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Phase-difFerence fluctuations of the quantum-beat laser
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We calculate the phase-difference and phase-sum fluctuations of the quantum-beat laser, using the
nonlinear model of Bergou et al. [Phys. Rev. A 38, 754 {1988)],and also making use of the phase
operators defined by Pegg and Barnett [Phys. Rev. A 39, 1665 (1989)]. We found a vanishing
phase-difFerence diffusion constant, in agreement with Bergou et al. However, the present formal-
ism is more general, and includes shot noise as well as saturation effects for the relative and sum
phase fluctuations.

Recently, Pegg and Barnett' defined a well-behaved
Hermitian phase operator Po, constructed in a finite-
dimensional Hilbert space. After the calculations of vari-
ous moments, the dimension is allowed to tend to infinity.
Some of the applications of this phase operator, so far are
(a) to show that a highly excited coherent state has a
minimum uncertainty product of the photon number and
phase fluctuations; (b) in a low photon number field, the
phase fluctuations are in agreement with the experimen-
tal results; (c) to study the phase properties of squeezed
states; (d) to obtain in a single curve, the phase fluctua-
tions versus time of a laser with atomic memory effects.

Experimentally, one only measures phase differences,
typically, a signal whose phase is referred to as a local os-
cillator. We could also have a phase difference in a beat
signal in correlated physical systems such as the
quantum-beat laser.

In the present paper, we study the relative phase Auc-
tuations in a quantum-beat laser, using the Hermitian
phase operator (HPO).

In a recent paper, the nonlinear theory of the
quantum-beat laser was developed. The main result of
that paper is that the relative phase-diffusion coefficient
vanished to all orders. This was also in agreement with a
previous linear theory.

Our results are in agreement with Ref. 8. In addition,
we also determine the constant value of the phase fluctua-
tions of the relative phase.

Sharp phase states' can be defined as
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and 8o is arbitrary. These ~8 ) states form an orthonor-
mal basis in the (s+ 1)-dimensional Hilbert space and the
electron of Oo defines a particular basis set.

From Eq. (1), a phase operator can be defined as
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In order to deal with the quantum-beat laser (QBL),
definition (1) will have to be extended for two modes, that
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where one assumes that the dimension associated with
each mode is the same.

The Auctuations of the phase-difference operator, "can
now be written as
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We notice in Eq. (5) that (8,8 ~p~8, 8 ) is the probability of having a relative phase 8 —8 . This probabil-
1 2

ity is normalized. We will now calculate (8,8 ~p~8, 8 ) when p is the density matrix of the QBL.
In Ref. 8, the quantum-beat laser was described by a model consisting of three-level atoms pumped into their upper

state, at a rate R. The transitions from the two upper states to the lower one (a ~c,b ~c) are assumed dipole allowed.
Also, the two upper states (a, b) are coupled by an external intense classical field. There is a double cavity tuned at fre-
quencies v, and v2 corresponding to. the a~c and b~c transitions, respectively. These two modes are quantum-
mechanically treated.

The master equation for the quantum-beat laser is given by Eq. (34) of Ref. 8, that is,
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where the 2 and B modes are the dressed modes of the
cavity, defined as

and R is the pump rate; g is the coupling constant; y is
the atomic loss rate.

As we can see from Eqs. (6) and (7), there are two
dressed independent modes 3 and B. The 3 mode
satisfies the Scully-Lamb master equation and corre-
sponds to an ordinary laser mode, while the B mode mas-
ter equation contains only a loss term and therefore, in
steady state pN N =6N 0

(B)

We assume, now, as an initial condition, that the
"laser" in A mode is in a coherent state. ' Then, the
density operator at time t is given by

a1 a28= (9)

S

p(t)= g p, (t)lN„, O)(N~, Ol,
N~, N~ =0

with a, and a2 being the annihilation operators of the
two original modes. The various parameters appearing in

Eq. (6) are just the usual parameters from the Scully-
Lamb' ' laser theory, that is,
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where Q, and Qz are the quality factors of the two cavi-
ties,
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where r and go are, respectively, the amplitude and phase
of the initial coherent state, and DA is the decay constant
of the oK-diagonal matrix elements. Now, using Eqs. (8)
and (9), we obtain the density matrix in the true modes of
the electromagnetic field. The result is
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The diagonal matrix elements of p in two-mode phase states can be calculated in a straightforward manner, The result
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Now, we will assume that we have a highly excited initial coherent state, namely, r ))1. Then, one can approximate
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f (k) ~ —b 1 —(b k—) /2b (16)

Taking 6 =r/&2 and substituting the square root of Eq. (16) into Eq. (15), and transforming the sums into integrals, we
readily get
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Taking the continuous limit in Eq. (5), we can define a
phase probability density distribution as
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This probability is normalized in the range—0() ~ 8,8 ~ ~. Originally (8,8 IpI8, 8
was normalized in the [8O, 80 +2~]X[80,80 +2'] in-
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terval. From Eq. (17), we notice immediately that
P(8 (8z) is not invariant under the go~go+2vrk transla-
tion, with k integer. In order to recover both properties,
we define the probability density:
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Since Op and Op are arbitrary, we choose
l 2

80 = 8O =go vr. Now, s—ince we have the probability dis-

tribution for the phases, we can calculate the fluctuations
of P~

—
Pg [as in Eq. (5)] and also of P() +P() . The re-

sults are
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Using the properties of Gaussians, it is simple to prove
that
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where @(x) is the error function, and a is given by Eq.
(18). For r ))1, we get
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The conclusions are the following.
(a) The phase-difference fiuctuations are time indepen-

dent and extremely small (r »1). This accounts for a

vanishing diffusion constant, in full agreement with Ref.
8.

(b) The phase-sum fluctuations are time dependent and
large. The corresponding dift'usion constant, after con-
version from the 3 to the real modes, gives identical re-
sults to the diff'usion constant of the sum of the phases as
given, again, in Ref. 8.

The present description of the phase fluctuations of a
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quantum-beat laser using the Pegg and Barnett phase
operators is by far more complete than the Fokker-
Planck representation, because it not only contains the
phase diffusion constants, but it also has the shot noise
term and saturation, for short and long measurement
times, respectively, both absent in the Fokker-Planck
description. Although we have not discussed here the
saturation, the last two terms in Eq. (25) have a satura-
tion effect in theyhase-sum fluctuations, since for small
times, ( [A(Pz +Ps )/2] ), that is the fluctuations of the

l 2

average phase increases linearly with time, the curve Aat-
tens out as t ~ 1/D~, acquiring a constant value of m. /3
when t ))1/D~. This value corresponds to the fluctua-
tions of a classical phase, when the probability distribu-
tion becomes uniform (random phase) over the whole in-
terval. This last point is discussed in detail in Ref. 7.
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