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Abstract

In this thesis, we study the model of Random Walks in Random Environment (RWRE)

on the integer lattice Zd. The first topic in consideration is about the equality and difference

of the quenched and averaged large deviations rate functions in terms of the environment’s

disorder. We measure this quantity in terms of how close it is to its expected value. After

the introduction, in Chapter 2 we consider the problem on the interior of the domain of the

rate functions, namely, on the set int(D) := {x ∈ Rd : |x|1 < 1} when d ≥ 4. We show that

on any compact set that does not contain the origin, the rate functions agree on that set if

the disorder is low enough.

In Chapter 3, we look at the same problem on the set ∂D := {x ∈ Rd : |x|1 = 1}. In

addition to the results from the previous chapter, we also prove equality under a weaker

condition we call (low) imbalance. Our results allow us to deduce an explicit formula for the

quenched rate function on the boundary in the low disorder (or imbalance) regime. Moreover,

we show a phase transition in terms of equality/inequality under a parametrized family of

environments.

Finally, Chapter 4 is devoted to the study of localization at the boundary for RWRE.

Roughly, we say the walk is localized at the boundary if, conditioned on the event that its

path (Xn)n∈N satisfies |Xn|1 = n, there is a sequence of random points (xn)n∈N which are

asymptotically more likely of being visited. We show that when d = 2 or 3, the walk is

localized. In contrast, when d ≥ 4, there is also a phase transition (as in Chapter 3) for the

localization/delocalization phenomena.
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List of Symbols

• ⊆: refers to the inclusion between sets, while ( refers to the strict inclusion.

•
⊔

: for two disjoint sets A and B, its union is denoted by A
⊔
B.

• N: the set of natural numbers including 0.

• i: the imaginary number.

• ei: the vector (0, · · · , 1︸︷︷︸
i-th position

, · · · 0).

• V = V(d) := {±e1, · · · ,±ed}.

• V+ = V+(d) := {e1, · · · , ed}.

• | · |p: the `p norm (p ≥ 1).

• Sd−1 := {x ∈ Rd : |x|2 = 1}.

• 〈·, ·〉: the standard inner product in Rd.

• || · ||: the operator 1-norm.

• Bδ(x): the ball of center x and radius δ. Most of the times will be with respect to | · |1,

and occasionally with respect to | · |2.

• int(G), G: the interior and closure respectively of the set G.
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• B(A): the Borel σ-algebra of the topological space A.

• M1(A): the space of probability measures on A.
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Chapter 1

Introduction

This thesis is concerned with the model of random walks in random environment (RWRE)

on Zd, for d ≥ 1. Under this framework, instead of considering random walks with fixed

jump probabilities, these are now random. As a simple example, suppose that d = 1, and

consider a sequence of i.i.d random variables (pi)i∈Z which takes values on [0, 1], on some

probability space. Then we can consider a random walk {Xn}n∈N with X0 = 0 and such

that the probability of jumping from i to i + 1 is pi, and the probability of jumping from

i to i − 1 is 1 − pi. Once a realization of the random variables (pi)i∈Z is fixed, we can

apply Markov chain techniques to study its behavior. One then would like to know if certain

properties of the walk are satisfied for almost any realization of the pis. Typical questions

are related to the recurrence/transience phenomenon, the law of large numbers (LLN), and

the central limit theorem (CLT). It is customary to refer to the probabilities for fixed pis

as quenched probabilities. On the other hand, one could consider an "averaged" random

walk; as the jump probabilities are themselves random variables, one could think of the

distribution of the walk’s trajectory as a random variable. Thus, the averaged (or annealed)

random walk is obtained by taking expectations over the quenched probabilities. Similarly,

the same questions that arise in the quenched setting can be analyzed in the averaged one.
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Before getting into more details, let us introduce first the model in more generality.

As its name indicates, we need to define a random walk and a (random) environment.

First, we define the notion of environment. Let d be a positive integer, which represents

the dimension where the walk moves. We define the canonical vectors e1, · · · , ed as ei :=

(0, · · · , 1︸︷︷︸
i-th position

, · · · 0). Set V := {±e1, · · · ,±ed} and V+ := {e1, · · · , ed}. Next, we define

the set of (nearest-neighbor) jump probabilities asM1(V) := {p : V → [0, 1] :
∑

e∈V p(e) =

1}. Finally, the set of environments is Ω := M1(V)Z
d . Thus, an element ω ∈ Ω can be

represented as ω = (ω(x))x∈Zd , where ω(x) ∈M1(V). By definition, for each x ∈ Zd, ω(x) is

a jump probability, so it can be written as ω(x) = (ω(x, e))e∈V. In conclusion, ω is completely

determined by the sequence (ω(x, e))x∈Zd,e∈V. The quantity ω(x, e) represents the (quenched)

probability of a random walk jumping from x to x+e. Indeed, if we fix ω ∈ Ω and the initial

point of the walk z ∈ Zd, then we say that the Markov chain (Xn)n∈N is a random walk in

the environment ω, starting at z, with law Pz,ω, if it satisfies the conditions

Pz,ω(X0 = z) = 1

Pz,ω(Xn + 1 = x+ e|Xn = x) =


ω(x, e), if x ∈ Zd, e ∈ V and Pz,ω(Xn = x) > 0,

0, otherwise.
(1.0.1)

The measure Pz,ω is called the quenched measure, in contrast to the averaged (or annealed)

measure we describe next. First, we need to consider some probability measure P on the

space (Ω,B(Ω)). Then we define the annealed measure starting at z as the semi-direct

product on Ω× (Zd)N given by the formula

Pz(A×B) =

∫
A

Pz,ω(B)dP ∀A ∈ B(Ω) , B ∈ B((Zd)N).

In general, one needs to impose certain conditions on the measure P so that the model

4



can be mathematically tractable. Two classes of such conditions are usually assumed. The

first one deals with ergodicity. We define the canonical shifts (tz)z∈Zd on Ω via the map

tzω(x, e) := ω(x+ z, e), e ∈ V. Then we define the condition (ERG) as

(ERG) the maps (tz)z∈Zd form an ergodic family on the space (Ω,B(Ω),P). (1.0.2)

That is, if A ∈ B(Ω) satisfies A = t−1
x (A) for each x ∈ Zd, then P(A) ∈ {0, 1}. A more

restricted —but the one we will mostly use in this thesis —hypothesis is the (IID) condition:

(IID) the random variables (ω(x))x∈Zd are i.i.d under P. (1.0.3)

The second class of conditions deals with the likelihood of the environments being close

to 0. We distinguish between two properties, (E) (for ellipticity) and (UE) (for uniform

ellipticity), defined as follows:

(E) for each x ∈ Zd, P(ω(x, e) > 0) = 1 for all e ∈ V,

(UE) there exists some κ > 0 such that, for all x ∈ Zd and e ∈ V, P(ω(x, e) ≥ κ) = 1.

The smallest such κ is called the ellipticity constant.
(1.0.4)

The essential difference between the elliptic and uniform elliptic case is that in the latter, the

environments are uniformly bounded by below (hence its name). In contrast, in the former,

the environments are positive, but they can be arbitrarily close to 0. The elliptic condition

makes the model more difficult to handle compared to the uniform elliptic case. One of such

difficulties is the presence of traps (see, for example, Example 2.18 in [DR]).
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1.1 Known results

We proceed now to give a summary of some known results for the model of RWRE. We will

mostly state results that are somewhat related to our work. By no means this will be a

complete account of the literature. Some complementary references are the lectures notes of

Bolthausen and Sznitman [BS2], Zeitouni [Zei] and Drewitz and Ramírez [DR].

1.1.1 One-dimensional case

The case d = 1 has been studied since the 70s, starting with the seminal works of Ko-

zlov [Koz1] and Solomon [Sol]1. In [Sol], the author gives a characterization of the recur-

rence/transience phenomenon for an RWRE that satisfies (E) and (IID). When d = 1,

we simplify the notation for the environments, writing for x ∈ Z, px := ω(x, 1) and

qx := 1 − px = ω(x,−1). Also, define ρx := qx
px
. We now state the mentioned result of

Solomon.

Theorem 1.1.1. Let P satisfies (E) and (IID). Assume that E[log ρ] := E[log ρ0] ∈

[−∞,∞] is well defined. Then we have the following:

(i) If E[log ρ] < 0, then limn→∞Xn =∞ P0-a.s.

(ii) If E[log ρ] > 0, then limn→∞Xn = −∞ P0-a.s.

(iii) If E[log ρ] = 0, then lim infn→∞Xn = −∞ P0-a.s. and lim supn→∞Xn =∞ P0-a.s.

The result says that the walk is transient if and only if E[log ρ] 6= 0. Moreover, in the

same article, Solomon shows a law of large numbers for the trajectory of the walk.

Theorem 1.1.2. Let P satisfies (E) and (IID). Then one and only one of the following

cases holds:
1Non-rigourous analysis were priorly made by Chernov [Che] for DNA chains and Temkin [Tem] for crystal

growth.
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(i) If E[ρ] < 1, then P0-a.s. limn→∞
Xn
n

= 1−E[ρ]
1+E[ρ]

.

(ii) If E[ρ−1] < 1, then P0-a.s. limn→∞
Xn
n

= −1−E[ρ−1]
1+E[ρ−1]

.

(iii) If E[ρ]−1 ≤ 1 ≤ E[ρ−1], then P0-a.s. limn→∞
Xn
n

= 0.

Remark 1.1.1.

1. Note that by Jensen’s inequality, E[ρ−1] ≥ E[ρ]−1, so the cases above are mutually

exclusive and the only possible ones.

2. One of the interesting features of the one-dimensional case is that there are examples of

walks that satisfy limn→∞Xn =∞ and limn→∞
Xn
n

= 0, that is, walks that are transient

to the right with zero velocity. Indeed, any measure P that fulfills E[log ρ] < 0 and

E[ρ] ≥ 1 works, since by Jensen’s inequality, E[log ρ−1] > 0 implies E[ρ−1] > 1 (thus

(iii) holds). One of the main conjectures in the multidimensional case is to show that

this behavior cannot occur under the hypotheses (UE) and (IID). More about this

later (see Conjecture 1.1.1).

3. Another remarkable feature of one-dimensional RWREs was showed by Sinai [Sin]. In

contrast to the one-dimensional simple random walk, which has fluctuations of order
√
n, the recurrent RWRE takes values of order log2 n, for large enough n. This case

also has a localized behavior (more about localization in Section 1.2.2 and Chapter 4).

Later on, Alili in [Ali] extends the previous theorems assuming (ERG) instead of (IID).

We state the generalization of the law of large numbers to the stationary and ergodic case.

Theorem 1.1.3. Let P satisfies (E) and (ERG). Define S := 1 +
∑∞

n=1

∏n
i=1 ρi and F :=

1 +
∑∞

n=1

∏n
i=1 ρ

−1
−i . Then one and only one of the following cases holds:

(i) If E[S] <∞, then P0-a.s. limn→∞
Xn
n

= 1
E[(1+ρ0)S]

.
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(ii) If E[F ] <∞, then P0-a.s.limn→∞
Xn
n

= 1
E[(1+ρ−1

0 )F ]
.

(iii) If E[S] = E[F ] =∞, then P0-a.s. limn→∞
Xn
n

= 0.

Note that by the stationarity assumption and Jensen inequality, the cases above are

mutually exclusive and the only possible ones. Furthermore, when the environments are

i.i.d., we recover Theorem 1.1.2. As we will discuss later (cf. Section 1.1.2), the picture in

the multidimensional case is significantly more complicated. This discrepancy is one of the

characteristics of the model of RWRE.

Large deviations

The next topic we discuss is about large deviations. In general, large deviations deals with

estimating atypical probabilities. If there is a law of large numbers, i.e. Yn
n
→ v P-a.s.,

for some random sequence (Yn)n∈N with law P , the atypical probabilities are of the type

P (|Yn
n
− v|1 > a), for a > 0. One then is interested in finding a function I, called rate

function, that should satisfy P (|Yn
n
− v|1 > a) ≈ e−nI(a). These vague notions can be

formalized and generalized, as we do now.

Definition 1.1.1. (lower semicontinuous function) Let X be a topological space. We say a

function f : X → [−∞,∞] is lower semicontinuous if the set {x ∈ X : f(x) ≤ a} is closed

for all a ∈ R.

Definition 1.1.2. (large deviations principle, LDP) Let X be a topological space and I :

X → [0,∞] be a lower semicontinuous function. If (µn)n∈N is a sequence of probability

measures on (X,B(X)), we say it satisfies a large deviation principle (LDP) with rate function

I if the following holds:

lim sup
n→∞

µn(F ) ≤ − inf
x∈F

I(x) for all closed sets F ⊆ X,

lim inf
n→∞

µn(G) ≥ − inf
x∈G

I(x) for all open sets G ⊆ X.

(1.1.1)
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We refer the reader to the references [DZ] and [RAS4] for a complete account of large

deviations.

The first result about large deviations for RWRE was given by Greven and den Hollan-

der [GdH], where they show a quenched large deviation principle with a deterministic rate

function. More precisely, we have the following result:

Theorem 1.1.4. Assume (E) and (IID). Suppose that E[log ρ] ≤ 0. Then the sequence

(P0,ω(Xn/n ∈ ·))n∈N satisfies a quenched large deviation principle, that is, there exists a

convex, deterministic function Iq (i.e. does not depend on ω) such that, P-a.s. (1.1.1) holds

with µn(·) = P0,ω(Xn/n ∈ ·), X = R and I = Iq. Moreover, I is continuous and

lim
n→∞

P0,ω(Xn = bnθc) = −Iq(θ) P-a.s. for θ ∈ [−1, 1].

There is no loss of generality assuming that E[log ρ] ≤ 0; if E[log ρ] > 0, replace ρ by

ρ−1 and Xn by −Xn in the previous theorem. Theorem 1.1.4 was generalized to stationary

and ergodic environments by Comets, Gantert and Zeitouni in [CGZ]. They also show an

annealed large deviation principle (i.e. choosing µn(·) = P0(Xn/n ∈ ·)) with a rate function

Ia for a class of measures that includes the case (IID). Moreover, the annealed and quenched

rate functions are related via the formula

Ia(x) = inf
Q

[
IQq (x) + x|h(Q|P)|

]
.

In the formula above, the infimum is over all the stationary and ergodic measures Q, IQq

is the quenched rate function with respect to Q, and h(·|·) is the specific relative entropy.

Another interesting feature of the one-dimensional rate functions is the presence of linear

pieces
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1.1.2 Multidimensional RWRE (d ≥ 2)

While the understanding of one-dimensional RWREs is rather advanced, the multidimen-

sional case is still under substantial research. Several fundamental questions have not been

solved up to this day. We mention some advances during the last years in the topic. Through-

out the sequel, the concepts of transience in a given direction and ballisticity are crucial to

the development of the model, so we introduce them now.

Definition 1.1.3. (Transience in a given direction) Let ` ∈ Sd−1. Given an RWRE (Xn)n∈N,

denote by A` := {limn→∞Xn · ` = ∞}. We say the RWRE is transient in the direction ` if

P0(A`) = 1.

Definition 1.1.4. (Ballisticity) Let ` ∈ Sd−1. We say the RWRE (Xn)n∈N is ballistic in the

direction ` if

lim inf
n→∞

Xn · `
n

> 0 P0-a.s. (1.1.2)

It is clear that if the walk is ballistic in a given direction, then it is transient. One of the

main conjectures in the field is that (under certain conditions) the converse also holds:

Conjecture 1.1.1. Assume P satisfies (IID) and (UE). If the walk is transient in a given

direction, then it is ballistic in the same direction.

Much of the past development in the last two decades has been in trying to solve this

conjecture. In order to close the gap, certain ballisticity conditions, which we will address

later, have been introduced.

The work of Kalikow [Kal] was the first in studying the multidimensional case. He

introduced the first ballisticity condition, the so-called Kalikow’s condition, and showed that

it implies transience and a 0-1 law. This criterion is quite involved, but for completeness,

we define it below. A couple of preliminary definitions are needed.

Definition 1.1.5. (Exterior boundary) For any set U ⊆ Zd, its exterior boundary is given
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by ∂U := {z ∈ Zd \ U : ∃u ∈ U, |z − u|1 = 1}.

Definition 1.1.6. (Exit time) Given any set U ⊆ Zd, the first exit time of an RWRE

(Xn)n∈N from U is TU := inf{n ∈ N : Xn /∈ U}.

Definition 1.1.7. (Kalikow’s random walk) Let U ( Zd be a connected set that contains 0.

Denote the class of such U ’s as C. Given an RWRE (Xn)n∈N with environmental law P that

satisfies (E) and (IID), the Kalikow’s random walk starting at x ∈ U is the Markov chain

(X̃n)n∈N with transition probability P̂U given by

P̂U(y, y + e) =



E0[
∑TU
n=0 1{Xn=y}ω(y,e)]

E0[
∑TU
n=0 1{Xn=y}]

, if y ∈ U, e ∈ V,

1, if y ∈ ∂U, e = 0,

0, otherwise.

(1.1.3)

The law of this chain starting at x ∈ U ∪ ∂U is denoted by P̂x,U .

Now we can define the Kalikow’s condition:

Definition 1.1.8. (Kalikow’s condition) Let ` ∈ Sd−1. The Kalikow’s condition in direction

` is satisfied if and only if

inf
U∈C,x∈U

∑
e∈V

(e · `)P̂U(x, x+ e) > 0. (1.1.4)

One of the main results in [Kal] is that Kalikow’s condition implies transience:

Theorem 1.1.5. Suppose P satisfies (UE) and (IID). Let ` ∈ Sd−1. If Kalikow’s condition

is satisfied with respect to v, then the RWRE is transient in direction `.

Moreover, it can be deduced from the aforementioned article (as showed in Lemma 1.1

in [SZ]) the so-called Kalikow’s 0-1 law:
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Theorem 1.1.6. Suppose P satisfies (UE) and (IID). For each ` ∈ Sd−1, P0(A` ∪ A−`) ∈

{0, 1}.

The natural question is if one can deduce that P0(A`) ∈ {0, 1}. Unfortunately, this is an

open problem for d ≥ 3. However, Zerner and Merkl in [ZM] showed that the 0-1 law holds

for d = 2:

Theorem 1.1.7. Suppose P satisfies (E) and (IID). If d = 2, for each ` ∈ Sd−1, P0(A`) ∈

{0, 1}.

Moreover, Kalikow’s condition was used by Sznitman and Zerner in [SZ] to improve

Theorem 1.1.5, where they deduce ballisticity.

Theorem 1.1.8. Suppose P satisfies (UE) and (IID). Let ` ∈ Sd−1. If Kalikow’s condition

is satisfied with respect to `, then the RWRE is ballistic in that direction. More precisely,

there exists some v ∈ Rd such that v · ` > 0 and P0-a.s.

lim
n→∞

Xn

n
= v. (1.1.5)

Indeed, one can obtain more information about the LLN velocity, but we need to introduce

first a regeneration structure, proposed in [SZ], as a multidimensional version of the renewal

structure of Kesten, cf. [Kes].

Definition 1.1.9. (First regeneration time, τ1) Let ` ∈ Sd−1. We define the first regeneration

time in the direction ` as

τ1 = τ1(`) := min{n ≥ 1 : max
0≤m≤n−1

Xn · ` < Xn · ` ≤ inf
m≥n

Xn · `}. (1.1.6)

Since to determine τ1 we need to look at the future, this random time is not a stopping

time. However, one of the main features of τ1 is that one can construct a sequence of
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random times (τn)n≥0 (here τ0 = 0) with the property that, under P0(·|A`) (so that for all

n, τn <∞ P0-a.s. ), (Xτn+1 −Xτn , τn+1)n≥0 form an independent sequence . Furthermore, if

D := inf{n ≥ 0 : Xn · ` < X0 · `}, then under P0(·|A`), (Xτn+1 −Xτn , τn+1)n≥1 are distributed

as (Xτ1 , τ1) under P0(·|D =∞) (see Corollary 1.5. in [SZ]).

With the definition of τ1 and D, we can now express the velocity v in Eq.(1.1.5) as

v =
E0[Xτ1|D =∞]

E0[τ1|D =∞]
. (1.1.7)

As the results above demonstrate, Kalikow’s condition has been very fruitful to under-

stand the asymptotic behavior of RWREs. However, this condition is quite restrictive and

difficult to check. One of the field’s main objectives is to try to find more general condi-

tions that assure ballistic behavior (being transience the ultimate goal), at least for i.i.d and

uniform elliptic walks. The first of such ballisticity conditions, besides Kalikow’s one, was

discovered by Sznitman and published in [Szn2]. It is called condition (T).

Definition 1.1.10. (Condition (T)) Assume P satisfies (UE) and (IID). Let ` ∈ Sd−1. We

say condition (T) in the direction ` holds, denoted by (T)|`, if the following is satisfied:

(i) The walk is transient in the direction `.

(ii) There exists c > 0 such that E0[ecmax0≤n≤τ1 |Xn|] <∞.

The direction ` is usually implicit, so we write (T) instead of (T)|`.

Remark 1.1.2. As shown in [Szn3], hypothesis (ii) in the above definition is equivalent to

the following: for `′ ∈ Sd−1 and L > 0, let U`′,L := {x ∈ Zd : −L ≤ x · `′ ≤ L}. Then there

exists a neighborhood of V of ` such that for all `′ ∈ V ,

lim sup
L→∞

1

L
logP0(XTU`′,L

· `′ < 0) < 0. (1.1.8)
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Intuitively, this equation says that the probability of the walk exiting for the "bad" side

(namely, contrary to direction `) decays exponentially as the side of the slab U`′,L goes to

infinity.

One of the main results showed in [Szn2] is that condition (T) implies a ballistic law of

large numbers, with the same velocity v as in (1.1.5), and a central limit theorem. Further-

more, he shows that Kalikow’s condition implies condition (T).

For the sake of brevity, we refer the reader to the following references for more about bal-

listicity conditions: [Szn3] for the so-called effective criterion and the conditions (T′), (T)γ, γ ∈

(0, 1]2, and [BDR] for the polynomial condition.

Large deviations

A substantial part of this thesis is devoted to the study of large deviations for RWRE, so

we now proceed to give the context necessary to understand our work. We have already

considered the one-dimensional case, so what remains is to summarize large deviations for

d ≥ 2.

The first important contribution came from Zerner in [Zer], where he showed a quenched

LDP for the position of the walk. He assumes the RWRE is nestling. Let us define first this

concept before stating the result.

Definition 1.1.11. (local drift, nestling and non-nestling walks) Define the local drift of

the walk at zero as the random variable d(ω) :=
∑

e∈V ω(0, e)e. Let H be the convex hull of

the support of the law of d. Then we say the RWRE is

(i) non-nestling if 0 /∈ H,

(ii) marginally nestling if 0 ∈ ∂H, and
2In a series of papers, culminating with the work of Guerra and Ramírez in [GR], the authors show that

the conditions (T), (T′) and (T)γ are all equivalent.
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(iii) plain nestling if 0 ∈ int(H).

In cases (ii) and (iii) we say the walk is nestling.

Theorem 1.1.9. Suppose that P satisfies (IID) and also that for each e ∈ V, −E logω(0, e)d <

∞. Moreover assume that the RWRE is nestling. Then the sequence of measures (µn)n∈N

with µn := P0,ω(Xn/n ∈ ·) satisfies a large deviation principle with deterministic rate func-

tion Iq : Rd → [0,∞]. Moreover, Iq(0) = 0 and Iq is convex, continuous and finite if and

only if |x|1 ≤ 1.

Varadhan in [Var] proved both a quenched and annealed LDP; the former for stationary

and ergodic environments (no nestling assumption is required), while the latter for i.i.d.

environments. Here is the result.

Theorem 1.1.10. Suppose P satisfies (UE) and (ERG).

(i) The sequence of measures (µn)n∈N with µn := P0,ω(Xn/n ∈ ·) satisfies a quenched large

deviation principle with deterministic, convex rate function Iq : Rd → [0,∞], which is

finite if and only if |x|1 ≤ 1.

(ii) If instead of (ERG) we assume (IID), then the sequence of measures

µn := P0(Xn/n ∈ ·) satisfies also an annealed large deviation principle with convex rate

function Ia : Rd → [0,∞], which is finite if and only if |x|1 ≤ 1.

Additionally, Ia(x) ≤ Iq(x) for all x ∈ Rd and Iq(x) = 0 if and only if Ia(x) = 0.

Varadhan’s result does not provide explicit formulas for the quenched rate function (its

proof is based upon the subadditive ergodic theorem). In contrast, for the annealed rate

function, there is a variational formula that we do not reproduce here since it goes beyond this

thesis’s scope. On the other hand, Rosenbluth in [Ros] showed a quenched LDP for the walk’s

position, with rate function given by a variational formula. Before we present the result, we
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need some notation. Let (Ω,F ,P) be a probability space —for now we simply forget about

our space of environments Ω. Let Q be the set of measurable functions q : Ω × V → [0, 1]

such that
∑

e∈V q(ω, e) = 1 for all ω ∈ Ω (one can think of Q as the set of probability vectors

M1(V)) and we fix some map p ∈ Q. We also denote by D to the space of measurable maps

φ : Ω → [0,∞) for which
∫
φdP = 1 and by B to the space of bounded and measurable

functions h : Ω→ R .

Theorem 1.1.11. Assume P satisfies (ERG) and there exists some α > 0 such that for all

e ∈ V ∫
| log p(ω, e)|d+αP(dω) <∞. (1.1.9)

Define Λ : Rd → R as

Λ(λ) := sup
q∈Q,φ∈D

inf
h∈B

∑
e∈V

∫ (
λ · e− log

q(ω, e)

p(ω, e)
+ h(ω)− h(Teω)

)
q(ω, e)φ(ω)P(dω).

(1.1.10)

Then the sequence of measures (µn)n∈N with µn := P0,ω(Xn/n ∈ ·) satisfies a quenched large

deviation principle with deterministic, convex rate function Iq : Rd → [0,∞] given by

Iq(x) = sup
λ∈Rd

[λ · x− Λ(λ)].

Indeed, if we consider the RWRE (Xn)n∈N with transition probabilities induced by p,

then Λ satisfies Λ(λ) = limn→∞
1
n

logE0,ω[eλ·Xn ] for all λ ∈ Rd. From here, one can apply

the Gärtner-Ellis theorem to conclude the proof of the LDP.

Once we know the quenched and annealed rate functions existence, a natural question

is to ask about the relation between them. Theorem 1.1.10 says that Ia ≤ Iq and that the

zero-sets are the same for both functions. Also, Iq(0) = Ia(0). Furthermore, both functions

are finite on the `1-unit ball. In terms of the regularity of the rate functions, substantial
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progress has been made in the case of the annealed rate function, especially by Peterson and

Zeitouni in [PZ] and Yilmaz in [Yil3]. In both articles, it is assumed some form of ballisticity,

either condition (T), or the walk being non-nestling (which implies condition (T), see, for

example, Proposition 2.4 in [SZ]). In particular, the LLN velocity v in (1.1.5) exists. We

summarize in the next theorem the main results from both articles.

Theorem 1.1.12. Suppose P satisfies (UE) and (IID).

(i) If the walk is non-nestling, then Ia is analytic on an open set Ann that contains v.

(ii) If the walk is nestling and condition (T) holds, then there exists an open set An with

the following properties:

(a) (0, v] ⊆ An.

(b) An = A1
ntA2

ntA3
n, where A1

n is open, A2
n ⊆ ∂A1

n is a d−1 dimensional set such

that its relative interior contains v, and A3
n = {cu : c ∈ (0, 1), u ∈ A1

n}.

(c) Ia is strictly convex and analytic on A1
n.

(d) Ia is strictly convex and 1-homogeneous on A3
n.

(e) Ia is continuously differentiable on An.

Analogous results for the non-ballistic case are, to the best of the author’s knowledge,

unknown.

Another important question that we will address now—and which is directly related

to this thesis—is the relation between Ia and Iq. Recall that Ia(x) ≤ Iq(x) for all x ∈

Rd. This inequality leads to asking when the rate functions are equal and when they are

different. Yilmaz derived the first result in this vein in [Yil1] for random walks in space-time

product random environment. These walks have the nice property that the environments are

independent for different times. In particular, the LLN velocity v exists. More precisely, one
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can consider an RWRE on Zd+1 of the type Yn = (Xn, n)n∈N, where (Xn)n∈N is a "standard"

RWRE on Zd, and the last (deterministic) coordinate represents time. To avoid ambiguities,

we usually say that these types of walks have dimension 1 + d, with d being the dimension

of the walk (Xn)n∈N. The result is the following:

Theorem 1.1.13. Consider an i.i.d. and uniform elliptic space-time RWRE in dimension

1 + d, with d ≥ 3. Then there exists a neighborhood of v for which Iq = Ia.

One of the advantages of working in the space-time regime is that the regeneration times

are τn = n, since the walk never visits the same point twice. The proof of Theorem 1.1.13

uses the so-called martingale method, where one shows first that the quenched and averaged

logarithmic moment generating functions coincide in a neighborhood of 0. Using standard

methods, one can then conclude that the rate functions coincide in a neighborhood of the

velocity. Trying to adapt this proof to conventional RWREs is not trivial since one needs

to deal with random regeneration times. This forces to require some sort of ballisticity.

Nevertheless, if we restrict the study of the rate functions to the boundary of their domains

(i.e., to ∂D = {x ∈ Rd : |x|1 = 1}), then the walks at these points behave very similarly to a

space-time RWRE. Exploiting this fact is one of the main results of this thesis (see Theorem

1.2.2).

Coming back to "static" RWREs (in contrast to "dynamic" ones, that is, space-time

walks), Yilmaz was able to establish equality between quenched and annealed rate functions

in a neighborhood of the velocity, when d ≥ 4. The theorem is stated below.

Theorem 1.1.14. Suppose P satisfies (UE) and (IID).

(i) If the walk is non-nestling, then there exists an open set Aeqnn which contains the LLN

velocity such that Iq(x) = Ia(x) for each x ∈ Aeqnn.

(ii) If the walk is nestling and condition (T) holds, then Iq and Ia are equal on an open set

Aeqn. The LLN velocity v satisfies v ∈ ∂Aeqn.
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Remark 1.1.3. Some comments about the last theorem:

(i) The result assumes the existence of the velocity, thus some kind of ballisticity is needed.

That is why in the nestling case the hypothesis of condition (T) is added (it is also

heavily used in the proof).

(ii) Both Theorem 1.1.12 and Theorem 1.1.14 do not give information far away of the

velocity.

Combining both points in the last remark, natural questions that arise are the following:

Question 1.1.1. Can we say something about equality of the rate functions in neighborhoods

that may not necessarily contain the velocity?

If the answer to the previous question is affirmative, a follow-up question is

Question 1.1.2. Do we need to assume that the walk is ballistic?

In this thesis, we will provide a positive answer to the first question, and a negative

answer to the second (see Section 1.2).

The reader may ask what happens in dimensions two and three. It turns out that the

conclusion of Theorem 1.1.14 cannot be extended to these cases. The result for the space-

time case is given first.

Theorem 1.1.15. Consider an i.i.d and uniform elliptic space-time RWRE in dimension

1 + d.

(i) If d = 1, then Iq(x) = Ia(x) <∞ if and only if x is the LLN velocity.

(ii) If d = 2, there exists a punctured neighborhood of the velocity for which Ia < Iq.

The corresponding result for static RWREs is given next.
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Theorem 1.1.16. Let d = 2 or 3. Assume P satisfies (UE) and (IID). Then there exists

a class of non-nestling walks such that for any open set that contains the velocity, Iq and Ia

are not identically equal in such set.

The proof of Theorems 1.1.15 and 1.1.16 uses the fractional moment method developed

by Lacoin in [Lac] to study the difference between the quenched and averaged free energies

for directed polymers in random environment.

1.1.3 Closing remarks

The LDP we have discussed so far is sometimes called level 1 large deviations, in contrast

to the level 2 (which deal with the empirical measure) and level 3 (also called process level)

large deviations3. In this thesis we will be focused only in level 1 large deviations. For

the sake of completeness, we mention some results from higher levels, and generalizations of

previous contributions.

Level 2 large deviations for RWRE were studied by Yilmaz in [Yil2]. Rather than con-

sidering the position, he deals with the random variable νn,X := 1
n

∑n−1
k=0 δTXkω,Xk+1−Xk ∈

M1(Ω× V). Then Yilmaz provided a LDP for the sequence of measures

µn := P0,ω(νn,X ∈ ·), assuming (1.1.9). Rassoul-Agha and Seppäläinen in [RAS2] showed a

level 3 large deviation principle, where instead of νn,X they study

R1,∞
n,X := 1

n

∑n−1
k=0 δTXkω,(Xi+1−Xi)i≥k .

Generalization of some of the large deviation results mentioned so far to the so-called

random walks in random potential (RWRP) can be found in [RASY1], [RAS3], [RASY3],

[RASY2] and [JNRA].
3The nomenclature of levels is used since one can go from higher levels to lower levels via the contraction

principle. See the references [DZ] and [RAS4] for more details.
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1.2 Our results

The results of this thesis fall into two categories: large deviations and localization. We

discuss now each of them.

1.2.1 Equality and difference of quenched and annealed rate func-

tions for RWRE

Recall the questions we posed in Questions 1.1.1 and 1.1.2. One of the limitations of current

methods that deals with studying the equality (and difference) between Iq and Ia is that

they only tell us information in a neighborhood close to the velocity. In particular, we first

need to make sure that such velocity even exists. Thus, the articles discussed so far assume

some form of ballisticity, such as condition (T). In our work, we tackle both problems at

once, introducing the concept of disorder. In simple terms, this concept measures how far an

RWRE is from being deterministic. As a simple example, consider a random perturbation

of a simple random walk, namely,

ωε(x, e) :=
1

2d
+ εξ(x, e), ε ≥ 0, (1.2.1)

for some i.i.d random vectors (ξ(x))x∈Zd that satisfies suitable conditions so that ωε =

(ωε(x, e))x∈Zd,e∈V is an environment. In this case, one may say that the disorder is ε. Indeed,

if ξ(x, e) ∈ [−1, 1], one can deduce that, for each e ∈ V, |ωε(x, e)−(2d)−1| < ε. Alternatively,

instead of considering the difference, one may take quotients instead,

ωε(x, e)
1
2d

= 1 + 2dεξ(x, e), (1.2.2)
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which, if one again assumes that ξ(x, e) ∈ [−1, 1] and ε′ := 2dε, we can get the bound

ωε(x, e)
1
2d

∈ [1− ε′, 1 + ε′].

We will take the second point of view to define the disorder of any environment that fulfills

both (UE) and (IID).

Definition 1.2.1. (disorder, dis(P)) Given any environmental law P that satisfies (UE) and

(IID), we define its disorder as

dis(P) := inf

{
ε > 0 :

ω(x, e)

E[ω(x, e)]
∈ [1− ε, 1 + ε] P-a.s. for all x ∈ Zd and e ∈ V

}
. (1.2.3)

Remark 1.2.1. We mention some works that have used a similar notion of disorder.

(i) In [Szn4], Sznitman considers random perturbations of the simple symmetric random

walk and shows conditions for which the walk is ballistic. Moreover, he gives examples

of walks that satisfies condition (T) but not Kalikow’s condition. More examples are

given in the articles [RS] and [FR].

(ii) In [Sab], Sabot considers environments of the type ωγ(x, e) = p0(e)+γξ(x, e), and shows

that, under certain conditions, for γ small enough the walk is ballistic. Moreover, he

gives an expansion formula for the asymptotic speed.

Our first main result is the equality between Iq and Ia for small disorder on the interior

of D.

Theorem 1.2.1. Let d ≥ 4, κ > 0, and a compact set K ⊆ int(D) \ {0}. Then there exists

ε = ε(d, κ,K) > 0 such that, for any RWRE with environmental law P satisfying (UE) with

ellipticity constant κ and (IID), if dis(P) < ε, then Iq(x) = Ia(x) for each x ∈ K.
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An analogous result is valid on the boundary ∂D = {x ∈ Rd : |x|1 = 1}. We need to

introduce some additional notation first. Given s ∈ {±1}d, let

∂D(s) := {x ∈ ∂D : xjsj ≥ 0 for all 1 ≤ j ≤ d},

∂Dd−2 := {x ∈ ∂D : xj = 0 for some 1 ≤ j ≤ d}.

Now we can state our result on the boundary.

Theorem 1.2.2. Let d ≥ 4, κ > 0, and a compact set K ⊆ ∂D \ ∂Dd−2. Then there exists

ε = ε(d, κ,K) > 0 such that, for any RWRE with environmental law P satisfying (UE) with

ellipticity constant κ and (IID), if dis(P) < ε, then Iq(x) = Ia(x) for each x ∈ K.

Additionally, we obtain an equality result on the boundary under a weaker condition we

call imbalance.

Definition 1.2.2. (imbalance, imbs(P)) Given any s ∈ {±1}d, the imbalance of the envi-

ronmental law P on the face ∂D(s) is

imbs(P) := inf

{
ε > 0 :

∑d
i=1 ω(x, siei)∑d

i=1 E[ω(x, siei)]
∈ [1− ε, 1 + ε] P-a.s. for all x ∈ Zd

}
. (1.2.4)

The next theorem is about equality of Iq and Ia as soon as the imbalance is sufficiently

small.

Theorem 1.2.3. Let d ≥ 4, κ > 0 and s ∈ {±1}d. Then there exists ε∗ = ε∗(d, κ) > 0 and

a compact set K∗ = K∗(d, κ) such that, for any RWRE with environmental law P satisfying

(UE) with ellipticity constant κ and (IID), if imbs(P) < ε∗, then Iq(x) = Ia(x) for all

x ∈ K∗.

One of the interesting consequences of the results on the boundary, is that we can obtain

as a corollary an explicit formula for the quenched rate function on the boundary. Indeed,

23



it is not difficult to show that (see the proof of Lemma 3.3.5) for any x ∈ ∂D one has the

formula (with the convention that 0 log 0 = 0)

Ia(x) =
d∑
i=1

|xi| log
|xi|

E[ω(0, xi|xi|ei)]
. (1.2.5)

Therefore, whenever equality holds on the boundary (i.e. either in Theorem 1.2.2 or Theorem

1.2.3), we have a simple expression for Iq. As we saw before (e.g., Eq. (1.1.10)), obtaining

such formulas, in general, is not an easy endeavor.

The general conclusion at this point is that low disorder implies equality of the rate

functions. One would like to show the opposite: if the disorder is large enough, Ia < Iq.

In statistical mechanics terms, is there some critical value εc such that equality holds if

the disorder is less than εc, and inequality otherwise? We deal with this problem for a

parametrized family of environments, in the spirit of ωε from (1.2.1), that makes suitable to

study the map ε → Ia(x, ε) − Iq(x, ε) for fixed x ∈ ∂D (here, Iq(·, ε) is the quenched rate

function with environment ωε, and the same for Ia). In order to define the parametrization,

we need to introduce some additional notation.

Given α ∈M1(V) with positive coordinates, let

Eα :=

{
(r(e))e∈V ∈ [−1, 1]V :

∑
e∈V

α(e)r(e) = 0 and sup
e∈V
|r(e)| = 1

}
. (1.2.6)

Let Q be any product measure on the space Γ := EZdα . Similarly as we did with Ω, we write

for a typical element η ∈ Γα, η = (η(x, e))x∈Zd,e∈V. Finally, define the family of environments

(ωε)ε∈[0,1) as

ωε(x, e) := α(e)(1 + εη(x, e)). (1.2.7)

We will make the following assumption on the measure Q:

Assumption 1.2.1.
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• E[ξ(x, e)] = 0 for any x ∈ Zd, e ∈ V, and

• the family (η(x, ·))x∈Zd is independent under Q.

Under these assumptions, and by definition of Eα, if Pε is the law of the environment

ωε, we deduce the following: for ε > 0, Pε satisfies (UE) with ellipticity constant κ =

(1− ε) mine∈V α(e), (IID), and dis(P) = ε.

Now we can state our monotonicity result. Let Iq(·, ε) (resp. Ia(·, ε)) be the quenched

(resp. average) rate function for an RWRE with environmental law Pε as above.

Theorem 1.2.4. Let d ≥ 2, α ∈ M1(V) with positive coordinates, and a measure Q on Γα

satisfying Assumption 1.2.1. Then the following holds:

(i) For each x ∈ ∂D, the map [0, 1) 3 ε → Ia(x, ε) − Iq(x, ε) is non-increasing and

continuous. In particular, there exists some εc(x) ≥ 0 such that if 0 ≤ ε ≤ εc(x) we

have Ia(x) = Iq(x), while for εc(x) < ε < 1 we have Ia(x) < Iq(x).

(ii) If d ≥ 4, there exists a compact set K ⊆ ∂D \ ∂Dd−2 such that for any x ∈ K one has

0 < εc(x) < 1. That is, there is a genuine phase transition.

The results on the interior will be shown in Chapter 2, while the boundary case will be

treated in Chapter 3, together with further discussions about the results.

1.2.2 Localization at the boundary for RWRE

We now will summarize our results about localization. First, let us comment upon the

concept of localization, as used in the RWRE literature. Its use has been made only in the

one-dimensional case. The first important contribution in this matter is the work of Sinai

[Sin], where he studies the recurrent case (i.e. case 3. in Theorem 1.1.1). He shows that

there exists a random process (mn)n∈N such that the walk is concentrated in a neighborhood
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of size o(log2 n) around mn at time n, as n → ∞. Golosov in [Gol] improves Sinai’s result,

showing that the neighborhood around mn is of bounded size as n→∞.

On the other hand, the notion of localization is very familiar in other models such as

the parabolic Anderson model and directed polymers in random environment. Indeed, we

will adapt the definition from the polymer model to our setup. Nevertheless, the concept

is similar to the RWRE counterpart; we say the walk is localized if there exists a favorite

path for which the walk moves with high (relative) probability. We now define the concept

of localization rigorously.

We will restrict ourselves to trajectories at the boundary, that is, for walks (Xn)n∈N such

that |Xn|1 = n for all n ∈ N. More precisely, we will fix a face of the boundary ∂D(s) for

some s ∈ {±1}d. For simplicity, let us consider the face ∂D(s), where s := {1, 1, · · · , 1}.

Also define

∂Rn := {x ∈ Zd : |x|1 = n and xj ≥ 0 for all 1 ≤ j ≤ d}. (1.2.8)

Finally, let An := {Xn −X0 ∈ ∂Rn}.

Definition 1.2.3. Let Jn := maxx∈Zd P0,ω(Xn−1 = x|An). We say the RWRE (Xn)n∈N is

localized at the boundary if

lim inf
n→∞

1

n

n∑
k=1

Jn > 0 P-a.s. (1.2.9)

Similarly, we say the walk is delocalized at the boundary if

lim inf
n→∞

1

n

n∑
k=1

Jn = 0 P-a.s. (1.2.10)

One of the main results we show in Chapter 4 is that localization occurs almost always

when d = 2 or 3. The assumption we need is the following:
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Assumption 1.2.2. The measure P satisfies

P

(∑
e∈V+

ω(x, e) =
∑
e∈V+

E[ω(0, e)]

)
< 1. (1.2.11)

Theorem 1.2.5. Suppose P satisfies (UE), (IID) and Assumption 1.2.11. Then, if d = 2

or 3, the walk is localized at the boundary. If Assumption 1.2.11 is not satisfied, then the

walk is delocalized. Delocalization also holds for any dimension d ≥ 2 when Assumption

1.2.11 is not fulfilled.

When d ≥ 4, we consider the same parametrization we used in (1.2.7) to deduce a

phase transition for the map ε → Ia(x, ε) − Iq(x, ε) to show a phase transition for the

localization/delocalization phenomenon. Before stating the result, we require some more

notation. Given α ∈ M1(V+) and κ > 0, we define εmax := 1 − κ
mine∈V α(e)

, the maximum

disorder parameter so that the walk is uniform elliptic with ellipticity constant at most κ.

Finally, we say the walk is ε-localized (resp. ε-delocalized) if (1.2.9) (resp. (1.2.10)) holds

with the measure Pε.

Theorem 1.2.6. Let d ≥ 2, α ∈ M1(V+), κ > 0 and a measure Q on Γα satisfying

Assumption 1.2.1. Then there exists some ε ∈ [0, εmax] such that the walk is ε-delocalized

for 0 ≤ ε ≤ ε, and ε-localized for ε < ε ≤ εmax. Moreover,

(i) If Assumption 1.2.11 does not hold, then ε = εmax. Otherwise,

(ii) if d = 2 or 3, then ε = 0;

(iii) if d ≥ 4, ε > 0. Also, there are examples of walks that satisfy ε < εmax.

Chapters 2 and 3 are joint work with Chiranjib Mukherjee, Alejandro F. Ramírez and

Santiago Saglietti.
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Chapter 2

Equality of quenched and averaged large

deviations for RWRE: the impact of the

disorder on the interior

2.1 Introduction and background.

The model of a random walk in a random environment (RWRE) provides a natural setting

for studying "statistical mechanics in random media" and has enjoyed a profound upsurge

of interest within physicists and mathematicians in the recent years. RWRE-s were first

considered by Solomon [Sol] and extended later by Sinai [Sin] which provided a very efficient

methodology for studying the one-dimensional case which is by now fairly well-understood,

and exhibits behaviors that are very different from that of the simple random walk. On

the other hand, multi-dimensional RWRE turns out to be much more difficult than the one-

dimensional model, and even some of the very fundamental questions have remained quite

challenging till date.

RWRE can be described as a two-layer process. First, consider a sequence ω = (ω(x))x∈Zd
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of probability vectors on V := {x ∈ Zd : |x|1 = 1} = {±e1, . . . ,±ed} indexed by the sites of

the lattice, i.e. ω(x) = (ω(x, e))e∈V is a probability vector on V for each x ∈ Zd. Any such

sequence ω will be called an environment and the space Ω of all such sequences will be called

the environment space. Then, the first layer of our process consists of, for a fixed ω ∈ Ω, a

random walk on the lattice whose jump probabilities are given by the environment ω, i.e.

for each x ∈ Zd the law Px,ω of this random walk (Xn)n≥0 starting at x is prescribed by

Px,ω(X0 = x) = 1 and Px,ω(Xn+1 = y + e |Xn = y) = ω(y, e) ∀ y ∈ Zd , e ∈ V.

We call Px,ω the quenched law of the RWRE. The second layer of our process is then obtained

when the environment ω is chosen at random according to some Borel probability measure P

on Ω (when endowed with the usual product topology). We call any such P an environmental

law. Averaging Px,ω over ω then produces a probability measure on Ω× (Zd)N given by the

formula

Px(A×B) =

∫
A

Px,ω(B)dP ∀A ∈ B(Ω) , B ∈ B((Zd)N).

We call the measure Px the averaged or annealed law of the RWRE (starting at x) and the

sequence X = (Xn)n∈N under Px a RWRE with environmental law P.

Given any RWRE, it is natural to ask whether classical limit theorems can hold for

its quenched and annealed measures. The law of large numbers (LLN) for the quenched

distribution, if valid, takes the form P
(
ω : limn→∞

Xn
n

= v a.e. w.r.t. Px,ω
)

= 1 for some

v ∈ Rd. The latter display is equivalent to the validity of Px(ω : limn→∞Xn/n = v) = 1

which translates to the LLN for the annealed measure. We refer to the literature[Law, PV,

Koz2, KV, Ber1, BZ, RAS1] where both LLN and central limit theorems (CLT) have been

investigated quite successfully whenever the law P of the ambient environment enjoys some

special properties like the existence of an invariant density for the environment viewed from

the particle or that of strong transience conditions.
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While RWRE exhibit the same behavior in the quenched and the annealed setting on

the level of LLN, the resulting scenarios for the two cases could be very different for regimes

concerning CLTs or large deviation principles (LDP). The latter statement concerns investi-

gating the (formally written) asymptotic behavior

lim
n→∞

1

n
logP0,ω

(
Xn

n
≈ x

)
' −Iq(x), and lim

n→∞

1

n
logP0

(
Xn

n
≈ x

)
' −Ia(x),

(2.1.1)

where the former statement holds for P-a.e. ω, while Iq and Ia are the quenched and annealed

large deviation rate functions, respectively. From Jensen’s inequality and Fatou’s lemma it

follows that Ia(·) ≤ Iq(·). However, a deeper connection between the two rate functions is

closely intertwined with the profound interplay between the random walk and the underlying

impurities of the environment. Indeed, if at a large time n, the RWRE were to find itself

at an atypical location, one could wonder if such unlikely scenario resulted from a strange

behavior of the particle in that environment or if the particle actually encountered an atyp-

ical environment. Such questions are intimately linked with the relationship between the

quenched and the annealed rate functions. The incentive to study and relate these two rate

functions therefore becomes quite natural. In this vein, the main result of the current article

(stated below formally in Theorem 2.2.1) is that, for d ≥ 4 and any compact subset K of the

open `1-unit ball (not containing the origin), the two rate functions Iq and Ia of any RWRE

in a uniformly elliptic and i.i.d. environment agree on K, if the disorder of the environment

remains sufficiently small. Apart from the result itself, this work introduces a novel point

of view from which to study the problem of equality of the rate functions, namely that of

the disorder of the environment. Indeed, our result suggests that, unless one is focused on

very particular regions of the domain (such as the corners in its boundary or neighborhoods

around the velocity whenever the RWRE is ballistic), disorder should play an essential role

in whether equality between the two rate functions holds, in the sense that equality should
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hold below and fail above a certain threshold disorder. This intuition has been confirmed

when looking at the rate functions at the boundary of their domain for a certain wide fam-

ily of environments in a separate work [BMRS2], see Remark 2.2.5. We turn to a precise

statement of the main result of the article.

2.2 Main result

In the sequel we shall work with environmental laws P satisfying the following assumption:

Assumption A: the environment is i.i.d. (i.e. the random vectors (ω(x))x∈Zd are inde-

pendent and identically distributed under P) and uniformly elliptic under P, i.e., there is a

constant κ > 0 such that, for all x ∈ Zd and e ∈ V,

P(ω(x, e) ≥ κ) = 1. (2.2.1)

Given any environmental law P satisfying Assumption A, we now define its disorder as

dis(P) := inf
{
ε > 0 : ξ(x, e) ∈ [1− ε, 1 + ε], P-a.s. for all e ∈ V and x ∈ Zd

}
, (2.2.2)

with ξ(x, e) :=
ω(x, e)

α(e)
and α(e) := E[ω(x, e)] ∀ e ∈ V, (2.2.3)

where E denotes expectation w.r.t. P and the definition of α(e) does not depend on x ∈ Zd

by Assumption A. Moreover, both ξ(x, e) and dis(P) are well-defined since P satisfies As-

sumption A and dis(P) can be seen as the L∞(P)-norm of the random vector (ξ(x, e)− 1)e∈V

for any x ∈ Zd. In [Var], Varadhan proved that, under Assumption A, both the quenched

distribution P0,ω

(
Xn
n

)−1 and its averaged version P0

(
Xn
n

)−1 satisfy a large deviations prin-

ciple, that is, that there exist two lower-semicontinuous functions Ia, Iq : Rd → [0,∞] such
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that for any G ⊆ Rd with interior int(G) and closure G,

− inf
x∈int(G)

Iq(x) ≤ lim inf
n→∞

1

n
logP0,ω

(
Xn

n
∈ G

)
≤ lim sup

n→∞

1

n
logP0,ω

(
Xn

n
∈ G

)
≤ − inf

x∈G
Iq(x)

for P-almost every ω ∈ Ω (and that the analogous statement obtained by replacing P0,ω

and Iq by P0 and Ia also holds), see Remark 2.2.3 for a brief overview of the literature

on large deviations for RWRE. If |x|1 denotes the `1 norm of x ∈ Rd, and we write D :=

{x ∈ Rd : |x|1 ≤ 1} for the closed `1-unit ball and int(D) := {x ∈ Rd : |x|1 < 1} for its

interior, it can be shown that the rate functions Iq and Ia are both convex and are finite if

and only if x ∈ D. Being also lower semicontinuous, this implies that both Iq and Ia are

continuous functions on D, see [Roc, Theorem 10.2]. Furthermore, for any RWRE satisfying

Assumption A, regardless of the disorder and in any d ≥ 2, we always have Iq(0) = Ia(0)

and {Iq = 0} = {Ia = 0} (see [Var, Theorem 8.1] and also Theorem 7.1 there for a formula

for Ia(0)) and it is also well-known that one always has the inequality Ia ≤ Iq. Here is our

main result.

Theorem 2.2.1. For any d ≥ 4, κ > 0 and compact set K ⊆ int(D) \ {0}, there exists

ε = ε(d, κ,K) > 0 such that, for any RWRE satisfying Assumption A with ellipticity constant

κ, if dis(P) < ε then we have the equality

Iq(x) = Ia(x) for all x ∈ K.

Let us make some comments about the result.

Remark 2.2.1 (The region of equality). As mentioned above, since Iq(0) = Ia(0), for any

d ≥ 4 and κ > 0 and for any x ∈ int(D), the above result implies that there is ε > 0 such

that Ia(x) = Iq(x) for dis(P) < ε, so we can think of the result above as saying that the

region of equality {x ∈ int(D) : Iq(x) = Ia(x)} covers the entirety of int(D) in the limit
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as dis(P) → 0, uniformly over all environmental laws P with a uniform ellipticity constant

bounded from below by some κ > 0. However, we point out that, unless P is degenerate, Ia

and Iq can never be equal everywhere in int(D) for a fixed environmental law P, see [Yil4,

Proposition 4]. Finally, for d ∈ {2, 3}, such an identity between the two rate functions is

not expected to be true for general RWRE, as shown in [YZ]: for d = 2, 3 there is a class of

non-nestling random walks in uniformly elliptic and i.i.d. environments such that Ia and Iq

are never identical on any open neighborhood of the velocity.

Remark 2.2.2 (An auxiliary random walk). One of the novelties of our approach is the

introduction of an auxiliary random walk (in a deterministic environment) satisfying the

following key properties: (i) (a particular version of) its logarithmic moment generating

function is intimately related with those of the RWRE (see Section 2.2.1 for further details)

and (ii) this walk is ballistic and possesses a strong regeneration structure. By means of

this auxiliary walk, we are able to study the LDP properties of the original RWRE using

techniques available for ballistic walks, even if our original RWRE is not ballistic itself.

Remark 2.2.3 (Literature remarks). Large deviations for RWRE for d = 1 were handled

by Greven and den Hollander [GdH] in the quenched setting and by Comets, Gantert and

Zeitouni [CGZ] (see also [GZ]) in both quenched and annealed settings (including a varia-

tional formula relating the the two rate functions. For d ≥ 1, using sub-additive arguments,

Zerner [Zer] (see also Sznitman [Szn1]) proved a quenched LDP for "nestling environments"1,

while Varadhan [Var] dropped the latter assumption on the environment and proved both

the quenched and annealed LDP. Kosygina, Rezakhanlou and Varadhan [KRV] developed a

novel method for obtaining quenched LDP for elliptic diffusions with a random drift based

on a convex variational approach, which was adapted by Rosenbluth [Ros] for elliptic RWRE

in d ≥ 1 and developed further by Yilmaz [Yil2] and by Rassoul-Agha Sepäläinen [RAS2].
1A RWRE is called nestling if the origin lies in the interior of the convex hull of the support of the local

drift
∑
e∈V eω(0, e) around the origin.
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The latter approach was extended to non-elliptic models like random walks on percolation

clusters including long-range correlations in [BMO] (see also Kubota [Kub] and Mourrat

[Mou] for sub-additive approaches).

Remark 2.2.4 (Previous results under condition (T)). To put our work into context, let

us now comment on a strong ballisticity criterion known as condition (T), introduced by

Sznitman [Szn2], which is the main assumption for all previously known results on the

equality of the rate functions (at least for standard RWRE in dimensions d ≥ 4). Given

a direction ` ∈ Sd−1, the RWRE is said to satisfy condition (T) if for some γ ∈ (0, 1] (or,

equivalently, if for any such γ) there exists a neighborhood V of ` such that, for all `′ ∈ V ,

lim
L→∞

L−γ logP0

[
〈XTU`′,L

, `′〉 < 0
]
< 0, (2.2.4)

where TU`′,L := inf{n ≥ 0: Xn /∈ U`′,L} is the exit time from U`′,L := {x ∈ Zd : −L <

〈x, `′〉 < L}, see also [GR]. Under Assumption A, condition (T) implies that: i) a law of

large numbers limn→∞
Xn
n

= v holds P0-a.s. with a non-zero velocity v and ii) there exist

regeneration times (with finite moments) such that the RWRE segments embedded between

these times are an i.i.d. sequence under P0. This regeneration structure has proved very

fruitful tool in the study of LDP for RWRE (see e.g. [PZ, Yil3, Ber2]). However, there are

prominent RWRE models which do not satisfy this condition; examples of which include

random walks in a balanced random environment, the random conductance model, random

walks on various percolation clusters as well as random walks on random graphs and trees

for which the limiting velocity, or the expected local drift happens to be zero, denying any

ballistic march of the random walk along any direction.

Under Assumption A and condition (T), it was shown in [Yil4] that when d ≥ 4, Ia = Iq

on some (possibly small) neighborhood of the non-zero velocity (which, as mentioned above,

always exists under (2.2.4)). Note that this result does not require the disorder of the
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environment to be small, but in return only yields equality in a (possibly small) neighborhood

of a very specific point in the domain. In contrast, Theorem 2.2.1 does not require the walk

to be ballistic nor are we restricted to neighborhoods around given points, as long as the

disorder of the environment is maintained low. In particular, our result applies to random

walks in balanced random environments, i.e. such that P (ω(x, e) = ω(x,−e)∀x, e) = 1, a

model where Sznitman’s condition (T) fails to hold. Finally, we recall that, as shown in

[Var], we always have the equality Ia(0) = Iq(0) under Assumption A, regardless of the

disorder. However, except for some results in specific scenarios (see [Yil4, Theorem 5-(iv)]),

both our approach and that in [Yil4] seem unfit to study the equality of the rate functions

in neighborhoods of the origin.

Remark 2.2.5 (Relation between Iq and Ia on the boundary of D). In a separate work

[BMRS2], we show the analogue of Theorem 2.2.1 for compact sets on the boundary ∂D :=

{x ∈ Rd : |x|1 = 1} (not intersecting any of the (d − 2)-dimensional facets of ∂D). As a

consequence, we obtain that both Iq and Ia admit simple explicit formulas on the boundary

∂D for sufficiently small disorder. We refer to [RASY2, RASY3] for an alternative variational

representation of Iq.

2.2.1 Outline of the proof

For conceptual clarity and convenience of the reader, we now present a brief outline of

the proof of Theorem 2.2.1, highlighting the main novelties of our approach as well as the

similarities and differences with that of earlier works in the same vein.

The proof of Theorem 2.2.1 consists of three parts, which we summarize below. We

first notice that, in order to obtain Theorem 2.2.1, it will suffice to show that, for any

y ∈ int(D) \ {0} and κ > 0, if d ≥ 4 then there exist ε = ε(y, d, κ), r = r(y, d, κ) > 0 such

that Iq = Ia on Br(y), the `1-ball of radius r centered at y, for any RWRE with dis(P) < ε

which satisfies Assumption A with ellipticity constant κ (see Theorem 2.3.1 below). Thus,
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in the following we explain the steps towards showing this variant of Theorem 2.2.1 for a

henceforth fixed y ∈ int(D) \ {0} and κ > 0.

Step 1: The first building block of the proof, which is one of the main novelties of our

approach, is the construction of an auxiliary random walk in a deterministic environment

verifying that:

Q1. It is ballistic with velocity y and, furthermore, possesses strong regeneration properties;

Q2. If we denote its law when starting from 0 by Q0 and define its "quenched” limiting

logarithmic moment generating functions as

Λq(θ) := lim
n→∞

1

n
logEQ

0

(
e〈θ,Xn〉

n∏
j=1

ξ(Xj−1,∆j(X))
)

θ ∈ Rd,

and its "averaged" counterpart Λa(θ) being defined analogously with
∏n

j=1 ξ(Xj−1,∆j(X))

replaced by its averages E
∏n

j=1 ξ(Xj−1,∆j(X)) (here EQ
0 denotes expectation w.r.t.

Q0, ω is the random environment from our original RWRE and ξ is given by (2.2.3)),

then essentially (see Section 2.4.2 for details)

Iq − Ia = Ĩq − Ĩa, (2.2.5)

where Ĩq and Ĩa are the Fenchel-Legendre transforms of Λq and Λa respectively, i.e.

Ĩq(x) = sup
θ∈Rd

[〈θ, x〉 − Λq(θ)] and Ĩa(x) = sup
θ∈Rd

[〈θ, x〉 − Λa(θ)].

Thus, we see from (2.2.5) that, in order to establish that Iq = Ia, it will suffice to show that

Ĩq = Ĩa. Noting that Ĩq and Ĩa are essentially "quenched” and "averaged” versions of a random

perturbation determined by ξ of the rate function for this auxiliary walk,2 and in light of
2Indeed, Ĩq and Ĩa are simply the Gartner-Ellis representations of the rate function for this auxiliary
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(Q1) above, one could try to adapt the method from [Yil4] originally devised for RWRE with

strong regeneration properties to our auxiliary walk in order to show that Ĩq = Ĩa. However,

note that these two settings are not the same3 and so there is no reason to believe a priori

that an approach as in [Yil4] could work here. Thus, one of the main challenges of our work

is to show that it actually does: we must control these random perturbations well enough so

that one is able to carry out arguments in the spirit of [Yil4] and, furthermore, we must do

so uniformly over all environmental laws with a uniform ellipticity constant bounded from

below by κ. We outline all the necessary steps next.

Step 2: As stated above, we must prove that there exist ε, r > 0, depending only on y, d and

κ, such that Ĩa(x) = Ĩq(x) for all x ∈ Br(y) and any RWRE with environmental law P with

dis(P) < ε. As a first step towards this, we show that Λq(θ) = Λa(θ) for all θ with |θ|1 < r1

and if dis(P) < ε1, for r1, ε1 > 0 depending only on y, d and κ. The main step for showing

this, which is customary in this line of problems, is establishing the L2(P)-boundedness of a

particular sequence (Φn)n∈N, which is often closely related (if not equal) to a martingale. In

our case, the sequence of interest is

Φn(θ, ω) = E
Q

0

(
e〈θ,XLn 〉−Λa(θ)Ln

Ln∏
j=1

ξ(Xj−1, Xj −Xj−1) ; Ln is a regeneration time
)
,

(2.2.6)

where Ln denotes the hitting time of the hyperplane {x : 〈x, `〉 = n} and E
Q

0 denotes

expectation w.r.t. Q0 conditional on the event that inf{n : 〈Xn−X0, `〉 < 0} =∞ for ` ∈ V

some particular direction satisfying that 〈y, `〉 > 0 (and in terms of which the regeneration

structure of the auxiliary random walk is defined, see Section 2.3 for details). To see that

(Φn)n∈N is bounded in L2(P), one writes Φ2
n as an expectation of a certain function of two

walk, where the usual limiting logarithmic moment generating function is replaced by the perturbations Λq
and Λa, respectively.

3Indeed, we have a deterministic environment as opposed to a random one as in [Yil4], and we work with
random perturbations of logarithmic MGFs instead of actual MGFs.
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independent random walks with lawQ0 and argues that, in order to bound its second moment

whenever the disorder is sufficiently small, it is enough to suitably estimate the number of

times the trajectories of these two independent walks intersect and then use this to control

the perturbation term
∏Ln

j=1 ξ(Xj−1, Xj − Xj−1) from (2.2.6). The desired control reduces

to a suitable bound for the probability of non-intersection of two random walks in the same

deterministic environment. For this purpose, and in contrast to [Yil4] where an estimate

by Berger-Zeitouni [BZ] has been used (to control the probability of non-intersection of two

walks in the same random environment), we invoke the bounds developed by Bolthausen and

Sznitman [BS1] which are better suited to our setting.

Step 3: The last task in the proof is to show that the equality of Λq and Λa in a neighborhood

of the origin translates into the equality of Ĩq and Ĩq in a neighborhood of y. To do this, we

note that, by standard arguments, we have that for any x ∈ Rd,

Ĩq(x) = 〈θx,q, x〉 − Λq(θx,q) and Ĩa(x) = 〈θx,a, x〉 − Λa(θx,a)

for any θx,q, θx,a ∈ Rd such that ∇Λq(θx,q) = x = ∇Λa(θx,a). In particular, if we can take

θx,q = θx,a then this readily implies that Ĩq(x) = Ĩa(x). Thus, since ∇Λq(θ) = ∇Λa(θ) for

|θ|1 < r1 if dis(P) < ε1 by Step 2, if we show that there exist 0 < ε(y, d, κ) < ε1 and

r(y, d, κ) > 0 such that

Br(y) ⊆ {∇Λa(θ) : |θ|1 < r1} (2.2.7)

whenever dis(P) < ε then for each x ∈ Br(y) we would have ∇Λq(θx) = x = ∇Λa(θx) for

some θx and hence that Ĩq(x) = Ĩa(x) immediately follows. The key point here is that we

must show that r in (2.2.7) can be taken to be independent of the law P, as long as its

disorder is sufficiently low and its uniformly ellipticity constant is bounded from below by

κ. We achieve this by using a uniform inverse function theorem for families of differentiable

functions (Theorem 2.4.5 below), which requires us to obtain uniform estimates (over P) on
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the modulus of continuity at θ = 0 of the Hessian Ha of Λa as well as a uniform upper bound

on the norm of its inverse H−1
a . To obtain such estimates, we rely on a representation of Ha

analogous to the one given in [Yil3].

2.2.2 Organization of the article:

The rest of the paper is organized as follows. The construction of the auxiliary random walk

as well as the study of its properties is carried out in Section 2.3. Also in Section 2.3 the

reader will find proof of the equality Λq = Λa in a neighborhood of the origin, assuming

the L2(P)-boundedness of the sequence (Φn)n∈N in (2.2.6), the proof of which is deferred to

Section 2.5. Finally, Step 3 in the above discussion is carried out in Section 2.4.

2.3 An auxiliary random walk and equality of its limiting

log-MGFs

As stated in Section 2.2.1, Theorem 2.2.1 is a direct consequence of the following more

specific result.

Theorem 2.3.1. For any y ∈ int(D) \ {0}, d ≥ 4 and κ > 0, there exist ε = ε(y, d, κ), r =

r(y, d, κ) > 0 such that, for any RWRE satisfying Assumption A with ellipticity constant κ,

if dis(P) < ε then then we have the equality

Iq(x) = Ia(x) for all x ∈ Br(y) := {z ∈ Rd : |z − y|1 < r}.

Therefore, here and in the coming sections we shall focus only on proving Theorem 2.3.1.

The goal in this particular section is to begin the proof by showing equality between the

averaged and quenched limiting logarithmic moment generating functions (log-MGFs, for
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short) for small enough disorder. A key building block to this end will be the construction

of an auxiliary random walk and a detailed investigation of its properties.

Before we begin we introduce some further notation to be used throughout the sequel.

Given κ > 0, we define

M(κ)
1 (V) := {p ∈M1(V) : p(e) ≥ κ for all e ∈ V}

withM1(V) the space of all probability vectors on V, together with the class of environmental

laws

Pκ := {P ∈M1(Ω) : P satisfies Assumption A with ellipticity constant κ},

whereM1(Ω) is the space of all environmental laws. Finally, for ε > 0, we define

Pκ(ε) := {P ∈ Pκ : dis(P) < ε}.

We are now ready to present this auxiliary random walk and study its properties.

2.3.1 Introducing the Q-random walk and its limiting log-MGFs

Let us fix y ∈ int(D) \ {0} and P ∈ Pκ. Notice that, if we define the function f : [0,∞) →

[0,∞) as

f(C) :=
d∑
i=1

√
|〈y, ei〉|2 + 4Cα(ei)α(−ei). (2.3.1)

Since f is strictly increasing and continuous, with f(0) = |y|1 < 1 and limC→∞ f(C) = ∞,

there exists a unique Cy,α ∈ (0,∞) such that f(Cy,α) = 1. With this, we may define for each
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e ∈ V the probability weight

u(e) :=
〈y, e〉

2
+

1

2

√
|〈y, e〉|2 + 4Cy,αα(e)α(−e). (2.3.2)

Observe that u(e) ≥ 0 and
∑

e∈V u(e) = 1, so that u := (u(e))e∈V truly is a probability

vector. Central to the proof of Theorem 2.3.1 will be the following auxiliary random walk

(in a deterministic environment) on Zd, whose law we denote by Q, which is given by the

transition probabilities

Q(Xn+1 = x+ e |Xn = x) = u(e)

for each e ∈ V and x ∈ Zd, with u(e) as in (2.3.2). We call this auxiliary walk the Q-random

walk. We will write Qx to denote the law of this walk starting from a fixed x ∈ Zd and EQ
x

to denote expectations with respect to Qx. Notice that Qx depends exclusively on x, y and

P, but it depends on P only through the average weights α. In general, we will omit the

dependence on y and α from the notation, but occasionally we will write Q(y, α) instead of

Q if we wish to make it explicit. Furthermore, the weights u have been particularly chosen

so that this Q-random walk satisfies the properties in Lemma 2.3.2 below.

Lemma 2.3.2. With this choice of probability weights u = (u(e))e∈V, the following properties

hold:

P1. Given κ > 0 there exists cκ > 0 such that u(e) ≥ cκ for all e ∈ V and P ∈ Pκ.

P2. EQ
x (Xn+1 −Xn) = y for all n ∈ N and x ∈ Zd.

P3. For any x ∈ Zd and all environments ω, we have

EQ
0

(
e〈θ,Xn〉

n∏
j=1

ξ(Xj−1,∆j(X))
)

= (Cy,α)
n
2E0,ω

(
e〈θ+θy,α,Xn〉

)
(2.3.3)
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and

EQ
0

(
e〈θ,Xn〉E

n∏
j=1

ξ(Xj−1,∆j(X))
)

= (Cy,α)
n
2E0

(
e〈θ+θy,α,Xn〉

)
, (2.3.4)

where Cy,α is as in (2.3.2), the vector θy,α ∈ Rd is given by the formulas

〈θy,α, ei〉 := log

(
u(ei)

α(ei)
√
Cy,α

)
i = 1, . . . , d (2.3.5)

and we use the notation ∆j(X) := Xj −Xj−1 for j = 1, . . . , n.

Proof. Since the mapping α 7→ Cy,α is continuous on M(κ)
1 (V) (by the implicit function

theorem, for example), we see that α 7→ u(e) is also continuous for each e ∈ V. In particular,

since M(κ)
1 (V) is compact, we see that infP∈Pκ u(e) = inf

α∈M(κ)
1 (V)

u(e) > 0 for each e ∈ V,

which readily implies (P1). On the other hand, (P2) is immediate from the definition of the

weights u in (2.3.2). Therefore, we focus on proving (P3). Notice that it will be enough to

show (2.3.3), as (2.3.4) follows immediately upon taking expectations on (2.3.3) with respect

to P. To show (2.3.3), we introduce yet another auxiliary random walk, whose law we will

denote by Qu, given by the transition probabilities

Qu(Xn+1 = x+ e |Xn = x) =
cy,αu(e)

α(e)
(2.3.6)

for each e ∈ V and x ∈ Zd, where the weights u(e) are the same as before and cy,α > 0 is a

normalizing constant so that the transition probabilities for Qu in (2.3.6) add up to 1. As

before, we write Qu
x to denote the law of this random walk starting from a fixed x ∈ Zd and

use Eu
x to denote the expectation with respect to Qu

x.

Having introduced this second auxiliary random walk, the first step will be to show that

Eu
0

(
e〈θ,Xn〉

n∏
j=1

ω(Xj−1,∆j(X)) ; Xn = x
)

= (cy,α
√
Cy,α)nE0,ω(e〈θ+θy,α,Xn〉 ; Xn = x), (2.3.7)
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for every θ ∈ Rd and x ∈ Zd, where cy,α is as in (2.3.6), Cy,α as in (2.3.2) and θy,α is given by

(2.3.5). To this end, let us define a path of length n to be any sequence x̄ = (x0, . . . , xn) of

n+ 1 sites in Zd satisfying that xj and xj−1 are nearest neighbors for all j = 1, . . . , n. Then

observe that, for (2.3.7) to hold, it is enough to show that

Qu
0((X0, . . . , Xn) = x̄) = (cy,α

√
Cy,α)ne〈θy,α,x〉 (2.3.8)

for all paths x̄ of length n with x0 = 0 and xn = x. To check (2.3.8), let us fix such a path

x̄ and denote by x̄+
i the number of steps made by this path in direction ei and by x̄−i the

number of those in direction −ei. Then, since x̄+
i = x̄−i + 〈x, ei〉, by the Markov property we

have that

Qu,v
0 ((X0, . . . , Xn) = x̄) = cny,α

d∏
i=1

(
u(ei)

α(ei)

)x̄+i d∏
i=1

(
u(−ei)
α(−ei)

)x̄−i
= cny,α

d∏
i=1

(
u(ei)u(−ei)
α(ei)α(−ei)

)x̄−i d∏
i=1

(
u(ei)

α(ei)

)〈x,ei〉
.

Notice that, by construction of the weights u, one has that u(ei)u(−ei)
α(ei)α(−ei) = Cy,α holds. Moreover,

from the restriction
∑d

i=1(x̄+
i + x̄−i ) = n and the relation x̄+

i = x̄−i + 〈x, ei〉 for every i =

1, . . . , d, it follows that
∑d

i=1 x̄
−
i = 1

2
(n−

∑d
i=1〈x, ei〉). Hence, we obtain

Qu
0((X0, . . . , Xn) = x̄) = (cy,α

√
Cy,α)n

d∏
i=1

(
u(ei)

α(ei)
√
Cy,α

)〈x,ei〉
= (cy,α

√
Cy,α)ne〈θy,α,x〉.

(2.3.9)

Summing (2.3.7) over all x ∈ Zd yields

Eu
0

(
e〈θ,Xn〉

n∏
j=1

ω(Xj−1,∆j(X))
)

= (cy,α
√
Cy,α)nE0,ω(e〈θ+θy,α,Xn〉). (2.3.10)
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Finally, we conclude (2.3.3) from (2.3.10) upon noticing that, by definition of Q and Qu,

Eu
0

(
e〈θ,Xn〉

n∏
j=1

ω(Xj−1,∆j(X))
)

= cny,αE
Q
0

(
e〈θ,Xn〉

n∏
j=1

ξ(Xj−1,∆j(X))
)
.

This completes the proof.

As a consequence of Lemma 2.3.2, we immediately get the following corollary.

Corollary 2.3.3. For θ ∈ Rd, the quantities

Λq(θ) := lim
n→∞

1

n
logEQ

0

(
e〈θ,Xn〉

n∏
j=1

ξ(Xj−1,∆j(X))
)
, (2.3.11)

and

Λa(θ) := lim
n→∞

1

n
logEQ

0

(
e〈θ,Xn〉E

n∏
j=1

ξ(Xj−1,∆j(X))
)

(2.3.12)

are well-defined, i.e. the limits in (2.3.11) and (2.3.12) both exist, are finite and the right-

hand side of (2.3.11) is P-almost surely constant.

Proof. It follows from (2.3.3) and (2.3.4) that, for any θ ∈ Rd,

Λq(θ) = log(
√
Cy,α)+Λq(θ+θy,α) and Λa(θ) = log(

√
Cy,α)+Λa(θ+θy,α), (2.3.13)

where Λq(θ) := limn→∞
1
n

logE0,ω(e〈θ,Xn〉) and Λa(θ) := limn→∞
1
n

logE0(e〈θ,Xn〉) respectively

denote the quenched and annealed limiting logarithmic moment generating functions asso-

ciated with the RWRE. Since both Λq and Λa are well-defined in the sense described in the

statement of Corollary 2.3.3 (see [RAS3, Theorem 2.6] for the quenched case and, in the

annealed case, this follows from [Var, Theorem 3.2] and Varadhan’s Lemma [DZ, Theorem

4.3.1]), we see that Λq(θ) and Λa(θ) are so as well.

The following remark contains some crucial estimates that we will use extensively in the
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sequel.

Remark 2.3.1. Given any θ, θ′ ∈ Rd and environmental law P, for any n ≥ 1 we have

|Λa(θ)− Λa(θ
′)| ≤ |θ − θ′|1 and e−Λa(0)n

n∏
j=1

ξ(Xj−1,∆j(X)) ≤ eh(dis(P))n P-a.s.,

where h(x) := log
(

1+x
1−x

)
for x ∈ [0, 1). The proof of these inequalities is elementary, so

we omit it. Nevertheless, from now onwards we will assume that dis(P) < 1 so that the

expression h(dis(P)) < 1, which will appear numerous times in the sequel, is always well-

defined. This does not represent any real loss of generality since we shall always be interested

in environmental laws with small enough disorder.

The main objective in Section 2.3 is to show that Λa(θ) = Λq(θ) for θ close enough to 0,

whenever the disorder of the environment is sufficiently low. We will later see in Section 2.4

that, in turn, this will imply that Iq(x) = Ia(x) for x sufficiently close to y. To carry out

all this, we shall exploit a renewal structure available for the Q-random walk. We introduce

this renewal structure next.

2.3.2 A renewal structure for the Q-random walk

Let us first fix a direction ` ∈ V such that EQ
0 (〈X1, `〉) > 0. Notice that such a direction

always exists since EQ
0 (〈X1, `〉) = 〈y, `〉 by Lemma 2.3.2 and y 6= 0 by assumption. We then

set for u ∈ R,

Hu : = inf{n ≥ 1 : 〈Xn, `〉 > u}, S0 := 0, β0 := inf{n ≥ 1 : 〈Xn, `〉 < 〈X0, `〉}, R0 := 〈X0, `〉
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and define the sequences of stopping times (Sk)k∈N, (βk)k∈N and (Rk)k∈N inductively as

Sk+1 := HRk , βk+1 := inf{n > Sk+1 : 〈Xn, `〉 < 〈XSk+1
, `〉},

Rk+1 :=


sup{〈Xn, `〉 : 0 ≤ n ≤ βk+1} if βk+1 <∞

〈XSk+1
, `〉 if βk+1 =∞,

with the convention that inf ∅ = ∞. Observe that, by choice of ` and the law of large

numbers, we have limn→∞〈Xn, `〉 =∞ Q-almost surely. In particular, this implies that

Rk <∞ Q-a.s. =⇒ Sk+1 <∞ Q-a.s. =⇒ Rk+1 <∞ Q-a.s.,

so that by induction all Sk and Rk are finite Q-almost surely. However, the βk will not all

be. Thus, we define the sequence (τk)k∈N of renewal times as

τk := SWk
,

where (Wk)k∈N is defined inductively by first taking W0 := 0 and then setting

Wk+1 := inf{n > Wk : βn =∞}.

That the renewal times τk are well-defined is a consequence of the fact that all Wk are Q-a.s.

finite, which in turn follows from the Markov property and Lemma 2.3.4 below.

Lemma 2.3.4. There exists c = c(y) > 0 such that Q(β0 = ∞) > c for any P ∈ Pκ, where

Q = Q(y, α) is the law of the Q(y, α)-random walk with jump weights given by (2.3.2).

Proof. Let (Zn)n∈N be the random walk on Z which starts from 〈X0, `〉 and, at each step

n ∈ N, jumps one unit to the left with probability q and one to the right with probability
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p := 1− q, where

q := −〈y, `〉
2

+
1

2

√
|〈y, `〉|2 + 1.

Observe that, since f(1/4α(`)α(−`)) > 1 where f is as in (2.3.1), we have that Cy,α <

1
4α(`)α(−`) and thus u(`) ≤ q. It follows that we may couple (Zn)n∈N with our Q-random walk

in such a way that, for all n ∈ N,

Zn ≤ 〈Xn, `〉 =⇒ Zn+1 ≤ 〈Xn+1, `〉.

In particular, if we denote β0(Z) := inf{n ≥ 1 : Zn < Z0} then P (β0(Z) =∞) ≤ Q(β0 =∞).

But, since q < 1
2
by Minkowski’s inequality, by standard gambler’s ruin estimates we have

P (β0(Z) =∞) = 1− q
p

=: c.

This concludes the proof.

It follows from this construction above that all renewal times τk are Q-a.s. finite, that

(Xτ1 , τ1) is independent of the sequence (Xτk+1
−Xτk , τk+1−τk)k≥1 and that this last sequence

is i.i.d. with common law given by that of (Xτ1 , τ1) conditioned on the event {β0 =∞}. We

now investigate some (uniform in P) integrability properties of these renewal times.

Lemma 2.3.5. There exists ρ1 = ρ1(y) > 0 such that EQ
0 (eρ〈Xτ1 ,`〉) ≤ 3c−1 for all ρ < ρ1

and any P ∈ Pκ, where c is the constant from Lemma 2.3.4.

Proof. By splitting EQ
0 (eρ〈Xτ1 ,`〉) according to the value of W1, we obtain the bound

EQ
0 (eρ〈Xτ1 ,`〉) =

∞∑
k=1

EQ
0 (eρ〈Xτ1 ,`〉 ; W1 = k) ≤

∞∑
k=1

EQ
0 (eρ〈XSk ,`〉 ; βj <∞ for j = 1, . . . , k).

(2.3.14)

Observe that |〈XS1 , `〉| ≤ 1 + |X0| by definition of R0 and the fact that the walk is nearest
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neighbor, so that the first term in the sum on the right-hand side of (2.3.14) is bounded

from above by eρ.

On the other hand, since Rk−1 = sup{〈Xn, `〉 : Sk−1 ≤ n ≤ βk−1} when βk−1 < ∞ and

k ≥ 2, by writing 〈XSk , `〉 = 〈XSk−1
, `〉+ 〈XSk −XSk−1

, `〉 and using the Markov property at

time Sk−1, we see that for k ≥ 2 the k-th term in the right-hand side of (2.3.14) is bounded

from above by

EQ
0 (eρ〈XSk−1

,`〉 ; βj <∞ for j = 1, . . . , k − 1)EQ
0 (eρ(1+R) ; β0 <∞),

where R := sup{〈Xn, `〉 : 0 ≤ n ≤ β0}. Repeating this argument all the way down to

〈XS1 , `〉 and then using the bound for the case k = 1 yields the bound

EQ
0 (eρ〈Xτ1 ,`〉) ≤ eρ

∞∑
k=1

(
EQ

0

(
eρ(1+R) ; β0 <∞

))k−1

. (2.3.15)

Therefore, in order to complete the proof we only need to show that, for ρ small enough

depending only on y, we have

EQ
0

(
eρ(1+R) ; β0 <∞

)
< 1− c

2
. (2.3.16)

But, by the union bound and Lemma 2.3.4, for any N ≥ 1 the expectation on the left-hand

side of (2.3.16) is bounded from above by

eρNQ0(β0 <∞) +
∞∑
n=N

eρ(2+n)Q0(n ≤ R < n+ 1 , β0 <∞)

≤ eρN(1− c) +
∞∑
n=N

eρ(2+n)Q0(R ≥ n , β0 <∞).
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Now, observe that for n ≥ 1

Q0(R ≥ n , β0 <∞) ≤ Q0(n ≤ β0 <∞)

=
∞∑
k=n

Q0(β0 = i) ≤
∞∑
k=n

Q0(〈Xk, `〉 < 0) ≤ e−
1
8
|〈y,`〉|2n

1− e−
1
8
|〈y,`〉|2

,

where to obtain the last inequality we have used the bound Q0(〈Xk, `〉 < 0) ≤ e−
1
8
|〈y,`〉|2k,

which follows from the (one-sided) Azuma-Hoeffding inequality for the martingale (Mn)n∈N

given by Mn := 〈Xn, `〉 − n〈y, `〉 (whose increments are bounded by 2). Thus, we see that,

for any N ≥ 1,

EQ
0

(
eρ(1+R) ; β0 <∞

)
≤ eρ(N∧2)

(
1− c+

e−
1
8
|〈y,`〉|2N(

1− e−
1
8
|〈y,`〉|2)2

)

from where (2.3.16) now follows by taking first N sufficiently large and then ρ accordingly

small.

As a consequence of Lemma 2.3.5, we obtain (uniform in P) exponential moments for τ1.

Proposition 2.3.6. There exists γ0 = γ0(y) > 0 such that EQ
0 (eγτ1) ≤ 2 for all γ ≤ γ0 and

any P ∈ Pκ.

Proof. For n ≥ 1, by the union bound we have

Q0(τ1 > n) ≤ Q0

(
〈Xτ1 , `〉 >

〈y, `〉
2

)
+Q0

(
τ1 > n , 〈Xτ1 , `〉 ≤

〈y, `〉n
2

)
.

Using the exponential Tchebychev inequality and Lemma 2.3.5, we have

Q0

(
〈Xτ1 , `〉 >

〈y, `〉
2

)
≤ e−ρ〈y,`〉nEQ

0 (e2ρ〈Xτ1 ,`〉) ≤ Ce−ρ〈y,`〉n
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for some C, ρ > 0 depending only on y. On the other hand, by definition of τ1 we have

Q0

(
τ1 > n , 〈Xτ1 , `〉 ≤

〈y, `〉n
2

)
≤ Q0

(
〈Xn, `〉 ≤

〈y, `〉n
2

)
≤ e−

1
32
|〈y,`〉|2n,

where to obtain the last inequality we have used the (one-sided) Azuma-Hoeffding inequality

for the martingale (Mn)n∈N as in the proof of Lemma 2.3.5. Hence, we see that there exist

C, γ > 0 depending only on y such that Q0(τ1 > n) ≤ Ce−γn for all n ≥ 1. From this the

result now follows by an argument similar to the one used to derive (2.3.16).

Finally, the above regeneration structure, together with Remark 2.3.1, allows us to deduce

analyticity of Λa.

Proposition 2.3.7. There exists γ1 > 0 (determined by Proposition 2.3.8 below), if dis(P) <

γ1 then the mapping θ 7→ Λa(θ) is analytic on the set {θ : |θ|1 < γ1}.

Proof. We follow an idea similar to [Yil3, Lemma 6]. Consider the function Ψ : Rd×R→ R

defined as

Ψ(θ, r) := E
Q

0

(
e〈θ,Xτ1 〉−rτ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)

where EQ

0 above stands for expectation with respect to Q0, the law Q0 conditioned on the

event {β0 =∞}. By Remark 2.3.1 we have that, whenever r = Λa(θ) + δ for some δ ∈ R,

∣∣∣〈θ,Xτ1〉 − rτ1 + logE
τ1∏
j=1

ξ(Xj−1,∆j(X))
∣∣∣ ≤ (2|θ|1 + h(dis(P)) + |δ|)τ1

so that, by choice of γ1 (see the proof of Lemma 2.5.2 for details), we have

E
Q

0

(
τ1 exp

{
|〈θ,Xτ1〉 − (Λa(θ) + δ)τ1 + logE

τ1∏
j=1

ξ(Xj−1,∆j(X))|
})

<∞ (2.3.17)

whenever |θ|1∨dis(P) < γ1 and |δ| < δc for some δc = δc(y) > 0 small enough. It then follows
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from (2.3.17), dominated convergence and Remark 2.3.1 once again that, when dis(P) < γ1,

Ψ is analytic on the open set Cy := {(θ, r) : |θ|1 < γ1 , |r−Λa(θ)| < δc} with series expansion

given by

Ψ(θ, r) =
∞∑
n=0

E
Q

0 ((〈θ,Xτ1〉 − rτ1)n)

n!

and ∂rΨ given by

∂rΨ(θ, r) = −EQ

0

(
τ1e〈θ,Xτ1 〉−rτ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)
. (2.3.18)

But observe that Ψ(θ,Λa(θ)) = 1 whenever |θ|1 ∨ dis(P) < γ1 by Proposition 2.3.8, which

in turn implies that −∂rΨ(θ,Λa(θ)) ≥ Ψ(θ,Λa(θ)) = 1 > 0 by (2.3.18). Therefore, the

analyticity of Λa(θ) for |θ|1 < γ1 whenever dis(P) < γ1 now follows from the analytic implicit

function theorem, see [KP, Theorem 6.1.2].

2.3.3 Equality of Λq and Λa: the main argument

We now describe the main steps in the proof of the equality of Λa(θ) and Λq(θ) for θ close

enough to 0, whenever the disorder of the environment is sufficiently low. The more technical

details are deferred to a separate section. We begin by introducing the key object in our

analysis.

Definition 2.3.1. Given n ≥ 1, θ ∈ Rd and an environment ω, we define

Φn(θ, ω) := E
Q

0

(
e〈θ,XLn 〉−Λa(θ)Ln

Ln∏
j=1

ξ(Xj−1,∆j(X)), Ln = τk for some k ≥ 1
)
, (2.3.19)

where, as before, EQ

0 above stands for expectation with respect to Q0, the law Q0 conditioned

on the event {β0 =∞}, and Ln := inf{n ≥ 1 : 〈Xn−X0, `〉 = n}. Throughout the sequel we

shall write Φn(θ) instead of Φn(θ, ω) whenever we think of ω as being random (and therefore
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of Φn(θ) as being a random variable).

The following two propositions contain the crucial information about the random variable

Φn.

Proposition 2.3.8. There exists γ1 = γ1(y) > 0 such that, for any P ∈ Pκ, whenever

|θ|1 ∨ dis(P) < γ1 we have

E
Q

0

(
e〈θ,Xτ1 〉−Λa(θ)τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)

= 1 (2.3.20)

and

lim
n→∞

EΦn(θ) > 0.

Proposition 2.3.9. There exists γ2 = γ2(y, d, κ) > 0 such that, for any P ∈ Pκ, whenever

|θ|1 ∨ dis(P) < γ2 we have supn≥1 E(Φn(θ))2 <∞.

The proofs of these propositions are deferred to Section 2.5. Let us first conclude

Proof of Λq = Λa (assuming Proposition 2.3.8 and Proposition 2.3.9): Note that by

Propositions 2.3.8-2.3.9, whenever |θ|1 ∨ dis(P) < γ1 ∧ γ2 we have

P
(

lim
n→∞

Φn(θ) = 0
)
< 1. (2.3.21)

Indeed, if Φn(θ)→ 0 P-a.s. then limn→∞ EΦn(θ) = 0 since (Φn(θ))n≥1 is uniformly integrable

by Proposition 2.3.9. However, this is in contradiction with Proposition 2.3.8 and thus

(2.3.21) must hold. Furthermore, we also have the following.

Lemma 2.3.10. For any θ ∈ Rd and δ > 0, we have

P

(
lim
n→∞

EQ
0

(
e〈θ,XLn 〉−(Λq(θ)+δ)Ln

Ln∏
j=1

ξ(Xj−1,∆j(X))
)

= 0

)
= 1. (2.3.22)
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Proof. Let us write λθ,δ := Λq(θ) + δ in the sequel for simplicity. Then, by splitting the

expectation on the left-hand side of (2.3.22) according to the different possible values for Ln,

we can bound it from above by

∞∑
k=n

EQ
0

(
e〈θ,Xk〉−λθ,δk

k∏
j=1

ξ(Xj−1,∆j(X))
)

=
∞∑
k=n

e−λθ,δkEQ
0

(
e〈θ,Xk〉

k∏
j=1

ξ(Xj−1,∆j(X))
)
.

(2.3.23)

Now, since for P-almost every ω we have

EQ
0

(
e〈θ,Xk〉

k∏
j=1

ξ(Xj−1,∆j(X))
)

= e(Λq(θ)+oω(1))k

for some oω(1) → 0 as k → ∞, from (2.3.23) we obtain that for all n sufficiently large and

P-a.e. ω,

EQ
0

(
e〈θ,XLn 〉−(Λq(θ)+δ)Ln

Ln∏
j=1

ξ(Xi−1,∆j(X))
)
≤

∞∑
k=n

e−
δ
2
k ≤ e−

δ
2
n

1− e−δ/2
.

Taking n→∞ on this inequality now allows us to conclude.

Combined with (2.3.21), Lemma 2.3.10 yields the equality Λa(θ) = Λq(θ) whenever |θ|1∨

dis(P) < γ1 ∧ γ2. We state and prove this in a separate proposition for future reference.

Proposition 2.3.11. Define γ = γ1 ∧ γ2, for γ1 and γ2 as in Propositions 2.3.8 and 2.3.9,

respectively. Then, for any P ∈ Pκ, whenever |θ|1 ∨ dis(P) < γ we have Λq(θ) = Λa(θ).

Proof. Observe that (2.3.21) implies that, for |θ|1 ∨ dis(P) < γ,

P

(
lim sup
n→∞

EQ
0

(
e〈θ,XLn 〉−(Λa(θ))Ln

Ln∏
j=1

ξ(Xj−1,∆j(X))
)
> 0

)
> 0.

In conjunction with (2.3.22), this yields the existence of an environment ω and n ≥ 1 such
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that

EQ
0

(
e〈θ,XLn 〉−(Λq(θ)+δ)Ln

Ln∏
j=1

ξ(Xi−1,∆j(X))
)
< EQ

0

(
e〈θ,XLn 〉−(Λa(θ))Ln

Ln∏
j=1

ξ(Xj−1,∆j(X))
)
,

from where it follows that Λq(θ) + δ > Λa(θ). Letting δ → 0 yields the inequality Λq(θ) ≥

Λa(θ). But, since Λq(θ) ≤ Λa(θ) for all θ ∈ Rd by Jensen’s inequality, we deduce that

Λq(θ) = Λa(θ) whenever |θ|1 ∨ dis(P) < γ, which concludes the proof.

Thus, to complete the argument it only remains to prove Propositions 2.3.8 and 2.3.9.

We will do this later in Section 2.5.

2.4 Proof of Theorem 2.2.1 and Theorem 2.3.1: Deducing

Iq = Ia from Λq = Λa

We now show how to conclude Theorem 2.3.1 (and therefore, Theorem 2.2.1) from the results

in the previous section by proving that the equality of Λq and Λa in a neighborhood of the

origin implies, for sufficiently small disorder, the equality of the rate functions Iq and Ia in a

neighborhood of y. The task will be carried out in three steps, spanning Section 2.4.1-Section

2.4.3.

2.4.1 Uniform closeness of y and ∇Λa(0).

As already remarked earlier, we would like to argue that, given y 6= 0, for all environmen-

tal laws with a small enough disorder, y is close to the gradient ∇Λa(0). Recall that by

Proposition 2.3.8 we have that, for any P ∈ Pκ, if |θ|1 ∨ dis(P) < γ1 then

E
Q

0

(
e〈θ,Xτ1 〉−Λa(θ)τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)

= 1.
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In particular, taking gradient on both sides (which we can do by dominated convergence,

using Proposition 2.3.7 and the control in (2.5.12)), we obtain that whenever |θ|1 ∨ dis(P) <

γ1,

E
Q

0

(
(Xτ1 −∇Λa(θ)τ1)e〈θ,Xτ1 〉−Λa(θ)τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)

= 0, (2.4.1)

which yields the representation

∇Λa(θ) =
E
Q

0

(
Xτ1e

〈θ,Xτ1 〉−Λa(θ)τ1E
∏τ1

j=1 ξ(Xj−1,∆j(X))
)

E
Q

0

(
τ1e〈θ,Xτ1 〉−Λa(θ)τ1E

∏τ1
j=1 ξ(Xj−1,∆j(X))

) . (2.4.2)

In particular, notice that whenever dis(P) = 0, i.e. P-a.s. ω(x, e) = α(e) for all e ∈ V and

x ∈ Zd, we have Λa(0) = 0 so that

∇Λa(0) =
E
Q

0 (Xτ1)

E
Q

0 (τ1)
. (2.4.3)

On the other hand, by the renewal structure, the law of large numbers for the Q-random walk

and (P2) in Lemma 2.3.2 we have that, for any environmental law P (with not necessarily

zero disorder),
E
Q

0 (Xτ1)

E
Q

0 (τ1)
= y. (2.4.4)

In particular, in the zero disorder case we conclude that ∇Λa(0) = y. In the general case,

whenever dis(P) is sufficiently small ∇Λa(0) will be close to y. More precisely, we have the

following.

Proposition 2.4.1. Given δ > 0 there exists ε1 = ε1(y, δ) > 0 such that, for any P ∈ Pκ, if

dis(P) < ε1 then |∇Λa(0)− y|1 < δ.
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Proof. It follows from (2.4.2) that

∇Λa(0) =
E
Q

0

(
Xτ1e

−Λa(0)τ1E
∏τ1

j=1 ξ(Xj−1,∆j(X))
)

E
Q

0

(
τ1e−Λa(0)τ1E

∏τ1
j=1 ξ(Xj−1,∆j(X))

) .

Thus, in light of (2.4.4) and since EQ

0 (τ1) ≥ 1, in order to prove the result it will suffice to

show that given δ′ > 0 there exists ε′1 = ε′1(y, δ′) > 0 such that, for any P ∈ Pκ, if dis(P) < ε′1

then ∣∣∣EQ

0

(
Xτ1e

−Λa(0)τ1E
τ1∏
j=1

ξ(Xj−1,∆j(X))
)
− EQ

0 (Xτ1)
∣∣∣
1
≤ δ′ (2.4.5)

and ∣∣∣EQ

0

(
τ1e−Λa(0)τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)
− EQ

0 (τ1)
∣∣∣ ≤ δ′. (2.4.6)

But by Remark 2.3.1 and the the mean value theorem we have that

∣∣∣EQ

0

(
Xτ1e

−Λa(0)τ1E
τ1∏
j=1

ξ(Xj−1,∆j(X))
)
− EQ

0 (Xτ1)
∣∣∣
1
≤ h(dis(P))E

Q

0

(
|Xτ1|1τ1eh(dis(P))τ1

)
,

so that (2.4.5) now follows from the bound |Xτ1|1 ≤ τ1, Lemma 2.3.4 and Proposition 2.3.6

upon taking dis(P) small enough (depending only on y and δ′). Since (2.4.6) also follows in

a similar way, this concludes the proof.

Next, we consider the set

Ay,P := {∇Λa(θ) : |θ|1 < γ},

with γ as in Proposition 2.3.11. Observe that this set depends on both y and P (and we

stress this dependence in the notation). The next proposition shows that this set is open

when dis(P) < γ1.
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Proposition 2.4.2. For any P ∈ Pκ, whenever |θ|1 ∨ dis(P) < γ1, with γ1 > 0 given by

Proposition 2.3.8, the Hessian Ha(θ) of Λa at the point θ is given by the formula

Ha(θ) =
E
Q

0

(
(Xτ1 −∇Λa(θ)τ1)T (Xτ1 −∇Λa(θ)τ1)e〈θ,Xτ1 〉−Λa(θ)τ1E

∏τ1
j=1 ξ(Xj−1,∆j(X))

)
E
Q

0

(
τ1e〈θ,Xτ1 〉−Λa(θ)τ1E

∏τ1
j=1 ξ(Xj−1,∆j(X))

)
(2.4.7)

and is positive definite. In particular, whenever dis(P) < γ1 the set Ay,P is open.

Proof. Taking derivatives on (2.4.1) (which again we can do by using Proposition 2.3.7 and

(2.5.12)) and proceeding as for (2.4.2) immediately yields (2.4.7). On the other hand, for

any column vector v ∈ Rn×1 we have

〈v,Ha(θ) · v〉 =
E
Q

0

(
|〈Xτ1 −∇Λa(θ)τ1, v〉|2e〈θ,Xτ1 〉−Λa(θ)τ1E

∏τ1
j=1 ξ(Xj−1,∆j(X))

)
E
Q

0

(
τ1e〈θ,Xτ1 〉−Λa(θ)τ1E

∏τ1
j=1 ξ(Xj−1,∆j(X))

) ,

so that 〈v,Ha(θ) ·v〉 ≥ 0 and the equality holds if and only if 〈Xτ1−∇Λa(θ)τ1, v〉 = 0 Q0-a.s.

or, equivalently, if 〈Xτ1
τ1
, v〉 is Q0-almost surely constant. However, since infe∈V α(e) > 0, it

is not hard to check that if v 6= 0 then 〈Xτ1
τ1
, v〉 cannot be constant. Hence, we see that in

this case v must be zero and therefore Ha(θ) is positive definite. Finally, that Ay,P is open

follows from this and the inverse function theorem.

The next proposition states that, whenever the disorder is small enough, the set Ay,P

contains a ball centered at ∇Λa(0) whose radius is independent of P.

Proposition 2.4.3. There exist ε2 = ε2(y, d, κ), r2 = r2(y, d, κ) > 0 such that, for any

P ∈ Pκ, if dis(P) < ε2 then Br2(∇Λa(0)) ⊆ Ay,P.

The proof of Proposition 2.4.3 will be carried out in Subsection 2.4.3 . As a consequence

of Propositions 2.4.1 and 2.4.3, we immediately obtain the following corollary.
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Corollary 2.4.4. There exist ε = ε(y, d, κ), r = r(y, d, κ) > 0 such that, for any P ∈ Pκ, if

dis(P) < ε then Br(y) ⊆ Ay,P.

2.4.2 Proof of Theorem 2.2.1 and Theorem 2.3.1 (Assuming Propo-

sition 2.4.3):

Now, for x ∈ Br(y) with r as in Corollary 2.4.4, define the quantities

Ĩq(x) := sup
θ∈Rd

[〈θ, x〉 − Λq(θ)] and Ĩa(x) := sup
θ∈Rd

[〈θ, x〉 − Λa(θ)].

It is standard to show that (see [DZ, Lemma 2.3.9] for details)

Ĩq(x) = 〈θx,q, y〉 − Λq(θx,q) and Ĩa(x) = 〈θx,a, y〉 − Λa(θx,a) (2.4.8)

for any θx,q and θx,a respectively satisfying

∇Λq(θx,q) = x and ∇Λa(θx,a) = x.

Notice that such θx,a exists and satisfies |θx,a| < γ since x ∈ Ay,P by choice of x. Furthermore,

such θx,q also exists and in fact can be taken equal to θx,a, since both Λq(θ) and Λa(θ) coincide

for |θ|1 < γ by Proposition 2.3.11. Hence, from (2.4.8) and the fact that θx,q = θx,a, we obtain

that Ĩq(x) = Ĩa(x) for all x ∈ Br(y). We may then conclude Theorem 2.3.1 once we show this

implies that Iq(x) = Ia(x). But, from (2.3.13) and the definition of Ĩq and Ĩa, for x ∈ Br(y)

we have that

Ĩq(x) + log(
√
Cy,α) + 〈θy,α, x〉 = sup

θ∈Rd
[〈θ+ θy,α, x〉−Λq(θ+ θy,α)] = sup

θ∈Rd
[〈θ, x〉−Λq(θ)] = Iq(x)

(2.4.9)
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and

Ĩa(x)+log(
√
Cy,α)+〈θy,α, x〉 = sup

θ∈Rd
[〈θ+θy,α, x〉−Λa(θ+θy,α)] = sup

θ∈Rd
[〈θ, x〉−Λa(θ)] = Ia(x),

(2.4.10)

where the rightmost equalities in (2.4.9) and (2.4.10) follow from standard arguments (see

[DZ, Section 2.3] for details) using that Λq and Λa are well-defined in the sense of Corollary

2.3.3 and that Br(y) is contained in the set of exposed points of the Fenchel-Legendre trans-

forms of both Λq and Λa by (2.4.8) and (2.3.13). Therefore, as Ĩq and Ĩa agree on Br(y), we

see that the same holds for Iq, Ia and thus we obtain Theorem 2.3.1.

Then, in order to complete the proof, it only remains to prove Proposition 2.4.3. We do

this next.

2.4.3 Proof of Proposition 2.4.3

The key ingredient in the proof of Proposition 2.4.3 is the following uniform version of the

inverse function theorem.

Theorem 2.4.5 (Uniform inverse function theorem). Let F be a family of C1-functions

f : G → Rd defined on some neighborhood G ⊆ Rd of 0 such that the differential matrix

Df(0) ∈ Rd×d is invertible for every f ∈ F . Then, if there exist constants c, δ > 0 such that

{θ : |θ|1 < δ} ⊆ G and

I1. supf∈F ||Df(0)−1|| < c,

I2. supf∈F , |θ|1<δ ||Df(θ)−Df(0)|| < 1
2c
,

where || · || denotes the operator 1-norm, there exists ρ (depending only on c and δ) such that

for all f ∈ F ,

Bρ(f(0)) ⊆ {f(θ) : |θ|1 < δ}.
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The proof of Theorem 2.4.5 is obtained by simply mimicking (part of) the proof of

the standard inverse function theorem (see e.g. [Rud, Theorem 9.24]), replacing the usual

estimates with uniform bounds. Therefore, we omit the proof and leave the details to the

reader.

In light of Theorem 2.4.5, to obtain Proposition 2.4.3 it will suffice to show that there

exists ε2 > 0 depending only on y, d and κ such that the family of C1-functions

Fy := {∇Λa : P ∈ Pκ with dis(P) < ε2}

satisfies the hypotheses of Theorem 2.4.5. By Proposition 2.4.2, we only need to check

conditions (I1) and (I2). For this, we will need three auxiliary lemmas. The first one asserts

that ∇Λa(θ) is close to ∇Λa(0) (uniformly over P) whenever θ is close to 0 and the disorder

is sufficiently small.

Lemma 2.4.6. Given c > 0, there exist ε3 = ε3(y, c), δ = δ(y, c) > 0 such that, for any

P ∈ Pκ, if dis(P) < ε3 then

sup
|θ|1<δ

|∇Λa(θ)−∇Λa(0)|1 < c.

Proof. In view of (2.4.6) and the fact that EQ

0 (τ1) ≥ 1, it will be enough to check that, given

c′ > 0, there exist ε′ = ε′(y, c′), δ′ = δ′(y, c′) > 0 such that, for any P ∈ Pκ, if dis(P) < ε′

then

sup
|θ|1<δ′

∣∣∣EQ

0

(
Xτ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
(

e〈θ,Xτ1 〉−Λa(θ)τ1 − e−Λa(0)τ1
))∣∣∣

1
< c′

and

sup
|θ|1<δ′

∣∣∣EQ

0

(
τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
(

e〈θ,Xτ1 〉−Λa(θ)τ1 − e−Λa(0)τ1
))∣∣∣ < c′.
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But this can be done exactly as in the proof of (2.4.5)-(2.4.6), using now the inequality

|〈θ,Xτ1〉 − Λa(θ)τ1|+ |Λa(0)τ1| ≤ 2
(
|θ|1 + h(dis(P))

)
τ1,

where h is as in Remark 2.3.1, which follows in the same way as the inequalities in this last

remark. We omit the details.

The second lemma is the analogue of Proposition 2.4.1 but for the Hessian Ha, which

states that whenever dis(P) is sufficiently small Ha(0) will be close to the corresponding

Hessian for the case of zero disorder. We denote by || · || to the operator 1-norm on Rd×d

matrices.

Lemma 2.4.7. Given c > 0, there exist ε4 = ε4(y, c) > 0 such that, for any P ∈ Pκ, if

dis(P) < ε4 then ∥∥Ha(0)−H∗a(0)
∥∥ < c,

where

H∗a(0) :=
E
Q

0 ((Xτ1 − yτ1)T (Xτ1 − yτ1))

E
Q

0 (τ1)
. (2.4.11)

Proof. For simplicity, let us set Γ(v) := (Xτ1 − vτ1)T (Xτ1 − vτ1) for v ∈ Rd. Then, in view

of (2.4.6), the fact that EQ

0 (τ1) ≥ 1 and since

‖EQ

0 (Γ(y))‖ ≤ E
Q

0 (|Xτ1 − yτ1|2) ≤ (1 + |y|1)2E
Q

0 (τ 2
1 ),

by Proposition 2.3.6 (which can be used to bound the second moment of τ1 uniformly in P)

we see that it will suffice to show that the numerators of both matrices are close, i.e. that

given any c′ > 0, there exists ε′ = ε′(y, c′) > 0 such that if dis(P) < ε′ then

∥∥∥∥EQ

0

(
Γ(∇Λa(0))e−Λa(0)τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)
− EQ

0 (Γ(y))

∥∥∥∥ < c′. (2.4.12)
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Now, writing Ξa(0) := e−Λa(0)τ1E
∏τ1

j=1 ξ(Xj−1,∆j(X)) for simplicity, observe that we can

bound the left-hand side of (2.4.12) from above by

E
Q

0

(
‖Γ(∇Λa(0))− Γ(y)‖ |Ξa(0)|

)
+ E

Q

0

(
‖Γ(y)‖ |Ξa(0)− 1|

)
.

Since by Remark 2.3.1 we have

|Ξa(0)− 1| ≤ h(dis(P))τ1eh(dis(P))τ1 , (2.4.13)

and, furthermore, it is straightforward to verify that

‖Γ(∇Λa(0))− Γ(y)‖ ≤ 5(|∇Λa(0)− y| ∨ 1)τ 2
1 (2.4.14)

and

‖Γ(y)‖ ≤ |Xτ1 − yτ1|2 ≤ (1 + |y|1)2τ 2
1 , (2.4.15)

(2.4.12) follows at once from (2.4.13)-(2.4.14)-(2.4.15) by using Propositions 2.3.6 and 2.4.1.

The last auxiliary lemma states that ‖(H∗a(0))−1‖ is uniformly bounded over Pκ.

Lemma 2.4.8. The mapping α 7→ H∗a(0) is continuous on M∗
1(V) := {α ∈ M1(V) :

infe∈V α(e) > 0}. In particular, for any κ > 0 we have supP∈Pk‖(H
∗
a(0))−1‖ <∞.

Proof. By definition of H∗a(0), it suffices to check that the mappings

α 7→ E
Q

0 (τ1) and α 7→ E
Q

0 ((Xτ1 − yτ1)T (Xτ1 − yτ1))

are continuous on M∗
1(V). The proof for both mappings is similar, so we only show the

continuity of α 7→ E
Q

0 (τ1). To this end, since EQ

0 (τ11{τ1>N})→ 0 as N →∞ uniformly over
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M∗
1(V) by Proposition 2.3.6, it will be enough to show that α 7→ E

Q

0 (τ11{τ1=N}) is continuous

for every N ≥ 1. But, using the Markov property together with the fact that Qx(β0 = ∞)

does not depend on x, it is not difficult to see that EQ

0 (τ11{τ1=N}) is a polynomial of degree

N in the weights u = (u(e))e∈V from (2.3.2). Indeed, we have

E
Q

0 (τ11{τ1=N}) =
∑
x̄n

n∏
j=1

α(∆j(x̄n)),

where the sum is over all paths x̄n of length n which start at 0 and be extended to an

infinite path x̄∞ such that τ1(x̄∞) = n, where τ1(x̄∞) denotes the analogue of τ1 but for

x̄∞. Therefore, since the weights u(e) all depend continuously on α, the continuity of α 7→

E
Q

0 (τ11{τ1=N}) follows.

Finally, to check the last statement, we first notice that α 7→ ‖(H∗a(0))−1‖ is also contin-

uous onM∗
1(V) by Proposition 2.4.2, since the mappings A 7→ A−1 and A 7→ ‖A‖ are also

continuous in their respective domains. Hence, sinceM(κ)
1 (V) is compact for any κ > 0 and

sup
P∈Pk
‖(H∗a(0))−1‖ = sup

α∈M(κ)
1 (V)

‖(H∗a(0))−1‖,

the last statement now follows.

We are now ready to show (I1) and (I2). To check (I1), using Lemmas 2.4.7-2.4.8 we may

choose ε2 > 0 depending only on y, d and κ such that if dis(P) < ε2 then

‖Ha(0)−H∗a(0)‖ ≤ 1

2 supP∈Pk‖(H∗a(0))−1‖
.

Then, using the identity A−1 − B−1 = A−1(B − A)B−1 for any invertible matrices A,B ∈
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Rd×d, we have that, for any P ∈ Pk, if dis(P) < ε2 then

∥∥(Ha(0))−1 − (H∗a(0))−1
∥∥ ≤ ∥∥(Ha(0))−1

∥∥ ‖Ha(0)−H∗a(0)‖
∥∥(H∗a(0))−1

∥∥ < 1

2

∥∥(Ha(0))−1
∥∥ ,

so that by the triangle inequality

∥∥Ha(0)−1
∥∥ ≤ 1

2

∥∥Ha(0)−1
∥∥+

∥∥(H∗a(0))−1
∥∥

and thus ∥∥Ha(0)−1
∥∥ ≤ 2

∥∥(H∗a(0))−1
∥∥ ≤ 2 sup

P∈Pk
‖(H∗a(0))−1‖.

This shows (I1) for c := 2 supP∈Pk‖(H
∗
a(0))−1‖. It remains to check (I2).

By arguing as in the proof of Lemma 2.4.7, to check (I2) it will suffice to show that, given

c′ > 0, one can find ε′2 = ε′2(y, c′), δ = δ(y, c′) > 0 such that if dis(P) < ε′2 then

sup
|θ|1<δ

∥∥∥EQ

0

(
Γ(∇Λa(θ))Ξa(θ)

)
− EQ

0

(
Γ(∇Λa(0))Ξa(0)

)∥∥∥ < c′

where, for v, θ ∈ Rd, we set

Γ(v) := (Xτ1−vτ1)T (Xτ1−vτ1) and Ξa(θ) := e〈θ,Xτ1 〉−Λa(θ)τ1E
τ1∏
j=1

ξ(Xj−1,∆j(X)).

But this can be done as in the proof of Lemma 2.4.7, by using Lemma 2.4.6 and (2.4.13)-

(2.4.14)-(2.4.15) together with the inequalities

‖Γ(∇Λa(θ))− Γ(∇Λa(0))‖ ≤ 5(|∇Λa(θ)−∇Λa(0)|1 ∨ 1)τ 2
1

and

|Ξa(θ)− Ξa(0)| ≤ 2(|θ|1 + h(dis(P)))τ1e2(|θ|1+h(dis(P)))τ1
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for h as in Remark 2.3.1, which are both straightforward to check. This shows (I2) and

therefore completes the proof of Proposition 2.4.3.

2.5 Non-triviality of limn→∞Φn(θ) - proof of Propositions

2.3.8 and 2.3.9

2.5.1 Proof of Proposition 2.3.8

The first step in the proof will be to show that there exists γ1 = γ1(y) > 0 such that, for any

P ∈ Pκ, whenever |θ|1 ∨ dis(P) < γ1 we have that (2.3.20) holds. This will be a consequence

of the following two lemmas.

Lemma 2.5.1. For all θ ∈ Rd,

E
Q

0

(
e〈θ,Xτ1 〉−Λa(θ)τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)
≤ 1.

Lemma 2.5.2. There exists γ1 = γ1(y) > 0 such that, for any P ∈ Pκ, whenever |θ|1 ∨

dis(P) < γ1,

E
Q

0

(
e〈θ,Xτ1 〉−Λa(θ)τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)
≥ 1. (2.5.1)

Postponing the proofs of these lemmas for a moment, let us finish the proof of Proposition

2.3.8. For θ ∈ Rd,P ∈ Pκ such that |θ|1∨dis(P) < γ1 we may define the probability measure

µ(θ) on Zd as

µ(θ)(x) := E
Q

0

(
e〈θ,Xτ1 〉−Λa(θ)τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X)) ; Xτ1 = x
)

(2.5.2)

and consider the random walk Y (θ) = (Y
(θ)
n )n∈N with jump distribution µ(θ). Then, if Ê(θ)

0
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denotes expectation with respect to P̂ (θ), the law of Y (θ) starting from 0, we have that

lim
n→∞

EΦn(θ) =
1

Ê
(θ)
0 (〈Y1, `〉)

. (2.5.3)

Indeed, using (2.3.20) and the renewal structure of the Q-random walk, for each n ≥ 1 we

have

EΦn(θ) =
∞∑
k=1

E
Q

0

(
e〈θ,Xτk 〉−Λa(θ)τkE

τk∏
j=1

ξ(Xj−1,∆j(X)) ; Ln = τk

)
=
∞∑
k=1

P̂
(θ)
0 (〈Yk, `〉 = n) = P̂

(θ)
0 (〈Yk, `〉 = n for some k ≥ 1) (2.5.4)

so that (2.5.3) is now a consequence of the renewal theorem for the sequence (〈Yk−Yk−1, `〉)k≥1.

Finally, Proposition 2.3.8 then follows from (2.5.3) and the next lemma.

Lemma 2.5.3. There exists γ1 = γ1(y) > 0 such that, for any P ∈ Pκ, whenever |θ|1 ∨

dis(P) < γ1,

Ê
(θ)
0 (〈Y1, `〉) <∞.

Thus, in order to complete the proof of Proposition 2.3.8 we only need to prove Lemmas

2.5.1, 2.5.2 and 2.5.3 above. The rest of this subsection is devoted to this.

Proof of Lemma 2.5.1. Given δ > 0, let us write ηθ,δ := Λa(θ) + δ for simplicity and for

n ≥ 1 define

Υn,δ(θ) := EQ
0

(
e〈θ,Xτn 〉−ηθ,δτnE

τn∏
j=1

ξ(Xj−1,∆j(X))
)
.

Then, by splitting the expectation in the definition of Υn,δ(θ) according to the different

possible values for τn, we have as in (2.3.23) that

Υn,δ(θ) ≤
∞∑
k=n

e−ηθ,δkEQ
0

(
e〈θ,Xk〉E

k∏
j=1

ξ(Xj−1,∆j(X))
)
. (2.5.5)
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Since, for some o(1)→ 0 as k →∞ we have

EQ
0

(
e〈θ,Xk〉E

k∏
j=1

ξ(Xj−1,∆j(X))
)

= e(Λa(θ)+o(1))k, (2.5.6)

from (2.5.5) we obtain that for all n sufficiently large (depending on δ)

Υn,δ(θ) ≤
∞∑
k=n

e−
δ
2
k =

e−
δ
2
n

1− e−
δ
2

. (2.5.7)

On the other hand, by the renewal structure, we have Q0-almost surely,

E
τn∏
j=1

ξ(Xj−1,∆j(X)) =
n−1∏
i=0

(
E

τi+1∏
j=τi+1

ξ(Xj−1,∆j(X))

)
. (2.5.8)

From this, using the renewal structure once again together with the translation invariance

of P, we see that for all n ≥ 1

Υn,δ(θ) = Υ1,δ(θ)

(
E
Q

0

(
e〈θ,Xτ1 〉−ηθ,δτ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
))n−1

. (2.5.9)

Since Υ1,δ(θ) > 0, in light of (2.5.7) we conclude that

E
Q

0

(
e〈θ,Xτ1 〉−Λa(θ)τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)
≤ e−

δ
2 .

Letting δ ↘ 0, by monotone convergence we get the desired result.

Proof of Lemma 2.5.2. Given θ ∈ Rd, n ≥ 1 and r ∈ R, let us write

Ξn,r(θ) := e〈θ,Xn〉−rnE
n∏
j=1

ξ(Xj−1,∆j(X)). (2.5.10)

Then, by splitting EQ
0 (Ξn,r(θ)) according to the different events {n ∈ (τm, τm+1] , n = τm+ i}
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for m = 0, . . . , n− 1 and i = 1, . . . , n and using the Markov property at τm, we see that

EQ
0 (Ξn,r(θ)) ≤

n−1∑
m=0

n∑
i=1

EQ
0 (Ξτm,r(θ) ; τm = n− i)EQ

0 (Ξi,r(θ) ; τ1 > i)

≤
n−1∑
m=0

EQ
0 (Ξτm,r(θ))E

Q

0

(
sup
i≤τ1

Ξi,r(θ)
)

≤ E
Q

0

(
sup
i≤τ1

Ξi,r(θ)
)(

1 + EQ
0

(
sup
i≤τ1

Ξi,r(θ)
) ∞∑
m=1

(
E
Q

0 (Ξτ1,r)
)m−1

)
(2.5.11)

where, in order to obtain the last inequality, we have used that for m ≥ 1,

EQ
0 (Ξτm,r(θ)) = EQ

0 (Ξτ1,r)
(
E
Q

0 (Ξτ1,r)
)m−1

which follows from the renewal structure as in (2.5.9).

Now, if we take then r = Λa(θ) − δ for some δ > 0 then by Remark 2.3.1 we have, for

any i ≥ 1,

Ξi,r(θ) ≤ exp
((

2|θ|1 + h(dis(P)) + δ
)
i
)
.

If we choose γ1 and δ small enough (but depending only on y) so that 2|θ|1+h(dis(P))+δ < γ0
2

whenever |θ|1 ∨ dis(P) < γ1, where γ0 is as in Proposition 2.3.6, then we obtain that

EQ
0

(
sup
i≤τ1

Ξi,r(θ)
)
≤ EQ

0

(
e
γ0
2
τ1
)
<∞, (2.5.12)

and combining (2.5.12) with Lemma 2.3.4 shows that EQ

0 (supi≤τ1 Ξi,r(θ)) < ∞ as well.

Thus, since the bound in (2.5.11) is uniform in n, if EQ

0

(
Ξτ1,r(θ)

)
< 1 then we would have

supn≥1E
Q
0 (Ξn,r(θ)) <∞, and this in turn would imply that

lim
n→∞

1

n
logEQ

0 (Ξn,r(θ)) = 0.
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However, observe that by choice of r, definition of n,r and (2.5.6), we have that

lim
n→∞

1

n
logEQ

0 (Ξn,r(θ)) = δ

so that in reality whenever |θ|1 ∨ dis(P) < γ1 we must have

1 ≤ E
Q

0

(
Ξ1,r(θ)

)
= E

Q

0

(
e〈θ,Xτ1 〉−(Λa(θ)−δ)τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)
.

Letting δ ↘ 0, by dominated convergence we get the desired result (note that we can indeed

use dominated convergence since EQ

0

(
Ξτ1,r(θ)

)
<∞ for r = Λa(θ)− δ and δ > 0 sufficiently

small, by (2.5.12) and choice of γ0). This concludes the proof.

Proof of Lemma 2.5.3. Since 〈Y1, `〉 ≤ τ1 by definition of τ1, using also that τ1 ≤ 1
δ
eδτ1 for

any δ > 0, we see that

Ê
(θ)
0 (〈Y1, `〉) ≤

1

δ
E
Q

0

(
e〈θ,Xτ1 〉−(Λa(θ)−δ)τ1E

τ1∏
j=1

ξ(Xj−1,∆j(X))
)

and so the lemma now follows as in the proof of (2.5.12).

2.5.2 Proof of Proposition 2.3.9

We will show that there exists a constant γ2 > 0, depending only on y, d and κ such that,

for any P ∈ Pκ, if dis(P) < γ2 then

sup
n≥1 , |θ|1<γ2

E(Φn(θ))2 <∞.
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This is equivalent to showing that

sup
n≥1 , |θ|1<γ2

E
Q

0,0

(
e〈θ,XLn+X̃

L̃n
〉−Λa(θ)(Ln+L̃n)E

Ln∏
j=1

ξ(Xj−1,∆j(X))
L̃n∏
j=1

ξ(X̃j−1,∆j(X̃)) ; n ∈ L
)
<∞,

(2.5.13)

where X = (Xn)n∈N and X̃ = (X̃n)n∈N are independent copies of the conditioned random

walk with law Q0, L̃n and τ̃n are the analogues of Ln τn but for X̃, and

L := {n ≥ 0 : 〈Xi, `〉 ≥ n for all i ≥ Ln , 〈X̃j, `〉 ≥ n for all j ≥ L̃n} (2.5.14)

are the so-called common renewal levels. In the sequel, we shall write Qx,x̃ := Qx ×Qx̃ and

E
Q

x,x̃ to denote expectation with respect to Qx,x̃.

In order to check (2.5.13), let us introduce, for x ∈ Zd, e ∈ V and n ≥ 1, the quantities

Nx,e(n) := #{j ∈ {1, . . . , n} : Xj−1 = x , ∆j(X) = e} =
n∑
j=1

1x(Xj−1)1e(∆j(X))

and

Nx(n) := #{j ∈ {1, . . . , n} : Xj−1 = x} =
∑
e∈V

Nx,e(n),

as well as the corresponding analogues Ñx,e(n) and Ñx(n) for X̃. Then, using that by

definition of dis(P) we have that, for all x ∈ Zd, e ∈ V and h as in Remark 2.3.1, the

inequality

ω(x, e) ≤ ω̃(x, e)eh(dis(P))
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holds almost surely for any pair of independent environments ω and ω̃ with law P, we have

E
Ln∏
j=1

ω(Xj−1,∆j(X))
L̃n∏
j=1

ω(X̃j−1,∆j(X̃)) =
∏
x∈Zd

E
∏
e∈V

ω(x, e)Nx,e(Ln)+Ñx,e(L̃n)

≤
∏
x∈Zd

E

[∏
e∈V

ω(x, e)Nx,e(Ln)

]
E

[∏
e∈V

ω(x, e)Ñx,e(L̃n)

]
eh(dis(P))[Nx(Ln)∧Ñx(L̃n)]

= E

[
Ln∏
j=1

ω(Xj−1,∆j(X))

]
E

 L̃n∏
j=1

ω(X̃j−1,∆j(X̃))

 eh(dis(P))In ,

where

In :=
∑
x∈Zd

[Nx(Ln) ∧ Ñx(L̃n)].

Hence, we conclude that the supremum in (2.5.13) is bounded from above by

A := sup
n≥1 , |θ|1<γ2 , z∈Vd

Az,n(θ), (2.5.15)

where, for z ∈ Vd := {z ∈ Zd : 〈z, `〉 = 0} and n ≥ 1, we define

Az,n(θ) := E
Q

0,z

(
Fn(θ) ; n ∈ L

)
(2.5.16)

with

Fn(θ) := Φn(θ)Φ̃n(θ)eh(dis(P))In ,

where

Φn(θ) := e〈θ,XLn−X0〉−Λa(θ)LnE
Ln∏
j=1

ξ(Xj−1 −X0,∆j(X)) (2.5.17)

and Φ̃n(θ) is defined analogously but interchanging (X,Ln) with (X̃, L̃n).

In order to prove Proposition 2.3.9, we will show that A is finite provided that θ∨ dis(P)
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is taken sufficiently small (depending only on y, d and κ). To this end, let us set

ζ := inf{m ≥ 0 : ∃ i, j ≥ 1 such that Xi = X̃j and 〈Xi, `〉 = m}, (2.5.18)

i.e. the first level in which both walks intersect at a time other than zero. Observe that

whenever 1 ≤ n ≤ ζ we have Xi 6= X̃j for all i < Ln and j < L̃n, so that In = 1 ≤ 1, with

the only possible non-vanishing term being x = 0. In particular, by virtue of independence

and the definition of L, we obtain that, for γ1 = γ1(y) > 0 as in the proof of Proposition

2.3.8 and any P ∈ Pκ, whenever |θ|1 ∨ dis(P) < γ1 ∧ 1
2
we have

E
Q

0,z

(
Fn(θ) ; n ∈ L , n ≤ ζ

)
≤ E

Q

0,z

(
Φn(θ)Φ̃n(θ)eh(1/2), n ∈ L

)
= eh(1/2)

[
EΦn(θ)

]2

≤ eh(1/2)

where for the last inequality we have used that EΦn(θ) ≤ 1 since it coincides with a proba-

bility by (2.5.4). In light of this bound we see that, in order to show that A is finite, it only

remains to obtain a suitable control on the expectation

E
Q

0,z

(
Fn(θ) ; n ∈ L , n > ζ

)
. (2.5.19)

To this end, define

σ := inf{k ∈ L : k > ζ}, (2.5.20)

i.e. the first common renewal level after the walks first intersect (at a time other than zero).

Then, by (2.5.8), the Markov property and translation invariance, (2.5.19) can be rewritten
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as

n∑
k=1

E
Q

0,z

(
Fn(θ) ; n ∈ L , σ = k

)
=

n∑
k=1

∑
z′∈Vd

E
Q

0,z

(
Fk(θ) ; σ = k , X̃L̃k

−XLk = z′
)
E
Q

0,z′

(
Fn−k(θ) ; n− k ∈ L

)
≤

n∑
k=1

E
Q

0,z

(
Fk(θ) ; σ = k

)
sup
z′∈Vd

Az′,n−k(θ),

where we use the convention Az′,0(θ) := 1 and, to obtain the first equality, we have used

that Nx(Lk) = Nx(Ln) whenever 〈x, `〉 < k and Nx(Lk) = 0 whenever 〈x, `〉 ≥ k (and the

analogous statements for Ñx). Now, if we set

Bz,n(θ) := E
Q

0,z

(
Fn(θ) ; σ = n

)
, (2.5.21)

then by the arguments above, for any P ∈ Pκ, n ≥ 1 and z ∈ Vd, whenever |θ|1 ∨ dis(P) <

γ1 ∧ 1
2
we have

Az,n(θ) ≤ eh(1/2) +
n∑
k=1

Bz,k(θ) sup
z′∈Vd

Az′,n−k(θ). (2.5.22)

The next lemma will be crucial to conclude the proof.

Lemma 2.5.4. There exists γ3 = γ3(y, d, κ) > 0 such that, for any P ∈ Pκ, whenever

|θ|1 ∨ dis(P) < γ3,

B := sup
z∈Vd

∞∑
n=1

Bz,n(θ) < 1.

Completing proof of Proposition 2.3.9 (Assuming Lemma 2.5.4): By (2.5.22), if we

fix N ≥ 1 then for any n ≤ N we have

Az,n(θ) ≤ eh(1/2) +
(

sup
m≤N,z∈Vd

Az,m(θ)
) N∑
k=1

Bz,k(θ),
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so that, upon taking suprema, we find

(
1−

N∑
k=1

Bz,k(θ)
)

sup
n≤N,z∈Vd

Az,n(θ) ≤ eh(1/2).

Hence, whenever |θ|1 ∨ dis(P) < γ3 ∧ γ1 ∧ 1
2

=: γ2, letting N → ∞ we conclude by Lemma

2.5.4 that A ≤ eh(1/2)

(1−B)
<∞ and thus Proposition 2.3.9 follows.

Hence, it only remains to prove Lemma 2.5.4.

2.5.3 Proof of Lemma 2.5.4.

We will need the aid of three additional lemmas. Before stating these, we introduce B∗z,n(θ),

the zero-disorder version of Bz,n(θ), given by the formula

B∗z,n(θ) := E
Q

0,z

(
e〈θ,XLn+(X̃

L̃n
−z)〉−Λ

∗
a(θ)(Ln+L̃n) ; σ = n

)
,

where Λ
∗
a(θ) := limn→∞

1
n

logEQ
0 (e〈θ,Xn〉) (note that this limit exists by Corollary 2.3.3 applied

to the particular case of zero-disorder environmental laws). The three additional lemmas we

need are then the following:

Lemma 2.5.5. Given κ > 0, there exists δ = δ(y, d, κ) > 0 such that, for any P ∈ Pκ,

sup
z∈Vd

∞∑
n=1

B∗z,n(0) = sup
z∈Vd

Q0,z(σ <∞) < 1− δ.

Lemma 2.5.6. Given κ > 0, there exist γ4 = γ4(y, d, κ), K0 = K0(y, d, κ) > 0 such that

∞∑
n=1

[
sup

P∈Pκ(γ4) , |θ|1<γ4 , z∈Vd
Bz,n(θ)

]
≤ K0,

where Pκ(γ4) := {P ∈ Pκ : dis(P) < γ4}.
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Lemma 2.5.7. For every n ≥ 1 and η > 0 there exists γ5 = γ5(y, n, η) > 0 such that, for

any P ∈ Pκ, whenever dis(P) < γ5 one has

sup
|θ|1<γ5 , z∈Vd

[
Bz,n(θ)−B∗z,n(0)

]
< η.

Proofs of Lemma 2.5.5 - Lemma 2.5.7 span Section 2.5.4 - Section 2.5.6. Assuming these,

let us first complete

Proof of Lemma 2.5.4 (assuming Lemma 2.5.5-Lemma 2.5.7):

Take δ = δ(y, d, κ) > 0 as in Lemma 2.5.5. Since B∗z,n(θ) ≥ 0, by Lemma 2.5.6 there

exists γ4 = γ4(y, d, κ) > 0 and N = N(y, d, κ, δ) ≥ 1 such that, for any P ∈ Pκ, if dis(P) < γ4

then

∑
n>N

(
sup

|θ|1<γ4 , z∈Vd
[Bz,n(θ)−B∗z,n(0)]

)
≤
∑
n>N

(
sup

|θ|1<γ4 , z∈Vd
Bz,n(θ)

)
<
δ

4
. (2.5.23)

Furthermore, by Lemma 2.5.7 there exists γ5 = γ5(y, d, κ,N, δ) > 0 such that, for any

P ∈ Pκ, whenever dis(P) < γ5 we have

N∑
n=1

sup
|θ|1<γ5 , z∈Vd

[Bz,n(θ)−B∗z,n(0)] <
δ

4
. (2.5.24)

Combined with (2.5.23) and (2.5.24), Lemma 2.5.5 then yields the bound

B ≤ sup
z∈Vd

∞∑
n=1

B∗z,n(0) +
∞∑
n=1

sup
|θ|1<γ2 , z∈Vd

[
Bz,n(θ)−B∗z,n(0)

]
< 1− δ

2

for any P ∈ Pκ such that dis(P) < γ3 := γ4 ∧ γ5.
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2.5.4 Proof of of Lemma 2.5.7.

For z ∈ Vd and n ≥ 1, by Cauchy-Schwarz inequality we have

Bz,n(θ)−B∗z,n(0) = E
Q

0,z (Fn(θ)− 1 ; σ = n)

≤
[
E
Q

0,z

(
(Fn(θ)− 1)2)]1

2 [
Q0,z(σ = n)

]1
2

≤
[
E
Q

0,z

(
(Fn(θ))2 )+ 1

]1
2 [
Q0,z(σ = n)

]1
2 .

Now, on the one hand, by Remark 2.3.1, the bounds In ≤ Ln ≤ τn and the renewal structure,

whenever |θ|1∨h(dis(P)) < γ0
16
, where γ0 is the constant from Proposition 2.3.6, we have that

E
Q

0,z

((
Fn(θ)

)2) ≤ E
Q

0,z

(
e4(|θ|1+h(dis(P)))τn

)
=
[
E
Q

0

(
e4(|θ|1+h(dis(P)))τ1

)]n
≤
[

2

c

]n
(2.5.25)

where c > 0 is the constant from Lemma 2.3.4. On the other hand, by the nature of renewal

times, on the event that σ = n there exist some k ∈ {1, · · · , Ln} and k′ ∈ {1, . . . , L̃n} such

that Xk = X̃k′ . In particular, it follows that

Q0,z(σ = n) ≤ Q0

(
sup

1≤k≤Ln
|Xk|1 ≥

|z|1
2

)
+Qz

(
sup

1≤k′≤L̃n
|Xk′ − z|1 ≥

|z|1
2

)

= 2Q0

(
sup

1≤k≤Ln
|Xk|1 ≥

|z|1
2

)
≤ 2Q0

(
τn ≥

|z|1
2

)
≤ 4

E
Q

0 (τn)

|z|1
= 4

[E
Q

0 (τ1)]n

|z|1
. (2.5.26)

From (2.5.25) and (2.5.26), using Lemma 2.3.4 and Proposition 2.3.6 it is straightforward to

check that there exists R0 = R0(y, n, η) > 0 such that if dis(P) < h−1(γ0
16

) then

sup
|θ|1< γ0

16
, |z|1>R0

[Bz,n(θ)−B∗z,n(0)] < η. (2.5.27)
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Finally, by an argument similar to the one used for (2.5.25), Remark 2.3.1 and the mean

value theorem together yield that

|Bz,n(θ)−B∗z,n(0)| ≤ 2(|θ|1 + h(dis(P)))E
Q

0,z

(
τne2(|θ|1+h(dis(P)))τn

)
for any fixed z ∈ Zd. In particular, by Lemma 2.3.4 and Proposition 2.3.6 it follows that for

any R > 0 there exists γR = γR(y, n,R, η) > 0 such that if |θ|1 ∨ dis(P) < γR then

sup
|θ|1<γR , |z|1≤R

[Bz,n(θ)−B∗z,n(0)] < η.

Together with (2.5.27), this yields the result with γ5 := h−1(γ0
16

) ∧ γR0 .

2.5.5 Proof of Lemma 2.5.6.

Next, we prove Lemma 2.5.6.

Proof of Lemma 2.5.6. If we set Ψ := sup{n ∈ L : n ≤ τ} then, similarly to (2.5.19), we can

decompose

Bz,n(θ) =
n−1∑
j=0

E
Q

0,z

(
Fn(θ) ; σ = n , Ψ = j

)
=

n−1∑
j=0

∑
z′∈Vd

E
Q

0,z

(
Fj(θ) ; X̃L̃j

−XLj = z′ , Ψ = j
)
E
Q

0,z′

(
Fn−j(θ) ; n− j = inf{k ∈ L : k > 0} > τ

)
≤

n−1∑
j=0

[
sup
z′∈Vd

E
Q

0,z

(
Fj(θ) ; , X̃L̃j

−XLj = z′ ,Ψ = j
)] ∑

z′∈Vd

Dn−j,z′(θ), (2.5.28)

where, for n ≥ 1 and z′ ∈ Vd, we write

Dn,z′(θ) := E
Q

0,z′

(
Fn(θ) ; n = inf{k ∈ L : k > 0} > τ

)
. (2.5.29)
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Note that Ψ = j implies that Ij ≤ 1 so that, recalling the random walk Y (θ) with law

P̂
(θ)
0 defined in the proof of Proposition 2.3.8, if we write P̂ (θ)

0,0 := P̂
(θ)
0 × P̂ (θ)

0 then for any

j ≥ 1 we have

E
Q

0,z

(
Fj(θ) ; X̃L̃j

−XLj = z′ , Ψ = j
)
≤ eh(dis(P))E

Q

0,z

(
Φj(θ)Φ̃j(θ) ; X̃L̃j

−XLj = z′ , j ∈ L
)

= eh(dis(P))P̂
(θ)
0,0

(
∃k,m : 〈Yk, `〉 = j , Ỹm − Yk = z′ − z

)
≤ eh(dis(P))

∑
〈x,`〉=j

P̂
(θ)
0

(
∃k : 〈Yk, `〉 = x

)
P̂

(θ)
0

(
∃m : 〈Ỹm, `〉 = x+ z′ − z

)

≤ eh(dis(P))

[
sup
〈x,`〉=j

P̂
(θ)
0

(
∃k : 〈Yk, `〉 = x

)] ∑
〈x,`〉=j

P̂
(θ)
0

(
∃m : 〈Ỹm, `〉 = x+ z′ − z

)
(2.5.30)

= eh(dis(P))

[
sup
〈x,`〉=j

∑
k∈N

P̂
(θ)
0

(
〈Yk, `〉 = x

)]
P̂

(θ)
0 (∃m : 〈Ỹm, `〉 = j)

≤ eh(dis(P)) sup
〈x,`〉=j

∑
k∈N

µ
(θ)
k (x), (2.5.31)

where µ(θ) is as in (2.5.2) and, given any probability measure µ, µk denotes its k-fold convo-

lution. Observe that for j = 0 we obtain directly from (2.5.30) the upper bound eh(dis(P)).

Now, in the proof of [BS1, Theorem 5.1] it is shown that, whenever d ≥ 4, given any

c1, c2, c3 > 0 there exists K1 = K1(d, c1, c2, c3) > 1 such that for any j ≥ 1

sup
〈x,`〉=j

∑
k∈N

µk(x) ≤ K1

(1 + j)(d−1)/2
(2.5.32)

holds uniformly over all probability measures µ on Zd satisfying

C1.
∑

x∈Zd µ(x)ec1|x|1 ≤ 2,

C2. Σµ ≥ c2Id, where Id denotes the d× d identity matrix,

C3. |
∑

x∈Zd〈x, `〉µ(x)| > c3.
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More precisely, it is shown that for any measure µ satisfying these conditions and k ∈ N one

has the estimate

µk(x) ≤ C(ϕ
(1)
k (x) + ϕ

(2)
k (x))

for some constant C = C(d, c1, c2, c3) > 0, where

∑
k∈N

ϕ
(1)
k (x) ≤ K ′1

(1 + |x|1)−(d−1)/2
and

∑
k∈N

ϕ
(2)
k (x) ≤ K ′′1 e−δ|x|1

for some constants δ,K ′1, K ′′1 > 0 depending only on d, c1, c2 and c3.

Thus, to bound (2.5.31) we will show that there exists ν = ν(y, d, κ) > 0 such that, for

any P ∈ Pκ, whenever |θ|1 ∨ dis(P) < ν the measure µ(θ) satisfies (C1)-(C2)-(C3) above for

some c1, c2, c3 > 0 depending only on y, d and κ. Indeed, by the same type of argument

leading to (2.5.25), we have

∣∣∣ ∑
x∈Zd

µ(θ)(x)ec1|x|1 − 1
∣∣∣ ≤ (2|θ|1 + h(dis(P)) + c1)E

Q

0 (τ1e(2|θ|1+h(dis(P))+c1)τ1)

so that, by Lemma 2.3.4 and Proposition 2.3.6, there exists ν1 = ν1(y) > 0 such that if

c1 > 0 is taken small enough (depending only on y) then (C1) holds when |θ|1 ∨ dis(P) < ν1.

On the other hand, since 〈Xτ1 −X0, `〉 ≥ +1 by definition of τ1, it follows that∣∣∣∣∣∑
x∈Zd

xµ(θ)(x)

∣∣∣∣∣ ≥ E
Q

0 (Φ1(θ)〈Xτ1 , `〉) ≥ E
Q

0 (Φ1(θ)) = 1

and so (C3) is satisfied with c3 := 1. Finally, to check (C2) we first notice that by (2.4.1)

and (2.4.7),

Σµ(θ) = Ha(θ)E
Q

0

(
τ1Φ1(θ)

)
.

Since Σµ(θ) is a positive definite matrix whenever |θ|1 ∨ dis(P) < γ1 by Proposition 2.4.2,

to obtain (C2) it will suffice to show that there exists ν2 = ν2(y, d, κ) > 0 such that if
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|θ|1 ∨ dis(P) < ν2 then

inf
P∈Pκ(ν2) , |θ|1<ν2

σmin(Σµ(θ)) ≥ c2 (2.5.33)

for some constant c2 > 0 depending only on y, d and κ, where σmin(A) above denotes the

smallest singular value of a matrix A. Since EQ

0 (τ1G(1, θ)) ≥ 1 and 1/σmin(A) = ‖A−1‖2 ≤
√
d‖A−1‖ for any invertible A ∈ Rd×d, where ‖·‖2 and ‖·‖ denote the operator 2-norm and 1-

norm respectively, we see that (2.5.33) will hold if we show that for some ν2 = ν2(y, d, κ) > 0

we have

sup
P∈Pκ(ν2) , |θ|1<ν2

‖(Ha(θ))
−1‖ <∞

and take c2 := (
√
d supP∈Pκ(ν2) , |θ|1<ν2‖(Ha(θ))

−1‖)−1. Using once again the identity A−1 −

B−1 = A−1(B − A)B−1 for invertible matrices A,B ∈ Rd×d, we have

‖(Ha(θ))
−1 − (Ha(0))−1‖ ≤ ‖(Ha(θ))

−1‖‖Ha(θ)−Ha(0)‖‖(Ha(0))−1‖. (2.5.34)

But then, by the proof of Proposition 2.4.3 there exist ν2 = ν2(y, d, κ), c = c(y, d, κ) > 0

such that

sup
P∈Pκ(ν2)

‖(Ha(0))−1‖ ≤ c and sup
P∈Pκ(ν2) , |θ|1<ν2

‖Ha(θ)−Ha(0)‖ < 1

2c
,

which by (2.5.34) and the triangle inequality implies that

sup
P∈Pκ(ν2) , |θ|1<ν2

‖(Ha(θ))
−1‖ ≤ 2c <∞

and so (C2) follows. Thus, we see that for ν := ν1 ∧ ν2 ∧ 1
2
we have by (2.5.28), (2.5.31) and

80



(2.5.32)

[
sup

P∈Pκ(ν) , |θ|1<ν , z∈Vd
Bz,n(θ)

]
≤ eh(1/2)K1

n−1∑
j=0

1

(1 + j)(d−1)/2

∑
z′∈Vd

sup
P∈Pκ(ν) , |θ|1<ν

Dn−j,z′(θ)

so that

∞∑
n=1

[
sup

P∈Pκ(ν) , |θ|1<ν , z∈Vd
Bz,n(θ)

]
≤ eh(1/2)K1

∞∑
j=0

1

(1 + j)(d−1)/2

∞∑
n=1

∑
z∈Vd

sup
P∈Pκ(ν) , |θ|1<ν

Dn,z(θ).

The proof of Lemma 2.5.6 will then be complete once we prove the result stated below.

Lemma 2.5.8. There exist γ6 = γ6(y), K ′ = K ′(y, d) > 0 such that

∞∑
n=1

∑
z∈Vd

sup
P∈Pκ(γ6) , |θ|1<γ6

Dn,z(θ) ≤ K ′.

Proof. By Cauchy-Schwarz inequality,

Dn,z(θ) ≤
(
E
Q

0,z

(
(Fn(θ))2

))1/2(
P
Q

0,z(n = inf{k ∈ L : k > 0})
)1/4(

P
Q

0,z(n > τ)
)1/4

. (2.5.35)

As in (2.5.25), the first factor on the right-hand side of (2.5.35) can be bounded from above

by

[
E
Q

0

(
e4(|θ|1+h(dis(P)))τ1

)]n/2
≤
[
E
Q

0

(
e
γ0
2
τ1
)] 4(|θ|1+h(dis(P)))

γ0
n

≤ e
log(2/c)

4(|θ|1+h(dis(P)))
γ0

n (2.5.36)

whenever |θ|1 ∨ h(dis(P)) < γ0
16
, with γ0 as in Proposition 2.3.6, by Jensen’s inequality.

On the other hand, to deal with the third factor we notice that if z 6= 0 then whenever

n > τ then Xi = X̃j for some 1 ≤ i ≤ τn and 1 ≤ j ≤ τ̃n so that, in particular, we must

have τn ∨ τ̃n ≥ |z|1
2
. Then, using the inequality (a1 + · · ·+ an)m ≤ nm−1(am1 + · · ·+ amn ), valid
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for positive (ai)1≤i≤n and m ≥ 1, by the union bound we obtain

P
Q

0,z(n > τ) ≤ 2P
Q

0

(
τn ≥

|z|1
2

)
≤ 2
( 2

|z|1

)4d+1

E
Q

0 (τ 4d+1
n ) ≤ 2

( 2

|z|1

)4d+1

n4dE
Q

0 (τ 4d+1
1 ).

From this, by the trivial bound P
Q

0,0(n > τ) ≤ 1 and Proposition 2.3.6 we conclude that

there exists K ′1 = K ′1(d, y) > 0 such that, for any n ≥ 1 and z ∈ Vd,

(
P
Q

0,z(n > τ)
)1/4

≤ K ′1n
d(1 ∨ |z|1)−

(
d+

1
4

)
. (2.5.37)

Finally, to control the middle factor in the right-hand side of (2.5.35), we will show that

there exist c = c(y), K ′2 = K ′2(y) > 0 such that, for any P ∈ Pκ,

sup
z∈Vd

E
Q

0,z(e
4cλ∗) < (K ′2)4 (2.5.38)

where λ∗ := inf{k ∈ L : k > 0}, so that

(
P
Q

0,z(n = inf{k ∈ L : k > 0})
)1/4

≤
(
P
Q

0,z(λ
∗ ≥ n)

)1/4

≤ K ′2e−cn. (2.5.39)

To this end, for m ≥ 0 define

β(m) := inf{n ≥ Lm : 〈Xn, `〉 < m} and R(m) := sup{〈Xn, `〉 : Lm ≤ n < β(m)},

together with the corresponding quantities β̃(m),R̃(m) for X̃ and consider the sequence

(λj)j≥1 defined inductively by first taking λ1 := 1 and then setting

λj+1 =


R(λj) ∧ R̃(λj) + 1 if λj <∞

∞ if λj =∞.
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It is not hard to check that λ∗ = sup{λj : λj <∞}. We will use this representation of λ∗ to

estimate its exponential moments and show (2.5.38). In order to do this, let us first observe

that if we define λ := R(0) ∧ R̃(0) + 1 then, for any z ∈ Vd and ĉ ∈ (0, γ0) (with γ0 as in

Proposition 2.3.6), we have by Hölder’s inequality that

EQ
0,z(e

ĉλ ; λ <∞) ≤
[
EQ

0,z(e
γ0λ ; λ <∞)

] ĉ
γ0 [Q0,z(λ <∞)]

1− ĉ
γ0 .

Since Q0-a.s. we have R(0) + 1 ≤ τ1 on the event that β0 < ∞ (observe that β0 = β(0)

Q0-a.s.), then by Proposition 2.3.6

EQ
0,z(e

γ0λ ; λ <∞) ≤ EQ
0,z(e

γ0(R(0)+1) ; β0 <∞)+EQ
0,z(e

γ0(R̃(0)+1) ; β̃0 <∞) ≤ 2EQ
0,z(e

γ0τ1) ≤ 4.

On the other hand, by Lemma 2.3.4 we have

Q0,z(λ <∞) ≤ Q0,z(β0 <∞ or β̃0 <∞) = 1− (Q0(β0 =∞))2 < 1− c2.

It follows that for some ĉ = ĉ(y) ∈ (0, γ0) sufficiently small we have

sup
z∈Vd

EQ
0,z(e

ĉλ ; λ <∞) ≤ 1− c2

2
.

With this, using the Markov property and translation invariance, for z ∈ Vd we may compute

EQ
0,z(e

ĉλ∗) =
∞∑
j=1

EQ
0,z(e

ĉλj ; λ∗ = λj) ≤
∞∑
j=1

EQ
0,z(e

ĉλj ; λj <∞)

=
∞∑
j=1

∑
z′∈Vd

EQ
0,z(e

ĉλj−1 ; λj−1 <∞, X̃L̃λj−1
−XLλj

= z′)EQ
0,z′(e

ĉλ ; λ <∞)

≤
∞∑
j=1

EQ
0,z(e

ĉλj−1 ; λj−1 <∞)(1− c2

2
),
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so that by induction we conclude that

sup
z∈Vd

EQ
0,z(e

ĉλ∗) ≤ eĉ
∞∑
j=1

(1− c2

2
)j−1 =

2eĉ

c2 ,

and so (2.5.38) follows.

Gathering (2.5.36), (2.5.39) and (2.5.37), from (2.5.35) we see that if γ6 > 0 is chosen

sufficiently small so that |θ|1 ∨ h(dis(P)) < γ0
16

and log(2/c)4(|θ|1+h(dis(P)))
γ0

< c
2
with c as in

(2.5.39) (which can be done depending only on y), then

∞∑
n=1

∑
z∈Vd

sup
P∈Pκ(γ6) , |θ|1<γ6

Dn,z(θ) ≤ K ′1K
′
2

[
∞∑
n=1

nde−
c
2
n

][∑
z∈Vd

(1 ∨ |z|1)−
(
d+

1
4

)]
=: K ′ <∞

and this completes the proof.

2.5.6 Proof of Lemma 2.5.5.

We finish by giving the proof of Lemma 2.5.5.

Proof of Lemma 2.5.5. We first notice that there exist constants η1, η2, η3 > 0, all depending

only on y, d and κ such that, for any P ∈ Pκ,

D1. Q0(β0 =∞) > η1,

D2. EQ
0 (τ 9

1 ) < η2,

D3. supz∈Zd Q0(Xτn = z) ≤ η3n
−d/2 for any n ≥ 1.

Indeed, (D1)-(D2) follow immediately from Lemma 2.3.4 and Proposition 2.3.6, respectively.

To check (D3), note that for any P ∈ Pκ the law µ∗ of Xτ1 under Q0 satisfies conditions

(C1)-(C2)-(C3) in the proof of Lemma 2.5.6 for some constants c1, c2, c3 > 0 which depend

only on y, d and κ. Indeed, this follows from the proof of Lemma 2.5.6 upon noticing that
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µ∗ coincides with µ(0) for the zero-disorder law Pα with marginals α ∈ M(κ)
1 (V). By [BS1,

Eq. 5.5], this gives (D3) for some η3 depending only on y, d and κ.

Under these conditions, since σ < ∞ implies that the two walks need to intersect at a

time other than zero, by essentially repeating the proofs of [BZ, Propositions 3.1 and 3.4]

(but using instead the estimates in (D1)-(D2)-(D3) which are uniform over P ∈ Pκ), it can

be shown that there exists N = N(y, d, κ) ≥ 1 such that, for any P ∈ Pκ,

sup
|z|1≥2N

Q0,z(σ <∞) ≤ 1

2
.

To deal with z ∈ Zd such that |z|1 < 2N , take any such z together with e∗ ∈ V \ {`,−`} and

assume without loss of generality that 〈z, e∗〉 ≥ 0. Then consider the events

E1 := {XN = −Ne∗ , X̃N = X̃0 +Ne∗} E2 := {Xi 6= X̃j for all i, j > N}.

Since |z+2Ne∗|1 ≥ 2N by choice of e∗ and on E1 we have both 〈Xi−X0, `〉 = 〈X̃j−X̃0, `〉 = 0

and Xi 6= X̃j for all 1 ≤ i, j ≤ N , using (P1) from Lemma 2.3.2 and translation invariance,

we obtain

Q0,z(σ =∞) ≥ Q0,z(E1 ∩ E2) ≥ c2N
κ inf
|y|1≥2N

Q0,y(σ =∞) >
1

2
c2N
κ > 0

for any P ∈ Pκ, so that now the result follows upon taking δ := 1
2
c2N
κ .
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Chapter 3

Equality and difference of quenched and

averaged large deviations for RWRE: the

impact of the disorder at the boundary

3.1 Introduction and background

The model of a random walk in a random environment (RWRE) can be described as fol-

lows. Let |x|1 denote the `1-norm of any x ∈ Rd and define V := {x ∈ Zd : |x|1 = 1} =

{±e1, . . . ,±ed}, the set of all unit vectors in Zd, along with M1(V) :=
{
~p = (p(e))e∈V ∈

[0, 1]V :
∑

e∈V p(e) = 1
}
, the space of all probability vectors therein and the product space

Ω := (M1(V))Z
d with the usual product topology. Any element ω ∈ Ω will be called an en-

vironment, i.e. each ω = (ω(x))x∈Zd is a sequence of probability vectors ω(x) = (ω(x, e))e∈V

on V indexed by the sites in the lattice. Given any x ∈ Zd and ω ∈ Ω, the random walk in

the environment ω starting at x is defined as the Markov chain (Xn)n∈N on Zd whose law
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Px,ω is given by

Px,ω(X0 = x) = 1 and Px,ω(Xn+1 = y + e |Xn = y) = ω(y, e) ∀ y ∈ Zd , e ∈ V.

We call Px,ω the quenched law of the RWRE. Then, if the environment ω is now chosen at

random according to some Borel probability measure P on Ω, we now obtain the measure Px

on Ω× (Zd)N defined as

Px(A×B) :=

∫
A

Px,ω(B)dP(ω) ∀A ∈ B(Ω) , B ∈ B((Zd)N).

We call Px the annealed law of the RWRE and, in general, we will call the sequence X =

(Xn)n∈N under Px a RWRE with environmental law P. In the sequel, we shall work with

environmental laws satisfying the following assumption:

Assumption A: Under P, the environment is i.i.d. (the random vectors (ω(x))x∈Zd are

independent and identically distributed) and uniformly elliptic, i.e., there is a constant κ > 0

such that

P(ω(x, e) ≥ κ for all x ∈ Zd and e ∈ V) = 1. (3.1.1)

In [Var], Varadhan proved that, for any d ≥ 1 and under Assumption A, both the

quenched law P0,ω

(
Xn
n
∈ ·
)
and its annealed version P0

(
Xn
n
∈ ·
)
satisfy a large deviations

principle (LDP), i.e. there exist lower-semicontinuous functions Ia, Iq : Rd → [0,∞] such

that for any G ⊆ Rd with interior int(G) and closure G,

− inf
x∈int(G)

Iq(x) ≤ lim inf
n→∞

1

n
logP0,ω

(
Xn

n
∈ G

)
≤ lim sup

n→∞

1

n
logP0,ω

(
Xn

n
∈ G

)
≤ − inf

x∈G
Iq(x)

(3.1.2)

− inf
x∈int(G)

Ia(x) ≤ lim inf
n→∞

1

n
logP0

(
Xn

n
∈ G

)
≤ lim sup

n→∞

1

n
logP0

(
Xn

n
∈ G

)
≤ − inf

x∈G
Ia(x)

(3.1.3)
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with the first assertion being true for P-almost every ω ∈ Ω. It can be shown that the rate

functions Iq and Ia are both convex and are finite if and only if x ∈ D := {x ∈ Rd : |x|1 ≤ 1}.

Being also lower semicontinuous, the former implies that Iq and Ia are continuous on D, see

[Roc, Theorem 10.2]. Moreover, by Jensen’s inequality and Fatou’s lemma, we always have

the dominance Ia(·) ≤ Iq(·). In [Var] it was also shown that, for d ≥ 2, Ia(0) = Iq(0) and

both rate functions have the same zero-sets, leaving open the question of whether both rate

functions are in fact equal in other parts of their domain. In this regard, Yilmaz showed later

in [Yil4] that, for RWRE with d ≥ 4 satisfying Assumption A, both rate functions agree on

some neighborhood of the non-zero velocity, whenever the random walk satisfies Sznitman’s

condition (T) for ballisticity, see [Szn2] for a precise definition.1 Recently in [BMRS1], we

have shown that for d ≥ 4 the two rate functions agree on any compact set in the interior of

D which does not contain zero, provided that the disorder of the environment is low enough

and regardless of whether the RWRE is ballistic. In the current work, we show that, despite

the behavior of the RWRE on the boundary ∂D of D being quite different than in its interior,

the above low-disorder phenomenon extends also to ∂D. Indeed, we show that Iq = Ia holds

on any compact set contained in ∂D (avoiding its (d− 2)-dimensional facets), provided that

the disorder of the environment is sufficiently low. As a consequence, we obtain a simple

explicit formula for the quenched rate function on ∂D at low disorder. Finally, for a general

parametrized family of environments, we show that the strength of disorder determines a

phase transition in the equality of both rate functions, in the sense that for each x ∈ ∂D

there exists εx such that the two rate functions agree at x when the disorder is smaller than

εx and disagree when its larger. We turn to the precise statements of these results.
1In contrast, this has been shown to be false in [YZ] for dimensions d ∈ {2, 3}: there exists a class of non-

nestling random walks in i.i.d. and uniformly elliptic environments verifying that there is no neighborhood
of the velocity on which the two rate functions are identical.
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3.2 Main result: Quenched and Annealed rate functions

on the boundary

Given any such environmental law P, we define its disorder as

dis(P) := inf
{
ε > 0 : ξ(x, e) ∈ [1− ε, 1 + ε], P-a.s. for all e ∈ V and x ∈ Zd

}
, (3.2.1)

with ξ(x, e) :=
ω(x, e)

α(e)
and α(e) := E[ω(x, e)] ∀ e ∈ V, (3.2.2)

where E denotes expectation w.r.t. P and the definition of α(e) does not depend on x ∈

Zd by Assumption A. Moreover, both ξ(x, e) and dis(P) are well-defined since P satisfies

Assumption A, whereas dis(P) is the L∞(P)-norm of the random vector (ξ(x, e)− 1)e∈V for

any x ∈ Zd.

We set ∂D = {x ∈ Zd : |x|1 = 1} for the boundary of the unit ball and write

∂D(s) := {x ∈ Rd : |x|1 = 1 and xjsj ≥ 0 for all 1 ≤ j ≤ d} and also,

∂Dd−2 := {x ∈ ∂D : xj = 0 for some 1 ≤ j ≤ d}.
(3.2.3)

Notice that the subsets ∂D(s) for s ∈ {±1}d correspond to the different faces of the boundary

∂D.

3.2.1 Equality of Ia and Iq for small disorder.

Here is our first main result.

Theorem 3.2.1. For any d ≥ 4, κ > 0 and compact set K ⊆ ∂D \ ∂Dd−2 there exists

ε = ε(d, κ,K) > 0 such that, for any RWRE satisfying Assumption A with ellipticity constant

κ, if

dis(P) < ε (3.2.4)
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then we have the equality Iq(x) = Ia(x) for all x ∈ K.

Remark 3.2.1. One can think of Theorem 3.2.1 above as saying that part of the region of

equality in the boundary {x ∈ ∂D : Iq(x) = Ia(x)} covers the whole of ∂D\∂Dd−2 in the limit

as dis(P) → 0 uniformly over all environmental laws P with a uniform ellipticity constant

bounded from below by some κ > 0. However, we remark that, for a fixed environmental

law P, Ia and Iq can never be equal everywhere in ∂D unless P is degenerate (i.e. ω is

non-random under P), see [Yil4, Proposition 4].

Our next result states that there exists at least one open neighborhood on which there is

equality, whenever the environment satisfies the weaker condition of small enough imbalance.

More precisely, given s ∈ {±1}d we define the imbalance of P on the face ∂D(s) as

imbs(P) := inf

{
ε > 0 : ζs(x) ∈ [1− ε, 1 + ε], P-a.s. for all x ∈ Zd

}
,

with ζs(x) :=

∑d
i=1 ω(x, siei)∑d
i=1 α(siei)

,

or, equivalently, imbs(P) is the L∞(P)-norm of the random variable ζs(x)− 1, for any given

x ∈ Zd. Here is the statement of our next main result.

Theorem 3.2.2. For any d ≥ 4, κ > 0 and s ∈ {±1}d, there exists ε? = ε?(d, κ) > 0 such

that, for any RWRE satisfying Assumption A with ellipticity constant κ, if

imbs(P) < ε?, (3.2.5)

then the following statements hold:

• Ia and Iq have the same minimum over ∂D(s),

min
x∈∂D(s)

Iq(x) = min
x∈∂D(s)

Ia(x) = − log
d∑
i=1

α(siei). (3.2.6)
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• Ia and Iq have the same unique minimizer,

arg minx∈∂D(s)Iq(x) = arg minx∈∂D(s)Ia(x) =

∑d
i=1 α(siei)siei∑d
i=1 α(siei)

=: xs.

• There exists a neighborhood O ( ∂D(s) of xs such that Ia and Iq agree on O,

Iq(x) = Ia(x) for all x ∈ O. (3.2.7)

Moreover, the set O can be taken to be uniform over all environmental laws P sat-

isfying Assumption A with ellipticity constant κ in the following sense: there exists

r = r(d, κ) > 0 such that, for any P satisfying Assumption A with ellipticity constant

κ, if imbs(P) < ε? (with ε? as above) then

Iq(x) = Ia(x) for all x ∈ Br(xs) ∩ ∂D(s).

(The point being that r is independent of xs and uniform over P.)

Remark 3.2.2. Note that in the current general setup, we do not require the RWRE to possess

any limiting velocity, nor do we impose any ballisticity condition on the RWRE. However,

one can show that, whenever (3.2.5) holds, the unique minimizer xs in Theorem 3.2.2 is the

velocity of (Xn)n∈N under the annealed conditional measure P0(Xn
n
∈ · | Xn

n
∈ ∂D(s)) and the

quenched and annealed rate functions of the walk under this conditioning can be seen to equal

Iq−Iq(xs) and Ia−Ia(xs), respectively. Also, under this conditioning, the set-up bears some

resemblance to a random walk in a space time i.i.d. environment ([Yil1]) which corresponds

to the case when imbs(P) = 0. The latter choice is included as a particular case of Theorem

3.2.2 (certainly Theorem 3.2.2 also covers the case when imbs(P) is sufficiently small, not

necessarily zero). Also, from this viewpoint, our Theorem 3.2.1 then indicates that previously

known equality results for dynamic random environments (available for neighborhoods of the
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velocity) can be extended to neighborhoods of arbitrary points in the domain, provided that

the disorder of the environment is sufficiently low (a fact which can be proved rigorously by

an adaptation of our method).

Remark 3.2.3. Notice that if P is the law of a balanced random environment, i.e. P is such that

P(ω(x, e) = ω(x,−e) for all x, e) = 1, then imbs(P) = 0 for any s ∈ {±1}d. In particular,

such environments, as well as small perturbations of them, readily satisfy the hypotheses of

Theorem 3.2.2. Observe also that balanced random environments never satisfy condition (T)

and, as such, had not been considered before in the study of equality of the rate functions

for standard RWRE.

3.2.2 Formulas for Iq and Ia on the boundary.

Using the observation that the rate functions on the boundary ∂D can be studied as that of

a random process in a space-time i.i.d. environment, Theorem 3.2.1 and Theorem 3.2.2 now

provide a simple formula for the quenched rate function Iq. Define the moment generating

function λ : Rd → R as

λ(θ) :=
∑
e∈V

α(e)e〈θ,e〉. (3.2.8)

Here is our next main result.

Theorem 3.2.3. Fix d ≥ 4 and κ > 0. Then:

(i) Given any compact set K ⊆ ∂D \ ∂Dd−2 there exists ε = ε(d, κ,K) > 0 such that, for

any RWRE satisfying Assumption A with ellipticity constant κ, whenever (3.2.4) holds

we have

Ia(x) = Iq(x) = sup
θ∈Rd

(〈θ, x〉 − log λ(θ)) =
d∑
i=1

|xi| log
|xi|

α(siei)
for all x ∈ K.

(3.2.9)
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(ii) Given any s ∈ {±1}d there exists ε? = ε?(d, κ) > 0 such that, for any RWRE satisfying

Assumption A with ellipticity constant κ, whenever (3.2.5) holds there exists a non-

empty open subset O ( ∂D(s) \ ∂Dd−2 such that the representation in (3.2.9) holds for

all x ∈ O. This open subset is the same from Theorem 3.2.2 and hence can be taken

to be uniform over all P satisfying Assumption A with ellipticity constant κ.

Remark 3.2.4. As a matter of fact, the formula

Ia(x) = sup
θ∈Rd

(〈θ, x〉 − log λ(θ)) =
d∑
i=1

|xi| log
|xi|

α( xi
|xi|ei)

(with the convention that 0 log 0 = 0, used whenever |xi| = 0) in (3.2.9) above holds for all

x ∈ ∂D, not just for x belonging to K or O (it is the equality with Iq which only holds in K

or O, respectively). This will be evident from the proof of Theorem 3.2.3.

Remark 3.2.5. The annealed rate function Ia was shown in [Var] to admit a variational for-

mula involving entropy, which was analyzed further in [PZ, Yil3, Ber2] under the additional

assumption of condition (T). On the other hand, the quenched LDP in [Var] was derived

using sub-additivity methods which did not lead to any formula for Iq (see also [Zer] for the

quenched LDP in the case of nestling environments in d ≥ 1 and [GdH, CGZ] for the d = 1

case). Later, based on the method in [KRV], the following variational formula for Iq was

shown in [Ros] for elliptic RWRE:

Iq(x) = F ?(x)
def
= sup

θ∈Rd
[〈θ, x〉 − F (θ)] where,

F (θ) = inf
G

ess supP log

(∑
|e|=1

ω(0, e)eG(ω,e)+〈θ,e〉
)
,

(3.2.10)

where the infimum above is taken over a class of mean-zero gradients satisfying a certain

moment condition. We also refer to [Yil2, RAS2] for extensions of the above result to level-2

and level-3 LDP for elliptic RWRE, and to [BMO] for a similar representation for non-elliptic
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RWRE including random walks on percolation clusters. Finally, we refer to [RASY2, RASY3]

for another variational representation of the quenched rate function. Notice that the Cramér-

type representation in (3.2.9) simplifies its earlier antecedents significantly.

3.2.3 Monotonicity in the disorder and phase transition in the equal-

ity of rate functions.

We now turn to the statement that provides a phase transition in the behavior of the differ-

ence Ia(x, ·) − Iq(x, ·) as a function of the underlying disorder. We first need some further

notation. Given a probability vector 2 α ∈M1(V) with strictly positive entries, let

Eα :=

{
(r(e))e∈V ∈ [−1, 1]V :

∑
e∈V

α(e)r(e) = 0 and sup
e∈V
|r(e)| = 1

}
.

We denote probability measures on the space Γα := EZdα by Q. We also write η = (η(x))x∈Zd ∈

Γα, with η(x) = (η(x, e))e∈V being a typical element of the space Eα. Since α will remain

fixed in the remainder of this subsection, we will omit the dependence on α of Q and η from

the notation.

Now, given a probability vector α ∈M1(V) with strictly positive entries and a probability

measure Q on Γα, let us consider the parametrized family of random environments {ωε}ε∈[0,1)

given by

ωε(x, e) := α(e)(1 + εη(x, e)).

We will make the following assumptions on Q:

Assumption B. The probability measure Q satisfies the following three properties:

• The support of Q is not a singleton.3

2This is an abuse of notation with the α defined in (3.2.2). However, from the context will be clear to
which α we are referring.

3As matter of fact, this condition is already implied by the third one since supe∈V |ξ(x, e)| = 1 by definition
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• The family (η(x))x∈Zd is i.i.d. under Q.

• Eη(x, e) = 0 for all e ∈ V and x ∈ Zd.

The assumption that the support of Q is not a singleton is made to ensure that there

exists some true randomness in the environments ωε for ε > 0. On the other hand, the other

two assumptions guarantee that for each ε ∈ [0, 1) the law Pε of the environment ωε satisfies

Assumption A with ellipticity constant κ := (1 − ε)(mine∈V α(e)) > 0 and dis(Pε) = ε,

with E(ωε(x, e)) = α(e) for all e ∈ V and x ∈ Zd. In this context, we will denote by

Ia(·, ε) and Iq(·, ε) to be the annealed and quenched rate functions, respectively. Recall

that Ia(x, ε) ≤ Iq(x, ε) for all x ∈ Zd and ε ≥ 0 by Jensen’s inequality. Our next main

result establishes the monotonicity property for the difference of these two rate functions

Ia(x, ·)− Iq(x, ·).

Theorem 3.2.4. Fix d ≥ 4. Then, for any probability vector α ∈ M1(V) with strictly

positive entries and probability measure Q on Γα satisfying Assumption B, the following

assertions hold:

• For each x ∈ ∂D, the map

[0, 1) 3 ε 7→ Ia(x, ε)− Iq(x, ε)

is non-increasing and continuous. In particular, there is εc(x) ≥ 0 such that for ε ∈

[0, 1), 
Ia(x, ε) = Iq(x, ε) if ε ≤ εc(x)

Ia(x, ε) < Iq(x, ε) if ε > εc(x).

(3.2.11)

of Eα. Nevertheless, we still include it for clarity purposes.
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• Furthermore, there exists an open subset O ( ∂D \ ∂Dd−2 such that for all x ∈ O,

0 < εc(x) < 1. (3.2.12)

Remark 3.2.6. It follows from Theorem 3.2.2 that for any x ∈ ∂D \ ∂Dd−2 one always has

εc(x) > 0. What is (in principle) only true for x ∈ O is the additional requirement in (3.2.12)

that εc(x) < 1, which together with εc(x) > 0 implies the existence of a true phase transition

in the disorder ε.

Remark 3.2.7. We emphasize that the family of random environments considered presently

is quite general and contains several widely studied models for RWRE (see [CR, Sab]).

Furthermore, consideration of such a parametrization is in fact quite natural. Indeed, there

are two basic questions that one can ask regarding this point. Namely,

Q1. Given x ∈ (∂D \ ∂Dd−2), is it true that there exists εx such that the equality Ia(x) =

Iq(x) holds for any model with disorder less than εx and fails to hold for all larger

disorders?

Q2. Given x ∈ (∂D \ ∂Dd−2), is the mapping ε 7→ Ia(x, ε)− Iq(x, ε) monotonic?

Clearly the affirmation of (2) implies the same for (1). However, (2) does not make sense in

general. Indeed, Ia and Iq need not be functions of the underlying disorder, only perhaps

when dealing with parametrized families of environments as in Theorem 3.2.4. On the other

hand, (1) does make sense in general, but it seems out of reach with our current method and

we are not sure even if it is true. The difference with our Theorem 3.2.4 is that for us the

"source of randomness" is fixed beforehand, so that when we make its influence smaller and

smaller by taking the limit εx → 0 then it is natural to expect equality to hold. However,

we do not know whether there exists some universal εx which works simultaneously for all

possible sources of randomness (as the affirmation of (1) would imply).
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3.2.4 Outline of the proofs

For the sake of conceptual transparency and also to provide guidance to the reader, we find

it convenient to present a brief description of the method of proof developed in the present

article. This will then also underline the technical novelty of our contribution.

To treat the boundary behavior of Iq and Ia, we shall develop a somewhat different

approach to the one used in [BMRS1] to deal with the behavior in the interior of D. The

method in the interior used there relied on the construction of an auxiliary random walk in

a deterministic environment possessing a regeneration structure and showing that its large

deviation properties are intimately related to those of the true RWRE. Since the RWRE

behaves differently on the boundary,4 here we develop an alternative approach which is

conceptually more transparent and is based on a novel application of the martingale method

developed originally by Bolthausen [Bol] in the context of directed polymers [Com]. The

key idea is to construct the "renormalized partition function" or the polymer martingale

in the context of general RWRE scenario even in the absence of "directed" structure. To

this end, first we observe that it is enough to show equality of the rate functions holds on

each face separately, i.e. for compact sets K ⊆ ∂D \ ∂Dd−2 contained in ∂D(s) for some

s = (s1, . . . , sd) ∈ {±1}d, where

∂D(s) := {x ∈ ∂D : sjxj ≥ 0 ∀j = 1, . . . , d}.

At this point, we make the following crucial observation: for each s ∈ {±}d, on the event

Bn(s) :=
{

1
n
(Xn −X0) ∈ ∂D(s)

}
,

4While it might be possible to again define an auxiliary walk and study its regeneration times on the
boundary, many technical problems now appear due to the non-positive definiteness of the Hessian of (the
averaged) logarithmic moment generating function as the support of the first step for the auxiliary walk on
the boundary is contained in a (d− 1)-dimensional hyperplane, in addition to the reduced dimension d− 1
leading to additional difficulties in using the approach of [BMRS1] which requires that the dimension be at
least four.
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one has that for all j = 1, . . . , n

Xj −Xj−1 ∈ V(s) := {siei : i = 1, . . . , d} (3.2.13)

and, as a consequence, that for any j, j′ ∈ {0, . . . , n}

Xj = Xj′ ⇐⇒ j = j′. (3.2.14)

In particular, if for an affine transformation π mapping the hyperplane {x :
∑d

j=1 sjxj = 1}

which contains ∂D(s) onto {x : xd = 0} we define the projected RWRE Sn :=
∑n−1

j=0 π(Xj+1−

Xj) then, on the event Bn(s), the walk Sn satisfies the following two important properties:

• By (3.2.13), the path (S1, . . . , Sn) falls entirely on the hyperplane {x : xd = 0} =

Rd−1 × {0}, and therefore we may view it as a (d − 1)-dimensional walk. Moreover,

since the jumps (π(e))e∈V(s) of Sn span all of {x : xd = 0}, it has effective dimension

d− 1.

• For each j = 1, . . . , n, the weights used by Sj to decide where to jump next are given

by the random probability vector ω(Xj−1, Xj − Xj−1). By the i.i.d. structure of the

environment, (3.2.14) yields that these vectors (ω(Xj−1, Xj − Xj−1))j=1,...,n are inde-

pendent. Furthermore, by uniform ellipticity, all these weights are uniformly bounded

away from 0.

These crucial facts now allow us to construct a non-negative martingale on the event

Bn(s) which in our context translates to

Zn,θ(ω, x) := ψ−n(θ)Ex,ω
[
e〈θ,Sn〉 1Bn(s)], with ψ(θ) :=

∑
e∈V(s)

α(e)e〈θ,π(e)〉.

The above structure seems to be a natural way to construct the "renormalized partition
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function" in the context of general RWRE. However since the above extra ubiquitous condi-

tions (e.g. restriction to paths on Bn(s)) manifest throughout the entire analysis, the actual

leveraging of the martingale method in our context of Theorem 3.2.1 (cf. Section 3.3 for

its proof) and Theorem 3.2.2 (cf. Section 3.4 for its proof) is quite different from earlier

approaches. Theorem 3.2.3 then follows from the proof of the two earlier results, while the

proof of Theorem 3.2.4 builds on a method relying on the FKG inequality, see Section 3.5

for the proofs of these two results.

3.3 Equality on the boundary ∂D - Proof of Theorem

3.2.1

We first remark that the boundary ∂D of the unit ball D can be decomposed into (non-

overlapping) faces ∂D(s), s = (s1, . . . , sd) ∈ {−1, 1}d, defined as

∂D(s) := {x ∈ ∂D : sjxj ≥ 0 for all j = 1, . . . , d}.

We will prove the equality of rate functions

Iq(x) = Ia(x) (3.3.1)

under the assumptions of Theorem 3.2.1 on each face ∂D(s) separately. Since the proof is

exactly the same for all faces, from now on we will fix a face s := (s1, . . . , sd) and prove (3.3.1)

for x ∈ ∂D(s). For simplicity, in the sequel we will also sometimes remove the dependence

on s from the notation.

Our proof of (3.3.1) is divided into four steps, each occupying a separate subsection.

Before we begin, let us introduce some further notation to be used throughout the sequel.
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Given κ > 0, we define

M(κ)
1 (V) := {p ∈M1(V) : p(e) ≥ κ for all e ∈ V},

together with the class of environmental laws

Pκ := {P ∈M1(Ω) : P satisfies Assumption A with ellipticity constant κ},

whereM1(Ω) is the space of all environmental laws. We are now ready to begin the proof.

3.3.1 Projecting on a (d− 1)-dimensional hyperplane.

For each n ∈ N let us define

∂Rn := {x ∈ Zd : |x|1 = n , sjxj ≥ 0 for all j = 1, . . . , d} = n · ∂D(s). (3.3.2)

and for each x ∈ Zd set

∂Rn(x) := x+ ∂Rn.

Also, define the set V(s) of s-allowed jumps as

V(s) = {sjej : j = 1, . . . , d} ⊆ V.

Given n ≥ 1, recall that a sequence z := (z0, . . . , zn) of sites in Zd is a path of length n if

zj − zj−1 ∈ V for all j = 1, . . . , n. For x ∈ Zd, let Rn(x) denote the set of all paths of length

n such that z0 = x and zn ∈ ∂Rn(x). Notice that a path z = (z0, . . . , zn) of length n belongs

to ∂Rn(z0) if and only if all of its jumps belong to V(s), i.e. if we define the j-th jump of

the path z by

∆j(z) := zj − zj−1, (3.3.3)
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then

z = (z0, . . . , zn) ∈ Rn(z0)⇐⇒ ∆j(z) ∈ V(s) for all j = 1, . . . , n, (3.3.4)

from where we easily deduce that

z = (z0, . . . , zn) ∈ Rn(z0)⇐⇒ (z0, . . . , zn−1) ∈ Rn−1(z0) and ∆n(z) ∈ V(s). (3.3.5)

Now, notice that {x : s1x1 + · · · + sdxd = 1} is the unique hyperplane which contains

V(s), which is (affinely) generated by the vectors (siei)i=1,...,d, and let π : Rd → Rd be the

affine transformation mapping {x : s1x1 + · · ·+ sdxd = 1} −→ {x : xd = 0} given by

π(x) =


ei if x = siei for i = 1, . . . , d− 1

−(e1 + · · ·+ ed−1) if x = sded

d−1
d
ed if x = s.

(3.3.6)

We then define then the projected walk (Sn)n∈N by the formula

Sn :=
n∑
j=1

π(Xj −Xj−1), k ∈ N, (3.3.7)

where X = (Xn)n∈N is our original RWRE, and for each n ≥ 1 consider the event

Bn := {∆j(X) ∈ V(s) for all j = 1, . . . , n} = {(X0, . . . , Xn) ∈ ∂Rn(X0)}. (3.3.8)

Notice that, on the event Bn, the projected walk Sn belongs to the hyperplane {x ∈ Rd :

xd = 0}, which we can (and will henceforth) identify with Rd−1.Thus, if for θ ∈ Rd−1 we

define

ψ(θ) :=
∑
e∈V(s)

α(e)e〈θ,π(e)〉 =
d−1∑
i=1

α(siei)e
θi + α(sded)e

−(θ1+···+θd−1), (3.3.9)
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with the identification {x ∈ Rd : xd = 0} = Rd−1 in mind we may define for n ∈ N and

x ∈ Zd,

Zn,θ(ω, x) :=
Ex,ω(e〈θ,Sn〉1Bn)

ψn(θ)

=

∑
z∈Rn(x) e〈θ,

∑n
j=1 π(∆j(z))〉∏n

i=1 ω(zj−1,∆j(z))

ψn(θ)
.

(3.3.10)

for ∆j(z) as in (3.3.3). Now a simple computation using (3.3.5) and the definition of ψ shows

that

Zθ(·) = (Zn,θ(·, x))n∈N

is a P-martingale for any θ and x. Being also nonnegative, we know it has an P-almost sure

limit:

Z∞,θ(·, x)
a.s.
= lim

n→∞
Zn,θ(·, x). (3.3.11)

3.3.2 Martingale convergence in L2.

Our goal is now to show that the converge in (3.3.11) holds also in L2(P). The following

assertion, providing the desired L2(P)-convergence, will furthermore imply that the limit

Z∞,θ is also strictly positive.

Recall the definition of disorder dis(P) from (3.2.1).

Lemma 3.3.1. Given d ≥ 4, κ > 0 and a compact set Θ ⊆ Rd−1, there exists ε′ =

ε′(d, κ,Θ) > 0 such that, for any RWRE in dimension d with P ∈ Pκ, if dis(P) < ε′ then for

any x ∈ Zd

sup
n∈N , θ∈Θ

‖Zn,θ(x)‖L2(P) <∞.

For the proof of Lemma 3.3.1 we shall need the following result, which is (a particular

version of) the well-known Khas’minskii’s lemma. We include the short proof to keep the

material self-contained.
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Lemma 3.3.2. Let Z = (Zi)i∈N be a random walk on Zd starting at the origin, whose law

is denoted by P0 with expectation E0. If we define

η := E0

(
∞∑
i=0

1{Zi=0}

)
=
∞∑
i=0

P0(Zi = 0)

then for any C > 0 such that Cη < 1 we have

E0

(
exp

{
C
∞∑
i=0

1{Zi=0}

})
≤ 1

1− Cη
. (3.3.12)

Proof. By expanding the exponential on the left-hand side in (3.3.12) we can write

E0

(
exp

{
C
∞∑
i=0

1{Zi=0}

})
=
∞∑
n=0

Cn

n!
E0

[(
∞∑
i=0

1{Zi=0}

)n]

≤
∞∑
n=0

Cn
∑

0≤i1≤···≤in

P0(Zi1 = 0, . . . , Zin = 0)

=
∞∑
n=0

Cn
∑

0≤i1≤···≤in−1

P0(Zi1 = 0, . . . , Zin−1 = 0)
∞∑

in=in−1

P0(Zin−in−1 = 0)

=
∞∑
n=0

Cnη
∑

0≤i1≤···≤in−1

P0(Zi1 = 0, . . . , Zin−1 = 0)

=
∞∑
n=0

(Cη)n =
1

1− Cη
if Cη < 1,

where in the upper bound above we have used symmetry, while the next identities follow by

successive use of the Markov property.

We are now ready to prove Lemma 3.3.1.

Proof of Lemma 3.3.1. By the translation invariance of the environment, it will suffice to

show the claim for x = 0 and, for notational convenience, in the sequel we will abbreviate
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Rn := Rn(0) and Zn,θ := Zn,θ(0). Then

‖Zn,θ‖2
L2(P) =

E(E2
0,ω(e〈θ,Sn〉1Bn))

ψ2n(θ)

=
∑

z,z′∈Rn

E

((
n∏
j=1

ω(zj−1,∆j(z))
e〈θ,π(∆j(z))〉

ψ(θ)

)(
n∏
k=1

ω(z′k−1,∆k(z
′))

e〈θ,π(∆k(z′))〉

ψ(θ)

))
.

(3.3.13)

Now the following simple observation is crucial for our context. By (3.3.1) we have that

z = (0, . . . , zn) ∈ Rn =⇒ |zj| = j for all j = 1, . . . , n, (3.3.14)

so that the zj must be all distinct and, furthermore, for z, z′ ∈ Rn one has zj = z′k only if

j = k.

Using that our environment is i.i.d., this allows us to rewrite (3.3.13) as

‖Zn,θ‖2
L2(P) =

∑
z,z′∈Rn

E

(
n∏
j=1

(
ω(zj−1,∆j(z))ω(z′j−1,∆j(z

′))
e〈θ,π(∆j(z))〉

ψ(θ)

e〈θ,π(∆j(z
′))〉

ψ(θ)

))

=
∑

z,z′∈Rn

n∏
j=1

(
E
(
ω(zj−1,∆j(z))ω(z′j−1,∆j(z

′))
) e〈θ,π(∆j(z))〉

ψ(θ)

e〈θ,π(∆j(z
′))〉

ψ(θ)

)
.

(3.3.15)

Now, define the probability vector ~α(θ) = (α(θ)(π(e)))e∈V(s) on Rd−1 by the formula

α(θ)(π(e)) := α(e)
e〈θ,π(e)〉

ψ(θ)
, (3.3.16)

and P (θ)

0 as the law of the random walk on Rd−1 starting from 0 having jump distribution

~α(θ). Then, since

E
(
ω(zj−1,∆j(z))ω(z′j−1,∆j(z

′))
)

= α(∆j(z))α(∆j(z
′))

holds by independence whenever zj−1 6= z′j−1, a straightforward computation yields that one
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can rewrite (3.3.15) as

‖Zn,θ‖2
L2(P) = E0

(
exp

{
n∑
j=1

1{X(θ)
j−1=Y

(θ)
j−1}

V (X (θ)

j −X
(θ)

j−1, Y
(θ)

j − Y
(θ)

j−1)

})

where X (θ) and Y (θ) are two independent random walks with law P (θ)

0 and expectation E(θ)

0 ,

and for e, e′ ∈ V(s) we write

V (π(e), π(e′)) := log

(
E(ω(0, e)ω(0, e′))

α(e)α(e′)

)
.

Note that V is well-defined by uniform ellipticity and, moreover, since ω(0, e) ≤ α(e)(1 + dis(P))

for each e ∈ V , we have an upper bound

V (π(e), π(e′)) ≤ log(1 + dis(P)) ≤ dis(P),

implying that

‖Zn,θ‖2
L2(P) ≤ E0

(
exp

{
dis(P)

n−1∑
j=0

1{Z(θ)
j =0}

})

where, for j = 0, . . . , n− 1, we write Z(θ)

j = X (θ)

j − Y
(θ)

j . In particular, we see that

sup
n∈N , θ∈Θ

‖Zn,θ‖2
L2(P) ≤ sup

θ∈Θ
E0

(
exp

{
dis(P)

∞∑
j=0

1{Z(θ)
j =0}

})
. (3.3.17)

By Lemma 3.3.2, the right-hand side of (3.3.17) will be finite if

sup
θ∈Θ

(
∞∑
j=0

P0(Z(θ)

j = 0)

)
<

1

dis(P)
.

Now, let χθ(ξ) = E(θ)

0 [exp{i〈ξ, Z(θ)

1 〉}] denote the characteristic function of Z(θ)

1 (recall

that Z(θ)

0 = 0). Since Z(θ)

1 = X (θ)

1 − Y
(θ)

1 with X (θ)

1 , Y (θ)

1 i.i.d., χθ takes only real non-negative
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values. We claim that there exists a Cd > 0 depending only on d such that, for any θ ∈ Rd−1

and r > 0,
∞∑
j=0

P0(Z(θ)

j = 0) ≤ Cdr
−(d−1)

∫
Br(0)

dξ

1− χθ(ξ)
, (3.3.18)

where Br(0) := {ξ ∈ Rd−1 : |ξ|2 ≤ r}.

We defer the proof of (3.3.18) and continue with the proof of Lemma 3.3.1. Note that

the support of |Z(θ)

1 |2 is uniformly bounded in θ. Therefore, by Taylor’s expansion we have

χθ(ξ) ≤ 1− 1
2

∑
i,k=1

aθikξiξk + C|ξ|32 (3.3.19)

for some constant C > 0 independent of θ, where (a(θ)

ik )i,k is the covariance matrix of Z(θ)

1 .

Finally, since (a(θ)

ik )i,k is positive definite for each θ (since the random walk Zθ has effective

dimension d− 1) and the maps

(α, θ) 7→ a(θ)

ik

are continuous for all i, k, by proceeding as in the proof of Lemma 2.4.8, it follows from

(3.3.19) that for any compact set Θ ⊆ Rd−1 there exist r0 = r0(d, κ,Θ), c0 = c0(d, κ,Θ) > 0

such that

c0|ξ|22 ≤ 1− χθ(ξ)

for all ξ ∈ Br0(0). In particular, from (3.3.18) we see that, since d ≥ 4, for some constant

Cd > 0 depending only on d we have

sup
θ∈Θ

∞∑
j=0

P0

(
Z(θ)

j = 0
)
≤ Cd

r
−(d−1)
0

c0

∫
Br0 (0)

1

|ξ|22
dξ = Cd

r
−(d−1)
0

c0

∫ r0

0

rd−4 =: C0 <∞. (3.3.20)

Taking ε′ := 1
C0

then yields the result. We now owe the reader only the proof of the claim

(3.3.18). But this is an immediate consequence of Lemma 3.3.3 below, which is a well-known

application of the Fourier inversion formula.
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Lemma 3.3.3. Let (Zn)n≥0 be a random walk in Rd with law P0 starting at the origin and

assume that χµ, the characteristic function of Z1, takes only real non-negative values. Then

for any r > 0 and δ =
√
d/r,

∑
n≥0

P0

[
Zn ∈ Bδ(0)

]
≤ Cd
rd

∫
Br(0)

dξ

1− χµ(ξ)
.

Proof. Since we are interested in the event {Zn ≤ δ} we need to consider the function∏d
j=1 f(xj/δ) where f(xj) = max(1 − |xj|, 0). Then we have the Fourier transform of the

product
d̂∏
j=1

f(xj) =
d∏
j=1

f̂(ξj) with f̂(ξj) =
2

ξ2
j

(1− cos ξj).

If µ denotes the law of Z1 and µ?n = µ ? · · · ? µ its n-fold convolution, then for any δ > 0, 5

∫
Rd

̂d∏
j=1

f
(xj
δ

)
µ?n(dx) = δd

∫ d∏
j=1

f(δξj)(χµ(ξ))n dξ.

Therefore, for any a ∈ (0, 1),

∫
Rd

̂d∏
j=1

f
(xj
δ

)∑
n≥0

anµ?n(dx) = δd
∫ ∏d

j=1 f(δξj)

1− aχµ(ξ)
dξ, (3.3.21)

which implies that, for δ =
√
d/r and a suitable constant C > 0,

∑
n≥0

P0

[
Zn ∈ Bδ(0)

]
=
∑
n≥0

µ?n(Bδ(0)) ≤ C

∫
Rd

̂d∏
j=1

f
(xj
δ

)∑
n≥0

µ?n(dx) = Cδd sup
a∈(0,1)

∫ ∏d
j=1 f(δξj)

1− aχµ(ξ)
dξ.

≤ Cdr
−d
∫
Br(0)

dξ

1− χµ(ξ)
.

5Recall that if µ and ν are two probability measures on Rd with characteristic functions χµ and χν
respectively, then

∫
χν(x)µ(dx) =

∫
χµ(ξ)ν(dξ).
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3.3.3 Strict positivity of the limit Z∞,θ

The next step in the proof is to show the martingale limit Z∞,θ is strictly positive.

Proposition 3.3.4. Given d ≥ 4, κ > 0 and a compact set Θ ⊆ Rd−1 we have that, for any

RWRE in dimension d with P ∈ Pκ, if dis(P) < ε′ (with ε′ as in Lemma 3.3.1) then for each

θ ∈ Θ,

P
{
Z∞,θ(x) > 0 for all x ∈ Zd

}
= 1.

Proof. By (3.3.4) we have

z = (0, z1, . . . , zn) ∈ Rn ⇐⇒ ∆1(z) ∈ V(s) and (z1, . . . , zn) ∈ ∂Rn−1(z1)

so that, by conditioning on the first step of the walk X1, a straightforward computation

yields that

Zn,θ(ω, 0) =
∑
e∈V(s)

ω(0, e)e〈θ,π(e)〉−logψ(θ)Zn−1,θ(ω, e). (3.3.22)

On the other hand, if for y ∈ Zd we define Ty : Ω→ Ω to be the translation

Ty(ω)(x) := ω(x+ y), (3.3.23)

then it follows that for any e ∈ V

Zn−1,θ(ω, e) = Zn−1,θ(Te(ω), 0),
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so that (3.3.22) becomes

Zn,θ(ω, 0) =
∑
e∈V(s)

ω(0, e)e〈θ,π(e)〉−logψ(θ)Zn−1,θ(Te(ω), 0). (3.3.24)

By translation invariance of P we know that Zn,θ(Te(ω), 0) → Z∞,θ(Te(ω), 0) for P-almost

every ω, so that we may take the P-almost sure limit as n→∞ on (3.3.24) to obtain

Z∞,θ(ω, 0) =
∑
e∈V(s)

ω(0, e)e〈θ,π(e)〉−logψ(θ)Z∞,θ(Te(ω), 0). (3.3.25)

Moreover, it follows from (3.3.25) (and again translation invariance of P) that the event

{Z∞,θ(0) = 0} is almost Te-invariant for any e ∈ V(s) so that, by ergodicity of P, its

probability must be either 0 or 1. Since Lemma 3.3.1 dictates that the mean-one martingale

(Zn,θ(0))n∈N converges to Z∞,θ(0) in L2(P), we have E(Z∞,θ(0)) = 1 and thus it must be

P(Z∞,θ(0) = 0) = 0. By translation invariance of P we conclude the validity of the last

sentence for all x ∈ Zd so that

P
{
Z∞,θ(x) = 0 for some x ∈ Zd

}
= 0,

implying the desired result.

3.3.4 Concluding the proof of Theorem 3.2.1.

Existence of the LDP limits and properties of moment generating functions.

In order to conclude the proof of Theorem 3.2.1 we shall need Lemma 3.3.5 below, which

establishes the existence of certain "point-to-point" free energies (in the terminology of

[RAS3]). Throughout the sequel, we will call a sequence {xn}n∈N ⊆ Zd admissible if for each

n ∈ N there exists a path z = (z0, z1, . . . , zn) of length n with z0 = 0 and zn = xn.
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Lemma 3.3.5. Under Assumption A, for any x ∈ ∂D(s) there exists an admissible sequence

{xn}n∈N ⊆ Zd such that xn
n
→ x and

lim
n→∞

1

n
logP0,ω(Xn = xn) = −Iq(x) P - a.s.,

lim
n→∞

1

n
logP0(Xn = xn) = −Ia(x).

The proof of Lemma 3.3.5 is deferred until the end of Section 3.3.4.

Next, recall from (3.3.7) that S = (Sn)n∈N denotes the projected walk of the RWRE

X = (Xn)n≥0. Now, for each n ≥ 1, let us set

Sn :=
1

n
Sn

to be the empirical mean and, for each n ≥ 1 and ω ∈ Ω, define the quenched log-moment

generating function of Sn as

Aωn(θ) := logE0,ω

(
e〈θ,Sn〉1Bn

)
, θ ∈ Rd−1,

where the event Bn is defined in (3.3.8). Then the limiting quenched log-moment generating

function is

Λω(θ) = lim sup
n→+∞

1

n
Aωn(nθ). (3.3.26)

We recall some qualitative properties of Λω stated in the following result.

Lemma 3.3.6. For each P satisfying Assumption A there exists a full P-probability event

Ω = Ω(P) such that, for any ω ∈ Ω, the following holds:

(i) The limit in (3.3.26) exists and is finite for all θ ∈ Rd−1, i.e. for all θ ∈ Rd−1

Λω(θ) = lim
n→+∞

1

n
Aωn(nθ) ∈ (−∞,+∞).
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(ii) Λω is convex and continuous on Rd−1.

(iii) If y = ∇Λω(η) for some η ∈ Rd−1, then

〈η, y〉 − Λω(η) = sup
θ∈Rd−1

[〈θ, y〉 − Λω(θ)] =: Λ
ω
(y).

Moreover, y is an exposed point of Λ
ω and η is its exposing hyperplane, i.e. for all

x 6= y

〈η, y〉 − Λ
ω
(y) > 〈η, x〉 − Λ

ω
(x).

(iv) Λ
ω is lower semicontinuous.

(v) For any closed set F ⊆ Rd−1,

lim sup
n→+∞

1

n
logP0,ω({Sn ∈ F} ∩ Bn) ≤ − inf

x∈F
Λ
ω
(x).

(vi) For any open set G ⊆ Rd−1,

lim inf
n→+∞

1

n
logP0,ω({Sn ∈ G} ∩ Bn) ≥ − inf

x∈G∩Fω
Λ
ω
(x),

where Fω denotes the set of exposed points of Λω.

Proof. All the assertions are found in the standard literature (see [DZ, Section 2.3]) which

follows from the existence of a full P-probability event Ω such that, for any ω ∈ Ω and all

θ ∈ Rd−1,

Λω(θ) = lim
n→+∞

1

n
Aωn(nθ) < +∞. (3.3.27)

Alternatively, once we have (3.3.27), one can introduce the conditional probabilities

µn := P0,ω(Sn ∈ · |Bn)
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and deduce the remaining parts of the lemma by applying the standard Gärtner-Ellis theorem

for the sequence (µn)n∈N. The existence of the limit (3.3.27) follows from [RAS3, Theorem

2.4-(b)], whereas its finiteness is a consequence of the simple bound Aωn(nθ) ≤ n|θ|1(d − 1)

for all n.

Remark 3.3.1. As in the quenched set-up, we can define the annealed log-moment generating

function

An(θ) := logE0

(
e〈θ,Sn〉1Bn

)
= n logψ( θ

n
),

together with its limiting version

Λ(θ) := lim
n→+∞

1

n
An(nθ) = logψ(θ).

It is easy to see that an analogue of Lemma 3.3.6 holds for the annealed version Λ, by

replacing Λω with Λ and P0,ω with P0 everywhere in the statements above.

Proof of Theorem 3.2.1:

We will now conclude the proof of Theorem 3.2.1 which will be carried out in a few steps.

Throughout the following we assume d ≥ 4 so that Proposition 3.3.4 holds.

Step 1: First, by Proposition 3.3.4, given any κ > 0 and R > 0 there exists εR =

εR(d, κ,R) > 0 such that, for any P ∈ Pκ, whenever dis(P) < εR then, for each

θ0 ∈ DR := {θ ∈ Rd−1 : |θ|1 ≤ R},

we have that Z∞,θ0(0) is P-a.s. strictly positive. Hence, it follows that for each P ∈ Pκ there

exists a full P-probability event ΩR = ΩR(P, R) such that for all ω ∈ ΩR

Z∞,θ(ω, 0) > 0 for all θ ∈ ΘR, (3.3.28)
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where ΘR is some fixed (but arbitrary) countable dense subset of DR. Furthermore, without

loss of generality we may assume that ΩR is contained in the event Ω from Lemma 3.3.6.

But observe that, if this is the case, for ω ∈ ΩR and θ ∈ ΘR we may rewrite

Λω(θ) = logψ(θ) + lim
n→+∞

1

n
log Zn,θ(ω, 0) = logψ(θ), (3.3.29)

where the second equality follows from (3.3.28). Since Λω is continuous on DR if ω ∈ ΩR

by Lemma 3.3.6, we conclude that for any such ω the equality Λω(θ) = logψ(θ) in (3.3.29)

holds for all θ in DR. Therefore, we have shown that given any κ,R > 0 there exists εR > 0

such that, for any P ∈ Pκ, whenever dis(P) < εR there exists a full P-probability event ΩR

such that (3.3.29) holds for all θ ∈ DR and ω ∈ ΩR.

Step 2: We now need the following result.

Lemma 3.3.7. Given κ > 0 and a compact set K ⊆ ∂D(s) \ ∂Dd−2, there exists RK =

RK(d, κ,K) > 0 such that, for any P ∈ Pκ, we have

π(K) ⊆ {∇ logψ(θ) : θ ∈ DRK}.

We will assume Lemma 3.3.7 for now and continue with the proof of Theorem 3.2.1.

Step 3: By Lemma 3.3.7, it will suffice to show that for any κ,R > 0 there exists ε =

ε(d, κ,R) > 0 such that, for any P ∈ Pκ, if dis(P) < ε then

Ia
∣∣
OR
≡ Iq

∣∣
OR
, (3.3.30)

where

OR := π−1({∇ logψ(θ) : θ ∈ DR}).

To this end, let us consider ε = εR+1 > 0 depending only on d, κ and R such that, for any
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P ∈ Pκ, if dis(P) < ε there exists a full P-probability event ΩR+1 = ΩR+1(P, R) satisfying

Λω(θ) = logψ(θ) (3.3.31)

for all θ ∈ DR+1 if ω ∈ ΩR+1 (such an ε exists by Step 1). For the remaining steps of the

proof, we fix an arbitrary P ∈ Pκ satisfying dis(P) < ε and proceed to show (3.3.30) for the

RWRE having this environmental law P.

By (3.3.31) and choice of ε, it follows that

π(OR) = {∇Λω(θ) : θ ∈ DR}

for any ω ∈ ΩR+1. By Lemma 3.3.6, it follows that for ω ∈ ΩR+1 the sequence (Sn)n∈N under

P0,ω satisfies an LDP inside π(OR) with rate function

Λ(x) = 〈θx, x〉 − logψ(θx), (3.3.32)

where θx is defined via the relation x = ∇ logψ(θx) (observe that θx is well-defined for

x ∈ π(OR) by definition of OR). Here the LDP inside π(OR) is interpreted as:

• For any closed set F ⊆ π(OR),

lim sup
n→+∞

1

n
logP0,ω({Sn ∈ F} ∩ Bn) ≤ − inf

x∈F
Λ(x).

• For any open set G ⊆ π(OR),

lim inf
n→+∞

1

n
logP0,ω({Sn ∈ G} ∩ Bn) ≥ − inf

x∈G
Λ(x),

where Λ(x) is given by (3.3.32). But an easy calculation exploiting the fact that π is affine
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and (3.3.4) shows that, for any set H ⊆ ∂D(s), we have

{S̄n ∈ π(H)} ∩ Bn = { 1
n
Xn ∈ H}, (3.3.33)

which implies then that an LDP inside OR holds for the distribution of ( 1
n
Xn)n∈N under P0,ω:

• For any closed set F ⊆ OR,

lim sup
n→+∞

1

n
logP0,ω( 1

n
Xn ∈ F ) ≤ − inf

x∈F
Λ(π(x)).

• For any open set G ⊆ OR,

lim inf
n→+∞

1

n
logP0,ω( 1

n
Xn ∈ G) ≥ − inf

x∈G
Λ(π(x)),

where Λ is given by (3.3.32).

Step 4: Our next step will be to show that Λ ◦ π ≡ Iq on OR. To this end, suppose first

that Λ(π(x)) < Iq(x) for some x ∈ OR. By the lower semicontinuity of Iq we may find a

neighborhood B of x such that infy∈B Iq(y) > Λ(π(x)), where B denotes the closure of B.

Observe that the set

Gx := π(B) ∩ {y ∈ Rd : yd = 0}

is an open set in Rd−1. Thus, by Lemma 3.3.6 and (3.3.33), for any ω ∈ ΩR+1 we have

−Λ(π(x)) = −Λ
ω
(π(x)) ≤ − inf

y∈Gx∩Fω
Λ
ω
(y)

≤ lim inf
n→+∞

1

n
logP0,ω( 1

n
Xn ∈ π−1(Gx)),
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and

lim inf
n→+∞

1

n
logP0,ω( 1

n
Xn ∈ π−1(Gx)) ≤ lim sup

n→+∞

1

n
logP0,ω( 1

n
Xn ∈ B) ≤ − inf

y∈B
Iq(y) < −Λ(π(x)),

which is a contradiction. Thus, we must have Iq(x) ≤ Λ(π(x)) for all x ∈ OR.

On the other hand, if for each x ∈ OR we choose an admissible sequence {xn}n∈N such

that xn
n
→ x as n→ +∞ as in the statement of Lemma 3.3.5. Then, by the aforementioned

lemma, (3.3.33) and Lemma 3.3.6, for P-almost every ω ∈ ΩR+1 and δ > 0 we have

−Iq(x) = lim
n→+∞

1

n
logP0,ω( 1

n
Xn = 1

n
xn) ≤ lim sup

n→+∞

1

n
logP0,ω( 1

n
Xn ∈ Bδ(x)) ≤ − inf

y∈Bδ(x)
Λ
ω
(π(y)),

with the standard notation Bδ(x) := {y ∈ Rd : |y− x|2 < δ}. By the lower semicontinuity of

Λ
ω, letting δ → 0 in the inequality above yields that

−Iq(x) ≤ −Λ
ω
(π(x)) = −Λ(π(x)),

the last equality being true by (3.3.31) because x ∈ OR. Hence, we see that

Λ(π(x)) ≤ Iq(x) ∀x ∈ OR

and therefore, since the reverse inequality is also true, we conclude that Iq ≡ Λ ◦ π on OR.

Step 5: Finally, a similar analysis but for the annealed measure now reveals that Ia ≡ Λ ◦π

on OR as well. Indeed, the key observation to achieve this is that, by the analogue of Lemma

3.3.6 for the annealed measure (recall Remark 3.3.1) the sequence (Sn)n∈N under P0 satisfies

an LDP inside π(OR) with rate function exactly as in (3.3.32). From here we immediately

obtain (3.3.30). Thus, for the proof of Theorem 3.2.1 we only owe the reader the proof of

Lemma 3.3.7 as well as Lemma 3.3.5.
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Proof of Lemma 3.3.7: Fix any environment law P satisfying Assumption A with ellip-

ticity constant κ > 0. Since Zθ(0) is mean-one P-martingale, it follows that

E0(e〈θ,S1〉−logψ(θ)
1Bn) = 1.

From this identity, the methods from [BMRS1, Section 4] now show that the mapping θ 7→

logψ(θ) is smooth and has a positive definite Hessian. In particular, it is a smooth strictly

convex function on Rd−1, so that by [Roc, Theorem 26.5] the sets

GR := {∇ logψ(θ) : |θ|1 < R}

are open on Rd−1 for all R > 0.

Therefore, in order to prove the lemma it will be enough to show that for each x ∈

∂D(s) \ ∂Dd−2 there exist rx = rx(d, κ, x), Rx = Rx(d, κ, x) > 0 such that, for any P ∈ Pκ,

we have

π(Brx(x) ∩ (∂D(s) \ ∂Dd−2)) ∈ GRx = {∇ logψ(θ) : |θ|1 < Rx}, (3.3.34)

where we write Brx(x) := {y ∈ Rd : |y − x|1 < rx}. Indeed, if this is the case then, given

any compact set K ⊆ ∂D(s) \ ∂Dd−2, there exists some finite nK = nK(d, κ,K) ≥ 1 and

x1, . . . , xnK ∈ K such that

K ⊆
nK⋃
j=1

(
Brxj

(xj) ∩ (∂D(s) \ ∂Dd−2)
)
,

so that by (3.3.34), if we set RK := maxj=1,...,nK rxj < ∞ then, for any P ∈ Pκ, we obtain

that

π(K) ⊆ GRK .
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Hence, we only need to show (3.3.34).

To this end, notice that any x ∈ ∂D(s) \ ∂Dd−2 can be written as

x =
d∑
i=1

δisiei

where δi > 0 for all i = 1, . . . , d and
∑

i=1 δi = 1. Since π is affine, it follows that

π(x) =
d∑
i=1

δiπ(siei) =
d−1∑
i=1

(δi − δd)ei.

On the other hand, a simple computation shows that for any θ ∈ Rd−1,

∇ logψ(θ) =
1

ψ(θ)

d−1∑
i=1

[α(siei)e
θi − α(sded)e

−(θ1+···+θd−1)]ei.

Therefore, in order to check that π(x) ∈ GR for some R > 0, we only need to show that

there exists some θ(x) = (θ1(x), . . . , θd−1(x)) ∈ Rd−1 such that

δi − δd =
1

ψ(θ)

[
α(siei)e

θi(x) − α(sded)e
−(θ1(x)+···+θd−1(x))

]
(3.3.35)

for all i = 1, . . . , d− 1. But it is straightforward to check that, for θ(x) given by

θi(x) := log

(
δiC

α(siei)

)
with C := d

√√√√ d∏
i=1

α(siei)

δi

for each i = 1, . . . , d− 1, (3.3.35) is satisfied and so π(x) = ∇ logψ(θ(x)). Finally, since the

mapping

(α, x) 7→ θ(x)

is continuous onM(κ)
1 (V)×(∂D(s)\∂Dd−2), (3.3.34) follows upon taking rx := 1

2
d(x, ∂Dd−2) >
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0 and Rx := 1 + sup{|θ(y)|1 : y ∈ Brx(x) ∩ (∂D(s) \ ∂Dd−2)} < ∞. This concludes the

proof.

Remark 3.3.2. Equation (3.3.34) implies that, for any P ∈ Pκ,

π(∂D(s) \ ∂Dd−2) ⊆ {∇ logψ(θ) : θ ∈ Rd−1}.

From this, we may now repeat the analysis of Step 5 to show that Ia ≡ Λ ◦ π holds on

∂D(s) \ ∂Dd−2. We will later need this fact for the proof of Theorem 3.2.2.

Proof of Lemma 3.3.5:

We consider the quenched and annealed limits separately.

Case 1: the quenched limit. This is consequence of several results found in [RAS3].

Indeed, in [RAS3, Theorem 2.2] it is proved that P-almost surely for all x ∈ D, the following

limit exists

Îq(x) := − lim
n→∞

1

n
logP0,ω(Xn = xn) ∈ [0, κ]

for a suitable admissible sequence {xn}n∈N satisfying xn
n
→ x. Moreover, by [RAS3, Theorem

2.4] this limit Îq(x) is deterministic and, by [RAS3, Theorem 3.2-(b)], the map x→ Îq(x) is

continuous on D. Finally, [RAS3, Theorem 4.3] shows that Iq ≡ Îq on int(D). The continuity

of both Iq and Îq now allow us to extend the equality to the boundary ∂D, thus proving the

quenched case.

Case 2: the annealed limit. First, given x = (x1, . . . , xd) ∈ ∂D(s), let us write it as

x =
∑d

i=1 si|xi|ei. Now, consider any admissible sequence {xn}n∈N ⊆ Zd such that:

• xn
n
∈ ∂D(s) for each n, i.e. xn =

∑d
i=1 siniei for some ni ≥ 0 with

∑d
i=1 ni = n.

• If xi = 0 then ni = 0.
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• xn
n
→ x as n→∞.

It is straightforward to check that such a sequence always exists, see [RAS3] for details.

Observe that, for any such sequence, by (3.3.14) the quantity
∏n

j=1 α(∆j(z)) is indepen-

dent of the path z of length n going from 0 to xn, so that

P0(Xn = xn) = #{z ∈ Rn : zn = xn}
d∏
i=1

α(siei)
ni =

n!

n1! · · ·nd!

d∏
i=1

α(siei)
ni .

Taking logarithm and dividing by n, we get

1

n
logP0(Xn = xn) =

1

n

[
log n!−

d∑
i=1

log ni! +
d∑
i=1

ni logα(siei)

]
.

Now, since xn
n
→ x, we obtain that ni

n
→ |xi| for all i and thus that as n→∞,

1

n

d∑
i=1

ni logα(siei)→
d∑
i=1

|xi| logα(siei).

On the other hand, since ni
n
→ |xi|, by Stirling’s approximation we have log n! = n log n −

n+ o(n) and log ni! = ni log ni− ni + o(n) (if xi = 0 for some i, the equality still holds since

ni = 0), so that

lim
n→∞

1

n

[
log(n!)−

d∑
i=1

log(ni!)

]
= lim

n→∞

1

n

[
n log n− n−

(
d∑
i=1

ni log ni − ni

)]

= − lim
n→∞

d∑
i=1

ni
n

log
ni
n

= −
d∑
i=1

|xi| log |xi|.
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Therefore, we conclude that

−Îa(x) := lim
n→∞

1

n
P0(Xn = xn) = −

d∑
i=1

|xi| log
|xi|

α(siei)
.

To conclude the proof, we must now check that Îa(x) = Ia(x). To this end, define

Ĩa(x) := sup
θ∈Rd

(〈θ, x〉 − log λ(θ)) (3.3.36)

for λ as in (3.2.8). It is straightforward to check that Ĩa is the annealed rate function corre-

sponding to a random walk (Yn)n∈N in a space-time random environment ω̄ = (ω̄(n, ·))n∈N,

where the ω̄(n, ·) are i.i.d. having common law P. Furthermore, by standard considerations

of Fenchel-Legendre transforms (see Lemma 3.3.6, for instance), it is straightforward to check

that for all x ∈ ∂D(s) the supremum in (3.3.36) coincides with the expression derived for

Îa(x), so that Îa(x) = Ĩa(x). Thus, in order to conclude the proof, it will suffice to show that

Ĩa(x) ≤ Ia(x) ≤ Îa(x). (3.3.37)

To check the right inequality in (3.3.37) we observe that, by the annealed LDP for the

random walk and the fact that xn
x
→ x, for any δ > 0 we have

− Îa(x) ≤ lim sup
n→∞

1

n
logP0( 1

n
Xn ∈ Bδ(x)) ≤ − inf

y∈Bδ(x)
Ia(y), (3.3.38)

where Bδ(x) := {y ∈ Rd : |y − x|2 < δ}. By the lower semicontinuity of Ia, taking δ → 0 in

(3.3.38) then yields the right inequality in (3.3.37).

On the other hand, if Q0 denotes the law of the random walk (Yn)n∈N in a space-time
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environment introduced previously starting from 0, then for any δ > 0 we have

P0( 1
n
Xn ∈ Bδ(x)) ≤ κ−nδQ0( 1

n
Yn ∈ Bδ(x)). (3.3.39)

Indeed, notice that

P0( 1
n
Xn ∈ Bδ(x)) =

∑
z∈Rn : zn

n
∈Bδ(x)

E

(
n∏
j=1

ω(zj−1,∆j(z))

)

≤ κ−nδ
∑

z∈Rn : zn
n
∈Bδ(x)

n∏
j=1

α(∆j(z)) = κ−nδQ0( 1
n
Yn ∈ Bδ(x)),

where the middle equality follows from the fact that the factors in the product
∏n

j=1 ω(zj−1,∆j(z))

are all independent except for at most nδ of them, but we can majorize these by independent

versions at the expense of an additional κ−1 factor. It follows from (3.3.39) that

inf
y∈Bδ(x)

Ia(y) ≥ inf
y∈Bδ(x)

Ĩa(y)− δ log k−1.

By the lower semicontinuity of both Ia and Ĩa, letting δ → 0 in the last display above reveals

that Ĩa(x) ≤ Ia(x) and thus (3.3.37) is proved.

Remark 3.3.3. In [RAS3, Theorem 4.3] (see also [CDR+]) it is shown that the sequence

( 1
n
Xn)n∈N satisfies a quenched LDP on ∂D with rate function Îq. Using this and Case 2

of Lemma 3.3.5, the analysis carried out in Section 3.3.4 (in particular, in Steps 4 and 5)

already shows that for dis(P) sufficiently small one has Îq ≡ Ia on the boundary ∂D. Some

additional effort is required to show that Îq ≡ Iq and thus conclude the result in Theorem

3.2.1, but this is given by the other results from [RAS3] as shown in Case 1 of Lemma 3.3.5.

122



3.4 Proof of Theorem 3.2.2

Note that the proof of Theorem 3.2.1 in Section 3.3 already reveals that, in order to prove

Theorem 3.2.2, it suffices to check that there exist ε? = ε?(d, κ) > 0 such that, whenever

imbs(P) is small enough, there exists some η = η(d, κ) > 0 such that for each |θ|1 ≤ η we

have

sup
n≥1
‖Zn,θ‖2

L2(P) <∞. (3.4.1)

The above estimate together with arguments similar to those given for the proof of Theorem

3.2.1 will then imply the desired equality of the rate functions on an open subset of ∂D(s) \

∂Dd−2.

For x ∈ Zd, e ∈ V and θ ∈ Rd−1, define

W (x, e, θ) := ω(x, e) e〈θ,π(e)〉

and

Ws(x, θ) :=
∑
e∈V(s)

W (x, e, θ) =
∑
e∈V(s)

ω(x, e) e〈θ,π(e)〉,

where π is the affine mapping from (3.3.6) and we use the identification π(e) ∈ Rd−1 for

e ∈ V(s). Note that, since E(Ws(x, θ)) = ψ(θ) for any x ∈ Zd and, moreover, P-almost

surely for all x ∈ Zd

Ws(x, θ) ≤ e(d−1)|θ|1ψ(0)(1 + imbs(P)) ≤ e2(d−1)|θ|1ψ(θ)(1 + imbs(P)),
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we have (recall the definition of ∆j(z) from (3.3.3) and α(θ) from (3.3.16)),

‖Zn,θ‖2
L2(P)

=
∑

z,z′∈Rn

n∏
j=1

[E(W (zj−1,∆j(z), θ)W (z′j−1,∆j(z
′), θ)

)
ψ2(θ)

]

=
∑

z,z′∈Rn−1

E(Ws(zn−1, θ)Ws(z
′
n−1, θ))

ψ2(θ)

n−1∏
j=1

[E(W (zj−1,∆j(z), θ)W (z′j−1,∆j(z
′), θ)

)
ψ2(θ)

]

≤
∑

z,z′∈Rn−1

e
V

(0)
s,θ 1{zn−1=z

′
n−1}

n−1∏
j=1

[E(W (zj−1,∆j(z), θ)W (z′j−1,∆j(z
′), θ)

)
ψ2(θ)

]

=
∑

z,z′∈Rn

α(θ)(∆n(z))α(θ)(∆n(z′))e
V

(0)
s,θ 1{zn−1=z

′
n−1}

n−1∏
j=1

[E(W (zj−1,∆j(z), θ)W (z′j−1,∆j(z
′), θ)

)
ψ2(θ)

]
,

(3.4.2)

where

V (0)

s,θ := 2(d− 1)|θ|1 + log (1 + imbs(P)) .

We will now continue with an estimate for the sum over zn−1 and z′n−1. First, note that

whenever zn−2 6= z′n−2 we have

∑
∆n−1(z),∆n−1(z′)∈V(s)

e
V

(0)
s,θ 1{zn−1=z

′
n−1}

[
E
(
W (zn−2,∆n−1(z), θ)W (z′n−2,∆n−1(z′), θ)

)
ψ2(θ)

]
=

∑
∆n−1(z),∆n−1(z′)∈V(s)

α(θ)(∆n−1(z))α(θ)(∆n−1(z′))e
V

(0)
s,θ 1{zn−1=z

′
n−1} .

(3.4.3)

Next, we claim that if imbs(P) < (d− 2)κ then P-almost surely for all x ∈ Zd and e ∈ V(s),

ω(x, e) ≤ (1− κ)ψ(0). (3.4.4)

Indeed, if (3.4.4) is not satisfied for some x′ ∈ Zd and e′ ∈ V(s) then, on a set of positive

P-measure we have that

ω(x′, e′) > ψ(0)− (d− 2)κ.
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Hence, by uniform ellipticity and the trivial bound ψ(0) ≤ 1, we have on a set of positive

P-measure,

Ws(x
′, 0) = ω(x′, e′) +

∑
e′ 6=e∈V(s)

ω(x′, e) > (1− κ)ψ(0) + (d− 1)κ ≥ (1 + (d− 2)κ)ψ(0)

which implies that imbs(P) > (d − 2)κ and thus contradicts our assumptions. Hence, we

conclude that, whenever imbs(P) < (d−2)κ, (3.4.4) holds and thus that P-a.s. for all x ∈ Zd

and e ∈ V(s),

ω(x, e) ≤ (1− κ)ψ(0) ≤ e(d−1)|θ|1(1− κ)ψ(θ). (3.4.5)

Now, whenever zn−2 = z′n−2, using (3.4.5) we have

∑
∆n−1(z),∆n−1(z′)∈V(s)

e
V

(0)
s,θ 1{zn−1=z

′
n−1}

[
E
(
W (zn−2,∆n−1(z), θ)W (z′n−2,∆n−1(z′), θ)

)
ψ2(θ)

]

=
∑

∆n−1(z),∆n−1(z′)∈V(s)

[
E
(
W (zn−2,∆n−1(z), θ)W (zn−2,∆n−1(z′), θ)

)
ψ2(θ)

]

+
∑

∆n−1(z),∆n−1(z′)∈V(s)

[
e
V

(0)
s,θ 1{zn−1=z

′
n−1} − 1

] [
E
(
W (zn−2,∆n−1(z), θ)W (zn−2,∆n−1(z′), θ)

)
ψ2(θ)

]

=
E (W 2

s (zn−2, θ))

ψ2(θ)
+

∑
∆n−1(z)∈V(s)

(
eV

(0)
s,θ − 1

) E (W 2(zn−2,∆n−1(z), θ))

ψ2(θ)

≤ eV
(0)
s,θ +

(
eV

(0)
s,θ − 1

)
Kκ,θ

=
∑

∆n−1(z),∆n−1(z′)∈V(s)

α(θ)(∆n−1(z))α(θ)(∆n−1(z′))eV
(1)
κ,s,θ

≤
∑

∆n−1(z),∆n−1(z′)∈V(s)

α(θ)(∆n−1(z))α(θ)(∆n−1(z′))e
V

(1)
κ,s,θ+V

(0)
s,θ 1{zn−1=z

′
n−1} ,

(3.4.6)

where

Kκ,θ := e(d−1)|θ|1(1− κ) and eV
(1)
κ,s,θ := eV

(0)
s,θ +

(
eV

(0)
s,θ − 1

)
Kκ,θ.
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Combining (3.4.3) with (3.4.6) we see that

∑
∆n−1(z),∆n−1(z′)∈V(s)

e
V

(0)
ε,ε 1{zn−1=z

′
n−1}

[
E
(
W (zn−2,∆n−1(z), θ)W (z′n−2,∆n−1(z′), θ)

)
ψ2(θ)

]

≤
∑

∆n−1(z),∆n−1(z′)∈V(s)

α(θ)(∆n−1(z))α(θ)(∆n−1(z′)) exp

{
V (1)

κ,s,θ1{zn−2=z′n−2} + V (0)

s,θ 1{zn−1=z′n−1}

}
.

(3.4.7)

From the above estimate and (3.4.2), we conclude that

‖Zn,θ‖2
L2(P) ≤

∑
z,z′∈Rn

e
V

(1)
κ,s,θ1{zn−2=z

′
n−2}

+V
(0)
s,θ 1{zn−1=z

′
n−1}

×
n−2∏
j=1

[E(W (zj−1,∆j(z), θ)W (z′j−1,∆j(z
′), θ)

)
ψ2(θ)

] n∏
j=n−1

α(θ)(∆j(z))α(θ)(∆j(z
′)).

(3.4.8)

By successive application of the above estimate, we get

‖Zn,θ‖2
L2(P) ≤ E(θ)

0

[
exp

(
n−1∑
j=0

V (n−1−k)
κ,s,θ 1{X(θ)

j =Y
(θ)
j }

)]
,

where X (θ) and Y (θ) are as before two independent random walks starting from 0 with jump

distribution given by the probability vector ~α(θ), we write V (0)

κ,s,θ := V (0)

ε,θ for homogeneity of

notation and, for 0 ≤ k ≤ n− 1, we define

eV
(k+1)
κ,s,θ := eV

(0)
κ,s,θ +

(
eV

(k)
κ,s,θ − 1

)
Kκ,θ.

Now, since Kκ,θ < 1 for |θ|1 small enough (depending only on d and κ), for any such θ we

have

eV
(k+1)
κ,s,θ = eV

(0)
κ,s,θ +

(
eV

(0)
κ,s,θ − 1

)
(Kκ,θ +K2

κ,θ + · · ·+Kk+1
κ,θ ) ≤ eV

(0)
κ,s,θ +

(
eV

(0)
κ,s,θ − 1

) Kκ,θ

1−Kκ,θ

.
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Hence, we can define V (∞)

κ,s,θ by the formula

eV
(∞)
κ,s,θ := eV

(0)
κ,s,θ +

(
eV

(0)
κ,s,θ − 1

) Kκ,θ

1−Kκ,θ

,

and conclude that

‖Zn,θ‖2
L2(P) ≤ E(θ)

0

[
exp

(
V (∞)

κ,s,θ

n−1∑
j=0

1{Z(θ)
j =0}

)]
(3.4.9)

where Z(θ)

j = X (θ)

j − Y (θ)

j . Moreover, since for |θ|1 ≤ η1(d, κ) we have Kκ,θ ≤ 1 − κ
2
and

2(d− 1)|θ|1 ≤ 1, a straightforward calculation yields that

V (∞)

κ,s,θ ≤ C1(|θ|1 + imbs(P))(1 + imbs(P)) (3.4.10)

for some constant C1 = C1(d, κ) > 0.

Now, by (3.3.20) there exists C0 = C0(d, κ) > 0 such that

sup
|θ|1≤1

∞∑
j=0

P0

(
Z(θ)

j = 0
)
≤ C0. (3.4.11)

It then follows from (3.4.10) that there exist η2 = η2(d, κ) ∈ (0, η1) and ε′ = ε′(d, κ) > 0 such

that, for any P ∈ Pκ, if imbs(P) < ε′ then sup|θ|1<η2 V (∞)

κ,s,θ < C−1
0 which, by Lemma 3.3.2 and

(3.4.11), implies

sup
|θ|1<η2 , n≥0

‖Zn,θ‖2
L2(P) <∞.

The rest of the proof of (3.2.7) now follows the same line of arguments as that of Theorem

3.2.1. In the end, we obtain that there exist η = η(d, κ), ε∗ = ε?(d, κ) > 0 such that, for any

P ∈ Pκ, if imbs(P) < ε? then Iq(x) = Ia(x) for all x ∈ O, where O ⊆ ∂D(s) \ ∂Dd−2 is the

open set given by

O := π−1({∇ logψ(θ) : |θ|1 < η}) ∩ (∂D(s) \ ∂Dd−2). (3.4.12)
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Since the mapping (α, θ) 7→ Hessian(logψ(θ)) is continuous onM(κ)(V)×Rd−1, by [BMRS1,

Theorem 4.5] (see also the proof of [BMRS1, Lemma 4.8]) there exists r = r(d, κ) > 0 such

that, for any P ∈ Pκ,

Br(∇ logψ(0)) ⊆ {∇ logψ(θ) : |θ|1 < η}.

From this, standard properties of affine transformations show that there exists some c > 0

depending only on the transformation π such that

Bcr(xs) ∩ (∂D(s) \ ∂Dd−2) ⊆ O,

for xs defined as

xs := π−1(∇ logψ(0)) =
1

ψ(0)

d∑
i=1

α(siei)siei ∈ ∂D(s) \ ∂Dd−2. (3.4.13)

Finally, to check (3.2.6) we first observe that Ia ≤ Iq by Jensen’s inequality and Fatou’s

lemma (or Lemma 3.3.5), so that it will be enough to show that Iq(x0) = minx∈∂D(s) Ia(x) for

some x0 ∈ ∂D(s). Now, by Lemma 3.3.6 and Remarks 3.3.1-3.3.2 we have that minx∈∂D(s) Ia(x) =

Ia(xs) for xs as in (3.4.13). Since xs belongs to the set O in (3.4.12), we see that Iq(xs) =

Ia(xs) = minx∈∂D(s) Ia(x) and so (3.2.6) now follows.

3.5 Proofs of Theorem 3.2.3-Theorem 3.2.4

Proof of Theorem 3.2.3. That Ia(x) = supθ∈Rd [〈θ, x〉 − log λ(θ)] has been shown already

in Case 2 of the proof of Lemma 3.3.5. Theorem 3.2.2-Theorem 3.2.1 then imply the desired

identity for Iq.

Proof of Theorem 3.2.4. Recall that in this context the environments admit the repre-
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sentation

ωε(x, e) := α(e)(1 + εη(x, e)),

for ε ∈ [0, 1) and {η(x, ·)}x∈Zd an i.i.d. family of mean-zero random vectors on Γα. To

emphasize the dependence on the disorder parameter, we henceforth write Iq(·, ε) and Ia(·, ε)

respectively for the quenched and annealed large deviation rate functions of the random walk

in the environment ωε. For x ∈ ∂D \ ∂Dd−2 define

εc := sup{ε ∈ [0, 1) : Iq(x, ε) = Ia(x, ε)}. (3.5.1)

Note that we always have Iq(·, 0) ≡ Ia(·, 0) since ω0 is non-random, so that the set in (3.5.1)

is always nonempty. Furthermore, by Theorem 3.2.1 we have that Iq(x, ε) = Ia(x, ε) for all

ε sufficiently small, so that in fact εc(x) > 0 for all x ∈ ∂D \ ∂Dd−2. Assuming that the

mapping ε 7→ Ia(·, ε)− Iq(·, ε) is monotone for the moment, let us deduce (3.2.12).

Proof of (3.2.12): Choose any probability measure Q satisfying Assumption B and ε′ ∈

(0, 1). By [Yil4, Proposition 4], Ia(x0, ε
′) < Iq(x0, ε

′) for some x0 ∈ ∂D.6 As the rate functions

are continuous on D, there exists an open set O ( ∂D\∂Dd−2 on which the inequality above

holds. Since εc(x) > 0 for all x ∈ ∂D \ ∂Dd−2 by Theorem 3.2.1, the monotonicity of the

map ε 7→ Ia(x, ε)− Iq(x, ε) now implies that 0 < εc(x) ≤ ε′ for all x ∈ O which, since ε′ < 1,

shows (3.2.12) and therefore proves the existence of a true phase transition.

For the proof of Theorem 3.2.4, we now owe the reader the proof of (3.2.11).

Proof of (3.2.11): By the uniform ellipticity of ωε, the proof of this part now follows from

Lemma 3.3.5, the dominated convergence theorem, and

Lemma 3.5.1. Fix x ∈ ∂D and let {xn}n∈N ⊆ Zd be the corresponding admissible sequence
6Even though [Yil4, Proposition 4] states that the strict inequality holds for some interior point x0 ∈

int(D), the proof actually shows that the inequality holds for some x0 ∈ V ⊆ ∂D.
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from Lemma 3.3.5. Then, under Assumption B, for all n ∈ N the map

ε 7→ 1

n

[
E logP0,ωε(Xn = xn)− logP0(Xn = xn)

]
=: Dn(ε)

is non-increasing. Moreover, the map ε 7→ Ia(x, ε)− Iq(x, ε) = limn→∞Dn(ε) is continuous

on [0, 1).

Proof of Lemma 3.5.1. Fix n ∈ N and xn ∈ Zd with |xn|1 = n. Then, in the notation of

Section 3.3.1, by (3.3.5) and (3.3.14) we can compute explicitly

P0,ωε(Xn = xn) =
∑

z=(z0,...,zn−1)∈R(xn)
n−1

n∏
j=1

(α(∆j(z))(1 + εη(zj−1,∆j(z)))) ,

P0(Xn = xn) =
∑

z=(z0,...,zn−1)∈R(xn)
n−1

n∏
j=1

α(∆j(z)),

where R(xn)
n−1 is the set of paths z of length n− 1 which start at 0 and end at some neighbor

of xn, i.e. all paths z ∈ Rn−1 such that ∆n(z) := xn − zn−1 ∈ V.

To show that Dn is non-increasing, it will be enough to show that its derivative d
dε

is

non-positive. The second term in Dn does not depend on ε, so by uniform ellipticity we have

for ε ∈ (0, 1)

dDn

dε
=

1

n

d

dε

(
E
[

logP0,ωε(Xn = xn)
])

=
1

n
E
[

d

dε

(
logP0,ωε(Xn = xn)

)]
=

1

n

∑
z∈R(xn)

n−1

E

[
An(z)Bn(z)∑
z′∈R(xn)

n−1
An(z′)

]
, (3.5.2)

where

An(z) :=
n∏
j=1

(α(∆j(z))(1 + εη(zj−1,∆j(z)))) and Bn(z) :=
n∑
j=1

η(zj−1,∆j(z))

1 + εη(zj−1,∆j(z))
.

(3.5.3)
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Next, for each path z ∈ R(xn)
n−1 let us define the probability measure P z given by

dP z =
An(z)∏n

j=1 α(∆j(z))
dQ.

Recalling (3.5.3), this allows us to write the derivative as

dDn

dε
=

1

n

∑
z∈R(xn)

n−1

[
n∏
j=1

α(∆j(z))

]
Ez

[
Bn(z)∑

z′∈R(xn)
n−1

An(z′)

]
.

Note that, for each z ∈ R(xn)
n−1 , the random variables (η(zj−1,∆j(z)) : j = 1, . . . , n) are

independent under P z (although not necessarily identically distributed). Furthermore, ob-

serve that An(z) and Bn(z) are both increasing in η for any path z. Therefore, by uniform

ellipticity and the Harris-FKG inequality (see [Har]) we conclude that for any ε ∈ (0, 1),

dDn

dε
≤ 1

n

∑
z∈R(xn)

n−1

[
n∏
j=1

α(∆j(z))

]
Ez(Bn(z))Ez

[
1∑

z′∈R(xn)
n

An(z′)

]

=
1

n

∑
z∈R(xn)

n−1

(
n∏
j=1

α(∆j(z))

)−1

E(An(z)Bn(z))E

[
An(z)∑

z′∈R(xn)
n−1

An(z′)

]
= 0,

where the last equality follows from the fact that E(An(z)Bn(z)) = 0 since the random

variables (η(zj−1,∆j(z)) : j = 1, . . . , n) all have mean zero and are independent under Q by

(3.3.14). Thus, we see that dDn
dε
≤ 0 and therefore Dn is non-increasing on [0, 1). Finally, to

show that the map D∞(ε) := Ia(x, ε) − Iq(x, ε) is continuous we first observe that for any

ε′ ∈ (0, 1) there exists some Cε′ > 0 such that supε≤ε′ |Bn(z)| ≤ Cε′n for all paths z ∈ R(xn)
n−1 .

By (3.5.2), this implies that supε≤ε′
dDn
dε

(ε) ≤ Cε′ for any ε′ ∈ (0, 1), and so by the mean

value theorem

|Dn(ε1)−Dn(ε2)| ≤ Cε′|ε1 − ε2| (3.5.4)

for any ε1, ε2 ∈ [0, ε′]. Since ε′ can be taken arbitrarily close to 1, the continuity of D∞ now
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follows upon taking the limit as n→∞ on (3.5.4), since D∞(ε) = limn→∞Dn(ε) by Lemma

3.3.5.
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Chapter 4

Localization at the boundary for RWRE

4.1 Introduction

Random walks in random environment (RWRE) is a fundamental model in probability used

as a prototype for various phenomena. Examples of this include DNA chain replication

[Che], crystal growth [Tem], among others. It was introduced in the ’70s to study motion

in random media. In dimension d = 1, the model is well understood. Some of the known

results include transience, recurrence, law of large numbers ([Sol],[Ali]), and large deviations

([GdH], [CGZ]). However, when d ≥ 2, there are several open questions, including how

to characterize precisely when the walk is transient or recurrent, or whether directional

transience implies ballisticity. We refer the reader to the references [DR] and [Zei] for a

complete presentation of the model.

In this paper, we deal with the notion of localization. Informally, we say that the walk

is localized if its asymptotic trajectory is confined to some region with positive probability.

Otherwise, it is delocalized. For RWRE, localization has been studied almost entirely in

the one-dimensional case (see, for example, the works of Sinai [Sin] and Golosov [Gol]).

When the dimension is two or higher, the topic has been practically untouched ([BCR]
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and [DG] are two somewhat related articles, dealing with local central limit theorems). To

motivate this concept, consider first a simple random walk (Sn)n∈N on Zd conditioned to

reach the boundary at time n, that is, |Sn|1 = n for each n ∈ N. This walk is an example

of delocalization, as a consequence of Remark 4.2.1 below. The natural question to ask is if

the same situation continues to happen if we perturb the walk in some (random) directions.

It turns out that the introduction of a small disorder can change the walk’s typical paths

so that the perturbed walk has a favorite trajectory that it is likely to visit, that is, it is

localized. A perturbation of this sort is a perfect illustration of an RWRE. More precisely, if

(ξ(x, ·))x∈Zd is an i.i.d. family of mean-zero random variables, and (α(e))e∈V are nonnegative

numbers such that
∑

e∈V α(e) = 1 we can consider environments of the type

ωε(x, e) = α(e)(1 + εξ(x, e)). (4.1.1)

Under this setting, the question is whether there is localization or delocalization for a given

ε. As the case ε = 0 corresponds to delocalization, one foresees that this will also be the

case under a low disorder, and for large enough disorder, the opposite may occur. Thus, one

might expect the existence of a phase transition in terms of the parameter ε. That result is

proved in Theorem 4.2.2. However, the phase transition may be "trivial" in two ways:

(i) There is only delocalization at ε = 0. In other words, the walk is always localized

unless it is deterministic. We show in Theorem 4.2.1 that this is the case if d = 2 or 3.

Not only that, but any1 (non-deterministic) RWRE will be localized.

(ii) There is always delocalization. If d ≥ 4, we establish that the previous situation cannot

hold, namely, only localization. Actually, the opposite may take place. Nonetheless,

we show in Subsection 4.5.1 examples when a genuine phase transition occurs.
1More precisely, any RWRE that satisfies both Assumptions A and B, see below.
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In summary, the main results of this paper are two: localization holds if d = 2 or 3, and for

d ≥ 4 there is a phase transition for the localization/delocalization phenomena.

The concept of localization/delocalization is closely related to the equality or difference

between the quenched and averaged large deviations for RWRE at the boundary. Without

being completely rigorous for now, consider a face F of the set D := {x ∈ Rd : |x|1 = 1}. If

Iq and Ia are the quenched and annealed rate functions for an RWRE (see (4.3.10) for the

definition), then in Theorem 4.3.1 we show that localization in the face F is equivalent to

inf
x∈F

Ia(x) < inf
x∈F

Iq(x) (4.1.2)

and delocalization in the same face corresponds to the equality in (4.1.2). This criterion is

one of the central technical results since the annealed rate function at the boundary can be

computed explicitly (see Remark 2.7 in [BMRS2]). Even though the quenched rate function

has not an easy explicit formula (see Theorem 2 in [Ros] ), one can obtain estimates for

the quenched infimum in (4.1.2) that ensures the strict inequality in the same equation. In

Subsection 4.5.1 we exploit this fact to show a part of Theorem 4.2.2.

To finish this introduction, we mention that in the model of directed polymers in random

environment, the path localization of the walk has been studied vigorously, and several

remarkable results have been obtained in the last two decades (see [CSY], [AL], [Bat] to

select a few of them). The lectures notes [Com] contains an updated account of some of

these articles.
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4.2 Definition and statements

4.2.1 The model

Fix d ∈ N, the dimension where the walk moves. For x ∈ Rd and p ∈ [1,∞], the `p norm of

x is denoted by |x|p. Define V := {x ∈ Zd : |x|1 = 1} = {±e1, · · · ,±ed} the set of allowed

jumps of the walk (as usual, ei is the vector with zero coordinates excepting the one in the

ith position, where it is equal to one). Next, defineM1(V) as the set of nearest neighbors

probability vectors, that is,

M1(V) := {p : V→ [0, 1] :
∑
e∈V

p(e) = 1}.

Now we can define the environments. An environment is an element ω in the space

Ω := {ω : Zd × V→ [0, 1] : ω(x) ∈M1(V) for all x ∈ Zd} =M1(V)Z
d

.

We usually write ω = {ω(x, e)}x∈Zd,e∈V. Finally, we can define a random walk in the envi-

ronment ω ∈ Ω starting at a point x ∈ Zd as the Markov chain X = (Xn)n∈N with law Px,ω

that satisfies

Px,ω(X0 = x) = 1,

Px,ω(Xn + 1 = y + e|Xn = y) =


ω(y, e), if Px,ω(Xn = y) > 0

0, otherwise.

(4.2.1)

The measure Px,ω in the literature is known as the quenched measure, in contrast to the

annealed (or averaged) measure we describe next. We use the following notation in the

sequel: if Y = Ω or Y = (Zd)N, then B(Y ) is its Borel σ-algebra. In our case, choose a

probability measure P on (Ω,B(Ω)). The annealed measure Px of the RWRE starting at
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x ∈ Zd is defined as the measure on Ω× (Zd)N that satisfies

Px(A×B) =

∫
A

Px,ω(B)dP (4.2.2)

for each A ∈ B(Ω) and B ∈ B((Zd)N). Expectations with respect to Px,ω, Px and P are de-

noted by Ex,ω, Ex and E respectively. The basics assumptions in this work are the following:

Assumption A:

(i) The random vectors {ω(x, ·)}x∈Zd are i.i.d under P.

(ii) Uniform ellipticity: there exists a κ > 0 such that for every x ∈ Zd and e ∈ V,

P(ω(x, e) ≥ κ) = 1. (4.2.3)

The two assumptions above are common in the literature. In particular, under assumption

(i), we can define

α(e) := E[ω(0, e)] = E[ω(x, e)], x ∈ Zd, e ∈ V. (4.2.4)

4.2.2 Localization at the boundary

We will look at trajectories (Xn)n∈N of an RWRE such that |Xn|1 = n for each n, and study

the asymptotic behavior of the normalized quenched probability of reaching the boundary

at time n, that is, if x ∈ Zd satisfies |x|1 = n,

P0,ω (Xn = x | |X|1 = n) . (4.2.5)

Specifically, we are concerned in knowing if for some sequence (xn)n∈N ⊆ Zd such that |x|1 = n

for all n, the quenched probability (4.2.5) is greater than some constant c, uniformly on n. In

this case, the conditioned walk is "localized" around this path (the rigorous definition appears
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in Definition 4.2.1 below). There is a counterpart in the literature of directed polymers in

random environment (see [Com], p. 88). In this model, there is a nice characterization of

localization/delocalization depending on the disorder of the environment. For RWRE, the

disorder measures how far is the environment ω(0, e) from its expectation α(e). This allows

us to obtain analogous results in our case.

At this point, we proceed to characterize localization rigorously. We decompose ∂D in

faces ∂D(s), with s ∈ {−1, 1}d, defined by

∂D(s) := {x ∈ ∂D : sjxj ≥ 0, j = 1, · · · , d}. (4.2.6)

Let s := (1, 1, · · · 1). From now on, we consider only ∂D+ := ∂D(s). Define the allowed

jumps by

V+ := {e1, · · · , ed} ⊆ V.

Next, consider the set

∂Rn := n∂D+ = {x ∈ Zd : |x|1 = n, xj ≥ 0 for all j ∈ {1, · · · , d}}

and define Rn as the sets of all paths (z0, z1, · · · , zn) ∈ (Zd)n+1 for which z0 = 0 and

zn ∈ ∂Rn. Note that this happens if and only if 4zi := zi− zi−1 ∈ V+ for each i = 1, · · · , n.

Subsequently, let An := {Xn−X0 ∈ ∂Rn}. Finally, the sequence of random variables (Jn)n∈N

is defined by J1 := 1, and for n ≥ 2,

Jn := max
x∈Zd

P0,ω(Xn−1 = x|An−1). (4.2.7)
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Definition 4.2.1. An RWRE is localized at the boundary if

lim inf
n→∞

1

n

n∑
k=1

Jk > 0 P− a.s., (4.2.8)

and an RWRE is delocalized at the boundary if

lim inf
n→∞

1

n

n∑
k=1

Jk = 0 P− a.s. (4.2.9)

Note that a priori, the walk can be neither localized nor delocalized. However, in Theorem

4.3.1, we show that this cannot happen for walks that satisfy Assumption A.

A different formulation

Working on the boundary induces a polymer-like interpretation that makes more transparent

the argument we use below. Given ω ∈ Ω, x ∈ Zd, and e ∈ V+, define

π(ω, x, e) :=
ω(x, e)∑

e′∈V+ ω(x, e′)
, Ψ(ω, x) := log

(∑
e∈V+

ω(x, e)

)
. (4.2.10)

Then, ω(x, e) = π(ω, x, e)eΨ(ω,x), and π induces an RWRE, with V+ as the set of allowed

jumps. Its quenched measure (starting at x) is Px,π, and its expectation is Ex,π. Therefore,

for fixed n ∈ N and A ∈ B((Zd)N),

P0,ω(A,Xn ∈ ∂Rn) = E0,π

(
e
∑n−1
i=0 Ψ(ω,Xi), A

)
. (4.2.11)

The last display leads to define a quenched polymer measure P ω
x,n as

P ω
x,n(A) :=

E0,π

(
e
∑n−1
i=0 Ψ(ω,Xi), A

)
E0,π

(
e
∑n−1
i=0 Ψ(ω,Xi)

) , A ∈ B((Zd)N). (4.2.12)

This definition resembles the general framework introduced in [RASY1].
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Using the polymer measure, it is direct to verify the identity

Jn = max
x∈Zd

P ω
0,n−1(Xn−1 = x).

From now on, we use this scheme (except in Subsection 4.5.1), although, of course, both

definitions are equivalent.

4.2.3 Main results

The main results of this paper are that localization holds for (almost) all uniformly elliptic

and i.i.d environments in dimensions two and three, and a phase transition in terms of the

disorder in dimensions four or higher. Let c :=
∑

e∈V+ α(e). The following assumption will

play a remarkable role throughout the sequel.

Assumption B: The measure P satisfies

P(Ψ(ω, 0) = log(c)) < 1. (4.2.13)

Remark 4.2.1. As a consequence of Theorem 4.3.1, if Assumption B does not hold, then the

walk is delocalized at the boundary for any d ≥ 2.

Theorem 4.2.1. Let (Xn)n∈N be an RWRE that satisfies Assumptions A and B. If d ∈ {2, 3},

then the walk is localized at the boundary.

A related result in RWRE appears in the article [YZ] of Yilmaz and Zeitouni. They

show that for walks that satisfy a certain ballisticity condition2 , there is a class of mea-

sures P such that the quenched and annealed rate functions differ in a neighborhood of the

LLN velocity. In the directed polymer model, Comets and Vargas [CV] prove localization
2Called condition (T). This condition is equivalent to the ballisticity conditions (T’) and PM , as showed

in [GR]
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in dimension 1 + 1 (one dimension for time, and one for space), while Lacoin [Lac] proves

localization in dimension 1 + 2. Berger and Lacoin improved this result in [BL1], where they

gave the precise asymptotic behavior for the difference between the quenched and annealed

free energies, as n→∞.

For d ≥ 4, we consider a certain family of environments, parameterized by ε ∈ [0, 1).

This parameter represents how much the distribution of the jumps in an RWRE differs from

a simple random walk.

First, fix a probability vector 3 α = (α(e))e∈V with strictly positive entries. Define

Eα :=
{

(r(e))e∈V ∈ [−1, 1]V :
∑
e∈V

r(e)α(e) = 0, and sup
e∈V
|r(e)| = 1

}
(4.2.14)

and consider a probability measure Q on Γα := EZdα (also fixed from now). Next, pick an i.i.d

family of random variables (ξ(x))x∈Zd ∈ Γα such that E[ξ(x, e)] = 0 for all e ∈ V. Finally,

given ε ∈ [0, 1), define the environments (ωε(x))x∈Zd as

ωε(x, e) := α(e)(1 + εξ(x, e)). (4.2.15)

This framework was originally used in [BMRS2] to study a phase transition of the map

ε→ Ia(x, ·)− Iq(x, ·),

where Iq(x, ·), Ia(x, ·) are the quenched (respectively annealed) rate functions of an RWRE

in the environment ωε. The study of RWRE at low disorder has also been considered in

[Szn4], [Sab], among others.

For fixed ε ∈ [0, 1), let Pε be the law of ωε. This measure is uniformly elliptic with constant
3This is an abuse of notation with the α defined in (4.4.9). However, from the context will be clear to

which α we are referring.
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κ = (1−ε) mine∈V α(e). Conversely, for fixed κ < 1
mine∈V α(e)

, we define εmax := 1− κ
mine∈V α(e)

,

the maximum parameter so that for all ε ≤ εmax, Pε is uniformly elliptic with constant κ.

The last result of the paper is the phase transition for localization/delocalization for

parametrized environments. We say that an RWRE is ε-localized (resp. delocalized) if

(4.2.8) (resp. (4.2.9)) holds under the measure Pε.

Theorem 4.2.2. For d ≥ 2, α = (α(e))e∈V, Q and κ fixed, there exists ε ∈ [0, εmax] such

that the walk is ε-localized for 0 ≤ ε ≤ ε, and ε-delocalized for ε < ε ≤ εmax. Moreover, if

d ≥ 4, then ε > 0. Also, there are examples of walks that satisfy ε < εmax.

A direct consequence of Theorem 4.2.1 is the following:

Corollary 4.2.3. Under the same hypotheses and notation of Theorem 4.2.2, if Assumption

B does not hold, then ε = εmax. Otherwise, and if also d = 2 or 3, then ε = 0.

4.3 An equivalent criterion for localization

In this section, we prove an equivalent criterion of localization/delocalization that will be

used throughout the sequel. First, we need to define the following quantities.

Definition 4.3.1. Let (Xn)n∈N be an RWRE. Define the limits

p(ω) := lim
n→∞

1

n
logE0,π

(
e
∑n−1
i=0 Ψ(ω,Xi)

)
,

λ := lim
n→∞

1

n
logEE0,π

(
e
∑n−1
i=0 Ψ(ω,Xi)

)
= log(c).

(4.3.1)

The last equality holds since the conditioned walk is directed.

In the directed polymer literature, these limits are known as quenched and annealed free

energy, respectively. We leave the proof of the existence of p(ω) to the end of the section

(see Lemma 4.3.5). Moreover, we will show that it does not depend on the environment, i.e.,
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it is constant P- a.s. Hence, assuming the existence and non-randomness of p for now, by

Jensen’s inequality, we deduce that p ≤ λ.

Theorem 4.3.1. Let (Xn)n∈N be an RWRE that satisfies Assumption A.

(i) The RWRE is localized at the boundary if and only if p < λ.

(ii) The RWRE is delocalized at the boundary if and only if p = λ.

In particular, the walk is either localized or delocalized P-a.s.

4.3.1 Proof of Theorem 4.3.1

In order to prove the result, we need to introduce a couple of definitions. The first is a

martingale that is related to p and λ, and the second is a random variable linked to Jn.

Definition 4.3.2. Given an RWRE (Xn)n∈N that satisfies Assumption A, define the random

variable in (Ω,B(Ω),P)

Wn(ω) := E0,π

(
e
∑n−1
i=0 Ψ(ω,Xi)−n log(c)

)
, n ∈ N. (4.3.2)

The following lemma is straightforward, so its proof is skipped.

Lemma 4.3.2. The process {Wn}n∈N is a mean-one Fn-martingale under the filtration

{Fn}n≥0 given by F0 := {∅,Ω}, and for n ≥ 1,Fn := {ω(x, e) : |x|1 < n, x ∈ Zd, e ∈ V+}.

The martingale convergence theorem implies that W∞ := limn→∞Wn exists and is non-

negative P-a.s. Since the event {W∞ = 0} is Te-invariant P- a.s. for each e ∈ V+, the

ergodicity of P implies that P(W∞ = 0) ∈ {0, 1}. This consequence will be useful in Propo-

sition 4.3.3.

Next, we introduce a second random variable,
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In(ω) :=
∑
x∈Zd

P ω
0,n−1(Xn−1 = x)2. (4.3.3)

This random variable is Fn−1-measurable. Observe that

J2
n ≤ In ≤ Jn. (4.3.4)

The main ingredient in the proof of Theorem 4.3.1 is the next proposition, which compares

Wn and In. We use the following notation: for sequences (an), (bn) we say that an = Θ(bn)

if an = O(bn) and bn = O(an).

Proposition 4.3.3. Let (Xn)n∈N be an RWRE that satisfies Assumption A. Then the equality

{W∞ = 0} =

{
∞∑
n=1

In =∞

}
(4.3.5)

holds P-a.s. Furthermore, if P(W∞ = 0) = 1, there exist constants c1(P), c2(P) ∈ (0,∞) for

which P-a.s.,

c1

n∑
k=1

Ik ≤ − logWn ≤ c2

n∑
k=1

Ik for n large enough, (4.3.6)

that is, − logWn = Θ(
∑n

k=1 Ik).

Sketch of the proof of Proposition 4.3.3. The proof of Theorem 2.1 in [CSY] can be adapted

to show Proposition 4.3.3. It is based on the Doob’s decomposition of the submartingale

− logWn. More precisely, there exist a martingale {Mn}n∈N and an adapted process {An}n∈N

such that for all n ∈ N,

− logWn = Mn + An. (4.3.7)
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Indeed, An = −
∑n

i=1 E
[
log
(

Wi

Wi−1

) ∣∣Fi−1

]
. Noting that

Wi

Wi−1

= Eω
0,i−1

[
eΨ(ω,Xi−1)−log(c)

]
= 1 + Eω

0,i−1

[
eΨ(ω,Xi−1)−log(c) − 1

]
=: 1 + Ui,

we decompose An and Mn as

An = −
n∑
i=1

E[log(1 + Ui)|Fi−1], Mn =
n∑
i=1

(− log(1 + Ui) + E[log(1 + Ui)|Fi−1]) .

Exactly as in the aforementioned result, it is enough to prove that there is a constant

C > 0 such that for all n ∈ N,

1

C
In ≤ E[− log(1 + Un)|Fn−1] ≤ CIn, E[log2(1 + Un)|Fn−1] ≤ CIn. (4.3.8)

To check the inequalities above, notice that, by uniform ellipticity, the potential Ψ is bounded

P-a.s., so there are constants 0 < C1 < C2 such that P- a.s., for all n ∈ N, Wn

Wn−1
∈ (C1, C2).

Therefore,

Un − C3U
2
n ≤ log(1 + Un) ≤ Un − C4U

2
n (4.3.9)

for some constants C3, C4 > 0. Thus, E[− log(1 + Un)|Fn−1] is bounded by above by
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E[−Un + C3U
2
n|Fn−1] = −C4E[U2

n|Fn−1]

= C3

∑
x,x′∈Zd

E
[
Eω

0,n−1

(
eΨ(ω,x)−log(c) − 1, Xn−1 = x

)
×

Eω
0,n−1

(
eΨ(ω,x′)−log(c) − 1, Xn−1 = x′

) ∣∣Fn−1

]
= C3

∑
x,x′∈Zd

E
[(

eΨ(ω,x)−log(c) − 1
) (

eΨ(ω,x′)−log(c) − 1
)]
×

P ω
0,n−1(Xn−1 = x)P ω

0,n−1(Xn−1 = x′)

= C3E
[(

eΨ(ω,0)−log(c) − 1
)2
]
In.

Similarly we get a lower bound E[− log(1 + Un)|Fn−1] ≥ C4E
[(

eΨ(ω,0)−log(c) − 1
)2
]
In, and

this shows the first inequality in (4.3.9). Finally, noting that for some constant C5 > 0,

log2(1 + Un) ≤ C5U
2
n, repeating the steps from the last display we get the second inequality

on (4.3.9), concluding the proof.

Proof of Theorem 4.3.1.

Recall that, due to (4.3.4), we have

(
1

n

n∑
k=1

Jk

)2

≤ 1

n

n∑
k=1

J2
k ≤

1

n

n∑
k=1

Ik ≤
1

n

n∑
k=1

Jk.

Thus, the liminfs of the sequences ( 1
n

∑n
k=1 Ik)n and ( 1

n

∑n
k=1 Jk)n are of the same nature,

that is, both are positive P-a.s. or zero P-a.s.

If p < λ, W∞ = 0 P-a.s. To check this, observe that if W∞ > 0 then logWn

n
→ 0, but at

the same time

logWn

n
→ p− λ = 0.
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So, if p < λ, thenW∞ = 0 P-a.s. By (4.3.5),
∑

n In =∞ P- a.s. and − logWn = Θ(
∑n

k=1 Ik).

In particular, lim infn→∞
1
n

∑n
k=1 In > 0, so the RWRE is localized at the boundary. Recip-

rocally, if the walk is localized,
∑n

k=1 Ik = ∞, so by (4.3.5) , − logWn = Θ(
∑n

k=1 Ik), and

then − logWn

n
→ p− λ > 0. This proves (i), and the proof of (ii) is analogous.

4.3.2 Relation between p and λ with RWRE rate functions

To justify the existence of the first limit in (4.3.1), we relate p (resp. λ) to the quenched

(resp. annealed) rate function for random walks in random environment. First, we recall

some standard notation. If G ⊆ Rd is a Borel set (with respect to the usual topology), the

interior and closure of G are, respectively, int(G) and G. We say that the position of the

walk satisfies a quenched large deviation principle if there is a lower semicontinuous function

Iq : Rd → [0,∞] such that for each Borel set G ⊆ Rd

− inf
x∈int(G)

Iq(x) ≤ lim inf
n→∞

1

n
logP0,ω(Xn/n ∈ G) ≤ lim sup

n→∞

1

n
logP0,ω(Xn/n ∈ G) ≤ − inf

x∈G
Iq(x).

(4.3.10)

Analogously, we say that the position of the walk satisfies an annealed large deviation prin-

ciple if there is a lower semicontinuous function Ia : Rd → [0,∞] such that for every Borel

set G ⊆ Rd, (4.3.10) holds with P0 instead of P0,ω. It is well known that the domain of

both functions (that is, when Iq, Ia < ∞) is the set D := {x ∈ Rd : |x|1 ≤ 1}. Also, by

Jensen’s inequality and Fatou’s lemma, Ia ≤ Iq. Moreover, Varadhan proved in [Var] that

both functions exist under i.i.d and uniform elliptic environments, and Iq is deterministic

(i.e., it does not depend on ω).

Next, we characterize the rate functions at ∂D+ (see (4.2.6)).

Lemma 4.3.4. Under Assumption A, for any x ∈ ∂D+ there is a sequence (xn)n∈N such

that for all n, xn ∈ Zd, |xn|1 = n, xn
n
→ x, and
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Iq(x) = − lim
n→∞

1

n
logP0,ω(Xn = xn), Ia(x) = − lim

n→∞

1

n
logP0(Xn = xn). (4.3.11)

Moreover, the limits are independent of the chosen sequence. This result is Lemma 3.5 in

[BMRS2].

Finally, the existence of p is consequence of the lemma below.

Lemma 4.3.5. For an RWRE that satisfies Assumption A, the following identities hold:

p = − inf
x∈∂D+

Iq(x), λ = − inf
x∈∂D+

Ia(x). (4.3.12)

In particular, p is not random (since Iq is deterministic).

The proof of this lemma is standard (see Lemma 16.12 in [RAS4]). As a corollary, we

obtain the characterization of localization/delocalization in terms of the difference between

the infima of the quenched and annealed rate functions:

Corollary 4.3.6. For an RWRE that satisfies Assumption A, we have localization at the

boundary if and only if

inf
x∈∂D+

Ia(x) < inf
x∈∂D+

Iq(x).

4.4 Proof of Theorem 4.2.1

4.4.1 Preliminaries for the proof of Theorem 4.2.1

The method of fractional moment and change of measure used in the proof was originally

introduced by Derrida et al. in [DGLT] for the pinning model. For directed polymers, Lacoin
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and Moreno used it for the first time in [LM] (on the hierarchical lattice), and Lacoin in [Lac]

(on Zd). Yilmaz and Zeitouni adapted the technique in [YZ] for random walks in random

environment. As the proofs are similar, we only mention the main points of them and refer

to the papers above for further details. More precisely, let φ(θ) :=
∑

e∈V α(e)e〈θ,z〉. In [YZ],

the analog of showing that p < λ in the space-time RWRE setting, is to demonstrate that

for a sufficiently large set of points θ ∈ Rd,

lim
n→∞

1

n
E logE0,ω

[
e〈θ,Xn〉−n log(φ(θ))

]
< 0, (4.4.1)

Comparing with

p− λ = lim
n→∞

1

n
E log[Wn] = lim

n→∞

1

n
E logE0,π

(
e
∑n−1
i=0 Ψ(ω,Xi)−n log(c)

)
,

the main difference between the two models is that the potential Ψ(ω, x) is replaced by a

tilt that depends on the steps of the walk, namely, Ψst(θ, e) := e〈θ,e〉. This introduces a

correlation that in our case is not present (see the paragraph below (4.4.9)). Thus, it is

natural to apply the methods in [YZ] to deduce the desired result. We sketch the main ideas

and differences in the next pages.

First, note that Theorem 4.3.1 implies immediately delocalization when (4.2.13) does not

hold. Indeed, in this case, P-a.s Ψ(ω, x) = log(c) for all x ∈ Zd, so by (4.3.1), p = log(c) = λ.

Hence, until the end of the proof we assume that (4.2.13) holds.

Let {X̂n}n∈N be a simple random walk with jumps in V+ and law P̂ that satisfies

P̂ (X̂n+1 = x+ e|X̂n = x) =
α(e)∑

e′∈V+ q(e′)
, x ∈ ∂Rn, e ∈ V+,

and define µ := Ê(X̂1). Consider N = nm with n fixed (but large enough) and m → ∞.

Recall that
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WN(ω) = E0,π

(
e
∑N−1
i=0 Ψ(ω,Xi)−N log(c)

)
.

We define, for y ∈ Zd,

Jy :=

(
(y − 1

2
)
√
n, (y +

1

2
)
√
n

)
⊆ Rd. (4.4.2)

Given Y = (y1, · · · , ym) ∈ (Zd)m, let

WN(ω, Y ) := E0,π

(
e
∑N−1
i=0 Ψ(ω,Xi)−N log(c), Xjn − jnµ ∈ Jyj ,∀j ≤ m

)

and decompose

WN(ω) =
∑
Y

WN(ω, Y ). (4.4.3)

The decomposition in (4.4.3) is well-founded, since Zd ⊆
⋃
y∈Λ Jy. By the inequality

(
∑

i ai)
1/2 ≤

∑
i a

1/2
i , valid for countable indices, we obtain

E[WN(ω)1/2] ≤
∑
Y

E[WN(ω, Y )1/2].

This inequality gives us

p− λ = lim
N→∞

1

N
E log[WN ] ≤ lim inf

N→∞

2

N
logE[W

1/2
N ] ≤ lim inf

N→∞

2

N
log

(∑
Y

E[WN(ω, Y )1/2]

)
.

(4.4.4)

Now, we estimate each expectation E[WN(ω, Y )]1/2, applying the change of measure. The

plan is the following (recall that N = mn with fixed n): fix j ∈ {1, · · · ,m}, Y ∈ (Zd)m, and

a square integer n. Also, C1 is a constant to determine, and y0 := 0. Then define
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Bj := {(z, i) ∈ Zd × N : (j − 1)n ≤ i < jn, |z − iµ− yj−1

√
n|1 ≤ C1

√
n}. (4.4.5)

4.4.2 Proof in the case d = 2

The idea is to define a function that depends on the different blocks Bj. Let

ω̃(y) := eΨ(ω,y) − c, and D(Bj) :=
∑

y:(y,|y|1)∈Bj

ω̃(y). (4.4.6)

In particular, E[D(Bj)] = 0, and they form an independent family of random variables. It is

important to observe that (4.2.13) guarantees that ω̃ and D(Bj) are non-degenerate random

variables. We also define δn := C
−1/2
1 n−3/4. Note that δ2

n|D(B1)| = O(1). Finally, for K > 0

large enough (to determine), define

fK(u) := −K1{u≥eK2}, g(ω, Y ) := e
∑m
j=1 fK(δnD(Bj)).

By Cauchy-Schwarz inequality,

E[WN(ω, Y )1/2] = E[WN(ω, Y )1/2g(ω, Y )1/2g(ω, Y )−1/2]

≤ E[WN(ω, Y )g(ω, Y )]1/2E[g(ω, Y )−1]1/2.

(4.4.7)

One can show that forK large enough, E[g(ω, Y )−1]1/2 ≤ 2m. To bound E[WN(ω, Y )g(ω, Y )],

we can follow the estimates in Pages 251-252 from [YZ] to deduce that

E[WN(ω, Y )1/2] ≤

2
∑
y∈Z2

max
x∈J0

EEx,π
(

e
∑n−1
i=0 Ψ(ω,Xi)+fK(δnD(B1))−n log(c);Xn − nµ ∈ Jy

)m

.
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The bound (4.4.4) tell us that p− λ < 0 once we are able to prove the following:

Lemma 4.4.1. For n,K, and C1 large enough,

∑
y∈Z2

max
x∈J0

EEx,π
(

e
∑n−1
i=0 Ψ(ω,Xi)+fK(δnD(B1))−n log(c);Xn − nµ ∈ Jy

)
< 1/2.

The proof of the lemma above is followed almost exactly from Subsection 2.5 in [YZ]. The

main difference rests in display (2.22) in the aforementioned paper. In our case, we need to

check that for some β > 0,

EE0,π

e
∑n−1
i=0 Ψ(ω,Xi)−n log(c)

(
n−1∑
i=0

ω̃(Xi)− β

)2


is O(n).

We can decompose it as

n−1∑
j=1

EE0,π

[
e
∑n−1
i=0 Ψ(ω,Xi)−n log(c)(ω̃(Xj)− β)2

]
+

2
∑

1≤`<j≤n−1

EE0,π

[
e
∑n−1
i=0 Ψ(ω,Xi)−n log(c)(ω̃(X`)− β)(ω̃(Xj)− β)

]
.

(4.4.8)

The first term is nEE0,π

[
eΨ(ω,X1)−log(c) (ω̃(X1)− β)2]. As cn := δ2n

(µnδn−An−eK2 )2
= O(n−2),

this expression vanishes as n→∞. On the other hand, if we choose

β := EE0,π

[
eΨ(ω,X1)−log(c)ω̃(X1)

]
=

E
[
e2Ψ(ω,0)

]
− c2

c
> 0 (by (4.2.13)), (4.4.9)

then by independence, the second term in (4.4.8) is zero. By comparison, the analog of α

(called µ in [YZ]) is greater than zero due to a positive correlation that in our case is not

needed.
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Combining the previous results, such election of constants help us to deduce that Lemma

4.4.1 is true, and therefore p− λ < 0.

4.4.3 Proof in case d = 3

In this case, the proof in principle is essentially the same, but some technical details need to

be adapted to this situation. In particular, we need to redefine δn and D(Bj). First, for a

constant C2 > 0 to determine, let

V (y, z) :=
1

|i− j|
1{|y−z−(i−j)µ|1<C2

√
|i−j|} if i 6= j, and 0 otherwise.

Also, recall that ω̃ is defined as in (4.4.6). Then we redefine

δn := n−1(log n)−1/2, D(Bj) :=
∑
y,z

(y,i),(z,j)∈Bj

V (y, z)ω̃(y)ω̃(z).

The proof of Theorem 1.6 in [YZ] can be followed almost word by word, and our case is a

little bit simplified since the correlation issue is not present as in the d = 2 case. Details are

omitted.

4.5 Phase transition

Recall the parametrization of the environments (ωε)ε∈[0,1) (i.e., (4.2.15)). Let be p(ε) the

limit in (4.3.1) with environment ωε. On the other hand, λ is constant over ε, and it is equal

to log(
∑

e∈V+ α(e)). The first part of Theorem 4.2.2 is consequence of the lemma below:

Lemma 4.5.1. For each n ∈ N, the map

ε ∈ [0, εmax]→
1

n
[E logP0,ωε(Xn ∈ ∂Rn)− logP0(Xn ∈ ∂Rn)] is non-increasing.
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This is an adaptation of Lemma 5.1 in [BMRS2]. If we let n to infinity, then we deduce that

p(ε)− λ is non-increasing. To finish the proof, define

ε := inf{ε ∈ (0, εmax] : p(ε)− λ < 0},

with the convention that inf ∅ = εmax.

The rest of this section is devoted to prove the second part of Theorem 4.2.2. The main

ingredient to show that ε > 0 is the next lemma, a particular case of Lemma 3.1 with θ = 0

in [BMRS2].

Lemma 4.5.2. If ε > 0 is small enough, then supn |W 2
n |2 <∞.

Recall the following: if W∞(ε) := W∞(ωε), then

W∞(ωε) > 0 implies p(ε) = λ,

the later being equivalent to localization. Indeed, IfW∞ > 0, then log(W∞) = limn→∞ log(Wn) <

∞, so

p(ε) = lim
n→∞

1

n
logP0,ωε(Xn ∈ ∂Rn) = lim

n→∞

Wn(ωε)

n
+ λ = λ.

Now pick ε > 0 small enough such that supn |W 2
n |2 <∞ as in Lemma 4.5.2, and call it ε∗. By

the martingale convergence theorem, Wn(ε∗)→ W∞(ε∗) a.s. and in L2. As |Wn|2 = 1 for all

n, then we necessarily have W∞(ε∗) > 0, and therefore p(ε∗) = λ. But the map ε→ p(ε)−λ

is non-increasing, so p = λ on [0, ε∗], and thus ε ≥ ε∗ > 0.

It only remains to show an example in dimension greater or equal than 4 where 0 < ε <

εmax.

154



4.5.1 An example on which ε < εmax

For simplicity, we consider d = 4, and i.i.d random variables (ξ(x))x∈Zd ∈ Γα such that

ξ(x, e) = ξ(x, e′) for all e, e′ ∈ V+, and ξ(x,−e) = −ξ(x, e). If y = (y1, · · · , yd) ∈ ∂D+ is a

point to determine, for i = 1, · · · , d, define α(ei) = α(−ei) := yi
2
∑d
i=1 yi

. Recall that

ωε(x, ei) = α(ei)(1 + εξ(x)) ei ∈ V+.

Moreover, assume that the distribution of ξ(0) under Q is the Rademacher distribution,

namely, Q(ξ(0) = 1) = Q(ξ(0) = −1) = 1
2
. By Corollary 4.3.6, localization occurs as soon as

inf
x∈∂D+

Ia(x) < inf
x∈∂D+

Iq(x). (4.5.1)

However, in this case, the infimum on the left is exactly Ia(y), and it is achieved only at this

point (see Theorem 2.3 in [BMRS2]). On the other hand, by the continuity of Iq, the infimum

on the right is also achieved at some point x ∈ ∂D+. If x 6= y, then Ia(y) < Ia(x) ≤ Iq(x),

so we are done. Thus, assume that x = y. Denote by (yn)n∈N any sequence as in Lemma

4.3.4 for the point y. Then we decompose −Iq(y) as

−Iq(y) = −Ia(y) + lim
n→∞

1

n
log

(∑
0=x0,x1,··· ,xn=yn

∏n
i=1 q(4xi)(1 + εξ(xi−1))∑

0=x0,x1,··· ,xn=yn

∏n
i=1 q(4xi)

)

≤ −Ia(y) + lim sup
n→∞

max
0=x0,x1,··· ,yn

1

n

n∑
i=1

log(1 + εξ(xi−1)). (4.5.2)

Also, the sum and maximum above are over all directed paths 0 = x0, x1, · · · , xn such that

xn = yn. Let C(yn) be the number of such paths. It’s easy to check that there exists

some constant C > 0 such that, for all n ∈ N, C(yn) ≤ Cenf(y)− d−1
2

logn, where f(y) =

−
∑d

i=1 yi log(yi). To estimate the maximum above, we can use Hoeffding inequality (see
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Theorem 2.8 in [BLM]) to obtain, for a > 0,

P

(
n∑
i=1

log(1 + εξ(xi−1))− nE[log(1 + εξ(0))] > na

)
≤ exp

(
−2na2

log
(

1+ε
1−ε

)2

)
. (4.5.3)

Therefore,

∞∑
n=1

P

(
max

0=x0,x1,··· ,yn

n∑
i=1

log(1 + εξ(xi−1))− nE[log(1 + εξ(0))] > na

)

≤
∞∑
n=1

C(yn) exp

(
−2na2

log
(

1+ε
1−ε

)2

)
<∞

as soon as a > log
(

1+ε
1−ε

)√
f(y)/2. By Borel-Cantelli’s lemma, (4.5.2) is bounded by

− Ia(y) + log

(
1 + ε

1− ε

)√
f(y)/2 + E [log(1 + εξ(0))]

= −Ia(y) + log

(
1 + ε

1− ε

)√
f(y)/2 +

1

2
(log(1 + ε) + log(1− ε)) .

If f(y) ≤ 9
50
, then

√
f(y)/2 ≤ 3

10
, and the last display is strictly smaller than −Ia(y) at

least for ε > 9
10
. The required value for f(y) can be achieved, for example, selecting the

vector y =
(

97
100
, 1

100
, 1

100
, 1

100

)
, so in this case, we can choose εmax ≈ 9

10
to obtain a true phase

transition, with κ ≈ 1
1000

.

Remark 4.5.1. The asymmetry in terms of α is needed. Indeed, if α(e) = 1
2d

for all e ∈ V, then

it is not difficult to show (see pp. 36-37 in [Com]) that under our setting, supn∈N E[W 2
n ] <∞,

and therefore, p(ε) = λ for all ε ∈ [0, εmax].
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