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The inverse problem of calculus of variations and s-equivalence are re-examined by using
results obtained from non-commutative geometry ideas. The role played by the structure
of the modified Poisson brackets is discussed in a general context and it is argued that
classical s-equivalent systems may be non-equivalent at the quantum mechanical level.
This last fact is explicitly discussed comparing different approaches to deal with the
Nair–Polychronakos oscillator.
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1. Introduction

Consider a system S of n differential equations for n variables qi. The inverse

problem of the calculus of variations (IPCV) deals with the question of existence

and uniqueness of variational principles from which the system S may be derived.

If at least one Lagrangian for system S exists then the task of constructing

one (or several) variational principle(s) or Lagrangian(s) is also part of the IPCV.

This means that variation of the action constructed from one of those Lagrangian

functions, yields the original system S or a system S′ equivalent to it, in the sense

that the space of solutions of S and S′ are identical. If this is the case, systems S

and S′ are called “solution equivalent” or “s-equivalent”.
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As far as we are aware, the first significant contributions to this field were

made by Helmholtz in 18871 and by Darboux in 18942 for second order differen-

tial equations. Helmholtz found the conditions for the existence of a Lagrangian

written in terms of the (second order) differential equations of the system S. If

Helmholtz conditions are satisfied, then a Lagrangian which (upon variation of its

action integral) yields (exactly) the second order differential equations of system S

exists.

A little bit later, Darboux, solved completely the one-dimensional (n = 1) case

showing, in doing so, that in one dimension a Lagrangian (for one second order

differential equation) always exists and it is not unique in a nontrivial fashion.

There is, of course, the familiar non-uniqueness of Lagrangian functions which

stems from the addition of a total time derivative of an arbitrary function. In the

one-dimensional case, there are Lagrangian functions which give rise to (infinitely

many) systems of second order differential equations which are s-equivalent (but

not identical) to system S.

These variational principles give rise to different sets of second order differen-

tial equations which have the same set of solutions. The (first order differential

equations) Hamiltonian theories constructed from these Lagrangian formulations

are different from each other in the sense that they give rise to different Hamilto-

nian functions and different Poisson brackets relations.

In 1941, Douglas3 solved the two-dimensional case completely. Three possible

outcomes arise in the two-dimensional case: (a) no Lagrangian exists, (b) there is

exactly one (up to addition of a total time derivative) Lagrangian or (c) there are

infinitely many Lagrangian functions for the system of two second order differential

equations.

In the case of first order differential equations, Havas4–7 made progress towards

the solution of this problem which was completely solved by Hojman and Urrutia

in 1981,8 who provided a way of constructing infinitely many Lagrangians for such

systems and presented examples of first order Lagrangians for systems for which

no second order Lagrangians exist (in this context see also Refs. 9 and 10).

It is then clear that the quantization of such systems might give rise to different

quantum theoriesa — not only due to the well known problems of operator ordering

— since different Hamiltonian (and Poisson brackets) structures give rise to the

same classical equations of motion (EoM). These Hamiltonian structures cannot be

related by canonical transformations.

One could argue that at the end, among all these Hamiltonian structures which,

in principle, might give rise to different quantum theories, only those whose predic-

tions are realized in nature — and verified through experiments — are of physical

interest. This is true, but here, an implicit assumption is made: nature selects only

one (out of infinitely many, in some cases) Hamiltonian structure and discards the

rest of them.

aIn this paper we will discuss the first quantization scheme only.
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A counterexample of this can be found in non-commutative spaces which have

attracted much attention recently. Its connection with different problems in physics

have been widely discussed in the literature, in the context of string theory,11 field

theory16 and gravitation.17

Non-commutative quantum mechanics (NCQM), on the other hand, has also

been explored as a possible scenario to test the physical consequences of this new

structure proposed for space (see for example Refs. 18 and 19). The two-dimensional

case, for instance, can be solved for any central potential20–30 and it is possible to

show that this problem is connected with the Landau problem for the lowest energy

levels.

From a different point of view, NCQM has proven to be a good laboratory to

test new approaches which might shed light on long standing problems in physics. In

Refs. 31 and 32, for instance, a new kind of non-commutativity which incorporates

the spin of the particles has been proposed as an alternative mechanism to explain

superconductivity involving triplet states. In a recent work,33 its relation with the

physics of graphene is explored.

In the present paper, we consider a particle whose classical EoM are a general-

ization of the EoM of a particle in a magnetic field. We construct two Hamiltonian

structures for these classical EoM which give rise to two different and inequivalent

quantum theories. One of them is related to the Nair–Polychronakos anisotropic

harmonic oscillator,34 while the other one is described by a Hamiltonian which

is the addition of a harmonic oscillator Hamiltonian plus a term proportional to

angular momentum.

A classical set of second order EoM S is said to be non-Lagrangian if there

exists no Lagrangian which yields second order equations which are (identical or

at least) equivalent to the set S. Nevertheless, a Hamiltonian structure which pro-

duces first order equations equivalent to S may always be constructed using different

approaches.8,10,37 The Hamiltonian structures for non-Lagrangian systems are al-

ways non-commutative in the sense that the space coordinates Poisson brackets

sub-matrix does not vanish.9,10 We illustrate this point with some examples.

In order to prove the previous assertions, we will briefly review the construction

of first order Lagrangian, Poisson brackets and Hamiltonian structures in the last

part of this section. In Sec. 2, we explore different first order and second order

Lagrangian structures that give rise to equivalent sets of EoM and their relation to

non-commutative spaces. Section 3 is devoted to the quantum mechanical discussion

of the model and, in Sec. 6, discussion and conclusions are presented.

Let us start by consideringb a set of coordinates in phase space {xa}, with
a ∈ {1, 2, . . . , 2n}. A first order Lagrangian L is the most general Lagrangian such

that its Euler–Lagrange equation are first order, namely8

L = ℓa(x
b)ẋa + ℓ0(x

b) . (1)

bWe consider an even-dimensional phase space for simplicity, which does not mean that odd-
dimensional phase spaces cannot be defined.
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In fact, its (first order) Euler–Lagrange equations are

σabẋ
b = ℓ0,b , (2)

where A,c denotes partial derivative of A with respect to xc and

σab ≡ ℓa,b − ℓb,a . (3)

The exterior derivative of the Lagrange brackets two-form σ vanishes identically,

i.e.

σab,c+σbc,a +σca,b ≡ 0 . (4)

The Hamiltonian is straightforwardly computed. In fact, let us define the Poisson

brackets matrix J as the inverse (up to a sign) of the Lagrange brackets σab. The

first order EoM can also be written as

ẋa = Jab ∂H

∂xb
, σabJ

bc = −δca , (5)

where H is the Hamiltonian of the system (H = −ℓ0).
The previous equations may be rewritten as

ẋa = [xa, H ] , with [A,B] = ∂aAJ
ab∂bB , (6)

where [A,B] are the Poisson brackets relations for any two dynamical variables

A(xa) and B(xb).

Consider a first order system defined by

ẋa = fa(xb) . (7)

A Hamiltonian structure for it is defined in terms of a Hamiltonian H and a

Poisson brackets matrix J such that J is antisymmetric

Jab = −Jba , (8)

it satisfies Jacobi Identity

Jab,d J
dc + Jbc,d J

da + Jca,d J
db ≡ 0 (9)

and generates EoM, in conjunction with H

fa = Jab ∂H

∂xb
. (10)

Given a Hamiltonian structure for a first order system then the first order

Lagrangian may be easily constructed,8 Appendix A of Refs. 12–14.

By the same token, given a second order Lagrangian for a dynamical system, a

first order one may be easily constructed (the one which gives rise to Hamilton’s

equations, for instance).

Nevertheless, the converse is not true, i.e. given a first order Lagrangian it is

not always possible to construct a second order Lagrangian for a given dynamical

system.8–10
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In Sec. 2, we will specify the set of classical EoM we are interested in and then,

we will show explicitly two different Lagrangian and Hamiltonian structures for

them and their quantum theories.

2. Classical EoM and Lagrangian Structures

Consider a system with n spatial coordinates {qi}i∈{1,2,...,n} and the Lagrangian

Lqq̇ =
1

2
(Tij q̇

iq̇j + θijq
iq̇j − Vijq

iqj) , (11)

where Tij , θij and Vij are constant matrices with the following symmetry properties

Tij = Tji , θij = −θji , Vij = Vji .

The Euler–Lagrange equations are

Tij q̈
j − θij q̇

j + Vijq
j = 0 . (12)

Take, for example n = 2, Tij = mδij , θij =
e
c
ǫijB and Vij = 0, Eq. (12) describes

the dynamics of a particle of mass m and electrical charge e in the presence of a

constant magnetic field B orthogonal to the plane.

A first order Lagrangian may be straightforwardly constructed from this second

order Lagrangian (see, for instance Appendix A of Refs. 12–14). Define the variables

ui by ui ≡ q̇i, and the function L̄qu (using the ui definition into (11)) by

L̄qu =
1

2
(Tiju

iuj + θijq
iuj − Vijq

iqj) . (13)

The first order Lagrangian Lqu is

Lqu =
∂L̄qu

∂ui
(q̇i − ui) + L̄qu , (14)

or

Lqu = (Tiju
j − 1

2
θijq

j)(q̇i − ui) +
1

2
(Tiju

iuj + θijq
iuj − Vijq

iqj) . (15)

The canonical momenta are

pi =
∂Lqu

∂q̇i
= Tiju

j − 1

2
θijq

j , (16)

from which

ui = (T−1)ij
(

pj +
1

2
θjkq

k

)

. (17)

On the other hand, the Hamiltonian — expressed also in terms of qi and uj —

is

Hqu =
1

2
(Tiju

iuj + Vijq
iqj) . (18)

1250186-5

M
od

. P
hy

s.
 L

et
t. 

A
 2

01
2.

27
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
 C

A
T

O
L

IC
A

 D
E

 C
H

IL
E

 o
n 

01
/1

1/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



October 15, 2012 11:49 WSPC/146-MPLA S0217732312501866 6–14

S. A. Hojman, J. Gamboa & F. Méndez

Now we can rewrite the first order Lagrangian Lqu (in a Palatini like fashion)

as

Lqu = piq̇
i −H , (19)

with (16) and (18) in (19) we get

Lqu =

(

Tiju
j − 1

2
θijq

j

)

dqi

dt
− 1

2
(Tiju

iuj + Vijq
iqj) . (20)

Varying q and u independently, the following first order EoM are found

d

dt

(

Tiju
j − 1

2
θijq

j

)

− 1

2
θij q̇

j + Vijq
j = 0 , (21a)

Tij(q̇
j − uj) = 0 , (21b)

which are equivalent to the original equations (12) (provided detTij 6= 0) plus the

definition of the variables uj .

A different set of variables may be used for the Lagrangian and Poisson brackets

relations. Let us choose pk variables defined in (16). That means that

q̇i = (T−1)ij
(

pj +
1

2
θjkq

k

)

and therefore the Palatini like Lagrangian piq̇
i −H reads now

Lqp = piq̇
i − 1

2

[(

pi +
1

2
θikq

k

)

(T−1)ij
(

pj +
1

2
θjmq

m

)

+ Vijq
iqj

]

. (22)

The first order EoM (varying q and p independently) turn out to be

ṗi −
1

2
θij(T

−1)jk
(

pk +
1

2
θkmq

m

)

= 0 , (23a)

q̇i − (T−1)ij
(

pj +
1

2
θjmq

m

)

= 0 , (23b)

which are, of course, equivalent to (12).

In summary, we have a second order Lagrangian (Lqq̇ in (11)) which gives rise

to the second order EoM (12), and two first order Lagrangians (Lqu in (20) and Lqp

in (22)) which give rise to first order equations which are equivalent to the second

order ones.

The two different sets of variables {qi, uj} and {qi, pj} have, of course, different

Poisson bracket relations. In fact, compute the Lagrange bracket σab for (20), as

well as its inverse (up to a sign) Jab

σab =

(

θij Tij
−Tij 0

)

, Jab =

(

0 (T−1)ij

−(T−1)ij −(T−1 θ T−1)ij

)

(24)
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where {i, j} ∈ {1, 2, . . . , n} and the coordinates of the phase space are xa =

{q1, q2, . . . , qn, u1, u2, . . . , un}.
For the Lagrangian (22), instead, we have the canonical Lagrange bracket σ and

its inverse (up to a sign) J

σab =

(

0 1

−1 0

)

, Jab =

(

0 1

−1 0

)

. (25)

In Sec. 3, we will exhibit three Hamiltonian systems which give rise to the same

classical EoM. Two of them are constructed starting from the aforementioned first

order Lagrangian structures. The third Hamiltonian structure cannot be derived

from a second order Lagrangian.

3. Classical EoM and Hamiltonian Structures

A Hamiltonian structure is defined by (8), (9) and (7).

Consider now the first set of variables {q, u}, used in the previous section. A

Hamiltonian system is defined by the following Poisson bracket relations (24) and

Hamiltonian function (18)

[qi, qj ] = 0 , [ui, uj] = −(T−1)ikθkm(T−1)mj , [qi, uj ] = (T−1)ij ,

H =
1

2
(Tiju

iuj + Vijq
iqj) . (26)

Hamilton’s equations are equivalent to (23) and the second order ones are equivalent

to our starting set (12).

For the system described in variables {q, p}, the Hamiltonian system is defined

as follows

[qi, qj ] = 0 , [pi, pj] = 0 , [qi, pj ] = δij ,

H =
1

2

((

pi +
1

2
θikq

k

)

(T−1)ij
(

pj +
1

2
θjmq

m

)

+ Vijq
iqj

) (27)

for which second order EoM are again as in Eq. (12).

The preceding structures are two versions (using different phase space variables)

of Hamiltonian theories derived from the second order Lagrangian (11).

The general results may now be applied to a special case Tij = Vij . In this case,

we can construct a third Hamiltonian structure. In fact, let us denote the 2n coor-

dinates of phase space by {qi, vj}. The following Poisson brackets and Hamiltonian

function define a third Hamiltonian structure for (12)

[qi, vj ] = δij , [vi, vj ] = 0 , [qi, qj ] = (T−1)ikθkm(T−1)mj , (28)

H =
1

2
((T−1)ijvivj + Tijq

iqj) . (29)
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Hamilton’s equations turn out to be

q̇i = (T−1)ijθjmq
m + (T−1)ijvj , (30)

v̇i = −Tijqj , (31)

which are equivalent to (12) with V = T .

A first order Lagrangian for these EoM can be calculated directly from our

discussion in Sec. 2, namely

Lqv = vk q̇
k +

1

2
(T−1θT−1)kmvk v̇m − 1

2
((T−1)ijvivj + Tijq

iqj) (32)

and it is a straightforward matter to prove that first order EoM are

q̇i = (T−1)ikvk − (T−1θT−1)kmv̇m , (33a)

v̇i = −Tijqj . (33b)

It is worthwhile mentioning that this Hamiltonian structure is not derivable

from a second order Lagrangian.9,10

In the following section we will discuss a physical example where these three

Hamiltonian structures are considered.

4. Landau Problem and Non-Commutative Spaces

In this section we analyze two very well known systems which are special cases of

the examples discussed above, namely, the charged particle in an external, constant

magnetic field — particle which, upon quantization, originates the so-called Landau

levels — and the non-commutative harmonic oscillator as treated by Nair and

Polychronakos.34 The first one corresponds to a system as the one described by

variables {q, p} or {q, u}, while the second one corresponds to a system in variables

{q, v}.

4.1. Symmetric gauge

Consider, then, a non-relativistic particle with charge e and mass m in a region of

constant magnetic field B. In the symmetric gauge the magnetic vector potential is

A = −1

2
r×B ,

with B = Bẑ, (B constant). The Lagrangian and the Hamiltonian of this system

are very well known. We will only write the Hamiltonian which is useful for our

discussion. The Hamiltonian turns out to be

H =
1

2m

(

p1 +
1

2
eBq2

)2

+
1

2m

(

p2 −
1

2
eBq1

)2

+
1

2m
p23 (34)
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and the canonical Poisson brackets

[qi, qj ] = 0 , [qi, pj] = δij , [pi, pj ] = 0 .

Since p3 is a conserved quantity, the problem can be reduced to two dimensions.

This is just the Hamiltonian system described by Eq. (27) with

Tij = mδij , θij = ǫijeB , Vij = 0 .

However, it is also well known35,36 that one can define a set of non-canonical

phase space variables which give rise to the same EoM. In concrete, consider the

Hamiltonian system defined in terms of the Poisson brackets relations of variables

{q, u} as follows

[qi, qj ] = 0 , [qi, uj] = δij , [ui, uj] = −eBǫij ,

[ui, u3] = 0 , H =
m

2
(u21 ++u22 + u23) . (35)

Matrices T, V, θ are defined as before, so that the previous Hamiltonian system

is equivalent to (26).

Clearly, both systems are not connected by canonical transformations and might,

in principle, give rise to inequivalent quantum theories.

In what follows we discuss the non-commutative harmonic oscillator.

4.2. Non-commutative harmonic oscillator

In Ref. 34, the quantum mechanics of the harmonic oscillator in a fully non-

commutative space, i.e. a space where coordinates commutators and momenta

commutators do not vanish, has been discussed.

From the point of view of this paper, the starting point are the classical EoM

of the system which we will write in terms of variables {q, u}

q̇i = δijuj ,

u̇i = (B + θω2)ǫjiuj − (1 −Bθ)ω2δijq
j

with {i, j} ∈ {1, 2}.
For this set of equations at least two Hamiltonian structures may be defined.

One of them is the following

[qi, qj ] = 0 , [qi, uj] = δij , [ui, uj] = (B + θω2)ǫij ,

H1 =
1

2
(u21 + u22) +

ω2

2
(1−Bθ)(q21 + q22) . (36)

There is a second order Lagrangian from which these EoM can be derived as

it can be readily seen by comparing them with the Hamiltonian structure (26).

Note that Tij 6= Vij . Besides, det(J1) = 1 and therefore the Poisson brackets matrix

is nowhere singular.
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Another Hamiltonian structure for the same set of EoM is the following (we

preserve previous notation for comparison purposes)

[qi, qj ] = θǫij , [qi, uj] = (1 + θ2ω2)δij , [ui, uj] = (θ3ω4 + 2θω2 +B)ǫij

H2 =
1

2
(u21 + u22) +

ω2

2
(1 + θ2ω2)((q1)2 + (q2)2) + ω2θ(q1u2 − q2u1) . (37)

In this case, one can check that the Poisson bracket matrix has a singularity in

parameter space for θB = 1 since det(JNC) = (1− θB)2.

For completeness, let us write the classical Hamiltonian structure which leads,

upon quantization, to the non-commutative harmonic oscillator (using the notation

of previous sections)

[qi, qj ] = θǫij , [qi, vj ] = δij , [vi, vj ] = Bǫij

HNC =
1

2
((v1)

2 + (v2)2 + ω2((q1)2 + (q2)2)) . (38)

Clearly, this Hamiltonian structure has Tij = Vij , up to time rescaling. There is

no second order Lagrangian for this system because coordinates have non-vanishing

Poisson brackets relations.9,10 Moreover, the Poisson bracket structure is singular

for θB = 1.

In summary, the classical EoM under study can be derived from a Hamilto-

nian system which may be obtained from a second order Lagrangian or, from a

Hamiltonian system which is not derivable from a second order Lagrangian because

coordinates have non-vanishing Poisson brackets relations. In this last case, space

turns out to be non-commutative after quantization.

In Sec. 5, we study the quantization of these systems.

5. Quantum Mechanics

In this section we will calculate explicitly the energy levels of the systems previously

discussed. For the case of Landau levels, as well as the non-commutative harmonic

oscillator, these results are very well known and we will limit ourselves just to show

the results in order to compare with the ones obtained for the new cases.

5.1. Landau levels

Quantization of (34), once restricted to the plane p3 constant, gives rise to an energy

spectrum known as Landau Levels. The energy levels of this Hamiltonian system

are36

ELandau
ℓ =

p3
2

2m
+ ω0

(

ℓ+
1

2

)

, (39)

with ω0 = eB
m
, ~ = 1, c = 1 and ℓ = 0, 1, 2, . . . .
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The wave function is

ψℓ(q) ∝ e−
mω
2

(q2−q2
0
)q2Hℓ

(√
mω(q2 − q20)

)

, (40)

where q2 is one of the coordinates on the plane spanned by coordinates (q1, q2), q20
is a constant and Hℓ(q) is the Hermite polynomial of order ℓ.

The quantum mechanics of Hamiltonian system (35) gives the same results as

the usual case previously summarized. Indeed, it is enough to note that a realization

of the commutators algebra is given by the usual coordinate basis q1, q2 and the

following operators ui

ui = −i∂i − eAi , (41)

which, once implemented into the Hamiltonian, reproduces the Hamiltonian in vari-

ables {q, p}.
Therefore, the two Hamiltonian systems, upon quantization give rise to the same

quantum theory. This is a nontrivial result because, even if both systems are related

by a rather trivial relation such as (41), the transformation {qi, pj} ↔ {qi, uj} is

not canonical.

5.2. Non-commutative harmonic oscillator

Let us consider the Hamiltonian system (36). The algebra of commutators turns

out to be

[qi, qj ] = 0 , [qi, uj ] = iδij , [ui, uj ] = i(B + θω2)ǫij

which has a realization in coordinate representation {q1, q2}

ui = −i∇qi +
1

2
(B + θω2)ǫijq

j .

By doing that, the Schrödinger equation of the system is
[

− 1

2
∇2

q +
1

2
Ω2q2 +

i

2
λ(q1∂2 − q2∂1)

]

ψ(q) = Eψ(q) (42)

with

Ω2 = ω2 +
1

4
(B − θω2)2 , λ = (B + θω2) .

This equation can be solved completely. In order to do that it is convenient to

parametrize the coordinate space {q1, q2} in polar coordinates (r, ϕ). The normal-

izable wave function turns out to be

ψℓ
n(r, ϕ) = e−

Ω
2

2
r2eiℓϕLℓ

n(Ωr
2) (43)

with Lℓ
n, the Legendre’s polynomials and ℓ, n = 0, 1, . . . . The Hamiltonian eigen-

values are

En,ℓ = Ω(n+ ℓ+ 1)− ℓλ

2
. (44)
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This is different from the non-commutative harmonic oscillator spectrum, which

is given in terms of the spectra of two harmonic oscillators with different frequencies.

Finally, let us discuss the quantum mechanics of H2. Consider the canonical

coordinate representation. Let x1, x2 be the space coordinates and pj be the

canonical momenta, which in coordinate representation has the standard form

pj = −i∂xj
≡ −i∂j. Then, a realization of the quantum commutators version of

(37) is

q1 =
√
θx1 , q2 =

√
θp1 , (45)

u1 =

√

θB − 1

θ
x2 +

1 + θ2ω2

√
θ

p1 , (46)

u2 =

√

θB − 1

θ
p2 −

1 + θ2ω2

√
θ

x1 , (47)

for θ > 0 and Bθ > 1.

The Hamiltonian turns out to be

2θH2 = (1 + θ2ω2)(p21 + x21) + (θB − 1)(p22 + x22)− 4
√
θB − 1L3 (48)

with L3 = x1p2 − x2p1.

This Hamiltonian corresponds to an anisotropic harmonic oscillator with an

angular momentum term. Indeed, it has the following structure

H = U(p21 + x21) + V (p21 + x21) +WL3

for U , V , W , constants, and it is always possible to put it in the form

H =
1

2M
p2 +

1

2
M(Ω2

1x
2
1 +Ω2

2x
2
2) +WL3 .

This is not a diagonalizable system as it was shown in Ref. 38, and therefore the

quantum mechanics it describes, is different from the two cases analyzed before.

Furthermore, in this case the wave function cannot, even in principle, be written

in terms of the coordinates (because they do not commute). There is no way to

compare the results obtained for this quantum system with the one described by

commuting coordinates.

6. Conclusions and Outlook

In this paper, we deal with one classical set of second order EoM and we approach

the construction of Hamiltonian structures in three different ways.

We start from a second order Lagrangian for the system under consideration

and construct its Hamiltonian structure in the usual way using two different sets

of phase space variables {q, p} and {q, u(≡ q̇)}. The Poisson brackets relations and

the Hamiltonian functions for both sets of phase space coordinates are exhibited.

The quantum theories are worked out and they turn out to be equivalent.
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Nevertheless, when the oscillator is described in terms of non-commuting co-

ordinates, the quantum theory has a spectrum which is different from the one

previously found. Furthermore, its wave functions cannot even be compared to the

ones obtained when using commuting coordinates. In this context, see also Ref. 15.
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