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P. 47

Bounds on the excess charge and the ionization energy
for the Hellmann-Weizsacker model
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ABSTRACT. - We show that the excess charge and the ionization energy
of the Hellmann-Weizsäcker model of an atom are uniformly bounded in
the nuclear charge.

RESUME. 2014 Nous demontrons que la charge surplus et l’énergie d’ionisa-
tion en modele Hellmann-Weizsäcker d’un atome sont bornes uniformé-
ment dans la charge nucleaire.

1. INTRODUCTION

In recent years the excess charge problem for an atom, i. e., the number
of electrons that can be bound in excess of the neutral atom has attracted

(*) Partially supported by the NSF under grant DMS-9000544.
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considerable attention (see, e. g., Simon [12]). It has been shown to be
zero for the Thomas-Fermi model (Lieb and Simon [7]) and the Fermi-
Hellmann model [8]. For the Thomas-Fermi-Weizsacker (TFW) model ([3]
and Solovej [ 14, 13]) and a reduced Hartree-Fock model (Solovej [ 15]) it
has been shown to be positive and universally bounded, i. e., bounded
independently of the nuclear charge Z. Here we wish to treat the Hellmann-
Weizsacker model which is an important tool in the proof of the Scott
conjecture ([9], [ 11 ]) and is of interest in itself. The Hellmann-Weizsacker
model is given through the functional

with

where 03C8 is in the set

The constants al, [31 are 03B1l= ( 03C0 q(2l+1))2, q the number of spinstates per
electron, usually q = 2, and [31= l (l + 1). The function 03C8l(r)2 may be inter-
preted as the radial density of electrons with the angular momentum

00

square /(/+ 1), and thus p (r) _ ~ ~rl (r)2 as the radial density of electrons.

A certain restriction (finite particle number and finite number of occu-
pied channels ~ of this model has been treated in [8]. Here we wish to
investigate the absolute minimizer 03C8 of ( 1 ) in (2) and in (2) under a

restriction on the particle number 03C1 (r) dr. We write

and
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49BOUNDS ON THE EXCESS CHARGE

In Section 2 we give some basic results on the excess charge Q, namely
Q~Z. To be explicit, let ~ be the minimizer of ~~ ~ e.,

is the minimizing density and (p ( ) r = - - dr’ the corre spo n d-
r 

ing electrical potential; N,(Z)= is called the critical particle
Jo

number of te model and is the excess charge.
Section 3 and 4 give lower and upper bounds on E~(Z). The basic

idea is to separate the space into an inner part of radius R, where the
problem is treated exactly, whereas in an outer region, where intuitively
the excess charge is sitting, two approximation schemes are used. In this

/*00

outer region the screened nuclear charge v (r) = Z - 
Jo 

only is

effective. Finally Section 6 contains the desired universal bound on the
excess charge Q and, moreover, a corresponding bound on the ionization
energy I(Z)=E~(Z,N,-1)-E~(Z)). These follow from our main
result.

THEOREM 1. - For all ~ &#x3E; 0 there exist a, D &#x3E; 0 such that for all f

satisf ’ying

we have

and

Our aim is to prove the following result.

THEOREM 2. - The excess charge ~ (Z) and the ionization energy I (Z)
are bounded by universal constants.
Our strategy is based on a method for controlling the screening of

electrons by Fefferman and Seco ([4], [5]) which has been introduced with
the above idea of separation of space in the excess charge problems by
Solovej [15].

Vol. 57, n° 1-1992.
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2. BOUNDS ON THE EXCESS CHARGE AND ON THE NUMBER
OF OCCUPIED ANGULAR MOMEMTUM CHANNELS

The purpose of this section is to find a bound on the number of

occupied angular momentum channels, i. e., a bound on the maximum l
for which ~r~ is not identically zero. This fact in turn implies the existence
of a minimizer for the Hellmann-Weizsäcker energy functional when no
restriction is imposed on the number of angular momentum channels. We
start by considering the Hellmann-Weizsacker functional ( 1 ) restricted to
a fixed number of angular momentum channels, say L, i. e., we consider

defined on the set

where and [i~ are given as in the introduction. This model has been
considered in [8], where the existence of a minimizer of ~Z L (~r) on WL
has been established and many of the properties of the minimizer have been
determined. In the particular, the minimizer satisfies the Euler equation

Fee

Now, let Q = 
Jo 

p(r)dr-Z be the "excess charge". We have the follow-
0

ing result.

LEMMA 1 (Preliminary bound on the excess charge):

Remark. - A similar result for the TFW model is well known (see,
e. g., [6], Theorem 7.23). Here we adapt the proof in [6] to the Hellmann-
Weizsäcker model.

l’Institut Poincaré - Physique theorique



51BOUNDS ON THE EXCESS CHARGE

Proof . - Multiply (8) by and sum over l from 0 to L. By
dropping the explicitly positive terms we get

where N,=Q+Z. By integration by parts (note that ~rl (r) ~ r~ + 1 near the
origin and 03C8l decays exponentially at infinity [8]) we get

and positive for at least one Moreover,

Hence, from (9), ( 10), and ( 11 ) we get Nc  2 Z which proves the
lemma..
We now prove two technical lemmas which will be used to bound the

maximum number of occupied angular momentum channels.

LEMMA 2. - For /=0, 1, ... , L, the function 1 is 
ing in (0, (0).

Proof . - The function u~ satisfies the equation

Moreover, ul satisfies the Kato cusp condition (see, e. g., [6], Theorem 7.25
and references therein):

and therefore u’l(0)0. The "potential" 03C6(r)=Z- sa-
r 

tisfies (~(p(~))"= -p(~) for /.~., ~(p(~) is convex and it has a unique
~

zero Ro, [8]. For we have Using equation (12) reads

Vol. 57, n° 1-1992.
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From this equation it is clear that the only critical points of ul for 
are minima. Since ul goes to zero at infinity, it follows that ui (r)  0 for
all To finish the proof, assume ul is not necessarily decreasing in
(0,Ro). Then, using (13), there exist two points such that

~(~i)=~(~)==0, u~ (rl)  ul (r2) and ul’ (r~) &#x3E; o &#x3E; u~’ (r2). From (13), and
the fact that r cp (r) is decreasing in (0, Ro) we get

which proves the lemma..

Remark. - The proof of this lemma is patterned after the proof of [6],
Theorem 7.26.
We have the following result.

Since ul is decreasing,

With all these preliminary results we can find a bound on the maxi-
mum l, say l~, having a nontrivial i. e., a bound on the number of

occupied angular momentum channels. This in turn implies the existence of
a minimizer for the unrestricted Hellmann-Weizsacker energy functional.

THEOREM 3. - Consider the restricted Hellmann- Weizsacker minimization

problem (6), (7), and l~ defined as above. Then

Proof. - Let ~~ (r)2 dY be as above. We first prove that for the
minimizing ~,

for all /=0,1, ..., /c" L Let us assume, in the contrary, that

Annales de ’ l’Institut Henri Poincaré - Physique theorique



53BOUNDS ON THE EXCESS CHARGE

for some 0~//~. Then choose the trial ~ ’ ’ ? 
with for /~ and ~ri = ~ri + E~r~ , ~=(1-8)~. Here 8&#x3E;0
is small and obviously p = p. By using the subadditivity of the kinetic
energy term (see, e. g., [2]).

and therefore, if we we have, to
first order in E

Dropping the and using Lemma 3 we get

because of the choice of Nz. But this contradicts for sufficiently small but
positive 8 the fact that 03C8 is the minimizer of LHWZ,L. Thus

for all t~ ~ l’ ~ ~~. However, from Lemma 1 we have

The right side of this equation can be bounded from below by

and this concludes the proof of the theorem..

The bound (14) is not optimal. We believe the best bound
should be proportional as in the Bohr model or the Fermi-
Hellmann model [1].

Vol. 57, n° 1-1992.
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3. LOWER BOUND

Given R &#x3E; 0 and 0  s  1 R pick two C~-functions
4

9 + : (0, (0) ~ [0, (0) such that 6 + + 62 =1 and

Again be the absolute minimizer of ~~. An IMS formula for the
case at hand reads

For technical purpose we define

which gives rise to a screened outer Fermi-Hellmann functional

where is the solution of the outer Thomas-Fermi minimization

problem (Solovej [15]). Analogously define

Moreover it is easy to check (Solovej [15]) that

Thus using Hardy’s inequality

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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/*R+s

Because of condition ( 15) and writing Qo (R, s) = 
JR-S 

p (r) dr we obtain

for the next to last summand. The last summand is bounded by
Denoting the absolute minimum of by

we have the following

For further use we denote the minimizer of ~R~ by pH, explicitly

4. UPPER BOUND

Since we are dealing with a minimization problem, it suffices to pick a
set of trial functions. Let r2 (7) be the largest point in the support of pr
(see also Definition 2.1 in [9]). According to Appendix A (proof of
Lemma 6) we can use the bound 

.

([9], Proposition 4.1, formula 2) where xm denotes the maximum of

r2 cpTF (f) which is of order Z - 1/3. Due to Lemma 6 we can always assume
that if we take Define with

a positive constant S to be chosen later. We choose the trial function

Vol. 57, n° 1-1992.
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In the case R + 2 s ~ x2 (7) we take pz (r) = 0. In the other case R + 2 s  x2 (/)
we choose

where ’ ~~ = pH (x2 (l)) e2’~x~ ~~~ and 0 ’Y = ,,2/3. Note that f = (, f’1, f2, ... ) is
in W. This yields 

-

00

where pl (~). We wish to estimate the last three terms by
i=o

plus a small remainder.
First case (R+2~~(/)): Here it suffices to bound

pH (Y) dr, where the sum is only taken over l which fulfill

x2(l)~R+2s~r2(l), which according to (23) is 0 () because the

constraint allows for finitely many l uniformly in v and
const v1~3 _ l Const v1~3.

Second case (R+2~~(/)): Since

([9], (3 . 4)). We also used Moreover

Annales de Henri Poincaré - Physique . theorique
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since f2l is dominated by pH left of R + 2 s and inequality (24). Also

For the second equality (second summand) see [9], (3.9). Finally, by (25),

Thus

Dropping the characteristic function in the argument of generates

an error which is bounded by V5/3 (R 2 S s ) 2 2 yield-
ing the bound

Combining upper and lower bound gives the following estimate

For the following holds

Vol. 57, n° 1-1992.
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for all 0 ~ 8 ~ -. The first inequality follows from Poisson summation ([9]
and also [ 10], p. 191, first inequality), Hardy’s inequality, and the explicit
solution of the Fermi-Hellmann equation for external potential the
second inequality follows from the estimates (3.4-11) of [9].

5. SUCCESSIVE SCREENING OF THE NUCLEAR CHARGE

The purpose of this section is to show that the separation of space at
radius R may be pushed from R = 0 to unit distance (on scale Z - 1/3) thus
yielding error terms independent of Z. First we can transcribe Lemma 6
of Solovej [15].

LEMMA 4. - There exist constants (X, such 

we have inequalities (4) and (5).

PYOOf . - The proof is analogue to Solovej’s result and uses inequality
(18). .
Next we come to the heart of successive screening.

LEMMA 5. - Given 03B4 &#x3E; 0 there exists D1 (8) &#x3E; 0 such that, if (4) and (5)
hold foY rand Z satisfying

with a, P as in Lemma , 4, and then (4) and (5) hold for

Proo, f ’. - First we follow [ 15] . We assume that Z satisfy ( 19) implies
(4) and (5). Note that

Now for Rej (4 3a, 4 5bn) pick s=R~+1, where we choose ~ such that

(4 5 D1 (03B4))~ / ~ 1 4 implies s~R 4. For 03B8± as in Section 3 we have (4), since

R - s and R + s satisfy ( 19). Thus, since we obtain

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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This gives

In particular

From ( 17) we obtain

where we pick ~ = 2 3 and where E = 1 21 (which is covered by the hypothesis
of (18)) and use R~D1(03B4)1.
By (20) and [15], (4.13), we can find (x(8)&#x3E;0 such that for

Repeating the argument of Lemma 4 yields for ~a(8) R

Notice

For &#x26;(õ) R~r~03B21 R(1-~) and 03B21 &#x3E; 0 we have

The remaining part of the proof follows as in [15], Lemma 7..

Proof of Theorem 1. - Lemma 4 starts the induction and Lemma 5 is
the inductive step for the proof of the claimed result for v. The proof for
cp is analogue..

Vol. 57, n° 1-1992.
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6. UNIVERSAL BOUNDS ON THE EXCESS CHARGE
AND THE IONIZATION ENERGY

First note that Q(Z)~Z by Lemma 1. Moreover,

The proof of Theorem 2 follows now by a modification of Lemma 1 for
a suitable outside problem.

where and We have

We can write

Annales de l’Institut Henri Poincare - Physique theorique .
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/*2R 
.

By Theorem 1 we have JR 
Thus

Since R and v (R) are bounded

Then we get for the excess charge

To proof the bound for the ionization energy we go back to ( 16). We can

choose Rand s so that 8 _ (r)2 p (r) N~ (Z) -1. Then we get

Thus it suffices to estimate ~j~(8_ B[/) 2014 EHW (Z) from above by a constant.
Using inequality ( 16) we have to show

Since v, R and s are bounded by constants and also

we easily see that the inequality (22) holds. Therefore the ionization energy
is smaller than a constant..

Vol. 57, n° 1-1992.
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APPENDIX

A. BASIC PROPERTIES OF THE OUTER HELLMANN DENSITY

We want to estimate the maximum of the density pr which minimize
the outer Hellmann functional &#x26;~ R. The derivative is

Therefore the maximum of pH is left of the maximum of r2 (r). We
compare and pTF. Because both functions satisfy the same differential
equation we have to look at the boundary conditions. We have

and can calculate
R

which implies that, for v = (r) dr, we have the same potentials
Jo

for ~R. Due to the scaling property of we get that the maximum
is at am Z-1~3 ([9], Appendix). The screened charge v is of order Z

and also of order Therefore we have Thus we can use

the results of [9] and have proven the following lemma.

LEMMA 6. 2014 We can choose CX&#x3E;0 ~ that for all R satisfying
density pH has no maximum for

B. ESTIMATE OF INTEGRALS

We have

Annales de , l’Institut Henri Physique - theorique
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where the first inequality follows from [ 15], Theorem 3 . 3, for R + s big
enough. Furthermore

where

Putting this result and the previous inequality together yields the desired
bound

Next note

and

Vol. 57, n° 1-1992.
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where we used pH (r) __ p~ R - S (r) + cr 1 ~2 cp~ R - S (r) 3~4 ([9],(4.6)) and

s = R~~3  1 R for R _ 1 which is in agreement with our choice in the
-4 -8

proof of Lemma 5.
We choose the same s in the following calculation.

Thus
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