recalling the matrix query language MATLANG, introduced by Brijder et

al., 2019, which serves as our starting point.

2.1. Syntax

Let V = {V1, V2, . . .} be a countably infinite set of matrix variables and F =
S

k>1Fk

with Fk a set of functions of the form f : Rk ! R, where R denotes the set of real

numbers. The syntax of MATLANG expressions is defined by the following grammar1:

e ::= V 2 V (matrix variable)

| eT (transpose)

| 1(e) (one-vector)

| diag(e) (diagonalization of a vector)

| e1 · e2 (matrix multiplication)

| e1 + e2 (matrix addition)

| e1 ⇥ e2 (scalar multiplication)

| f(e1, . . . , ek) (pointwise application of f 2 Fk).

MATLANG is parametrized by a collection of functions F but in the remainder of the

thesis we only make this dependence explicit, and write MATLANG[F ], for some set F

of functions, when these functions are crucial for some results to hold. When we simply

write MATLANG, we mean that any function can be used (including not using any function

at all).

1The original syntax also permits the operator let V = e1 in e2, which replaces every occurrence of
V in e2 with the value of e1. Since this is just syntactic sugar, we omit this operator. We also explicitly
include matrix addition and scalar multiplication, although these can be simulated by pointwise function
applications. Finally, we use transposition instead of conjugate transposition since we work with matrices
over R.

6



2.2. Schemas and typing

To define the semantics of MATLANG expressions we need a notion of schema and

well-typedness of expressions. A MATLANG schema S is a pair S = (M,size), where

M ⇢ V is a finite set of matrix variables, and size :M 7! Symb⇥ Symb is a function

that maps each matrix variable inM to a pair of size symbols. The size function helps

us determine whether certain matrix operations, such as matrix multiplication, can be

performed for matrices adhering to a schema. We denote size symbols by Greek letters

↵, , . We also assume that 1 2 Symb. To help us determine whether a MATLANG

expression can always be evaluated, we define the type of an expression e, with respect to

a schema S, denoted by typeS(e), inductively as follows:

• typeS(V ) := size(V ), for a matrix variable V 2M;

• typeS(e
T ) := (,↵) if typeS(e) = (↵, );

• typeS(1(e)) := (↵, 1) if typeS(e) = (↵, );

• typeS(diag(e)) := (↵,↵), if typeS(e) = (↵, 1);

• typeS(e1 · e2) := (↵, ) if typeS(e1) = (↵, ), and typeS(e2) = (, );

• typeS(e1 + e2) := (↵, ) if typeS(e1) = typeS(e2) = (↵, );

• typeS(e1 ⇥ e2) := (↵, ) if typeS(e1) = (1, 1) and typeS(e2) = (↵, ).

• typeS(f(e1, . . . , ek)) := (↵, ), whenever typeS(e1) = · · · = typeS(ek) :=

(↵, ) and f 2 Fk.

We call an expression well-typed according to the schema S , if it has a defined type.

A well-typed expression can be evaluated regardless of the actual sizes of the matrices

assigned to matrix variables, as we describe next.

2.3. Semantics

We use Mat[R] to denote the set of all real matrices and for A 2 Mat[R], dim(A) 2 N
2

denotes its dimensions. A (MATLANG) instance I over a schema S is a pair I = (D,mat),

where D : Symb 7! N assigns a value to each size symbol (and thus in turn dimensions to

7



each matrix variable), and mat :M 7! Mat[R] assigns a concrete matrix to each matrix

variable V 2M, such that dim(mat(V )) = D(↵)⇥D() if size(V ) = (↵, ). That is,

an instance tells us the dimensions of each matrix variable, and also the concrete matrices

assigned to the variable names inM. We assume that D(1) = 1, for every instance I. If

e is a well-typed expression according to S, then we denote by JeK(I) the matrix obtained

by evaluating e over I, and define it as follows:

• JV K(I) := mat(V ), for V 2M;

• JeT K(I) := JeK(I)T , where AT is the transpose of matrix A;

• J1(e)K(I) is a n ⇥ 1 vector with 1 as all of its entries, where dim(JeK(I)) =

(n,m);

• Jdiag(e)K(I) is a diagonal matrix with the vector JeK(I) on its main diagonal,

and zero in every other position;

• Je1 · e2K(I) := Je1K(I) · Je2K(I);

• Je1 + e2K(I) := Je1K(I) + Je2K(I);

• Je1 ⇥ e2K(I) := a⇥ Je2K(I) with Je1K(I) = [a]; and

• Jf(e1, . . . , ek)K(I) is a matrix A of the same size as Je1K(I), and where Aij has

the value f(Je1K(I)ij, . . . , JekK(I)ij).

This concludes the description and semantics of MATLANG. Just as it is commonly done

in MATLANG, we will sometimes abuse the notation and use 1⇥ 1 matrices as scalars and

vice versa. For an in-depth discussion on why this is permissible from an expressiveness

point of view, see (Brijder et al., 2019).

We next provide some simple example.

Example 2.1. Consider the MATLANG[f] expression with f : R
2 ! R : (x, y) 7!

x · y:

cwalk := (1(V ))T · f


V · V,diag(1(V )


· 1(V ).

Let S consist ofM := {V } and size(V ) := (↵,↵) such that matrices assigned to V by

instances I over S are square matrices. It is readily verified that cwalk is well-typed and

8



more specifically, typeS(cwalk) = (1, 1), i.e., it returns an element of R on any instance

I. Let I be such that D(↵) = n and mat(V ) is an adjacency matrix A of an undirected

graph G consisting of n vertices. Then, it is readily verified that JcwalkK(I) returns the

number of paths of length two in G which start in and end at the same vertex. ⇤

Although MATLANG forms a solid basis for a matrix query language, it is limited in ex-

pressive power. Indeed, MATLANG is subsumed by first order logic with aggregates that

uses only three variables (Brijder et al., 2019). Hence, no MATLANG expression exists

that can compute the transitive closure of a graph (represented by its adjacency matrix) or

can compute the inverse of a matrix. Rather than extending MATLANG with specific linear

algebra operators, such as matrix inversion, we next introduce a limited form of recursion

in MATLANG.

9



3. EXTENDING MATLANG WITH FOR LOOPS

To extend MATLANG with recursion, we take inspiration from classical linear algebra

algorithms, such as those described by Press, Teukolsky, Vetterling, & Flannery, 1992.

Many of these algorithms are based on for-loops in which the termination condition for

each loop is determined by the matrix dimensions. We have seen how the transitive closure

of a matrix can be computed using for-loops in the Introduction. Here we add this ability

to MATLANG, and show that the resulting language, called for-MATLANG, can compute

properties outside of the scope of MATLANG. We see more advanced examples, such as

Gaussian elimination and matrix inversion, later in the thesis.

3.1. Syntax and semantics of for-MATLANG

The syntax of for-MATLANG is defined just as for MATLANG but with an extra rule

in the grammar:

for v,X. e (canonical for loop, with v,X 2 V).

Intuitively, X is a matrix variable which is iteratively updated according to the expression

e. We simulate iterations of the form “for i 2 [1..n]” by letting v loop over the canonical

vectors bn1 , . . . , b
n
n of dimension n. Here, bn1 = [1 0 · · · 0]

T , bn2 = [0 1 0 · · · 0]
T , etc1 . When

n is clear from the context we simply write b1, b2, . . .. In addition, the expression e in the

rule above may depend on v.

We next make the semantics precise and start by declaring the type of loop expressions.

Given a schema S , the type of a for-MATLANG expression e, denoted typeS(e), is

defined inductively as in MATLANG but with following extra rule:

1It is important that the canonical basis used in the iteration is the standard one (normalized), because we
aim to check or get the value of a specific position of a matrix using these vectors. We can always compute
these vectors if we have any basis of dimension n.
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• typeS(for v,X. e) := (↵, ), if

typeS(e) = typeS(X) = (↵, ) and typeS(v) = (, 1).

We note that S now necessarily includes v and X as variables and assigns size symbols

to them. We also remark that in the definition of the type of for v,X. e, we require

that typeS(X) = typeS(e) as this expression updates the content of the variable X in

each iteration using the result of e. We further restrict the type of v to be a vector, i.e.,

typeS(v) = (, 1), since v will be instantiated with canonical vectors. A for-MATLANG

expression e is well-typed over a schema S if its type is defined.

For well-typed expressions we next define their semantics. This is done in an inductive

way, just as for MATLANG. To define the semantics of for v,X. e over an instance I , we

need the following notation. Let I be an instance and V 2 M. Then I[V := A] denotes

an instance that coincides with I, except that the value of the matrix variable V is given by

the matrix A. Assume that typeS(v) = (, 1), and typeS(e) = (↵, ) and n := D().

Then, Jfor v,X. eK(I) is defined iteratively, as follows:

• Let A0 := 0 be the zero matrix of size D(↵)⇥D().

• For i = 1, . . . n, compute Ai := JeK(I[v := bni , X := Ai1]).

• Finally, set Jfor v,X. eK(I) := An.

For better understanding how for-MATLANG works, we next provide some exam-

ples. We start by showing that the one-vector and diag operators are redundant in

for-MATLANG.

Example 3.1. We first show how the one-vector operator 1(e) can be expressed using

for loops. It suffices to consider the expression

e1 := for v,X.X + v,

with typeS(v) = (↵, 1) = typeS(X) if typeS(e) = (↵, ). This expression is well-

typed and is of type (↵, 1). When evaluated over some instance I with n = D(↵), Je1K(I)

is defined as follows. Initially, A0 := 0. Then Ai := Ai1 + bni , i.e., the ith canonical
11



vector is added to Ai1. Finally, Je1K(I) := An and this now clearly coincides with

J1(e)K(I). ⇤

Example 3.2. We next show that the diag operator is redundant in for-MATLANG.

Indeed, it suffices to consider the expression

ediag(e) := for v,X.X + (vT · e)⇥ v · vT ,

where e is a for-MATLANG expression of type (↵, 1). For this expression to be well-

typed, v has to be a vector variable of type ↵ ⇥ 1 and X a matrix variable of type (↵,↵).

Then, JediagK(I) is defined as follows. Initially, A0 is the zero matrix of dimension n⇥ n,

where n = D(↵). Then, in each iteration i 2 [1..n], Ai := Ai1 + ((b
n
i )

T · JeK(I)) ⇥

(bni · (b
n
i )

T ). In other words, Ai is obtained by adding the matrix with value (JeK(I))i on

position (i, i) to Ai1. Hence, JediagK(I) := An = Jdiag(e)K(I). ⇤

These examples illustrate that we can limit for-MATLANG to consist of the following

“core” operators: transposition, matrix multiplication and addition, scalar multiplication,

pointwise function application, and for-loops. More specific, for-MATLANG is defined

by the following simplified syntax:

e ::= V | eT | e1 · e2 | e1 + e2 | e1 ⇥ e2 | f(e1, . . . , ek) | for v,X. e

Similarly as for MATLANG, we write for-MATLANG[F ] for some setF of functions when

these are required for the task at hand.

As a final example, we show that we can compute whether a graph contains a 4-clique

using for-MATLANG.

Example 3.3. To test for 4-cliques it suffices to consider the following expression with

for-loops nested four times:

foru, X1. X1 +

for v, X2. X2 +

12



forw, X3. X3 +

for x, X4. X4 +

uT · V · v · uT · V · w · uT · V · x·

vT · V · w · vT · V · x · wT · V · x · g(u, v, w, x)

with g(u, v, w, x) = f(u, v) · f(u, w) · f(u, x) · f(v, w) · f(v, x) · f(w, x) and f(u, v) =

1  uT · v. Note that f(bni , b
n
j ) = 1 if i 6= j and f(bni , b

n
j ) = 0 otherwise. Hence,

g(bni , b
n
j , b

n
k , b

n
` ) = 1 if and only if all i, j, k, l are pairwise different. When evaluating the

expression on an instance I such that V is assigned to the adjacency matrix of a graph,

the expression above evaluates to a non-zero value if and only if the graph contains a

four-clique. ⇤

Given that MATLANG can not check for 4-cliques (Brijder et al., 2019), we easily

obtain the following.

PROPOSITION 3.1. For any collection of functions F , MATLANG[F ] is properly sub-

sumed by for-MATLANG[F ].

3.2. Design decisions behind for-MATLANG

3.2.1. Loop Initialization

As the reader may have observed, in the semantics of for-loops we always initialize A0

to the zero matrix 0 (of appropriate dimensions). It is often convenient to start the iteration

given some concrete matrix originating from the result of evaluation a for-MATLANG

expression e0. To make this explicit, we write for v,X = e0. e and its semantics is

defined as above with the difference that A0 := Je0K(I). We observe, however, that

for v,X = e0. e can already be expressed in for-MATLANG. In other words, we do

not loose generality by assuming an initialization of A0 by 0. The key insight is that

in for-MATLANG we can check during evaluation whether or not the current canonical

vector bni is equal to the bn1 . This is due to the fact that for-loops iterate over the canonical
13



vectors in a fixed order. We discuss this more in the next paragraph. In particular, we

can define a for-MATLANG expression min(), which when evaluated on an instance,

returns 1 if its input vector is bn1 , and returns 0 otherwise. Given min(), consider now the

for-MATLANG expression

for v,X.min(v) · e(v,X/e0) + (1 min(v)) · e(v,X),

where we explicitly list v and X as matrix variables on which e potentially depends on,

and where e(v,X/e0) denotes the expression obtained by replacing every occurrence of

X in e with e0. When evaluating this expression on an instance I, A0 is initial set to the

zero matrix, in the first iteration (when v = bn1 and thus min(v) = 1) we have A1 =

JeK(I[v := bn1 , X := Je0K(I)]), and for consecutive iterations (when only the part related

to 1  min(v) applies) Ai is updated as before. Clearly, the result of this evaluation is

equal to Jfor v,X=e0. eK(I).

As an illustration, we consider the Floyd-Warshall algorithm given in the Introduction.

Example 3.4. Consider the following expression:

eFW := for vk, X1=A. X1 +

for vi, X2. X2 +

for vj, X3. X3 +

(vTi ·X1 · vk · v
T
k ·X1 · vj)⇥ vi · v

T
j

The expression eFW simulates the Floyd-Warshall algorithm by updating the matrix A,

which is stored in the variable X1. The inner sub-expression here constructs an n ⇥ n

matrix that contains one in the position (i, j) if and only if one can reach the vertex j from

i by going through k, and zero elsewhere. If an instance I assigns to A the adjacency

matrix of a graph, then JeFW K(I) will be equal to the matrix produced by the algorithm

given in the Introduction. ⇤

14



3.2.2. Order

By introducing for-loops we not only extend MATLANG with bounded recursion, we

also introduce order information. Indeed, the semantics of the for operator assumes

that the canonical vectors b1, b2, . . . are accessed in this order. It implies, among other

things, that for-MATLANG expressions are not permutation-invariant. We can, for ex-

ample, return the bottom right-most entry in a matrix. Indeed, consider the expression

emax := for v,X. v which, for it to be well-typed, requires both v and X to be of type

(↵, 1). Then, JemaxK(I) = bnn, for n = D(↵), simply because initially, X = 0, but X

will be overwritten by bn1 , b
n
2 , . . . , b

n
n, in this order. Hence, at the end of the evaluation

bnn is returned. To extract the bottom right-most entry from a matrix, we now simply use

eTmax · V · emax.

Although the order is implicit in for-MATLANG, we can explicitly use this order in

for-MATLANG expressions. More precisely, the order on canonical vectors is made ac-

cessible by using the matrix:

S =

2
6666664

1 1 · · · 1

0 1 · · · 1
...

... . . . 1

0 0 · · · 1

3
7777775
.

We observe that S has the property that bTi · S · bj = 1, for two canonical vectors bi and

bj of the same dimension, if and only if i  j. Otherwise, bTi · S · bj = 0. Interestingly,

we can build the matrix S with the following for-MATLANG expression:

e = for v,X.X + ((X · emax) + v) · vT + v · eTmax,

where emax is as defined above. The intuition behind this expression is that by using the

last canonical vector bn, as returned by emax, we have access to the last column of X (via

the product X · emax). We use this column such that after the i-th iteration, this column

contains the i-th column of S. This is done by incrementing X with v ·eTmax. To construct
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S, in the i-th iteration we further increment X with (i) the current last column in X (via

X ·emax ·v
T ) which holds the (i1)-th column of S; and (ii) the current canonical vector

(via v · vT ). Hence, after iteration i, X contains the first i columns of S and holds the

ith column of S in its last column. It is now readily verified that X = S after the nth

iteration.

It should be clear that if we can compute S using e, then we can easily define the

following predicates and vectors related with the order of canonical vectors:

• succ(u, v) such that succ(bni , b
n
j ) = 1 if i  j and 0 otherwise. Similarly, we can

define succ+(u, v) such that succ+(bni , b
n
j ) = 1 if i < j and 0 otherwise;

• min(u) such that min(bni ) = 1 if i = 1 and min(bni ) = 0 otherwise;

• max(u) such that max(bni ) = 1 if i = n and min(bni ) = 0 otherwise; and

• emin and emax such that JeminK(I) = bn1 and JemaxK(I) = bnn, respectively.

We can define these and many other order related expressions as follows.

By defining

succ(u, v) := uT · S · v,

we obtain an order relation that allows us to discern whether one canonical vector comes

before the other in the order given by S. If we want a strict order, we can just use the

matrix S< := S  eId, where eId is an expression in for-MATLANG which returns the

identity matrix (of appropriate dimension). Given this, we define

succ+(u, v) := uT · S< · v.

from which we can also derive

max(u) := uT · emax.

which is an expression that returns the last canonical vector.
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Interestingly, we can also define the previous relation between canonical vectors. For

this, we require the following matrix:

Prev =

2
6666664

0 1 · · · 0

0
. . . . . . ...

. . . . . . . . . . . 1

0 · · · · · · 0

3
7777775
,

Using this matrix, we have that for a canonical vector bi:

Prev · bi =

8
><
>:
bi1, if i > 1.

0, if i = 1.

where 0 is a vector of zeros of the same type as bi. Notice also that 1(u)T · Prev · u is

equal to zero, for a canonical vector u, if and only if u = b1 is the first canonical vector,

and zero otherwise. Therefore the expression min(u) is defined as

min(u) := 1 1(u)T · Prev · u,

and, when evaluated over canonical vectors, will result in 1 if and only if u = b1 is the

first canonical vector. To define the first canonical vector in the order given by for, we

can then write:

emin := for v,X.X +min(v)⇥ v,

Now, we show that Prev can be defined using the following for-MATLANG expression:

ePrev := for v,X.X +


(1max(v))⇥ v · eTmax  (X · emax) · e
T
max + (X · emax) · v

T


.

Here, X is initialized as 0 and thus in the first iteration we put b1 in the last column of X

(note that X ·emax is also zero in the first iteration). Next, in iteration two, we add a matrix

that has the stored vector X · emax (the previous canonical vector) in the column indicated

by v (the current canonical vector) and v  X · emax in the last column, to replace the

vector stored. As a consequence, b2 is now stored in the last column. In the last iteration,

we have bn1 already in the last column, so no further update of X is required.
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To get the next relation we simply do eNext = eTPrev. We have that for a canonical vector

bi:

Next · bi =

8
><
>:
bi+1, if i < n.

0, if i = n.

In this way, we also can obtain the following operators for a canonical vector v:

prev(v) := ePrev · v.

next(v) := eNext · v.

More generally, we define

egetPrevMatrix(v) := ⇧w.succ(w, v)⇥ ePrev + (1 succ(w, v))⇥ eId

egetNextMatrix(v) := ⇧w.succ(w, v)⇥ eNext + (1 succ(w, v))⇥ eId

expressions that, when v is interpreted as canonical vector bi, output Previ and Nexti

respectively. Note that

Prevj · bi =

8
><
>:
bij , if i > j.

0, if i  j.

and

Nextj · bi =

8
><
>:
bi+j , if i+ j  n.

0, if i+ j > n.

Finally, define

emin+i := egetNextMatrix(. . . egetNextMatrix| {z }
i times

(emin))

and

emaxi := egetPrevMatrix(. . . egetPrevMatrix| {z }
i times

(emax)).

Having order information available results in for-MATLANG to be quite expressive.

We heavily rely on order information in the next chapters to compute the inverse of ma-

trices and more generally to simulate low complexity Turing machines and arithmetic

circuits.
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3.3. Syntactic definitions and simplifications

Before jumping into the following chapters we first introduce some additional nota-

tions and describe simplifications that will be used later.

3.3.1. Operators

Notice that when defining some expressions, we actually only update X by adding

some matrix to it. This restricted form of the for loop will prove useful throughout the

paper, and we will therefore introduce it a special operator. That is, we define:

⌃v.e := for v,X.X + e.

Analogously to the summation with respect to canonical vectors, we can define the prod-

uct. More precisely, if e is an for-MATLANG expression (that possibly uses the vari-

able v), we would like to define the result of evaluating JeK(I[v := e1]) · JeK(I[v :=

e2]) · · · · JeK(I[v := en]), where the product is evaluated from left to right. For this pur-

pose, we define the following operator:

⇧v.e = for v,X.X · e+ min(v) · e.

Here we use the factor min(v) · e to handle the case of the first canonical vector which

starts with X being equal to the null matrix.

We sometimes want to iterate over k canonical vectors. We define the following short-

hand notation:

for v1, . . . , vk, X. e(X, v1, . . . , vn) :=for v1, X1.X1+

for v2, X2=X1.X2+

for v3, X3=X2.X3+

. . .

for vk, Xk=Xk1. e(Xk, v1, . . . , vk).
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Here, we just aggregate the results of e(Xk, v1, . . . , vk) for it to be returned after v1, . . . , vk

iterate over the canonical vectors. Note that the typing enforces e,X1, . . . , Xk to be of the

same type.

To reference ` different vector variables X1, . . . , X` in every iteration and update them

in different ways we define:

for v,X1, . . . , X`. (e1(X1, v), e2(X2, v), . . . , el(X`, v)) :=

for v,X. e1(X · emin, v) · (ediag(e1(X
T )) · emin)

T+

e2(X · emin+1, v) · (ediag(e1(X
T )) · emin+1)

T + . . .+

e`(X · emax, v) · (ediag(e1(X
T )) · emax)

T

We note that for the latter expression to be semantically correct v has to be of type  ⇥ 1,

both Xi and ei for i = 1, . . . , ` have to be of type ↵ ⇥ 1, and X has to be of type ↵ ⇥ ,

whereD() = `. Here we use ediag(e1(XT )) to compute the ⇥ identity and ensure the

typing of the emin+i. When evaluated on an instance I, emin, emin+i evaluate to b
D()
1 and

b
D()
1+i , respectively, their defining expressions where shown in Chapter 3.2.2. Similarly for

emax = b
D()
n . The combinations of both previous operators results in:

for v1, . . . , vk, X1, . . . , X`.

e1(X1, v1, . . . , vk), e2(X2, v1, . . . , vk), . . . , e`(X`, v1, . . . , vk) :=

for v1, . . . , vk, X. e0(X, v1, . . . , vk)

where

e0(X, v1, . . . , vk) :=e1(X · emin, v1, . . . , vk) · (ediag(e1(X
T )) · emin)

T

+ e2(X · emin+1, v1, . . . , vk) · (ediag(e1(X
T )) · emin+1)

T

+ . . .+ e`(X · emax, v1, . . . , vk) · (ediag(e1(X
T )) · emax)

T

It is clear that this expression iterates over k canonical vectors and references ` indepen-

dent vectors updating each of them in their particular way.
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3.3.2. Function application simplifications

When showing results based on induction of expressions in for-MATLANG, it is often

convenient to assume that function applications f(e1, . . . , ek) for f 2 Fk are restricted to

the case when all expressions e1, . . . , ek have type 1 ⇥ 1. This does not loose generality.

Indeed, for general function applications f(e1, . . . , ek), if we have ⌃ (introduced in Chap-

ter 6.1), scalar product and function application on scalars (here denoted by f1⇥1), we can

simulate full function application, as follows:

f(e1, . . . , ek) := ⌃vi⌃vj.f1⇥1(v
T
i · e1 · vj, . . . , v

T
i · ek · vj)⇥ vi · v

T
j .

Furthermore, it also convenient at times to use the pointwise functions fk
 : R

k 7! R :

(x1, . . . , xk) 7! x1 ⇥ · · · · xk and fk
 : R

k 7! R : (x1, . . . , xk) 7! x1 + · · · + xk. In fact,

it is readily observed that adding these functions does not extend the expressive power of

for-MATLANG:

Lemma 3.1. We have that for-MATLANG[;] ⌘ for-MATLANG[{fk
, f

k
 | k 2 N}].

In fact, this lemma also holds for the smaller fragments we consider.

We also observe that having f 2
 : R

2 ! R allows us to define scalar multiplication:

e1 ⇥ e2 := f(1(e2)
T · e1 · 1(e2)

T , e2).

Conversely, fk
 can be expressed using scalar multiplication, as can be seen from our

simulation of general function applications by pointwise function application on scalars.

Finally, a notational simplification is that when using scalars a 2 R in our expressions,

we write sometimes a instead of [a], because everything is a matrix in this context. For

example, (1 e1(v)
T · v) stands for ([1] e1(v)

T · v).
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4. ALGORITHMS IN LINEAR ALGEBRA

One of our main motivations to introduce for-loops is to be able to express classical lin-

ear algebra algorithms in a natural way. We have seen that for-MATLANG is quite expres-

sive as it can check for cliques, compute the transitive closure, and can even leverage a suc-

cessor relation on canonical vectors. The big question is how expressive for-MATLANG

actually is. We will answer this in the next chapter by connecting for-MATLANG with

arithmetic circuits of polynomial degree. Through this connection, one can move back

and forth between for-MATLANG and arithmetic circuits, and as a consequence, anything

computable by such a circuit can be computed by for-MATLANG as well. When it comes

to specific linear algebra algorithms, the detour via circuits can often be avoided. Indeed,

in this chapter we illustrate that for-MATLANG is able to compute LU decompositions of

matrices. These decompositions form the basis of many other algorithms, such as solving

linear systems of equations. We further show that for-MATLANG is expressive enough to

compute matrix inversion and the determinant. We recall that matrix inversion and deter-

minant need to be explicitly added as separate operators in MATLANG (Brijder et al., 2019)

and that the LARA language is unable to invert matrices under usual complexity-theoretic

assumptions (Barceló et al., 2020).

4.1. LU decomposition

A lower-upper (LU) decomposition factors a matrix A as the product of a lower trian-

gular matrix L and upper triangular matrix U . This decomposition, and more generally

LU decomposition with row pivoting (PLU), underlies many linear algebra algorithms and

we next show that for-MATLANG can compute these decompositions.

4.1.1. LU decomposition by Gaussian elimination

LU decomposition can be seen as a matrix form of Gaussian elimination in which

the columns of A are reduced, one by one, to obtain the matrix U . The reduction of
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columns of A is achieved as follows. Consider the first column [A11, . . . , An1]
T of A and

define c1 := [0,↵21, . . . ,↵n1]
T with ↵j1 :=

Aj1

A11
. Let T1 := I + c1 · b

T
1 and consider

T1 · A. That is, the jth row of T1 · A is obtained by multiplying the first row of A by

↵j1 and adding it to the jth row of A. As a result, the first column of T1 · A is equal to

[A11, 0, . . . , 0]
T , i.e., all of its entries below the diagonal are zero. One then iteratively

performs a similar computation, using a matrix Ti := I + ci · b
T
i , where ci now depends on

the ith column in Ti1 · · ·T1 ·A. As a consequence, Ti · Ti1 · · ·T1 ·A is upper triangular

in its first i columns. At the end of this process, Tn · · ·T1 · A = U where U is the desired

upper triangular matrix. Furthermore, it is easily verified that each Ti is invertible and by

defining L := T1
1 · · · · · T

1
n one obtains a lower triangular matrix satisfying A = L · U .

The above procedure is only successful when the denominators used in the definition of

the vectors ci are non-zero. When this is the case we call a matrix A LU-factorizable.

In case when such a denominator is zero in one of the reduction steps, one can remedy

this situation by row pivoting. That is, when the ith entry of the ith row in Ti1 · · ·T1 ·A is

zero, one replaces the ith row by jth row in this matrix, with j > i, provided that ithe entry

of the jth row is non-zero. If no such row exists, this implies that all elements below the

diagonal are zero already in column i and one can proceed with the next column. One can

formulate this in matrix terms by stating that there exists a permutation matrix P , which

pivots rows, such that P · A = L · U . Any matrix A is LU-factorizable with pivoting.

4.1.2. Implementing LU decomposition in for-MATLANG

We first assume that the input matrices are LU-factorizable. We deal with general

matrices later on. To implement the above procedure, we need to compute the vector ci

for each column i. We do this in two steps. First, we extract from our input matrix its ith

column and set all its upper diagonal entries to zero by means of the expression:

col(V, y) := for v,X. succ+(y, v) · (vT · V · y) · v +X.

23



Indeed, when V is assigned to a matrix A and y to bi, we have that X will be initially

assigned A0 = 0 and in consecutive iterations, Aj = Aj1 + bTj · A · bi if j > i (because

succ+(bi, bj) = 1 if j > i) and Aj = Aj1 otherwise (because succ+(bi, bj) = 0 for j  i).

The result of this evaluation is the desired column vector. Using col(V, y), we can now

compute Ti by the following expression:

reduce(V, y) := eId + f/(col(V, y),(y
T · V · y) · 1(y)) · yT ,

where f/ : R
2 ! R : (x, y) 7! x/y is the division function. When V is assigned to A and

y to bi, f/(col(A, bi),(bTi ·A · bi) · 1(bi)) is equal to the vector ci used in the definition

of Ti. To perform the reduction steps for all columns, we consider the expression:

eU(V ) := (for y,X=eId.reduce(X · V, y) ·X) · V.

That is, when V is assigned A, X will be initially A0 = I , and then Ai = reduce(Ai1 ·

A, bi) = Ti·Ti1 · · ·T1·A, as desired. We show that, because we can obtain the matrices Ti

in for-MATLANG and that these are easily invertible, we can also construct an expression

eL(V )which evaluates to L when V is assigned to A. We may thus conclude the following.

PROPOSITION 4.1. There exists for-MATLANG[f/] expressions eL(V ) and eU(V )

such that JeLK(I) = L and JeUK(I) = U form an LU-decomposition of A, where mat(V ) =

A and A is LU-factorizable.

PROOF. Let A be an LU-factorizable matrix. We already explained how the expression

eU(V ) is obtained, i.e.,

eU(V ) := (for y,X=eId.reduce(X · V, y) ·X) · V.

We recall that eU(A) = Tn · · · · · T1 · A with L1 = Tn · · · · · T1. Let

eL1(V ) := for y,X=eId.reduce(X · V, y) ·X.

such that

eU(V ) := eL1(V ) · V.
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It now suffices to observe that, since Tn = I ,

L1 = (I  c1 · b
T
1 ) · · · (I  cn1 · b

T
n1)

= I  c1 · b
T
1  · · · cn1 · b

T
n1

and hence,
L = (I + c1 · b

T
1 ) · · · (I + cn1 · b

T
n1)

= I + c1 · b
T
1 + · · ·+ cn1 · b

T
n1.

As a consequence, to obtain L from L1 we just need to multiply every entry below the

diagonal by 1. Since both L and L1 are lower triangular, this can done by computing

L = 1⇥ L1 + 2⇥ I . Translated into for-MATLANG, this means that we can define

eL(V ) := 1⇥ eL1(V ) + 2⇥ eId,

which concludes the proof of the proposition. ⇤

We remark that the proposition holds when division is added as a function in F in

for-MATLANG. When row pivoting is needed, we can also obtain a permutation matrix P

such that P ·A = L ·U holds by means of an expression in for-MATLANG, provided that

we additionally allow the function f>0, where f>0 : R ! R is such that f>0(x) := 1 if

x > 0 and f>0(x) := 0 otherwise. Intuitively, by allowing f>0 we introduce a limited form

of if-then-else in for-MATLANG, which is needed to continue reducing columns

only when the right pivot has been found.

PROPOSITION 4.2. There exist expressions eL1P (M) and eU(M) in

for-MATLANG[f/, f>0] such that L1 · P = JeL1P K(I) and U = JeUK(I), satisfy L1 ·

P · A = U .

PROOF. We assume that f/ and f>0 are inF . Let A be an arbitrary matrix. By contrast

to when A is LU-factorizable, during the LU-decomposition process we may need row

interchange (pivoting) in each step of the iteration. Let us assume that row interchange is

needed immediately before step k, 1  k  n. In other words, we now aim to reduce the

k-th column of Ak = Tk1 · · ·T1 · A, or Ak = A if k = 1, but now Ak has a zero pivot,
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i.e., (Ak)kk = 0. Let P be the matrix that denotes the necessary row interchange. If we

know P , then to compute Tk we need to perform reduce(P ·X ·A, v) in this iteration,

where reduce(·,) is the expression in for-MATLANG reducing a column, as explained

earlier. Furthermore, we need to apply the permutation P to the current result, resulting in

the expression for v,X=I.reduce(P ·X ·A, v) · P ·X . We now remark that P is a

permutation matrix of the form P = Iu ·uT and it denotes an interchange (if multiplied

by left) of rows i and j if u = (bi  bj). Note that we are performing a row interchange

for column k and thus i = k and j > k  1. If no interchange is needed, i = j = k and

P = I . Also note that when k = n no interchange takes place. Furthermore, if no suitable

bj can be found, this implies that no interchange is required as well and we can move on

to next column.

To find the vector u in P , we can, for example, find the first entry j  k in column k

of Ak that holds a non-zero value. More generally, we can find the first entry in a vector

a that holds a non-zero value by using the function f>0. Indeed, consider the following

expression:

neq(a, u) :=for v,X.


1 e1(v)
T ·X



⇥ f>0



(vT · a)2


⇥ v+

max(v)⇥


1 e1(v)
T ·X



⇥


1 f>0



(vT · a)2


⇥ u

Here, neq(a, u) receives two n dimensional vectors a and u and outputs a canonical

vector bj such that aj is the first non-zero entry of a, or u if such non-zero value does

not exist in a. We check for f>0((·)
2) in case a negative number is tested. The above

expression simply checks in each iteration whether X already holds a canonical vector. If

so, then X is not updated. Otherwise, X is replaced by the current canonical vector bj if

and only if bTj · a is non-zero. Furthermore, when the final canonical vector is considered

and X does not hold a canonical vector yet and bTn · a is zero, the vector u is returned.

We use neq(a, u) to find a pivot for a specific column. Let us assume again that we

want to find a pivot in column k of Ak. We can then first make all entries in that column,

with indexes smaller or equal to k, zero, just as we did by means of col(·, ·) in the
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definition of reduce(·,). Except, now we also need to make the kthe entry zero as well.

Let us denote by coleq(·, ·) the operation col(·, ·), as defined before, but using succ

instead of succ+ (to include the k entry). Given this, we can construct P = I  u · uT as

follows:

ePu
(A, u) := eId  [u neq(coleq(A, u), u)] · [u neq(coleq(A, u), u)]

T .

From the explanations given above, it should be clear that ePu
(A, u) computes the nec-

essary permutation matrix of Ak for the column indicated by u, or I if no permutation is

needed, or if such permutation does not exist (so we skip the current column). Also, we

have to modify the reduce(V, y) operators, as follows:

reduce(V, y) :=eId + f>0



(yT · V · y)2


⇥ f/(col(V, y),

⇥

(yT · V · y)⇥ e1(y) +


1 f>0



(yT · V · y)2


⇥ e1(y)
⇤

) · yT ,

so that when V is interpreted by a matrix B and y = bi, it returns I + cib
T
i if Bii is not

zero. If Bii = 0 then we divide col(B, bi) by e1(bi) (so we don’t get undefined), but we

don’t add cib
T
i precisely because Bii = 0, and return the identity so nothing happens. We

check for f>0((·)
2) in case a negative number is tested.

Finally, we define

eL1P (V ) := for v,X=eId.reduce(ePv
(X · V, v) ·X · V, v) · ePv

(X · V, v) ·X

and eU(V ) := eL1P (V ) · V as the desired expressions.

As a final observation, in the definition of eL1P (V ) we interlaced permutation matri-

ces with the Ti’s. More specifically, Ak = Tk · P · Tk1 · · ·T1 · A. We observe, however,

that for `  k  1 and T` = I  c` · b
T
` , we have that bT` · P = b` because b` has zeroes in

positions in the rows involved in the row exchange P . Also, note that P 2 = I and thus

P · T` · P = P 2  P · c` · b
T
` · P = I  bc` · bTl = bT`.

Where bc` = P · c`.
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As a consequence,

Tk · P · Tk1 · · ·T1 = Tk · P · Tk1 · P
2 · Tk2 · P

2 · · ·P 2 · T1 · P
2

= Tk · (P · Tk1 · P ) · · · (P · T1 · P ) · P

= bTk1 · · · bT1 · P,

and thus we may assume that P occurs at the end. Hence, we obtain L1 ·P ·A = U . ⇤

4.2. Determinant and inverse

Other key linear algebra operations include the computation of the determinant and

the inverse of a matrix (if the matrix is invertible). As a consequence of the expressibility

in for-MATLANG[f/, f>0] of LU-decompositions with pivoting, it can be shown that the

determinant and inverse can be expressed as well.

However, the results in the next chapter (connecting for-MATLANG with arithmetic

circuits) imply that the determinant and inverse of a matrix can already be defined in

for-MATLANG[f/]. So instead of using LU decomposition with pivoting for matrix in-

version and computing the determinant, we provide an alternative solution.

More specifically, we rely on Csanky’s algorithm for computing the inverse of a ma-

trix (Csanky, 1976).

To show Proposition 4.3 we first show that it holds when considering non-singular

lower or upper triangular matrices.

Lemma 4.1. There are for-MATLANG[f/] expressions eupperDiagInv(V ) and

elowerDiagInv(V ) such that JeupperDiagInvK(I) = A1 when I assigns V to an invertible upper

triangular matrix A and JelowerDiagInvK(I) = A1 when I assigns V to an invertible lower

triangular matrix A.
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PROOF. We start by considering the expression:

eps(V ) := eId + ⌃v.⇧w. [succ(w, v)⇥ V + (1 succ(w, v))⇥ eId] .

Here, eps(A) results in I + A + A2 + · · · + An for any matrix A. In the expression, the

outer loop defines which power we compute. That is, when v is the ith canonical vector, we

compute Ai. Computing Ai is achieved via the inner product loop, which uses succ(w, v)

to determine whether w comes before or is v in the ordering of canonical vectors. When

this is the case, we multiply the current result by A, and when w is greater than v, we use

the identity as not to affect the already computed result. We add the identity at the end.

Now, let A be an n ⇥ n matrix that is upper triangular and let DA be the matrix

consisting of the diagonal elements of A, i.e.,

DA =

2
6666664

a11 · · · · · · 0

0 a22 · · · 0

0
. . . ...

...
... · · · · · · ann

3
7777775
.

We can compute DA by the expression:

egetDiag(V ) := ⌃v.(vT · V · v)⇥ v · vT .

Let T = ADA, then

A1 = [DA + T ]1 =
⇥

DA



I +D1
A T

⇤1
=


I +D1
A T

1
D1

A .

We now observe that D1
A simply consists of the inverses of the elements on the diagonal.

This can be expressed, as follows:

ediagInverse(V ) := ⌃v.f/(1, v
T · egetDiag(V ) · v)⇥ v · vT = ⌃v.f/(1, v

T · V · v)⇥ v · vT ,

Where f/ is the division function. In the last equality we take advantage of the fact that

the diagonals of A and DA are the same.
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We now focus on the computation of


I +D1
A · T

1. First, by construction, D1
A ·T

is strictly upper triangular and thus nilpotent, such that


D1
A · T

n
= 0, where n is the

dimension of A. Recall the following algebraic identity

(1 + x)

 
mX

i=0

(x)i

!
= 1 (x)m+1.

By choosing m = n 1 and applying it to x = D1
A · T , we have



I +D1
A · T



 
n1X

i=0

(D1
A · T )

i

!
= I



D1
A · T

n
= I.

Hence,


I +D1
A · T

1
=

n1X

i=0

(D1
A · T )

i =
nX

i=0

(D1
A · T )

i.

We now observe that

eps(1⇥D1
A · T ) =

nX

i=0

(D1
A · T )

i =


I +D1
A · T

1
,

and thus

A1 = eps (1⇥ [ediagInverse(A)(A egetDiag(A))]) ediagInverse(A).

Seeing this as an expression:

eupperDiagInv(V ) := eps (1⇥ [ediagInverse(V )(V  egetDiag(V ))]) ediagInverse(V ),

we see that when interpreting V as an upper triangular invertible matrix, eupperDiagInv(A)

evaluates to A1.

To deal with invertible lower triangular matrices A, we observe that (A1)
T
=


AT
1

and AT is upper triangular. Hence, it suffices to define

elowerDiagInv(V ) := eupperDiagInv(V
T )T .

This concludes the proof of the lemma. ⇤
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We are now ready to conclude:

PROPOSITION 4.3. There are for-MATLANG[f/] expressions edet(V ) and einv(V )

such that JedetK(I) = det(A), and JeinvK(I) = A1 when I assigns V to A and A is

invertible.

PROOF. Let A be an n⇥n matrix. As mentioned before, we will implement Csanky’s

algorithm. Let pA(x) := det(xI  A) denote characteristic polynomial of A. We write

pA(x) = 1+
Pn

i=1 cix
i and let Si :=

1
i+1

tr(Ai) with tr(·) the trace operator which sums up

the diagonal elements of a matrix. Then, the coefficients c1, . . . , cn are known to satisfy1

0
BBBBBBBB@

1 0 0 · · · 0 0

S1 1 0 · · · 0 0

S2 S1 1 · · · 0 0
...

...
...

...
... 0

Sn1 Sn2 Sn3 · · · S1 1

1
CCCCCCCCA

| {z }
S

·

0
BBBBBBBB@

c1

c2

c3
...

cn

1
CCCCCCCCA

| {z }
c̄

=

0
BBBBBBBB@

S1

S2

S3

...

Sn

1
CCCCCCCCA

| {z }
b̄

and furthermore, cn = (1)ndet(A) and if cn 6= 0, then

A1 =
1

cn

n1X

i=0

ciA
n1i,

with c0 = 1. It is now easy to see that we can compute the S 0
is in for-MATLANG. Indeed,

for i = 1, . . . , n we can consider

epowTr(V, v) := ⌃w.wT · (epow(V, v) · V ) · w

with

epow(V, v) := ⇧w.(succ(w, v)⇥ V + (1 succ(w, v))⇥ eId).

We have that epow(A, bj) = Aj and thus epowTr(A, bj) = tr(Aj). Define:

eS(V, v) := f/(1, 1 + ⌃w.succ(w, v))⇥ epowTr(V, v).

1We use a slightly different, but equivalent, system of equations used by Csanky, 1976.
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Here eS(A, bi) = Si. Note that i+1 is computed summing up to the dimension indicated by

v, and adding 1. We can now easily construct the vector b̄ used in the system of equations

by means of the expression:

eb̄(V ) := ⌃w.eS(V,w)⇥ w.

We next construct the matrix S. We need to be able to shift a vector a in k positions, i.e.,

such that (a1, . . . , an) 7! (0, . . . , a1, . . . , ank). We use egetNextMatrix defined in Chapter

3.2.2, i.e., we define:

eshift(a, v) := ⌃w.(wT · a)⇥ (egetNextMatrix(v) · w)

performs the desired shift when u is assigned a vector a and v is bk. The matrix S is now

obtained as follows:

S(V ) := eId + ⌃v.eshift(eb̄(V ), v) · v
T

We now observe that S is lower triangular with nonzero diagonal entries. So, Lemma 4.1

tells us that we can invert it, i.e., elowerDiagInv(S) = S1. As a consequence,

ec̄(V ) := elowerDiagInv(S(V )) · eb̄(V ).

outputs c̄ when V is interpreted as matrix A. Observe that we only use the division opera-

tor. We now have all coefficients of the characteristic polynomial of A.

We can now define

edet(V ) :=
⇣⇣

(⇧w.(1)⇥ e1(V ))
T · emax

⌘

⇥ ec̄(V )
⌘T

· emax,

an expression that, when V is interpreted as any matrix A, outputs det(A). Here, (⇧w.(1)⇥

e1(V )) is the n dimensional vector with (1)n in all of its entries. Since cn = (1)ndet(A),

we extract (1)n(1)ndet(A) = det(A) with emax.
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For the inverse, we have that

A1 =
1

cn

n1X

i=0

ciA
n1i =

1

cn
An1 +

n1X

i=1

ci
cn
An1i.

We compute 1
cn
An1 as

f/(1, ec̄(A)
T · emax)⇥ epow(A, emax)

and
Pn1

i=1
ci
cn
An1i as

⌃v.f/


ec̄(A)
T · v, ec̄(A)

T · emax



⇥ einvPow(A, v),

where

einvPow(V, v) :=

⇧w.(1max(w))⇥ [(1 succ(w, v))⇥ V + succ(w, v)⇥ eId] +max(w)⇥ eId.

Here, einvPow(A, bi) = An1i and einvPow(A, bn) = I . Note that we always multiply

by eId in the last step. To conclude, we define:

einv(V ) := f/(1, ec̄(V )
T · emax)⇥ epow(V, emax) +

⇥

⌃v.f/


ec̄(V )
T · v, ec̄(V )

T · emax



⇥ einvPow(V, v)
⇤

,

an expression that, when V is interpreted as any invertible matrix A, computes A1. ⇤

As an observation, here we only use operators ⌃ and ⇧ defined in Chapter 3.3.1. We

also assume access to order.
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5. EXPRESSIVENESS OF FOR LOOPS

In this chapter we explore the expressive power of for-MATLANG. Given that arith-

metic circuits (Allender, 2004) capture most standard linear algebra algorithms (Raz,

2003; Shpilka & Yehudayoff, 2010), they seem as a natural candidate for comparison.

Intuitively, an arithmetic circuit is similar to a boolean circuit (Arora & Barak, 2009), ex-

cept that it has gates computing the sum and the product function, and processes elements

of R instead of boolean values. To connect for-MATLANG to arithmetic circuits we need

a notion of uniformity of such circuits. After all, a for-MATLANG expression can take

matrices of arbitrary dimensions as input and we want to avoid having different circuits for

each dimension. To handle inputs of different sizes, we thus consider a notion of uniform

families of arithmetic circuits, defined via a Turing machine generating a description of

the circuit for each input size n.

What we show in the remainder of this chapter is that any function f which operates

on matrices, and is computed by a uniform family of arithmetic circuits of bounded fan-in,

can also be computed by a for-MATLANG expression, and vice versa. In order to keep

the notation light, we will focus on for-MATLANG schemas over “square matrices” where

each variable has type (↵,↵), (↵, 1), (1,↵), or (1, 1), although all of our results hold with-

out these restrictions as well. In what follows, we will write for-MATLANG to denote

for-MATLANG[;], i.e. the fragment of our language with no additional pointwise func-

tions. We begin by defining circuits and then show how circuit families can be simulated

by for-MATLANG.

5.1. Linear space functions

We start by showing a crucial ingredient for making the correspondence between

for-MATLANG and arithmetic circuits. More specifically, we show that any polynomial

time Turing machine, working within linear space and producing linear space output, can
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be simulated in for-MATLANG. For this proof and chapter only, we will denote the canon-

ical vectors as e1, . . . , en, since b will be used to represent a value on a position of a tape.

We consider deterministic Turing Machines (TM) T consisting of ` read-only input

tapes, denoted by R1, . . . , R`, a work tape, denoted by W , and a write-only output tape,

denoted by O. The TM T has a set Q of m states, denoted by q0, . . . , qm. We assume

that q0 is the initial state and qm is the accepting state. The input and tape alphabet are

⌃ = {0, 1} and  = ⌃ [ {B,C}, respectively. The special symbol B denotes the begin-

ning of each of the tapes, the symbol C denotes the end of the ` input tapes. The transition

function  is defined as usual, i.e.,  : Q ⇥
`+2 ! Q ⇥

2 ⇥ { ,t,!}`+2 such that

(q, (a1, . . . , a`, b, c)) =


q0, (b0, c0), (d1, . . . , d`+2)


with di 2 { ,t,!}, means that

when T is in state q and the `+ 2 heads on the tapes read symbols a1, . . . , a`, b, c, respec-

tively, then T transitions to state q0, writes b0, c0 on the work and output tapes, respectively,

at the position to which the work and output tapes’ heads points at, and finally moves the

heads on the tapes according d1, . . . , d`+2. More specifically,  indicates a move to the

left,! a move to the right, and finally, t indicates that the head does not move.

We assume that  is defined such that it ensures that on none of the tapes, heads can

move beyond the leftmost marker B. Furthermore, the tapes R1, . . . , R` are treated as

read-only and the heads on these tapes cannot move beyond the end markers C. Similarly,

 ensures that the output tape O is write only, i.e., its head cannot move to the left. We

also assume that  does not change the occurrences of B or writes C on the work and

output tape.

A configuration of T is defined in the usual way. That is, a configuration of the input

tapes is of the form Bw1qw2C with w1, w2 2 ⌃
⇤ and represents that the current tape

content is Bw1w2C, T is in state q and the head is positioned on the first symbol of

w2. Similarly, configurations of the work and output tape are represented by Bw1qw2. A

configuration of T is consists of configurations for all tapes. Given two configurations c1

and c2, we say that c1 yields c2 if c2 is the result of applying the transition function  of

T based on the information in c1. As usual, we close this “yields” relation transitively.
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Given ` input words w1, . . . , w` 2 ⌃
⇤, we assume that the initial configuration of T is

given by


q0 B w1C, q0 B w2C, . . . , q0 B w`C, q0B, q0B


and an accepting configuration

is assumed to be of the form


Bqmw1C,Bqmw2C, . . . ,Bqmw`C,Bqm,Bqmw


for some

w 2 ⌃
⇤. We say that T computes the function f : (⌃⇤)` ! ⌃

⇤ if for every w1, . . . , w` 2

⌃
⇤, the initial configuration yields (transitively) an accepting configuration such that the

configuration on the output tape is given by Bqmf(w1, . . . , w`).

We assume that once T reaches an accepting configuration it stays indefinitely in that

configuration (i.e., it loops). We further assume that T only reaches an accepting configu-

ration when all its input words have the same size. Furthermore, when all inputs have the

same size, T will reach an accepting configuration.

We say that T is a linear space machine when it reaches an accepting configuration

on inputs of size n by using O(n) space on its work tape and additionally needs O(nk)

steps to do so. A linear input-output function is a function of the form f =
S

n0 fn :

(⌃n)` ! ⌃
n. In other words, for every ` words of the same size n, f returns a word of

size n. We say that a linear input-output function is a linear space input-output function if

there exists a linear space machine T that for every n  0, on input w1, . . . , w` 2 ⌃
n the

TM T has fn(w1, . . . , w`) on its the output tape when (necessarily) reaching an accepting

configuration.

PROPOSITION 5.1. Let f =
S

n0 fn : (⌃
n)` ! ⌃

n be a linear space input-ouput

function computed by a linear space machine T with m states, ` input tapes, which

consumes O(n) space and runs in O(nk1) time on inputs of size n. There exists (i) a

MATLANG schema S = (M, size) whereM consists matrix variables1

Q1, . . . , Qm, R1, . . . , R`, H1, . . . , H`,W1, . . . ,Ws, HW1
, . . . , HWs

, O,HO, v1, . . . , vk

1We also need a finite number of auxiliary variables, these will be specified in the proof.
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with size(V ) = ↵ ⇥ 1 for all V 2 M; and (ii) a MATLANG expression ef over S such

that for the instance I = (D,mat) over S with D(↵) = n and

mat(Ri) = vec(wi) 2 R
n,

for i 2 [`] and all other matrix variables instantiated with the zero vector in R
n for words

w1, . . . , w` 2 ⌃
n and such that vec(wi) is the n⇥ 1-vector encoding the word wi, we have

that mat(O) = vec(fn(w1, . . . , wn)) 2 R
n after evaluating ef on I.

PROOF. The expression ef we construct will simulate the TM T . To have some more

control on the space and time consumption of T , let us first assume that n is large enough,

say larger than n  N , such that T runs in sn space and cnk1  nk time for constants s

and c. We deal with n < N later on.

To simulate T we need to encode states, tapes and head positions. The matrix variables

inM mentioned in the proposition will take these roles. More specifically, the variables

R1, . . . , R` will hold the input vectors, W1, . . . ,Ws will hold the contents of the work tape,

where s is the constant mentioned earlier, and O will hold the contents of the output tape.

The vectors corresponding to the work and output tape are initially set to the zero vector.

The vector for the input tape Ri is set to vec(wi), for i 2 [`].

With each tape we associate a matrix variable encoding the position of the head. More

specifically, H1, . . . , H` correspond to the input tape heads, HW1
, . . . , HWs

are the heads

for the work tape, and HO is the head of the output tape. All these vectors are initialised

with the zero vector. Later on, these vectors will be zero except for a single position,

indicating the positions in the corresponding tapes the heads point to. For those positions

j, 1 < j < n, the head vectors will carry value 1. When j = 1 or n and when it concerns

positions for the input tape, the head vectors can carry value 1 or 2. We need to treat

these border cases separately because we only have n positions available to store the input

words, whereas the actual input tapes consist of n + 2 symbols because of B and C. So

when, for example, H1 has a 1 in its first entry, we interpret it as the head is pointing to
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the first symbol of the input word w1. When H1 has a 2 in its first position, we interpret it

as the head pointing to B. The end marker C is dealt with in the same way, by using value

1 or 2 in the last position of H1. We use this encoding for all input tapes, and also for the

work tape W1 and output tape O with the exception that no end marker C is present.

To encode the states, we use the variables Q1, . . . , Qm. We will ensure that when T is

in state qi when mat(Qi) = [1, 0, . . . , 0]
T 2 R

n, otherwise mat(Qi) is the zero vector in

R
n.

Finally, the variables v1, . . . , vk represent k canonical vectors which are used to iterate

in for-loops. By iterating over then, we can perform nk iterations, which suffices for

simulating the O(nk1) steps used by T to reach an accepting configuration.

With these matrix variables in place, we start by defining ef . It will consists of two

subexpressions eN
f , for dealing with n  N , and e<N

f , for dealing with n < N . We

explain the expression eN
f first.

In our expressions we use subexpressions which we defined before in Chapter 3.2.2.

These subexpressions require some auxiliary variables, as detailed below. As a conse-

quence, ef will be an expressions defined over an extended schema S 0. Hence, the in-

stance I in the statement of the Proposition is an instance I 0 of S 0 which coincides with

I on S and in which the auxiliary matrix variables are all instantiated with zero vectors or

matrices, depending on their size.

Now, we specify the finite auxiliary variables involved in the for-MATLANG expres-

sion. These arise when computing the following for-MATLANG expressions defined

• ePrev(z, Z, z
0, Z 0), and expression over auxiliary variables z, z0, Z and Z 0 with

size(z) = size(z0) = size(Z) = ↵ ⇥ 1 and size(Z 0) = ↵ ⇥ ↵. On input I 0

with mat(z) = mat(z0) = mat(Z) the zero column vector of dimension n, and

mat(Z 0) the zero n ⇥ n matrix, JePrevK(I
0) returns the n ⇥ n matrix Prev such
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that

Prev · ei :=

8
><
>:
ei1 if i > 1

0 if i = 1.

• eNext(z, Z, z
0, Z 0), and expression over auxiliary variables z, z0, Z and Z 0 with

size(z) = size(z0) = size(Z) = ↵ ⇥ 1 and size(Z 0) = ↵ ⇥ ↵. On input I 0

with mat(z) = mat(z0) = mat(Z) the zero column vector of dimension n, and

mat(Z 0) the zero n ⇥ n matrix, JeNextK(I
0) returns the n ⇥ n matrix Next such

that

Next · ei :=

8
><
>:
ei+1 if i < n

0 if i = n.

• min(v, z, Z, z0, Z) with auxiliary variables z, z0, Z and Z 0 as before, and v is one

of the (vector) variables inM. For an n⇥ 1 vector v, on input I 0[v  v]

JminK(I 0[v  v]) :=

8
><
>:
1 if v = e1

0 otherwise.

• max(v, z, Z, z0, Z) with auxiliary variables z, z0, Z and Z 0 as before, and and v

is one of the (vector) variables inM. For an n⇥ 1 vector v, on input I 0[v  v]

JmaxK(I 0[v  v]) :=

8
><
>:
1 if v = en

0 otherwise.

• emin(z, Z, z
0, Z 0, z00, Z 00), an expressions with auxiliary variables z, z0, z00, Z, Z 0

and Z 00 with size(z) = size(z0) = size(z00) = size(Z) = size(Z 00) = ↵ ⇥ 1

and size(Z 0) = ↵ ⇥ ↵. On input I 0 with matrix variables instantiated with zero

vectors (or matrix for Z 0), JeminK(I
0) = e1.

• emax(z, Z, z
0, Z 0, z00, Z 00), an expressions with auxiliary variables z, z0, z00, Z, Z 0

and Z 00 with size(z) = size(z0) = size(z00) = size(Z) = size(Z 00) = ↵ ⇥ 1

and size(Z 0) = ↵ ⇥ ↵. On input I 0 with matrix variables instantiated with zero

vectors (or matrix for Z 0), JemaxK(I
0) = en.
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We thus see that we only need z, z0, z00, Z, Z 0, Z 00 as auxiliary variables and these can be

re-used whenever ef calls these functions. From now one, we omit the auxiliary variables

from the description of ef .

Let us first define eN
f . Since we want to simulate T we need to be able to check which

transitions of T can be applied based on a current configuration. More precisely, suppose

that we want to check whether (qi, (a1, . . . , a`, b, c)) is applicable, then we need to check

whether T is in state qi, we can do this by checking min(Qi), and whether the heads on

the tapes read symbols a1, . . . , a`, b, c. We check the latter by the following expressions.

For the input tape Ri we define

test inpib :=

8
>>>>>>>><
>>>>>>>>:

(1min(1/2 ·Hi)) · (1max(1/2 ·Hi)) · (1RT
i ·Hi) if b = 0

(1min(1/2 ·Hi)) · (1max(1/2 ·Hi)) · (R
T
i ·Hi) if b = 1

min(1/2 ·Hi) if b = B

max(1/2 ·Hi) if b = C,

which returns 1 if and only if either b 2 {0, 1} is the value in mat(Ri) at the position

encoded by mat(Hi), or when b = B and mat(Hi) is the vector (2, 0, . . . , 0) 2 R
n, or

when b = C and mat(Hi) is the vector (0, 0, . . . , 2) 2 R
n. Similarly, for the output tape

we define

test outb :=

8
>>>><
>>>>:

(1min(1/2 ·HO)) · (1OT ·HO) if b = 0

(1min(1/2 ·HO)) · (O
T ·HO) if b = 1

min(1/2 ·HO) if b = B,

and for the work tapes W1, . . . ,Ws we define

test workib :=

8
>>>><
>>>>:

(1min(1/2 ·HWi
)) · (1W T

i ·HWi
)) if b = 0

(1min(1/2 ·HWi
)) · (W T

i ·HWi
) if b = 1

min(1/2 ·HWi
) if b = B and i = 1.
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We then combine all these expressions into a single expression for qi 2 Q, a1, . . . , a`, b, c 2

:

isconfqi,a1,...,a`,b,c := min(Qi) ·

 
Ỳ

j=1

test inpjaj

!
·

 
sX

j=1

test work
j
b

!
· test outc.

This expression will return 1 if and only if the vectors representing the tapes, head posi-

tions and states are such that Qi is the first canonical vector (and thus T is in state qi), the

heads point to entries in the tape vectors storing the symbols a1, . . . , a`, b, c or they point

to the first (or last for input tapes) positions but have value 2 (when the symbols are B or

C).

To ensure that at the beginning of the simulation of T by eN
f we correctly encode that

we are in the initial configuration, we thus need to initialise all vectors

mat(H1),mat(H2), . . . ,mat(H`),mat(HW1
),mat(HO)

with the vector (2, 0, 0, . . . , 0) 2 R since all heads read the symbol B. Similarly, we have

to initialise Q1 with the first canonical vector since T is in state q0.

We furthermore need to be able to correctly adjust head positions. We do this by

means of the predecessor and successor expressions described above. A consequence

of our encoding is that we need to treat the border cases (corresponding to B and C)

differently. More specifically, for the input tapes Ri and heads Hi we define

move inpid :=

8
>>>>>>>>>>><
>>>>>>>>>>>:

2⇥min(Hi)⇥Hi + 1/2⇥max(1/2⇥Hi)⇥Hi+

(1min(Hi))(1max(1/2⇥Hi))⇥ ePrev ·Hi if d = 

2⇥max(Hi)⇥Hi + 1/2⇥min(1/2⇥Hi)⇥Hi+

(1min(1/2⇥Hi))(1max(Hi))⇥ eNext ·Hi if d =!

Hi if d = t.
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In other words, we shift to the previous (or next) canonical vector when d is  or !,

respectively, unless we need to move to or from the position that will hold B or C. In

those case we readjust mat(Hi) (which will either (1, 0, . . . , 0), (2, 0, . . . , 0), (0, . . . , 0, 1)

or (0, . . . , 0, 2)) by either dividing or multiplying with 2. In this way we can correctly

infer whether or not the head points to the begin and end markers. For the output tape we

proceed in a similar way, but only taking into account the begin marker and recall that we

do not have moves to the left:

move outpd :=

8
>>>><
>>>>:

1/2⇥min(1/2⇥HO)⇥HO +

(1min(1/2⇥HO))⇥ eNext ⇥HO if d =!

HO if d = t.

Since we represent the work tape by s vectors W1, . . . ,Ws we need to ensure that only one

of the head vectors HWi
has a non-zero value and that by moving left or right, we need

to appropriately update the right head vector. We do this as follows. We first consider the

work tapes Wi for i 6= 1, s and define

move workid :=

8
>>>>>>>>>>><
>>>>>>>>>>>:

min(HWi
)⇥HWi

+ (1min(HWi
))⇥ ePrev ·HWi

+

min(HWi+1
)⇥ emax if d = 

max(HWi
)⇥HWi

+ (1max(HWi
))⇥ eNext ·HWi

+

max(HWi1
)⇥ emin if d =!

HWi
if d = t.

In other words, we set the HWi
to zero when a move brings us to either Wi1 or Wi+1,

we move the successor or predecessor when staying within Wi, or initialise HWi
with the

first or last canonical vector when moving from Wi1 to Wi (right move) or from Wi+1 to

Wi (left move). For i = s we can ignore the parts in the previous expression that involve
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Ws+1 (which does not exist):

move worksd :=

8
>>>>>>>><
>>>>>>>>:

min(HWs
)⇥HWi

+ (1min(HWs
))⇥ ePrev ·HWs

if d = 

max(HWs
)⇥HWs

+ (1max(HWs
))⇥ eNext ·HWs

+

max(HWs1
)⇥ emin if d =!

HWs
if d = t.

For i = 1, we can ignore the part involving W0 (which does not exist) but have to take B

into account:

move work1d :=

8
>>>>>>>>>>><
>>>>>>>>>>>:

2⇥min(HW1
)⇥HWi

+ (1min(HW1
))⇥ ePrev ·HW1

+

min(HW2
)⇥ emax if d = 

1/2⇥min(1/2⇥HW1
)⇥HW1

+

(1max(1/2⇥HW1
))⇥ eNext ·HW1

if d =!

HW1
if d = t.

A final ingredient for defining eN
f are expressions which update the work and output tape.

To define these expression, we need the position and symbol to put on the tape. For the

output tape we define

write outpb :=

8
>>>>>>>>>>><
>>>>>>>>>>>:

min(1/2⇥HO)⇥O if b = B

(1min(1/2⇥HO))⇥



(1OT ·HO)⇥O + (OT ·HO)⇥ (O HO)


if b = 0

(1min(1/2⇥HO))⇥



(1OT ·HO)⇥ (O +HO) + (O
T ·HO)⇥O



if b = 1
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and similarly for the work tapes i 6= 1:

write workib :=

8
>>>><
>>>>:

Wi if b = B

(1W T
i ·HWi

)⇥Wi + (W
T
i ·HWi

)⇥ (Wi HWi
) if b = 0

(1W T
i ·HWi

)⇥ (Wi +HWi
) + (W T

i ·HWi
)⇥Wi if b = 1,

and for W1 we have to take care again of the begin marker:

write work1b :=

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

min(1/2⇥HW1
)⇥W1 if b = B

(1min(1/2⇥HW1
)⇥

✓

(1W T
1 ·HW1

)⇥W1+

(W T
1 ·HW1

)⇥ (W1 HW1
)

◆

if b = 0

(1min(1/2⇥HW1
)⇥

✓

(1W T
1 ·HW1

)⇥ (W1 +HW1
)+

(W T
1 ·HW1

)⇥W1

◆

if b = 1.

We are now finally ready to define eN
f :

eN
f := for v1, . . . , vk, Q1, . . . , Qm, H1, . . . , H`,W1, . . . ,Ws, HW1

, . . . , HWs
, O,HO.

(eQ1
, . . . , eQm

, eH1
, . . . , eH`

, eW1
, . . . , eWs

, eHW1
, . . . , eHWs

, eO, eHO
).
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We refer to Chapter 3.3.1 for the definition of this form of the for-loop. The expressions

used are (we use ? below to mark irrelevant information in the transitions):

eQ1
:=

 
kY

j=1

min(vi)

!
⇥ emin +

X

(qi,a1,...,a`,b,c)
(qi,a1,...,a`,b,c)=(q1,?)

isconfqi,a1,...,a`,b,c ⇥ emin

eQj
:=

X

(qi,a1,...,a`,b,c)
(qi,a1,...,a`,b,c)=(qj ,?)

isconfqi,a1,...,a`,b,c ⇥ emin for j 6= 1

eHi
:= 2

 
kY

j=1

min(vi)

!
⇥ emin +

X

(q,a1,...,a`,b,d)
(q,a1,...,a`,b,c)=(?,di,?)

isconfq,a1,...,a`,b,c ⇥move inpidi

eHWi
:= 2

 
kY

j=1

min(vi)

!
⇥ emin +

X

(q,a1,...,a`,b,d)
(q,a1,...,a`,b,c)=(?,d`+1,?)

isconfq,a1,...,a`,b,c ⇥move workid`+1

eHO
:= 2

 
kY

j=1

min(vi)

!
⇥ emin +

X

(q,a1,...,a`,b,d)
(q,a1,...,a`,b,c)=(?,d`+2)

isconfq,a1,...,a`,b,c ⇥move outpd`+2

eWi
:=

X

(q,a1,...,a`,b,d)
(q,a1,...,a`,b,c)=(?,b0,c0,?)

isconfq,a1,...,a`,b,c ⇥ write workib0

eO :=
X

(q,a1,...,a`,b,d)
(q,a1,...,a`,b,c)=(?,b0,c0,?)

isconfq,a1,...,a`,b,c ⇥ write outpc0 .

The correctness of eN
f should be clear from the construction (one can formally ver-

ify this by induction on the number of iterations). We use ⇧
k
j=1min(vi) to initialize with

emin, by checking that the vi’s are all in its first assignment. We next explain how the

border cases n < N can be dealt with. For each n < N and every possible input

words w1, . . . , w` of size n, we define a for-MATLANG expression which checks whether

mat(Ri) = vec(wi) for each i 2 [`]. This can be easily done since n can be regarded as a

constant. For example, to check whether mat(Ri) = [0, 1, 1]
T we simply write

(1RT
i ·emin)⇥(R

T
i ·eNext·emin)⇥(1RT

i ·eNext·eNext·emin)⇥(1e1(Ri)
T ·eNext·eNext·eNext·emin)
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which will evaluate to 1 if and only if mat(Ri) = [0, 1, 1]
T . We note that the final factor is

in place to check that the dimension of mat(Ri) is three. We denote by ein,w the expression

which evaluates to 1 if and only if mat(Ri) = vec(w) for |w| = n. We can similarly write

any word w of fixed size in the matrix variable O. For example, suppose that w = 101

then we write

O + emin + eNext · eNext · emin.

We write en,w be the expression which write w of size |w| = n in matrix variable O. Then,

the expressions

en,w1,...,wn,w := e1n,w1
· · · · · e`nw`

· en,w

will write w in O if and only if mat(Ri) = vec(wi) for i 2 [`]. We now simply take the

disjunction over all words w1, . . . , w` 2 ⌃
n and w = fn(w1, . . . , w`) 2 ⌃

n:

en :=
X

w1,...,w`2⌃n

en,w1,...,w`,fn(w1,...,w`),

which correctly evaluates fn. We next take a further disjunction by letting ranging from

n = 0, . . . , N  1:

e<N
f :=

N1X

n=0

en

Since every possible input is covered and only a unique expression en,w1,...,w`,fn(w1,...,w`)

will be triggered e<N
f will correctly evaluate f on inputs smaller than N .

Our final expression ef is now given by

ef := e<N
f + dim is greater thanN ⇥ eN

f

where dim is greater thanN is the expression e1(Ri)
T ·eNext · · · · · eNext| {z }

N times

which will evaluate

to 1 if an only if the input dimension is larger or equal than N . ⇤

Note that we need the computation to use O(n) space since we store the contents of

the work tape in n dimensional vectors. If we allow quadratic work space, these vectors

would have n2 size, thus yielding dimension mismatch in matrix operations and undefined
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for-MATLANG expressions. The same reasoning applies to allowing quadratic output

space.

5.2. From arithmetic circuits to for-MATLANG

Let us first recall the definition of arithmetic circuits. An arithmetic circuit  over a

set X = {x1, . . . , xn} of input variables is a directed acyclic labeled graph. The vertices

of  are called gates and denoted by g1, . . . , gm; the edges in  are called wires. The

children of a gate g correspond to all gates g0 such that (g, g0) is an edge. The parents of g

correspond to all gates g0 such that (g0, g) is an edge. The in-degree, or a fan-in, of a gate

g refers to its number of children, and the out-degree to its number of parents. We will

not assume any restriction on the in-degree of a gate, and will thus consider circuits with

unbounded fan-in. Gates with in-degree 0 are called input gates and are labeled by either

a variable in X or a constant 0 or 1. All other gates are labeled by either + or ⇥, and are

referred to as sum gates or product gates, respectively. Gates with out-degree 0 are called

output gates. When talking about arithmetic circuits, one usually focuses on circuits with

n input gates and a single output gate.

The size of , denoted by ||, is its number of gates and wires. The depth of ,

denoted by depth(), is the length of the longest directed path from any of its output gates

to any of the input gates. The degree of a gate is defined inductively: an input gate has

degree 1, a sum gate has a degree equal to the maximum of degrees of its children, and a

product gate has a degree equal to the sum of the degrees of its children. When  has a

single output gate, the degree of , denoted by degree(), is defined as the degree of its

output gate. If  has a single output gate and its input gates take values from R, then

corresponds to a polynomial in R[X] in a natural way. In this case, the degree of  equals

the degree of the polynomial corresponding to .

In order to handle inputs of different sizes, we use the notion of uniform circuit fami-

lies. An arithmetic circuit family is a set of arithmetic circuits {n | n = 1, 2, . . .} where
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n has n input variables and a single output gate. An arithmetic circuit family is uniform

if there exists a LOGSPACE-Turing machine, which on input 1n, returns an encoding of

the arithmetic circuit n for each n. We observe that uniform arithmetic circuit families

are necessarily of polynomial size. Another important parameter is the circuit depth. A

circuit family is of logarithmic depth, whenever depth(n) 2 O(log n). We now show

that for-MATLANG subsumes uniform arithmetic circuit families that are of logarithmic

depth.

Theorem 5.1. For any uniform arithmetic circuit family {n | n = 1, 2, . . .} of log-

arithmic depth there is a for-MATLANG schema S and an expression e using a matrix

variable v, with typeS(v) = (↵, 1) and typeS(e) = (1, 1), such that for any input

values a1, . . . , an:

• If I = (D,mat) is a MATLANG instance such that D(↵) = n and mat(v) =

[a1 . . . an]
T .

• Then JeK(I) = n(a1, . . . , an).

It is important to note that the expression e does not change depending on the input

size, meaning that it is uniform in the same sense as the circuit family being generated

by a single Turing machine. The different input sizes for a for-MATLANG instance are

handled by the typing mechanism of the language.

The proof of this Theorem, which is the deepest technical result of the thesis, depends

crucially on two facts: (i) that any polynomial time Turing machine working within linear

space and producing linear size output, can be simulated via a for-MATLANG expression;

and (ii) that evaluating an arithmetic circuit n can be done using two stacks of depth n.

Evaluating n on input (a1, . . . , an) can be done in a depth-first manner by maintaining

two stacks: the gates-stack that tracks the current gate being evaluated, and the values-

stack that stores the value that is being computed for this gate. The idea behind having

two stacks is that whenever the number of items on the gates-stack is higher by one than

the number of items on the values-stack, we know that we are processing a fresh gate, and
48



we have to initialize its current value (to 0 if it is a sum gate, and to 1 if it is a product

gate), and push it to the values-stack. We then proceed by processing the children of the

head of the gates-stack one by one, and aggregate the results using sum if we are working

with a sum gate, and by using product otherwise.

In order to access the information about the gate we are processing (such as whether it

is a sum or a product gate, the list of its children, etc.) we use the uniformity of our circuit

family. Namely, we know that we can generate the circuit n with a LOGSPACE-Turing

machine M by running it on the input 1n. Using this machine, we can in fact compute all

the information needed to run the two-stack algorithms described above. For instance, we

can construct a LOGSPACE machine that checks, given two gates g1 and g2, whether g2

is a child of g1. Similarly, we can construct a machine that, given g1 and g2 tells us whether

g2 is the final child of g1, or the one that produces the following child of g1 (according to

the ordering given by the machine M). Defining these machines based of M is similar

to the algorithm for the composition of two LOGSPACE transducers, and is commonly

used to evaluate arithmetic circuits (Allender, 2004).

To simulate the circuit evaluation algorithm that uses two stacks, in for-MATLANG

we can use a binary matrix of size n ⇥ n, where n is the number of inputs. The idea

here is that the gates-stack corresponds to the first n 3 columns of the matrix, with each

gate being encoded as a binary number in positions 1, . . . , n 3 of a row. The remaining

three columns are reserved for the values-stack, the number of elements on the gates stack,

and the number of elements on the values stack, respectively. The number of elements is

encoded as a canonical vector of size n. Here we crucially depend on the fact that the

circuit is of logarithmic depth, and therefore the size of the two stacks is bounded by n

(apart from the portion before the asymptotic bound kicks-in, which can be hard-coded

into the expression e). Similarly, given that the circuits are of polynomial size, we can

assume that gate ids can be encoded into n 3 bits.

This matrix is then updated in the same way as the two-stack algorithm. It pro-

cesses gates one by one, and using the successor relation for canonical vectors determines
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whether we have more elements on the gates stack. In this case, a new value is added

to the values stack (0 if the gate is a sum gate, and 1 otherwise), and the process contin-

ues. Information about the next child, last child, or input value, are obtained using the

expression which simulates the Turing machine generating this data about the circuit (the

machines used never produce an output longer than their input). Given that the size of the

circuit is polynomial, say nk, we can initialize the matrix with the output gate only, and

run the simulation of the two-stack algorithm for nk steps (by iterating k times over size n

canonical vectors). After this, the value in position (1, n 2) (the top of the values stack)

holds the final results.

Proof of theorem 5.1. Let n be a circuit with n input gates and such that it can

be computed by a Luniform arithmetic circuit of log-depth. Each gate of the circuit

that encodes f has an id 2 {0, 1}n. From now on, when we write g for a gate of the

circuit, we mean the id encoding g. Let nk be a polynomial such that the number of

wires W (n)  nk for n big enough. Further, we assume that 2W (n)  nk. We need this

because the for-matlang simulation of the circuit is in a depth first search way, so 2W (n)

wires will be traversed. Then we have that:

• the number of gates is bounded by nk.

• we need at most k log(n) bits to store the id of a gate.

• the depth of the circuit is at most k0 log(n) for some k0.

So, let n0 and k such that 8n  n0 :

2W (n)  nk

kdlog(n)e  n 3

k0dlog(n)e  n

9
>>>>=
>>>>;
(?)

We know n0 and k exist. Let n  n0. Towards the end, we will deal with the case

when n < n0.
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Let g be a gate. The children of g are denoted by g1, . . . , gl.

g

g1 · · · gl

For example, a circuit that encodes the function f(a1, a2, a3, a4) = a1a2 + a3a4 is

+

⇥

a1 a2

⇥

a3 a4

We can simulate the polynomial x2 + xy by doing f(A) where A = [x x x y]T . The

main idea is to traverse the circuit top down in a depth first search way and store visited

gates in a stack and its corresponding current values in another stack, and aggregate in the

iterations according to the gate type.

For a stack S, the operations are standard:

• S.push(s): pushes s into S.

• S.pop: pops the top element.

• S.size: the length of the stack.

• S.top: the top element in the stack.

For the pseudo-code, G and V denote stacks of gates and values, respectively. The

property that holds during the simulation is that the value in V [i] is the value that G[i]

currently outputs. The algorithm ends with G = [groot] and V = [vroot] after traversing

the circuit, and returns vroot

During the evaluation algorithm there will be two possible configurations of G and V .
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(i) G.size = V.size+ 1: this means that G.top is a gate that we visit for the

first time and we need to initialize its value.

(ii) G.size = V.size: here V.top is the value of evaluating the circuit in gate

G.top. Therefore, we need to aggregate the value V.top to the parent gate of

g.

We assume the circuit has input gates, +,⇥-gates and allow constant 1-gate.

The idea is to traverse the circuit top down in a depth first search way. For example,

in the circuit f(a1, a2, a3, a4) = a1a2 + a3a4 above, we would initialize the output gate

value as 0 because it is a + gate, so G = {+}, V = {0}. Then stack the left ⇥ gate to G,

stack its initial value (i.e. 1) to V . Now stack a1 to G and its value (i.e. a1) to V . Since we

are on an input gate we pop the gate and value pair off of G and V respectively, aggregate

a1 to V.top and continue by stacking the a2 gate to G. We pop a2 off of V (and its gate

off of G) and aggregate its value to V.top. We pop and aggregate the value of the left ⇥

gate to V.top (the root value). Then continue with the right ⇥ gate branch similarly.

For the pseudo-code, we supply ourselves with the following functions:

– isplus (g): true if and only if g is a +-gate.

– isprod (g): true if and only if g is a ⇥-gate.

– isone (g): true if and only if g is a 1-gate.

– isinput (g): true if and only if g is an input gate.

– getfirst (g): outputs the first child of g.

– getinput (g): outputs A[i] when g is the i-th input.

– not last (g1, g2): true if and only if g2 is not the last child gate of g1.

– next gate (g1, g2): outputs the next child gate of g1 after g2.

– getroot(): outputs the root gate of the circuit.

The corresponding {0, 1}n ! {0, 1}n functions are:
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– isplus (g): 1 if and only if g is a +-gate.

– isprod (g): 1 if and only if g is a ⇥-gate.

– isone (g): 1 if and only if g is a 1-gate.

– isinput (g): 1 if and only if g is an input gate.

– getfirst (g): outputs the id of the first child of g.

– getinput (g): outputs canonical vector bi, where the i-th input gate of n is

encoded by g.

– not last (g1, g2): 1 if and only if g2 is not the last child gate of g1.

– next gate (g1, g2): outputs the id of the next child gate of g1 after g2.

– getroot(): outputs the id of the root gate of the circuit.

The previous functions are all definable by an L-transducer and can be defined from

the L-transducer of f . Then, by proposition 5.1, for each of these functions there is a

for-MATLANG expression that simulates them.

Now, we give the pseudo-code of the top-down evaluation. We define the functions

Initialize (algorithm 1), Aggregate (algorithm 2) and Evaluate (algorithm 3). The main

algorithm is Evaluate.

Algorithm 1 Initialize (pseudo-code)
1: function INITIALIZE(G,V , A) . The stacks and input. Here,
G.size = V.size+ 1

2: if isplus (G.top) then
3: V.push(0)
4: G.push(getfirst (G.top))
5: else if isprod (G.top) then
6: V.push(1)
7: G.push(getfirst (G.top))
8: else if isone (G.top) then
9: V.push(1)

10: else if isinput (G.top) then
11: V.push(A [getinput (G.top)])

12: return G,V
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Algorithm 2 Aggregate (pseudo-code)
1: function AGGREGATE(G,V) . Here, G.size = V.size
2: g = G.pop
3: v = V.pop
4: if isplus (G.top) then
5: V.top = V.top+ v
6: else if isprod (G.top) then
7: V.top = V.top · v

8: if not last (G.top, g) then
9: G.push(next gate (G.top, g))

10: return G,V

Algorithm 3 Evaluate (pseudo-code)
1: function EVALUATE(A) . Input n⇥ 1 vector A. Here, G and V are empty
2: G.push(getroot())
3: while G.size 6= 1 or V.size 6= 1 do
4: if G.size 6= V .size then
5: (G,V) := Initialize(G,V , A)
6: else
7: (G,V) := Aggregate(G,V)

8: return V.top

The Evaluate algorithm gives us the output of the circuit. Note that after each iteration

it either holds that G.size = V.size+1 or G.size = V.size. Furthermore, when

we start we have G.size = 1 and V.size = 0. The condition G.size = 1 and

V.size = 1 holds only when we have traversed all the circuit, and the value in V.top

is the value that the root of the circuit outputs after its computation.

Next, we show how to encode this algorithm in for-MATLANG.

Let n0 2 N be big enough for (?) to hold and let n  k. Hence, the number of gates

(values) is bounded by nk and we need k log(n) bits to encode the id of each gate.

To simulate the two stacks G and V we keep a matrix X of dimensions n⇥ n.

• Column n will store a canonical vector that marks the top of stack V (values).

• Column n1 will store a canonical vector that marks the top of stack G (gates).
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• Column n2 is the stack of values where X[1, n2] is the bottom of the stack.

• Columns 1 to n 3 are the stack of gates.

If we have j gates in the stack and currently G.size = V.size then X would look

like:

X =

2
666666666666664

id1 v1 0 0

id2 v2 0 0
...

...
...

...

idj vj 1 1

0 0 0 0
...

...
...

...

0 0 0 0

3
777777777777775

.

Since n  n0, (?) holds and thus we never use more than n  3 bits to encode an

id. Also, j  n given that we never keep more gates than the depth of the tree. As a

consequence, we never keep more than n values either.

An important detail is that the ids of the gates are encoded as idr000 for it to have

dimension n, where idr is the corresponding binary number in reverse.

We make a series of definitions to make the notation more clear. Refer to Chapter 3.2.2

for more information about these expressions.

Let bi be the i-th canonical vector. Next and Prev denote the successor and predecessor

matrices respectively, such that

Next · bi =

8
><
>:
bi+1 if i  n

0 otherwise
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Prev · bi =

8
><
>:
bi1 if i  n

0 otherwise

We write expressions emin for the first canonical vector and emax for the last canonical

vector. For any i we write
emin+i = Nexti · emin

emax+i = Previ · emax

We use the extra {0, 1}n ! {0, 1}n functions that have a for-MATLANG translation:

min(e) =

8
><
>:
1 if e = emin

0 otherwise

max(e) =

8
><
>:
1 if e = emax

0 otherwise

succ(bi, bj) =

8
><
>:
1 if i  j

0 otherwise

When used in for-MATLANG these functions output [0] and [1].

Now
eV := emax2

eGtop
:= emax1

eVtop
:= emax

For a canonical vector, let

Iden(bi) := ⌃v.succ(v, bi) · (v · v
T ).
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This matrix has ones in the diagonal up to position i marked by ei. We define the following

sub-matrices of X:
Vtop := X · eVtop

V := Iden(Vtop) ·X · eV

Gtop := X · eGtop

G := Iden(Gtop) ·X · Iden(emax3)

For example, if we are in a step where G.size = V.size+ 1 then

X =

2
666666666666666664

id1 v1 0 0

id2 v2 0 0
...

...
...

...

idj1 vj1 0 1

idj 0 1 0

0 0 0 0
...

...
...

...

0 0 0 0

3
777777777777777775

, G =

2
666666666666666664

id1 0 0 0

id2 0 0 0
...

...
...

...

idj1 0 0 0

idj 0 0 0

0 0 0 0
...

...
...

...

0 0 0 0

3
777777777777777775

,

V =

2
666666666666666664

v1

v2
...

vj1

0

0
...

0

3
777777777777777775

, Gtop =

2
666666666666666664

0

0
...

0

1

0
...

0

3
777777777777777775

, Vtop =

2
666666666666666664

0

0
...

1

0

0
...

0

3
777777777777777775

.

Here, V is a vector encoding the stack of values in X and G is a matrix encoding the

stack of gates in X . Note that what is over the top of the stacks is always set to zero due to
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Iden(Gtop) and Iden(Vtop). Also, note that G is of the same size as X . We sometimes

omit the zeroes due to simplicity.

To set the initial state (algorithm 3 line 2) we define the for-MATLANG expression:

START := emin · getroot()
T + emin · e

T
Gtop

.

For the initialize step, we define the for-MATLANG expressions: INIT PLUS (algorithm

1, lines 2, 3, 4), INIT PROD (algorithm 1, lines 5, 6, 7), CONST (algorithm 1, lines 8, 9)

and INPUT (algorithm 1, lines 10, 11):

INIT PLUS := isplus


GT ·Gtop



⇥
h
G+ (Next ·Gtop) · getfirst



GT ·Gtop

T
+

Next ·Gtop · e
T
Gtop

+ V · eTV + Next · Vtop · e
T
Vtop

i

INIT PROD := isprod


GT ·Gtop



⇥
h
G+ (Next ·Gtop) · getfirst



GT ·Gtop

T
+

Next ·Gtop · e
T
Gtop

+ (V + Next · vtop) · e
T
V + Next · Vtop · e

T
Vtop

i

CONST := isone


GT ·Gtop



⇥
h
G+ (V + Next · Vtop) · e

T
V + Next · Vtop · e

T
Vtop

i

INPUT := isinput


GT ·Gtop



⇥


G+
⇣

V +
⇣

vT · Next · Vtop · getinput


GT ·Gtop

T
⌘⌘

· eTV+

Next · Vtop · e
T
Vtop



Where v is the matrix variable stated in the theorem, the one associated with the input A

of the circuit. Here, GT ·Gtop is to get the current id in the top of the stack. In INIT PLUS

we get the current stack G, we add Next · Gtop · getfirst


GT ·Gtop

T which is an

n⇥ n matrix with the first child of GT ·Gtop in the next row. Then Next ·Gtop · e
T
Gtop

adds

Next · Gtop to the n  1 column to mark the gate we added as the top. Next, we do the
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same with the values by adding V · eV +Next · Vtop · e
T
Vtop

. The other expressions work in

a similar way.

The for-MATLANG expression equivalent to algorithm 1 is

INIT := INIT PLUS+ INIT PROD+ CONST+ INPUT.

The idea is to return the matrix for the next iteration. Recall that here G.size =

V.size+ 1. So, when the operation is INPUT or CONST, if we start with

2
666666666666666664

id1 v1 0 0

id2 v2 0 0
...

...
...

...

idj1 vj1 0 1

idj 0 1 0

0 0 0 0
...

...
...

...

0 0 0 0

3
777777777777777775

, then we return

2
666666666666666664

id1 v1 0 0

id2 v2 0 0
...

...
...

...

idj1 vj1 0 0

idj vj 1 1

0 0 0 0
...

...
...

...

0 0 0 0

3
777777777777777775

.

When the operation is INIT PLUS or INIT PROD, if we start with

2
666666666666666666664

id1 v1 0 0

id2 v2 0 0
...

...
...

...

idj1 vj1 0 1

idj 0 1 0

0 0 0 0

0 0 0 0
...

...
...

...

0 0 0 0

3
777777777777777777775

, then we return

2
666666666666666666664

id1 v1 0 0

id2 v2 0 0
...

...
...

...

idj1 vj1 0 0

idj vj 0 1

idj+1 0 1 0

0 0 0 0
...

...
...

...

0 0 0 0

3
777777777777777777775

.
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For the aggregate expression (algorithm 2) we do the following. Let

E [bi, c] = ⌃v.(vT · bi) · c · v · v
T + (1 vT · bi) · v · v

T ,

namely, it is the identity with c in position (i, i).

We define the expressions: AGG PLUS (algorithm 2, lines 4, 5), AGG PROD (algo-

rithm 2, lines 6, 7), IS NOT LAST (algorithm 2, lines 8, 9), IS LAST and POP:

POP := Iden(Prev ·Gtop) ·G+ Prev · Vtop · e
T
Vtop

AGG PLUS := isplus


GT · (P ·Gtop)


⇥

⇥

Iden(Prev · Vtop) · V +


V T · Vtop



(Prev · Vtop)


· eTV
⇤

AGG PROD := isprod


GT · (P ·Gtop)


⇥

⇥

E
⇥

Prev · Vtop, V
T · Vtop

⇤

· Iden(Prev · Vtop) · V


· eTV
⇤

IS NOT LAST := not last


GT · (P ·Gtop) , G
T ·Gtop



⇥
h
Gtop · next gate



GT · (Prev ·Gtop) , G
T ·Gtop

T
+Gtop · e

T
Gtop

i

IS LAST :=


1 not last


GT · (P ·Gtop) , G
T ·Gtop



⇥
h
(Prev ·Gtop) · e

T
Gtop

i

The for-MATLANG expression equivalent to algorithm 2 is

AGG := POP+ AGG PLUS+ AGG PROD+ IS NOT LAST+ IS LAST.

The Evaluate method (algorithm 3) is defined as follows:
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EVAL[v] := eTmin ·


forX, v1, . . . , vk. :



⇧
k
i=1min(vi)



⇥ START+



1 ⇧
k
i=1min(vi)



⇥
⇣

(1min(Gtop) ·min(Vtop))⇥

⇥

1GT
top · Vtop



⇥ INIT+


GT
top · Vtop



⇥ AGG
⇤

+

min(Gtop)⇥min(Vtop)⇥X
⌘

 

· eV

Note that the for-expression does the evaluation. The final output is in X[1,max2],

we extract this value by multiplying the final result as eTmin · [for(. . .)] · eV . We use

⇧
k
j=1min(vi) to initialize with START .

Finally, we need to take care of all n < n0, where (?) does not necessarily hold. For

any i, let:

Eval[i, A] := the 1⇥ 1 matrix with the value of the polynomial n(A) when n = i.

Then we define:

n(a1, . . . , ai) :=⌃
n01
i=0



eTmin+i · (ediag(e1(v)) · emax)


⇥ EVAL[i, v]+


(Nextn0 · emin)
T · e1(v)



⇥ EVAL[v].

Above, (eTmin+i·emax) checks if the dimension is equal to i (we multiply by the n⇥n identity

ediag(e1(v)) to ensure typing), and (Nextn0 · emin)
T · e1(emin) checks if the dimension is

greater or equal than n0. ⇤

While Theorem 5.1 gives us an idea on how to simulate arithmetic circuits, it does not

tell us which classes of functions over real numbers can be computed by for-MATLANG

expressions. In order to answer this question, we note that arithmetic circuits can be

used to compute functions over real numbers. Formally, a circuit family {n | n =

1, 2, . . .} computes a function f :
S

n1 R
n 7! R, if for any a1, . . . an 2 R it holds that
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n(a1, . . . , an) = f(a1, . . . , an). To make the connection with for-MATLANG , we need

to look at circuit families of bounded degree.

A circuit family {n | n = 1, 2, . . .} is said to be of polynomial degree if degree(n) 2

O(p(n)), for some polynomial p(n). Note that polynomial size circuit families are not nec-

essarily of polynomial degree. An easy corollary of Theorem 5.1 tells us that all functions

computed by uniform family of circuits of polynomial degree and logarithmic depth can

be simulated using for-MATLANG expressions. However, we can actually drop the re-

striction on circuit depth due to the result of Valiant et. al. (Valiant & Skyum, 1981) and

Allender et. al. (Allender, Jiao, Mahajan, & Vinay, 1998) which says that any function

computed by a uniform circuit family of polynomial degree (and polynomial depth), can

also be computed by a uniform circuit family of logarithmic depth. Using this fact, we can

conclude the following:

Corollary 5.1. For any function f computed by a uniform family of arithmetic circuits

of polynomial degree, there is an equivalent for-MATLANG formula ef .

Note that there is nothing special about circuits that have a single output, and both

Theorem 5.1 and Corollary 5.1 also hold for functions f :
S

n1 R
n 7! R

s(n), where s is a

polynomial. Namely, in this case, we can assume that circuits for f have multiple output

gates, and that the depth reduction procedure of (Allender et al., 1998) is carried out for

each output gate separately. Similarly, the construction underlying the proof of Theorem

5.1 can be performed for each output gate independently, and later composed into a single

output vector.

5.3. From for-MATLANG to circuits

Now that we know that arithmetic circuits can be simulated using for-MATLANG

expressions, it is natural to ask whether the same holds in the other direction. That is, we

are asking whether for each for-MATLANG expression e over some schema S there is a
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uniform family of arithmetic circuits computing precisely the same result depending on

the input size.

In order to handle the fact that for-MATLANG expressions can produce any matrix,

and not just a single value, as their output, we need to consider circuits which have multiple

output gates. Similarly, we need to encode matrix inputs of a for-MATLANG expression

in our circuits. We will write (A1, . . . , Ak), where  is an arithmetic circuit with multiple

output gates, and each Ai is a matrix of dimensions ↵i⇥i, with ↵i, i 2 {n, 1} to denote

the input matrices for a circuit . We will also write type() = (↵, ), with ↵,  2

{n, 1}, to denote the size of the output matrix for . We call such circuits arithmetic

circuits over matrices. When {n | n = 1, 2, . . .} is a uniform family of arithmetic circuits

over matrices, we will assume that the Turing machine for generating n also gives us the

information about how to access a position of each input matrix, and how to access the

positions of the output matrix, as is usually done when handling matrices with arithmetic

circuits (Raz, 2003). The former will be denoted as n[i, j] when typeS() = (n, n),

n[i, 1] when typeS() = (n, 1), n[1, j] when typeS() = (1, n) and n when

typeS() = (1, 1). The notion of degree is extended to be the sum of the degrees of

all the output gates. Also, when we write a b we mean

+

a b

When we write
Ln

l=1 al we mean

+

a1 · · · an

Same with ⌦. With this at hand, we can now show the following result.
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Theorem 5.2. Let e be a for-MATLANG expression over a schema S , and let

V1, . . . , Vk be the variables of e such that typeS(Vi) 2 {(↵,↵), (↵, 1), (1,↵), (1, 1)}.

Then there exists a uniform arithmetic circuit family over matrices n(A1, . . . , Ak) such

that:

• For any instance I = (D,mat) such that D(↵) = n and mat(Vi) = Ai it holds

that:

• JeK(I) = n(A1, . . . , Ak).

PROOF. Let e be a for-MATLANG expression.

If e = V then
e
n := (A), and we have that

• If typeS(V ) = (1, 1) then typeS(
e
n) = (1, 1) and

e
n has the one input/output

gate.

• If typeS(V ) = (1,↵) then typeS(
e
n) = (1, n) and

e
n has n input/output

gates.

• If typeS(V ) = (↵, 1) then typeS(
e
n) = (n, 1) and

e
n has n input/output

gates.

• If typeS(V ) = (↵,↵) then typeS(
e
n) = (n, n) and

e
n has n2 input/output

gates.

If e = e0T then
e
n =

e0

n .

• If typeS(
e0

n ) = (1, 1) then
e
n =

e0

n and type(e
n) = (1, 1).

• If typeS(
e0

n ) = (1, n) then type(e
n) = (n, 1) and

e
n[i, 1] :=

e0

n [1, i].

• If typeS(
e0

n ) = (n, 1) then type(e
n) = (1, n) and

e
n[1, j] :=

e0

n [j, 1].

• If typeS(
e0

n ) = (n, n) then type(e
n) = (n, n) and

e
n[i, j] :=

e0

n [j, i].

If e = 1(e0) where typeS(
e0

n ) = (↵, ) then typeS(
e
n) = (↵, 1) and

e
n[i, 1] := 1.

If e = e1 + e2 we have
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• When typeS(
e1
n ) = typeS(

e2
n ) = (1, 1) then typeS(

e
n) = (1, 1) and


e
n :=

e1
n 

e2
n .

• When typeS(
e1
n ) = typeS(

e2
n ) = (1, n) then typeS(

e
n) = (1, n) and


e
n[1, j] :=

e1
n [1, j]

e2
n [1, j].

• When typeS(
e1
n ) = typeS(

e2
n ) = (n, 1) then typeS(

e
n) = (n, 1) and


e
n[i, 1] :=

e1
n [i, 1]

e2
n [i, 1].

• When typeS(
e1
n ) = typeS(

e2
n ) = (n, n) then typeS(

e
n) = (n, n) and


e
n[i, j] :=

e1
n [i, j]

e2
n [i, j].

If e = f(e1, . . . , ek) we have two cases

• When f is the function f (recall that this function is definable in MATLANG[;]

by Lemma 3.1) then

– If typeS(
e1
n ) = . . . = typeS(

ek
n ) = (1, 1) then

e
n :=

Nk
l=1

el
n .

– If typeS(
e1
n ) = . . . = typeS(

ek
n ) = (1, n) then


e
n[1, j] :=

kO

l=1


el
n [1, j]

.

– If typeS(
e1
n ) = . . . = typeS(

ek
n ) = (n, 1) then


e
n[i, 1] :=

kO

l=1


el
n [i, 1]

.

– If typeS(
e1
n ) = . . . = typeS(

ek
n ) = (n, n) then


e
n[i, j] :=

kO

l=1


el
n [i, j]

.

• When f is any other function, we prove the case when typeS(
e1
n ) = . . . =

typeS(
ek
n ) = (1, 1) (only case necessary, as discussed in Chapter 3.3.2). Here


e
n is
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f


e1
n · · ·

ek
n

Note that since for the context of this result we only consider for-MATLANG =

MATLANG[;], this case is not strictly necessary, modulo for f, f due to Lemma

3.1. However, if we extend the circuits with the same functions allowed in

for-MATLANG, then our inductive construction still goes through, as just il-

lustrated.

If e = e1 · e2 we have

• When typeS(
e1
n ) = (1, 1) and typeS(

e2
n ) = (1, 1) then typeS(

e
n) =

(1, 1) and
e
n :=

e1
n ⌦

e2
n .

• When typeS(
e1
n ) = (1, 1) and typeS(

e2
n ) = (1, n) then typeS(

e
n) =

(1, n) and
e
n[1, j] :=

e1
n ⌦

e2
n [1, j].

• When typeS(
e1
n ) = (n, 1) and typeS(

e2
n ) = (1, 1) then typeS(

e
n) =

(n, 1) and
e
n[i, 1] :=

e1
n [i, 1]⌦

e2
n .

• When typeS(
e1
n ) = (n, 1) and typeS(

e2
n ) = (1, n) then typeS(

e
n) =

(n, n) and
e
n[i, j] :=

e1
n [i, 1]⌦

e2
n [1, j].

• When typeS(
e1
n ) = (1, n) and typeS(

e2
n ) = (n, 1) then typeS(

e
n) =

(1, 1) and


e
n :=

nM

k=1

(e1
n [1, k]⌦

e2
n [k, 1]) .

• When typeS(
e1
n ) = (1, n) and typeS(

e2
n ) = (n, n) then typeS(

e
n) =

(1, n) and


e
n[1, j] :=

nM

k=1

(e1
n [1, k]⌦

e2
n [k, j]) .
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• When typeS(
e1
n ) = (n, n) and typeS(

e2
n ) = (n, 1) then typeS(

e
n) =

(n, 1) and


e
n[i, 1] :=

nM

k=1

(e1
n [i, k]⌦

e2
n [k, 1]) .

• When typeS(
e1
n ) = (n, n) and typeS(

e2
n ) = (n, n) then typeS(

e
n) =

(n, n) and


e
n[i, j] :=

nM

k=1

(e1
n [i, k]⌦

e2
n [k, j]) .

If e = forX, v. e0(X, v), then define
0 as the zero matrix circuit typeS(

0) =

(1, 1) if typeS(
e0

n ) = (1, 1) and typeS(
0) = (n, n) if typeS(

e0

n ) = (n, n). Also,


0 = 0 and

0[i, j] = 0 8i, j for each case respectively. Now for i = 1, . . . , n, define


vi as the circuit such that typeS(

vi) = (n, 1) and
vi [i, 1] := 1 and zero otherwise.

Finally, define


e
n =

e0

n

⇣


e0

n

⇣

· · ·
⇣


e0

n




0,v1



,v2
⌘

· · · ,vn1

⌘

,vn
⌘

.

Note that every circuit adds a constant number of layers except when in the case

e = forX, v. e0(X, v). This means that the depth still is polynomial. When e =

forX, v. e0(X, v) we have that the depth of the circuit is n · p(n), where the depth of

e0(X, v) is p(n), so it also remains polynomial.

Here, we do not need to translate scalar multiplication because it can be simulated

using the ones operator and f (see Chapter 3.3.2).

Finally, we remark that when composing the circuits the fact that uniformity is pre-

served (i.e. the resulting circuit can be generated by a LOGSPACE machine) is proved

analogously as when composing two LOGSPACE transducers (Arora & Barak, 2009).

The only more involved case is treating for-loop construction, however, notice here that
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we only need to keep track of where we are in the evaluation (i.e. which vi we are pro-

cessing), and not of all the previous results, given that they update the resulting matrix in

a fixed order.

⇤

It is not difficult to see that the proof of Theorem 5.1 can also be extended to support

arithmetic circuits over matrices. In order to identify the class of functions computed by

for-MATLANG expressions, we need to impose one final restriction: than on the degree

of an expression. Formally, the degree of for-MATLANG expression e over a schema S ,

is the minimum of the degrees of any circuit family {n | n = 1, 2, . . .} that is equivalent

to e. That is, the expression e is of polynomial degree, whenever there is an equivalent

circuit family for e of a polynomial degree. For example, all for-MATLANG expressions

seen so far have polynomial degree. With this definition, we can now identify the class of

functions for which arithmetic circuits and for-MATLANG formulas are equivalent. This

is the main technical contribution of the thesis.

Corollary 5.2. Let f be a function with input matrices A1, . . . , Ak of dimensions ↵⇥,

with ↵,  2 {n, 1}. Then, f is computed by a uniform circuit family over matrices of

polynomial degree if and only if there is a for-MATLANG expression of polynomial degree

for f .

Note that this result crucially depends on the fact that expressions in for-MATLANG

are of polynomial degree. Some for-MATLANG expressions are easily seen to pro-

duce results which are not polynomial. An example of such an expression is, for in-

stance, eexp = for v,X = A.X · X , over a schema S with typeS(v) = (, 1), and

typeS(X) = (1, 1). Over an instance which assigns n to  this expression computes the

function a2
n , for A = [a]. Therefore, a natural question to ask then is whether we can

determine the degree of a for-MATLANG expression. Unfortunately, as we show in the

following proposition this question is in fact undecidable.
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PROPOSITION 5.2. Given a for-MATLANG expression e over a schema S, it is unde-

cidable to check whether e is of polynomial degree.

PROOF. We show undecidability based on the following undecidable language:

{hMi |M is a deterministic TM which halts on the empty input},

where hMi is some string encoding of M . Consider a TM M described by (Q, =

{0, 1}, q0, qm,) with Q = {q1, . . . , qm} its states, q1 being the initial state and qm being

the halting state,  is the tape alphabet, and  is a transition function from Q⇥ ! Q⇥

⇥{ ,t,!}. The simulation of linear space TM, as given in the proof of Proposition 5.1

can be easily modified to any TM M provided that we limit the execution of M to exactly

n steps. Let eM denote this expression. Similarly as in the linear space TM simulation,

we have vector variables Q1, . . . , Qm encoding the states, a single relation T encoding

the tape and relation HT encoding the position of the tape. When an instance I assigns

n to ↵, we have a tape of length n at our disposal. This suffices if we let M run for n

steps. We further observe that all vector variables can be assumed to be zero, initially.

This is because we do not have input. So, let I0n denote the instance which assigns vector

variables to the n-dimensional zero vector. Furthermore, by contrast to the linear space

TM simulation, we use a single vector v (instead of k such vectors) to simulate n steps of

M . Finally, we modify the expression given in the proof of Proposition 5.1 such JeMK(I0n)

returns 1 if M halts in at most n steps, and 0 if M did not halt yet after n steps.

As a consequence, when M does not halt, JeMK(I0n) = 0 for all n  0. When M halts,

there will be an n such that JeMK(I0n) = 1 It now suffices to consider the for-MATLANG

expression

dM := eM · eexp

where eexp = for v,X = 1(X)T · 1(X).X · X such that eexp(I0n) = n2n . Then,

when M does not halt we can clearly compute dM with a constant degree circuit “0”

for any n, otherwise, the circuit needed will be of exponential degree for at least one n,

simply because no polynomial degree uniform circuit family can compute n2n . In other
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words, deciding whether dM has polynomial degree coincides with deciding whether M

halts. ⇤

Of course, one might wonder whether it is possible to define a syntactic subclass of

for-MATLANG expressions that are of polynomial degree and can still express many im-

portant linear algebra algorithms. We identify one such class in Chapter 6.1, called sum-

MATLANG, and in fact show that this class is powerful enough to capture relational algebra

on (binary) K-relations.

5.4. Supporting additional operators

The equivalence of for-MATLANG and arithmetic circuits we prove above assumes

that circuits can only use the sum and product gates (note that even without the sum and the

product function, for-MATLANG can simulate these operations via matrix sum/product).

However, both arithmetic circuits and expressions in for-MATLANG can be allowed to

use a multitude of functions over R. The most natural addition to the set of functions is

the division operator, which is crucially needed in many linear algebra algorithms, such

as, for instance, Gaussian elimination, or LU decomposition (recall Proposition 4.1). In-

terestingly, the equivalence in this case still holds, mainly due to a surprising result which

shows that (almost all) divisions can in fact be removed from arithmetic circuits allowing

sum, product, and division gates (Allender, 2004).

More precisely, in the work by Strassen, 1973; Borodin, von zur Gathem, & Hopcroft,

1982; Kaltofen, 1988 it was shown that for any function of the form f = g/h, where g and

h are relatively prime polynomials of degree d, if f is computed by an arithmetic circuit of

size s, then both g and h can be computed by a circuit whose size is polynomial in s + d.

Given that we can postpone the division without affecting the final result, this, in essence,

tells us that division can be eliminated (pushed to the top of the circuit), and we can work

with sum-product circuits instead. The degree of a circuit for f , can then be defined as

the maximum of degrees of circuits for g and h. Given this fact, we can again use the
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depth reduction procedure of Allender et al., 1998, and extend Corollary 5.2 to circuits

with division.

Corollary 5.3. Let f be a function taking as its input matrices A1, . . . , Ak of di-

mensions ↵ ⇥ , with ↵,  2 {n, 1}. Then, f is computed by a uniform circuit fam-

ily over matrices of polynomial degree that allows divisions, if and only if there is a

for-MATLANG[f/] expression of polynomial degree for f .

An interesting line of future work here is to see which additional functions can be

added to arithmetic circuits and for-MATLANG formulas, in order to preserve their equiv-

alence. Note that this will crucially depend on the fact that these functions have to allow

the depth reduction of Allender et al., 1998 in order to be supported.
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6. RESTRICTING THE POWER OF FOR LOOPS

We conclude by zooming in on some special fragments of for-MATLANG and in

which matrices can take values from an arbitrary (commutative) semiring K. In particular,

we first consider sum-MATLANG, in which iterations can only perform additive updates,

and show that it is equivalent in expressive power to the (positive) relational algebra on

K-relations. We then extend sum-MATLANG such that also updates involving pointwise-

multiplication (Hadamard product) are allowed. The resulting fragment, FO-MATLANG,

is shown to be equivalent in expressive power to weighted logics. Finally, we consider

the fragment prod-MATLANG in which updates involving sum and matrix multiplication,

and possibly order information, is allowed. From the results in Chapter 4, we infer that the

latter fragment suffices to compute matrix inversion. An overview of the fragments and

their relationships are depicted in Figure 6.1.

6.1. Summation matlang and relational algebra

When defining 4-cliques and in several other expressions we have seen so far, we only

update X by adding some matrix to it. This restricted form of for-loop proved useful

throughout the thesis, and we therefore introduce it as a special operator. That is, we

define:

⌃v.e := for v,X.X + e.

We define the subfragment of for-MATLANG, called sum-MATLANG, to consist of the ⌃

operator plus the “core” operators in MATLANG, namely, transposition, matrix multiplica-

tion and addition, scalar multiplication, and pointwise function applications.

One property of sum-MATLANG is that it only allows expressions of polynomial de-

gree. Indeed, one can easily show that sum-MATLANG can only create matrix entries that

are polynomial in the dimension n of the expression. More precisely, we can show the

following:
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PROPOSITION 6.1. Every expression in sum-MATLANG is of polynomial degree.

Interestingly enough, this restricted version of for-loop already allows us to capture the

MATLANG operators that are not present in the syntax of sum-MATLANG. More precisely,

we see from Examples 3.1 and 3.2 that the one-vector and diag operator are express-

ible in sum-MATLANG. Combined with the observation that the 4-clique expression of

Example 3.3 is in sum-MATLANG, the following result is immediate.

Corollary 6.1. MATLANG is strictly subsumed by sum-MATLANG.

What operations over matrices can be defined with sum-MATLANG that is beyond

MATLANG? In the work of Brijder et al., 2020, it was shown that MATLANG is strictly

included in the (positive) relational algebra on K-relations, denoted by RA+
K (Green, Kar-

vounarakis, & Tannen, 2007).1 It thus seems natural to compare the expressive power of

sum-MATLANG with RA+
K . The main result in this chapter is that sum-MATLANG and

RA+
K are equally expressive over binary schemas. To make this equivalence precise, we

next give the definition of RA+
K (Green et al., 2007) and then show how to connect both

formalisms.

Let D be a data domain and A a set of attributes. A relational signature is a finite subset

of A. A relational schema is a functionR on finite set of symbols dom(R) such thatR(R)

is a relation signature for each R 2 dom(R). To simplify the notation, from now on we

write R to denote both the symbol R and the relational signature R(R). Furthermore,

we write R 2 R to say that R is a symbol of R. For R 2 R, an R-tuple is a function

t : R! D. We denote by tuples(R) the set of all R-tuples. Given X ✓ R, we denote by

t[X] the restriction of t to the set X .

A semiring (K,,, 0, 1) is an algebraic structure where K is a non-empty set,

and  are binary operations over K, and 0, 1 2 K. Furthermore,  and  are associative

1The algebra used by Brijder et al., 2020 differs slightly from the one given by Green et al., 2007. In this
thesis we work with the original algebra RA

+

K
as defined by Green et al., 2007.
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operations, 0 and 1 are the identities of  and  respectively,  is a commutative opera-

tion,  distributes over , and 0 annihilates K (i.e. 0  k = k  0 = 0). As usual, we

assume that all semirings in this thesis are commutative, namely,  is also commutative.

We use
L

X or
J

X for the - or -operation over all elements in X , respectively. Typi-

cal examples of semirings are the reals (R,+,⇥, 0, 1), the natural numbers (N,+,⇥, 0, 1),

and the boolean semiring ({0, 1},_,^, 0, 1).

Fix a semiring (K,,, 0, 1) and a relational schema R. A K-relation of R 2 R

is a function r : tuples(R) ! K such that the support supp(r) = {t 2 tuples(R) |

r(t) 6= 0} is finite. A K-instance J of R is a function that assigns relational signatures

of R to K-relations. Given R 2 R, we denote by RJ the K-relation associated to R.

Recall that RJ is a function and hence RJ (t) is the value in K assigned to t. Given a K-

relation r we denote by adom(r) the active domain of r defined as adom(r) = {t(a) |

t 2 supp(r) ^ a 2 R}. Then the active domain of an K-instance J of R is defined as

adom(J ) =
S

R2R adom(RJ ).

An RA+
K expression Q overR is given by the following syntax:

Q := R | Q [Q | ⇡X(Q) | X(Q) | ⇢f (Q) | Q ./ Q

where R 2 R, X ✓ A is finite, and f : X ! Y is a one to one mapping with Y ✓ A. One

can extend the schema R to any expression over R recursively as follows: R(R) = R,

R(Q [ Q0) = R(Q), R(⇡X(Q)) = X , R(X(Q)) = R(Q), R(⇢f (Q)) = X where

f : X ! Y , and R(Q ./ Q0) = R(Q) [ R(Q0) for every expressions Q and Q0.

We further assume that any expression Q satisfies the following syntactic restrictions:

R(Q0) = R(Q00) whenever Q = Q0 [ Q00, X ✓ R(Q0) whenever Q = ⇡X(Q
0) or

Q = X(Q
0), and Y = R(Q0) whenever Q = ⇢f (Q

0) with f : X ! Y .

Given an RA+
K expression Q and a K-instance J ofR, we define the semantics JQKJ

as a K-relation of R(Q) as follows. For X ✓ A, let EqX(t) = 1 when t(a) = t(b) for
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every a, b 2 X , and EqX(t) = 0 otherwise. For every tuple t 2 R(Q):

if Q = R, then JQKJ (t) = RJ (t)

if Q = Q1 [Q2, then JQKJ (t) = JQ1KJ (t) JQ2KJ (t)

if Q = ⇡X(Q
0), then JQKJ (t) =

L
t0:t0[X]=tJQ

0KJ (t
0)

if Q = X(Q
0), then JQKJ (t) = JQ0KJ (t) EqX(t)

if Q = ⇢f (Q
0), then JQKJ (t) = JQ0KJ (t  f)

if Q = Q1 ./ Q2, then JQKJ (t) = JQ1KJ (t[Y ]) JQ2KJ (t[Z]),

where Y = R(Q1) and Z = R(Q2). It is important to note that the
L

-operation in the

semantics of ⇡X(Q
0) is well-defined given that the support of JQ0KJ is always finite.

We are now ready for comparing sum-MATLANG with RA+
K . First of all, we need

to extend sum-MATLANG from R to any semiring. Let Mat[K] denote the set of all K-

matrices. Similarly as for MATLANG over R, given a MATLANG schema S, a K-instance

I over S is a pair I = (D,mat), where D : Symb 7! N assigns a value to each size

symbol, and mat : M 7! Mat[K] assigns a concrete K-matrix to each matrix variable.

Then it is straightforward to extend the semantics of MATLANG, for-MATLANG, and sum-

MATLANG from (R,+,⇥, 0, 1) to (K,,, 0, 1) by switching + with  and ⇥ with .

The next step to compare sum-MATLANG with RA+
K is to represent K-matrices as

K-relations. Let S = (M,size) be a MATLANG schema. On the relational side we

have for each size symbol ↵ 2 Symb \ {1}, attributes ↵, row↵, and col↵ in A. Further-

more, for each V 2 M and ↵ 2 Symb we denote by RV and R↵ its corresponding

relation name, respectively. Then, given S we define the relational schema Rel(S) such

that dom(Rel(S)) = {R↵ | ↵ 2 Symb}[{RV | V 2M} where Rel(S)(R↵) = {↵} and:

Rel(S)(RV ) =

8
>>>>>>>><
>>>>>>>>:

{row↵, col} if size(V ) = (↵, )

{row↵} if size(V ) = (↵, 1)

{col} if size(V ) = (1, )

{} if size(V ) = (1, 1).
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Consider now a matrix instance I = (D,mat) over S. Let V 2 M with size(V ) =

(↵, ) and let mat(V ) be its corresponding K-matrix of dimension D(↵) ⇥ D(). To

encode I as a K-instance in RA+
K , we use as data domain D = N \ {0}. Then we con-

struct the K-instance Rel(I) such that for each V 2M we define RRel(I)
V (t) := mat(V )ij

whenever t(row↵) = i  D(↵) and t(col) = j  D(), and 0 otherwise. Furthermore,

for each ↵ 2 Symb we define R
Rel(I)
↵ (t) := 1 whenever t(↵)  D(↵), and 0 other-

wise. In other words, R↵ and R encodes the active domain of a matrix variable V with

size(V ) = (↵, ). Given that the RA+
K framework of Green et al., 2007 represents the

“absence” of a tuple in the relation with 0, we need to separately encode the indexes in a

matrix. This is where R
Rel(I)
↵ and R

Rel(I)
 are used for. We are now ready to state the first

connection between sum-MATLANG and RA+
K by using the previous encoding. The proof

of the proposition below is by induction on the structure of expressions.

PROPOSITION 6.2. For each sum-MATLANG expression e over schema S such that

S(e) = (↵, ) with ↵ 6= 1 6= , there exists an RA+
K expression (e) over relational

schema Rel(S) such that Rel(S)((e)) = {row↵, row} and such that for any instance I

over S ,

JeK(I)i,j = J(e)KRel(I)(t)

for tuple t(row↵) = i and t(col) = j. Similarly for when e has schema S(e) =

(↵, 1), S(e) = (1, ) or S(e) = (1, 1), then (e) has schema Rel(S)((e)) = {row↵},

Rel(S)((e)) = {col↵}, or Rel(S)((e)) = {}, respectively.

PROOF. We start from a matrix schema S = (M,size), whereM ⇢ V is a finite set

of matrix variables, and size : V 7! Symb ⇥ Symb is a function that maps each matrix

variable to a pair of size symbols. On the relational side we have for each size symbol

↵ 2 Symb\{1}, attributes ↵, row↵, and col↵ in A. We also reserve some special attributes

1, 2, . . . whose role will become clear shortly. For each V 2 M and ↵ 2 Symb we

denote by RV and R↵ its corresponding relation name, respectively.
76



Then, given S we define the relational schema Rel(S) such that dom(Rel(S)) = {R↵ |

↵ 2 Symb} [ {RV | V 2M} where Rel(S)(R↵) = {↵} and for all V 2M:

Rel(S)(RV ) =

8
>>>>>>>><
>>>>>>>>:

{row↵, col} if size(V ) = (↵, )

{row↵} if size(V ) = (↵, 1)

{col} if size(V ) = (1, )

{} if size(V ) = (1, 1).

Next, for a matrix instance I = (D,mat) over S, let V 2M with size(V ) = (↵, )

and let mat(V ) be its corresponding K-matrix of dimension D(↵) ⇥ D(). The K-

instance in RA+
K according to I is Rel(I) with data domain D = N \ {0}. For each

V 2 M we define R
Rel(I)
V (t) := mat(V )ij whenever t(row↵) = i  D(↵) and t(col) =

j  D(), and 0 otherwise. Also, for each ↵ 2 Symb we define RRel(I)
↵ (t) := 1 whenever

t(↵)  D(↵), and 0 otherwise. If size(V ) = (↵, 1) then R
Rel(I)
V (t) := mat(V )i1

whenever t(row↵) = i  D(↵) and 0 otherwise. Similarly, if size(V ) = (1, ) then

R
Rel(I)
V (t) := mat(V )1j whenever t(col) = j  D() and 0 otherwise. If size(V ) =

(1, 1) then R
Rel(I)
V (()) := mat(V )11.

Let e be a sum-MATLANG expression. In the following we need to distinguish between

matrix variables v that occur in e as part of a sub-expression ⌃v.(·), i.e., those variables

that will be used to iterate over by means of canonical vectors, and those that are not. To

make this distinction clear, we use v1, v2, . . . for those “iterator” variables, and capital V

for the other variables occurring in e. For simplicity, we assume that each occurrence of

⌃ has its own iterator variable associated with it.

We define free (iterator) variables, as follows. free(V ) := ;, free(v) := {v},

free(eT ) := free(e), free(e1+e2) := free(e1)[ free(e2), free(e1 ·e2) := free(e1)[ free(e2),

free(f(e1, . . . , ek)) := free(e1) [ · · · [ free(ek), and free(e = ⌃V.e1) = free(e1) \ {v}.

We will explicitly denote the free variables in an expression e by writing e(v1, . . . , vk).

We now use the following induction hypotheses:
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• If e(v1, . . . , vk) is of type (↵, ) then there exists a RA+
K expression Q such that

Rel(S)(Q(e)) = {row↵, col, 1, . . . , k} and such that

JQ(e)KRel(I)(t) = JeK(I[v1  bi1 , . . . , vk  bik ])i,j

for tuple t(row↵) = i, t(col) = j and t(s) = is for s = 1, . . . , k.

• If e(v1, . . . , vk) is of type (↵, 1) then there exists a RA+
K expression Q such that

Rel(S)(Q(e)) = {row↵, 1, . . . , k} and such that

JQ(e)KRel(I)(t) = JeK(I[v1  bi1 , . . . , vk  bik ])i,1

for tuple t(row↵) = i, and t(s) = is for s = 1, . . . , k. And similarly for when

e is type (1, ).

• If e(v1, . . . , vk) is of type (1, 1) then there exists a RA+
K expression Q such that

Rel(S)(Q(e)) = {1, . . . , k} and such that

JQ(e)KRel(I)(t) = JeK(I[v1  bi1 , . . . , vk  bik ])1,1

for tuple t(s) = is for s = 1, . . . , k.

Clearly, this suffices to show the proposition since we there consider expressions e for

which free(e) = ;, in which case the above statements reduce to the one given in the

proposition.

The proof is by induction on the structure of sum-MATLANG expressions. In line with

the simplifications in Chapter 3.3.2, it suffices to consider pointwise function application

with f instead of scalar multiplication. (We also note that we can express the one-vector

operator in sum-MATLANG, so scalar multiplication can be expressed using f in sum-

MATLANG).

Let e be a sum-MATLANG expression.

• If e = V then Q(e) := RV .
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• If e = vp then Q(e) := {row↵,p}



⇢row↵!↵(R↵) ./ ⇢p!↵(R↵)


when vp is of

type (↵, 1). It is here that we introduce the attribute p associated with iterator

variable vp. We note that

JQ(vp)KRel(I)(t) = JvpK(I[vp  bj])i,1 = (bj)i,1

for t(row↵) = i and t[p] = j. Indeed, (bj)i,1 = 1 if j = i and this holds

when t(row↵) = t[p] = j, and (bj)i,1 = 0 if j 6= i and this also holds when

t(row↵) 6= t[p] = j.

• If e(v1, . . . , vk) = (e1(v1, . . . , vk))T with S(e1) = (↵, ) then

Q(e) :=

8
>>>>>>>><
>>>>>>>>:

⇢row↵!col↵,col!row



Q(e1)


if ↵ 6= 1 6= ;

⇢row↵!col↵



Q(e1)


if ↵ 6= 1 = ;

⇢col!row



Q(e1)


if ↵ = 1 6= ;

Q(e1) if ↵ = 1 = .

• If e = e1(v1, . . . , vk)+e2(v1, . . . , vk)with S(e1) = S(e2) = (↵, ) then Q(e) :=

Q(e1) [ Q(e2). We assume here that e1 and e2 have the same free variables.

This is without loss of generality. Indeed, as an example, suppose that we have

e1(v1, v2) and e2(v2, v3). Then, we can replace e1 by e1(v1, v2, v3) = (v
T
3 · v3)⇥

e1(v1, v2) and similarly, e2 by e2(v1, v2, v3) = (vT1 · v1) ⇥ e2(v2, v3), where in

addition we replace scalar multiplication with its simulation using f and the

ones vector, as mentioned earlier.

• If e = f(e1, . . . , ek) with S(ei) = S(ej) for all i, j 2 [1, k], then Q(e) :=

Q(e1) on · · · on Q(ek).

• If e = e1 · e2 with S(e1) = (↵, ) and S(e2) = (, ), we have two cases. If

 = 1 then Q(e) := Q(e1) on Q(e2). If  6= 1 then

Q(e) := ⇡{row↵,col ,1,...,k}



⇢C!col (Q(e1)) on ⇢C!row
(Q(e2))



,
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when
Rel(S)(Q(e1)) = {row↵, col,

0
1, . . . ,

0
`},

Rel(S)(Q(e2)) = {row, col,
00
1 , . . . ,

00
` } and

{1, . . . , k} = {
0
1, . . . ,

0
k,

00
1 , . . . ,

00
m}

• If e(v1, . . . , vp1, vp+1, . . . , vk) = ⌃vp.e1(v1, . . . , vk) where S(e1) = (↵, ) and

S(V ) = (, 1). Then we do

Q(e) := ⇡Rel(S)(Q(e1))\{p}Q(e1).

Indeed, by induction we know that

JQ(e1)KRel(I)(t) = JeK(I[v1  bi1 , . . . , vk  bik ])i,j

for tuple t(row↵) = i, t(col) = j and t(s) = is for s = 1, . . . , k. Hence, for

t(row↵) = i, t(col) = j and t(s) = is for s = 1, . . . , k and s 6= p,

JQ(e1)KRel(I)(t) :=
M

ip=1,...,D()

Je1K(I[v1  bi1 , . . . , vk  bik ])i,j,

which precisely corresponds to

J⌃vp.e1(v1, . . . , vk)K(I[v1  bi1 , . . . , vp1  bp1, vp+1  bp+1, . . . , vk  bk])i,j.

All other cases, when expressions have type (↵, 1), (1, ) or (1, 1) can be dealt with in a

similar way. ⇤

We now move to the other direction. To translate RA+
K into sum-MATLANG, we must

restrict our comparison to RA+
K over K-relations with at most two attributes. Given that

linear algebra works over vector and matrices, it is reasonable to restrict to unary or binary

relations as input. Note that this is only a restriction on the input relations and not on

intermediate relations, namely, expressions can create relation signatures of arbitrary size

from the binary input relations. Thus, from now we say that a relational schema R is

binary if |R|  2 for every R 2 R. We also make the assumption that there is an (arbitrary)

order, denoted by <, on the attributes in A. This is to identify which attributes correspond
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to rows and columns when moving to matrices. Then, given that relations will be either

unary or binary and there is an order on the attributes, we write t = (v) or t = (u, v) to

denote a tuple over a unary or binary relation R, respectively, where u and v is the value

of the first and second attribute with respect to <.

Consider a binary relational schemaR. For each R 2 Rwe associate a matrix variable

VR such that, if R is a binary relational signature, then VR represents a (square) matrix,

if R is unary, then VR represents a vector and if |R| = 0 then VR represents a constant.

Formally, fix a symbol ↵ 2 Symb \ {1}. Let Mat(R) denote the MATLANG schema

(MR,sizeR) such that MR = {VR | R 2 R} and sizeR(VR) = (↵,↵) whenever

|R| = 2, sizeR(VR) = (↵, 1) whenever |R| = 1 and sizeR(VR) = (1, 1) whenever

|R| = 0. Let J be the K-instance of R and suppose that adom(J ) = {d1, . . . , dn}

is the active domain (with arbitrary order) of J . Define the matrix instance Mat(J ) =

(DJ ,matJ ) such that DJ (↵) = n, matJ (VR)i,j = RJ ((di, dj)) whenever |R| = 2,

matJ (VR)i = RJ ((di)) whenever |R| = 1, and matJ (VR)1,1 = RJ whenever |R| = 0.

Note that, although each K-relation can have a different active domain, we encode them

as square matrices by considering the active domain of the K-instance.

We next translate RA+
K expressions in to sum-MATLANG expressions over an extended

schema. More specifically, for each attribute A 2 A we define a vector variable vA of

type (↵, 1). Then for each RA+
K expression Q with attributes A1, . . . , Ak we define a sum-

MATLANG expression eQ(vA1
, . . . , vAk

) of type (1, 1) such that the following inductive

hypothesis holds:

JeQK(Mat(J )[vA1
 bi1 , . . . , vAk

 bik ]) = JQKJ (t) (⇤)

where t(As) = is for s = 1, . . . , k. The proof of this claim follows by induction on the

structure of expressions:

• If Q = R, then eQ := vTA1
· VR · vA2

if R(R) = {A1, A2} with A1 < A2;

eQ := V T
R · vA ifR(R) = {A}; and eQ := VR ifR(R) = {}.
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• If Q = Q1 [Q2 then eQ := eQ1
+ eQ2

.

• If Q = ⇡Y (Q1) for Y ✓ R(Q1) and {B1, . . . , Bl} = R(Q1) \ Y then

eQ := ⌃vB1
. ⌃vB2

. . . .⌃vBl
. eQ1

• If Q = Y (Q1) with Y ✓ R(Q1) then

eQ := eQ1
·
Y

A,B2Y

(vTA · vB).

Here ⇧ is the matrix multiplication of expressions of type (1, 1).

• If Q = ⇢X 7!Y (Q1) then

eQ := eQ1
[vB  vA | A 2 X,B 2 Y,A 7! B].

In other words, we rename variable vB with variable vB in all the expression eQ1
.

• If Q = Q1 ./ Q2 then eQ := eQ1
· eQ1

where the product is over expression of

type (1, 1).

One can check, by induction over the construction, that the inductive hypothesis (⇤) holds

in each case. Now we can obtain the following result.

PROPOSITION 6.3. Let R be a binary relational schema. For each RA+
K expres-

sion Q over R such that |R(Q)| = 2, there exists a sum-MATLANG expression  (Q)

over MATLANG schema Mat(R) such that for any K-instance J with adom(J ) =

{d1, . . . , dn} overR,

JQKJ ((di, dj)) = J (Q)K(Mat(J ))i,j.

Similarly for when |R(Q)| = 1, or |R(Q)| = 0 respectively.
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PROOF. As a consequence of the previous discussion above, when Q is a RA+
K expres-

sion such thatR(Q) = {A1, A2} with A1 < A2 then we define

 (Q) = ⌃vA1
. ⌃vA2

. eQ · (vA1
· vTA2

).

Instead, whenR(Q) = {A} we have

 (Q) = ⌃vA. (vA · eQ).

And whenR(Q) = {} we have

 (Q) = eQ.

By using the inductive hypothesis (⇤) one can check that  (Q) works in each case as

expected. ⇤

It is important to remark that the expression Q of the previous result can have inter-

mediate expressions that are not necessary binary, given that the proposition only restricts

that the input relation and the schema of Q must have arity at most two. We recall from

the work of Brijder et al., 2020 that MATLANG corresponds to RA+
K where intermediate

expressions are at most ternary, and this underlies, e.g., the inability of MATLANG to check

for 4-cliques. In sum-MATLANG, we can deal with intermediate relations of arbitrary arity.

In fact, each new attribute can be seen to correspond to an application of the ⌃ operator.

For example, in the 4-clique expression, four ⌃ operators are needed, in analogy to how

4-clique is expressed in RA+
K .

Given the previous two propositions we derive the following conclusion which is the

first characterization of relational algebra with a (sub)-fragment of linear algebra.

Corollary 6.2. sum-MATLANG and RA+
K over binary relational schemas are equally

expressive.

As a direct consequence, we have that sum-MATLANG cannot compute matrix inver-

sion. Indeed, using similar arguments as Brijder et al., 2019, i.e., by embedding RA+
K in
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(infinitary) first-order logic with counting and by leveraging its locality, one can show that

sum-MATLANG cannot compute the transitive closure of an adjacency matrix. By con-

trast, the transitive closure can be expressed by means of matrix inversion (Brijder et al.,

2019). We also note that the evaluation of the ⌃ operator is independent of the order in

which the canonical vectors are considered. This is because  is commutative. Hence,

sum-MATLANG cannot express the order predicates mentioned in Chapter 3.

6.2. Hadamard product and weighted logics

Similarly to using sum, we can use other operations to update X in the for-loop. The

next natural choice is to consider products of matrices. In contrast to matrix sum, we have

two options: either we can choose to use matrix product or to use the pointwise matrix

product, also called the Hadamard product. We treat matrix product in the next subchapter

and first explain here the connection of sum and Hadamard product operators to weighted

logics.

For the rest of this chapter, fix a semiring (K,,, 0, 1). The Hadamard product over

K-matrices can be defined as the pointwise application of  between two matrices of the

same size. Formally, we define the expression ee0 where e, e0 are expressions with respect

to S and typeS(e) = typeS(e
0) for some schema S = (M,size). Then the semantics

of e  e0 is the pointwise application of , namely, Je  e0K(I)ij = JeK(I)ij  Je0K(I)ij for

any instance I of S . This enables us to define, similar as for ⌃v, the pointwise-product

quantifier ⇧v as follows:

⇧
v. e := for v,X=1.X  e.

where 1 is a matrix with the same type as X and all entries equal to the 1-element of K

(i.e., we need to initialize X accordingly with the -operator). We call FO-MATLANG the

subfragment of for-MATLANG that consists of sum-MATLANG extended with ⇧
v.
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Example 6.1. Similar to the trace of a matrix, a useful function in linear algebra is to

compute the product of the values on the diagonal. Using the ⇧
v operator, this can be

easily expressed:

edp(V ) := ⇧
v. vT · V · v.

Clearly, the inclusion of this new operator extends the expressive power to sum-

MATLANG. For example, JedpK(I) can be an exponentially large number in the dimension

n of the input. By contrast, one can easily show that all expressions in sum-MATLANG

can only return numbers polynomial in n. That is, FO-MATLANG is more expressive than

sum-MATLANG and RA+
K .

To measure the expressive power of FO-MATLANG, we use weighted logics (Droste &

Gastin, 2005) (WL) as a yardstick. Weighted logics extend monadic second-order logic

from the boolean semiring to any semiring K. Furthermore, it has been used extensively

to characterize the expressive power of weighted automata in terms of logic (Droste,

Kuich, & Vogler, 2009). We use here the first-order subfragment of weighted logics to

suit our purpose and, moreover, we extend its semantics over weighted structures (similar

as Grädel & Tannen, 2017 do).

A relational vocabulary  is a finite collection of relation symbols such that each R 2

has an associated arity, denoted by arity(R). A K-weighted structure over  (or just

structure) is a pair A = (A, {RA}R2) such that A is a non-empty finite set (i.e. the

domain) and, for each R 2 , RA : Aarity(R) ! K is a function that associates to each

tuple in Aarity(R) a weight in K.

Let X be a set of first-order variables. A K-weighted logic (WL) formula ' over  is

defined by the following syntax:

' := x = y | R(x̄) | ' ' | ' ' | ⌃x.' | ⇧x.'

where x, y 2 X , R 2 , and x̄ = x1, . . . , xk is a sequence of variables in X such that

k = arity(R). As usual, we say that x is a free variable of ', if x is not below ⌃x or ⇧x
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quantifiers (e.g. x is free in ⌃y.R(x, y) but y is not). Given that K is fixed, from now on

we talk about structures and formulas without mentioning K explicitly.

An assignment  over a structureA = (A, {RA}R2) is a function  : X ! A. Given

x 2 X and a 2 A, we denote by [x 7! a] a new assignment such that [x 7! a](y) = a

whenever x = y and [x 7! a](y) = (y) otherwise. For x̄ = x1, . . . , xk, we write (x̄)

to say (x1), . . . , (xk). Given a structure A = (A, {RA}R2) and an assignment , we

define the semantics J'KA() of ' as follows:

if ' := x = y, then J'KA() =

8
<
:

1 if (x) = (y)

0 otherwise

if ' := R(x̄), then J'KA() = RA((x̄))

if ' := '1  '2, then J'KA() = J'1KA() J'2KA()

if ' := '1  '2, then J'KA() = J'1KA() J'2KA()

if ' := ⌃x. '0, then J'KA() =
L

a2AJ'0KA([x 7! a])

if ' := ⇧x. '0, then J'KA() =
J

a2AJ'0KA([x 7! a])

When ' contains no free variables, we omit  and write J'KA instead of J'KA().

For comparing the expressive power of FO-MATLANG with WL, we have to show

how to encode MATLANG instances into structures and vice versa. For this, we make two

assumptions to put both languages at the same level: (1) we restrict structures to relation

symbols of arity at most two and (2) we restrict instances to square matrices. The first

assumption is for the same reasons as when comparing sum-MATLANG with RA+
K , and

the second assumption is to have a crisp translation between both languages. Indeed,

understanding the relation of FO-MATLANG with WL for non-square matrices is slightly

more complicated and we leave this for future work.

Let S = (M,size) be a schema of square matrices, that is, there exists an ↵ such

that size(V ) 2 {1,↵} ⇥ {1,↵} for every V 2 M. Define the relational vocabulary

WL(S) = {RV | V 2 M} such that arity(RV ) = 2 if size(V ) = (↵,↵), arity(RV ) =

1 if size(V ) 2 {(↵, 1), (1,↵)}, and arity(RV ) = 0 otherwise. Then given a matrix
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instance I = (D,mat) over S define the structure WL(I) = ({1, . . . , n}, {RI
V }) such

that D(↵) = n and RI
V (i, j) = mat(V )i,j if size(V ) = (↵,↵), RI

V (i) = mat(V )i if

size(V ) 2 {(↵, 1), (1,↵)}, and RI
V = mat(V ) if size(V ) = (1, 1).

To encode weighted structures into matrices and vectors, the story is similar as for

RA+
K . Let  be a relational vocabulary where arity(R)  2. Define

Mat() = (M,size) such that M = {VR | R 2 } and size(VR) is equal to

(↵,↵), (↵, 1), or (1, 1) if arity(R) = 2, arity(R) = 1, or arity(R) = 0, respectively, for

some ↵ 2 Symb. Similarly, let A = (A, {RA}R2) be a structure with A = {a1, . . . , an},

ordered arbitrarily. Then we define the matrix instance Mat(A) = (D,mat) such that

D(↵) = n, mat(VR)i,j = RA(ai, aj) if arity(R) = 2, mat(VR)i = RA(ai) if arity(R) =

1, and mat(VR) = RA otherwise.

Let S be a MATLANG schema of square matrices and  a relational vocabulary of

relational symbols of arity at most 2. We can then show the equivalence of FO-MATLANG

and WL as follows.

PROPOSITION 6.4. Weighted logics over  and FO-MATLANG over S have the same

expressive power. More specifically,

• for each FO-MATLANG expression e over S such that S(e) = (1, 1), there exists

a WL-formula (e) over WL(S) such that for every instance I of S,

JeK(I) = J(e)KWL(I).

• for each WL-formula ' over  without free variables, there exists a FO-MATLANG

expression  (') such that for any structure A over Mat(),

J'KA = J (')K(Mat(A)).

PROOF. Both directions are proved by induction on the structure of expressions.
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(FO-MATLANG to WL) First, let S = (M,size) be a schema of square matrices, that

is, there exists an ↵ such that size(V ) 2 {1,↵} ⇥ {1,↵} for every V 2 M. Define the

relational vocabulary WL(S) = {RV | V 2 M} such that arity(RV ) = 2 if size(V ) =

(↵,↵), arity(RV ) = 1 if size(V ) 2 {(↵, 1), (1,↵)}, and arity(RV ) = 0 otherwise.

Then given a matrix instance I = (D,mat) over S with D(↵) = n define the structure

WL(I) = ({1, . . . , n}, {RI
V }) such that RI

V (i, j) = mat(V )i,j if size(V ) = (↵,↵),

RI
V (i) = mat(V )i if size(V ) 2 {(↵, 1), (1,↵)}, and RI

V = mat(V ) if size(V ) =

(1, 1).

Similar to the proof of Proposition 6.2, for each expression e(v1, . . . , vk) of type (↵,↵)

we must encode in WL the ↵ and the vector variables v1, . . . , vk. For this, we use vari-

ables xrow
↵ , xcol

↵ , and xvi for each variable v1, . . . , vk. Then we use the following inductive

hypothesis (similar to Proposition 6.2):

• If e(v1, . . . , vk) is of type (↵,↵) then there exists a WL formula

'e(x
row
↵ , xcol

↵ , xv1 , . . . , xvk)

such that

J'eKWL(I)() = JeK(I[v1  bi1 , . . . , vk  bik ])i,j

for assignment  with (xrow
↵ ) = i, (xcol

↵ ) = j and (xvs) = is for s = 1, . . . , k.

• If e(v1, . . . , vk) is of type (↵, 1) then there exists a WL formula

'e(x
row
↵ , xv1 , . . . , xvk)

such that

J'eKWL(I)() = JeK(I[v1  bi1 , . . . , vk  bik ])i

for assignment  with (xrow
↵ ) = i and (xvs) = is for s = 1, . . . , k. And

similarly for when e is type (1,↵).
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• If e(v1, . . . , vk) is of type (1, 1) then there exists a WL formula 'e(xv1 , . . . , xvk)

such that

J'eKWL(I)() = JeK(I[v1  bi1 , . . . , vk  bik ])

for assignment  with (xvs) = is for s = 1, . . . , k.

If we prove the previous statement we are done, because the last bullet is what we want to

show when e has no free vector variables. Then rest of the proof is to go by induction on

the structure of FO-MATLANG expressions. For a WL-formula ' and FO-variables x, y,

we will write '[x 7! y] the formula ' when x is replaced with y all over the formula

(syntactically). Let e be a FO-MATLANG expression.

• If e := V and S(e) = (↵,↵) then 'e := RV (x
row
↵ , xcol

↵ ). Similarly, if S(e)

is of type (↵, 1), (1,↵), or (1, 1), then 'e := RV (x
row
↵ ), 'e := RV (x

col
↵ ), and

'e := RV , respectively.

• If e := v, for v 2 {v1, . . . , vk}, and S(v) = (↵, 1) then 'e := xrow
↵ = xv.

Similarly, if S(v) = (1,↵) then 'e := xcol
↵ = xv.

• if e := eT1 and S(e) = (↵,↵) then

'e := 'e1 [x
row
↵ 7! xcol

↵ , xcol
↵ 7! xrow

↵ ].

Similarly, if S(e) is equal to (↵, 1) or (1,↵) then 'e := 'e1 [x
row
↵ 7! xcol

↵ ] and

'e := 'e1 [x
col
↵ 7! xrow

↵ ], respectively.

• If e = e1 + e2 with S(e1) = S(e2), then 'e := 'e1  'e2 .

• If e = f(e1, . . . , ek) with S(ei) = S(ej) for all i, j 2 [1, k], then 'e := 'e1

'e2 · · · 'ek .

• If e = e1 · e2 with S(e1) = S(e2) = (↵,↵), then 'e := ⌃y. 'e1 [x
col
↵ 7!

y]  'e2 [x
row
↵ 7! y] where y is a fresh variable not mentioned in 'e1 or 'e2 .
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Instead, if S(e1) = (↵0, 1) and S(e2) = (1,↵00) with ↵0,↵00 2 {↵, 1}, then

'e := 'e1  'e2 .

• If e = ⌃v.e1(v), then we define 'e := ⌃xv. 'e1(xv).

• If e = ⇧
v.e1(v), then 'e := ⇧xv. 'e1(xv).

From the construction it is now straightforward to check that the inductive hypothesis

holds for all cases. To conclude this direction, we have to define (e) := 'e for every

expression e and we are done.

(WL to FO-MATLANG) We now encode weighted structures into matrices and vectors. Let

 be a relational vocabulary where arity(R)  2. Define Mat() = (M,size) such

thatM = {VR | R 2 } and size(VR) is equal to (↵,↵), (↵, 1), or (1, 1) if arity(R) =

2, arity(R) = 1, or arity(R) = 0, respectively, for some ↵ 2 Symb. Similarly, let A =

(A, {RA}R2) be a structure with A = {a1, . . . , an}, ordered arbitrarily. Then we define

the matrix instance Mat(A) = (D,mat) such that D(↵) = n, mat(VR)i,j = RA(ai, aj) if

arity(R) = 2, mat(VR)i,1 = RA(ai) if arity(R) = 1, and mat(VR)1,1 = RA otherwise.

Similar to the above direction, we have to encode the FO variables of a formula ' with

vector variables in the equivalent FO-MATLANG expression e'. For this, for each FO vari-

able x we define a vector variable vx of type (↵, 1). Then for each formula '(x1, . . . , xk)

we define an expression e'(vx1
, . . . , vxk

) of type (1, 1) such that for every assignment

of x1, . . . , xk we have:

Je'K(Mat(A)[vx1
 bi1 , . . . , vx1

 bik ]) = J'KA()

such that (xs) = is for every s  k. Note that when the formula has no free variables,

the proof of the proposition is shown. Finally, we proceed by induction over the formula

' over .

• If ' := x = y, then e' := vTx · vy.
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• If ' := R(x, y), then e' := vTx · VR · vy. Similarly, if ' := R(x) or ' := R, then

e' := V T
R · vx and e' := VR, respectively.

• If ' = '1  '2, then e' := e'1
+ e'2

.

• If ' = '1  '2, then e' := f(e'1
, e'2

).

• If ' = ⌃x. '1, then e' := ⌃vx. e'1
.

• If ' = ⇧
x.'1, then e' := ⇧vx. e'1

.

The inductive hypothesis can be proved following the above construction. To finish the

proof, we define  (') := e' and the proposition is shown.

⇤

6.3. Matrix multiplication as a quantifier

In a similar way, we can consider a fragment in which sum and the usual product of

matrices can be used in for-loops. Formally, for an expression e we define the operator:

⇧v. e = for v,X = I.X · e.

where I is the identity matrix. We call prod-MATLANG the subfragment of for-MATLANG

that consists of sum-MATLANG extended with ⇧v. It is readily verified that ⇧v can be ex-

pressed in terms of ⇧v. Furthermore, by contrast to the Hadamard product, matrix multi-

plication is a non-commutative operator. As a consequence, one can formulate expressions

that are not invariant under the order in which the canonical vectors are processed.

PROPOSITION 6.5. Every expression in FO-MATLANG can be defined in

prod-MATLANG. Moreover, there exists an expression that uses the ⇧v quantifier that

cannot be defined in FO-MATLANG.

What is interesting is that sum-MATLANG extended with ⇧v suffices to compute the

transitive closure, provided that we allow for the f>0 function. Indeed, one can use the
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expression eTC(V ) := f>0



⇧v. (eId + V )


for this purpose because JeTCK(I) = f>0



(I +

A)n


when I assigns an n⇥ n adjacency matrix A to V , and non-zero entries in (I +A)n

coincide with non-zero entries in the transitive closure of A. Furthermore, if we extend

this fragment with access to the matrix S<, defining the (strict) order on canonical vectors,

then Csanky’s matrix inversion algorithm becomes expressible (if f/ is allowed). We leave

the study of this fragment and, in particular, the relationship to full for-MATLANG, for

future work.

We conclude by verifying that the fragment defined in Chapter 6.3, i.e, prod-MATLANG

extended with order and f>0, can perform matrix inversion and compute the determinant.

To this aim, we verify that all order predicates in Chapter 3.2.2 can be derived using ⌃,

⇧, f>0 and eS<
. Given this, it suffices to observe that Csanky’s algorithm, as shown in

Chapter 4.2, only relies on expressions using ⌃ and ⇧ and order information on canonical

vectors and f/. As consequence, our fragment can perform matrix inversion and compute

the determinant.

It remains to show that if we have eS<
, using ⌃ and ⇧ and f>0 we can can define

all order predicates from Chapter 3.2.2. We note that due to the restricted for-loops in ⌃

and ⇧, we do not have access to the intermediate result in the iterations and as such, it

is unclear whether order information can be computed. This is why we assume access to

eS<
.

We first remark that if we have eS<
, we can also obtain eS

by adding eId. Hence, we

can compute succ and succ+ as well. Furthermore,

emin := ⌃v. [⇧w.succ(w, v)]⇥ v.

emax := ⌃v. [⇧w. (1 succ(w, v))]⇥ v.

Both expressions are only using ⌃ and ⇧ and succ, so are in our fragment. Furthermore,

if we have f>0 then we can define

ePred := eS<
 f>0(e

2
S<
)
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ML

sum-ML ⌘ RA+
K

4CLIQUE

FO-ML ⌘ WL

DP

prod-ML+ S<

INV

DET

for-ML ⌘ Arithmetic Circuits

PLU

Figure 6.1. Fragments of for-MATLANG and their equivalences. The
functions 4CLIQUE, DP (diagonal product), INV, DET, and PLU decom-
position are placed in their fragments.

Also, recall that eNext := eTPred. As a consequence, we can now define prev(v) and next(v)

as in 3.2.2. Similarly, it is readily verified that also egetPrevMatrix(V ), egetNextMatrix(V ),

emin+i and emax+i can be expressed in our fragment.

Finally, in Figure 6.1 we show a diagram of all the fragments of for-MATLANG intro-

duced in this chapter and their corresponding equivalent formalisms.
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7. CONCLUSIONS

The goal of this thesis was to create a matrix query language that has the expressive

power to compute classical linear algebra algorithms on matrix data. Our focus was on

language design and expressivity. A language simple in a linear algebra sense, but power-

ful enough to do complex matrix procedures.

Based on previous work, we proposed for-MATLANG, an extension of MATLANG

with limited recursion, and showed that it is able to capture most of linear algebra due to

its connection to arithmetic circuits.

Then, to further study the expressive power of for-MATLANG, we aim to restrict the

introduced for operator. We focus on its data manipulation and the matrix operations

allowed. This revealed interesting connections to relational algebra on annotated relations

and weighted logics.

The former proves that for-MATLANG can describe how to perform useful operations

on matrix data, which has many direct applications in machine learning algorithms, as

well as graph operations on adjacency matrices.

Note that for-MATLANG works on any semiring, thus other logics or complexity

classes may be captured by the language. We leave this open for future work.

Another interesting direction for future work relates to efficient evaluation of (frag-

ments) of for-MATLANG. A possible starting point is the work of Christ, Demmel, Knight,

Scanlon, & Yelick, 2013 in which a general methodology for communication-optimal al-

gorithms for for-loop linear algebra programs is proposed. An efficient evaluation goes in

hand with implementing data procedures in for-MATLANG.

Additionally, our results of Chapter 6.1 show interesting opportunities for exploring

how relational joins can be evaluated using matrix operations, and vice versa, which can

lead to an efficient implementation of relational algebra operations.
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The query language for-MATLANG does not impose a way of actually computing the

operations. For instance, the operators can be implemented as GPU procedures, known

to accelerate computation on arrays of numbers. More complex algorithms on GPU ar-

chitecture may require a generalization of for-MATLANG to tensor objects, an interesting

future line of work.

This investigation aims to be a setting stone in the modern ways of how numeri-

cal data is treated, when it’s stored as ndimensional arrays. In the particular case of

for-MATLANG, we treat two dimensional data at most. It defines core operations that

have the expressiveness to do the main linear algebra operations. The goal in the imple-

mentation of for-MATLANG in an algorithm is to treat numerical data as a database itself,

and let it run the needed operations on it’s own.

The former could lead, on one hand, to efficient implementations in many fields of

algorithm evaluation, or at least a more direct way of declaring the needed operation. On

the other hand, heuristics can be applied in procedures that handle numerical data at some

point. Maybe it could lead to a proper declarative language for GPU computing.

A more direct experimental way of future work is the implementation in recommen-

dation systems, where matrix operations are present in most (if not all) algorithms. Here,

user-item interaction data is handled as numerical values and the data is stored in matrices.

The idea is that if we need a result of a procedure on a matrix, the algorithm asks for the

result as a for-MATLANG expression.
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