ZEN and the search for high-redshift galaxies

Jon Willis, Frédéric Courbin, Jean-Paul Kneib, Dante Minniti

Abstract

We present the ZEN (z equals nine) survey: a deep, narrow J-band search for protogalactic Ly α emission at redshifts $z \sim 9$. In the first phase of the survey, dubbed ZEN1, we combine an exceptionally deep image of the Hubble Deep Field South, obtained using a narrow-band filter centred on the wavelength 1.187 µm, with existing deep, broad band images covering optical to near infrared wavelengths. Candidate $z \sim 9$ Ly α -emitting galaxies display a significant narrow-band excess relative to the J_s-band that are undetected at optical wavelengths. We detect no sources consistent with this criterion to the 90% point source flux limit of the NB image, $F_{NB} = 3.28 \times 10^{-18}$ ergs s⁻¹ cm⁻². The survey selection function indicates that we have sampled a volume of approximately 340 h⁻³ Mpc³ to a Ly α emission luminosity of $10^{43} \, h^{-2} \, \text{ergs s}^{-1}$. When compared to the predicted properties of $z \sim 9$ galaxies based upon no evolution of observed $z \sim 6$ Ly α -emitting galaxies, the 'volume shortfall' of the current survey, i.e., the volume required to detect this putative population, is a factor of at least 8–10. We also discuss continuing narrow *J*band imaging surveys that will reduce the volume shortfall factor to the point where the no-evolution prediction from $z \sim 6$ is probed in a meaningful manner.