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The mass differences and mixing angles of neutrinos can neither be explained by R-parity violating

split supersymmetry nor by flavor blind quantum gravity alone. It is shown that combining both effects

leads, within the allowed parameter range, to good agreement with the experimental results. The

atmospheric mass is generated by supersymmetry through mixing between neutrinos and neutralinos,

while the solar mass is generated by gravity through flavor blind dimension five operators. Maximal

atmospheric mixing forces the tangent squared of the solar angle to be equal to 1=2. The scale of the

quantum gravity operator is predicted within a 5% error, implying that the reduced Planck scale should lie

around the grand unified theory scale. In this way, the model is very predictive and can be tested at future

experiments.
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I. INTRODUCTION

The existence of neutrino masses and mixing angles is
experimentally well confirmed and therefore the theoreti-
cal understanding and description of those quantities is one
of the most urgent issues for particle physics [1]. There are
two frequently studied theoretical extensions of the stan-
dard model of particle physics, which also were expected
to explain the origin and the shape of the small but non zero
neutrino mass matrix.

On the one hand there is supersymmetry (SUSY).
Although there is no experimental evidence for supersym-
metry, it is often invoked that the unification of gauge
coupling constants at the grand unified theory (GUT) scale
is an indirect indication for supersymmetry. It has been
pointed out that this gauge unification is achieved even if
all scalar superpartners of quarks and leptons are very
heavy, introducing the scenario called split supersymmetry
(SS) [2,3]. The original SS scenario includes R-parity
conservation, which guarantees the stability of the lightest
supersymmetric particle and thus a dark matter candidate,
and only one light Higgs doublet, which behaves like the
standard model Higgs. Despite the fact that models with R-
parity violation lose the lightest supersymmetric particle as
a dark matter candidate, they are studied because they
provide a compelling mechanism for the generation of
neutrino masses [4]. Nevertheless, SS models with R-
parity violation are incapable to produce the necessary
neutrino masses, even in next to leading order calculations
[5–7].

On the other hand, there is the possible existence of
nonrenormalizable gravitational interactions. Those inter-
actions could have an influence on the neutrino sector of
the standard model [8–13]. Although the standard Planck
scale MP ¼ 1:2� 1019 GeV generates a solar mass that is
too small to fit the experimental evidence, a lowered
Planck scale Mf might in principle do the job. However,

gravitational interactions are expected to be ‘‘flavor blind,’’

and it has been shown that therefore a purely gravitational
neutrino sector is also incapable to explain the existence of
three different neutrino masses [14].
In this paper we study the combined effect of the super-

symmetrical and gravitational neutrino sector. We find that
the combination of both effects can explain all present
neutrino data. But this kind of model even leads to pre-
dictions for the solar neutrino mixing angle sin2�sol and for
the scale of the gravitational contribution.

II. THE NEUTRINO MASS MATRIX IN R-PARITY
VIOLATING SPLIT SUSY

In split SUSY all scalars are very heavy, except for one
Higgs doublet [2]. Since we are interested in the possibility
to describe the neutrino masses in split SUSY, we need to
consider R-parity violating interactions [15]. Knowing all
relevant trilinear R-parity violating interactions one can
calculate the neutralino/neutrino mass matrix. Integrating
out the neutralinos from this matrix, one finds that the
neutrino mass matrix in flavor space is given by [6]

M eff
� ¼ v2

4 detM�0

ðM1~g
2
d þM2~g

02
d Þ

�
�2
1 �1�2 �1�3

�2�1 �2
2 �2�3

�3�1 �3�2 �2
3

2
64

3
75; (1)

where the determinant of the neutralino mass matrix is

detM�0 ¼ ��2M1M2 þ 1
2v

2�ðM1~gu~gd þM2~g
0
u~g

0
dÞ

þ 1
16v

4ð~g0u~gd � ~gu~g
0
dÞ2: (2)

Here, v is the vacuum expectation value of the light Higgs
field,M1,M2 are the gaugino masses. Further, ~gu;d and ~g0u;d
are the trilinear couplings between the Higgs boson, the
gauginos, and the Higgsinos. The parameters �i � ai�þ
�i [6] are related to the traditional bilinear R-parity violat-
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ing parameters �i [16] by �i ¼ �ivd. The �i are the
parameters that mix Higgsinos with leptons, and ai are
dimensionless parameters that mix gauginos with leptons.
Finally, � is the Higgsino mass.

This effective neutrino mass matrix Meff
� has only one

eigenvalue different from zero. As in the case of R-parity
violation in the minimal supersymmetric standard model
with bilinear terms, only one neutrino is massive. As it is
explained in the literature [5,6], in SS it is not possible to
explain the neutrino masses and mixing using bilinear
terms only. Further allowing for trilinear couplings makes
it in principle possible to obtain solar neutrino masses and
mixing. However, this possibility was not discussed here,
because it only works for a very special choice of parame-
ters with an undesired hierarchical structure among the
trilinear couplings [5]. Without this hierarchical structure,
the trilinear couplings become irrelevant because they
contribute through loops of sparticles that have a mass of
the order of the split supersymmetric scale ~m, and there-
fore, decoupled.

III. THE NEUTRINO MASS MATRIX FROM LOW
SCALE GRAVITY EFFECTS

It is widely assumed that the unknown quantum gravity
Lagrangian can be expanded to low energies. In flavor
space this expansion can give rise to a nonrenormalizable
term in the Lagrangian of the type

L �
~�ij

MP

�c ic j�
2: (3)

Here, c i and � are the lepton and Higgs fields, respec-
tively. In an idealized model the flavor mixing coefficients
~�ij can all be taken to be of order one [8–12,14]. When the

Higgs acquires a vacuum expectation value, a neutrino
mass is generated

m� �Oð1Þ v
2

MP

�Oð10�6Þ eV; (4)

with v the electroweak vacuum expectation value. This
type of contribution to the neutrino mass matrix has also
been explored in [17]. Since this neutrino mass term is too
small, we look into the possibility that the true Planck scale
Mf is actually much lower thanMP. Such a lowered Planck

scale Mf is an intrinsic prediction of models with compact

extra dimensions. In some of those models the experimen-
tally allowed Planck scaleMf can be as low as 1 TeV [18–

20]. However, a TeV gravity scale in operators like in
Eq. (3) meets strong constraints from precision measure-
ments such as � ! e� [21]. This can be met by imposing
additional symmetries or by admitting that Mf might not

be so extremely small

1 TeV � Mf <MP: (5)

Several papers [8–12,14] discuss contributions of an exact

‘‘blindness’’ model, where the part of the neutrino mass
matrix coming from gravitational effects can be parame-
terized in flavor space as

�M�
g ¼ �g

1 1 1
1 1 1
1 1 1

2
64

3
75; (6)

where

�g �Oð1Þ v
2

Mf

�Oð10�2Þ eV: (7)

It should be noticed that such an exact blindness model
does not imply base independence in flavor space. This
means that only when written in the flavor base (defined by
a diagonal mass matrix of the charged leptons), the matrix
(6) takes its symmetric form. Further, such a model can
only give direct predictions for the Pontecorvo-Maki-
Nakagawa-Sakata (UPMNS) matrix (17) if the relation of
flavor basis to the mass basis is defined for the charged
leptons as well. Like in the standard model this relation is
implicitly assumed for the above contribution by taking
both basis to coincide [12].
In order to explain the solar mass scale the fundamental

scale has to be Mf �Oð1015Þ GeV, which is in good

agreement with the inequality in Eq. (5). However, the
matrix in Eq. (6) has only one eigenvalue different from
zero. Therefore, such a scenario cannot account for both
solar and atmospheric neutrino mass splittings.

IV. THE NEUTRINO MASS MATRIX FROM
R-PARITY VIOLATING SPLIT SUSYAND LOW

SCALE QUANTUM GRAVITY

Now we will discuss the possibility that both, R-parity
violating split SUSY and low scale quantum gravity op-
erators like Eq. (3) contribute to the Lagrangian. In this
case, two terms can contribute to the neutrino mass matrix.
Since the mass terms in Eqs. (1) and (6) are both formu-
lated in flavor space one can write the total effective
neutrino mass matrix as

M�ij
g ¼ A�i�j þ�g; (8)

where we defined the factor in front of the mass matrix in
Eq. (1) as A. As defined above, the neutrino mass matrix
does not contain CP violating phases. In this case, if A > 0
and �g > 0 the three neutrino masses are
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m�1 ¼ 0

m�2 ¼
1

2
ðAj ~�j2 þ 3�gÞ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAj ~�j2 þ 3�gÞ2 � 4A�gj ~v� ~�j2

q

m�3 ¼
1

2
ðAj ~�j2 þ 3�gÞ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAj ~�j2 þ 3�gÞ2 � 4A�gj ~v� ~�j2

q

(9)

where we have defined the auxiliary vector ~v ¼ ð1; 1; 1Þ. In
the approximation where the �g term is subdominant, the

squared mass differences are given by

�m2
sol ¼ ðm2

2 �m2
1Þ ¼ �2

g

ð ~v� ~�Þ4
~�4

þOð�3
gÞ"; (10)

�m2
atm ¼ ðm2

3 �m2
2Þ ¼ A ~�4 þ 2A�gð ~v ~�Þ2 þOð�3

gÞ:
(11)

This shows that for a very small �g, the atmospheric mass

scale is controlled by the parameter A, and the solar mass
scale is controlled by �g. In this approximation, the ei-

genvectors are equal to

~v 1 ¼ ~v� ~�

j ~v� ~�j ~v2 ¼
~�� ð ~v� ~�Þ

j ~�� ð ~v� ~�Þj þOð�gÞ

~v3 ¼
~�

j ~�j þOð�gÞ;
(12)

and the matrixUPMNS is formed with the eigenvectors in its
columns. The neutrino mixing matrix is defined as

UPMNS ¼ U32U31U21; (13)

where U32 is a rotation matrix around the axis one (with
cyclic permutations for the other two).

At this point it is instructive to have a closer look at the
matrixUPMNS. This matrix appears in the Lagrangian of the
leptonic charged current interactions such that

L � gffiffiffi
2

p ð �eþL ; ��þ
L ; �	

þ
L ÞW�

��
�UPMNS

�1

�2

�3

0
@

1
A; (14)

where fermions are in the mass eigenstate basis. In the
most general situation, both the charged lepton and neu-
trino mass matrices are nondiagonal in the interaction basis

L� ð �e0þL ; ��0þ
L ; �	0þL ÞM‘

e0�L
�0�

L

	0�L

0
BB@

1
CCA� ð ��0c

1 ; ��
0c
2 ; ��

0c
3 ÞM�

�0
1

�0
2

�0
3

0
BB@

1
CCA;

(15)

where the prime on the fermion fields denote the interac-
tion basis. The two mass matrices are diagonalized by V‘

and V�,

Vy
‘ M‘V‘ ¼ diagðme;m�;m	Þ;

Vy
�M�V� ¼ diagðm�1 ; m�2

; m�3
Þ;

(16)

and the UPMNS matrix becomes

UPMNS ¼ Vy
‘ V�; (17)

where we have assumed CP conservation. Because of the
Majorana nature of neutrinos, UPMNS depends on three
mixing angles and three Majorana phases. We assume the
latter to be zero. In general, a simultaneous diagonalization
ofM� andM‘ is necessary to findUPMNS. In principle there
might also be off-diagonal contributions to the matrix M‘

coming from the flavor blind gravitational terms in Eq. (3)
(R-parity violating supersymmetric intercations do not
modify V‘). However, those contributions (if they are
present) can be depreciated in our model since they only
can produce corrections to the diagonal mass matrix of the
charged leptons of the order �g=me � 10�8. This makes

V‘ equal to unity up to terms of the order of �g=me. In

order to have a predictive model we do not consider any
other beyond the standard model contributions, like non-
diagonal terms in the Yukawa couplings of the charged
leptons. Therefore, one can identify UPMNS with V�. It is in
this basis that we include the flavor blind contribution from
gravity given in Eq. (6).

V. RESULTS AND PREDICTIONS

In this section we present some numerical results, where
we find eigenvalues and eigenvectors of the 3� 3 effective
neutrino mass matrix using numerical methods. With them,
we find neutrino mass differences and mixing angles, and
compare them with values from experimental measure-
ments. The solar and atmospheric mass differences, as
well as the solar and atmospheric mixing angles, have
been measured in several experiments. We use the results
of the combined analysis in Ref. [22], given in Table I. In
addition, upper bounds have been obtained for the reactor

TABLE I. Experimental measurements for neutrino parame-
ters.

Observable oi Mean value �oi 3
i variance Units

�m2
atm 2:35� 10�3 0:95� 10�3 eV2

�m2
sol 8:15� 10�5 0:95� 10�5 eV2

sin2�atm 0.51 0.17 -

sin2�sol 0.305 0.075 -

TABLE II. Experimental upper bounds for neutrino parame-
ters.

Observable oi 3
i upper bound Units

sin2�reac 0.047 -

m�� 0.84 eV
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angle [22], and for the neutrino less double beta decay
mass parameter m��. The value for the neutrino less

double beta decay parameter is quite precisely determined

in our setting. Our model allows values of 0:001 eV<
m�� < 0:005 eV, which is 2 orders of magnitude below

the current experimental bound.
We scan the parameters space, varying randomly the

parameters �i, A, and �g, and calculate the goodness of

the model, represented by Eq. (8), with

�2 ¼ X6
i

ðoi � �oiÞ2
ð3
iÞ2

; (18)

where we have assigned a null mean value to the two
parameters in Table II for which only upper bounds are
known. Positive and negative solutions for Awere found. A
typical solution for negative A is

�1 ¼ 0:0148 GeV2; �2 ¼ 0:0822 GeV2;

�3 ¼ �0:0712 GeV2; A ¼ �4:10 eV=GeV4;

�g ¼ 0:003 eV;

(19)

with �2 ¼ 0:02. This shows that it is possible to find
solutions for the combined model, which are in (3
)
agreement with every single neutrino observable. The pre-
diction for the neutrino parameters in this case are sum-
marized in Table III.
Based on the same 3
-limits scan, we study how the

parameters of this model are constrained by the experi-
mental data. A key ingredient of this model is that it offers
a possible way to measure �g for flavor blind gravity

effects. Indeed, an interesting prediction is that the allowed
values of the mass parameter �g are strongly constrained.

In Fig. 1 we show the frequency of occurrence of each
value of �g among the selected models. This model pre-

dicts values centered around �g ¼ 3� 10�3 eV with a

5% error, as we can see from the green region defined by
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FIG. 1 (color online). Prediction for the mass parameter �g

among models that satisfy all the experimental constraints.
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FIG. 2 (color online). Sections of the parameter space showing sin2�sol and sin
2�atm as a function of �g, with �

2 < 1, 2, 3, for green
triangles, red squares, and blue circles, respectively.

TABLE III. Predictions for neutrino parameters.

Observable Value Units

�m2
atm 2:39� 10�3 eV2

�m2
sol 7:74� 10�5 eV2

sin2�atm 0.596 -

sin2�sol 0.321 -

sin2�reac 0.023 -

m�� 0.0039 eV
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�2 < 1. For comparison we show also the red region for
�2 < 2, and the blue region for �2 < 3. According to
Eq. (7), this implies a prediction for the true Planck scale
given by Mf � 2� 1016 GeV, which is remarkably simi-

lar to the GUT scale.
The same scan is shown in Fig. 2 where we see the

neutrino mixing angles in correlation with the gravitational
neutrino mass parameter �g. Concentrating on the green

triangles (�2 < 1), we see that the values of sin2�sol (left
frame) are centered around 0.33, which is in the larger side
of the experimentally allowed window. On the other hand,
the values of sin2�atm are centered around one half, which
is right in the center of the experimental window. For
comparison we show also points of parameter space less
favored by experimental data, with red squares correspond-
ing to �2 < 2, and blue circles to �2 < 3.

Since the reactor angle satisfy

sin 2�reac ¼ ðv3;1Þ2 ¼ �2
1

j ~�j2 < 0:047; (20)

where v3;1 is the first component of the third eigenvector in

Eq. (12), and the quoted upper bound corresponds to the
one given in Table II, we need �2

1 � �2
2 þ �2

3. Neglecting

the value of �1 in front of �2 and �3, we obtain

tan2�atm ¼
�
v3;2

v3;3

�
2 ¼ �2

3

�2
2

¼ 1

tan2�sol ¼
�
v2;1

v3;1

�
2 ¼ �2

2 þ �2
3

ð�3 � �2Þ2
¼ 1

2
:

(21)

The numerical values for each parameter shown in Eq. (21)
are obtained in the following scenario: Experimental re-
sults indicate sin2�atm ¼ 0:51� 0:17, where again we in-
dicate the 3
 error. Maximal mixing is satisfied if we take

�2
3 ¼ �2

2. Choosing the sign �3 ¼ ��2 leads to the pre-

diction for the solar angle indicated in the previous equa-
tion, sin2�sol ¼ 1=3, which nicely agrees with the
experimental result sin2�sol ¼ 0:305� 0:075.
As we will see now, this prediction is confirmed by the

scan and the numerical diagonalization of the neutrino
mass matrix. In Fig. 3 we plot the frequency of occurrence
for each of the parameters �i among the models in our
scan, which satisfy the experimental constraints detailed in
Tables I and II. We see in the left frame that �1 is typically
an order of magnitude smaller than the other two parame-
ters �2 and �3, consistent with requirements from the
reactor angle. Because of this hierarchy in the parameters,
our model has some interesting common features with the
tri-bi-maximal mixing model discussed in [12]. In the right
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FIG. 3 (color online). Frequency of occurrence for the parameters �i among the models compatible with experimental results.
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frame we see that models consistent with experiments need
�3 ¼ ��2, leading to the prediction sin2�sol ¼ 1=3 as
explained earlier. The prediction tan2�23 ¼ 1 )
tan2�sol ¼ 1=2, is observed also in our scan. In Fig. 4 the
relation between the neutrino mixing parameters sin2�atm
and sin2�sol is shown. From this plot one sees that the
model can only deliver a good agreement with all experi-
mental bounds, if 0:313< sin2�sol < 0:342. This very
strong constraint on sin2�sol (remember that the experi-
mentally allowed region is 0:23< sin2�sol < 0:38) gets
even smaller if the atmospheric mixing parameter
sin2�atm is taken at its central value of 0.51, as seen in

Fig. 4. In this case one finds that the model predicts
0:325< sin2�sol < 0:334. With those small theoretical un-
certainties an improved measurement of sin2�sol would
already allow to confirm the model prediction or otherwise
rule out this model.
The neutrino mass differences �m2

sol and �m2
atm are

shown in Fig. 5. The left frame shows that a growing �g

gives a growing �m2
sol, which can be understood by com-

paring to the approximation in Eq. (10), that is, the A term
dominates over the �g term in Eq. (8). In the right frame

we have the atmospheric mass difference �m2
atm as a

function of the gravitational neutrino mass parameter �g,

where there is no obvious dependence because the atmos-
pheric mass difference is dominated by the A term. In both
mass differences though, we see that the predictions lie
nicely at the center of the experimental window.
It is also instructive to study how the scale of the super-

symmetric term A and the scale of the gravitational term
�g are pinned down by the individual experimental con-

straints in Table I. Starting from the benchmark point in
Eq. (19) and varying with respect to A and �g we plot the

allowed regions for every observable and the intersection
of those regions. At the center of Fig. 6 we have the zone in
the A-�g plane, which is consistent with experiments, and

formed by the intersection of several regions. Region I is a
vertical stripe where mainly the A parameter is constrained
by the �m2

atm data. Region II is a horizontal stripe where
�g is constrained by the �m2

sol data. Note that this hori-

zontal stripe turns into a vertical one after an eigenvalue
crossing, although this last branch is not allowed by the
solar angle data. Finally, Region III indicates the constraint
from sin2�sol, whose allowed region is at the right of the
diagonal line, which breaks at the top also due to an
eigenvalue crossing. Constraints from the other neutrino
observables are not relevant for this figure.
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The main features from Fig. 6 can be understood by
looking at the approximations in Eqs. (10) and (11), which
show that for small values of �g, the atmospheric mass

difference �m2
atm is dominated by A, while the solar mass

difference �m2
sol is dominated by �g. One sees that in the

vicinity of this benchmark point, the other observables play
a minor role in pinning down the scale parameters A and
�g.

VI. SUMMARY

It is known that in split supersymmetry with R-parity
violation an atmospheric mass difference is generated at
tree level, but one-loop contributions are not enough to lift
the symmetry of the effective neutrino mass matrix, thus
not being able to generate a solar mass difference. This
problem is not solved by adding the, in principle always
present, flavor blind couplings from dimension five opera-
tors. The reason is that the Planck scale is too large to
generate a solar mass difference large enough to be com-
patible with experiments. In this article we have shown that
split supersymmetry with R-parity violation, plus flavor
blind gravity effects with a reduced Planck scale, present in
models with compact extra dimensions, can be compatible
with all data form neutrino experiments. The atmospheric
mass difference is generated by supersymmetry with a

mixing between neutrinos and neutralinos, while the solar
mass difference is generated by the flavor blind gravita-
tional effects. This model predicts a value for the gravita-
tional term �g ¼ 3� 10�3 � 5% eV, which corresponds

to a reduced Planck scale Mf � 2� 1016 GeV. The fact

that this reduced Planck scale is equal to GUT scale is a
tantalizing result that may be related to gauge coupling
unification of all four forces. In addition, the solar mixing
angle is predicted to satisfy 0:313< sin2�sol < 0:342. We
show also that a maximal atmospheric mixing sin2�atm ¼
1=2 implies sin2�sol ¼ 1=3, which agrees with the impli-
cations from our parameter scan 0:325< sin2�sol < 0:334,
when we adopt the central value sin2�atm ¼ 0:51. In this
way, the model not only reproduce the experimental results
but it is also predictive and, therefore, can be falsified by
future experiments.
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Centro de Estudios Subatómicos), and by Conicyt-PBCT
Grant No. ACI35. B. K. was funded by Conicyt-PBCT
Grant No. PSD73. B. P. was funded by Conicyt’s
‘‘Programa de Becas de Doctorado.’’

[1] For a review see R.N. Mohapatra and A.Y. Smirnov,
Annu. Rev. Nucl. Part. Sci. 56, 569 (2006); J.
Lesgourgues and S. Pastor, arXiv:astro-ph/0603494.

[2] N. Arkani-Hamed and S. Dimopoulos, J. High Energy
Phys. 06 (2005) 073; G. F. Giudice and A. Romanino,
Nucl. Phys. B699, 65 (2004); B706, 65(E) (2005).
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