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ABSTRACT

We describe the search for Lymanbreak galaxies (LBGs) near the submillimeter-bright starburst galaxy HFLS3 at
z = 6.34 and a study on the environment of this massive galaxy during the end of reionization. We performed two
independent selections of LBGs on images obtained with the Gran Telescopio Canarias (GTC) and the Hubble
Space Telescope (HST) by combining nondetections in bands blueward of the Lymanbreak and color selection. A
total of 10 objects fulfilling the LBG selection criteria at z 5.5> were selected over the 4.54 and 55.5 arcmin2

covered by our HST and GTC images, respectively. The photometric redshift, UV luminosity, and star formation
rate of these sources were estimated with models of their spectral energy distribution. These z 6~ candidates have
physical properties and number densities in agreement with previous results. The UV luminosity function at z ∼ 6
and a Voronoi tessellation analysis of this field showno strong evidence for an overdensity of relatively bright
objects (mF105W < 25.9) associated with HFLS3. However, the overdensity parameter deduced from this field and
the surface density of objects cannot excludedefinitively the LBG overdensity hypothesis. Moreover, we identified
three faint objects at less than 3″ from HFLS3 with color consistent with those expected for z ∼ 6 galaxies. Deeper
data are needed to confirm their redshifts and to study their association with HFLS3 and the galaxy merger that
may be responsible for the massive starburst.

Key words: galaxies: formation – galaxies: high-redshift – galaxies: luminosity function, mass function –

galaxies: starburst

1. INTRODUCTION

One of the most important questions of modern astronomy is
undoubtedly the formation and evolution of the first luminous
objects in our universe. Over the past decade, the arrival of new
facilities with capabilities to push even further the boundaries of
our universe, such as the Herschel Space Observatory (Pilbratt
et al. 2010), WFC3 onthe Hubble Space Telescope (HST;Rob-
berto et al. 2002), and HAWK-I on the Very Large Telescope
(VLT; Pirard et al. 2004), has contributed to considerable
advances in our understanding of the first billion years. The
number of z 6> galaxies currently confirmed by spectroscopy

has greatlyincreased over the past few years (e.g., Vanzella
2011; Schenker et al. 2012), allowing us to better constrain their
physical properties in terms of the star formation rate (SFR),
stellar mass, and reddening (e.g., de Barros et al. 2014). The
evolution of such galaxies is now relatively wellconstrained and
supported by spectroscopic observations out to z ∼ 6 (e.g.,
LeFevre et al. 2015), and photometric studies are now slowly
starting to give robust constraints of galaxies out to z 10~ (e.g.,
Bouwens et al. 2014).
The detection of large numbers of dusty, massive starburst

galaxies at z 2~ was a surprise when they were first identified
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in 1997 (Smail et al. 1997; Hughes et al. 1998; for a review see
Casey et al. 2014). Theoretically, the existence of dusty,
massive starbursts at such early epochs is difficult to explain,
and thorough observational constraints on their properties
provide a stringent test of the galaxy formation models (e.g.,
Baugh et al. 2005). The HerMES survey (Oliver et al. 2012)
has identified a population of dusty starburst galaxies at z 4
(Dowell et al. 2014) that are not predicted by today’s galaxy
formation paradigms (e.g., Hayward et al. 2012). The efficient
identification and detailed study of these rare z 4 starbursting
galaxies are important for understanding their progenitor
populations, drivers of cold gas accretion (Carilli et al. 2010),
and their descendants. It has been shown by previous studies
that several massive starbursts at highz could be protocluster
members, but none of them havebeen identified at z 6
(Daddi et al. 2009; Capak et al. 2011).

Recently, Riechers et al. (2013) have discovered an extreme
submillimeter starburst at z 6.34= , called HFLS3 hereafter,
over 21 deg2 of the Herschel/SPIRE (Griffin et al. 2010)
data from the HerMES survey. This object is lensed by a two-
component galaxy system at z 2.1~ involving a magnification
of 2.2 ± 0.3 (Cooray et al. 2014). Its physical properties
based on the rest-frame UV emission resultin an SFR of

M1320  yr−1 and dust and stellar masses of 3 108´ M and 5
1010´ M, respectively, making this source one of the most

massive starbursts currently known during the epoch of
reionization (EoR).

A recent paper aiming to detect submillimeter emission in
the vicinity of HFLS3 with SCUBA-2 data (Robson
et al. 2014) found no evidence in favor of an overdensity of
dusty galaxies associated with HFLS3. In this paper, we
present results of an optical and near-IR (NIR) analysis of the
environment of HFLS3, aiming to recover Lyman break
galaxies (LBGs) at z ∼ 6. We combine two data sets:

ground-based images covering a wide field of view (to select
the brightest objects at z ∼ 6), and deeper HST/WFC3 and
ACS data with a smaller field of view (to detect fainter objects).
In Section 2, we present our new data used for the analysis

and their reduction procedure. In Section 3, we explain in detail
the method that was used to select z ∼ 6 objects andpresent the
candidates coming from the two ground- and space-based data
sets. Their photometric properties are presented in Section 4. In
Section 5 we discuss the presence of an overdensity of LBGs in
the HFLS3 field. The concordance cosmology is adopted
throughout this paper, with WL = 0.7, mW = 0.3, and
H0= 70 km s−1 Mpc−1. All magnitudes are quoted in the AB
system (Oke & Gunn 1983).

2. OBSERVATIONS AND DATA REDUCTION

In this section, we present the ground-based and space-based
data we used to perform the search for z ∼ 6 objects around
HFLS3. GTC optical and Spitzer data have already been
presented in Riechers et al. (2013). We have re-reduced the
GTC data to improve their image qualities, and we include a
newly acquired Ks-band image taken with LIRIS on the the
4.2 m William Herschel Telescope (WHT). In the following we
summarize image properties and the data reduction procedure.
A summary of the data used in the current study is listed in
Table 1, and Figure 1 shows the wavelength coverage of our
study.

2.1. Ground-based Data

In order to select bright objects at z ∼ 6 and to establish the
brightend of the UV luminosity function (LF; Lacey
et al. 2011), we performed a first search for LBGs in ground-
based images taken with OSIRIS on GTC (Alvarez et al. 1998;
Cepa et al. 2003) and LIRIS installed on WHT (Wall 1987;
Manchado et al. 1998).
OSIRIS data were acquired between 2011 June 29 and

August 3, as part of the GTC2-10ITP program (P.I.: I. Pérez-
Fournon), and used g′, r′, i′, and z′ broadband filters. The field
of view covered by OSIRIS is 7 ′. 8× 7 ′. 8, and the total
exposure times in each band are 2.7 ks in g′ and r′, 21.6 ks in i′,
and 18.7 ks in z′. Each frame was reduced individually
following the standard reduction procedure in IRAF26 (bias

Table 1
Photometric Properties of the Imaging Data

Filter effl lD texp m(5σ) Instrument
(nm) (nm) (ks)

(1) (2) (3) (4) (5) (6)

g′ 481.5 153 2.7 26.91a OSIRIS/GTC
r′ 641.0 176 2.7 26.80a OSIRIS/GTC
i′ 770.5 151 21.6 26.60a OSIRIS/GTC
z′ 969.5 261 16.3 25.87a OSIRIS/GTC

F625W 629.6 98 1.6 26.08b ACS/HST
F814W 811.5 166 2.3 26.99b ACS/HST
F105W 1055.1 265 9.9 25.90c WFC3/HST
F125W 1248.6 443 4.4 26.30c WFC3/HST
F160W 1536.9 268 2.8 26.00c WFC3/HST

Ks 2150.0 320 3.6 23.14a LIRIS/WHT

3.6 μm 3575.0 776 3.8 24.38d IRAC/Spitzer
4.5 μm 4528.0 1060 3.8 24.30d IRAC/Spitzer

Notes. (1) Filter identification, (2) filter central wavelength, (3) filter width, (4)
exposure time, (5) 5σ AB magnitude, and (6) instrument and telescope.
a Point-source depth measured in a 1″. 4 radius aperture.
b Point-source depth measured in a 0″. 25 radius aperture.
c Point-source depth measured in a 0″. 50 radius aperture.
d Point-source aperture-corrected depth measured in a 1″. 9 radius aperture.

Figure 1. Wavelength coverage and filtertransmission.

26 http://iraf.noao.edu/
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subtraction, flat-fielding, sky subtraction) and registration and
combination using SCAMP (Bertin 2006) and SWARP (Bertin
2010). To reduce the sky background at long wavelengths, we
applied for the i′- and z′-band imagesa double sky subtraction
using the IRAF package XDIMSUM, with steps explained in
Richard et al. (2006). The astrometric and photometric
calibrations were performed using the 9th release of the SDSS
catalog (Ahn et al. 2012). Moreover, to produce the best z-band
quality image, we applied the “best seeing stacks” method
described in Gwyn (2012), selecting only the best frames in
terms of seeing. We measured the FWHM on each frame using
PSFEx (Bertin 2011), and we kept 86.4% of our original data
set beyond which the FWHM increases without a significant
evolution of the image depth. The seeing of the final images is
0″. 89, 0″. 83, 0″. 83, and 0″. 89 respectively, in g′, r′, i′, and z′.
The depth was computed using empty 1″. 4 radius apertures all
over the field.

We added to our previous data set a new NIR, Ks image
acquired on 2014 June 5 with the LIRIS instrument
(4 ′. 27× 4 ′. 27 field of view, 0″. 25 size pixels) installed at the
Cassegrain focus of the WHT, as part of a new WHT Large
Program on HerMES high-redshift galaxies (P.I.: I. Pérez-
Fournon). The total integration time was 3.6 ks, the observing
conditions were photometric, and the seeing was 0″. 5. The
reduction of the image was performed using the IAC’s IRAF
lirisdr task,27 and the astrometry calibration was carried out
using the Graphical Astronomy and Image Analysis Tool
(GAIA) included in the Starlink astronomical software
package.28,29 The Ks image was matched to SDSS DR10 stars
and is estimated to be accurate to 0″. 1 (rms of the fit). The
photometric calibration of the image was done with Two
Micron All Sky Surveystars. The 5σ depth of this image in
1″. 4 radius apertures is 23.14.

2.2. Space-based Data

The data reduction of the ACS and WFC3 data we used in
this study is described in detail in Cooray et al. (2014). We
summarize hereafter the principal steps. These data are part
of an HST Cycle 21 program (GO 13405, PI: A. Cooray) and
used six orbits to produce images of the HFLS3 environment
in F625W, F814W, F105W, F125W, and F160W (Table 1).
We used the IRAF.STSDAS pipeline and the CALWFC3 tool
for flat-fielding and cosmic-rayrejections and ASTRODRIZ-
ZLE (Fruchter et al. 2010) to combine individual exposures
and create 0″. 06 pixel−1 WFC3 images. The ACS data were
flat-fielded, charge transfer efficiency corrected, and cosmic
rays rejected using the CALACS pipeline (version 2012.2),
and then combined with ASTRODRIZZLE to produce
0″. 03 pixel−1 images. Astrometric calibration was performed
using SDSS (9th release). The WFC3 and ACS data were
matched independently following the classical IRAF proce-
dure. The depth was computed using empty apertures all over
the field (0″. 25 radius for ACS and 0″. 50 radius for WFC3
images).

In order to extend the wavelength coverage of our survey,
we also used data obtained with IRAC (Fazio et al. 2004) on
board the Spitzer Space Telescope as part of a DDT program
(ID: 80240—PI: J. Vieira) on 2012 March 21. The on-target

observations consisted of 38 frames with an integration time of
100 s in each of the two channels centered at 3.6 μm (ch1) and
4.5 μm (ch2). We used corrected basic calibrated data (cBCD)
frames, which are already corrected by pipeline for various
artifacts, such as multiplexer bleed and pulldown. These
images, together with associated mask and uncertainty images,
were processed, drizzled (with a PIXFRAC of 0.65), and
combined using the standard pipeline MOPEX. The final
mosaicimages have a pixel size of 0″. 6, roughlyhalf of the
IRAC native pixel scale. The mosaic has a 3σ point-source
sensitivity of 0.384 and 0.412 μJy in 3.6 and 4.5 μm,
respectively.

2.3. Source Catalogs

We used SExtractor 2.18.4 (Bertin & Arnouts 1996) to build
catalogs in double-image mode using a 2c image including all
individual pictures, as the detection picture (Szalay et al. 89).
The extraction parameters we used have been chosen in order
to extract faint objects. Therefore, the DETECT_MINAREA
parameter was fixed to 4.0 pixels according to the seeing of our
images, and to limit spurious detections, we choose DETECT_-
THRESH = 1.7σ (e.g., see Muzzin et al. 2013), DEBLEN-
D_NTHRESH = 16, and DEBLEND_MINCONT = 0.00002
(Scoville et al. 2007). We measured the photometry in
apertures with radius defined by 2× FWHM on point-spread
function (PSF)matched data on the GTC data and 0″. 4 radius
aperture on HST images, as well as with SExtractor
MAG_AUTO. We found that these two types of magnitude
are in good agreement for all point-source-like objects in our
catalogs.

3. SELECTION OF z ∼ 6 LYMAN BREAK GALAXIES

The LBG technique (Steidel et al. 1996) has been
extensively used to select galaxies at highz (e.g., Castellano
et al. 2010; Trenti et al. 2012; Laporte et al. 2014). It combines
two different criteria: nondetection/detection and the color
selection. We applied this method on SExtractor catalogs
(Bertin & Arnouts 1996) built using detection parameters as a
function of the data set we used (see below for details).
Regarding the depth and spatial resolution of each data set, we
performed independent searches in each survey: from our
ground-based images we focused on the brightest objects, and
from the HST data we investigated faintest sources at the
redshift of HFLS3.

3.1. Selection from GTC Data

The GTC/OSIRIS imaging data we used to search for LBGs
at the redshift of HFLS3 covered a wavelength range between
328.5 and 1230.5 nm. The nondetection/detection criteria we
applied to our catalogs to select z ∼ 6 objects were the
following:

m m 2 27.9 1g g( ) ( )s> =¢ ¢

m m 2 27.8 2r r( ) ( )s> =¢ ¢

m m 5 25.9. 3z z( ) ( )s< =¢ ¢

The lack of deep NIR data over the OSIRIS field of view does
not allow us to produce a color–color diagram with a clear
selection window.
We defined a color window using the i z¢ - ¢ color evolution

of a set of templates (Bruzual & Charlot 2003 and Polletta

27 www.iac.es/galeria/jap/lirisdr/LIRIS_DATA_REDUCTION.html
28 http://star-www.dur.ac.uk/~pdraper/gaia/gaia.html
29 http://starlink.jach.hawaii.edu/starlink
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et al. 2007) as a function of the redshift (Figure 2; mi – mz >
0.9). These criteria limit the contamination by most of the low-z
interlopers, except for the elliptical galaxies at z < 3. In order
to avoid the contamination by such interlopers, we estimated
the size of the break between optical and NIR,beyond which
the selection of mid-z interlopers is unlikely (Figure 3). The
break required by the evolution of templates mentioned above
(mr−m 2.5z > mag) is consistent with the nondetection
criteria that we applied, and thus by combining the previous
i z¢ - ¢ color criterion (mi – m 0.9z > mag) with the nondetec-
tion/detection criteria listed above, we eliminate a large
number of mid-z interlopers. Therefore, we can summarize
the color selection we defined to select z ∼ 6 objects on the
GTC data as follows:

mi − mz > 0.9
mr − mz > 2.5.
The selection window is shown in Figure 4.
After visual inspection, only two objects satisfy the

selection criteria defined above with mz < 25.1. These two
candidates are displayed as z1_GTC and z2_GTC in Figure 5
and Table 2.

3.2. Selection from HST Data

The second sample has been built using HST data covering
wavelength from 580.6 to 1670.9 nm. In order to select z ∼ 6
objects, and regarding the set of filters we have, we defined the
following detection/nondetection criteria:

m m m m2 5 4F625W F625W F105W F105W( ) ( ) ( )Ès s> <

or in terms of color,

m m 1.2. 5F625W F105W ( )- >

The wavelength coverage of the HST data is better in the NIR
domain compared to the GTC survey. Therefore, we can define
a color window to select z ∼ 6 objects following the standard
method described in Section 3.1. Figure 6 displays this
selection window,defined by

m m 2.0 6F625W F814W ( )- >

m m 4.0 7F814W F105W ( )- <

m m m m0.57 0.66.

8

F625W F814W F814W F105W( )

( )

- > ´ - +

The use of broadband filters, as well as color selection,
impliesthat several of the z ∼ 6 candidates will be lost during
the selection process. In order to estimate the fraction of those
objects, we computed the incompleteness of the selection
function described in this paper. Using templates from
Coleman et al. (1980), Kinney et al. (1996), Polletta el al.
(2007), and Silva et al. (1998) and transmission of filters used
in this survey, we simulated 100,000 objects in the redshift
range 4.0 z< < 8.0 per bin of 0.25 mag with mF105W ranging
from 19.0 to 29.0. The selection by the color criteria defined
above shows that ∼74% of objects at z 6.3~ are selected.
As previously, we used SExtractor 2.18.4 in double-image

mode using a 2c image (Szalay et al. 1999) made with the
WFC3 images as the detection picture to produce WFC3
catalogs, because z ∼ 6 LBGs should be detected at these
wavelengths. As in the “ground-based” selection, we used
SExtractor parameters defined to maximize the selection of
faint objects. We then used TOPCAT (Taylor 2005) to match

Figure 2. i′ – z′ color cut defined for the z ∼ 6 LBG selection using GTC filters
and color evolution of several templates of galaxies (Bruzual & Charlot 2003;
Polletta et al. 2007). The color criterionis defined by the black lineand shows
that in that case the majority of the contaminants are elliptical galaxies at mid-z
values.

Figure 3. r′ – z′ color window defined for the z ∼ 6 LBG selection using GTC
filters.

Figure 4. Color criteria used to select z 5.5> objects using templates from
Bruzual & Charlot (2003) and Polletta et al. (2007). Positions of the two GTC
candidates are displayed by magenta dots. We overplotted the expected color of
M, L, and T dwarfs in gray computed from 225 stellar spectra (see references in
Section 3.4). Black dots show the colors of objects with redshift ranging from
5.5 to 6.5 per bin of 0.1.
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ACS single-image mode catalogs with the WFC3 catalogs
allowing a search radius fixed to 2× FWHM of the worst
seeing image. The total magnitudewas obtained from aperture
correction using F160W MAG_AUTO and following the
method described in Finkelstein et al. (2013). Each catalog
included ∼1600 detections. Colors were measured on PSF-
matched data, and 14 objects follow the criteria defined above.
Among these sources, one of our GTC candidates is covered by
the HST field of view and is included in this new sample (ID:
z2_GTC), showing that our two selection functions are well

defined to select this kind of object. The other GTC candidate
(z1_GTC) is not detected on the F625W images and well
detected on the F814W images (mF814W = 26.80± 0.18),
confirming the break between the i′ and z′band of our GTC
survey. However, HFLS3 is not included in this sample,
because SExtractor failed to extract it properly;it is blended
with the two nearby z 2.1~ galaxies acting as a foreground
lens (see Cooray et al. 2014 for more details). Five objects have
been removed from this sample because they are detected on
the deep g′-band data from the GTC survey (see Section 3.4 for
details). Therefore, the final sample is composed of nine objects
and is presented in Table 3 and Figure 7.

3.3. Detection in LIRIS and IRAC Data

We increased the number of spectral energy distribution
(SED) constraints in the NIR domain by using data from LIRIS
and IRAC. Owing to the depth of our Ks image, only the two
GTCobjects are clearly detected in the NIR (including the
candidate in common in the two samples). These results are not
surprising regarding the brightness of these sources, but it
could have been a way to remove mid-z interlopers from the
HST sample. Indeed, previous papers have shown that mid-z
interlopers display a very highz LBG like SED up to 1.6 μm,
but they are very red at larger wavelengths corresponding to
IRAC (e.g., Boone et al. 2011) The depth of IRAC data (m3.6,4.5
(5σ)∼ 24.3) is not completely sufficient to add robust

constraints on the SEDs of all our candidates. Among the
two different samples, two objects are clearly detected in the
IRAC data. We extracted the photometry of z2_GTC using
imfit.30 For both objects, we measured the photometry in a 1″. 9

Figure 5. Thumbnail images of the two candidates selected in the 7 ′. 8 × 7 ′. 8 OSIRIS field of view. The size of each stampis 12″ × 12″. The position of the candidate
is displayed by a white circle of 1″. 4 radius aperture.

Table 2
Photometry of the Two Candidates Selected from the GTC/OSIRIS Data

ID R.A. Decl. mg mr mi mz mKs m3.6 m4.5

z1_GTC 17:06:40.6 +58:47:49.6 >27.9 >27.8 27.92 24.96 23.08 23.24 24.73
± 0.77 ± 0.10 ± 0.22 ± 0.08 ± 0.22

z2_GTC 17:06:41.310 +58:47:17.28 >27.9 >27.8 27.48 25.05 23.62 22.91 23.00
± 0.51 ± 0.11 ± 0.36 ± 0.20 ± 0.20

Note. All GTCmagnitudes are MAG_AUTO magnitude from SExtractor. Upper limits are 2σ depth. Error bars are computed within empty 1″. 4 radius apertures
around the object on the GTC data. IRAC magnitudes are measured in a 1″. 9 radius aperture, and error bars are computed using an empty 1″. 9 radius aperture around
the object.

Figure 6. F625W–F814W–F105W color window defined for the z ∼ 6 LBG
selection using HST filters and color evolution of several templates of galaxies
given by Bruzual & Charlot (2003) and Polletta et al. (2007). The color criteria
for z 5.5> are defined by the black box. We overplotted the expected color of
M, L, and T dwarfs in gray computed from 225 stellar spectra (see references in
Section 3.4). Black dots show the colors of objects with redshift ranging from
5.5 to 6.5 per bin of 0.1.

30 www.mpe.mpg.de/~erwin/code/imfit/index.html
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radius apertureand used the correction factor computed by
Mauduit et al. (2012). The error bar was computed using empty
1″. 9 radius apertures around the object.

3.4. Contaminants

The most common sources of contamination of high-z
samples are supernovae (SNe), active galactic nuclei(AGNs),
low-mass stars, photometric scatter, transient objects, spurious
sources, and extremely red galaxies, among others. All our
candidates are detected in at least two bands, limiting the
contaminations by spurious sources;moreover, these observa-
tions spread over several months, limiting the detection of
transient sources. However, we noted that our ample is not free
of AGN and SN contamination given the timescale during
which our observations have been carried out. Regarding the
field of view covered by these two surveys and the statistical
number of SNe expected in ∼1 deg2, the probability of being
contaminated by an SN is relatively small. Low-mass stars,
such as M, L, and T dwarfs, could display the same
colorproperties as those expected for high-z galaxies. We
computed the expected colors of these galaxies through all the
filters we used in this study from 225 stellar spectra (Cruz et al.
2004; Burgasser et al. 2006a, 2006b, 2006c, 2006d, 2007,
2008; Chiu et al. 2006; McElwain et al. 2006; Reid et al. 2006;
Liebert et al. 2007; Looper et al. 2007; Siegler et al. 2007;
Sheppard et al. 2009; Kirkpatrick et al. 2010). Figures 6 and 4
display the expected colors of these stars that are consistent
with previous studies (e.g., Willott et al. 2013; Finkelstein et al.
2014) and show that stellar contamination is non-negligible is
both samples. Therefore, to limit the selection of low-mass
stars, expected to be unresolved on our data set, we used
SExtractor FLUX_RADIUS enclosing 50% of the total flux
and the SExtractor stellarity parameter. Both indicators
demonstrate that two objects among our samples are likely
unresolved, namely, z1_HST and z3_HST with a stellarity
parameter of 0.7> and a size computed from the half-

lightradius comparable with the FWHM of the image, taking
uncertainties into account.
Therefore, the majority of contaminants that can enter into

our sample involvethe extremely red mid-z galaxies. We
estimated the contamination rate of our sample by mid-z
interlopers by using the colordistribution of mid-z objects over
the fields of view covered by our two data sets (e.g., Oesch
et al. 2010). We followed a three-stepmethod summarized
hereafter: (1) we selected all objects that are detected at more
than 2σ in all bands, (2) then we matched the luminosity range
to the luminosity covered by our two samples and added the
corresponding uncertainties on the photometry, and (3) finally
we applied the selection criteria we used to build our high-z
candidatesamples,and all the selected objects are mid-z
interlopers. Three objects are identified over the 4.5 arcmin2

covered by HST data, and two using our GTC data, leading to
∼7%–36% and >20% contamination rate including cosmic
variance, respectively. It has been shown by several recent
studies (e.g., Hayes et al. 2012; Laporte et al. 2015) that the
best way to remove such objects is to cover the short
wavelength with deeper imaging data, regarding that the
contamination rate by such extreme mid-z interlopers is rather
uncertain. We used our deep GTC g′-band data to confirm the
real nondetection of HST candidates. We find that one of our
targets is clearly detected (mg ~ 4σ) and cannot, therefore, be
at z ∼ 6. Four othercandidates are faint in that image (mg ~¢
2σ)and thus cannot also be at such highz, but further data are
necessary to confirm their optical emission.
After removing these mid-z interlopers, the final HST sample

is composed of nine objects, with mF105 ranging from 24.5 to
26.5 (Figure 8). The postage stamps are displayed on Figure 7,
and Table 3 presents the photometry of this sample.
We note here that our ACS images are not deep enough to

exclude definitively the low-z hypothesis for all our z ∼ 6 galaxy
candidates. Indeed, the 2σ depth of the F625W image used here
(27.1 AB), combined with the F814W depth (27.99 AB), does not
allow us to apply completely the color–color criteria we imposed
(F625W–F814W> 2.0). For most of them, the F625W–F814W

Table 3
Photometry of the Candidates Selected in the HST Data

ID R.A. Decl. mF625 mF814 mF105 mF125 mF160 m3.6 m4.5

z1_HST 17:06:41.310 +58:47:17.28 >27.08 26.42 24.52 24.09 23.90 22.91 23.00
± 0.13 ± 0.07 ± 0.03 ± 0.03 ± 0.20 ± 0.20

z2_HST 17:06:40.737 +58:46:58.52 >27.08 >27.99 25.08 25.37 25.08 >25.38 >25.30
± 0.11 ± 0.10 ± 0.09

z3_HST 17:06:57.157 +58:46:31.85 >27.08 27.01 25.34 25.07 25.09 >25.38 >25.30
± 0.23 ± 0.13 ± 0.07 ± 0.09

z4_HST 17:06:40.411 +58:47:01.39 >27.08 27.91 25.81 25.53 25.53 >25.38 >25.30
± 0.47 ± 0.20 ± 0.11 ± 0.14

z5_HST 17:06:55.049 +58:46:39.05 >27.08 >27.99 25.87 25.61 25.60 >25.38 >25.30
± 0.21 ± 0.12 ± 0.15

z6_HST 17:06:40.212 +58:45:57.16 >27.08 >27.99 25.92 25.64 25.81 >25.38 >25.30
± 0.23 ± 0.12 ± 0.18

z7_HST 17:06:45.315 +58:46:39.78 >27.08 26.73 25.94 25.67 25.68 >25.38 >25.30
± 0.15 ± 0.23 ± 0.13 ± 0.16

z8_HST 17:06:45.289 +58:45:20.86 >27.08 27.67 26.11 25.80 26.01 >25.38 >25.30
± 0.37 ± 0.27 ± 0.14 ± 0.22

z9_HST 17:06:49.819 +58:46:58.26 >27.08 26.86 26.47 26.45 26.43 >25.38 >25.30
± 0.18 ± 0.37 ± 0.25 ± 0.32

Note. All HSTmagnitudes are MAG_AUTO magnitude from SExtractor. Upper limits are 2σ depth. Error bars are computed within empty 0″. 125radius apertures
around the object on the ACS data and 0″. 25 radius on WFC3 data. IRAC magnitudes are measured in a 1″. 9 radius aperture, and error bars are computed using empty
1″. 9 radius apertures around the object.
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break is not high enough, and even if we used the 1σ detection as
an upper limit in F625W, we never reach a break of 2mag in these
two filters (as in previous studies;e.g., Monna et al. 2014). This is
why we primarily use here the deeper ground-based GTC g-band
data to identify the interlopers.

3.5. Expected Number of Objects

The effective surface covered by our OSIRIS survey is
55.5 arcmin2 and has been computed by masking all the bright
objects on our 2c detection picture. We computed the expected

number of sources in that field of view by using the shape of
the LF published by Bouwens et al. (2012), which is relatively
well established at z ∼ 6. Including cosmic variance
and uncertainties on the Schechter parameters, the expected
number of objects in the range of redshift z5.5 6.5< < and
with mz < 25.9is 1.3 0.9

2.0
-
+ , showing that our sample built from

GTC data is in excellent agreement with the expectation. For
the HSTsurvey covering an effective surface of 4.54 arcmin2,
the expected number of objects detected at more than 5σ with
WFC3 bands in the same area is 6.10 4.1

9.0
-
+ (including cosmic

Figure 7. Thumbnail stampimages of the nine candidates selected in the WFC3 field of view. The size of each stampis 7″. 5 × 7″. 5 in all the bands. The position of
the candidate is displayed by a white circle of 0″. 8 radius aperture.
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variance). Therefore, our selection is in relatively good
agreement with the expectations, without any evidence for a
significant overdensity.

4. PHOTOMETRIC PROPERTIES
OF THE z ∼ 6 CANDIDATES

This section presents the principal photometric properties of
the selected objects using an SED-fitting approach. We discuss
in the following the photometric redshift, UV luminosity, SFR,
and reddening for our two samples.

We used version 12.2 of Hyperz31 (Bolzonella et al. 2000)
with the standard templatelibrary, including Bruzual & Charlot
(2003), Coleman et al. (1980), Kinney et al. (1996), Polletta el
al. (2007), and Silva et al. (1998) templates. The redshift space
parameters rangefrom z 0~ to 8 and Av from 0.0 to 3.0 mag.
The bestfit is always found at z 5.3> with a reasonable
reddening solution for most of the candidates (Av < 1.00 mag).
The redshift probability distribution, hereafter P(z), is well
defined around the best photo-z, and no low-z solution appears
clearly for all our targets. For the candidate in common in the
two samples, we estimated its properties in three cases: (1)
combining all of the data points we have;(2) using only the
GTC, WHT, and Spitzer photometry;and (3) using the HST,
WHT, and Spitzer constraints. The results are similar and give a
moderate reddening solution (Av ~ 1.80–2.0) and a best photo-
z included between 5.8 and 6.1.

As a cross-check, we also tried to fit the SEDs of all these
dropouts assuming a low-z solution, i.e., with a redshift space
parameterranging from 0.0 to 3.0 and allowing the same

reddening interval. The bestfit is found, in each case, with a
higher 2c and a P(z) not well defined in the redshift interval
explored (see Table 4). We also used a prior in luminosity to
check the consistency of our sample with previous studies at z
∼ 6. The prior was defined using the parameterization of the
Schechter function published in Bouwens et al. (2014). The
parameterspace was defined as previously, and the same
templatelibrary was used. Two candidates showed different
best-fit photo-zʼs, but the best-fit SED template was always
found at z 5.5> .
The UV luminosities were computed using the best-fit SEDs

found by Hyperz, and the SFRs were computed from the UV
luminosities using the relationship published in Kennicutt
(1998). We corrected for the dust extinction of L1500 following
the Calzetti et al. (2000) method. We noticed that the L1500 is
ranging from ∼2.5 to 29× 1041erg s−1 Å−1 and the SFRs from
∼26 to 300 M yr−1. These values are in good agreement with
expectations for z 6> galaxies (e.g., Schaerer & de
Barros 2010) and with properties of previous samples at z
∼ 6–7 (Zheng et al. 2009; Curtis-Lake et al. 2013).
The estimation of the photometric redshift generally implies the

use of templates of nearby galaxies extrapolated to the very highz.
We made use of the large number of z ∼ 6 galaxies spectro-
scopically confirmed to check the reliability of our templatelibrary
and the SED-fitting method using data from Toshikawa et al.
(2012), Jiang et al. (2013), and Willott et al. (2013). We matched
photometric catalogs published in previous references to the
quality of our data set, more especially for the filters used here in
the wavelength range covered by our data (from 0.4 to 1.6 μm).
We recomputed photometric error bars of spectroscopically
confirmed galaxies using the average noise measured in each of

Figure 8. Distribution of our candidates around the submillimeter starburst HFLS3 on a composit image showing the field of view covered by our HST/WFC3 data.
The position of each candidate is displayed by a green circle (red for the candidate in common in GTC and HST samples) and the Herschel starburst by a cyan circle.
We also plotted the position of the three faint objects discussed in 5.1.

31 http://userpages.irap.omp.eu/~rpello/newhyperz/
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our images. In the case of a nondetection, we used the upper limits
computed in our data. The photometric redshift of the confirmed z
∼ 6 galaxies was computed with Hyperz using the same templates
as were used previously with the actual sample. Among the 50
galaxies used, 45 have a 1σ confidence interval for the photometric
redshift that includes the spectroscopic redshift. The mean absolute
dilation to the spectroscopic redshift is ∼9% with a standard
deviation of ∼16%, showing that the method we used to estimate
the photometric redshift of our candidates is efficient at z ∼ 6. We

also used this spectroscopic sample to check the reliability of our
color criteriaand demonstrated that all these spectroscopically
confirmed galaxies would be selected using the criteria defined in
Section 3.

5. ENVIRONMENT OF HFLS3

In this sectionwe describe the environment of the starburst
galaxy HFLS3and discuss the possibility of an overdensity
associated with it.

Table 4
Photometric Properties of the z ∼ 6 Galaxy Candidates Selected in This Study

High-z Low-z Physical Properties

ID zphot 2c Av 1σ Interval zphot 2c Av L1500 SFR
(mag) (mag) (×1041erg s−1 Å−1) [M yr−1]

z1_GTC 6.5 0.6 0.8 6.3–6.5 1.1 2.2 0.0 28.8 302.8
z2_GTC 6.1 0.5 1.8 5.8–6.3 1.5 0.8 0.8 22.5 236.0
z2_HST 6.5 1.5 0.2 6.0–7.2 1.4 4.6 0.0 4.5 47.0
z3_HST 6.2 0.7 0.8 5.7–6.6 1.5 2.0 0.0 16.1 169.3
z4_HST 6.4 0.3 0.8 5.7–7.8 1.5 1.3 0.0 11.6 121.8
z5_HST 7.1 0.07 0.4 5.7–8.0 1.5 1.3 0.0 5.3 56.2
z6_HST 7.1 0.02 0.2 5.8–8.0 1.5 1.3 0.0 3.2 33.2
z7_HST 5.6 0.2 0.8 4.1–6.2 0.1 0.3 0.4 8.2 86.0
z8_HST 6.2 0.3 0.8 5.3–7.4 1.5 0.6 0.0 8.5 89.5
z9_HST 5.2 0.03 0.6 0.0–6.1 0.9 0.1 2.2 2.5 26.2

Note. Information given in this table: (1) ID;(2–5) photo-z, redc , Av, and 1σ confidence interval from the best SEDfit with a redshift parameter space ranging from
z 0~ to 8;(6–8) photo-z, redc , and Av for the best SEDfit assuming a low-z solution (0 z< < 3);(9, 10) L1500 deduced from thebest SEDfit and SFR computed
using the Kennicutt (1998) relation and corrected for dust extinction.

Figure 9. Results of the Voronoi tessellation analysis following the method described in Ramella et al. (2001) on the sample of faint sources described in 5.1. The
background threshold above which fluctuations are consistent with an overdense field is estimated at 1.74 per Voronoi cell, which is not a significant detection of an
overdensity in the imaging data.
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5.1. Faint z ∼ 6 Candidates over the Wide Field

In order to select faintest objects at the redshift of HFLS3,
we relaxed the detection constraints we imposed for our HST
selection Equation (4) by requiring a detection �3σ in F105W
and F125W (instead of the 5σ level required previously on
F105W) and by using the F814W–F105W color criterion
computed previously. Indeed, by relaxing the detection level on
the F105W image, we are not able to use the color criterion
combining F625W and F814W, because of the shallower depth
of the F625W. After visual inspection removing false detection
as explained above, 25 objects satisfy this new selection
function. In order to study whether this sample of faint objects
shows any evidence for an overdensity of galaxies associated
with HFLS3, we applied the Voronoi tessellation method as
described in Ramella et al. (2001) and based on the “triangle” C
code. The density threshold we used to distinguish background
regions and fluctuations that are significant overdensities is
estimated at 1.74 objects per Voronoi cell. As seen in Figure 9,
no overdense region is highlighted by the new faint
objectsample.

However, we noticed that three sources close to HFLS3
(with 26.5< mF105W < 28.0) are not detected on ACS data
(Figures 10 and 12). Their break between F814W and F105W
is <1 mag, and their NIR colors could be consistent with the
Balmer break;therefore, we cannot exclude a low-z solution
for these three objects. Assuming that these three sources are
at the redshift of HFLS3, the projected distance between them
and the Herschel starburst is less than 15 kpc. We also
compared the overdensity of objects with brightness similar
to these three objects over the entire field of view covered by
HST. The mean density over the field is 0.03 objects per
arcsec2, whereas it is 4× more around HFLS3, reinforcing
the overdensity hypothesis close to the Herschel starburst.
We applied the same SED-fitting method described above
with the same library of templates. We first allowed a large
range of redshift (0 z< < 8)but found all these objects to be
described SEDs compatible with the SED of a z 6.3~
galaxy. However, we have to keep in mind that the large error
bars, as well as the small break between F814W and F105W,
could not exclude a low-z solution for all of them. Deep ACS
and WFC3 data are needed to strongly increase the
nondetection constraints in optical and reduce the error bars
on the WFC3 photometry.

5.2. Discussion

In order to constrain the size of a possible overdensity, we
adopted the galaxy fluctuation parameter defined in Morselli
et al. (2014):

1 9
˙

( )d
r
r

= -

where ρ is the number of objects selected in our survey and ṙ
the number of objects expected in a blank field covering the
same area.
We then compared the number of objects selected in a

luminosity range where the completeness is ∼100% with the
number of objects expected in the same interval in magnitude
in a blank field. We computed the completeness level of the
F105W image, where the L1500 is estimated, by adding 10,000
sources per bin of 0.25 mag. We then applied the extraction
parameters explained in Section 2.3 and compared the number
of sources extracted with the number of objects added on the
image. We showed that ∼100% of our added objects are
detected up to m 25.3F105W < . Three objects in our HST sample
are brighter than this magnitude cut. We used the UV LF
parameterization published in McLure et al. (2009), Su et al.
(2011), and Bouwens et al. (2012, 2014) to estimate the
number of z ∼ 6 galaxies expected in our HST survey with
m 25.3F105W < (see Table 6). The expected number of objects
ranges from 0.5 to 1.0;therefore, the overdensity parameter
ranges from 2.4 to 9.15, with 9.15 as a strict upper limit on the
overdensity given the cosmic variance and taking into account
the contamination rate computed in Section 3.4. We emphasize
that this result is based on a small field of view and a small
number of objects. Chapman (2009) found a similar value
( 2.5d ~ ) for UV-selected galaxies over the GOODS-N
fieldand noticed that this value is lower than that found for
sub-millimeter galaxies (SMGs) in the same field (d ~ 10). As
shown by Robson et al. (2014), there is no overdensity of
SMGs around HFLS3. If an overdensity occurs around HFLS3,
it is at a lower level than in the COSMOS AzTEC-3 field
(Capak et al. 2011), where they found an overdensity factor
of 11.
We note that four galaxies among our two samples have high

SFRs estimated from the SED models (with SFRs > 100 M
yr−1). These sources, however, are undetected in the SCUBA-2
850 μm image of this field (Robson et al. 2014), with a noise
level of ∼1.5 mJy beam−1. Riechers et al. (2014) have studied
with ALMA the center of the galaxy protocluster associated

Figure 10. Thumbnail images of the faint sources located around HFLS3. The size of each stamp is ∼8″. 3 × 8″. 3. The lens system studied in Cooray et al. (2014) is at
the center of the field. The position of each faint candidate is shown by a circle.
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with the z = 5.3 SMG AzTEC-3 (Capak et al. 2011), but they
failed to detect an LBG at z = 5.3 with an SFR ∼ 20 M yr−1

with ALMA data reaching ∼ 0.15 mJy beam−1 (3σ) at 1 mm.
Assuming a typical Tdust of 35 K for the HFLS3 LBGs, a colder
dust temperature than HFLS3, observed-frame 850 μm lies on
the Wien part of the SED and the K-correction from z = 5.3 to
z = 6.3 remains positive. Scaling the SED and depths reached
between ALMA at z = 5.3 at 1 mm and SCUBA-2 for galaxies
at z 6.3~ at 850 μm, we find that the SCUBA-2 depth is only
adequate to detect galaxies above 3σ with instantaneous
SFRs > 500 M yr−1. This ignores the cosmic microwave
background (CMB) that will absorb a few percent of the
submillimeter flux at z = 6.3 compared to z = 5.3. Therefore,
SCUBA-2 observations of the depth of the Robson et al. (2014)
data are unlikely to detect galaxies with similar SFRs and SED
properties to LBGs in the AzTEC-3 protocluster.

5.3. Distribution in Luminosity of the z∼ 6 Candidates

The redshift interval covered by our survey is sufficient to
compute the UV LF at z ∼ 6. This again allows a way to study
whether there is an overdensity of objects at a given luminosity.
Several methods have been developed to compute the UV LF at
different redshifts (e.g., Bouwens 2012; Willott et al. 2013).
We made use of the previous SED-fitting work to compute the
number density of objects at z ∼ 6 as a function of the UV
luminosity (see Laporte et al. 2015 for details).

The effective surface explored by our HST survey is
computed by masking the bright objects on the detection
image. The comoving volume explored between z 5.5~ and
z 6.5~ is V» 10,980Mpc3. The number densities we found
are shown in Table 5, and the error bars take into account the
cosmic variance. These numbers are consistent with previous

findings in this redshift interval (e.g., Bouwens et al. 2007;
Willott et al. 2013).
We adopted the Schechter parameterization (Schechter 1976)

of the UV LF, defined by

M
ln 10

2.5
10 exp 10

10

M M M M0.4 1 0.4( ) ( )( ) ( )

( )

( ) ( )  F = F -
a- - + - -

where M, F , and α are the three Schechter parameters to be
adjusted.
In order to show the influence of the densities computed in

this study, we fitted the shape of the UV LF by combining them
with the density from Bouwens et al. (2014) in the faint-end
slope and in the brightend with those published by Willott
et al. (2013). We used a 2c minimization with parameters
ranging from 10−5 to 10−2 Mpc−3 mag−1, −22.0 to −19.0, and
−2.2 to −1.1, respectively, for F , M, and α. The following
parameterization is found at z∼ 6:M = −20.17 0.15

0.35
-
+ , F

= (1.21 0.19
0.40

-
+ )× 10−3 Mpc−3 mag−1, and α = −1.77 ± 0.23.

Error bars on each parameterare deduced from the 1σ
confidence interval. These parameters are in good agreement
with previous results (e.g., McLure et al. 2009; Su et al. 2011;
Bouwens et al. 2012; Table 6). The shape of the UV LF
deduced from this study and the number densities we computed
are plotted in Figure 11. We find no evidence for an
overdensity of galaxies, above the field LF, at any of the
luminosities probed by the data.

6. CONCLUSIONS

We have presented in this paper the results of the
photometric analysis of the environment of a submillimeter
starburst at z ∼ 6.34, combining both wide-area ground-based
data and high-level quality HST data to explore a large range of
luminosities. We applied the LBG selection technique and
found 10 galaxies that are at z ∼ 6. This sample includes two
from our ground-based search (mz ~ 25) and eight more from
our search with HST/WFC3 data (with mF105W in the range
24.5–26.5). The size of each sample is wellconsistent with
expectations from previous findings using blank-field surveys
and seems incompatible with an overdensity of luminous
(mF105 < 25.9) galaxies. We used a standard method to
estimate the photometric properties of each source, and we
used these SED-fitting results to compute the UV LF at z ∼ 6.
The parameterization of the Schechter function we deduced
(M= −20.17 0.15

0.35
-
+ , F = (1.21 0.19

0.40
-
+ )× 10−3 Mpc−3 and

Table 5
UV LF Parameterization at z ∼ 6

Reference M F α

×10−3(Mpc−3 mag−1)

This work −20.16 0.15
0.35

-
+ 1.36 0.19

0.40
-
+ −1.70 ± 0.23

McLure et al. (2009) −20.04 ± 0.12 1.80 ± 0.50 −1.71 ± 0.11
Su et al. (2011) −20.25 ± 0.23 1.77 0.49

0.62
-
+ −1.87 ± 0.14

Bouwens et al. (2012) −20.37 ± 0.30 1.4 0.6
1.1

-
+ −1.73 ± 0.22

Bouwens et al. (2014) −20.93 ± 0.25 0.49 0.17
0.26

-
+ −1.85 ± 0.10

Note. Parameterization of the Schechter function presented in this paper and published by other teams.

Table 6
Number Density at z ∼ 6

M1500 M1500( )F dΦ
×10−4 (Mpc−3 mag−1) ×10−4 (Mpc−3 mag−1)

−21.75 ± 0.250 0.09 0.09
0.23

-
+

−21.25 ± 0.250 1.01 ±0.49
−20.75 ± 0.500 2.60 ±1.22

Note. Number density computed following a method using the redshift
probability distribution. Error bars included Poisson uncertainties and cosmic
variance computed from Trenti & Stavielli (2008).
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α = −1.77 ± 0.23) is in good agreement with previous
findings in this redshift interval.

We do not find any strong evidence for HFLS3 being a
member of a protocluster of luminous galaxies, as is the case of
the well-known SMG Aztec-3 (Capak et al. 2011). There the
overdensity parameter was found to be about 11; in the case of
HFLS3, we place an upper limit on the overdensity of 9» after
taking into account the cosmic variance of existing z 6~ LF
measurements. The lack of a significat overdensity is also
confirmed by a Voronoi tessellation analysis that included all
the faint objects fulfilling the color criteria defined for z ∼ 6
objects, but without a well-defined break between the optical
ACS and NIR WFC3 imaging data.

However, we noticed at least three faint objects within 3″
from HFLS3. They are undetected in ACS images and are
detected on WFC3 data. If the redshift of these sources is
confirmed at z ∼ 6, then the Herschel starburst is located in an
overdense region composed of faint objects but with an extent
of 36 kpc. Deeper data combined with spectroscopic

observations are needed to assess these conclusions. It is more
likely that these are associations with the merger system that
might be triggering the starburst.
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Figure 11. Shape of the UV LF at z ∼ 6. Number densities from this study are plotted in red;previous findings are also plotted (Bouwens et al. 2007; McLure et al.
2009; Willott et al. 2013). The parameterization computed from the study of the HFLS3 environment is displayed by the black line;the other lines display the
parameterization published in previous references (dashed line from Bouwens et al. 2012; dot-dashed line from McLure et al. 2009). The 1σ confidence intervals on
each parameter are also shown in the lower panels.

Figure 12. SEDfitting of the three faint objects highlighted around HFLS3 using two assumptions on the redshift: allowing a large range of redshift z0 8< <
( red

2c ~ 0.05, 0.02, and 0.01 for ID1, ID2, and ID3, respectively; black line) and fixing the redshift at the redshift of HFLS3 ( red
2c ~ 0.15, 0.06, and 0.01 for ID1, ID2,

and ID3, respectively; orange line). The blue dots show the photometry of these three faint objects (SExtractor MAG_AUTO) and the 2σ upper limits in case of
nondetection. Error bars are computed using the noise measured in empty apertures around the objects.
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