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ABSTRACT

Erosion and sediment transport processes in rivers and channels usually take place in

arbitrary geometries and occur in turbulent conditions at high Reynolds numbers. Coherent

structures that emerge from large-scale instabilities can play a fundamental role in sediment

transport, and in many cases they constitute the most important mechanism of bed-load

transport and scour in non-equilibrium conditions. The recent experiments carried out by

Hopfinger et al. (2004) and Albayrak et al. (2008) have shown that streamwise Görtler

vortices have a considerable impact on sediment transport rates and scour produced by a

wall-jet flow downstream of a sluice gate. Görtler vortices emerge in an advanced stage of

scour due to the concave curvature of the bed inside the scour hole and their interaction with

the bed increases the shear stress and itensifies bed-load transport. To understand better the

relation between coherent structures and sediment transport, we carry out detached-eddy

simulations (DES) of the flow studied by Albayrak et al. (2008). We reproduce the original

experimental configuration, by discretizing the domain using body-fitted curvilinear grid

with a total of 9.7 million nodes. Our simulations can resolve the coherent structures of the

flow at Re = 156, 200, and capture the dynamics of the Görtler vortices inside the scour

hole. The model not only reproduces the unsteady flowfield, but also the dynamic features

of the shear-stress induced by the Görtler vortices, which are responsible for the sediment

streaks that appear on the bed. The model can therefore serve as a powerful tool to predict

sediment transport and scour under non-equilibrium conditions.

Keywords: Fluid Dynamics, Turbulence, Sediment Transport, Detached-eddy Sim-

ulations (DES), Görtler vortices.
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RESUMEN

Los procesos de erosión y transporte de sedimentos en cauces naturales ocurren gen-

eralmente en geometrı́as arbitrarias y complejas, y en flujos turbulentos a altos números

de Reynolds. Estructuras coherentes que emergen de inestabilidades de escalas mayores

pueden cumplir un rol fundamental en el transporte, y en muchos casos constituyen el prin-

cipal mecanismo de transporte de fondo y socavación en condiciones de no equilibrio. Las

experiencias recientes de Hopfinger et al. (2004) y Albayrak et al. (2008) han demostrado

que vórtices de Görtler en el sentido del flujo tienen un considerable impacto en las tasas de

transporte de sedimentos y en la socavación producida por un flujo tipo jet de pared, aguas

abajo de una compuerta plana. Vórtices de Görtler se producen en un estado avanzado de

de socavación debido a la curvatura cóncava del lecho dentro de la zona de socavación.

La interacción de estos vórtices con el fondo incremetan los esfuerzos de corte e intensif-

ican el transporte de fondo. Para comprender de mejor forma la relación entre estructuras

coherentes y transporte de sedimentos, realizamos simulaciones DES (”detached-eddy sim-

ulations”) del flujo estudiado por Albayrak et al. (2008). Reproducimos la configuración

original de los experimentos mediante la discretización del dominio, utilizando una grilla

con coordenadas curvilı́neas generalizadas con un total de 9.7 millones de nodos. Nues-

tras simulaciones son capaces de resolver las estructuras coherentes del flujo a número de

Reynolds igual a Re = 156, 200, y además capturan la dinámica de los vórtices de Görtler

dentro de la zona de socavación. El modelo no solo reproduce el flujo no permanente,

sino que además las caracterı́sticas dinámicas de los esfuerzos de corte inducidos por los

vórtices de Görtler, responsables de las lı́neas de surcos que aparecen en el lecho. Con

estos resultados, el modelo puede servir como una herramienta poderosa para predecir el

transporte de sedimento y la socavación bajo condiciones de no equilibrio.

Palabras Claves: Dinámica de Fluidos, Turbulencia, Transporte de Sedimentos, Sim-

ulaciones DES, Vórtices de Görtler.

xi



1. INTRODUCTION

Sediment transport in nature is intimately connected to the dynamics of turbulent flows

in aquatic environments. It is characterized by complex interactions that take place at the

interface between the sediment surface and the flow, usually occurs in arbitrary complex

geometries, and is further complicated by the varying properties of the sediment grains and

the surrounding flowfield. Coherent structures in turbulent flows have a direct impact on

the sediment transport and on the evolution of the bed topography in natural rivers and

streams. The multiple scales within the turbulent flows interact with sediment particles,

controlling erosion and deposition, and contribute to the development of dynamic patterns

such as ripples and dunes that arise at multiple levels, up to the largest scales on the earth

surface.

Due to the complexity of the sediment transport problem and in spite of the rapidly

expanding body of literature dedicated to its study, there is still much to be done to under-

stand and be able to model the sediment dynamics and the effects of the flow on sediment

transport. However, with the help of powerful supercomputers it is now possible to inves-

tigate sediment transport processes through high resolution numerical simulations. Such

simulations can be used to perform laboratory and field-scale experiments, and develop

new theoretical and computational model for a broad range of engineering problems (Es-

cauriaza, 2008; Paik et al., 2007, 2010; Escauriaza & Sotiropoulos, 2011c, 2011b).

The continuous growth of infraestructure and the social and environmental impacts

of engineering projects in natural streams require a better understanding of the relation

between the mechanisms of scour and turbulent flow to improve the design of hydraulic

structures and reduce negative environmental burdens. Generally, the methods employed to

predict and compute scour depths are empirical relations based on dimensional analysis and

laboratory or field experiments (eg. Melville (1997)), which assume steady flow conditions

and not give infomation about actual erosion mechanisms. Therefore, the modeling of

three-dimensional turbulent flows has critical impact in understanding the physical that
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govern the interaction of the flowfield with scour in order to get better hydraulic structure

designs.

The main purpose of this investigations is study a particular coherent structure, so-

called counter-rotating Görtler vortices, which have a direct impact on the increase of sed-

iment transport rates (Hopfinger et al., 2004; Albayrak et al., 2008), by means of high

resolution three-dimensional simulations.

These type of flows are highly three-dimensional, and characterized by a wide range

of vortical scales that dominate sediment transport and erosion processes. These flows are

further complicated when they interact with hydraulic structures, which produce unsteady

vortices that emerge from flow instabilities, increasing the stresses on the bed and initiating

local scour (Saric, 1994; Hopfinger et al., 2004; Albayrak et al., 2008).

These characteristics present a great challenge to numerical models intended to study

the effects of unsteady coherent structures in sediment transport problems. At engineering

scales, unsteady Reynolds-averaged Navier Stokes (URANS) models are usually employed

to compute the mean flowfield, and account for the effects of the turbulence fluctuations by

using a gradient-diffusion hypothesis to estimate the eddy-viscosity from transport equa-

tions. Recent investigations (Paik et al., 2007; Escauriaza & Sotiropoulos, 2011c) have

demonstrated that URANS models fail to capture the unsteady features of flows driven by

dynamically rich coherent structures, such as the horseshoe vortex system around obstacles

mounted on the bed (Escauriaza & Sotiropoulos, 2011c). On the other hand, large eddy-

simulations (LES) models can resolve the most important vortical structures in the flow, but

they might become computationally expensive in complex flows at high Reynolds numbers

in engineering applications. Recently, hybrid models such as detached-eddy simulations

(DES) have shown to be powerful tools to resolve the large-scale coherent structures with

moderate computational resources (Spalart et al., 1997; Spalart, 2009). DES combines the

advantages of both, URANS and LES strategies, employing URANS models near solid

walls, and LES in the rest of domain.
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Clear examples on the importance of coherent structures arising from large-scales in-

stabilities of the mean flow are the studies of Hopfinger et al. (2004) and Albayrak et al.

(2008). These authors studied experimentally the scour produced by a wall-jet downstream

of a sluice gate, and observed that the development of a concave bed surface due to the

initial scour triggered a centrifugal instability, producing counter-rotating streamwise pairs

of Görtler vortices inside the scour hole. These vortices played a significant role in the

continuous development of scour as they generated high turbulent stresses and increased

considerably the total sediment flux. Albayrak et al. (2008) performed statistical analyses

of flow variables on a flat and concave walls, and observed experimentally for the second

case the dynamic manifestation of streamwise Görtler vortices with a 3D acoustic profiler

(ADVP).

In this chapter, the previous literature related to study of Görtler type flows and sedi-

ment transport modeling is reviewed to asses the current state of the art, and identify the

challenges that will be addressed in this research.

1.1. Literature Review

Multiple studies have focused in the relation between the coherent structures of the

flow and their interaction. Also, many studies have focused in centrifugal instabilities, es-

pecifically in Görtler vortices, which emerge by the instability of the turbulent boundary

layer and the bed curvature inside the scour hole (Saric, 1994). This phenomenon arises

as a consequence of the bed curvature and a velocity profile that decreases its magnitude

with the radius of curvature. Several flows in these conditions have been thoroughly stud-

ied, such as Blasius velocity profiles or wall-jet profiles (Floryan, 1986). In the work of

Hopfinger et al. (2004) it can be seen that this instability modifies the turbulent structure

of the flow and substantially alters the sediment transport rate. Hopfinger et al. (2004)

even reported the remarkable formation of sediment streaks due to the stresses generated

by Görtler vortices. In their pioneering work, Hopfinger et al. (2004) also established rig-

orously the stability conditions of the wall-jet flow by performing an analysis based on the

3



FIGURE 1.1. (a) Vortex disturbances in the flow of a fluid on a concave wall, axes
of vorices parallel to principal flow direction. (b) Scheme of streamline pattern in
a section at right angle to the principal flow direction.

turbulent Görtler number Tani (1962); Kobayashi and Fujisawa (1983), and used the exper-

imental measurements to modify the erosion model of Hogg, Huppert, and Dade (1997).

Studies about Görtler vortices and centrifugal instabilities have been focused on two ar-

eas: (1) Linear and Non-Linear Analysis using normal modes solutions and disturbance

equations (Rintel, 1971; Aihara, 1976; Ragab & Nayfeh, 1981; Zebib & Bottaro, 1993)

and (2) Experiments in curved wall-jet and film flows (Schweizer & Scriven, 1983; Saric,

1994; Matsson, 1995; Tandiono et al., 2008, 2009). Linear analysis was initiated by Görtler

(1954) by means of a study of the stability of laminar boundary layer profiles on slightly

curved walls relative to small disturbances, in the shape of vortices, whose axes are paral-

lel to the principal direction of the flow, which are the so-called counter rotating Görtler

vortices, as is shown in figure 1.1 .

4



Görtler (1954) in his study used a normal mode solution determining the next distur-

bance equation, where three velocity components and pressure are define as follows:

u = u0(y) + u1(y) cos(αz) exp {βt} (1.1)

v = v1(y) cos(αz) exp {βt} (1.2)

w = w1(y) sin(αz) exp {βt} (1.3)

p = p0(y) + p1(y) cos(αz) exp {βt} (1.4)

where u0(y) is a laminar boundary-layer basic flow formed by some previous history based

on the viscosity effect or the undisturbed flow. α and β are real values, where α = 2π
λ

,

being λ the wave length of the disturbance. The quantity β governs the amplification or

damping of the flow, depending upon whether it is greater or smaller than zero. The values

of x, y, z are the cartesian coordinates and t is the temporal scale. The equation (1.4)

corresponds to a vortex distribution at the curved wall, the axes of which coincide with the

direction of the principal flow. Furtheremore, the numerical results of Görtler (1954) by

means of this linear analysis in Navier-Stokes equations, yield information about stability

limit with respect to dimensionless Görtler number, range of wave length of vortices that

can be amplified, and about the most dangerous vortices with regard to the transition from

laminar to turbulent flow. Görtler number is defined as:

Gθ =
Umθ

νt

√
θ

R
(1.5)

where Um is the “constant” velocity in the outer region for a laminar boundary-layer flow,

and the maxim velocity for a wall-jet flow. θ is the momentum thickness, νt is the eddy

viscosity and R is the curvature radius. Finally, Görtler found that the critical conditions

in terms of momentum thickness are insensitive to the analytic character of the velocity

profile, but they are more sensitive to the presence of points of inflection (Görtler, 1954).

Other studies on linear mathematical analysis, such as the study of Rintel (1971), were
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applied to different velocity profiles and compared with experimental data. Rintel (1971)

showed different critical values of the Görtler for different conditions on velocity profiles,

such as the presence of points of inflection. Following with the studies of Görtler (1954)

and Rintel (1971), Ragab and Nayfeh (1981) made a linear analysis for different velocity

profiles such as Blasius profile, Falkner-Skan profile, and a flow velocity profile over a

hump, in addition evaluated the effect of displacement thickness and the effect of decaying

streamline curvature in critical values of Görtler number. Hall (1988, 1990) solved the

non-linear parabolized equations in a spatial formulation and was able to calculate the

distortion of the mean flow. Schweizer and Scriven (1983) found evidence of Görtler-type

vortices in laminar flows and discussed the dependence of the wavelength of the instability

on flow parameters. Matsson (1995) used a hot-wire anemometry and smoke visualizations

to study the jet on a concave wall and found that streamwise vortices are amplified on the

concave wall and that the growth of vortices is dependent on the initial amplitude, i.e. the

highest initial amplitude gives the maximum strength of vortices. Tandiono et al. (2008,

2009) performed experiences in a 90 degrees curved Plexiglass test section connected to a

low-speed, blow-down-type wind tunnel and found Görtler type vortices at curved position.

To our knowledge this Görtler centrifgual instability has never been captured and stud-

ied using high resolution unsteady 3D simulations, which constitute a novelty in this re-

search field. The main objective of this research is to study the dynamics of Görtler vor-

tices by carrying out DES simulations based on the experimental setup of Hopfinger et al.

(2004) and Albayrak et al. (2008), for the turbulent flow in a scour-hole downstream of

a sluice gate. The description of the flow and the experiences of Albayrak et al. (2008)

are discussed in section 2. In section 3 we show the governing equations of the flow and

describe the numerical model. Section 4 and 5 contain the principal results obtained from

3D simulations, compared with the observations of Hopfinger et al. (2004) and Albayrak et

al. (2008). In section 6 we show the governing equations of a model of sediment transport

which it is used for modeling sediment streaks reported by Hopfinger et al. (2004). The

conclusions in section 7 summarize the results and outline future research.
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2. EXPERIENCES OF HOPFINGER ET AL. AND ALBAYRAK ET AL.

Hopfinger et al. (2004) and Albayrak et al. (2008) performed laboratory experiments

of a wall-jet flow coming from a sluice gate over an erodible sand bed in a rectangular

channel. They studied the flowfield and the sediment erosion produced by Görtler vortices

formed inside the scour hole that develops between the fixed bed channel and a downstream

dune (see figure 2.1(a)). The experiments were conducted in a glass-side horizontal flume

17 m long, 0.5 m wide and 0.8 m deep (Albayrak et al., 2008). A sluice gate was installed

at the middle of the channel, and the sand bed was located at a short distance from it (Lf =

0.1 m). The mobile bed was filled with uniformly graded sand of median grain diameter

d50 = 2 mm, which constitutes a hydraulically rough surface. The downstream water depth

was kept constant at h2 = 0.221 m by adjusting a gate at the downstream end of the flume,

and the upstream water depth h1 was also maintained constant to produce a steady-state

water discharge. The characteristic wall-jet velocity scale from the sluice gate is defined

as U0 =
√

2g∆h, where ∆h = h2 − h1 with h1 = 0.247 m and h2 = 0.221 m (Albayrak

et al., 2008). Using the downstream water depth as the length-scale, the Reynolds number

of the flow is equal to Re = 156, 200. It is important to note that the submerged hydraulic

jump produced downstream the sluice gate does not alter the conditions of the free surface

yielding a low Froude number of 0.1 in the section of the channel with sand bed.

At the beginning of the experiment the mobile bed was covered with a thin plate about

1 m long while water levels were adjusted to the desired values. At t = 0 the plate was

removed and the erosion was initiated on the sediment bed. At time t = ts, a quasi-steady-

state with a maximum scour depth hs was reached. This state is characterized by a very

slow rate of erosion and sediment transport that is reached in a few hundred seconds after

the experiment started. As depicted in figure 2.1, the bed exhibits a deep two-dimensional

and concave scour hole. The curvature of the sand bed under these conditions is suffi-

ciently high to trigger a centrifugal instability and generate Görtler vortices that dominate

the transport of sediment and erosion, producing longitudinal bed forms in the slope region

of the bed (Hopfinger et al., 2004). Albayrak et al. (2008) fixed the bed with the geometry

7



(a)

(b)

FIGURE 2.1. Schematic representation of the advanced scour conditions in the
experiments carried out by Hopfinger et al. (2008). (a) Flow downstream of a
sluice gate with an opening of b = 0.05 m, an apron of longitude Lf = 0.1 m and
bulk velocity under the gate equal to U0 = 0.71 m s−1. (b) Picture obtained from
experiences of Hopfinger et al. (2004).

produced by erosion under the quasi-steady-state conditions with hs = 0.064 m, and per-

formed detailed measurements with a three-dimensional acoustic Doppler velocity profiler

(ADVP) to compute mean velocities and Reynolds stresses near the bed. Görtler vortices

appeared randomly on the concave section of the bed and produced a series of upwash and

downwash events in the instantaneous time-series of velocity in vertical planes across the

bed, as later discussed. In this investigation we perform simulations for this condition of

advanced quasi-steady erosion, for which the scour hole has a significante curvature and

Görtler vortices appear. It is important to note that our simulations were conducted assum-

ing that mobile bed is fixed to represent Görtler vortices and flow results. These results are

the initial conditions for sediment transport modeling.
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3. COMPUTATIONAL FLUID DYNAMICS MODEL

3.1. Governing equations

To simulate the flow downstream of the sluice gate (Hopfinger et al., 2004; Albayrak

et al., 2008), we solve the three dimensional unsteady Reynolds-averaged Navier-Stokes

equations (URANS) with a dual-time stepping artificial compresibility (AC) iteration scheme

(Paik et al., 2007). The system of governing equations can be written in vector format for

the generalized curvilinear coordinate system and in strong conservation form as follows,

Γ
∂Q

∂t
+ J

∂

∂ξj
(
F j − F j

v

)
= 0 (3.1)

where

Γ = diag [0 1 1 1]

Q = [P, u1, u2, u3]
T

F j =
1

J

[
U j, u1U

j + Pξjx1
, u2U

j + Pξjx2
, u3U

j + Pξjx3

]T
F j
v =

1

J

(
1

Re
+ νt

)[
0, gmj

∂u1

∂ξm
+Rm1ξ

j
xm
, gmj

∂u2

∂ξm
+Rm2ξ

j
xm
, gmj

∂u3

∂ξm
+Rm3ξ

j
xm

]T
In these equations P is the pressure divided by the density plus the diagonal component

of the Reynolds stress tensor (P = p + 2
3
k), ui (i = 1, 2, 3) are the Cartesian velocity

components, xi are the Cartesian coordinates, J is the Jacobian, ξjxi
are the metrics of the

geometric transformation, U j are the contravariant velocity components U j = uiξ
i
xj

, gij

are the components of the contravariant metric tensor gij = ξixk
ξjxk

, Re is the Reynolds

number, and the tensor Rij is defined as: Rij =
∂ui
∂ξk

ξkxj
. The Reynolds number of the flow

is defined as Re = U0h2

ν
where U0 is the velocity scale of the wall-jet, h2 is the water depth

downstream of the sluice gate, and ν is the kinematic viscosity of the fluid.
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Since conventional URANS models to close equation (3.1) fail to capture the unsteadi-

ness of coherent structures such as Görtler vortices, and full wall-resolving LES might

need large computational resources for practical Reynolds numbers, we employ the DES

approach, which is a hybrid URANS/LES turbulence model (Spalart et al., 1997; Spalart,

2009). The next section contains a complete explanation of turbulence models available

and the one-equation eddy viscosity model adopted in the DES approach used in these

simulations.

3.2. Statistical turbulence models

As previously discussed, realistic three-dimensional turbulent flows cannot be rep-

resented with DNS (direct numerical simulations) for all turbulent scales, and statistical

turbulence models are employed to obtain numerical solutions of the governing equations

(Pope, 2000). Statistical turbulence closures such as k−ε, k−ω, and one-equation Spallart-

Allmaras (S-A), have been widely used to find the turbulent stresses in the URANS equa-

tions (Durbin & Petterson-Reif, 2001). Such models are practical from the computational

standpoint but are rather diffusive and can only resolve the very largest scales of motion

in turbulent flows (e.g. Ge and Sotiropoulos (2005)). For that the model utilized in this

research is practical for engineering calculations at real-life Reynolds numbers Re, and can

resolve dynamically rich coherent structures. Recent work (Paik & Sotiropoulos, 2005;

Paik et al., 2007, 2009; Paik & Sotiropoulos, 2009; Escauriaza & Sotiropoulos, 2011c) has

shown that hybrid URANS/LES models can serve this purpose. These turbulence models,

such as detached-eddy simulations (DES) developed by Spalart et al. (1997), are combined

formulations that compute the flow near solid walls in URANS mode, and resolve the ed-

dies outside the boundary layer with LES. By eliminating the need of resolving near-wall

turbulent eddies in a full LES models, hybrid formulations can resolve very rich dynamics

in the flow at an affordable computational cost (Spalart, 2000).

The basic concept behind the URANS turbulence models is to express the Reynolds

stress tensor in terms of mean-flow quantities. The Boussinesq approximation, employed
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in isotropic turbulence models, assumes a linear relationship between the turbulent stresses

and the mean strain-rate tensor,

−
〈
u′iu
′
j

〉
= −2

3
kδij + 2νtSijSij (3.2)

where the mean rate of strain is calculated as:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.3)

The graddient diffusion approximation of equation (3.2) introduces the turbulent eddy-

viscosity νt to account for the effects of the smallest scales. The turbulent kinetic energy

of these scales is k, and δij is the Kronecker delta.

The turbulence model used in these simulations is the one-equation eddy viscosity

model of Spalart and Allmaras (1994) (S-A) because of its simplicity, computational expe-

dience, and great promise it has demonstrated in simulations of complex flows (Paik et al.,

2007; Escauriaza & Sotiropoulos, 2011c). The S-A turbulence model (Spalart & Allmaras,

1994) is a one-equation closure for the URANS equations, and consists on a relation for the

auxiliarity variable ν̃ related to the eddy viscosity. This equation, derived from empirical

arguments and dimensional analysis (Spalart, 2000), contains a destruction term that is a

function of the distance from the wall and reduces the eddy viscosity νt inside the turbu-

lent boundary layer. The model can be expressed in the curvilinear coordinate system as

follows:

∂ν̃

∂t
+ J

∂

∂ξj
[
F j
t − F

j
tv

]
+ J Ht = 0 (3.4)

where
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F j
t =

1

J

[
U j ν̃

]
F j
tv =

1

J

[
1

σ

(
1

Re
+ ν̃

)
gmj

∂ν̃

∂ξm

]
Ht =

1

J

[
−cb1 (1− ft2) S̃ν̃ +

(
cw1fw −

cb1
κ2
ft2

)( ν̃
d

)2

− 1

σ
cb2g

mj ∂ν̃

∂ξm
∂ν̃

∂ξm

]

The working variable ν̃ in the S-A turbulence model has a direct relation to the tur-

bulent eddy-viscosity, (ν̃ = νt/fv1), and the destruction term contains the length scale d,

which is defined as the distance from solid walls. In its extended version this model also

includes transition terms, which provide a smooth transition from laminar to turbulent flow

but they are not necessary in high Reynolds number flow studied in this research. The rest

of the variables are defined by the following expressions,

fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
, ft2 = ct3 exp

(
−ct4χ2

)
where ν is the molecular viscosity. In the production term, the modified vorticity S̃ is a

function of the magnitude of the vorticty vector, |S|:

S̃ = fv3|S|+
ν̃

κ2d2
fv2

The production term in this case is different from the original definition of Spalart and

Allmaras (1994). We define the function fv2 in terms of a new variable fv3 , which prevents

the spurious propagation of the eddy viscosity into attached laminar regions (Squires et al.,

2005), such that:

fv2 =

(
1− χ

cv2

)−3

, fv3 =
(1 + χfv1) (1− fv2)

χ

The wall-destruction function is defined as,
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fw = g0

[
1 + c6w3

g6
0 + c6w3

]1/6

, g0 = r + cw2

(
r6 − r

)
, r =

ν̃

S̃κ2d2
(3.5)

Finally, we define the closure coefficients cb1 , cb2 , σ, cw1 , cw2 , cw3 , cv1 , cv2 , and κ,

which are constants, as follows:

cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41 (3.6)

cb1 =
cb1
κ2

+
(1 + cb2)

σ
, cw2 = 0.3, cw3 = 2

cv1 = 7.1, cv2 = 5, ct3 = 1.1, ct4 = 2

In its extended version this model also includes transitions terms, which provide a

smooth transition from laminar to turbulent flow, but they are not necessary in the high

Reynolds number simulations performed in this investigation.

In the hybrid DES approach developed by Spalart et al. (1997) the S-A turbulence

model equation (3.4), functions as the subgrid scale (SGS) model of LES in regions away

from the wall, where the grid density can resolve the scales of fluid motion near the size

of the grid spacing. The modification to the S-A model to implement DES consists on

replacing the distance to the nearest wall as the length-scale of the model by the following

expression,

d̃ ≡ min (d, CDES∆) (3.7)

where ∆ ≡ max (∆x,∆y,∆z), is the largest dimension of the grid cell and the model con-

stant is set equal to its standard valueCDES = 0.65, which was calibrated for homogeneous

turbulence (Shur et al., 1999).

The transition of the model from URANS to LES is therefore controlled by the grid

spacing. If the computational grid is constructed such that the wall-parallel grid spacing is

of the order of the boundary layer thickness, the S-A URANS model is retained throughout
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the boundary layer, and the prediction of the boundary layer separation is determined in

the URANS mode of DES. Far from the solid boundaries, the model becomes a SGS eddy-

viscosity equation. When the production balances the destruction term of the model, the

length scale in the LES region yields a Smagorinsky eddy-viscosity. Analogous to the

classical LES formulation, the role of ∆ is to allow the energy cascade down to a length

scale proportional to the grid size, making a pseudo-Kolmogorov length-scale based on the

eddy viscosity proportional to ∆.

This hybrid model combines the strenghts of URANS and LES using only one partial

differential equation to model the Reynolds stresses. Since fully resolved LES are still too

costly at the range of Reynolds numbers in real sediment transport and scour problems,

we utilize DES that can capture the most-energetic coherent structures and predict the un-

steadiness of the flow and stresses that cause transport and bed erosion (Paik et al., 2007;

Escauriaza & Sotiropoulos, 2011c, 2011b).

In the standard DES approach the transition between the URANS and LES modes

depends exclusively on the grid spacing. The model was developed with the idea that

the grid spacing in the direction parallel to the wall must be greater that at least half the

thickness of the boundary layer, otherwise grid-induced nonphysical separation arises in

regions where the mesh spacing violates these conditions (Spalart et al., 1997).

For the rough-wall simulations performed in this investigation we also use the modifi-

cation of the turbulence model proposed by Aupoix and Spalart (2003).

The AC form of the governing equations is discretized using a second-order-accurate

finite-volume method on a non-staggered computational grid. The convective terms are

discretized using the second-order accurate, upwind biased QUICK scheme, and central

differencing is employed for the pressure gradients, viscous fluxes, and source terms in

the turbulenc equation. The third-order fourth-difference artificial dissipation method of

Sotiropoulos and Abdallah (1992) is employed for pressure to eliminate odd-even decou-

pling of the pressure field. The physical time derivatives are discretized with a three-

point-backward Euler-implicit temporal-integration scheme. The discrete equations are
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marched in time to advance the solution to the next time step by adopting the dual or

pseudo-time-stepping method. The system of equations is integrated in pseudo-time using

a pressure-based implicit pre-conditioner (Sotiropoulos & Constantinescu, 1997) enhanced

with local time stepping and V-cycle multigrid acceleration (Paik et al., 2007; Escauriaza

& Sotiropoulos, 2011c).

The present numerical method has been employed to carry out coherent-structure re-

solving simulations for a variety of complex turbulent flows across a wide range of Reynolds

numbers, from Re = 2× 104 (Paik et al., 2009) to as high as 4.2× 105 (Paik & Sotiropou-

los, 2009), in conjuction with URANS models and various variants of the DES model. The

original version of DES (Spalart et al., 1997) was used by Paik et al. (2004) and Paik

and Sotiropoulos (2005, 2009) while modified versions of the original model were used by

Paik et al. (2007, 2009) and Escauriaza and Sotiropoulos (2011c, 2011b, 2011a). In all of

these studies, the accuracy of the numerical method was demonstrated by qualitative and

quantitative comparisons with available experimental data, tipically in terms of mean flow

quantities and turbulence statistics.

For the turbulent flow above the concave sand bed we scanned the scoured section

of the channel from the experimental measurements of the quasi-steady state of erosion

measured by Albayrak et al. (2008) and perform an initial URANS simulation with an

overset grid layout using a total of 6.0 million grid nodes, incorporating the entire length

of the upstream channel used in the experiment, and the flow through the sluice gate as

depicted in figure 3.1(b). As previously discussed, the URANS simulation cannot resolve

the unsteady near-bed flow or capture the complex and rich dynamics of the Görtler vor-

tices. To reduce the computational cost and concentrate our analysis in the concave bed, we

simulate in more detail the flow over the sediment bed carrying out DES with its original

formulation in a section that considers exclusively the scoured bed in the channel as shown

in computational mesh shown in figure 3.1, maintaining a grid resolution of y+ ≤ 0.5 at

wall boundaries. At the inlet we prescribe the converged URANS of the upstream rect-

angular channel and no-slip boundary condition is applied to all solid walls. A rigid-lid

assumption is employed at the free surface due to the low-Froude number of the original
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(a)

(b)

FIGURE 3.1. (a) Computational domain used in the DES computations for the
fixed concave sand bed. The geometrical details are expressed in terms of the sluice
gate opening, b = 0.05 m. Note that in this case the mesh is considerably finer with
a total of 9.7 million grid nodes, with 209, 521 and 89 nodes in the i, j and k-
directions respectively. (b) Three-dimensional layout of the computational domain
for the numerical simulations.

experiments (Albayrak et al., 2008), and all the results presented in the following sections

are obtained by using a non-dimensionl physical time-step of ∆t = 0.005. In what follows

we analyse the instantaneous three-dimensional flowfield in the concave sand bed, studying

the instantaneous velocities and computing statistics of the resolved flow.
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4. TURBULENT FLOW STRUCTURE IN THE SCOUR HOLE

The DES simulations are carried out in the scour hole region, assuming no-slip bound-

ary conditions at solid walls. At the inlet we prescribe a converged URANS solution, previ-

ously computed in a separate calculation, which considers the entire length of the upstream

rectangular channel and the geometry of the sluice gate. All the results presented in this

investigation are obtained by using a non-dimensional physical time-step of ∆t = 0.005.

In this section we first show qualitatively the instantaneous resolved flow in the scour hole,

and then we compute the instantaneous variables to reproduce the experimental observa-

tions reported by Albayrak et al. (2008).

To describe the instantaneous flow near the bed and elucidate the three-dimensional

phenomena friven by the Görtler vortices, we visualize the coherent dynamics of the flow

using the so-called q-criterion (Hunt, Wray, & Moin, 1988), defined as:

q =
1

2
(OijOij − SijSij) (4.1)

where Oij and Sij denote the antisymmetric and symmetric part of the velocity gradient

tensor respectively.

According to Hunt et al. (1988), we can identify vortical structures in regions where

q > 0, where the local rotation rate dominates the strain rate.

Figure 4.1 shows a snapshot of q-isosurfaces colored with the instantaneous stream-

wise vorticity Γx. Results show the overall complexity of the flow at this state of advanced

erosion. The simulations capture the coherent structures dynamics near the bed and re-

solve the dynamics of the Görtler vortices. Animations of q-isosurfaces showed that inside

the scoured region the flow is dominated by the shear-layer produced by the wall-jet that

emanates from the flat-bed channel, identified as V2 vortices in figure 4.1(a). These hori-

zontal structures exhibit significantly smaller time-scales compared to the Görtler vortices.

On the other hand, pairs of streamwise structures identified as V1 in figure 4.1(a) and figure
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4.1(b) occupy a significant portion of the bed within the scour hole. They appear intermit-

tenly and move laterally with low frequencies as reported by Albayrak et al. (2008). It is

important to note that the centrifugal instability is naturally excited by the resolved flow-

field inside the scoured region, and Görtler vortices appear without imposing an unsteady

pseudo-turbulent inflow condition. In addition, to test the importance of wall roughness, we

performed simulations (not shown herein) with the same inflow conditions and geometry

of the channel assuming a smooth wall in the concave bed. The computation demonstrated

that Görtler vortices also developed over a smooth wall indicating that surface roughness is

not a prerequisite to trigger the instability in this flow.

The emergence of pairs of counter-rotating vortices can also be studied by plotting

contours of streamwise vorticity (ΩX). In figure 4.2(a) we can clearly observe the Görtler

vortices in the plane X/b = 7, inside the scour hole. The instantaneous streamlines and

vorticity countours plotted in the zoomed area in figure 4.2(b), show that the flowfield is

drastically altered in the concave region of the bed. After the boundary layer reattaches

in the scour hole, highly unsteady vortices emerged and form mushroom-like structures

with converging lateral flow, and strong vertical flow away from the wall, a feature of

Görtler vortices that has commonly been observed as reported in the literature (Saric, 1994;

Tandiono et al., 2008).

The presence of different scales make this flow a great challenge to be simulated. Ad-

ditionally to different time-scales visualized in simulations, is clear the presence of vortices

with different spatial scales. The shear-layer in the scoured region generate a recirculation

in high zone and reattached zone at the bed is shown in figure 4.3.

An important finding obtained from the DES computations is that the Görtler vortices

develop in both directions from the reattachment point. The coherent structure dynamics

from the simulations showed that pairs of longitudinal vortices are also formed in the up-

stream direction for X/b < 7.2, as is shown in figures 4.2, 4.3 and 4.4. Therefore after the

wall-jet reattaches to the sand bed, Görtler vortices form in opposite directions inside the

recirculation vortex near the wall, and on the upslope face to the dune.
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(a)

(b)

FIGURE 4.1. (a) Instantaneous 3D vortical structures on the concave bed visual-
ized with q-isosurfaces. In red and blue color are vortices with positive and negative
vorticity in streamwise X-direction. (b) Zoomed area inside the second rectangle,
showing a detail of a pair of counter-rotating streamwise Görtler vortices in the
scoured bed.

To simplify the analysis and evaluate if appropriate conditions exist for the develop-

ment of the centrifugal instability in both directions, we plot the time-averaged velocity

and test the inviscid criterion of Rayleigh for centrifugal instability at both sides of the

reattachment point as shown in figure 4.5. Rayleigh circulation criterion for the circulation

Γ can be written as follows (Saric, 1994):
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(a)

(b)

FIGURE 4.2. Contours of vorticity in x-direction. (a) Non-dimensional stream-
wise vorticity contours in the entire plane. (b) Zoomed area inside the rectangle
with instantaneous streamlines shows clearly the counter-rotating vorticity and the
mushroom structure generated by the vortex pair.

∂Γ2

∂r
< 0, ANYWHERE IN THE FLOW (4.2)

where Γ is the circulation defined as Γ = rV . In this definition of a shear flow over a

concave surface, r is the radius of curvature of the bed and V is the tangential velocity

component. Rayleigh establishes that of |rV | decreases with the radius r the flow is po-

tencially unstable (Saric, 1994). As depicted in figure 4.5, these instability conditions are

present in both sections. At the plane X/b = 7.37, downstream of the reattachment region,

the time-averaged velocity profile does not have inflection points bu Rayleigh circulation

criterion shows a potencial unstable profile. At plane X/b = 6.16, upstream from the reat-

tachment, the velocity profile and Rayleigh criterion reveal the potential development of a
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(a)

(b)

(c)

FIGURE 4.3. (a) Contours of non-dimensional vorticity in y-direction at center of
the channel. (b) Velocity obtained with the mean flowfield at the center of the
channel. (c) Streamlines at center of the channel shows the magnitude of flow
scales. Is clear the reattached zone at the bed where appear Görtler vortices in
opposite direction to the mean flow.
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FIGURE 4.4. Two zones of positive (blue color) and negative (red color) average
velocity at the bed are plotted. The reattachment point is located at X/b 7.2

centrifugal instability. These results point to the conclusion that there are favorable con-

ditions for the development of the centrifugal instability in the upstream and downstream

directions after the wall-jet reattaches to the sand bed, which is captured by the numerical

simulations.

The manifestation and presence of counter-rotating streamwise Görtler vortices in-

creases the levels of turbulent kinetic energy (TKE), which is defined as follows:

TKE =
1

2

(〈
u′2
〉

+
〈
v′2
〉

+
〈
w′2
〉)

(4.3)

where 〈u′2〉, 〈v′2〉 and 〈w′2〉 are the time-average square velocity fluctuations.

Figure 4.6 shows the distribution of the resolved TKE at different planes in streamwise

flow direction. In these figures is clear the increase of TKE by the presence of counter-

rotating streamwise Görtler vortices. At first slices, figures 4.6 (a), (b) and (c) present lower

values of TKE at the bed in comparison to the planes x/b = 6, x/b = 7 and x/b = 8 where
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(a) (b)

(c) (d)

FIGURE 4.5. (a) Time-average velocity profile near he bed at plane X/b = 7.37;
and (b) Rayleigh circulation criterion calculated at plane X/b = 7.37. (c) Time-
average velocity profile near he bed at plane X/b = 6.16; and (d) Rayleigh circu-
lation criterion computed at plane X/b = 6.16. In both cases the criterion reveal
favorable conditions for the development of couter-rotating Görtler vortices in op-
posite directions, as seen in DES computations.

Görtler vortices are developed. At first planes is clear the high values of TKE produced by

wall-jet shear-layer coming from sluice gate at z/b = 0, but in last slices the high values of

TKE are present at the bed.
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(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 4.6. Turbulent kinetic energy at different planes in streamwise direction.
(a) x/b = 3. (b) x/b = 4. (c) x/b = 5. (d) x/b = 6. (e) x/b = 7. (f) x/b = 8.

24



5. SHEAR STRESS AND STATISTICAL FLOW RESULTS

Our simulations show the turbulent Görtler vortices that are formed in the downstream

section of the concave bed are dominated by low-frequency unsteadiness, and they are

directly responsible for the increments on the instantaneous stresses on the bed. Figure

5.1(a) show the time series of the instantaneous non-dimensional shear velocity (uτ ) at the

bed, at plane x/b = 8 inside the scour hole. In this figure is clear the presence of peaks

with intermmitency, properly of the appearance of Görtler vortices which is in accordance

with animations and results of (Albayrak et al., 2008). This peaks values reaches three

times mean low values of shear velocity. Is important to note that these high values of non-

dimensional shear velocity at different intervals of time are responsible for the initiation

of particle motion visualized by Hopfinger et al. (2004) and Albayrak et al. (2008). Our

model is capable to capture with a great detail this feature, which is impossible to visualize

only with its averaged terms, as is shown in figures 5.1 (b) and (c).

In figure 5.1(b) we can observe an increase in the intensity of uτ at zone where Görtler

vortices are developed. This shows the spatial variation of instantaneous non-dimensional

shear velocity, along the spanwise direction across the Görtler vortices. When these vor-

tices are present, the shear-stress has a semingly periodic variation across the channel. This

effect was reported by Hopfinger et al. (2004), as they observed considerable increments

of sediment transport rates in this area of the bed.

High values of uτ in figure 5.1 correspond to the positions of the streamwise vortices,

while lower values are located in between them. This plot also has a remarkable similar-

ity with the skin friction profiles reported in the recent experiments of (Tandiono et al.,

2009), who measured the effects of Görtler vortices in the turbulent flow inside a curved

rectangular duct.

The spatial variation of the shear-stress generated by the Görtler vortices is also re-

sponsible for the emergence of bed forms, identified as sediment streaks by (Hopfinger et

al., 2004). Their experimental visualizations showed the appearance of streamwise oriented
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(a)

(b)

(c)

FIGURE 5.1. (a) Time-series of non-dimensional shear velocity at the center of the
channel at the plane X/b = 7.37. (b) Instantaneous non-dimensional shear velocity
at the bed. (c) Non-dimensional shear-velocity averaged on time-series data. There
is a significant increase on the shear-velocity magnitude where Görtler vortices are
developed.
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streaks on the mobile bed, which were identified as evident signs of the presence of Görtler

vortices and their effects on bed load transport and scouring processes.

In the streamwise direction we observe that the shear velocity presents higher mag-

nitudes in the section comprised by 7 < x/b < 9, at the center of the channel. This

feature, attributed to the Görtler vortices and shown in figure 5.1, was also described in

the experimental investigation of (Albayrak et al., 2008). With respect to this area of high

stress, they make the following comment: “This higher dimensionless friction velocity on

the concave wall, when x/b > 7, can be attributed to the development of Görtler vortices.

When x/b > 9, the friction velocity on the concave wall starts to decrease, because after

that point the boundary slope changes and the Görtler vortices disappear.”

From our simulations we can reproduce additional quantitative results that were also

obtained by Albayrak et al. (2008). Employing instantaneous measurements of the velocity

field in a vertical profile, they compute the product of horizontal and vertical velocity fluc-

tuations in time, capturing upwash and downwash flow events near the bed. These events

are characterized by positive and negative values of the instantaneous components of the

Reynolds stress tensor. Along a vertical line in the center of the channel, at a position

x/b = 7, the flowfield is plotted in time. The vertical distance is non-dimensionalized by

using the length scale z′1/2 defined as the height at which the velocity magnitude is equal to

half of the maximum streamwise velocity (Albayrak et al., 2008). Remarkably the simu-

lations presented in this research can capture the same dynamics described by Albayrak et

al. (2008). In figure 5.2(a) we plot the velocity components and contours of u′w′ in time,

using the resolved flowfield from the DES calculation. This figure shows the predominant

contribution of upwash events on the Reynolds stresses. In the outer layer, the downwash

and upwash flow events are dominant at several locations, see for example z′/z′1/2 = 1

and z′/z′1/2 = 0.5 at t = 8.9 s and t = 9.2s The same statistical observations were made

by Albayrak et al. (2008), who linked these dynamic processes to the unsteadiness of the

near-wall coherent vortices. Convergent flow observed in plots of v′ − w′ velocity vector

which were reported by Albayrak et al. (2008), are also reproduced in our simulations as

shown in figure 5.2(b).

27



FIGURE 5.2. Two-dimensional resolved velocity vector plots along a vertical pro-
file at plane x/b = 7, at the center of the channel. The total time interval is
∆t = 1.6s. The length scale is z1/2 = 5.8 cm. on the selected profile. (a)
Streamwise (x,z’)-plane, velocity vectors (u′w′); (b) Spanwise (y,z’)-plane, veloc-
ity vectors (v′, w′).

Another quantitative results that has a direct relation with the influence of Görtler vor-

tices on scoured region is the Reynolds stress obtained from the resolved velocity fluctua-

tions. Figure 5.3 shows the 〈u′w′〉 Reynolds stress computed by Albayrak et al. (2008) at

plane x/b = 6 and the results obtained from our DES simulations. In this figure is clear that
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FIGURE 5.3. Dimensionless Normal Reynolds stress computed in experiments
made by Albayrak et al. (2008) (*) and the DES model (-), at plane X/b = 6.
The values of Reynolds stress are scaled by Um, which correspond to the maxi-
mum streamwise average velocity.

DES can represent with a godd accuracy the experimental results measured by Albayrak et

al. (2008).

In the same direction with statistical upwash and downwash events obtained with

our model, we compute the autocorrelation of Dimensionless Normal Reynolds stresses

(u′w′/Um) at scoured zone where Görtler vortices are developed (X/b = 7), as is shown in

figure 5.4. This figure established the presence of a periodic series of increments of shear

stress at the bed. This is clear when dominant frequencies of u,v,w and Normal Reynolds

shear stresses (u′w′) are calculated. The three largest dominante frequencies of these vari-

ables are in Table 5.1.

From calculated data in Table 5.1 is clear the presence of quasi-periodic series for

the three velocity components, which manifest the appearance, developing and dissipa-

tion of Görtler vortices in the scoured region in a quasi-periodic process. Similar dom-

inant frequencies in streamwise and vertical velocity components, suggest the presence

of downwash and upwash events showed in figure 5.2(a) and reported in the experiments
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(a)

(b)

FIGURE 5.4. (a) Autocorrelation and (b) Frecuency spectrum of Normal Reynolds
shear stress time series at the bed at x/b = 7 and at the center of the channel, where
Görtler vortices are developed.

of Albayrak et al. (2008). In figure 5.4(b) is shown the Reynolds shear stress frequency

spectrum, which follows a power-law of -7/3 as is suggested by Pope (2000).
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TABLE 5.1. Dominant frequencies of three velocity components and Normal
Reynolds Stress

Variable Frequency 1 (Hz) Frequency 2 (Hz) Frequency 3 (Hz)

u 0.39 0.78 1.56

v 0.20 0.59 1.17

w 0.39 0.78 1.56

u’w’ 0.39 0.98 2.35
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6. SEDIMENT TRANSPORT MODEL

The numerical simulations performed for the flow downstream of a sluice gate repro-

duce the experimentally observed flow physics reported by Hopfinger et al. (2004) and

Albayrak et al. (2008). A properly designed sediment transport model can take advantage

of the instantaneous information of the coherent structures of the flow to investigate the

sediment dynamics at erosion zone in clear-water scour conditions. As it was mentioned

previously, counter-rotating Görtler vortices dynamics are responsible for enhancing the

shear stresses at the bed, increasing the magnitude of sediment transport rates and produc-

ing bed forms as streaks (Hopfinger et al., 2004; Albayrak et al., 2008). This interaction

between Görtler vortices and sediment transport motivates the use of a sediment transport

model that can make use of the flowfield provided by the DES simulations.

In this chapter, we review the concepts behind the development of models for multi-

phase flows in pratical applications and establish the rationale for using a Lagrangian parti-

cle model of sediment transport in the flowfield downstream of a sluice gate at the erosion

zone studied previously. The governing equations and methods to integrate the trajectory

and momentum of particles located at the scour region for the computed flowfield are then

presented. From the results of simulations we can investigate further the effects of the un-

steady coherent structures near the bed (especially Görtler vortices), and the entrainment

and deposition processes that occur in bed-load transport. The results of these simulations

shows qualitatively the representation of the advanced scoured bed zone, but provide in-

sights to comprehend the effects of Görtler vortices on scour process and sediment streaks

reported by Hopfinger et al. (2004).

6.1. Modeling of multiphase turbulent flows

The approaches developed to model multiphase flows in high Reynolds number tur-

bulent flows can be generally classified as Eulerian (continuum) models, or Lagrangian

models (Escauriaza, 2008; Escauriaza & Sotiropoulos, 2011a, 2011b).
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Eulerian models have been employed for the prediction of interpenetrating media and

particle flows, considering the particles (or dispersed phase) as a continuum fluid (Crowe

et al., 1998). The simplest one-fluid approach consists on solving an equation for the

conservation of mass of the particles, determining the mean spatial concentration from

an advection-diffusion relation. The governing equations can be modified in cases when

the phases exhibit considerably density differences or the particle flux includes a vertical

term to model the effects of gravity (Escauriaza & Sotiropoulos, 2011a, 2011b). A more

complete Eulerian approach can be developed by considering the particle phase as another

fluid. In the so-called two-fluid approach, the dynamics of the carrier fluid and the particles

are computed by solving separate conservation of mass and momentum equations for each

phase (Drew, 1983). The equations are coupled by force terms that model the exchange

of momentum between the particles and the fluid, which is called two-way coupling as

explained below. These Eulerian models also need to incorporate models for the turbulent

terms that appear after averaging the equations, since correlations of fluctuating quantities

have to be closed to represent the unresolved concentration and velocity fields (Lakehal,

2002). Conventional Eulerian models have been applied to sediment transport problems,

usually based on one-equation models to compute the sediment concentration. They have

been shown to reproduce the suspended load in practical applications at high-Reynolds

numbers flows (e.g. Wu et al. (2000)) but the approximations implied in an advection-

diffusion equation for sediment concentration can generate inconsistent fluxes near the bed

in 3D unsteady flows, where the interaction with the wall and the flow produce a complex

dynamics of the sediment (Chang & Scotti, 2004).

Lagrangian models for multiphase flows consider the dynamics of individual parti-

cles whose motion is controlled by advection mechanisms generated by the continuum

surrounding Newtonian fluid, interactions with other particles and the gravitational force

(Loth, 2000). Depending on the particle concentration, flows should be treated differently

in order to consider the relevant mechanisms that drive their dynamics. Dense flows with

high concentrations of particles are mainly controlled by particle-particle collisions and by

the changes on the flowfield produced by fluid-particle interactions. In dilute flows, on the
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other hand, concentrations are low and interparticle collisions have a very small influence

on the particle dynamics compared to the effects of the flowfield (Crowe et al., 1996).

As pointed out by Crowe et al. (1996), no flow is completely dilute or dense and mod-

eling techniques should be able to describe the relevant physics in each specific case. Fully

resolved simulations of particles in turbulent flows (particle DNS) cannot be applied due

to their computational costs, since they require to solve the flowfield at the particle surface

in detail. A resolved representation of particles in a fluid flow is also clearly limited by

its range of applicability, restricting its application to theoretical investigations for low-

Reynolds numbers and simple geometries (see for instance the simulations of Burton and

Eaton (2005) for a single fixed paricle in decaying isotropic turbulence in a box). There-

fore, point-volume formulations are the only feasible approach to describe the dynamics

of multiple particles in practical situations (Loth, 2000). The point-volume model utilize

the particle center of gravity to represent the position and trajectory of each particle, and

analytical formulas are employed to reproduce the surface-averaged forces based on exper-

imental results or theoretical approximations of the momentum transfer from the fluid to

the particles or vice versa (see Maxey and Riley (1983); Crowe et al. (1998); Loth (2000);

Michaelides (2003)).

Depending on the effects of the particles on the fluid flow, Lagrangian models of multi-

phase flows can be classified as one-way coupling or two-way coupling approaches (Crowe

et al., 1996). A one-way coupling model assumes that the presence of particles does not

have a significant effect on the flow dynamics, producing negligible local modifications of

the flowfield or changes on the dynamics of nearby particles, which is tipically valid for

dilute flows. Two-way coupling Lagrangian models, on the other hand, incorporate the

effects of the particles on the flowfield adding a term to the Navier-Stokes equations to

consider the forces exerted by the particles on the carrier fluid. For the computations of

particle-laden turbulent flows, two-way coupling models have been proposed in the context

of LES simulations (e.g. Maxey et al. (1997); Boivin et al. (2000); Hu and Celik (2008)).

However, two-way coupled simulations of complex turbulent flows with multiple particles

are still very limited to simple problems, since the calculation of the coupling terms with the
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particle forces require the interpolation and distribution of particle stresses back to the grid

nodes of the flowfield computation in the Eulerian framework (see Hu and Celik (2008),

for example). The turbulence closure for URANS simulations or the subgrid SGS model of

LES may also require additional modifications, depending on the influence of the particle

flow on the unresolved scales of motion (Nadaoka et al., 1999; Lakehal, 2002).

Lagrangian models of sediment particles have been developed to study bed-load trans-

port carried out with different degrees of detail. Initial studies only considered mean steady

flows to develop theoretical models of particle saltation, initiation of motion, and bed-load

transport models (Bagnold, 1973; Wiberg & Smith, 1985; Niño et al., 2002). Recently, La-

grangian models have also been developed to predict the trajectories of sediment particles

over bed-forms in LES simulations (Chang & Scotti, 2003, 2006) and to investigate the

initial stages of erosion and the development of ripples produced by the turbulent horse-

shoe vortex (THV) system in the vecinity of a surface-mounted cylinder (Escauriaza &

Sotiropoulos, 2011a).

In present section we summarize the particle model of sediment transport used to inves-

tigate the effects of counter-rotating Görtler vortices on the generation of sediment streaks

reported experimentally by Hopfinger et al. (2004) and Albayrak et al. (2008), with a

diameter equal to the median diameter utilized in experiments (d50 = 2 mm). For more

details of the model the reader is referred to the studies of Escauriaza (2008); Escauriaza

and Sotiropoulos (2011a, 2011b), since this chapter just explain in the principal concepts

and formulas employed in the simulations. This theoretical Lagrangian approach is a more

complete and precise method to simulate the sediment motion produced by the forces gen-

erated by coherent structures. It is important to recognize, however, that tracking a large

numbers of particles that participate in sediment transport phenomena in these complex

engineering flows is computationally very expensive and impractical. Therefore, the La-

grangian model is not intended as means to predict scour downstream of a sluice gate

because the large number of particles required to do that would make the simulation im-

practical. The model instead is meant to give fundamental insights into the initiation of
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motion and the characteristics of the bed-load flux so that it can guide the development of

continuum, macro-scale based models of bed-load transport.

The model of particle transport is a one-way coupling approach, since the sediment

corresponds to fine sand with a diameter much a smaller than the well-resolved unsteady

vortical structures studied in the previous chapter, which constitute the major sediment

transport mechanisms for this problem. The flowfield simulation on the scour hole and

the clear-water scour conditions of the flow determine that most of the dynamics will be

represented by the resolved flowfield that is utilized to compute the particle dynamics.

By adopting this physically-based Lagrangian model, which considers the instanta-

neous forces exerted by the fluid in the motion of individual sediment grains, we seek to

improve the representation of near-bed transport processes and have a better description of

the characteristics of the unsteady bed-load transport by coherent-structures. The sediment

transport is therefore studied by simulating the trajectory and momentum of individual

sediment grains driven by the resolved flow on the scour hole.

To study the effects of Görtler vortices on the particle dynamics, we select a fixed area

on the scour-hole, where Görtler vortices studied in the previous chapter develops. The

particles have an initial zero velocity, and their forces are computed from the flowfield ob-

tained from DES simulations. The model is not capable of giving insights into the erosion

process but it provides an excellent tool for understanding the particle transport by large-

scale unsteady vortical structures. Furthermore, we not model the erosion process from flat

mobile bed to quasi-equilibrium erosion stage before Görtler vortices appear, but we model

the effects of Görtler vortices at an advanced scour stage according to the experiences of

Albayrak et al. (2008).

The details of the model, the calculation of the particle dynamics, and the investigation

of the qualitative particle flux are studied in the next sections.
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6.2. Governing equations and numerical calculation

The main challenge in simulating solid inertial particles in turbulent flows arises from

the description of the forces utilized to derive the particle momentum equation. There-

fore, the derivation of the governing equations should consider theoretical formulas for

the forces that represent the most important features of transport, similar to the formula-

tion developed in the landmark study of Maxey and Riley (1983) for spherical particles in

non-uniform low-Reynolds number flows. Based on these formulations, simple models of

forces have been developed for turbulent flows under different conditions (see for exam-

ple Loth (2000); Michaelides (2003)), that have also been applied to sediment transport

problems (e.g. Chang and Scotti (2003, 2006)).

As explained in the previous section, in the present case of clear-water scour with all

the transport occuring as bed-load, we simplify the particle model for the sediment as a

dispersed phase assuming that the instantaneous concentration of particles is always low,

such that transport is considered dilute at all times. The governing equations describe the

trajectory and momentum of a grain with a mass m by the following system of equations:

dxi
dt

= vi (6.1)

m
vi
dt

= fi (6.2)

where vi and xi are the velocity and the position of the particle in each coordinate direction

respectively, and fi represents the sum of forces acting over the particle in the i direction.

The trajectory and momentum equations 6.1 and 6.2, describe the particle with a point-

volume representation such that all the forces are concentrated on a point that corresponds

to its center of mass and the continuum background fluid is not affeted by the particle

motion. These are called one-way coupling simulations, since the solid phase does not alter

the dynamics of the fluid (Escauriaza, 2008; Escauriaza & Sotiropoulos, 2011a, 2011b).

The hypotheses and formulas developed to represent the instantaneous forces exerted

on the solid phase by the fluid are included in the model and presented in this section to

37



show the Lagrangian methodology for sediment computations. The model provides a more

detailed description of the particle dynamics and accounts directly for the instantaneous

resolved flow in the sediment transport dynamics.

6.2.1. Forces on sediment particles

The total force acting over the sediment particles, fi in equation 6.2 , is generally

composed of three differents parts:

• Gravitational or other body forces.

• Surface forces exerted by the fluid, such as drag or lift.

• Forces due to interaction with other particles, collisions with the bed, or another

physical boundary within the flow.

These forces represent the transfer of momentum between the two phases, which controls

the complex real-life motion of water and sediment grains. The following list provides a

review of the forces and assumptions considered in the model:

a. Drag force: Drag is one of the dominant forces acting on the sediment particles,

and its direction and total magnitude can be expressed by the well known semi-

empirical relation obtained from dimensional analysis in steady uniform flows

(Escauriaza, 2008; Escauriaza & Sotiropoulos, 2011a):

FD =
1

2
ρCDA|u− v| (u− v) (6.3)

where A is a representative area of the particle, u and v are the fluid and particle

velocities respectively, and ρ is the density of water. To determine the effect of

viscosity on the total drag force exerted over the sediment grain we employ a

drag coefficient, CD, which is a function of the Reynolds number of the particle,

scaled with the particle diameter and the relative velocity vr = u− v:

Rer =
|vr|d
ν

(6.4)
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There have been numerous studies addresing te estimation of the drag coefficient

as a function of Rer from experimental and theoretical analyses. By simplifying

the Navier-Stokes equations in spherical coordinates for Rer < 1, we can find

an analytical solution for the drag coefficient within the so-called Stokes flow

regime: CD = 24/Rer. For larger Reynolds numbers different relations have

been determined for uniform flows in steady conditions and corrections have

been proposed for non-uniform velocity fields (Crowe et al., 1998). In this re-

search, the relation determined specifically for sand and gravel by Engelund and

Hansen (1967) for Rer < 104 is considered to model the drag force:

CD =
24

Rer
+ 1.5 (6.5)

b. Gravity Force: Gravity is the driving force controlling sediment entrainment

and deposition. The total force is decomposed as the sum of the particle weight

and the bouyancy force produced by hydrostatic vertical pressure gradient, which

can be written as:

FG =

(
1− 1

SG

)
mg (6.6)

where g = −gδi3 is the acceleration of gravity, δij is the Kronecker’s delta

utilized in the gravity term that acts on the negative x3 direction, and SG = ρs/ρ

the sediment specific gravity.

c. Lift Force: The lift mechanism is a consequence of the velocity gradient and

viscous shear stresses that induce a non-uniform pressure distribution over the

particle. The basic relation for inviscid flows was developed by Auton (1987) and

Auton et al. (1988), considering the velocity gradient around a particle moving

in a non-uniform rotational flow. The lift force was derived as a function of the

flow vorticity and the particle relative velocity, with a lift coefficient CL = 0.5:

F
(1)
L = ρCL

πd3

6
(vr × ω) (6.7)
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where vr is the relative particle velocity, and ω is the vorticity of the flow. In

sediment transport applications, Parker et al. (2003) used this relation in the

development of a bed-load transport model. Wiberg and Smith (1985) and Chang

and Scotti (2006) used a linearized version of equation (6.7) to determine the

magnitude of the lift force for spheres in initiation of motion analysis, particle

saltation, and trajectories in an oscillating flow at the turbulent boundary layer.

For viscous flows, Saffman (1965, 1968) formulated an expression for lift at low

Reynolds numbers computing the force perpendicular to the relative velocity

field as a function of the viscosity, the fluid density, and the vorticity (or velocity

gradient) at the particle position. Saffman’s expression reads as follows:

F
(2)
L = ρ1.615

d2ν1/2

|ω|1/2
(vr × ω) (6.8)

For higher Reynolds number flows, Mei (1992) adapted Saffman’s formula and

derived an empirical relation depending on Rer:

F
(3)
L = F

(2)
L

(
1− 0.3314β1/2

)
exp

(
Rer
10

)
+ 0.3314β1/2, Rer ≤ 40

= F
(2)
L 0.0524 (βRer)

1/2 , Rer > 40 (6.9)

where the variable β is defined as:

β =
d

2

|ω|
vr
, 0.005 < β < 0.4

In the present model, the equation for the particle momentum incorporates equa-

tion (6.9) to estimate the lift on fine sand grains, assumed to be non-rotating

spheres, yielding an expression for the lift coefficient that is a function of the lo-

cal vorticity magnitude and the particle Reynolds number, CL(|ω|, Rer). When

the value of the parameter β that appears in equation (6.9) is outside the range of

validity (0.005 < β < 0.4), we utilize Auton’s relation with a constant value for

CL in equation (6.7).
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d. Added Mass: The added mass effect is the force produced by the acceleration

of fluid due the particle motion, which alters the surface stress distribution. For

an inviscid and incompressible flow Auton et al. (1988) and Crowe et al. (1998)

demonstrated that the virtual or added mass force acting on a sphere is:

FAM = ρCm
πd3

6

(
Du

Dt
− dv

dt

)
(6.10)

Assuming particles with spherical shape, the added mass force is then equivalent

to the fluid momentum with half the volume of the particle, thus the added mass

coefficient Cm can be assumed to be 0.5.

e. Interaction with the Bed: There are two types of bed-particle interactions ac-

counted for in the present model. The first interaction involves the collision of

sediment grains with the bed or solid boundaries of the computational domain,

during which the normal and tangential momentum of a moving particle with

respect to the surface are modified upon impact. The second interaction involves

contact friction forces that resist the initiation of motion for a particle resting at

the bed. To represent the collisions of sediment grains against the bed, an impact

scheme with empirical coefficients with glass spheres and sediment particles of

arbitrary shape that for fine sand the collisions are inelastic and produce no nor-

mal rebound since the momentum is damped by the intersticial fluid. When a

moving particle collides with the bed, its trajectory and momentum are modified

by eliminating the normal component to the surface, and reducing the tangential

momentum by a factor of 0.9, following the recommendations of Schmeeckle et

al. (2001). On the other hand, a Couloumb force is considered to account for

frictional resistance when particles are resting at the bed surface. The direction

of the force is taken as the opposite of the local bed-tangent instantaneous resul-

tant force of the body and surface forces, and its magnitude is proportional to the

particle force projected in the normal direction of the bed (Bagnold, 1956):

41



FS = −µS (F · n̂)
F− (F · n̂) n̂

|F− (F · n̂) n̂|
(6.11)

where F is the local force acting on the particle, µS = 0.62 is the static friction

coefficient, and n̂ the normal vector to the bed surface (Bagnold, 1956).

Additional forces that could become important in determining the particle dy-

namics arise due to the so-called Basset or history effect and particle-to-particle

interactions. The Basset or history term is neglected in the model used in this

work. Additional difficulties have also arisen from its definition in high Reynolds

number turbulent flows (see the comments made by Chang and Scotti (2003)).

Collisions among particles are also neglected since the sediment concentration

is assumed to be low at all times.

The momentum equation for a single particle, equation (6.2), can now be writ-

ten in terms of the modeled forces described above. The Lagrangian particle

model will provide a more detailed representation of sediment transport, using

the resolved flowfield from the DES computations to evaluate the deterministic

transport by large-scale coherent structures.

6.2.2. Particle momentum equation in non-dimensional form

Considering all the forces described in the previous section, the complete momentum

equation is obtained by adding the forces on the right-hand side of equation (6.2). As

discussed by Loth (2000), however, the simple addition of the forces may not be correct

due to non-linear interactions among all the fluid forces, but generally these effects are

assumed to be small and can be neglected.

The forces described in the previous section that are included in our Lagrangian model

of sediment transport arise from the perturbations induced by the particle presence in the

fluid flow. Maxey and Riley (1983) and Auton et al. (1988) demonstrated that in the deriva-

tion of the complete momentum equation for a particle the effect of the undisturbed fluid

stresses also appears on the balance of forces. The stresses produced by the undisturbed

flowfield at the particle location correspond exactly to the forces that would exist in the
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absence of the particle, which are produced by the acceleration of the displaced fluid mass

(for the detailed derivation and discussion the reader is referred to the studies of Maxey and

Riley (1983); Auton et al. (1988)).

Therefore, the momentum equation utilized in the model used for these simulations,

for small non-rotating particles (fine sand) in dilute conditions can be expressed in vectorial

form with dimensional quatities as follows,

m
dv

dt
=

1

2
ρCDA|vr|vr +

(
1− 1

SG

)
mg + ρCL

πd3

6
(vr × ω)

+ρCm
πd3

6

(
Du

Dt
− dv

dt

)
+ ρ

πd3

6

Du

Dt

which includes the expressions for drag, gravity, lift, added mass, and fluid stresses (Loth,

2000), and it should also consider the force expressed in equation (6.11) in case the particle

is lying at repose on the bed. For out bed collision model, when a moving particle is located

at a distance d/2 from any solid boundary the component of the momentum normal to the

boundary surface is eliminated while the tangential component is reduced by a factor of

0.9 (Schmeeckle et al., 2001). The model that arises from all these considerations is very

similar to the Lagrangian particle model of sediment grains utilized by Chang and Scotti

(2003, 2006), except for the inclusion of the particle-bed interaction, and the complete non-

linear form of the lift force used in the present model, in which the coefficient CL depends

on the flowfield and the particle diameter.

To simplify equation (6.12) we consider forces per unit mass by dividing the entire

equation by the particle massm = ρs
πd3

6
. The resulting equation can be non-dimensionalized

by utilizing the same velocity and length scales of the flow, U and L respectively, where L

is equal to the water depth inmediately downstream sluice gate h2 = 0.22 m. The momen-

tum equation (6.12) can then be written in tensor notation, using also the expression for the

particle specific gravity SG = ρs/ρ, in the following non-dimensionalized expression:
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dvi
dt

=
1

SG

3

4

CD
d
|vr|vri +

1

SG

L
U2

(SG− 1)(−gδi3) +
1

SG
CL(εijkvrjωk)

+
1

SG
(1 + Cm)

Dui
Dt
− Cm
SG

dυi
dt

where the relative velocity is defined as vri = ui − vi and εijk is the tensorial permutation

symbol to determine the vector perpendicular to the relative velocity and vorticity fields in

the lift term.

The final non-dimensionalized form of the particle governing equations is expressed in

terms of non-dimensional parameters that will be subsequently discussed, as follows:

dvi
dt

=
1

(SG+ Cm)

[
1

St
vri −

δi3
Fr2

+ CL (εijkvrjωk) + (1 + Cm)
Dui
Dt

]
(6.12)

where St and Fr are known as the Stokes and Froude numbers respectively, and SG =

2.65 is the sediment constant specific gravity. This equation can be easily adapted for

particles in contact with the bed, adding a tangential force to the surface that is computed

as proportional to the normal component of the right hand side of the momentum equation

(see also (6.11)).

In the present Lagrangian model of sediment transport used in these simulations, a se-

ries of dimensionless parameters can be readily identified in the particle momentum equa-

tion (6.12). Considering the drag force to be one of the leading forces exerted by the flow on

a spherical particle, equation (6.3), we can identify a non-dimensional parameter based on

the relative velocity, the particle diameter, and the Reynolds number of the flow. Namely,

the ratio between the particle response time determined from the drag force on the particle

and the characteristic time-scale of the flow. This parameter describes the dynamics of the

dispersed phase and is known as the Stokes number, which can be expressed as follows

(Escauriaza & Sotiropoulos, 2011a, 2011b):
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St =
4

3

d

CD|vr|
(6.13)

where the relative velocity magnitude |vr|, and particle diameter d are non-dimensionalized

by the characteristic velocity and length-scale of the flow. From the Stokes number we can

identify the dynamic relation between the two phases as follows: For St� 1 the particles

have enough time to respond to changes in flow velocity and they can follow closely the

motion of the largest scales of the flow. On the other hand, if St � 1 the particle velocity

is less affected by the flowfield (Crowe et al., 1998). For the present simulation the size

of sediment grains corresponds to a non-dimensional particle diameter d = 0.009, which

yields St � 1. Consequently, we anticipate that in the simulations we will report below,

the energetic large-scale flow structures will have a significant role on transport.

The other non-dimensional parameter that appears in the gravity term of equation

(6.12) is the Froude number, Fr, defined as follows:

Fr =
U√

(SG− 1)gL
(6.14)

The Froude number relates the inertial and gravity forces of the particle-fluid system, and

can characterize the relative effect of the gravitational term in the momentum equation.

With the trajectory and momentum equations defined from the derivation of the rele-

vant forces acting on the particles, the particle position and velocity are obtained by inte-

grating numerically the governing equations. The model is based on the vectorial approach

of Kovacs and Parker (1994) and Parker et al. (2003) for determining the bed-load flux

coupled with a new equation for calculating the instantaneous bed-load layer. The sed-

iment flux vector, which is used as input of the Exner equation solved to determine the

instantaneous bed elevation (see equation (6.19) below), is computed as the volume rate of

sediment integrated within the bed-load layer, and is calculated as the product between the

bed-areal concentration γ, which indicated the sediment volume per unit of area that con-

tributes to transport, and the sediment velocity vector in the bed-load layer. The equation

of the bed-load flux can thus be written in tensor notation (j = 1, 2), as follows:
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qj = γV j (6.15)

The key idea of the model is compute the sediment velocity in the bed-load layer by

solving the momentum equation of the particles, equation (6.12) (Escauriaza & Sotiropou-

los, 2011a), but transformed to the Eulerian framework attached to the bed and considering

intantaneous forces computed from the resolved DES flowfield. For the expressions used

to compute the sediment velocity see Escauriaza and Sotiropoulos (2011a). To compute the

bed-areal concentration is used a formula from the relation for the percentage of moving

particles per unit area of Engelund and Fredsøe (1976), which was also employed in the

scour simulations of Roulund et al. (2005). Engelund and Fredsøe (1976) introduced an

expression for the probability of a particle moving on the bed pef computed as function of

the shear-stress as follows,

pef =

[
1 +

(
πµd/6

τ∗ − τ∗c

)4
]−1/4

(6.16)

where µd is the dynamic friction coefficient, τ∗ the non-dimensional shear-stress or Shields

number, and for the critical non-dimensional shear-stress τ∗c, is used the correction used by

Roulund et al. (2005) in beds with arbitrary slope, which is expressed as follows,

τ∗c = τ∗c0

[
cos β

(
1− sin2 α tan2 β

µ2
s

)1/2

− cosα sin β

µs

]
(6.17)

where τ∗c0 is the critical Shields parameter for horizontal beds, µs is the static friction

coefficient, α is the angle between the local flow velocity and the direction of maximum

steepnes, and β is the angle of local bed inclination with respect to a horizontal plane

(Roulund et al., 2005).

Assuming that the fine sand particles can be represented by spheres, it is computed the

areal concentration γ using pef and the number of particles per unit area. Then, the final

expression for γ is
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γ =
1

6
πd3pef

d2
(6.18)

Finally, to determine the instantaneous bed elevation, the sediment mass balance at the

bed or Exner equation is employed, whose generalized form has been given by Paola and

Voller (2005). In curvilinear coordinates, the Exner equation is expressed as follows,

∂b

∂t
=

−1

(1− λp)

[
∂γ

∂t
+ J

∂

∂ξj

(
qj

J

)]
(6.19)

where b is the bed elevation, λ is the porosity that is assumed as constant and equal to 0.35,

γ is calculated from equation (6.18), and the bed-load flux is calculated from equation

(6.15). These are the principal equations and ideas about sediment transport model.

Escauriaza and Sotiropoulos (2011b) carried out simulations of particles located in the

region influenced by the unsteadiness of the THV system by placing up to 105 sediment

grains at repose on top of the flat bed in front of a cylinder. The simulations showed that

the interaction of the vortices with the wall is the fundamental mechanism that increases

the instantaneous bed shear-stress and produces transport. From the numerical results of

the Lagrangian simulations, Escauriaza and Sotiropoulos (2009) also quantified and char-

acterized the statistics of the bed-load flux by studying the time-series of transport behind

a cylinder.

With this model we can investigate qualitatively the influence of the coherent struc-

tures of counter-rotating streamwise Görtler vortices on erosion and bed form evolution,

using a coupled bed-flowfield numerical model based on Paik et al. (2007) and Escauriaza

and Sotiropoulos (2011a, 2011b, 2009) formulation for fixed bed simulations explained be-

fore. The proposed model solves numerically the three-dimensional, unsteady, Reynolds-

averaged Navier-Stokes equations using the so-called Arbitrary Lagrangian-Eulerian (ALE)

approach coupled with a new bed-load transport equation that uses the instantaneous flow-

field -solved in previous sections- to predict the sediment flux used in Exner equation.

According to the computations obtained from the flowfield and sediment transport model

employed, the simulations show sediment streaks produced by Görtler vortices as is shown
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in figure 6.1 and how it was reported in the experiments of Hopfinger et al. (2004). The

model is capable not only to reproduce these streaks but is capable to reproduce little rip-

ples that appears on results of experiences of Hopfinger et al. (2004). These features are

related to the increase of shear stress at the bed zone since the high values of shear velocity,

presented in the previous section, are located at the same zone (6 < X/b < 9). Is important

to note that these sediment transport simulations are intents to reproduce the same quali-

tative features of the experiments carried out by Hopfinger et al. (2004) and Albayrak et

al. (2008), quantitative analyses could be carried out in a future research. Furthermore, the

model is a tool to reproduce the bed sediment transport, and is not capable to reproduce

saltation and suspention of sediment particles observed in experiments of Hopfinger et al.

(2004) and Albayrak et al. (2008).
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(a)

(b)

FIGURE 6.1. (a) Sediment streak patterns reported by Hopfinger et al. (2004). (b)
Instantaneous image of the initial stage of the scour-bed obtained from sediment
transport simulations. The model is capable to represent the sediment patterns re-
ported in experiments and explains the relation between the increase of shear-stress
produced by the appearance of Görtler vortices in the scour-hole region.
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7. CONCLUSIONS AND FUTURE RESEARCH

In this investigation we perform numerical simulations of the flow downstream a sub-

merged sluice gate over a rough concave bed at Re = 156, 200. We reproduce the configu-

ration of the scour experiments carried out by Albayrak et al. (2008).

The flow is characterized by a wide range of time and length scales, dominated by

unsteady coherent structures induced by the complex geometry of the domain and the wall-

jet coming from sluice gate. DES simulations shows that our model successfully captures

the dynamic features of the coherent structures within the scour hole, and the formation of

Görtler vortices near the bed. Pairs of highly unsteady counter-rotating streamwise vortices

appear inside the scoured region, forming mushroom-like structures that have been reported

in multiple studies of turbulent boundary layer flows over concave surfaces. Animations

of q-isosurfaces showed that inside the scoured region the flow is dominated by the shear-

layer produced by the wall-jet that emanates from the flat-bed channel. These horizontal

structures exhibit significantly smaller time-scales compared to the Görtler vortices. On the

other hand, pairs of streamwise structures, identified as counter-rotating Görtler vortices,

occupy a significant portion of the bed within the scour hole. They appear intermittenly and

move laterally with low frequencies as reported by Albayrak et al. (2008). Furthermore,

the computation demonstrated that Görtler vortices also developed over a smooth wall in-

dicating that surface roughness is not a prerequisite to trigger the instability in this flow.

Other important finding obtained from the DES computations is that the Görtler vortices

develop in both directions from the reattachment point, as it is shown in section 4. After

the wall-jet reattaches to the sand bed, Görtler vortices form in opposite directions inside

the recirculation vortex near the wall, and on the upslope face to the dune.

We also reproduce quantitative experimental results reported by Hopfinger et al. (2004)

and Albayrak et al. (2008). Plots of instantaneous shear velocity at the bed show that

Görtler vortices are directly responsible for the increase of bed stresses, and consequently

for the larger sediment transport rates that were observed by Hopfinger et al. (2004). The

simulations capture statistically the same upwash and downwash flow events reported by
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Albayrak et al. (2008) with similar time-scales, including the increments of instantaneous

Reynolds stresses obtained from resolved velocity fluctuations. In addition, a sediment

transport model was applied for modeling the sediment streaks reported by Hopfinger et

al. (2004). This model is capable to represent qualitatively the patterns founded in exper-

iments, which is explained by the effects on shear-stress increase produced by the appear-

ance of Görtler vortices in the scoured zone.

The model capture in detail the dynamics of the Görtler vortices in this complex flow.

This information is critical to employ new methods to determine bed-load transport and

scour induced by turbulent coherent structures. Future research must include sediment

transport statiscal analyses, to show in a better way the effects of the coherent-structures

on the scour process.
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