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ABSTRACT 

Today's quickly changing world forces society to deal with uncertainties that produce high 

levels of environmental, social, and economic risks, thereby jeopardizing sustainable 

development. Portfolio optimisation is an effective tool for formally dealing with such 

uncertainties, because the social and private optimum is not found by analysing 

cost/returns and risks of individual assets, projects, actions or plans, but rather requires 

analysing them all together in the form of a portfolio. This work first presents a review of 

portfolio optimisation applications from the perspective of energy planners. Multiple 

research opportunities were found, especially in spatial modelling, transmission, and 

renewable generation. The portfolio literature available to date excessively simplifies the 

power system. Supply, demand, and transmission modelling in portfolio analysis are not 

consistent with planning models, and therefore produce conflicting results. Despite 

abundant literature that analyses renewable complementarity, actual portfolio optimisation 

models ignore this effect, which leads to suboptimum portfolios.   

Policymakers have the task of inducing private agents, through their regulatory designs, to 

make decisions that point toward social welfare maximization. Conversely, it is a task of 

private agents to protect themselves against the risks of the sector. This work presents a 

review of the main applications, voids and challenges of portfolio optimization for two key 

agents of the private sector: investors and managers. Two fundamental issues were found 

in the literature; the first and most important is excessive confidence in historical data and 

statistical analysis for predicting future price behavior for a changing future in detriment of 

more structural analysis. The second is the omission of renewable complementarities, 

which is a proven characteristic of dispersed renewable plants that may have important 

risk-mitigation effects, although it has largely been ignored in portfolio analysis due to 

insufficient data, modeling limitations, and computational complexity.  

The literature on the way spatial diversification affects the entire power system, its prices 

and specifically renewable market value is scarce. Trying to cover part of this void, an 
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analysis is made using real data and a simplified dispatch model to show evidence of the 

effects of diversification on wind and solar market value in Chile. Results suggest that 

spatial diversification has a strong positive effect on the market value of renewable 

generators, especially in scenarios with active transmission and hydro-storage constraints. 

Indeed, wind market value vary up to US$10/MWh depending on the level of 

diversification and the spatial and temporal constraints of the system and, given current 

storage capacity of hydro reservoirs, the solar market value may increase by US$5/MWh if 

transmission capacity is enough. Even though these results must be observed with caution, 

because they depend on the assumptions made, they are an additional effect of renewable 

spatial diversification.     

Uncertainty of the availability of transmission capacity affects the profitability of 

generation investments. Given the risk of suffering cuts in injections, an investor has the 

option of delaying the investment decision, developing the project in stages or simply 

canceling it. Renewable generation projects, especially solar photovoltaic (PV) and wind 

projects are modular and therefore suitable for being developed by stages. These 

flexibilities are generally ignored in the economic evaluations of such projects. This article 

presents a new methodology to evaluate different options of delaying and developing a 

project by stages, when facing the uncertainty of the availability of transmission 

infrastructure. A model to identify investments strategies based on a portfolio of real 

options is presented. It is shown that the value of the option depends essentially on the 

probabilities that are assigned to the commissioning date of the transmission infrastructure, 

on how important that infrastructure is for the evacuation of the generation project and the 

capital cost of the investor. This work is expected to assist investors by revealing the 

efficient frontier of their investment options and developing investment strategies to use 

the advantages of flexibilities of renewable projects.  
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CHAPTER 1: INTRODUCTION 

1.1 Motivation: The growing uncertainty in the electricity sector 

Modern energy systems and markets are overwhelmed by various sources of uncertainties, 

such as wind speed, hydrology, solar radiation, etc. which are becoming increasingly 

important due to the renewable energy revolution in recent years that introduces these new 

generation resources to electricity markets. But renewable generators also have the 

potential to cancel out or mitigate some of the risks associated with conventional energies, 

such as fuel prices. Furthermore, renewable energies also help mitigate uncertainties 

produced by conventional energies that go beyond energy markets, such as local pollution, 

that expose society and the environment to unprecedented levels of risks.  

Uncertainties about the future increasingly burden society with higher levels of risks. 

Portfolio optimisation offers tools to formally deal with such uncertainties and states that 

the social optimum is not found by analysing costs/returns/impacts and risks of stand-alone 

projects, but rather by analysing them all together in the form of project portfolios (actions, 

plans, strategies, etc.) [1]. Social planners face the challenge of dealing with all of these 

uncertainties together, looking for a sustainable solution that balances economic costs with 

environmental and social impacts and their associated risks. 

How will renewable energy technologies and their costs evolve over time? How long will 

this process take? How will fast and deeply distributed generation and micro-grids 

penetrate power systems in different places around the world? How active will future 

electricity consumers be? What will the role of electric vehicles and storage technologies 

be? How will fossil fuel prices behave in the future? Will fossil fuels be used for electricity 

generation in the future? What will the role of marine generation technologies be? When 

will seamless international interconnections become massive worldwide? These questions 

flood the electricity sector with uncertainty and increase the difficulty of decision making 

and long-term supply chain planning [2,3]. It is often necessary to make several 

assumptions about a series of variables (see Figure 1) or alternatively work with different 
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pre-established scenarios [4–6]. Sadly, energy experts have done a poor job of predicting 

the future, and a good case in point is the renewable energy revolution, especially the solar 

PV boom we are seeing today.  

 

FIGURE 1: THE WIDE VARIETY OF UNCERTAINTIES FOUND IN THE LITERATURE REVIEW IN THE ELECTRICITY SECTOR: OUR OWN 

PREPARATION BASED MAINLY ON [5–20] 

 

As shown in Figure 1, electricity market literature has largely focused on uncertainties 

stemming from fuel prices, demand growth, and CO2 prices, among others. With arrival of 

new renewable energy technologies, more attention has been placed on the evolution of 

investment costs, weather variables (wind, hydrology, solar radiation, and others.), and 

construction times, etc., while social and environmental risks have received very little 

attention.  

More generally, uncertainty is present in almost all processes, events, parameters, and 

measurements that affect a wide range of problems, from daily life to the most complex 

sciences. In these problems, where complete information is missing, the decision-making 

process becomes difficult, and the agent continuously faces the risk of making incorrect 

decisions. While the definition of risk depends on the discipline (finance, sociology, 

engineering, biology, etc.), there is agreement that risk makes the decision-making process 
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more difficult [3,12], and therefore there is a growing need for tools to mitigate these risks, 

such as portfolio optimisation. 

Portfolio optimisation is widely used in a number of problems and industries as a way to 

simultaneously deal with expected returns/costs/impacts and their risks (i.e.: 

uncertainties). In lay terms, portfolio optimisation exploits the idea of “not putting all your 

eggs in one basket”, which is known as diversification. In the context of energy generation 

projects, diversification can be achieved in many ways, such as through the “cancellation 

effect” that occurs with changes in returns from different projects, such as losses in hydro 

plants due to low production that partially cancels out the benefits from thermal plant 

energy sales during dry seasons or decreases in solar production in the afternoon that are 

partially cancelled out by simultaneous increases in wind production, etc. This 

diversification effect is sometimes studied by exploiting the complementarity between 

renewable energy and conventional energy or alternatively, by combining different 

renewable energies technologies for a carbon-free environment.  

In the field of finance, Markowitz [21] was the first proposed a methodology to account for 

the following conflicting objective: solving investors’ capital allocation problem by 

balancing both return and risks. Portfolio return is defined as the weighted sum of the 

expected rates of return on every investment (Eq. 1) (or project, in an energy context), and 

portfolio risk is the volatility of the portfolio return measured by its standard deviation (Eq. 

2). The quantification concept of diversification through the joint movements of the return 

on each single investment, measured by the correlation matrix (Eq. 3), was the real novelty 

of Markowitz’s research [22]. 

Portfolio return: 𝑟𝑝(𝜔) = 𝜔1𝑟1 + ⋯ + 𝜔𝑛𝑟2 = 𝜔𝑇𝑟 EQ. 1 

Portfolio risk: 𝑉(𝜔) = 𝜔𝑇∑𝜔 EQ. 2 
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Portfolio correlation: ∑ = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

] EQ. 3 

 

Markowitz shifted the paradigm of classical financial analysis, which was focused on 

analysing the performance of individual investments (or individual projects in an 

energy context) ignoring the co-movements among them, rather than focusing on entire 

sets of investments and considering co-movements to diversify risk. Another relevant 

concept is the efficient frontier that represents the set of portfolios that are Pareto-optimal, 

namely, portfolios that cannot increase their return without increasing their risk or, as in 

other applications beyond finance, such as energy planning, portfolios that cannot decrease 

their costs without increasing their risk, as is shown in Figure 2.  

In the energy sector, portfolios were initially used as financial tools to combine different 

conventional sources as explained below, but as society evolved towards a more 

sustainable future, these tools have shifted to combine existing conventional technologies 

with newer renewable technologies or combine different renewable technologies to work 

towards a carbon-free world. 

In its simplest formulation, and looking solely at the economic dimension, portfolio 

optimisation enables diversification among different fuel and energy resources. Sometimes 

a portfolio composed of multi-fuel suppliers has a higher expected cost than a portfolio 

composed of just one inexpensive fuel, but it is less exposed to the variability of fuel prices 

and its supply chain, i.e. buying everything from the cheapest supplier could be more 

expensive in the end. This is one of the classical problems for energy planners. What 

technological mix should be planned for the next 30 years? Should the system be planned 

to point towards the minimum cost, the minimum risk, or somewhere in between? (See 

Figure 2 for an example of this cost-risk trade-off for a developing country that faces both 

high capital costs and expensive fossil fuels). Defining the future technological mix is one 
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example of an application of portfolio optimisation for energy planners in the electricity 

sector. 

 

FIGURE 2: SAMPLE PORTFOLIO FOR A DEVELOPING COUNTRY: MINIMUM-RISK PORTFOLIO (LEFT) VS MINIMUM-COST PORTFOLIO 

(RIGHT) 

1.2 Objectives and scope of the work 

The general objective of this work is to understand the risks that agents like the 

regulator, investors and managers must deal with in the electricity markets, how to 

reduce their exposition (optimize) through an adequate selection of variables (location, 

technology, resources, etc.) and elaborate an analysis to understand how these variables 

impacts on the power system and the market value of renewable generation 

technologies. 
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1.3 Specific Objectives 

• Gathering risks from the perspective of private agents in the electricity sector, their 

current treatment, the tools to manage them and the main research gaps in their 

treatment. 

• Gathering risks associated with energy planning and the electricity generation mix, 

from the perspective of the regulator, the main tools to manage them and the main 

research gaps in their treatment. 

• Modeling wind generation profiles in Chile at a regional level to analyze temporal 

and spatial variability and complementarity and identifying the most cost-effective 

wind generation zones for the development of generation projects in a portfolio 

fashion rather than a Myopic project view. 

• Develop a portfolio-planning tool that integrates key features of an economic 

dispatch optimization model together with a simplified hydro-thermal unit-

commitment planning tool (allowing switching on and off) with hourly resolution, 

for a horizon of at least one year that allows, in reasonable times, to analyze various 

supply and demand scenarios and wind profiles.  

• Develop a methodology that allows to quantify the market value of renewable 

energies, especially in Chile, in situations of transmission and hydro storage 

constraints, with different levels of complementarity of wind resources.  

• Develop and apply a model to identify optimal investment strategies in renewable 

projects facing uncertainties such as the operation date of future transmission 

expansion projects. 
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1.4 Hypothesis 

a) While it is widely known and researched that risks can be mitigated or diversified by 

combining certain generation projects, the effects of these combinations on the power 

system, its prices and specifically on renewable market value is however, much scarcer. It 

is a hypothesis of this research that these effects and its impacts can be identified.  

b) It is possible to use and adapt financial techniques such as portfolio theory and use it as 

a tool for choosing projects to develop (or to buy, depending on the perspective of the 

agent). 

c) Some of the risks of the NCRE projects are common to the conventional ones and 

therefore one can learn from the knowledge developed in the risk management of 

conventional projects. 

d) Some risks are inherent in NCRE and should be characterized and understood in detail, 

which requires knowing the particularities of each project: resource, technology, 

production, financial situation, etc. 

1.5 Contributions of the research 

In this work two types of contributions are presented: conceptual and empirical or practical 

contributions. The central topic is the treatment of relatively new sources of uncertainty of 

the electricity market, such as the unpredictability of renewable sources, the opposition to 

transmission development, among others. Part of the value of this work is the 

demonstration of financial techniques applied on electric power systems. The following 

main results of this work can be considered as conceptual contributions for the 

development of science in the electricity markets field. 

1.5.1 Conceptual contributions 

A critical contribution of this work is the identification of the sources of risks that threaten 

the electricity markets and, at the same time, the analysis of their treatment and modelling 

in the different risk management models that have been published. Risks such as the poor 
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predictability of renewable sources, which is generally treated just in an operational level, 

but not in relation with the investment decision level and the uncertainty of the 

development of transmission are especially characterized in this work. This identification 

has allowed to find the main gaps in the state of the art and to focus on some of them 

where it is possible to contribute. Those are precisely the areas where this work developed 

more practical, empirical and modelling contributions. 

Another contribution of this research is the specification of the risks and the treatment 

proposal under different categories: firstly, by source of risk (systemic, of the resource, of 

the regulation, etc.), secondly and more importantly, introduces a vision of two different 

points of view: from the perspective of the planner and from the perspective of private 

agents. From the perspective of the planner, for example, the main shortcomings of the 

portfolio models to determine the future energy mix are exposed. On the other hand, 

systematic research focusing on the perspective of private agents is very novel and this is 

the first work that groups, presents and studies the risks that these agents face and the tools 

that exist to manage them.  

This research also deepens on the market value of renewable energy, especially wind 

generation and the impact on this value in the face of different variables and risks that can 

simultaneously affect it, as the renewable penetration level, transmission restrictions, water 

storage for hydraulic generation and the geographical diversification of generation. This 

work seek to quantify how renewable energy integration measures impacts on renewable 

market value.  

1.5.2 Practical contributions  

Introduction of wind supply functions:  a study of the wind profiles all along Chile was 

carried out, achieving to model and characterize the profiles by zone and developing for 

the first time the wind supply function of Chile by area, as well as the studying of the 

statistical properties of the  jointly profiles, including the correlation between them. The 
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current literature is somewhat underdeveloped in this topic and the modeling has a lot of 

potential.  

A methodology that combines geographically diversified portfolios of wind projects with 

and optimization model of multi-reservoir hydro-thermal dispatch and hourly resolution 

has been developed. This methodology allows analyzing the systemic impacts of different 

portfolios of wind projects when facing different scenarios and the impact on their own 

market value.  

This methodology allows the planner to identify generation poles or focal areas of 

renewable energy, which separately do not represent a differentiating contribution (or 

additional value) to the electricity system, but together they complement each other, 

enhancing their value and thereby reducing the drop in the market value of renewable with 

the increase in their penetration.  

Additionally, a risk management tool is proposed to assist investors in determining an 

optimal investment strategy in the face of real sources of uncertainties,  such as the 

uncertainty of the date of commissioning of a transmission line and the time it takes the 

permitting process for a  photovoltaic generation project. The application of this tool, 

which uses real option theory and portfolio optimization combined, allows to illustrate the 

effects of the aforementioned uncertainties in the decision making of investors, as well as 

to obtain the efficient frontier of investment alternatives and to value the flexibility of 

being able to wait to connect the project to the grid. 

The conceptual and empirical contributions of this work have so far been resulted into four 

published articles in excellent international journals and a fifth article have been recently 

sent. The articles associated with this thesis are presented next: 

1. Pérez Odeh, R., Watts, D., & Flores, Y. (2018). Planning in a changing environment: 

Applications of portfolio optimisation to deal with risk in the electricity sector. 

Renewable and Sustainable Energy Reviews, 82 (August 2017), 3808–3823. 

http://doi.org/10.1016/j.rser.2017.10.089 (Chapter 2) 

http://doi.org/10.1016/j.rser.2017.10.089
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2. Pérez Odeh, R., Watts, D., & Negrete-Pincetic, M. (2018). Portfolio applications in 

electricity markets review: Private investor and manager perspective trends. Renewable 

and Sustainable Energy Reviews, 81(July 2017), 192–204. 

http://doi.org/10.1016/j.rser.2017.07.031 (Chapter 3) 

3. Pérez Odeh, R., & Watts D. (2019). Impacts of wind and solar spatial diversification on 

its market value: A case study of the Chilean electricity market. Renewable and 

Sustainable Energy Reviews, 111 (March 2018), 442–461. 

http://doi:10.1016/j.rser.2019.01.015 (Chapter 4) 

4. Watts, D., Oses, N., & Pérez, R. (2016). Assessment of wind energy potential in Chile: 

A project-based regional wind supply function approach. Renewable Energy, 96, 738–

755. http://doi.org/10.1016/j.renene.2016.05.038 (Chapter 4)  

5. Perez Odeh, R., & Watts, D. (2019). Optimal investment strategy of PV plant under 

uncertainty on the expansion of transmission infrastructure: an application of real 

option theory and risk-return analysis. Manuscript in preparation. (Chapter  5) 

1.6 Methodology and thesis structure 

The work starts with a strong bibliographical review and analysis to understand the main 

past contributions on risk modeling with a special focus on portfolio optimization as one 

of the most important tools of risk management.  This includes a multi-dimensional 

analysis not only applied to the energy sector, but also in other disciplines. Two 

perspectives are reviewed in the energy area: the perspective of the regulator/planner 

(Chapter 2) and the perspective of the private agents: investors and energy buyers/sellers 

or managers (Chapter 3).   

 

 Considering the needs for further research that came up from the revision, an 

application is presented in Chapter 4 to demonstrate the effects of one risk mitigation 

measure in the electricity market of Chile. Specifically, Chapter 4 present an application 

of wind spatial diversification, showing that it may reduce the risk of price depression 

and low market values in scenarios with active transmission capacity constraints or low 

http://doi.org/10.1016/j.rser.2017.07.031
http://doi:10.1016/j.rser.2019.01.015
http://doi.org/10.1016/j.renene.2016.05.038
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storage capacity and therefore is a strong tool that the regulator should consider.  

Designing incentives for the optimal location of generators can alleviate the transmission 

system, as well as the operation of system itself. Additionally, Chapter 5 presents a novel 

methodology to evaluate different options of delaying and developing a project by 

stages, when facing the uncertainty of the availability of transmission infrastructure, this 

is an evaluation from the perspective of a private agent.  

 

The stages of the research are presented in Figure 3: the review and analysis of risk and 

use of portfolio from the planner perspective and private perspective (investors and 

managers) and the analysis of a risk mitigation measure applied in the electricity market 

of Chile.   

 

FIGURE 3: GENERAL STRUCUTRE OF THE THESIS 

Chapter 2: 

Planner 
perspective: review 
and analysis of risks 
and use of portfolio

Chapter 3: 

Private perspective: 
review and analysis 

of risk and use  
portfolio

Chapter 4:

Wind spatial 
diversification and 
its impacts on wind 

market value

Chapter 5: Optimal 
investment strategy 
under uncertainty 

on the expansion of 
transmission 

infrastructure 
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CHAPTER 2: PLANNING IN A CHANGING ENVIRONMENT: 

APPLICATIONS OF PORTFOLIO OPTIMISATION TO DEAL WITH RISK IN 

THE ELECTRICITY SECTOR 

The countless publications that use portfolio theory and its associated concepts available 

today demonstrate its usefulness in different fields of research, and while most of the 

research on portfolio optimisation is found in the area of finance (see the review presented 

by Kolm et al. [23]), it also has applications in numerous other disciplines, such as 

economic analysis, project selection, environmental applications, water and land 

management, public health, psychology, and others (see Table 1). Bridges and Terris [24], 

for example, present concepts of the use of mean-variance portfolio theory to allocate 

resources among different health programs. Figure 4 presents some research areas that 

have made use of portfolio optimisation, and Table 1 presents some examples of these 

uses.   
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FIGURE 4: PORTFOLIO OPTIMISATION APPLICATIONS 

 

TABLE 1: DIFFERENT APPLICATIONS OF PORTFOLIO OPTIMISATION IN DIVERSE RESEARCH FIELDS 

Topic Main application of portfolio optimization Refs. 

Economic growth 

and stability 

Allocation of capital between sectors of economy to maximize rate of growth of 

economy subject to instability (variance of rate of growth). 

[25–27] 

Labor market Optimization of the annual employment growth and risk (as the standard deviation 

of growth) to allocate efficiently among different economic development 

strategies. 

[28–31] 

Social 

sustainability 

Explore how the variability of resources (temporal and spatial) in arid zones 

underpins most sectors of human endeavor. Return is the expected resource in a 

spatial unit while risk is related to resource variability. 

[32] 

Public health Allocate public resources between different health care programs where the return 

is the health benefits and the risk is the variance associated with the outcomes 

considering costs and effects of the program. 

[24,33] 

Bio-security Resource allocation across multiple pests that affect multiple environmental 

assets. In other words, allocate limited resources to bio-security measures to 

[34] 
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protect from invasion risks. 

Biodiversity Resource allocation among mixes of species and ecosystems to optimize yield-

risk-cost structure, where yield means any type of services provided by the 

ecosystem (e.g. biomass production in agriculture, forestry, carbon dioxide 

sequestration, flood mitigation) and risk is its variance in time and space. 

[35,36] 

Farm water 

management 

Allocate resources among water exploitation options for irrigation to optimize 

farm return (farm return) and risk (variance of farm return). 

[37] 

Water planning 

and climate change 

Allocate resources among intervention measures to maximize benefits (using 

criteria scores) for different climate scenarios. Examples of intervention measures 

are the construction of artificial wetlands or water treatment plants. 

[38] 

Flood management Resource allocation between flood protection measures to optimize damage 

prevention return (in economic terms) and risk (variance of return). 

[39] 

Animal 

surveillance 

Optimize the distribution of surveillance measures across time periods and 

geographic locations for animal protection. Return and risk are measured using 

criteria scores. 

[40] 

Psychology Portfolio management is applied to the management of academic environments. 

Invest social or intellectual capital to diversify relationships and tasks in order to 

minimize the risk of adverse outcomes. 

[41] 

Retail format 

management 
Allocation between investments in each retail formats1 to maximize retail return 

and limit risk. The paper shows an application for the hotel industry to optimize 

the operation of brands. 

[42] 

Reforestation and 

restoration 

Allocate between different seed sources. This is used to select a mixture of seed 

sources to minimize the risk of adaptation across all climate change scenarios. 

[43] 

 

It is important to observe problems in other disciplines, because they may share some risk 

structures with problems in the electricity and energy sectors, and risks that are new but 

increasingly important in the electricity sector may have already been studied and 

modelled in other fields. For example, hydrological risks have been studied in the field of 

agriculture for decades, if not centuries (see Hurst [44]), and several social and 

environmental risks that are new for the electricity sector have already been widely studied 

in other fields. As society shifts from a purely economic focus to a more sustainable 

perspective, greater emphasis should be placed on integrating social and environmental 

impacts, costs, and risks into the energy-planning problem. Sadly, we found no articles 

addressing sustainability from a planning portfolio perspective.   

 

1 “A retail format is the retailer type of retail mix (nature of merchandise services offered, pricing policy, 

advertising, and promotion program, approach to storage design and visual merchandising, and typical 

location” [42,286]. 
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The rest of this Chapter is organized as follows: Section 2.1 provides an overview of the 

use of portfolio analysis in the electricity sector from two perspectives, public and private. 

Specifically, Section 2.1.1 presents the different sources of risks that the agents of the 

electricity sector must address, and Section 2.1.2 highlights portfolio challenges from the 

private agents’ perspective. Section 2.2 presents a detailed discussion of one of the main 

planning problems for regulators—finding an appropriate generation mix. Section 2.2.1 

presents the variables and return measures used in other articles using portfolio-planning 

tools, and Section 2.2.2 presents different measures of uncertainty used in the literature. 

Section 2.3 provides a description of the most critical needs for research to go forward 

using portfolios as a tool for planning. Section 2.3.1 focuses on renewable profiles and 

complementarities, Section 2.3.2 highlights the lack of sustainability factors beyond 

minimizing costs in the portfolio optimisation problem, and Section 2.3.3 discusses the 

importance of the dimensionality problem in a world full of uncertainty. Finally, Section 

2.4 provides a summary. 

2.1 Portfolio optimisation in the electricity sector: the public and private 

perspectives 

The large number of applications using portfolio optimisation in the electricity sector can 

be classified in multiple ways. One is according to the private or public perspective. The 

former includes applications oriented towards investors (resources allocated to different 

projects) and managers (commercial strategy: allocate electricity sales/purchases to 

different trading mechanisms). The latter (public perspective) includes applications 

oriented towards regulators and planners (e.g. allocate resources to different generation 

technologies) for policy design, as is shown in Figure 5.   
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FIGURE 5: PORTFOLIO OPTIMISATION IN THE ELECTRICITY SECTOR FROM THREE DIFFERENT PERSPECTIVES: PLANNERS, INVESTORS, 

AND MANAGERS 

 

The literature focused on the perspectives of investors and managers is limited to the 

market conditions of each country and its technological specifics. Therefore, that literature 

is segmented into a number of different topics rather than building one upon the other and 

evolving and improving over time. The literature focused on investors and managers is 

newer than that focused on planners because electricity markets in most countries are just 

two or three decades old, much younger than power electrical systems (the first electricity 

market was developed in Chile in 1982). Numerous papers on applications using portfolio 

optimisation from the planners’ perspective have been published, especially over the past 

decade, in which the uncertainty of fossil fuel prices and renewable penetration have 

become greater (see Section 2.2). The literature for the three agents is evolving with a 

focus on renewable energy while addressing an increasingly more complex representation 
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of renewable resources, technologies, productions, market arrangements and the way they 

all interact.   

2.1.1 Uncertainty and risks in the electricity sector  

The initial portfolio applications in the energy sector did not include renewable energies. 

After the oil crisis in 1973, fossil fuels became the primary expense for industries that were 

dependent upon them. These industries encouraged research that would help them reduce 

their exposure and vulnerability to fluctuations in oil prices. In that context, Bar-Lev and 

Katz [45] were the first to use a portfolio approach in the electricity sector for fossil 

fuel procurement for the purpose of determining the efficiency of fuel portfolios of utilities 

at that time. They discovered that utilities managed fuel portfolios efficiently, but at high 

risk, driven by the vertically integrated regulatory regime at the time. In recent decades, 

however, several countries have left the vertically integrated electricity sector behind and 

adopted a liberalized market scheme so that risk is currently an important part of 

management. Indeed, every agent in the sector is now concerned about profits, costs, risks, 

and efficiency in order to minimize costs and risk while maximizing profits and minimize 

risks.  

Today there is uncertainty in most of the supply chain and for every agent because the 

electricity sector is subject to multiple sources of variability on both the supply and the 

demand sides and in the short and long runs, beginning with the primary resource (both 

renewable and conventional) and passing through conversion technology, production, sale, 

and financing. In addition, there are systemic uncertainties that involve public policies and 

consumption behaviour among other variables, that affect the entire supply chain, as 

presented in the review of Figure 6.   

While a large body of literature has been developed to address uncertainty in prices and 

production technology in portfolio optimisation, little or no research is found on the 

portfolio optimisation associated with resources and systemic effects, such as the impact of 

system-wide renewable targets, transmission expansion, and net-load profile changes, etc. 
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This is shown in detail in Figure 6, where sources of uncertainties have been divided along 

the supply chain and classified according to the level of research available. “Unmodelled” 

indicates that sources of uncertainties have not received research attention in the portfolio 

literature at the corresponding section of the supply chain. “Modelled” indicates that there 

is literature available for such uncertainty.  

The most common uncertainties modelled for the planner problem are fuel prices, 

investment costs, CO2 prices, and maintenance costs, while for private agents, uncertainties 

produced by electricity spot prices are commonly factored in. Few applications model the 

uncertainties associated with technological changes, and none were found for portfolio 

optimisation modelling uncertainties produced by the generation of renewables, 

hydrologies, congestion rents, or demand growth, etc. Since these aspects are currently the 

target of a number of research initiatives, we expect to find much more research devoted to 

renewable and sustainable energy systems in the portfolio framework in the future.  
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FIGURE 6: THE STRUCTURE OF UNCERTAINTIES FACED BY PLANNERS THROUGHOUT THE ELECTRICITY SUPPLY CHAIN: RESOURCE, 

TECHNOLOGY, PRODUCTION, SALE, AND FINANCING: RESEARCH HAS MAINLY TARGETED UNCERTAINTY IN TECHNOLOGY AND 

PRICES2* 

 

Primary uncertainties faced by planners in the electricity sector 

Planners face multiple sources of uncertainty on the supply side, such as investments and 

fossil fuel prices [8,13,14], which can be very unpredictable, especially in the long run 

because of their strong bonds with political issues. Furthermore, renewable resources 

composed of traditional hydrological uncertainty and non-conventional resources, such as 

solar irradiance and wind speed [16,46,47], are also important sources of uncertainty and 

variability. These are key factors, not only for the operation of the electricity system, but 

also for short- and medium-term planning. Technological changes are also part of the 

energy sector’s long-run uncertainties [48,49], especially in the renewable sector, which 

has received most of the research attention in the past decade. Expectations for 

technological changes are very important in making investment decisions because they 

 

2 * Some of these uncertainties, such as spot prices and forward prices, have been modelled in the portfolio 

literature for private agents, but not for a planning perspective. 
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directly affect expected costs [7]. For example, see the levelized cost ranking prepared by 

Mullen et al. [50], where large solar PV plants showed the biggest decline in relative cost 

among all other technologies, passing from the third most expensive technology in 2012 to 

the seventh low cost technology in 2014, out of 22 technologies presented in that ranking. 

Rapid cost decline is also observed in storage technologies, and along with PV, this is 

expected to fundamentally affect energy supply balance for 2020.   

On the demand side, the primary uncertainty that planners face is electricity consumption 

in the temporal and the spatial dimension. Despite electricity demand’s identifiable 

patterns in different time frames (hourly, daily, monthly, and seasonally), it still has an 

important stochastic component. In a society that constantly increases its electricity 

consumption and faces the massive entrance of electric vehicles, the challenge of correctly 

sizing the infrastructure becomes very difficult to solve. Furthermore, the spatial 

component of the demand is also a major source of uncertainty because demand is 

distributed along different sectors or nodes in the transmission system, and every node has 

its own demand pattern according to the type of consumers supplied (industrial, residential, 

or commercial, etc.), which, of course, can change over time [51].  

Another source of uncertainty that affects the entire electricity sector in general as well as 

planners is transmission expansion, because it affects decisions on expansion and the 

placement of new generators. Even though planners can usually speed up the development 

of transmission corridors of national impact, these projects usually need longer to develop 

than the construction of individual generators. Similarly, regulatory changes also bring 

uncertainties that affect the entire market. Environmental policy, for example, in addition 

to its positive environmental effects, could introduce new uncertainty by creating new 

emission markets or by requiring new mitigation technologies [19,52].  

Public opposition also brings new risks to the sector, especially for the development of big 

projects (new generation and new transmission corridors), which may be delayed for years. 

Growing sustainability concerns are increasing public participation and opposition to 
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traditional sources of energy with large environmental and public health impacts. 

Regulators can encourage early participation processes to partially hedge this risk.  

All of the above factors and short- and long-run uncertainties, along with the non-

storability of electricity, inelastic demand and the steep supply function, cause very 

different equilibria between prices and quantities in the electricity sector as is shown in 

Figure 7, which is finally the variability and risk observed by the market agents (market 

prices and demanded quantities). Storage technologies still do not play a big enough role to 

decouple supply and demand in electricity markets, but in the long run, technology 

development and reductions in storage costs could change this paradigm [53–55]. 

 

FIGURE 7: UNCERTAINTIES IN THE ELECTRICITY SECTOR THAT FEED THE ELECTRICITY MARKET THROUGH THEIR IMPACT ON SUPPLY 

AND DEMAND CURVES 
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2.1.2 Portfolio applications and problems from the private perspective: investors 

and managers 

Unlike planners, investors do not seek to minimize social and environmental costs, but 

rather to maximize their profits and limit their risks. Here, risk is understood from an 

investor’s perspective, because the uncertainty that can cause those future profits to be less 

than expected. Consequently, portfolio optimisation for investors is structurally different to 

portfolio optimisation for planners; it essentially focuses on financial profit rather than on 

an integral or sustainable perspective, which includes the impact on the environment, the 

society, and the economy.   

In liberalized markets, however, generation investments are made by investors, not by 

governments [7], and therefore investments are driven by expected profit rather than by a 

sustainability evaluation. Investors need to analyse each possible project, their sources of 

risks (prices, technical, financial, and systemic risks), and their interactions with other 

projects. This is usually done by performing multiple cash flow analyses [8,9,56] and 

studying the distributions arising from them, such as the net present value and the internal 

rate of return, among others. The challenge for regulators and planners is to design 

regulatory frameworks to align private incentives with sustainable development. 

Investors are not constrained by minimum investment or minimum capacity levels, so they  

need to consider the value of waiting [57] in their investment analysis (option value). The 

value of waiting reveals that the investor’s optimisation problem has a dynamic component 

that is very important in the decision-making process. Indeed, investment in the electricity 

sector is marked by irreversibility due to the large sunk costs involved in electricity 

generation equipment and land acquisition, handling permits, and the availability of grid 

connections, among other factors that make the flexibility of waiting much more valuable. 

Real Option Theory [58] is the main tool used to assess the value of waiting in the 

investment decision problem, because it explicitly incorporates this effect [59]. These 

models are usually multi-staged (or dynamic). Traditional one-stage (static) models cannot 
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capture the option value of waiting and postponing a project. Considering the decision of 

waiting adds value for investors because it allows them to acquire more information about 

the market and policies [60]. 

Portfolio optimisation for managers, on the other hand, is used to efficiently choose 

among different financial instruments for selling and buying electricity, for both 

electricity producers and electricity purchasers (wholesale purchasers or retailers). Since 

electricity is a good with very special properties, such as a steep supply curve, inelastic 

demand, and non-storability, real-time prices are very volatile and create high risks for 

agents and hedging against these risks through financial instruments is a fundamental task 

for managers. A complete review of financial and physical instruments used in electricity 

markets can be found in the paper by Deng and Oren [61].  

The literature has dedicated much less attention to the optimisation problems of electricity 

purchasers than to those of other agents (planner, investors, sellers or power producers) 

[62]. In markets in which electricity is liberalized, small end-consumers are normally 

protected against price fluctuations by a fixed regulated price. Wholesale electricity 

purchasers (industrial consumer and retailers), on the other hand, must absorb the 

variability of electricity prices and use financial instruments to control this risk.  

Publications on portfolio optimisation for electricity purchasers and sellers have used 

different modelling approaches. While static approaches use traditional mean-variance 

models [62–65] or mean-variance-skewness models [66,67], dynamic approaches use 

stochastic optimisation [68,69]. Static approaches solve the problem of how to allocate 

energy (buy or sell) to different markets (day-ahead market, forward, options, etc.) “here 

and now”. In other words, the optimal solution of a static approach will answer how much 

energy should be allocated to each market without considering that the allocation decision 

on some markets can be delayed (e.g.: day-ahead market). Conversely, dynamic 

approaches are able to separate “here-and-now” decisions (e.g.: long-term contracts) and 

“wait-and-see” decisions (e.g.: day-ahead market, real-time market, own-generation, etc.). 
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Wait-and-see decisions are then a set of optimal solutions according to the realization of 

the uncertainty. 

2.2 Portfolio optimisation as a tool for planners: pointing towards a sustainable 

development and the minimization of social cost and risks  

Since portfolio optimisation in the electricity market was first applied, a number of efforts 

have been made to find the combination of generation technologies in efficient electricity 

systems that would save money for end-consumers. Beginning with the writings of Shimon 

Awerbuch [1,13,70], different methodologies that apply mean-variance portfolio 

approaches have been implemented to find the optimal technological mix in many 

countries or zones, as presented in Figure 8. Some publications also include sustainable 

factors as they are incorporated into the market as a carbon price system [13–18,71–79] 

 

FIGURE 8: PORTFOLIO OPTIMISATION FROM THE PLANNER’S PERSPECTIVE HAS BEEN APPLIED IN DIFFERENT LOCATIONS AROUND 

THE WORLD 

Australia
Vithayasrichareon et al. 

2014 [76]

Italy
Arnesano et al. 2012 [16]

China
Zhu & Fan 2010 [74]

USA
Bate White 2007 [77]

Mexico
Sandoval & Morales 2014 

[78]

Japan
Bhattacharya & Kojima 

2012 [75]

Netherlands
Jansen et al. 2006 [14]

Switzerland
Krey & Zweifel 2006 [72]

Thailand
Vithayasrichareon & 

MacGill 2012 [17]

Belgium
Delarue et al. 2011 [73]

Ireland
Mcloughlin & Bazilian

2006 [80]

Scotland
Allan et al. 2011 [15]

Taiwan
Wu & Huang 2014 [18]

European Union
Awerbuch & Berger 2003 

[13]

Brazil
Losekann et al. 2013 [79]
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These applications not only minimize the expected investment and operational costs, but 

also restrict the level of risk faced by society. Risk is understood in these cases as the 

possibility that total cost may be greater than expected, and it is measured by different 

tools as explained in Section 2.2.2. 

Finding an efficient generation portfolio allows planners to design policies that promote 

technologies that are part of the portfolio as well as to enable the grid to be prepared to 

receive those technologies (see Figure 9). In most countries, the sum of individual 

investors’ decisions defines the final technological composition, although planners can 

always design policies and incentives to guide them towards the technological combination 

that is considered the most beneficial for society. 

 

FIGURE 9: PLANNER’S PORTFOLIO PROBLEM: MOVING TOWARDS AN EFFICIENT ELECTRICITY-GENERATION MIX 

 

The evaluation of each generation technology should consider the contribution to the 

portfolio’s total expected cost and its total risk, rather than its individual cost alone [13]. 

That is, if the inclusion of a technology contributes by increasing the expected costs and at 

the same time contributes by decreasing the risk, it should be evaluated by considering 

both characteristics and not just from the cost perspective. Most papers on portfolio 

optimisation use a mean-variance approach to define an efficient technological mix, 

maximizing the inverse of levelized costs [13,16,74,80] or, alternatively, minimizing 

levelized costs [14,73,76,79,81]. In addition to the portfolio’s return, publications differ on 
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their approach to other important factors. While several publications seek to optimize the 

generation share of each technology and simplify the formulation by ignoring the effect 

of infrastructure usage and cost, others look at the installed capacity and the generation 

share of each technology separately. The latter (optimizing the capacity and generation 

share together), is much more difficult in terms of the mathematical optimisation, as will 

be shown in the next section. Other differences in the literature include the approach to the 

solution, the sources of uncertainties evaluated in the problem, and the generation 

technologies that participate as alternative technological combinations as is shown in Table 

2. 

 

TABLE 2: DIFFERENTIATING FACTORS IN APPLICATIONS OF PORTFOLIO OPTIMISATION TO DEFINE EFFICIENT ENERGY 

COMBINATIONS 

Factor / Dimension  Modeling and solving alternatives 

Return measure of the 

portfolio 

Inverse of levelized cost (maximize) 

Levelized cost (minimize) 

Total cost (sum of fixed and variable costs) 

Optimization variable Generation share of each technology 

Installed capacity and generation share of each technology 

Solution approach Mean-variance analysis solved by: 

Optimization quadratic problem, quadratic constrained problem, 

simulation optimization, mixed integer problem 

Source of uncertainty Investment costs, fuel prices,  

fixed and variable O&M and CO2 prices, demand 

Generation technologies 

that participate in the mix 

Every paper uses different alternatives of generation technologies 

according to the availability of resources in each country  

 

2.2.1 Optimisation variables and return measures 

While most papers seek to find the optimal generation share (MWh) of each technology 

without proper differentiation between capacity and energy, other studies consider both 

installed capacity (MW) and generation (MWh). In the first case, it is sufficient to 

characterise each technology according to its levelized cost by incorporating assumptions 

on the capacity factor, interest rate and other parameters (see, for example, the paper by 
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Jansen et al. [14]). On the other hand, optimisation problems that seek to specify installed 

capacity and generation as independent optimisation variables must include the dispatch 

and its constraints as an endogenous problem, as presented by Delarue et al. [72]. A 

conceptual mathematical formulation of those optimisation problems based on the 

Markowitz mean-variance portfolio theory is presented in  

 

Table 3. 

 

 

 

TABLE 3: CONCEPTUAL MATHEMATICAL FORMULATION: OPTIMIZING TOTAL LEVELIZED COSTS VS TOTAL COST (FIXED + VARIABLE) 

LCOE method (basic simplification) 

 

Install capacity + generation method (more 

realistic) 

Goal: Optimizing generation share of each 

technology using levelized costs 

Goal: Optimizing installed capacity and generation 

share of each technology using explicitly fixed and 

variable costs 

𝑀𝑖𝑛 ∑(𝐿𝐶𝑂𝐸𝑖)𝐸𝑖

𝑖

 

Subject to: 

A maximum level of total levelized cost variability 

(standard deviation) 

Satisfying energy consumption 

Variables:  

𝐸𝑖: generation of technology i 

Parameters: 

𝐿𝐶𝑂𝐸𝑖: Expected levelized cost of electricity of 

technology i 

 

 

𝑀𝑖𝑛 ∑(𝐼𝑁𝑉𝑖 + 𝐹𝑂𝑀𝑖)𝑃𝑖 + (𝐹𝑐𝑖 + 𝑉𝑂𝑀𝑖)𝐸𝑖

𝑖

 

Subject to 

A maximum level of total cost variability (standard 

deviation)  

Hourly or block demand  

Dispatch constraints 

Variables: 

𝑃𝑖: installed capacity of technology i 

𝐸𝑖: generation of technology i 

Parameters: 

𝐼𝑁𝑉𝑖 : investment cost of technology i 

𝐹𝑂𝑀𝑖 : fixed O&M cost of technology i 

𝐹𝑐𝑖: fuel cost of technology i 

𝑉𝑂𝑀𝑖: variable O&M cost of technology i 

 

Levelized cost of energy (LCOE) represents the minimum price of the energy at which a 

project can recover its costs [82] and it is widely used as a benchmarking tool to compare 
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different generation technologies. LCOE essentially depends upon the discount rate, 

average system price, financing method, and energy generated over the lifetime [83], 

among other factors. Accordingly, LCOE depends on country-specific circumstances [84]. 

There is literature reporting a different range of LCOE values for different technologies. 

For example, the LCOE of wind power at the utility level in India is reported to be in the 

US$50–$100/MWh range [85], while in the United States, wind power is reported to be 

US$41.3–$71.3/MWh for new generation resources entering service in 2018 [86]. 

Likewise, solar PV is reported to be between US$62.6/MWh and US$120.2/MWh in the 

United States [86], while in Chile utility-scale solar PV plants reach US$67/MWh [87].  

Calculating the LCOE requires multiple assumptions, such as capital investment, debt rate, 

future fuel costs, and maintenance costs throughout its economic life (e.g.: 25 years), but it 

also requires a strong assumption about the expected generation of such technology, 

which is translated into a level of utilization or capacity factor as is presented in Eq. 4.  

𝐿𝐶𝑂𝐸𝑖 =
𝑟𝑓 ∙ 𝐼𝑁𝑉𝑖(

𝑈𝑆𝐷
𝑘𝑊

) + 𝐹𝑂𝑀 (
𝑈𝑆𝐷
𝑘𝑊

)

𝐶𝑃𝑖 ∙ ℎ𝑜𝑢𝑟𝑠𝑦𝑒𝑎𝑟
+ 𝐹𝐶 (

𝑈𝑆𝐷

𝑀𝑊ℎ
) + 𝑉𝑂𝑀 (

𝑈𝑆$

𝑀𝑊ℎ
) EQ. 4 

Where 𝐶𝑃𝑖 is the assumed capacity factor of the technology, and 𝑟𝑓 is the capital recovery 

factor dependent on the discount rate to be used.  

Defining a pre-established capacity factor for each technology to define a technological 

mix is a strong assumption because its implies that the capacity factor and the portfolio 

composition are independent of each other [88]. For example, take a portfolio with a high 

quota of non-dispatchable technologies, in such portfolio dispatchable technologies would 

have fewer hours of operation and less dispatched capacity compared with a portfolio 

without non-dispatchable technologies, as is presented in Figure 10. Therefore, the 

capacity factor or level of utilization changes with the composition of the portfolio. 

Consequently, levelized costs also may change depending on the portfolio. This 

simplification has strong implications for costs. For example, if the level of utilization is 
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erroneously assumed to be too low for a technology with high investment cost and low 

variable cost (e.g.: run of the river), it will have a high levelized cost (capital cost divided 

into fewer energy units), and therefore the outcome of the analysis will be biased, resulting 

in a greater participation of other technologies to the detriment of that one.  

 

FIGURE 10: LOAD DURATION CURVES: AS NON-DISPATCHABLE TECHNOLOGIES ENTER THE PORTFOLIO, THE CAPACITY FACTOR OF 

DISPATCHABLE UNITS IS REDUCED. PORTFOLIO AND CAPACITY FACTORS ARE NOT INDEPENDENT 

 

The assumption of the capacity factor is not the only drawback in the use of traditional 

LCOE in a portfolio analysis. A large body of literature has already shown many 

shortcomings of the LCOE analysis [89–92]. Traditional LCOE analysis does not include 

externalities such as air pollution and other environmental impacts, energy security, or 

transmission costs. Roth and Ambs [89] show that clean generation technologies are most 

attractive when all options are examined using a full-cost levelized approach. On the other 

hand, many authors have shown that intermittent sources have additional costs associated 

with grid integration that traditional LCOE fails to capture [90,91], resulting in the 

overvaluing of intermittent generating technologies such as wind and solar. Moreover, 

Ueckerdt et al. [91] proposed a “System-LCOE” metric that includes integration costs to 

allow a more realistic comparison between generation technologies. This metric takes into 

account when the energy is produced (profile cost), where it is produced (grid-related 

costs) and forecast errors (balancing costs), and it needs system-level data that require 

simulating the operation of the entire power system.   
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In addition to integration costs, large shares of intermittent generators have economic 

effects on traditional generators that cannot be captured using the LCOE methodology in a 

portfolio analysis. The integration of large quantities of intermittent sources in power 

systems represents a major challenge and generates a public policy debate [93]. Renewable 

power plants displace thermal generators and change their operational points, moving them 

away from their optimum, reducing their efficiency, and making them more expensive. 

Furthermore, non-intermittent generators must absorb the variability produced by 

intermittent generators and therefore assume new costs (such as cycling costs), which 

many countries do not take into account in their regulation. Cycling, defined as starting-up, 

shutting down, ramping up, and ramping down a power plant [94,95], has been and will be 

a major issue for thermal power plants. Over-cycling reduces the lifespan of power plants, 

reduces operational efficiency and therefore makes their generation more expensive (they 

have to recover capital costs in less time), since it has a degenerating effect on some 

components. In addition, the cycling requirement will lead to increased outages and plant 

depreciation, especially of base power plants that were not designed to operate flexibly 

[95].  

On the other hand, when installed capacity is part of the variables of the portfolio 

optimisation problem, it is necessary to explicitly include variable (US$/MWh) and fixed 

costs (US$/MW) in the optimisation problem, as is shown on the right side of  

 

Table 3. Defining the level of plant use in this case requires modelling a dispatch and its 

constraints. To do so, demand must be taken into account considering different demand 

levels over the year (and not only energy consumption as when optimizing with levelized 

costs) either by using load duration curves or hourly load profiles. Therefore, 

generation technologies are not only differentiated by their costs, but also by the 

relationship between their variable and fixed costs, thereby revealing that technologies are 

not perfect substitutes; some technologies are less expensive when under constant 
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production, while others are used only to meet peak demand [96], as is shown in Figure 11. 

This figure shows a particular example where an oil-fired power plant, which is dispatched 

a few hours a year, is the peaking power plant; gas plants peak and do some cycling; coal 

plants do some cycling and base load, and nuclear plants only base load. A better 

representation of technologies costs produces a much more difficult optimisation problem 

which in many cases cannot be solved. 

 

FIGURE 11: THE LOAD DURATION CURVE IS FILLED BY DIFFERENT TECHNOLOGIES IN ACCORDANCE WITH THEIR FIXED AND VARIABLE 

COSTS AND THE RELATIONSHIPS AMONG THEM. ADAPTED FROM [88] 

 

2.2.2 Different sources of uncertainties and their measurements  

The estimation of costs for each generation technology requires various sensible 

assumptions, such as fuel prices, discount rates and capacity factors, etc. A variation on 
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these assumptions can dramatically change the costs and therefore constitute a risk for the 

planner because a low-cost portfolio may become very high-cost if, for example, the actual 

fuel price was higher than was expected when the portfolio was designed. As described 

before, there are multiple sources of uncertainty that affect electricity markets. However, 

most papers on portfolio optimisation from the planners’ perspective consider risks to 

essentially be the result of the uncertainty of fuel plus CO2 prices that cause different 

operational costs, the uncertainty of future investment costs, and the uncertainty of 

maintenance costs and their correlations [13–16,18,72–76,78,79,88]. 

All of these sources of uncertainty can dramatically change the expected cost of a portfolio 

(see Figure 12), although it is the uncertainty of fossil fuel prices that are crucial to finding 

the optimal technological mix. Indeed, most papers on portfolio optimisation from the 

planners’ perspective have found that the integration of renewable technologies helps 

reduce the risk of supply costs, because renewable prices do not correlate to fossil fuel 

prices [13–16,18,71–74,76,77,79]. Most of their results suggest that policy variants with a 

high promotion of non-conventional renewables reduce portfolio risk significantly. 

Moreover, Escribano Frances et al. [97] focused on the contribution of renewables in terms 

of the security of supply using a portfolio theory approach and finding that renewable 

generation can be used to reduce vulnerabilities. They also found that renewable energy 

imports are strong candidates for improving energy security due to geographical 

diversification.  
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FIGURE 12: EXAMPLES OF FUEL PRICE VARIABILITY, CAPITAL COST VARIABILITY, AND OTHER SOURCES OF VARIABILITY AND THEIR 

IMPACT ON LEVELIZED COSTS 

 

Beyond fuel costs, local and global emission (CO2e) costs are becoming increasingly more 

important and are considered part of generation costs and risks [65]. On the other hand, 

water inflows, demand uncertainty, transmission expansions, future technology 

improvements, and other sources of uncertainty are not explicitly incorporated into the 

portfolio optimisation analysis in most papers. Instead some of their effects are treated by 

introducing different scenarios [14]. 

Uncertainty on technology development and on the productive growth of new 

technologies (and the risk in the achievement of this growth) are also important factors for 

modelling, since technological changes and future capital cost reductions can change the 

optimal generation mix [96,98]. The inclusion of future uncertainty in capital cost can be 

implemented either by using technological learning curves [18,73,98] or by assuming a 
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capital cost distribution of each technology and performing a Monte Carlo simulation 

approach [17,99,100]. Most articles assume either zero technology development and 

productivity growth to simplify the modelling or the lack of robust data to support 

alternatives assumptions. 

 

Measures of uncertainty: standard deviation and higher moments, VaR and CVaR 

Most papers characterize uncertainty by measuring it as the standard deviation of the 

historical data series. For example, Awerbuch and Berger [13], Jansen et al. [14] and 

Roques et al.[8] characterised fuel cost using standard deviation as the measure of risk. In 

mathematical terms, standard deviation is a measure of dispersion, so it accounts for both 

positive and negative values apart from the mean without distinction. In other words, 

standard deviation is a symmetrical measure of dispersion. If the variable is fuel costs, for 

example, standard deviation will measure how cost is dispersed to the left and to the right 

of the mean or expected cost, while the real risk for the agents is only the possibility that 

cost results higher than expected. Furthermore, measuring risk with standard deviation 

assumes an underlying normal distribution.  

In addition to the standard deviation, higher central moments, such as skewness and 

kurtosis can be used to better describe risk. Skewness is the measure of the asymmetry 

about the mean, and kurtosis is the measure of the shape of the tails of the distribution. 

Additional central moments may better describe the real risks planners face, but it may be 

very difficult to integrate them in an optimisation problem. On the other side, in many 

portfolio optimisation applications, the importance of all the distribution moments beyond 

variance is much smaller than the expected value and variance [14,101]. 

Other frequently used measures of risk are Value at Risk (VaR) and Expected Shortfall 

or Conditional Value at Risk (CVaR) [14]. They are both exemplified in Figure 13 along 

with the probability distribution function of an example of a portfolio with a daily expected 

cost of 0.7 MM and a standard deviation of 0.2 MM. VaR is defined as the maximum 
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potential loss of a portfolio with an α confidence level, where αis a positive number 

between 0 and 100% [102]. For example, in a context of the cost of a daily generation 

electricity portfolio, a VaRα=5% of 1 million would mean that there is a probability that the 

portfolio will have a generation cost higher than 1 million (cost=c=1MM$)3. On the other 

hand, a CVaR is the expected cost of the portfolio in the 5% worst cases, so a CVaRα=5%of 

1.2 would mean that the expected cost of all of the portfolios over 1 MM is 1.2 MM. 

Accordingly, VaR and CVaR are usually used to control the probability of large losses for 

the portfolio. 

 

FIGURE 13: VAR AND CVAR AS MEASURES OF RISK FOR COST-BASED PORTFOLIOS 

 

 

3More formally, if 𝐶 is a random variable representing portfolio cost, then VaR is defined mathematically as 

the infimum value of such that the probability that 𝐶 exceeds 𝑐 is lower than 𝛼  and is expressed as 

𝑖𝑛𝑓{𝑐 𝜀 ℜ: 𝑃(𝐶 ≥ 𝑐) ≤ 𝛼}. 
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Most papers prefer to use CVaR instead of VaR as a measure of risk because it has 

superior mathematical properties. CVaR offers coherence4 and computational ease. 

Moreover, VaR does not include losses exceeding the threshold value, while CVaR does, 

which may be very useful in very bad scenarios. More strengths and weaknesses of these 

risk measures in risk management and optimisation can be found in Sarykalin et al. [103]. 

Spatial risk: Transmission system and renewables 

Limitations of the transmission system are becoming more frequent, and the literature has 

not addressed important issues in defining optimal technological mix using portfolio 

optimisation. Capacity transmission restrictions are important for short- and medium-term 

planning (less than 10 years) because space for right of way is increasingly scarcer and 

permits are increasingly stringent, which increases the time needed to develop lines. 

Transmission constraints may prevent the development of generation and can therefore 

change the technological mix. Take, for example, the case of northern Chile in 2015 and 

2016 where the transmission constraints limited the generation of solar PV projects that 

had already been installed and prevented the entrance of additional capacity [104], thereby 

reaching spot prices equal to zero during some hours.  

The relevance of modelling transmission network constraints is depicted in the work of 

Roque et al. [46] and Rombauts et al.[47], in which they developed a wind-planning model 

that considered cross-border transmission constraints. Their mean-variance portfolio model 

minimized the variance of wind production for a given level of production (wind power 

only), considering the geographical diversification of wind farms. By finding optimal 

portfolios with and without cross-border transmission constraints, they found that such 

transmission limitations could reduce the potential gains of the diversification of 

geographically disperse wind farms. To the extent of our knowledge, no portfolio model 

 

4 A coherent risk measure satisfies properties of monotonicity, subadditivity, homogeneity and translational 

invariance.  
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has included proper modelling of transmission networks, but the mentioned articles are 

getting closer by factoring in some key transmission constraints.  

The lack of representation of the transmission system can affect the efficient technological 

mix in that if transmission is ignored, the proposed portfolio of technologies cannot be 

implemented in practice due to transmission congestion, high losses, and insufficient room 

in the infrastructure for new generation. In fact, transmission inadequacy is a barrier for the 

development of new power plants, especially for renewable power plants [105]. 

Furthermore, when transmission is ignored in the modelling the portfolio's efficient 

frontier is unrealistic (see Figure 14), not only because it may impede the entrance of new 

power plants, but also because dispatch constraints are ignored. Finally, when a 

transmission system is not modelled, generation reserve costs are also underestimated. A 

congested transmission line forces the need for reserve capacity on both sides of the 

congestion, whereas when there is room for more transmission, efficient reserves are used. 

In other words, local reserve levels depend, to some extent, on the availability of 

transmission capacity, particularly with the high penetration of renewable energy levels 

[100]. Operating reserves "do not travel much", and their capacity to do so depends upon 

transmission availability.  

Therefore, there are important opportunities to contribute in the field of portfolio 

optimisation to define efficient technological mixes. Including capacity transmission 

constraints may allow the evaluation of a more realistic technological mix. It would also 

allow consideration of the spatial differentiation of renewable profiles and its 

complementarity. Quantifying not only the additional cost, but the additional risk caused 

by active transmission constraints as well would be a novel application in this field. 
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FIGURE14: DIFFERENT EFFICIENT FRONTIERS ACCORDING TO THE REPRESENTATION OF THE TRANSMISSION NETWORK 

 

2.2.3 Technologies in the portfolio: conventional and unconventional mix 

Most publications on portfolio optimisation add some form of renewable energy to the 

conventional generation in order to reduce the risk of exposure to fuel prices. In recent 

decades, however, publications have also included non-conventional renewable energies 

such as small hydro, wind, and solar PV in their portfolio optimisation models [18]. Some 

papers do not include all technologies because they focus on one specific form, as is the 

case with Roques et al. [46], who combined wind production from different wind farms to 

minimize the variability of the energy production by this resource. Less traditional 

generator technologies such as marine generation and their contribution to the portfolio of 

energy mix have been little studied, probably due to the scarcity of public information 

about the resource or because of an absolute lack of the resource in the location under 
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study. One exception is the work of Allan et al. [15], who compared official Scottish 

planning scenarios of the generation mixes for 2020 with mean-variance efficient 

portfolios incorporating marine technologies, which they found to be inefficient, stating 

that wave and tidal technologies can significantly contribute to lowering the risk of 

electricity portfolios.  

2.3 Urgent need for further research on renewable complementarity, 

sustainability, and optimisation dimensionality problem 

Reviewing the literature on portfolios demonstrates an urgent need for research in three 

areas: including renewable profiles and their complementarity as a possible source of 

diversification, identifying the absence of social costs and risks in portfolio models as a 

key problem in energy project development, and finding a solution to the problem of 

dimensionality, which requires excessive computational burden.  

2.3.1 Renewable profiles and complementarities 

Non-conventional renewable resources such as wind and solar are sometimes shown as 

spatial and temporal complementarities in different time resolutions that may represent a 

significant reduction in risk for the agents, although surprisingly, this effect has not been 

taken into account in portfolio analysis. Indeed, complementary generation profiles 

between solar and wind have been studied in different countries (see Table 4), and as 

Widén et al. [106] points out, “There is clear empirical and theoretical evidence that 

dispersion of plants over a geographical area reduces the variability in the total power 

output from these systems.” 
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TABLE 4: STUDIES OF COMPLEMENTARITY BETWEEN SOLAR AND WIND POWER IN DIFFERENT LOCATIONS 

Name Complementarity Renewable 

Resources 

Location Temporal 

resolution 

Spatial 

Resolution 

Data source  

Hoicka and 

Rowlands 

[107] 

Power output Solar-Wind Canada, 

Ontario 

Hourly 

analysis (three 

years of data 

20032005) 

Four particular 

locations chosen 

by the authors 

CWEEDS 

(solar 

irradiance and 

wind speed) 

Widén [108] Modeled power 

output 

Solar-Wind Sweden Hourly to 

annual (eight 

years of data) 

Eight particular 

locations chosen 

according to the 

availability of 

measured data 

SMHI (solar 

irradiance and 

wind power 

output) 

Y. Liu et al. 

[109] 

Modeled power 

output 

Solar-Wind China Hourly (one 

year data) 

22 particular 

locations chosen 

by the authors 

Without 

information 

 

Santos- 

Alamillos et 

al. [110] 

Daily integrated 

solar and wind 

energy 

Solar-Wind Southern 

half of the 

Iberian 

Peninsula 

Daily 

integrated 

9 km Weather 

Research 

Forecasting 

(WRF) Meso-

scale model 

Monforti et 

al. [111] 

 

Modeled power 

output 

Solar-Wind Italy Hourly to 

monthly (one 

year data 2005 

 4 km Satellite models 

Solar: SMSAF 

Wind: MINNI 

 

Introducing geographical dispersion for renewable generation in portfolio analysis may be 

implemented with two levels of depth, first, by recognizing that the resource (e.g.: solar 

irradiation) at two different locations is not the same and leads to diverse capacity factors 

(e.g.: a solar plant in northern Chile produces 50% more energy per installed MW in a year 

than a solar plant in the central region), and second, by recognizing that there are 

complementarities among different locations and technologies, in other words, generation 

profiles using the same or different technologies are not perfectly correlated and therefore 

there are opportunities for diversification. While the former effect is sometimes included, 

the latter effect is always neglected (to the extent of our review) in the portfolio literature.  

Using renewable complementarity in all its time scales helps mitigate planner risk from 

seconds to years. Complementarity at small time scales, i.e. from seconds to hours, helps 

reduce the expensive use of fast generators and reserve requirements, and therefore 

prevents the high costs peaks produced by the use of diesel fuel. Additionally, renewable 

complementarity at small time scales may also help reduce the cycling of fast thermal 
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plants that are becoming a significant part of their operational costs. Complementarity in 

larger time scales, i.e. from days to months, helps efficiently optimize the use of water in 

the case of hydrothermal systems with large reservoirs (as in Brazil, Chile, and Colombia), 

but more importantly, it reduces the uncertainty of generation costs and allows the 

reduction of risk without a significant increase in costs. Complementarity therefore has 

positive effects on the operation of the power system as well as on its costs.  

Arnesano et al. [16] developed an application of portfolio optimisation from the planner’s 

perspective to define an efficient technological mix and recognizing different capacity 

factors by location for solar and wind plants. Surprisingly, this is the only effort to model 

the geographical heterogeneity of renewables that we have found in the literature on 

portfolios. They use pre-specified capacity factors for projects, although their methodology 

does not factor in solar and wind profiles (time series), and therefore they are implicitly 

assuming that different wind farms and solar PV generation profiles are perfectly 

correlated, which neglects the effect of complementarity. To the extent of our knowledge, 

no portfolio model has included proper modelling of renewable complementarity, i.e. using 

geographically differentiated profiles, to build optimal portfolios.  

It should be noted that in the case of wind power, complementarity may exist in two plants 

in close proximity because the wind also depends on relief, and in some places the relief 

may change abruptly. For example, in Chile, the valleys and mountains near the coast are 

very close, and therefore different wind regimes can be found within just a few kilometres. 

Wind regimes in Chile are described in detail in the work of Watts and Jara [112] and more 

recently in the paper by Watts et al. [113].  

2.3.2 Portfolio optimisation and sustainability  

Of the three pillars of sustainable development—environmental, social, and economic—

the environmental, and especially the social aspects, have traditionally been the weakest in 

the literature on energy [114]. Today, however, the social component is becoming 

increasingly important for project development. Contrary to what may be thought, all types 



42 

 

 

 

of projects, including non-conventional renewable projects, are subject to social costs and 

risks. Wind power, for example, has provoked numerous controversies in some places 

where the most important concerns are the visual impact, noise, and bird strike [114–116]. 

Hydropower projects also have faced public opposition (for example, Chile’s large hydro 

project, Hydroaysen, where citizens were highly concerned about the impact of the dam 

[117,118]). Of course, thermal projects face opposition primarily due to the high emission 

of global and local pollutants. Ansolabehere and Konisky [119] analysed attitudes towards 

local construction of coal, natural gas, nuclear and wind power plants, and found an 

“overwhelming opposition” to coal, natural gas, and nuclear generators. Therefore, social 

issues are present in all generation projects, from renewable to conventional technologies, 

and are becoming increasingly important in project development.  

Moreover, Talinli et al. [120] found in their work on the Turkish energy sector that among 

economic, technical, social, and environmental factors that affect decision making 

processes, social factors such as prosperity, community values, and health care have the 

highest importance, because public acceptance is essential in project development. For 

example, the “fracking” controversy in the gas industry in the United States [121], where 

the rapid development of hydraulic fracturing to exploit unconventional sources of oil and 

natural gas have sparked disputes where the main arguments of opponents have focused on 

the adverse impact on public health, the environment, and local communities. Therefore 

different methods have been used to address public opposition to project development, 

ranging from compensation schemes [119,122,123] and information campaigns [119,124] 

to more recent efforts to understand affective, emotional, and cognitive perceptions of 

citizens [125] and include public input, preferences, and early participation into the 

decision-making process and policies [126]. None of the above articles refer to portfolios, 

but they are examples that show that the social dimension is becoming an enormous factor 

in the decision-making process and therefore should be included in a portfolio environment 

to account for its costs and risks.  
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Even though environmental concerns have been included in the planning approaches, 

usually as imposing limits on power systems emissions, there are several other 

environmental impacts that have not been properly taken into account. The portfolio 

appears to be a good tool to explicitly include environmental impacts, costs, and risks and 

to extend the boundaries of the planner’s evaluation beyond CO2 emissions. Moreover, 

portfolios may be a proper bridge to fill the gap between sustainability assessments, which 

rarely account for grid impacts [127], and planning models, which rarely account for 

environmental impacts other than emissions. Performing a comprehensive analysis, which 

includes environmental consequences as well as positive effects in the grid, is very 

important for evaluating technologies in their multiple dimensions.  

For example, hydroelectric power plants play a very important role in adding flexibility to 

power system operations because they provide a very fast response (e.g. quick changes in 

production to compensate for wind fluctuations), allow peak shaving capability, and 

provide storage of water for use when more energy is needed (impoundment plants), 

thereby reducing the need of fossil fuel peaking plants. On the other hand, in most cases 

these plants require flooding large extensions of land, which reduces bio-diversity, forces 

the population away from the area, and has other negative environmental and social 

impacts. A proper sustainability portfolio analysis of hydro plants should include both the 

positive operational value and their negative environmental and social impacts.  

Including social and environmental impacts in a portfolio model requires characterizing a 

set of technologies and their impacts for use as part of the analysis. One way to achieve 

this is to use indicators such as CO2 emissions, land use, energy output, water consumption 

[128,129], biodiversity losses, impacts on flora and fauna, and the impact on local and 

global population, among others. More generally, Onat and Bayar [128] show a 

sustainability indicator for power production systems that includes the political, 

economical, resource, and market environments, as well as the influence of social  and 

environmental dimensions. 
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Portfolio optimisation is a tool that allows the inclusion of the risks of a multiple criteria 

analysis, which is becoming increasingly relevant in the energy-planning problem. 

2.3.3 The dimensionality problem  

Dimensionality is the nightmare of optimisation problems, especially stochastic 

optimisation problems of electricity planning. They have thousands of variables, including 

multiple sources of uncertainties in different time spans and locations that make them 

extremely difficult, if not impossible, to resolve. Before renewable energies became widely 

available, planning models relied on load duration curves in which the demand data was 

arranged in descending order rather than chronologically, but now that renewable energies 

are more important, a chronological representation is necessary to correctly identify the 

interactions between renewable resources and demand patterns. Renewables not only 

change the way of modelling, but also introduce both temporal and spatial uncertainties. 

This is one of the primary reasons why most literature tends to ignore some dimensions of 

the problem (e.g.: some portfolio planning models assume a fixed demand and fixed 

renewable profiles) and address high dimensionality by using different strategies, such as 

reducing design space, decomposing design problems into sub-problems and parallel 

computing, among others [130]. 

This topic represents another research opportunity: developing new techniques that help 

reducing the computational burden, especially in high dimensional problems of large-scale 

power systems by designing new optimisation strategies [130] using scenario-reduction 

techniques [131], hybridizing existing techniques, and using new heuristic methods [3], 

etc. 

2.4 Summary  

In the current scenario of electricity markets, with growing concern about the 

environmental, social, and economic sustainability of the energy supply as well as 

increasing levels of uncertainties, it is essential to appropriately incorporate the risk 

associated with those uncertainties. It is no longer acceptable to simply address the 
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scenarios and expected results for supply costs, profits, or other factors. This is inspiring a 

growing level of research that quantifies risks and incorporates both expected results and 

risks, thereby making the trade-off between risk-cost and risk-benefits more transparent. 

Portfolio optimisation is an important tool that incorporates expected results and risks 

associated with multiple decisions or multiple projects (portfolios), making it possible to 

factor diversification into planning models. This is the risk cancellation effect that comes 

from developing various energy sources, rather than a single energy source that is believed 

to be the least expensive. Examples include developing wind and solar projects that 

improve transmission infrastructure usage and reduce the need for complementary fossil 

fuel plants; developing wind farms with complementary wind resources to reduce 

congestion events, spill-over events, and produce a more steady output; and developing 

fossil fuel plants that complement the renewable plants with more flexibility, etc. 

It is surprising that no article has yet explored the complementarity of wind and solar 

energies in different locations in a portfolio environment. While complementarity studies 

in renewable energy are becoming far more common, the overall effect of complementarity 

in power system performance in risk-cost, risk-benefit, or risk-impact environments are 

nearly absent in the literature. There are several research opportunities in the area of 

portfolio optimisation with renewables and proper power system modelling, although that 

presents a number of modelling challenges. The dimensionality of the problems grows 

exponentially when both power system details and the profiles of renewables are factored 

in properly. 

The potential for portfolio optimisation has been identified in multiple areas outside 

finance, with applications from economics to psychology, and the electricity sector is no 

exception. Portfolio optimisation can be used in the electricity sector from a private 

perspective (investors and managers) as well as from a public perspective (regulators and 

planners). In this work we began by briefly addressing portfolio optimisation applications 

from the perspective of investors and managers, and then we explored the planners’ 
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perspective in detail. We identified several voids in the literature as well as the 

corresponding research opportunities, some of which are summarized below. 

Portfolio cost and risk in a sustainable system. Historically, after massive electrification 

has been achieved, one of the main goals of the planners has been to ensure a high-quality 

supply of electricity while keeping customers’ bills low, aiming to boost economic 

development. Sustainable solutions have an increasingly important role in limiting 

environmental and social impacts and risks to the energy supply. Traditional cost 

minimization models do not take risk factors into account, so in a context in which fuel 

prices are increasingly volatile, the penetration of renewable sources is unstoppable and 

hard to quantify, and future emission control policies are under debate, the minimization of 

expected costs does not make sense without considering some measure of risk in an 

attempt to quantify the probability of reaching that cost or going beyond it. This is why 

many papers are introducing increasingly detailed portfolio analyses that aim to aid 

planners in their decision making with models that are progressively more realistic.  

The role of renewables. Most papers using portfolio analysis rely on mean-variance 

approaches to suggest efficient technological mixes in different locations, and one of their 

main conclusions is the need to increase the role of renewable energies to limit exposure 

to the future uncertainty of fossil fuel prices. Most papers provide quantitative results, 

although they must be understood from qualitative perspective. The excessive 

simplification of their models limits their quantitative validity. This simplification is 

usually based on the large dimensionality associated with multiple renewable resources 

located in different areas of the system, with various profiles and variable correlation 

patterns. 

Modelling dispatch and operational and infrastructure costs using portfolios. There 

are two primary approaches to planning using portfolio analysis in energy markets. While 

most papers minimize the portfolio cost using unrealistic exogenous levelized costs, others 

directly consider variable and fixed costs separately in an attempt to incorporate the effect 
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of infrastructure usage into the cost. The use of levelized costs requires the level of 

utilization or load factors for each technology as one of many inputs, while the use of fixed 

and variable costs requires solving a dispatch, and therefore load factors are determined 

endogenously. Indeed, there is an underlying assumption of simplification when using 

levelized costs to define an efficient portfolio, and this is that the level of utilization is 

independent of the technology mix and renewable energy penetration in the portfolio. 

Furthermore, using only levelized costs does not allow the inclusion of dynamic 

constraints on the operation (e.g.: ramps) or transmission constraints that can eventually 

make it impossible to reach a specified technological mix in practice. On the other hand, 

the use of variable and fixed costs explicitly is more realistic and allows generation and 

installed capacity to be optimized together, although it requires significantly more 

computational effort. Both methodologies have found that renewables reduce exposure to 

risk.  

Spatial representation of a sustainable grid. One important void in all these models is 

the spatial representation for both the transmission system and the geographic 

differentiation of renewable generators. Transmission constraints can occasionally prevent 

reaching an optimal electricity mix due to congestion, so ignoring transmission constraints 

in theoretical models merely results in an unfeasible optimal mix (renewables are often 

located far from consumption centres and therefore require a transmission infrastructure). 

Only two publications on portfolios [46,47] included constraints in transmission capacities, 

but they are only focused on the portfolios of wind power plants to reduce variability. 

Moreover, the massive emergence of renewable sources requires locational differentiation 

in portfolio analysis, because resources may change abruptly between two different places. 

This reinforces the need for spatial representation, because renewable generation may 

present complementarities that can, in fact, reduce output variability and form a well-

behaved generation pattern, as is demonstrated in recent research on the complementarity 

of renewables (see [46,47,108]). A sustainable grid requires a robust transmission network 

to take full advantage of renewable resources spread out across the territory. 
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Environmental and social costs in a portfolio environment. None of the portfolio papers 

reviewed included social and environmental costs and risks, which are key components 

of a sustainable grid, although social and environmental impacts are strong constraints for 

the development of energy projects today. The social component of project development is 

a fundamental factor for project success and needs to be studied further and included in 

portfolio modelling; to the contrary, ignoring it may translate into project delays and 

cancellations. Thus, planners should consider the risks not only in the financial cost 

dimension, but also those associated with environmental and social dimensions. 

Constraining local and global pollutants, water and land use, allowing extended time for 

public participation, concern for indigenous communities their lands and their natural 

resources, and incorporating the fact that all these factors added to massive public 

opposition could take a project out of the optimal portfolio. New generation projects can 

no longer overlook these variables; citizens are increasingly more empowered, and 

technology allows them to coordinate their efforts more efficiently. Environmental issues 

and social conflicts are gaining relevance for all decision-making processes in both public 

and private projects. As pointed out by Seddighi and Ahmadi-Javid [132], today the reality 

of power system management is evolving to a more complex and multi-dimensional 

problem because it not only has to address the alarming use of fossil fuels, but pollution, 

water and land use, climate change, social issues, and other externalities as well. Today 

including environmental and social costs and risks is more a need than an option.  

2.5 Conclusions 

This chapter presents a review of portfolio optimisation as applied to the energy sector, 

highlighting the role of renewable energies, transmission, storage, sustainability, and other 

challenges that characterize today’s energy arena. Such fast-changing environments force 

society to consider several sources of uncertainties that produce high levels of economic 

risk. Portfolio optimisation is a tool to formally address such uncertainties, and we 

conclude with future research directions and broad recommendations.  



49 

 

 

 

• Traditional uncertainties (fuel prices, electricity demand, etc.), added to new 

uncertainties introduced by social and sustainability concerns (environmental 

policies, carbon price systems, social opposition to energy projects, etc.) and massive 

renewable penetration (resources, production, technological advances, project 

locations, etc.), call for the use of new methodologies to address such uncertainties.  

• Portfolio optimisation is one tool to account for simultaneous sources of risks and 

interactions between them, limiting the level of risk that the economy, society, and 

environment must consider.  

• Renewable energies add value not only because they reach competitive costs, but 

also because they reduce the exposure to uncertainty from several different sources, 

ranging from fuel costs to climate change. This conclusion is found in several 

articles, but their excessive simplification in power system modelling using portfolio 

approaches make it difficult to consider their quantitative results. 

• The most significant absence in the portfolio literature is the lack of spatial 

representation, considering the constraints of the transmission system as well as the 

difference and complementarities among renewable profiles at different sites.  

• The lack of representation of environmental and social costs, impacts, and risk in the 

portfolio literature is a great research opportunity because they are increasingly more 

important in the sector. 

• Storage technologies are still not considered to be a solution for preventing or 

mitigating risks in portfolio analysis, although their costs are decreasing quickly and 

they are becoming commercially feasible. Research in this area is slowly being 

integrated into the planning framework. 
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CHAPTER 3: PORTFOLIO APPLICATIONS IN ELECTRICITY MARKETS 

REVIEW: PRIVATE INVESTOR AND MANAGER PERSPECTIVE 

TRENDS 

New problems arising in the modern era such as global warming produced by 

anthropogenic greenhouse gas emissions on one side, and our dependence on electricity on 

the other, point toward the integration of new and clean technologies into the grid [133]. 

The concerns about the environment have not only pushed technological development, but 

also new regulations seeking to limit local and global emissions. New technologies 

dependent on natural resources such as solar and wind farms, new, more stringent local and 

global environmental regulations, and the new market arrangements that are necessary to 

accommodate such changes are added to a global context where uncertainty is the 

common denominator [3,134]. The feasibility of big investments, such as new large power 

plants and new, high-capacity transmission corridors, hinges on the risk perceptions of 

market agents on a series of uncertainties at the operational, commercial, planning, and 

regulatory levels. The electricity system is now flooded with these uncertainties in multiple 

time scales, increasing the difficulty of decision making and pushing for the development 

of new risk management tools, which are fundamental for developing energy projects with 

limited levels of risks [135,136]. 

There are three key agents in the electricity sector who are constantly in need of risk 

management tools: private investors, managers commercializing energy (for large energy 

holdings, industrial consumers, or load serving entities) and planners, which are often 

specialized units of the regulator seeking social welfare over both the long and short run. 

The three interact with each other under the same platform, the energy markets. However, 

they face entirely different problems with respect to risk management.  

The risk management problem for planners, for instance, often consists of long-term 

planning for the generation mix and transmission updates that maximize social welfare 

along with the policy design to achieve that plan. There are multiple sources of uncertainty 
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including fossil fuel prices, renewable resource availability, technology development, 

social opposition, and global and local emissions limits, among many other factors that 

matter in these long-time scales. The multiple sources of uncertainty notwithstanding, the 

vast majority of the literature over the last two decades has focused solely on fossil fuel 

price uncertainty [13–16,18,72–76,78,79,88]. Thus, the literature is paying limited or no 

attention to the other sources of uncertainties.  

While market participants are key players in today’s electricity sector, their risk 

management problems are less developed compared to the planner problem. However, 

after a decade of portfolio application for private agents, a systematic literature review is 

well justified by a number of important articles addressing diversification opportunities 

and efficient risk taking by trading in multiple markets in different time frames, investing 

in multiple technologies, and exploiting distant resources with non-coincident production 

connected to the transmission grid (temporal and geographical complementarity), etc. In 

addition, there are a number of new concepts, tools, and methodologies available in the 

literature that have not been fully integrated into private portfolio analysis such as 

complementarity assessment for multiple renewable sources, structural modeling of the 

power system physics, and the integration of real option analysis and portfolio 

optimization. This literature is reviewed in the following sections, highlighting research 

trends, opportunities, and challenges. Most of the key concepts found in the literature 

reviewed in this work are summarized in Figure 15. The key concepts appearing around 

the figure of the investor are option value, return and risk measures. Around the figure of 

the portfolio manager we found trading mechanisms, dynamic and multi-stage, static 

models, etc. We also found some key concepts around the literature dealing with both 

market agents, referred to here as cross-cutting issues, among these we are highlighting 

statistical price modeling, structural modeling, and renewable modeling. All of these 

concepts are briefly explained and referenced in this review.  
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FIGURE 15: MOST IMPORTANT CONCEPTS REVIEWED IN THIS WORK 

Existing articles are mostly focused on portfolio applications from the planner perspective. 

This is the traditional planning problem, where systems costs are minimized. Here, 

portfolio theory allows including the risks over such social solution, without specific 

attention to market details or market agents.      

Given the current trends in power systems, every day is more relevant to consider the 

private agents´ perspective. The private sector has a growing role in power systems, 

especially in renewable energy development. This chapter is focused on the perspective of 

private agents and its contributions can be summarized as follows: 

• To the best of our knowledge this is the first review on portfolio applications focused 

on private agents (both investors and managers). This perspective is of growing interest 

due to the current trend of implementation of electricity markets across the world and 

increasing the deployment of renewable energy technologies.  
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• The chapter presents an overview of different portfolio tools for the decision-making 

process of private agents in power systems with high penetration of renewable 

energies. 

• In addition to the review of the existing literature, this chapter discusses cross-cutting 

issues emerging from the growing interaction of a new technological paradigm: 

markets and uncertainties sources driven by renewable energy development and 

technology evolution.  

This Chapter is organized as follows: Section 3.1 provides an overview of the applications, 

problems, and challenges of portfolio optimization for private investors. Specifically, 

Section 3.1.1 presents the different measures of return/cost and risk typically covered in 

the literature, Section 3.1.2 highlights the lack of appropriate modeling of uncertainty 

factors that are usually ignored even when they play an important role for investors, and 

finally, Section 3.1.3 addresses the importance of considering the value of waiting in the 

investment decision problem and how to address it in a portfolio analysis. Section 3.2 

discusses the main applications of portfolio optimization from the manager’s perspective 

and presents two families of approaches: static and dynamic models. Section 3.2.1 presents 

static models that assume that all decisions must be made “here and now,” and Section 

3.2.2 presents dynamic models that are much more computationally demanding but they 

are able to separate “here and now” decisions and “wait and see” decisions, and finally, 

Section 3.2.3 presents alternative markets, such as capacity markets, demand response 

markets and others, to diversify services and mitigate risks. Section 3.3 presents cross-

cutting issues, voids and challenges from both perspectives (investors and managers), 

Section 3.3.1 provides an overview of the most used modeling approaches to simulate 

price evolution, and Section 3.3.2 focuses on renewable profile complementarities and how 

they have been ignored by portfolio literature, even when there is literature available that 

provides estimations and measurements of high complementarity between geographically 

dispersed renewable resources.  
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3.1 Portfolio optimization as tool for investors to allocate capital in different 

generation projects  

The problem that investors face is quite different from the problem planners face. Investors 

aim to define an efficient technological-locational mix by maximizing their return on the 

investment. Planners, on the other hand, aim to minimize costs. Investors may focus solely 

on some places and some technologies according to their preferences and possibilities, 

while planners may focus on the whole arrangement of places and technologies. 

Additionally, investors have the flexibility of waiting to invest in a project. However, when 

the investment is done, they have a high degree of inflexibility due to the high sunk costs 

involved. Planners, on the other hand, have to plan to meet the expected demand, but they 

also have the possibility of changing the long-term plans. Finally, investors are usually 

witnesses of policy changes, transmission expansions, new entrants, and environmental 

standards, while planners have a key decision-making role in these areas. Thus, the 

investor’s portfolio problem involves a very large amount of capital and high levels of 

uncertainty in the returns on the investment, so diversification among technologies, 

resources, and places is a common strategy for hedging risk. Portfolio optimization is a 

tool used to deal with these risks through diversification. 

The generation sector has historically faced high and volatile electricity spot prices caused 

by the variability of demand and the impact of physical constraints such as generation and 

transmission limitations. Such volatility has increased in recent years due to the integration 

of volatile renewable resources including wind and solar. The fast progress and aggressive 

entry to the market of these technologies (see the examples of penetrations of these 

technologies in Chile in Figure 16) has produced a decrease in the levels of spot prices as 

well as an increase in their variance [137–139]. In addition, the intermittency of 

renewables requires that high transmission capacities be available at all times to move its 

energy in the system. However, the time required to develop new transmission is much 

longer than the time to develop renewable projects, so it is not infrequent to see congestion 

on transmission lines near a set of renewable projects. This also dramatically impacts spot 
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prices, either by marginal losses or simply by a decoupling of markets caused by 

congestion. For example, this is exactly the situation produced in the north of Chile where 

solar PV plants and coal-fired plants are subjected to long hours of zero marginal costs due 

to transmission congestion [140]. Unlike planners, who usually plan in the long term and 

therefore they assume that transmission systems will adapt and therefore congestion can be 

avoided in the portfolio analysis, investors do not have that possibility. If the analysis is 

done in the long term, investors have to include the transmission system and its future 

possible congestions in the financial modeling of their portfolio of projects, since 

electricity prices and energy production may change dramatically by a change in the 

transmission structure. Transmission equalizes spot prices over the space through the 

marginal loss and marginal congestion component of prices and is a key locational signal 

for generation siting.  

 

FIGURE 16: ACCUMULATED INSTALLED CAPACITY OF SOLAR PV AND WIND POWER PLANTS IN CHILE 

 

Investors' capital allocation in the electricity sector is a particular case of the project 

portfolio selection problem (PPSP) that studies how to distribute capital among different 
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projects such that the expected return is maximized for a given level of risk [141]. Despite 

that there are different investment situations5, all investors seek the same goal: to maximize 

their return and limit their risks, so in all of these situations a measure of profitability has 

to be estimated using the projects’ projected cash flows (see Figure 17). This means that 

for every year of a generation project’s service life, the estimation of its income and its 

costs is required. At the same time, income and costs essentially depend on uncertain 

factors like electricity spot prices, project expected generation, fuel prices, and capital 

costs, among others. Cash flow calculations are then random variables that depend on the 

realization of different sources of uncertainty as illustrated in Figure 17. Return and risk 

measures arising from these cash flows feed into portfolio optimization models to guide 

investors in the design of efficient return-risk portfolios.  

 

FIGURE 17: PORTFOLIO PROBLEM OF THE INVESTOR: DEFINING AN EFFICIENT INVESTMENT PLAN TO MAXIMIZE RETURN 

 

 

5 For example: individual investors who have the opportunity to invest in any generation technology and their 

decision variables are continuous (i.e., they can invest part of their budget, from 0% to 100%, in one project 

or in a group of projects) or big energy companies that normally focus on investing in projects in areas of 

their technological expertise and their decision variables are more discrete—to invest or not to invest in a 

certain project, etc. 
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According to the investors’ level of risk aversion and their current set of generation 

facilities, different portfolios of projects can be selected by buying or developing new 

projects, or alternatively, the investment could be delayed if the uncertainty is too great. 

Note that the option of deferral is an important difference compared with the problem of 

planners, who often have to plan to satisfy the expected demand without the ability to defer 

generation over time. This additional flexibility afforded to investors and the 

corresponding modeling approaches are explored in Section 3.1.3 

3.1.1 Return and risk measures of investments in energy projects 

A measure of profitability must be estimated in order to account for the risk of different 

projects. The main tool to estimate a project's return is cash flow analysis. Different 

estimations of profitability can be obtained from a discount cash flow analysis such as the 

Internal Rate of Return (IRR), the Net Present Value (NPV), or the Present Value Index, 

among others [142]. In fact, investors will choose the projects with highest NPV. This is 

the Marshallian approach [60,143] where utility is maximized subject to budget 

constraints. As an example, Roques et al. [8] used NPV in their portfolio model to design 

efficient investment combinations among baseload technologies (coal, nuclear, and CCGT 

plants). They studied how the impact of fuel, electricity, and CO2 price uncertainties affect 

optimal portfolios. On the other hand, Muñoz et al. [9] used the internal rate of return 

(IRR) as a measure of profitability when analyzing renewable project portfolios for 

investment in the Spanish market. Both publications used the standard deviation of their 

return variables as a measure of risk. Table 5 presents the return measures and uncertainty 

factors modeled in some related publications by optimizing a portfolio from the investor 

perspective.  
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TABLE 5: RETURN MEASURE AND UNCERTAINTY FACTORS MODELED IN DIFFERENT PAPERS 

References Return measure Uncertainty factor 

Roques et al. [8] 

 

NPV Fuel, electricity, and CO2 prices are represented by normally 

distributed random variables whose cross-correlation and standard 

deviation are derived from historical time series.  

 

Madlener and 

Wenk [56] 

NPV Time series of electricity spot price of both base and peak load are 

used to best fit a distribution (log-normal distribution) 

Capacity factor: based on historical time series. Hydro capacity factor 

follows a log-normal.  

Annual variability for solar PV and wind power is approximated with 

the data from hydro technologies.  

Fuel costs: time series. Natural gas follows a Gumbel distribution, 

while a Gamma distribution is used for uranium. 

 

 Muñoz et al. [9] IRR Electricity price for the wind, mini-hydro, and solar thermo-electrical 

modeled with Pearson distribution adjusted from historical values. 

Electricity price for solar PV is regulated, and the value is pre-

established. 

Other values (investment ratio, service operation life, capacity factor, 

etc.) of the cash flow are assumed normal with standard deviation 

depending on different scenarios proposed by the author.  

 

Glensk and 

Madlener [144] 

NPV Historical series of electricity, fuel, and CO2 prices used to fit 

different distributions. Electricity prices were fitted using a beta 

distribution.  

 

Rohlfs and 

Madlener [59] 

NPV Future electricity price and future coal, gas, and CO2 prices modeled 

assuming Geometric Brownian Motions. Monte Carlo method used to 

simulated paths of the price development. 

 

Fleten et al. [60] NPV Future electricity price modeled assuming Geometric Brownian 

Motions. 

 

 

Although IRR and NPV are both derived from discounted cash flows, they differ from one 

another. Indeed, when investments are ranked using these two methods, the result is not 

necessarily the same [145,146].Tang and Tang [145] go deeply into the difference between 
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these two measures. They argue that IRR gives the private investor’s point of view, while 

NPV gives the society’s point of view. The authors explain this view because IRR varies 

with a change of financial arrangements (e.g., a change of taxation rate or equity-loan 

ratio), while NPV does not, so they proposed IRR as a financial indicator and NPV as an 

economic indicator.  

Organizations may have additional requirements beyond profitability for investing in 

projects. In the case of power generation investment, for example, renewable generators 

have benefits that conventional technologies do not, including fewer environmental 

externalities, flexibility in production, modularity, and reversibility, among others, which 

rarely are included in the investment decision-making process [147,148]. However, there is 

research on investment decision-making that considers measures beyond profitability that 

depend on the strategy of the organization. Davoudpour et al. [149] used an approach 

based on Analytic Hierarchy Process (AHP) to select renewable projects for an R&D 

organization by using expert opinion to find a hierarchy model of a renewable technology 

portfolio considering market, competitiveness, technical, capability, and learning. 

A project may add value in addition to its own return if it helps decrease risks. A new 

project could be used to enter the market or consolidate a company’s position, or it could 

be develop or acquire to learn about a specific technology or process [7]. Most literature on 

optimization portfolio does not take these factors into account, although they are already an 

important part of the literature on project valuation. Therefore, this is a line of research that 

needs to be exploited in order to better align the literature on portfolio optimization with 

reality and thus make it useful to investors. 

3.1.2 Others risk sources in addition to electricity prices: technical, financial, 

systemic 

Uncertainty is present in different dimensions and stages of a project development, from 

technical to systemic risks, including regulatory risks which are commonly accepted as one 
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important risk in the sector [150], causing cost variations on one side and revenues 

variations on the other, as presented in Figure 18. 

 

FIGURE 18: RISKS AFFECTING A FIRM’S CASH FLOW CALCULATION (ADAPTED FROM [20]) 

 

Most technical, financial, and systemic risks are difficult to explicitly include in 

optimization models, so most works either explicitly or implicitly assume that these factors 

remain constants and therefore do not affect income or costs or use scenario approaches to 

quantify them. On the other hand, uncertainty of prices is most treatable in optimization 

models, both on the income (electricity price) and the cost (fuel prices and CO2 prices) 

sides. There are numerous methodologies for electricity spot price forecasting, as reviewed 

by Weron [151]. However, despite that, most portfolio papers only focus on statistical 

methods based on past information. This backward-looking strategy has limited value on a 

system that is evolving to a new carbon-free technological paradigm. 

3.1.3 A dynamic problem and the value of waiting/project deferral 

One important feature of project development in a competitive energy industry is that 

investors can “wait to invest,” for example, to acquire more information about a regulatory 
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reform. Considering the option of waiting before committing resources is very important 

because it recognizes that the firm has an opportunity cost and the possibility of improving 

its outcome. This is especially important in the renewable energy field, taking into account 

the possibility of waiting is very important because renewable projects show a high 

technological progress rate and require short construction times [133].  

Static NPV cannot capture the value of waiting, so Real Option theory is the tool to include 

this flexibility in the evaluation [58]. Real Option Analysis (ROA) has been applied to the 

electricity sector for decades to account for the irreversibility of investments. A good 

comprehensive review of ROA is presented by Dixit and Pindyck [143]. In the electricity 

generation sector, there are several examples of applications of ROA. Indeed, Fernandes et 

al. [133] present a complete review of applications of ROA applied in the electricity sector. 

They found that ROA applications applied to the renewable sector are still limited. 

Moreover, the technique is mostly applied to wind and hydropower to the detriment of 

other newer renewable technologies like photovoltaic. However, recent publications are 

filling this gap. For example, Zhang et al.[152] present a good review of studies on 

renewable energy investment using real options method. The authors also propose a real 

option model for evaluating renewable energy investments by considering uncertain factor 

such as: CO2 prices, non-renewable energy costs, investment costs and market prices of 

electricity. They use their model to evaluate the investment decision of a solar PV power 

plant in China and its optimal timing. 

 

There are countless works using ROA to analyze investments in conventional technologies 

and also to evaluate the implementation of policies. For example, Ming Yang et al. [153] 

use a real option approach for analyzing the effects of government climate change policy in 

power investments. The authors investigated the flexibility that companies have to 

optimally time their investments given regulatory uncertainty. Climate change policy 

uncertainty is represented by means of an uncertain carbon price. Similarly, Sekar [154] 
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uses a real options valuation methodology to evaluate investments in three coal-fired 

power generation technologies (pulverized coal (PC), integrated coal gasification 

combined cycle (IGCC), and IGCC with pre-investments that make future retrofit for CO2 

capture less expensive in an environment of uncertain CO2 prices. Boomsma et al. [155] 

analyze investment timing and capacity choices for renewable energy projects under 

different support schemes, namely, feed-in tariffs and renewable energy certificates 

trading. The authors found, through an applied case of study in the Nordic electricity 

market that feed-in tariffs encourage earning investment in wind power, while certificates 

trading creates incentives for larger projects. Fleten et al. [60] use ROA to show that 

investment in a decentralized wind power generator facing uncertainty in electricity prices 

should be made at a price considerably above the NPV break-even price (electricity price 

that makes NPV negative) because of price uncertainty.  

While optimization methodologies using ROA are usually performed from a power 

producer perspective to evaluate a single power plant, a large investor would typically 

prefer to invest in a portfolio of technologies [156]. There are only a few publications that 

combine ROA and portfolio optimization analysis to find efficient combinations of 

investments along with its timing. The first research to explicitly combine these 

methodologies from the perspective of an investor in the electricity sector is, to our 

knowledge, the research by Fortin et al. [156]. They use ROA to find the optimal timing of 

investing in carbon capture and storage modules for coal- and biomass-fired power plants 

and optimal installation time for wind power plants. Using different electricity price 

evolution paths, the authors derive return distribution for the investment of these 

technologies. These return distributions (which already include the value of flexibility 

given by project deferral) are then employed as the input of a CVaR portfolio optimization 

as presented in Figure 19. 
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FIGURE 19: GENERAL METHODOLOGY USED IN [156]: USE OF REAL OPTION ANALYSIS AND PORTFOLIO OPTIMIZATION 

 

Other papers expand the work of Fortin et al. [156] by taking into account diversification 

over time by considering the option of having a different portfolio at a future point. Indeed, 

Szolgayová et al. [157] find that the possibility of adapting the portfolio actually have a 

relevant effect on today’s portfolio investment decisions. On the other hand, the paper by 

Fuss et al. [158] further contributes by applying the methodology to different socio-

economic scenarios and different  targets in greenhouse gasses emissions. Their extension 

takes into account that investors are completely uncertain about future carbon prices, and 

therefore it is impossible to assign probabilities to different targets. Thus, investors would 

seek robust portfolios that perform well even in the worst scenarios. They find that 

uncertainty associated with CO2 prices has a profound effect on the optimal composition of 

technologies portfolios. Moreover, the authors find that uncertainty about stabilization is 
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more important in the energy mix composition than the socio-economic scenario, 

especially for risk-averse investors. 

Exploring the combination of these tools—real option analysis and portfolio 

optimization—in the investment decision-making process is a great research opportunity. 

All the publications mentioned above ignore sources of uncertainty such as fuel costs and 

their possible complementarities, e.g. biomass cost declining as carbon price increases 

[158] or renewable resource uncertainty (wind speed, solar radiation, hydrologies, etc.), 

among other sources of uncertainty that investors face in the real investment decision 

process. 

3.2 Portfolio optimization as a management tool for electricity sellers and buyers 

Energy managers, both managers of electricity production firms and of big energy 

consumers, seek to limit their price risks by using instruments to hedge against spot price 

fluctuations. As investors, managers seek to maximize the firm’s expected return while 

limiting its risks. However, instead of allocating capital among different investment 

opportunities, managers allocate electricity among different instruments (day-ahead 

markets, real-time markets, bilateral contracts, forward, etc.) as is shown in Figure 20. 

Financial instruments have different delivery periods and maturity dates. While the spot 

market is nearly instantaneous, bilateral contracts can last for years. These facts introduce 

difficulties to the optimization because decisions for some trading instruments can be 

deferred in time according to new information on prices (e.g. how much energy to buy/sell 

on the spot market), while other decisions must be made in a specific period (e.g. how 

much energy buy/sell through a long-term forward contract).  
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FIGURE 20: MANAGER’S PORTFOLIO PROBLEM: DEFINING EFFICIENT TRADING CHOICES TO MAXIMIZE PROFIT  

 

A big energy consumer can take advantage of portfolio optimization not only by choosing 

among the instruments, but also by choosing among generation technologies. For a big 

energy consumer, there is a difference between signing a bilateral contract with a 

conventional generation plant or signing it with a solar PV plant, a wind power plant, or a 

combination of any of these alternatives. A consumer’s preference for one supplier over 

another depends upon factors such as the demand profile, carbon footprint, and willingness 

to pay, etc. For example, the subway in Santiago de Chile recently signed two bilateral 

contracts, one with a solar PV plant and one with a wind power plant, and the two 

suppliers will cover approximately 60% of its energy needs. Because the subway system 

has greater energy needs during the day, the solar PV plant option is a good opportunity, 

although its daily load curve has two peaks, one in the morning and one in the late evening, 

just when the electricity produced by a solar PV plant is low, so the subway’s energy 

managers chose a complementary wind power plant to avoid having to buy energy on the 

spot market. Portfolio optimization is a formal and well-tested tool for tackling this kind of 

problem, both for determining the type of instruments to use and for dealing with different 

technologies and locations. 
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Due to non-storability, inelastic demand, and a steep supply curve, electricity spot prices 

suffer from high variability. That is why most agents usually use contracts and other 

financial/physical instruments to hedge against these fluctuations. These instruments play a 

very important role in some electricity markets for future price discovery and price 

certainty. In fact, there are some electricity markets that rely entirely on bilateral contracts, 

such as the Chilean electricity markets. The most basic instruments that offer future price 

discovery and price certainty to electricity sellers and purchasers are forwards, futures, and 

swaps. All of these instruments may have different delivery periods and maturity dates. In 

fact, the maturity periods of forwards contracts range from hours to years [61].  

The task of energy managers is to choose from among these instruments to maximize 

return and at the same time limit its risks. A correct strategy allows firms to avoid losses 

due to price fluctuations, reduce the volatility of earning, and meet regulatory requirements 

[159]. Portfolio optimization has been used in the literature as a tool to efficiently choose 

from among these instruments as well as from among real-time markets (real-time and 

day-ahead markets). It should be noted that managers have two types of decisions, “here 

and now” or “wait and see.” While “here and now” decisions are those that the manager 

has to make in the present, such as about how much energy to sell/buy using a long-term 

contract, “wait and see” decisions can be delayed to expect future developments, such as 

how much energy should be bought or sold using the real-time market, which is a decision 

that can be postponed until the need becomes urgent.  

3.2.1 Static approaches: traditional portfolio optimization applied to the manager 

problem 

A traditional static portfolio optimization approach is formulated by Liu and Wu [63], who 

consider the problem of energy allocation for a power producer allowing three types of 

trading approaches: risk-free (local) contracts, riskier contracts (non-local), and the spot 

market. In this formulation, the planning period may be one day, one week, one year, or 

several years, etc. Non-local bilateral contracts are subject to risk because generation 
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companies may face congestion transmission charges that depend on the difference 

between nodal prices. The uncertainty is then only present in electricity locational spot 

prices because fuel prices are assumed to be fixed in their work. Liu and Wu [63] present a 

static approach in which spot prices are characterized only by mean, variance, and spatial 

correlations, and they assume that nodal prices follow a multivariate normal distribution.  

Treating the spot market as an individual asset has the disadvantage of some loss of 

information, because hourly spot prices reflect seasonal behavior, which is usually given 

by the behavior of the demand. When spot prices are treated as an asset and represented by 

a price distribution, the known seasonality is wrongly translated as an additional 

variability. By contrast, treating each period as a different asset gives more degrees of 

freedom to include this seasonality as new information (see Figure 21). For example, 

Gokgoz and Atmaca [64] use mean-variance portfolio optimization by taking spot market 

hourly prices as separate assets in addition to bilateral contracts in the Turkish electricity 

market. Turkey has no local, zonal, or nodal pricing system, so spot pricing is used as a 

signal for the entire system, and therefore there are no congestion charges. The assumption 

of 24 selling alternatives is new in this kind of study and allows sellers to choose according 

to their risk-return preferences to sell different hours, either on the spot market or via 

bilateral contracts. 



68 

 

 

 

 

FIGURE 21: EXAMPLE OF NORMAL DISTRIBUTIONS CAPTURING DAILY AND HOURLY SPOT PRICES. SPOT PRICES OF LONG PERIODS 

LOSE SEASONAL INFORMATION THAT IS TRANSLATED INTO A GREATER VARIANCE  

 

Unlike dynamic models, which require large computational capacities because 

uncertainties (prices, costs, resources, etc.,) are modeled in time, static models are simpler 

and therefore other sources, in addition to electricity prices, can be considered. For 

example, fossil fuel prices (oil, gas, and coal) present high variability, are highly correlated 

[160], and introduce uncertainty into generation costs. Mathuria et al. [65] consider spot 

market and bilateral contracts as trading options for a generation company in Sweden that 

faces risks from electricity prices, fuel prices, and from emission prices. The authors find a 

strong correlation between electricity spot prices and emission prices (see Figure 22). This 

enables risks to be hedged by changing the allocation on the spot market, since a price 

change in the emission market (cost side) is compensated by a corresponding price change 

on the spot market (income side).  

Figure 22 shows estimated correlations by Mathuria et al. [65] between electricity prices, 

coal prices, gas prices, and the European Union Allowance (EUA), which are climate 

credits that represent the right to emit one ton of CO2 into the atmosphere. 
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FIGURE 22: CORRELATIONS OF ELECTRICITY SPOT PRICES WITH COAL, EUA, AND GAS PRICES AND CORRELATIONS OF COAL AND GAS 

PRICES WITH EUA PRICES. SOURCE: MATHURIA ET AL. [65] 

 

On the electricity purchaser side, Huisman et al. [62] propose the use of a static mean-

variance framework to optimally allocate positions in the day-ahead energy market as well 

as peak and off-peak forward contracts. Peak-forward contracts involve the delivery of 

power capacity during certain hours of high demand; off-peak contracts involve the 

delivery of a base capacity at all hours. Uncertainty is introduced through prices of the day-

ahead energy market and consumption volumes. Day-ahead prices and hourly demand are 

assumed to be entirely characterized by their historical mean and variance. The problem is 

then to minimize the total electricity cost subject to a maximum level of risk, where the 

total cost is given by the sum of the cost of off-peak forward contracts, peak forward 

contracts and day-ahead energy market purchases. The authors assume a price-taker 

purchaser, i.e., the trading of electricity does not affect prices, and they show that the 

optimal allocation to peak contracts relative to off-peak contracts is the same for all 

purchasers. The differences in the exact allocation, including positions in the day-ahead 

market, are determined by their risk attitude. 
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Several studies have argued that electricity prices and fossil fuel prices show a positive 

level of skewness and leptokurtosis [161–163], so it does not seem enough to characterize 

them solely by mean and variance. Skewness is the extent to which a statistical distribution 

is not symmetrical, and leptokurtosis occurs when the distribution is more peaked than 

normal. See, for example, the asymmetry and fat tails of the histogram of monthly average 

spot prices from January 2008 to January 2016 for the Alto Jahuel 220 kV, a key 

transmission node in central Chile, presented in Figure 23. 

 

FIGURE 23: HISTOGRAM OF THE SPOT PRICES IN THE ALTO JAHUEL 220 KV NODE IN CHILE FROM 2008 TO 2015 

 

Pindoriya et al. [164] include skewness in their portfolio optimization analysis. They 

propose a mean-variance-skewness (MVS) model to set the energy allocation of generation 

companies among the spot energy market and bilateral contracts with clients located in 

different zones. A positive skewness means that the density function has a right-handed tail 

and therefore maximizing skewness in a context in which the distribution reflects 

profitability, implies the minimization of possibilities of low profits. Accordingly, an MVS 

model maximizes the return and the skewness (first and third moments of the distribution) 
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and minimizes the variance (second moment), transforming the problem into a multi-

objective optimization problem.  

Suksonghong et al. [67] proposed a similar problem, but also added maximizing 

diversification as another objective to the optimization. This was implemented by 

minimizing the difference between the highest and lowest allocations. According to the 

authors, including the fourth objective of diversification effectively caused a more uniform 

allocation among all the instruments. The inclusion of skewness and other conflicting 

objectives makes the optimization problem very difficult to solve, so different optimization 

tools are used for these types of problems. A multi-objective optimization problem can be 

tackled by different methods [165], such as scalarization techniques, e-constraints 

methods, goal programming, among others [166].  

3.2.2 Dynamic and multi-stage approaches 

New information might require the consideration of the allocation problem at multiple 

stages, requiring a transition from static to dynamic analysis. Only a few dynamic portfolio 

optimization approaches have been developed. Indeed, the application of multistage 

optimization models is relatively new in the literature on portfolio optimization in 

electricity markets for electricity sellers and purchasers. Multistage portfolios enable the 

modeling to optimize the rebalancing of the portfolio at multiple points in the future based 

on the information available at that time. The most common problem formulation in multi-

stage stochastic optimization formulations is the equivalent deterministic form, which can 

be very large and require excessive computational capacities [167]. Thus, the most 

common multistage optimization application focuses on just two stages. 

In stochastic problems with two stages, the first stage is when the decision maker takes 

action before random variables are revealed (“here-and now-decisions”), and the second 

stage decisions are made after the random effect occurs (“wait-and-see decisions”). García-

González et al. [168] present an example of a two-stage stochastic optimization problem in 

an electricity market in which a generation company that owns a wind farm and pumped-
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storage facility optimizes its bidding policy in the first stage and the decision on the 

operation of the pumped-storage for each possible realization of the random variables in 

the second stage. In that case, random variables are wind production and market prices as 

presented in Figure 24. 

 

FIGURE 24: UNCERTAINTY REPRESENTATION IN A TWO-STAGE MODEL. ADAPTED FROM [168] 

 

Lorca and Prina [68] tackle the problem for a power producer holding thermal generation 

units and considering locational electricity prices. They use a stochastic optimization 

model to optimize the trading of electricity from a power producer in two locations 

through forward contracts, a contract for differences, and the spot market. Their model 

obtains a set of contractual decisions at the beginning of the time horizon ("here-and-now 

decisions”) and a set of own-generation and spot market trading decisions in future time 

("wait-and-see decisions”). They use a time series model to capture temporal and spatial 
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correlations of locational electricity prices. The authors use CVaR as risk measurement, 

including it into the objective function multiplied by a risk aversion parameter. The main 

drawback to this formulation is the dimensionality problem. Modeling more than two 

buses makes the problem too large to solve in reasonable time. Accordingly, the 

methodology is very useful to theoretically assess how changes in price parameters cause 

changes in contractual and trading decisions, but it cannot be used in real-case scenarios in 

which the producer faces multiple locational electricity prices. Indeed, Lorca and Prina 

[68] found that changing the correlation parameter 𝜌𝑖𝑗 for locational electricity prices 

significantly affected the relationship between expected profit and risk. For fixed values of 

expected profit, as the correlation parameter between locational electricity prices decrease, 

the risk is also decreased.  

On the electricity purchaser side, Rocha and Kuhn [69] present a multistage mean-variance 

model for the management of electricity derivatives from the point of view of an electricity 

purchaser who is a price-taker and the need to satisfy its clients’ demand. Electricity 

purchasers have three alternatives for acquiring electricity in time—spot market, forwards 

contracts, and call options—and stochasticity appears in the form of uncertain 

electricity demand, spot prices, and derivative prices, which are revealed sequentially 

over time. They present a stochastic optimization problem with aggregation of decision 

stages and Linear Decision Rules (LDR) approximation, avoiding the use of a large 

decision trees and limiting the computational burden. Spot prices are modeled by an 

Ornstein-Uhlenbeck process with seasonality, which is a mean-reversion stochastic 

process traditionally used to simulate electricity prices [169,170]. Electricity demand is 

also modeled as a stochastic mean-reversion process with seasonality. Rocha and Kuhn 

[69] found that incorporating adaptivity in portfolio optimization models is beneficial, 

especially in the presence of high spot-price volatility. The authors show that adapting to 

different market conditions provides a flexibility that makes it possible to obtain to obtain 

a better mean-risk profile, particularly when the decision maker is risk averse.  



74 

 

 

 

3.2.3 Diversification beyond energy markets: ancillary services, capacity market, 

and demand response 

In addition to energy markets, in some countries power producers have other markets that 

could allow them to diversify risks. For example, capacity markets, ancillary services 

markets, and regulation services markets are options in which some generators can 

participate to mitigate risks of electricity markets. Similarly, load-serving entities have 

other resources beyond bilateral contracts to manage risks, such as demand response 

programs. Few publications have included these markets as part of portfolio optimization 

models, although one exception is a paper by Yu [171], which presents a model that can be 

used for multiple commodity electricity products that may include electricity, spinning 

reserve, or regulation, etc. The objective function is the minimization of risk, defined as the 

portfolio cost variance subject to the exceedance of the desired net profit. The author 

presents a case study involving two power pools, NYPP and PJM, each with two available 

markets, day-ahead energy and spinning reserve. The model includes constraints such as 

transaction costs and wheeling contracting, leading to a mixed integer formulation.  

On the other side, an electricity buyer such as a retailer may be able to hedge risk using 

demand response programs. High demand usually implies high electricity prices (because 

of electricity’s steep supply function), and therefore there is a positive correlation between 

electricity spot price and customer demand [102]. Demand response (DR) programs help 

mitigate this correlation, lending an additional extent of flexibility to decrease exposure to 

risk. Deng and Xu [102] show that including DR programs, specifically in the form of 

interruptible contracts, significantly improve the profit-risk profile of portfolios for an 

electricity buyer considering the following instruments: spot market buyer, forwards 

contracts and DR programs. The authors used both variance and VaR as risk measures and 

found that the role played by DR program is dependent upon the choice of risk measure. 

Given a fixed expected profit, a 95%-VAR minimization problem holds all available 

interruptible programs, suggesting that DR programs may be especially useful in the worst-

case scenarios.  
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3.3 Cross-cutting issues in portfolio optimization for investors and managers: 

price process modeling and renewable complementarity 

There are cross-cutting issues to be found in the literature on portfolio optimization from 

the investor and the manager perspectives. First, most literature ignores the fundamentals 

of power system structures in price modeling, while in turn there is an excessive support 

on technical approaches that attempt to model stochastic behavior by using statistical 

analysis and historical data. Second, renewable complementarity is ignored, although there 

is strong evidence that the geographic diversification of solar and wind power plants in 

different locations may present complementarity generation profiles [107–111], and this 

complementarity has not yet been included in portfolio models. 

3.3.1 Modeling price process in portfolio optimization models 

Modeling electricity prices is critical for evaluating risks for both investors and managers. 

Electricity prices directly affect incomes, so it is crucial to model them properly to account 

for the corresponding risk. There are mainly two families of approaches to model 

electricity price processes [61,172], structural or fundamental approaches that rely on 

simulation of the operation of the electricity system, and technical approaches which rely 

on historical data and statistical analysis to model the future behavior of prices. 

Fundamental approaches are more realistic since they allow for simulating new scenarios 

that cannot be considered with technical approaches, although they do require extensive 

computational effort. Most publications on portfolio optimization rely on technical 

approaches. Moreover, most publications on portfolio analysis simply use price processes 

such as those presented in Table 6, without using more complex price forecasting models 

like those reviewed by Weron [151]. 
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TABLE 6: FREQUENTLY USED PRICE PROCESSES IN PORTFOLIO OPTIMIZATION LITERATURE 

Price 

Processes 

Description References 

Distribution 

fitting 

Fit a probability distribution to a series of historical data of prices. Examples of the 

distributions used are Normal distribution, Lognormal, Beta, and Pearson, among 

others. 

[8,9,56,144] 

Time series 

models 

Time series are widely used for multiple applications, and price modeling is no 

exception. Markets with locational prices require a multivariate time series model. 

Examples of time series models are ARMA models, ARIMA model, GARCH models, 

etc. 

[68,169,173] 

Continuous-

time 

stochastic 

process 

Geometric Brownian Motion (GBM) and Ornstein-Uhlenbeck processes are examples 

of continuous-time stochastic processes. These models are widely used in 

mathematical finance to model price evolution. While GBM has a constant drift over 

time, the Ornstein-Uhlenbeck process tends to drift toward a long-term mean (mean-

reverting).  

 

Both processes satisfy a stochastic differential equation.  

[59,69,174] 

 

Among the most common techniques used by publications on portfolio optimization to 

model long-run electricity and fuel prices are the Geometric Brownian Motion (GBM) 

process [59,60] and distribution fitting. GBM processes are governed by a stochastic 

differential equation that describes a process in which the relative change of price is a 

combination of deterministic proportional growth plus a normally distributed 

random change.6 The choice for GMB is often driven by the simplicity of its closed-form 

solution. However, real price statistics and patterns often don’t match such process, 

presenting cycles driven by demand patterns and price spikes driven by supply and demand 

 

6Geometric Brownian Motion (GBM) process stochastic differential equation: 
𝑑𝑃(𝑡)

𝑃(𝑡)
= 𝜇 ∙ 𝑑𝑡 +  𝜎 ∙ 𝑑𝑊𝑡 , 

where 𝑊𝑡  is a Wiener process and its solution (for any value of t) is a log-normally distributed random 

variable.  
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shocks. Examples using GBM to generate different simulations of annual electricity prices 

are presented in Figure 25.7 

 

FIGURE 25: EXAMPLES OF SIMULATED PATHS OF RETAIL ELECTRICITY PRICES USING GBM OVER 20 YEARS 

 

Eydeland and Wolyniec [161] describe the main pros and cons of using GBM to model the 

spot prices of energy commodities. On one side, GBM is an industry standard, its 

properties are well known and can be easily implemented in efficient computer 

implementations, and it is very useful for modeling cross-commodity correlations. But on 

the other side, the downside of using GBM as described in reference [161] includes the 

difficulty of calibrating because it offers few degrees of freedom (just two parameters) to 

match historical data. Furthermore, if it is used for pricing power products, the problem of 

non-storability of power makes it impossible to use the standard no-arbitrage argument to 

 

7 The price function has an initial value of P0=18 US$/MWh, an annual trend of μ= 6%, and a standard 

deviation of σ=30%.  
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validate the common pricing formulas. Finally, the GBM price process does not allow for 

modeling the fat tails of price distributions or price spikes with the magnitude of real 

energy markets. In summary, GBM processes may be appropriate for some applications 

based on the criteria of normality and independence, but not for other applications, 

depending on the characteristics of the process and time frame, etc. For example, a process 

in which the drift is dependent upon time is not appropriate for GBM because GBM has a 

constant drift and variance over time. More examples of using GBM in different 

applications can be found in reference [175]).  

Other publications on portfolio optimization often assume some well-known probability 

distributions and estimate their parameters from time-series data and performing Monte 

Carlo simulation later to generate price trajectories. For example, some articles, such as 

Roques et al. [8], assume a normal distribution for fuel, electricity, and CO2 prices, and the 

parameters of these distributions (mean and variance) are estimated from historical time 

series. Similarly, Muñoz et al. [9] fitted a Pearson distribution to historical electricity 

pool prices in the Spanish market and assumed three scenarios with different degrees of 

growth per year. Madlener and Wenk [56] fitted a log-normal distribution to time-series 

price data derived from the European Electricity Exchange (EEX), and Glensk and 

Madlener [144] fitted a beta distribution to their electricity price data. After deciding how 

uncertainty factors are to be modeled and estimating parameters, these papers run 

simulations to compute cash flows and their main measures (NPV, IRR, etc.) and their 

distributions. These distributions and their correlations are then used in portfolio models. 

The main issue with technical approaches is that past price values only do a good job 

representing the behavior of future prices while the system (transmission system, demand, 

and supply) remains static. But, if the system changes, prices can also change dramatically 

and therefore the risk analysis is no longer useful. In contrast, structural analyses allow for 

the production of price series that are consistent with the system and its possible changes in 

the future. This is a topic of active research as the greater penetration of renewable 
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generation and operational and transmission constraints is becoming more important to 

defining prices.  

Additionally, on the demand side, most consumers today are protected against price 

fluctuations by regulations and therefore do not directly see major risks, although they pay 

for them in the form of risk premiums embedded into their tariffs. This is rapidly changing, 

however, as the smart grid and distributed generation is becoming massive and makes 

consumers more proactive. These changes on the distribution network will have an impact 

on the wholesale market too affecting prices, expansion times, power flows, etc. The 

system is changing on all fronts, which reinforces the need for a structural analysis that 

considers different technological scenarios that cannot be captured by statistical analyses.  

 The failure to considering transmission capacity constraints could lead to an incorrect 

measure of income for some generation projects. Transmission constraints isolate different 

areas of electricity markets and sometimes create the possibility of exercising market 

power [176], such that local transmission constraints may lead to price risks (significant 

reduction of local marginal prices) as well as to volumetric risks (less electricity 

production caused by a capacity constraint). As an example, the mismatch in China 

between the  installed wind capacity and wind generation is mainly explained by the 

inadequacy of the power transmission grid [177]. Transmission constraints affecting 

specific generation projects should be included in the modeling. The capacity of a 

transmission line determines the degree to which generators in different locations can 

compete with each other [178], and therefore ignoring transmission constraints may lead to 

significant errors in estimating the revenue for a generator firm.  

Theoretically, spot prices vary spatially according to their contribution to marginal losses 

and the marginal congestion component. These prices show the instant value of the energy 

for the system, and it can differ greatly from one zone to another, and therefore ignoring 

the location of injections despite these components and assigning the same value to an 

MWh injected anywhere in the system is sometimes quite wrong. This inefficiency is 
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ignored in a market of a global spot price (mainly in Europe), but it is an issue for investors 

in the market of nodal prices (mainly in America). However, papers on portfolio 

optimization from the investor’s perspective tend to ignore this effect. 

3.3.2 Renewable profiles and complementarities 

Renewable profiles, especially wind power profiles, depend on local meteorological 

features and atmospheric and geographic phenomena that are very volatile and difficult to 

predict. Therefore, two wind power plants with the same model and number of units will 

produce very different power profiles when placed in locations with different 

meteorological and relief conditions. Using two complementary profiles helps to reduce 

the need for storage and produce a smoother combined output profile, which may be a 

much more appealing "product" for a buyer. 

Spatial diversification of solar PV production can be achieved by distributing PV plants 

across different locations, taking advantage of differences on sunrise/sunset times (and 

therefore solar PV peak production times), cloud regimes, ground albedos, among other 

geographical features which allow smoothing out changes in PV production.  The extent of 

the smoothing effect depends mainly on the number of PV plants, the composition of the 

ensemble, longitudinal differences between sites, area of dispersion and irradiation 

variability [179]. The impressive curve of declining costs of PV technology, its fast 

deployment in recent years across the globe and its expected growing participation in the 

energy markets have pushed for new research to address problems associated with short-

term variability of PV production. This issue was initially seen as a potential limiting 

factor for PV integration into the grid [180].  Mills and Wiser [180] were one of the first to 

account for geographic diversity to reduce volatility of PV production. In fact, they 

concluded that the need for additional reserves to manage variability of PV plants is 

considerably reduced by geographic diversity in a wide area. More recently, David et al. 

[181] have shown that solar PV geographical diversification can also be achieved in small 

territories with different microclimates. Two different regimes of cloudiness appear to be 
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enough to greatly improve the diversification effect in their study. Finally, several 

publications have pointed out that the smoothing effect could lead to lower forecasting 

errors, since plant spacing decreases the correlation value of their forecasting errors 

[182,183]. 

For investors, the most relevant profile complementarity is in the annual and monthly time 

scales, because they help to reduce financial risks to the portfolio. Investing in two 

different renewable power plants that have complementary generation profiles is less risky 

than investing all the capital in a single project that is twice the size. For managers, the 

complementarity of renewable profiles helps to increase profits (energy sellers), reduce 

costs (energy buyers) and mitigate risks overall. Complementarity allows energy sellers to 

offer output that is much less volatile, and that can result in a more valuable product for 

energy buyers who may be willing to pay more. On the other side, those who buy energy 

from different complementary renewable generators may reduce their exposure to the real 

spot market and their footprint at the same time. Moreover, technological and spatial 

diversification of renewable energies can reduce vulnerability of the entire power system 

[97].  

Although there is active research underway on the quantification of the geographic 

complementarity of solar and wind power plants [107–111], there are currently no 

publications that integrate and analyze their effect on the technological portfolio. How 

does a smart choice of solar and/or wind power plants across a determined territory 

improve the return/cost - risk profile? This represents a significant opportunity for further 

research because everything suggest that renewable energy will continue its aggressive 

entrance into the market in the future. 

3.4 Conclusions 

Better use of infrastructure, avoiding unnecessary investment, and optimal resource 

management are essential skills for today’s energy companies. For investors, developing a 

generation project involves an enormous amount of capital along with very large risk, so 
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investors usually adopt different diversification strategies to mitigate those risks, such as 

investing in power plants of different sizes and places, with different technologies and 

more importantly, with different types of fuel or resources. These strategies reveal that the 

return on a portfolio of projects is not simply the sum of the returns from all of the 

individual projects. The “correct” return is the result of the return on individual projects 

plus the “interaction” among them. This “interaction” is key in portfolio optimization; 

interaction among projects allows for diversification and the cancellation of risks. Most 

papers determine the proxy of projects’ profit and their interaction to be the Net Present 

Value or Internal Rate of Return of the projects and their respective correlations. This 

correlation between cash flows quantifies interaction gains or losses. In addition to 

diversification strategies, investors can wait and defer the investment if there is excessive 

uncertainty (due to a regulatory change for example). However, the literature places little 

emphasis on the value of waiting or deferring a project or a set of projects within the 

context of a portfolio. Decision makers who are unwilling to take risks in the face of 

insufficient information might be well advised to consider the option of waiting. 

On the other side, portfolio managers of large electricity sellers/buyers must deal with 

electricity spot prices that are very volatile due to the special properties of electricity, such 

as non-storability and a non-linear, steeply rising supply curve. Unrestrained exposure to 

price risks may produce overwhelming consequences for agents. Take for example the 

price spikes presented in [61] in which high spot prices led different agents to bankruptcy, 

with devastating consequences for the economy. The California electricity crisis of 2000–

2001 is one example in which prices persistently reached US$500/MWh, and retailers had 

not hedged against price risk through other financial instruments, leading to a major crisis 

in the sector. In the case of volumetric risk, retailers who are forced to serve their entire 

load must also be concerned with uncertainty on the load, since there are no simple 

financial instruments to deal with changes in the demanded volume, especially because 

mass electricity storage is still not an economically viable option. [61]. Exploiting the high 

correlation between demand and prices using trading mechanisms such as bilateral 
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contracts, forwards, futures, call/put options, among others instruments are alternatives to 

mitigate part of the volumetric risks. In the portfolio literature, most applications rely on 

static models. Conversely, dynamic and multi-stage applications are more limited, 

mainly because of their need for great computational power, which restricts the design of 

real-world applications. Active research is required, therefore, in the development of new 

methodologies to deal with the current computational limits. Rocha et al. [69] have made 

notable advances in that direction by using linear decision rules to approximate the 

solution of a stochastic optimization.  

One cross-cutting issue in the literature on portfolio optimization that affects both investors 

and portfolio managers is the frequent use of statistical rather than structural models. In 

fact, most of the available literature trusts statistical approaches to model future price 

behavior, although history will not repeat itself and the past is now a poor predictor of 

future behavior. Given the radical changes and uncertainties we are facing, structural-based 

methods are required to model future behavior of prices.  

In addition to intermittency, renewable resources such as solar, wind and perhaps future 

tidal power plants bring other special features, and this is complementarity in different 

time scales. Unlike conventional generators, which are fully controllable, these renewable 

generators depend on the availability of natural resources that are beyond our control. 

Numerous publications have demonstrated that geographical diversification can 

significantly decrease variability in different time frames, especially of wind power 

production [46,47,107,108,111,184]. Spatial diversification of solar PV plants is very 

useful to smooth out the production in small time frames, ranging from seconds and 

minutes to hours. A smoother PV production decreases the cost of system integration 

allowing better forecasting and requiring less primary/secondary reserves. Depending on 

the market rules, this cost reduction could affect in more or less extent the income/cost of 

the project participant (project investors and portfolio managers). Nevertheless, renewable 

complementarity is currently entirely absent in planning portfolio literature. The potential 

gains in efficiency (return-risk) from geographical diversification are currently neglected, 



84 

 

 

 

which minimizes the relevance of transmission capacity constraints and cross-border 

interconnections. Well distributed energy resources may offer investors and managers a 

good alternative for diversifying risks, but some of their diversification benefits are 

actually being overlooked. 

Finally, the primary gap in the portfolio literature is the lack of the consideration for the 

small electricity users. Consumers are slowly taking a more active role in the electricity 

market through residential generation, smart metering infrastructure, demand response, 

smart grid deployments, and other areas associated with the raising figure of the 

“prosumer.” Thus, an excellent opportunity for research lies in analyzing the impact of the 

new small and distributed energy systems with the active participation of the demand side 

of the portfolio, changing its composition, or becoming a component of the optimal 

portfolio as an energy resource.  
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CHAPTER 4: IMPACTS OF WIND AND SOLAR SPATIAL 

DIVERSIFICATION ON ITS MARKET VALUE: A CASE STUDY 

OF THE CHILEAN ELECTRICITY MARKET 

4.1 The integration of variable renewable energies and its economic value 

After several decades in which non-conventional renewable energies were expensive and 

impractical, solar and wind power have now reached a technological stage that allows them 

to be cost competitive with conventional generators without subsidies (hopefully tidal 

generators will also cross this line in the near future). Moreover, clean energy sources are 

now demanded by modern societies that are already suffering some of the consequences of 

climate change [185], so the rapid grown of solar and wind power generation the last five 

years it is expected to continue and eventually leave conventional sources behind (see 

100% renewable literature [94,186–188]). 

The integration of renewable energies is a major operational and political challenge. 

Regulators and operators must look for the best policies to integrate them into power 

systems dominated by conventional generators. Operationally, the integration of variable 

renewable energies (VRE) represents a challenge due to their intermittent and uncertain 

nature. Since supply and demand must be balanced every second, the variable nature of 

VRE must be absorbed by other resources of the power system (in Chile these resources 

are: hydro power plants, fast LNG power plants, diesel units and storage devices). The 

stochastic nature of renewable resources, along with the fact that the production is not fully 

controllable are the main causes of the value drop in renewable market as their penetration 

increases. Moreover, as more generators are installed in one location (seeking a good 

primary resource) the market value of that location decreases (due to the excess of supply). 

Usually, when renewable energies are concentrated in one location and there are active 

transmission constraints, spot prices or the marginal prices go down rapidly. This is what is 

happening in the north of Chile, the "sunniest place on earth," where solar PV plants are 



86 

 

 

 

facing long hours of zero spot prices due to excess supply driven by transmission 

congestion [140]. 

The economic value of VRE is defined in this work as the revenue that generators can earn 

on markets [90,189]. Following Hirth [189], the market value of VRE is measured as its 

energy-weighted price. Maintaining a high market value is important for investors and for 

planners/regulators, since investors seek to recover their investments as soon as possible, 

and usually regulators seek to encourage more investments and increase the penetration of 

renewable energies (due to its low variables costs, zero emissions and social acceptance). 

Since electricity storage is expensive, production time greatly affects the value of 

electricity (given that demand and resources availability change over time). Similarly, 

electricity has different values depending on location, caused by marginal losses and more 

strongly by transmission constraints. Electricity loses part of its value if it cannot be 

efficiently transported to consumption centers when it is needed. Finally, the uncertainty of 

production also affects economic value since additional firm generation is required to 

compensate uncertainty [189,190]. This chapter is focused on the spatial and temporal 

property of renewable generators and how these properties affect its market value.  

VRE market value depends strongly on the system and its conditions (such as the energy 

mix, grid topology, transmission capacities and distance of the consumption centers). 

Regulators can take measures to alleviate the market value drop with higher penetrations of 

VRE, such as implementing demand-side management, increasing bulk storage capacity, 

expanding transmission interconnection capacities, upgrading thermal power plants to 

improve flexibility, designing "system friendly" variable renewable generators [191], 

increasing geographic diversity of renewable generators. 

Integration measures aim to make the system more flexible. Flexibility is understood as the 

ability of a system to withstand changes in power demand and generation, and more 

flexibility helps power systems to adopt more renewable energy, but also economically to 

mitigate the reduction of the economic value of VRE with increasing penetrations levels. 
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Flexibility options can be allocated on the demand-side and the supply side of the power 

system as well as in the transmission system and storage to provide spatial and temporal 

flexibility. On the demand-side, distributed generation [192,193], demand response 

[194,195] and dynamic tariffs [196,197] play an important role, while on the supply-side, 

upgrading conventional power plants [198–200], geographically diversifying renewable 

energies [46,201] and designing “system-friendly” wind turbines [191] are some of the 

measures mentioned in the literature, as is illustrated in Figure 26.  

 

FIGURE 26: FLEXIBILITY MEASURES ON THE DEMAND AND SUPPLY SIDE  
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Spatial diversification, or spreading generators out in large interconnected areas, is an 

integration measure that reduces the variability of power production. The spatial 

diversification of VRE is a technique to ease the integration of renewable energies, not 

only because generation variability is reduced (which is very important for pure thermal 

power systems), but also because risks  of a drop in the VRE market value caused by 

marginal losses and congestion (spatial) constraints and storage (temporal) constraints are 

reduced. Transmission capacity availability plays an important role in the effects of VRE 

diversification on its market value. Exploiting just one wind-power zone may stress a 

single transmission corridor because all wind power plants in the same zone have a strong 

possibility of reaching their maximum capacity at almost the same time.  

This chapter shows the impact of transmission and storage constraints on wind and solar 

market value. In particular, the effects of spatial diversification of wind and solar power on 

its market value considering different levels of interconnections capacities and bulk storage 

is researched. Most articles of spatial diversification investigate the combination of wind 

power plants to reduce variability of total production rather than considering the effects on 

the entire power system and therefore on electricity prices and its market value. Similarly, 

literature studying the market value of renewable energies is focused on quantifying the 

market value drop at high penetration levels of renewable energies levels without 

analyzing factors that can alleviate this drop. This work makes the connection between 

diversification studies and the literature on renewable market value and quantifies spatial 

diversification as a measure for mitigating the value drop, with a closer inspection to the 

Chilean electricity market. 

4.1.1 Chilean electricity market, resources and policies  

The rapid development of the Chilean economy in recent decades (the GDP per capita 

grew 557% from 1990 to 20158) has resulted in an enormous increase in electricity 

 

8 From US$ 2,401 per capita in 1990 to US$ 13,384 per capita in 2015 in current US$ [287] 
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consumption. At the same time, the Chilean government has committed to reducing 

emissions and has undertaken a number of mitigation actions such as establishing 

emissions taxes and reaching 20% of non-conventional energies in 2025. Chile has very 

favorable conditions for the development of renewable energy power plants with large 

amounts of primary resources (1,000,000 MW of solar, 40,000 MW of wind, 16,000 MW 

of geothermal and 12,000 MW of hydroelectricity [202,203]). In addition, Chile has low 

tax rates for imported technologies due to free trade agreements with different countries 

and a transparent economy, which is a very important factor for large investments [204].  

By the end of 2016, Chile’s electricity sector had an installed capacity of more than 20,000 

MW, which is predominately based on thermal and hydropower generation as is shown on 

Figure 27. However, in the last 5 years, solar and wind power have led the expansion of 

the generation sector, as is shown on Figure 28. 

 

FIGURE 27: INSTALLED CAPACITY IN THE SIC AND SING SYSTEMS IN CHILE IN DECEMBER 2016. OWN ELABORATION BASED ON 

GENERATION CAPACITY REPORT PUBLISHED BY THE NATIONAL ENERGY COMMISSION OF CHILE [205] 

51% 53% 58% 59% 60% 61% 61% 59% 58% 56%

49% 47% 42% 41% 40% 39% 39% 41% 42% 44%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Conventional

Renewable

0

5000

10000

15000

20000

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

In
st

al
le

d
 C

ap
ac

it
y 

(M
W

) Wind

Solar

Biofuels

R. of Riv.

Hydro Res.

Diesel

Gas

Coal



90 

 

 

 

 

FIGURE 28: INSTALLED CAPACITY OF NON- CONVENTIONAL RENEWABLE ENERGIES (NCRE) IN CHILE. OWN ELABORATION BASED ON 

GENERATION CAPACITY REPORT PUBLISHED BY THE NATIONAL ENERGY COMMISSION OF CHILE [205] 

The two most important electricity systems were the SING and the SIC, which together 

represent more than 99% of electricity sales and were interconnected in 2017. The north of 

Chile (old SING), has historically based its generation matrix primarily on coal and gas, 

but also has an impressive solar resource, so it is expected that solar PV production will 

continue to grow there. The south of Chile  has a major presence of hydro resources and a 

variety of wind resources. Chile’s extreme south has large bodies of water, they are not 

expected to be exploited soon due to community’s opposition to the development of large 

hydropower projects. Figure 29 presents the old SIC and SING systems, the LNG and coal 

units and the gas pipelines along the country. It also presents the hydro resources in the 

south and the solar and wind resources maps. Note the high irradiance of the solar resource 

in the north reaching 7.5 kWh/m2 day.   
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FIGURE 29: TRANSMISSION SYSTEM, COAL AND LNG UNITS, HYDRO GENERATORS, SOLAR AND WIND MAPS OF CHILE. DECEMBER 

2016. OWN ELABORATION BASED ON DATA PUBLISHED BY  THE GEOGRAPHICAL INFORMATION SYSTEM OF  MINISTRY OF ENERGY 

[206] , THE SOLAR RADIATION DATABASE FOR CHILE [207,208], AND THE WIND ENERGY DATABASE FOR CHILE [209] 

Chile supports non-conventional renewable energies (NCRE) through a policy target that 

will increase annually until it reaches 20% of total electricity generation by 2025. The 

target was strongly surpassed in 2016, as shown in Figure 30. Indeed, the injection of 

NCRE in 2016 was 259% of the annual target.  
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FIGURE 30:RENEWABLE INJECTIONS AND ANNUAL TARGETS IN CHILE. OWN ELABORATION BASED ON DATA PUBLISHED IN THE 

STATISTICAL YEARBOOK 2016 BY THE NATIONAL ENERGY COMMISSION OF CHILE [210] 
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variety over very short distances (coastal and desert climates occur within just four 
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buffer VRE [211]). A good characterization of wind profiles in Chile can be found in the 

research of Watts et al. [113]. The spatial diversification of solar power is more limited due 

to the geography of the country.   
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diversification helps increasing renewable market value in a scenario of constrained 

transmission and showing how spatial diversification helps increasing renewable market 

value low storage scenario. Finally, Section 4.5 presents the main conclusions of this 

chapter.  

4.2 Literature review on renewable market value and variable renewable 

integration 

This section presents a literature review for renewable market value and some measures 

used to integrate renewable energies and mitigate decreases on its market value. It 

continues with a review of the literature on spatial diversification of VRE as an important 

and cost-effective integration measure. Finally, different policies and strategies to 

introduce integration measures are presented.  

4.2.1 Renewable market value and integration of renewable energies  

Market value is a measure of the revenue that generators can earn on markets, and 

therefore it is extremely important for investors and policy makers. Since renewable 

energy generation is an important measure for the reduction of greenhouse gas emissions 

[97], policy makers need to design markets and regulations to integrate them. The 

development of renewable energy technologies, as well as their market integration and 

support policies depend on their market value [212]. However, as renewable penetration 

increases, its market value goes down [189,213], and it becomes more difficult to integrate 

them. One of the main effects when renewable energy increases its share is a price drop, 

and this is known as the "merit-order effect" [214,215].  

The merit-order effect 

The merit-order effect produces a price reduction that seems appealing from a political 

perspective, although it is also well documented that the merit-order effect does not create 

welfare, but it produces a transfer of wealth from producers to consumers [216,217]. 

Lower prices reduce long-term appeal for investments, and, eventually, can cause a supply 

scarcity , increasing  electricity prices. Several studies have shown the magnitude of the 
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price reduction trying to quantify the merit-order effect in different markets. Table 7 

presents some of these studies and their main findings.  

TABLE 7: MAIN FINDINGS ABOUT THE "MERIT-ORDER EFFECT"  

Country and 

technology 

Price reduction Main findings 

Germany  

Solar and wind 

power [215] 
 

 

6 €/MWh in 2010 

10 €/MWh in 2012 

14–16 €/MWh in 2016 
Reduction of spot market price per 

additional GW of renewable energy 

The authors highlight significant redistributive 

transfers under the current regulation in 

Germany. Some energy-intensive industries are 

benefiting from lower prices but are being 

exempted from the costs of the scheme. 

 

Australia  

Wind power [218]  

0.62 ₵/MWh in S. Australia 

1.74 ₵/MWh in Victorian 
Currency: US$ 

Reduction of price per MWh of wind 
output 

The presence of subsidized wind generation has a 

significant impact on spot market prices. Lower 

prices reduce incentives for additional generators 

to enter to the market. Over the long term, the 

increased requirement of peaking generation to 

support the unreliability of wind will means 

additional fixed costs, and therefore prices may 

move upward.  

 

USA (Texas)  

Wind power [137] 

 

1.4 US$/MWh in Houston 

1.3 US$/MWh in the south  

4.4 US$/MWh in the west 
Prediction of price reduction due to 100 

MWh increase in wind generation 

 

Increasing wind power generation tends to reduce 

wholesale price levels while enlarging their 

variance. New challenge for policy makers to 

deal with price risk is inseparable from increased 

reliance on intermittent sources of generation. 

  

 

Italy  

Solar and wind 

power [219] 

2.3–4.2 €/MWh (1 GWh from 

solar and wind) 

Solar: savings have been lower than the cost of 

the supporting schemes. 

Wind: Cost-supporting schemes are entirely 

outweighed by monetary savings. 

 

 

Spain [220]  7.42 €/MWh for 90% of real wind 

power production in 2012 

10.94 €/MWh for 110% of real 

wind power production in 2012 

Wind power has been beneficial from an 

economic point of view for the Spanish electrical 

system during the period 2005–2010 due to the 

savings over the spot market. The work does not 

assess other benefits or the implications of 

progressive integration of wind power on stability 

of the power system. 
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It should be noted that there is no standardized methodology to quantify the merit-order 

effect, so the magnitude of the price decrease not only depends on the characteristics of the 

power system, but also on the methodology of the study and its assumptions.  

Close inspection at Chilean electricity market: Chile’s electricity market is also a good 

example of how the merit-order effect and renewable energies, especially wind and solar 

power, have been pushing down marginal costs of the system. Figure 31 shows the 

monthly average price from 2012 to 2016 of a central node called "Alto Jahuel" (usually 

used as price reference for the system), and the wind and solar generation over the same 

period. The trend is clear—as solar and wind generation increases, the price goes down. It 

should be noted, however, that there are multiple other factors that affect prices and are not 

reflected in the figure below, such as hydrology, transmission upgrades, connecting new 

generation, among others. 

 

FIGURE 31: MARGINAL PRICE OF ALTO JAHUEL NODE AND WIND AND SOLAR GENERATION IN THE SIC SYSTEM IN CHILE 2012–2016. 

OWN ELABORATION BASED ON DATA PUBLISHED BY THE NATIONAL ELECTRIC COORDINATOR: REAL GENERATION DATA [221] AND 

REAL MARGINAL PRICES [222] 
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4.2.2     Spatial diversification of variable renewable energies 

Under high VRE penetration, the reliance on peaking and intermediate generation supply is 

increased and the contribution of base-load generation is decreased [223]. Reducing 

intermittency and variability is important to decrease integration costs of VRE (increase 

reliance on peaking and intermediate generation supply). There are three key drivers that 

affect integration costs of renewable generation: diversity of the resource and capacity 

factor, location relative to the network, and the region’s generation mix [224]. This chapter 

focuses on the first and second drivers—diversification of the resource and location 

relative to the network. 

Diversification and complementarity are usually used as interchangeable concepts. 

Complementarity is normally used to describe two or more profiles that together have 

fewer instances of zero power production and "full power production" or generally, 

profiles with low or even negative correlation patterns. However, diversification is a 

broader concept. In the context of energy projects, diversification is simply choosing 

different types of projects, locations, contracts and generation technologies to mitigate 

unnecessary risks. Spatial diversification means to diversify by choosing projects in 

different locations to capture part of the complementarity of renewable profiles, but also to 

avoid risk of congestion and lower market value levels.  

Complementarity of geographical profiles 

The complementarity of wind resources is one of many measures available to manage wind 

power variability on power systems. Indeed, the “smoothing effect” of aggregated wind 

power outputs has been widely studied in the literature, and their conclusions are similar; 

the dispersion of wind power significantly reduces the volatility of the aggregated power 

output.  
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Close inspection at Chilean electricity market: in Chile, as the distance between wind 

power plants increases, the correlation of their energy production decreases sharply, as is 

presented in Figure 32. 

 

FIGURE 32: CORRELATION VS. DISTANCE OF WIND ENERGY PRODUCTION IN CHILE. OWN ELABORATION BASED ON THE WIND 

ENERGY DATABASE FOR CHILE [209]  

 

The first study of the spatial aggregation of wind power plants was conducted by Kahn 

[225] in the state of California, and it was the first to quantify the improved reliability of 

distributed wind generators. A more recent study presents a frequency analysis of 

interconnected wind farms in the UK: using frequency-dependent approach the authors 

concluded that spatially diversifying wind power plants reduces the high-frequency 

variability of wind power, which in turn means lower costs for ancillary services [226]. 

Similarly, the results of a simulation analysis interconnecting wind power plants 

distributed along the eastern coast of the U.S. shows that the aggregate wind power 

production has much more stable behavior (fewer hours of zero production, fewer hours of 

full power, and a slowing change of rate) [227]. 
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A methodology to minimize the variance of aggregated wind farm power output by 

distributing them in different zones to facilitate the penetration of this kind of energy was 

presented by  Degeilh and Singh [201]. The authors presented different reliability indexes 

to characterize the improved reliability of distributing generators. Other studies show that 

complementarity of wind power resources can save some of the storage and cycling costs 

of traditional generation [111], but, taking full advantage of complementarity requires a 

strong transmission network [46,47,113].  

Novacheck and Johnson recently presented a novel approach [228] that combined a 

portfolio methodology with a unit commitment and dispatch model to evaluate the effect of 

wind power diversity on decreasing system ramping. Unlike other studies on wind 

diversification, the authors use the portfolio framework to minimize ramps instead of 

minimizing the deviation from the average output. Using an empirical example, the authors 

show that diversification can reduce wind curtailment and transmission congestion. 

However, they found that even with diversified power plants, variability at the time of low 

ramping flexibility can cause higher costs for the system. 

Diversification of VRE can be applied not only to new power plants, but also to 

repowering actions. Indeed, repowering of installed wind farms is one of the most effective 

actions to scale up capacity [229].  

Renewable spatial diversification and its relationship with VRE market value 

None of the above studies have evaluated how spatial diversification affects renewable 

market value. One notable exception is the work by Mills and Wiser [230] in which the 

authors present different strategies for mitigating the reduction in economic value of VRE 

with increasing penetrations levels of wind power. Those strategies included measures 

such as increasing the geographic diversity of wind power plants, more flexible new 

conventional generation, lower-cost bulk power storage, and price-elastic demand subject 

to real time pricing (RTP). They do not explore, however, scenarios of transmission and 

storage constraints or the interaction of these measures with renewable market value.  
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When geographic diversification of renewable power plants is studied solely in terms of 

the complementarity of profiles without considering the power system and its prices and 

transmission network, it may result in locating power plants where they do not add real 

value to the system. For example, if a diversification policy focuses on the wind resource 

alone, whether to maximize wind production or to reduce aggregate production volatility, 

without taking the power system into consideration, wind power plants may end up in 

places where transmission is already congested, adding little value to the system and 

injecting power  into nodes where locational marginal prices are already very low, zero or 

even negative, and ultimately resulting in very low market value for new participants, as 

illustrated the left side of Figure 33.  

 

FIGURE 33: RELEVANCE OF TRANSMISSION NETWORK AND RENEWABLE MARKET VALUE 

Locational marginal prices are useful signals of system insufficiency. High prices are a 

sign of transmission congestion, high losses, very high electricity demand or  supply 

scarcity. High locational marginal prices are therefore temporal and spatial indicators that 
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can be used along with the availability of resources to design siting policies for renewable 

power plants.  

Close inspection at Chilean electricity market: a large share of Chile’s generation 

capacity is in the central-south, but consumption is mainly concentrated in the central and 

north zone. Therefore, while adding wind power in the south could help the system to 

reduce CO2 emissions or to reduce wind power volatility, those benefits cannot be captured 

if transmission is congested. Locational marginal prices of nodes in the north, central and 

south may be used in this case to quantify those congestions.  

4.2.3 Policy strategies to integrate VRE  

There are several policies strategies that regulators can adopt to make the system more 

flexible and mitigate the value drop of renewable energy as its share increases. There are 

many factors that affect renewable energy integration and its impact on system prices, such 

as the electricity market design (pricing, supporting schemes, market power), technical 

characteristics (system-friendly designs), emission market and its regulation (CO2 prices, 

fuel prices), and system flexibility (mainly hot start-up time, ramp rates, minimum load 

and cold start-up time), which directly affects the renewable market [212]. These factors 

are also presented in Figure 34. 
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FIGURE 34: FACTORS AFFECTING RENEWABLE INTEGRATIONS. SOURCE: OWN ELABORATION BASED ON [212] 

The energy mix essentially depends on the accessibility of resources. A significant portion 

of the cost of renewable energy integration depends on the current system’s energy mix. 

For example, hydro generation is very flexible because it can ramp up and down very fast 

and it does not have the constraints on minimum run and stop times that traditional thermal 

units do. Accordingly, systems with a high quota of hydro generation have lower 

integration costs for variable renewable energies. However, the energy mix of a power 

system is determined by the accessibility of its resources, and therefore it is not a variable 

that can be controlled. However, there are additional measures that can be adopted to 

improve system flexibility, such as including energy storage, upgrading traditional power 

plants, expanding interconnection capacities, developing demand side management 
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programs, encouraging system-friendly variable renewable generators and promoting 

renewable spatial diversification, as described previously. 

Power systems must constantly balance supply and demand, and this task is more difficult 

with the presence of VRE. Storage can provide temporal flexibility to mitigate these 

difficulties. The main uses of a storage device are to store electricity during a surplus of 

generation, mitigate the intermittency of variable renewable generators, provide backup 

and power quality management and defer the need for transmission expansion. Each 

application may need a different type of storage device (e.g. pump storage, batteries, fuel 

cells) because they have different technical features that make them more appropriate for 

one task or another [231]. The three most important barriers described in the literature for 

the expansion of energy storage are regulation, costs, and the lack of awareness of the 

benefits of energy storage [232].  

In pure thermal power systems, base-load ramps and minimum up and down time cause the 

short-term supply curve to remain static in the short-run, and therefore the only solution to 

following the demand is to use expensive units (usually diesel units) to absorb renewable 

variations. On the other side, hydrothermal systems usually have a lower integration cost 

due to the flexibility of hydro generation.  

Close inspection at Chilean electricity market: Chile is an hydrothermal system with 

large reservoir capacities, so it can use hydro generation to provide inexpensive reserve 

requirements because they are fast enough to follow residual demand changes. Figure 35 

illustrates the flexibility of the supply curve (the figure shows a supply curve with normal 

hydro generation capacity and other one without hydro generation capacity). The National 

Electric Coordinator adjusts supply by either turning on and off the marginal power plant 

(moving along a supply curve) or usingthe rapid hydro capacity to absorb short run net-

demand variations (changing hydropower injections). Hydro generation with storage is a 

natural supplement of VRE, since water can provide backup capacity and flexibility to 

balance wind deviations and thereby avoid the need for peak-load generators [233,234].  
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FIGURE 35: SHORT-TERM SUPPLY CURVE CAN CHANGE FAST WITH A HIGH AVAILABLE CAPACITY OF HYDRO RESERVOIR POWER 

PLANTS. OWN ELABORATION BASED ON DATA PUBLISHED BY THE NATIONAL ELECTRIC COORDINATOR AND THE NATIONAL ENERGY 

COMMISSION9 

Although the potential of hydroelectric plants for integrating intermittent generation is 

widely known, few studies incorporate reservoir hydropower into the analysis (with only a 

few exceptions, such as the work by Kern et al. [211] and Benitez et al [235]). This is a 

noticeable gap in the literature regarding the significant source of flexibility that the 

reservoir hydro represents. This gap was also highlighted in reference [189]. This work is 

also an effort to quantify the ways that different levels of hydro storage affect renewable 

market value.  

 

9 This figure is for illustration purposes only. The demand histogram was developed using the hourly real 

generation  of year 2014 [221] assuming an annual growth factor of 3% to project it to the year 2020. The 

supply curve is constructed using data from a price a report from the National Energy Commission [252]. 
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The flexibility of traditional power plants also plays an important role in accommodating 

renewable generation, and it has an impact on renewable market value of VRE. Increasing 

the flexibility of traditional power plants reduces operational costs when VRE increase its 

shares, specifically by decreasing the constraint of minimum generation levels of coal-fired 

power plants, more renewable generation can be used and curtailments are decreased 

[236]. Quick start and stop capabilities may also provide a good resource to use in real 

operations when forecast errors are larger, especially with high shares of renewable 

energies. Similarly, faster generators that can absorb power ramps may also be useful and 

provide value to the system by reducing the need of operational reserves. Minimum load 

levels, ramps rates and start-up time and costs are the main constraints of traditional 

generation, so traditional power plants must become much more flexible in the coming 

decade to survive to the accommodation of higher renewable generation [237].  

Expanding interconnection capacities provides spatial flexibility to power systems, thereby 

allowing the complementation of different renewable and demand profiles. Interconnection 

among countries, especially in a future of very high penetration of variable renewable 

energies, has been reported to capture strong economic benefits. Indeed, international 

interconnections can reduce the balancing energy  from  24% of the total annual electricity 

consumption to 15% in the EU [238]. Hourly mismatches between demand and renewable 

generation require high transmission capacities to provide balance. Several studies have 

recognized and designed methodologies to capture benefits of transmission expansion, 

especially regarding renewable integration [238–240].  

Demand-side management has been mentioned as the lowest cost source of renewable 

energy support [241,242]. Adding demand flexibility using new technologies (such as 

electric cars) may add great value to power systems, although demand management takes 

time to develop, and the regulator should design and formulate plans to integrate it at an 

early stage [186]. Demand-side management policies recommendations include the 

implementation of demand response tariffs: direct load control tariffs (utilities can turn off 

consumer appliances during peak rates), implementing demand response tariffs, direct load 
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control tariffs (utilities can turn off consumer appliances during peak rates) and 

information campaigns; providing incentives for distribution system operators to design 

campaigns and pilot projects; and designing institutional structures to develop these 

resources [186,243].  

Variable renewable power plant design may be optimized for much smoother generation, 

which may be a much more valuable feature for the system than the energy itself. Indeed, 

Hirth and Muller [191] show that system-friendly wind power turbines are 15% more 

valuable than wind power from classic turbines. Advanced turbines have roughly the same 

annual generation as classic turbines, but they have very different power curves and 

produce much less variability.  

There is scant literature on the study of policy strategies to directly encourage geographical 

diversification for renewable energy projects. One exception is the work by Schmidt et al. 

[244], who compare the effects of two types of feed-in tariffs (FIT): the fixed-price FIT 

(FFIT) and the premium based FIT (PFIT) over the wind spatial diversification. The 

authors develop an optimization model for an investor who maximizes the net present 

value under these two schemes, and from their results it follows that under a PFIT scheme, 

spatial diversification is incentivized, and variance of net demand is decreased.  

The first stage before implementing any integration measure is improving the modeling of 

the power system. The energy models currently used for policy making usually have great 

technological detail but a highly stylized temporal resolution and a very poor spatial 

resolution [245–249]. The temporal and spatial resolutions are very important, however, 

for analyzing additional VRE costs. Poor temporal resolutions cannot truly capture 

intermittency, and therefore cycling, start-up and shutdown times and ramp requirements 

may be ignored [94,95,250,251]. Likewise, poor spatial and temporal resolution on 

planning energy models usually neglects the spatial diversification of renewable power 

generators. Accordingly, one of the most recurrent recommendations is to implement 

planning models with higher spatial resolution to facilitate long-term planning for the 
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infrastructure needed to exploit renewable resources in a large region. To design policies, 

planners need to know where it is socially optimum, over the long run, to incentivize the 

development of renewable generators. Models with high spatial and temporal resolution 

are necessary to provide planners and regulators with sufficient insights to efficiently 

design policies and strategies in the development of power sector [245]. 

 

4.3 Method for evaluating and quantifying renewable market value: model and data  

This study employs wind power siting methodologies and power system modeling to 

analyze the impact of different ways of expanding wind power in the Chilean electricity 

market. Different wind power portfolios are evaluated using a simplified unit commitment 

and dispatch model of Chile's national electricity system to analyze the market value of 

renewable energies. The power system is modeled assuming different levels of penetration 

for solar and wind energies, different levels of transmission constraints and different levels 

of storage (hydro storage). The methodology includes the evaluation of two portfolios—a 

reference portfolio and a spatially-diversified wind portfolio.  

In the analysis, those portfolios are subject to multiple scenarios considering different  

wind and solar power penetration levels in different locations, scenarios with different 

transmission availability, and scenarios with different hydro-storage capacities. The 

renewable market value is analyzed for every portfolio and scenario. The general method is 

shown in Figure 36. 
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FIGURE 36: GENERAL METHODOLOGY TO QUANTIFY THE EFFECT OF TRANSMISSION AND STORAGE ON RENEWABLE MARKET VALUE  

Reference Portfolio: The supply of the reference portfolio used on this research is obtained 

from  the data published  by National Energy Commission’s for the year 2020 [252]. 

According to its connection point, each unit is assigned to one of the six interconnected 

zones that are represented in the modeling and that will be presented in the following 

sections. 

Spatially diversified wind portfolio: The spatially diversified wind portfolio uses the same 

technological portfolio as the reference portfolio except for the wind power plants. 

Following reference [228], in this work is used a mean-variance portfolio (MVP) 

optimization model to minimize the wind-ramp-rate variability using spatial 

diversification. Wind power plants are located at nine wind sites to minimize the hourly 

ramps of the aggregated wind power production. The first objective is to minimize the 

variance of the wind ramps subject to a constraint so that the annual wind energy target is 

reached:  
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𝑁° 𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 ∙ ∑ 𝑥𝑖  ∙ 𝐶𝑃𝑖

𝑛

𝑖=1

=  𝑇 

( 2 ) 

 

Where 𝑛 is the number of sites (9 sites in this work), 𝜎𝑝
2 is the variance of wind-ramps of 

the wind portfolio, 𝐶𝑃𝑖 is the annual capacity factor of the site 𝑖, and 𝑇 is the annual wind 

energy target. The portfolio’s wind ramps can be expressed mathematically as in the 

following equation: 

 

 𝜎𝑝
2 = ∑ 𝑥𝑖

2𝜎𝑖
2

𝑛

𝑖=1
+ 2 ∑ 𝑥𝑖𝑥𝑗𝜎𝑖𝑗

𝑛

𝑖<𝑗
 

( 3 ) 

 

Where 𝜎𝑖
2 is the variance of the ramp rate of site 𝑖 and 𝜎𝑖𝑗 is the covariance between ramp 

rates of sites 𝑖 and site 𝑗. 

4.3.1 Power system modeling details: storage, transmission and operational 

constraints in Chile 

The model developed in reference [253] is extended to characterize the reality of the 

Chilean power system using six interconnected zones across the country as presented in 

Figure 37 with 153 generators and adding operational constraints for coal-fired power 

units. Given the high complexity of the problem, it is approached in two stages: a linear 

and simplified dispatch was modelled (without minimum operating capacity and ramp 

constraints) to determine the initial and final levels of each reservoir for each month and a 

more complete dispatch, considering minimum operating constraints, ramp constraints and 

using reservoir initial and final reservoirs levels as additional constraints for each month 

was modelled.  Accordingly, in the second stage a mixed integer linear mathematical 

programming model is used.  The objective function minimizes fuel costs (𝑏𝑖) and 

operating and maintenance costs (𝑂𝑀𝑖) during the hours of a month (𝐻𝑚). 
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 𝑀𝑖𝑛 𝑇𝐶 = ∑ ∑(𝑂𝑀𝑖 + 𝑏𝑖)𝑄𝑖,𝑡

𝑖

𝐻𝑚

𝑡=1

 
( 4 ) 
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FIGURE 37: ZONES CONSIDERED IN THIS STUDY 
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For each zone (𝑍) and period (𝑡), the sum of generator outputs (𝑄𝑖,𝑡) plus the net imports 

(𝐼𝑚𝑡,𝑍) must be equal to the load (𝐿𝑡,𝑍) as shown in ( 5 ), where 𝑁𝑔𝑍 is the number of 

generators in zone 𝑍. 

 ∑ 𝑄𝑖,𝑡,𝑍 − 𝐿𝑡,𝑍 +  𝐼𝑚𝑡,𝑍 = 0, ∀ 𝑍; ∀𝑡

𝑁𝑔𝑍

𝑖

 
( 5 ) 

 

Additionally, generators cannot exceed their maximum capacity (CMaxi,t), and their 

output must be above their minimum operating capacity (CMini,t) if they are on (only for 

the set 𝑪 of coal units). For variable renewable generators (set  𝑹)  , such as wind, solar 

and run-of-river power plants, their maximum generation at each time t depend not only on 

their installed capacity, but also on the availability of the resource (𝑅𝑎). Similarly, coal 

generators cannot exceed their ramp up (𝑈𝑖) and ramp down (𝐷𝑖) capabilities.  

 𝑄𝑖,𝑡 ≤ CMaxi,t ∙ 𝑈𝑖,𝑡 , ∀𝑖 ∈ 𝑪, ∀𝑡 ( 6 ) 

 𝑄𝑖,𝑡 ≥ CMini,t∙ 𝑈𝑖,𝑡 , ∀ 𝑖 ∈ 𝑪, ∀𝑡 ( 7 ) 

 𝑄𝑖,𝑡 ≤ CMaxi,t ∙ 𝑅𝑎, ∀𝑖 ∈ 𝑹, ∀𝑡 ( 8 ) 

 𝑄𝑖,𝑡 ≤ CMaxi,t, ∀𝑖 ∉ 𝑪 ⋀  ∉ 𝑹 ( 9 ) 

 𝑄𝑖,𝑡 − 𝑄𝑖,𝑡−1 ≤ 𝑈𝑖 , ∀𝑖 ∈ 𝑪 ( 10 ) 

 𝑄𝑖,𝑡−1 − 𝑄𝑖,𝑡−1 ≤ 𝐷𝑖 , ∀𝑖 ∈ 𝑪 ( 11 ) 

 𝑈𝑖,𝑡 ∈ {0,1} ( 12 ) 

 

Finally, hydro reservoirs must also be modeled with a special set of equations to consider 

storage capacities. It is assumed that the generation of hydroelectric generator ℎ at time 𝑡 

depends on generator efficiency (𝜂ℎ), the gravitational constant (𝑔), the density of water 
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(𝑑), the flow of water (𝐹𝑡,ℎ) and a fixed head height (𝐻ℎ). The volume of water stored 

behind the hydro dam (𝑉ℎ,𝑡 ) at time 𝑡 depends on its level in the previous period (𝑉ℎ,𝑡−1), 

plus inflows (𝐼ℎ,𝑡), minus the sum of the flows through the turbine (𝐹ℎ,𝑡) and the water that 

is spilled (𝑆ℎ,𝑡). Additionally, minimum river flow or environmental flow is also 

considered so the water through the turbine plus the water spilled is greater than the 

environmental flow for the river.  

 𝑄𝑡,ℎ = 𝜂ℎ ∙ 𝑔 ∙ 𝑑 ∙ 𝐹𝑡,ℎ ∙ 𝐻ℎ ∙ 10−6, ∀ ℎ, 𝑡 
( 13 ) 

 𝑉ℎ,𝑡 = 𝑉ℎ,𝑡−1 + 𝐼ℎ,𝑡 − 𝐹ℎ,𝑡 − 𝑆ℎ,𝑡, ∀ ℎ, 𝑡 ≠  1 
( 14 ) 

 𝐹ℎ,𝑡 + 𝑆ℎ,𝑡  ≥ 𝐸𝐹ℎ, ∀ ℎ , 𝑡 
( 15 ) 

 𝑉ℎ,𝑡 ≤ max 𝑉ℎ , ∀ ℎ, 𝑡 
( 16 ) 

 

The transmission system is modeled as a transport system, so losses through these 

transmission corridors are not modeled. This simplification is based on the expansion of 

Chile’s transmission system: a few years ago, the main transmission system was only on 

220 kV, today the central and south-central zones are connected through a 500 kV line, and 

it is expected that the north end of the country will be connected to the center by a 500 kV 

line in 2018. Accordingly, transmission line connecting zone Y with zone Z was only 

modeled its maximum capacity as a constraint, as expressed in ( 17 ). Finally, the net 

imports of a zone Z is defined as the sum of the transmitted power to that zone as 

presented in ( 18 ).  

 |𝑇𝑌−𝑍| ≤ 𝑇𝑚𝑎𝑥𝑍−𝑌, ∀ 𝑍, 𝑌 
( 17 ) 

 𝐼𝑚𝑡,𝑍  =  ∑ 𝑇𝑌−𝑍

𝑌

 ( 18 ) 
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In the mathematical description of the problem detailed above, some constraints are 

intentionally left out, such as border conditions associated with the initial and final 

reservoir levels, the initial state of coal generator, and non-negative variables.  

 

4.3.2 Data to feed the model: renewable profiles, demand profiles and variable costs 

of the Chilean electricity market 

This section describes the sources of the data used as input for the model including 

renewable resources profiles and their generation patterns and installed capacities, 

locations and the variable costs of thermal power plants.  

Detailed renewable resources modeling: wind, solar and hydro resources in Chile 

Detailed Wind and solar profiles: The wind power profiles used in this study are based on 

an aggregated zonal analysis of the Chilean wind power sector by Watts et al. [113] and 

summarized in Figure 38. In that study, three models of wind turbines were selected for 

modeling wind farms: 3 MW Nordex N117, 2 MW Vestas V100 and 1.8 MW Vestas V100 

depending on the wind regime of the zone. The authors showed that by aggregating 

dispersed wind generation, the total production tends to smooth out.  However, the 

interaction with the system was not examined, and therefore the prices and the wind and 

solar power market value were not presented. On wind farms located on mountains and in 

high altitudes, the air density loss, reducing wind energy production was modeled using an 

equivalent reduction in wind speed as presented by Watts et al. [113].  
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FIGURE 38: AGGREGATED ZONAL ANALYSIS OF THE CHILEAN WIND POWER SECTOR10. SOURCE: [113] 

Solar resources are concentrated in northern Chile and to a lesser extent in the central zone, 

so only two solar profiles are used in the model, one for the northern zone and one for the 

central zone. Both profiles were obtained from publically available real generation profiles 

 

10 The first line of charts present the daily wind generation profile of each zone (% of wind generation vs. 

hour of a day) and the second line of charts present the histogram  wind generation in the respective zone 

(% of hour of the year vs. % of wind generation). 
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of year 2015 in the north and central zones published by the National Electricity 

Coordinator [221]. 

Detailed Hydro resources modeling: dam hydro storage and run-of-river 

hydro of Chile 

Chile’s most important hydro reservoirs for electricity generation, sorted according to 

storage capacity are Lago Laja, Colbún, Ralco, Chapo, Rapel, Invernada, Melado and 

Pangue. All of them are in the central south and have associated different generation units. 

Table 8 presents their maximum and minimum operational capacity, electricity generation 

capacity (MW), net height and maximum turbinable flow. A reservoir’s minimum 

operational capacity is the minimum level of water it needs to maintain its ability to 

generate electricity or for ecological restrictions. The difference between the maximum and 

the minimum capacity is the useful storage to generate electricity.  

TABLE 8: CAPACITY OF CHILE’S MAIN HYDRO RESERVOIRS USED FOR ELECTRICITY GENERATION. SOURCE: NATIONAL ELECTRICITY 

COORDINATOR [254]  

Reservoir 

Max 

Capacity 

(hm3) 

Min 

Capacity 

(hm3) 

Useful 

Capacity 

(hm3) 

Gen.  

Name 

Installed 

Capacity 

(MW) 

Net 

Height 

(m) 

Turbinable 

Flow 

 (m3/s) 

Laja 5490 0 5490 El Toro 450 545 97.3 

Colbún 1609 380 1229 Colbún 474 168 280 

Ralco 1174 410 764 Ralco 690 200 450 

Chapo 1040 0 1040 Canutillar 172 237 65 

Rapel 508 27011 238 Rapel 377 76 535 

Invernada 173 0 173 Cipreses 106 370 36 

Melado 133 101 32 Pehuenche 570 206 300 

Pangue 72 7 65 Pangue 467 99 500 

Total 10199   9031   3306 222 335 

 

 

11 The minimum operational capacity of Rapel reservoir varies over time because the electric company that owns it has reached 
agreements with neighbors to keep the level of the reservoir above a certain threshold to allow recreational activities. 
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The reservoirs’ regulation capacity can be deduced from the variation of their levels. If a 

reservoir shows a high variation on its level, it has a small regulation capacity; a small 

reservoir fills and empties very quickly, while one whose level varies only slightly is 

usually large and has a high storage capacity. Figure 39 presents the levels of the different 

reservoirs along the period 1985–2015. 

 

FIGURE 39: HISTORICAL LEVELS OF THE MAIN RESERVOIRS IN CHILE. OWN ELABORATION BASED ON DATA PUBLISHED BY THE 

NATIONAL ELECTRIC COORDINATOR [255]  
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Chile has very good hydro resources with a majority of dam hydro and run-of-river units, 

and as a result, the supply hinges on the hydrological year. Figure 40 presents the capacity 

factor of the most important hydro dam generators from 2010 to 2015, with an average of 

37%.  

 

FIGURE 40: ANNUAL CAPACITY FACTOR OF RESERVOIR HYDRO PLANTS AND RUN-OF-RIVER PLANTS IN CHILE (2010–2015). OWN 

ELABORATION BASED ON DATA PUBLISHED BY THE NATIONAL ELECTRICITY COORDINATOR [221] 
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Run-of-river power plant production also depends on the hydrological year, so their 

production varies from year to year as is shown in Figure 40 for some of the most 

important power plants in Chile. Chile has more than 110 run-of-river power plants, which 

are concentrated in the central and southern regions. However, in 2015 just 20 of them 

represented the 75% of the total generation of all the run-of-river plants as presented in 

Table 9.  

TABLE 9: GENERATION OF THE MAIN RUN-OF-RIVER PLANTS IN CHILE IN 2015. SOURCE: OWN ELABORATION BASED ON DATA 

PUBLISHED BY THE NATIONAL ELECTRICITY COORDINATOR [221] 

Central Reg. Cap. 

(MW) 

Yearly Gen. 

2015 (GWh) 

Acum. Gen 

(GWh) 

Acum % 

Gen RoR 

Antuco 8 320 1,378 1,378 11% 

Angostura 8 316 1,221 2,599 21% 

Rucúe 8 178 802 3,401 28% 

Alfalfal RM 178 694 4,096 34% 

La Higuera 6 155 537 4,633 38% 

Curillinque 7 89 483 5,116 42% 

Chacayes 6 111 478 5,593 46% 

La Confluencia 6 163 402 5,996 49% 

Isla 7 68 400 6,396 52% 

Sauzal 50Hz 6 76.8 384 6,780 56% 

Quilleco 8 71 325 7,106 58% 

Queltehues RM 48.9 303 7,409 61% 

Abanico 8 136 280 7,689 63% 

Rucatayo 10 52.5 245 7,934 65% 

Palmucho 8 32 237 8,171 67% 

Pilmaiquén 9 40.6 221 8,392 69% 

Pullinque 9 48.6 219 8,611 71% 

Loma Alta 7 38.3 217 8,828 72% 

Peuchén 8 85 196 9,024 74% 

Los Quilos 5 39 175 9,200 75% 
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The generation profile of run-of-river power plants depends on the flow of the river. 

Accordingly, a generation profile will depend on whether the river’s regime is pluvial, 

nival or mixed. Thus, the generation profiles of close run-of-river power plants are similar 

because their hydrological conditions are similar. Figure 41 shows that power plants in the 

central zone (the Metropolitan and Sixth regions) have a generation profile consistent with 

snowy regime, since their generation is higher in the hottest months (November, 

December, January and February) and very low in the colder months. This profile is 

different to the South (Seventh region) because the high rainfall increases river flow in the 

winter and generation is not as low in cold months as it is in the central zone. Even further 

south, rains are even more important, and the generation profile changes considerably, 

because the coldest months present a higher generation compared with the hottest months. 

 

FIGURE 41: GENERATION PROFILE OF RUN-OF-RIVER POWER PLANTS ON THE DIFFERENT REGIONS OF CHILE. OWN ELABORATION 

BASED ON DATA PUBLISHED BY THE NATIONAL ELECTRICITY COORDINATOR [221] 
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2015 of four plants located from the central to southern Chile. Their generation profiles 

have a similar shape in these years.  

 

FIGURE 42: GENERATION PROFILE OF RUN-OF-RIVER PLANTS IN A DRY YEAR (2003), A WET YEAR (2013), AND THE LAST YEAR WITH 

COMPLETE DATA (2015). OWN ELABORATION BASED ON DATA PUBLISHED BY THE NATIONAL ELECTRICITY COORDINATOR [221] 

 

  

0

50,000

100,000

150,000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

20,000

40,000

60,000

80,000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

10,000

20,000

30,000

40,000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

10,000

20,000

30,000

40,000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

G
en

er
at

ed
En

er
gy

(M
W

h
)

Alfalfal – RM – 178 MW

Curilinque – 7 reg. – 89 MW 

Peuchén – 8 reg. – 85 MW

Pullinque – 9 reg. – 48.6 MW 



121 

 

 

 

Supply: installed capacities, its locations and variable costs  

The current installed capacities, variable costs and locations of each power plant are 

obtained from data published and used by the National Energy Commission of Chile [252]. 

Table 10 presents the installed capacities per generation type and the zone of the Reference 

Portfolio. Note that solar and wind generation installed capacities are not presented in 

Table 10 because the supply of wind and solar energy are important variables in this study, 

so installed capacity of wind and solar power plants varies in the analysis to show different 

effects on their market value. 

TABLE 10: INSTALLED CAPACITIES OF NON-SOLAR AND NON-WIND TECHNOLOGIES (MW). SOURCE: NATIONAL ENERGY 

COMMISSION [252] 

Tec /Zone SING North 

SIC 

C. 

North 

SIC 

Central 

SIC 

C. South 

SIC 

South 

SIC 

Total 

Diesel 1,412 740 458 2,464 1,025 289 6,388 
Coal 2,254 694 0 820 789 0 4,556 

LNG 849 0 0 1,899 0 0 2,747 

Biomass 0 0 0 47 39 0 86 

Dam 

hydro 

0 0 0 0 2,736 570 3,306 
Run of 

River 

0 5 26 1,523 1,704 500 3,758 

Total 4,975 1,845 693 6,819 6,319 1,406 22,057 

 

In the modeling, dam hydro, coal, and LNG units are represented separately and 

independently. However, some diesel units with similar variable prices and locations are 

grouped due to memory limitations. Similarly, some biomass units with similar variable 

prices are grouped. Additionally, run-of-river hydropower plants are also grouped into 

three different types depending on their location and generation profiles, as explained in 

the previous section. Variable costs of thermal power plants are obtained from data 

published by the Chilean National Energy Commission [252]. Different plants have 

different variable costs according to their efficiency and specific type of fuel. Figure 43 

presents the variable cost of every unit of coal and LNG plant used in the model and a 

sample of the diesel plants.  
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FIGURE 43: VARIABLE COSTS OF THERMAL POWER PLANTS (US$/MWH). SOURCE: OWN ELABORATION BASED ON DATA PUBLISHED 

BY THE NATIONAL ENERGY COMMISSION OF CHILE [252] 
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4.4 Model results: wind and solar market value in different scenarios of 

transmission and storage availability  

Renewable energy market value is found to be quite dependent upon transmission and 

storage availability in the Chilean electricity market, and this deserves a review of two 

central results of this research. The first is how renewable profile diversification helps 

increase renewable market value in a scenario of constrained transmission, and the second 

is how renewable profile diversification and hydro storage disturbs renewable energy 

market value.  

4.4.1 How spatial diversification helps increase renewable market value in a 

scenario of constrained transmission 

Most recent literature has highlighted that the value of spatial diversification of renewable 

resources comes from the reduced variability of the output. Nevertheless, when 

transmission is constrained, the system cannot take full advantage of the natural 

complementarity of renewable energy profiles. The available infrastructure of the power 

system and its possible future upgrades should be considered when determining the 

location of renewable generators. The use of locational marginal prices (LMPs) or spot 

prices to signal locations where generation can address electricity system insufficiency is 

one possible instrument that regulators should observe [256,257]. Smart siting of 

renewable power plants, considering the diversification of the aggregated profile as well as 

the transmission availability, may provide an opportunity to improve system efficiency, 

and at the same time, improve the market value of renewable generators. Indeed, the effect 

of spatial diversification on the renewable market value has not yet been explored. 

Different portfolios of wind projects, even with the same annual generated energy, result in 

different average LMPs, depending on their location and transmission capacity availability, 

as is shown in Figure 44. A portfolio with diversified power plants will usually produce 

higher market value for renewable power plants than a portfolio with non-diversified 

power plants.  
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FIGURE 44: AVERAGE LOCATIONAL MARGINAL PRICES FOR DIFFERENT SOLAR-WIND SHARES AND DIFFERENT PORTFOLIOS  
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FIGURE 45: WIND MARKET VALUE FOR TWO DIFFERENT PORTFOLIOS (REFERENCE PORTFOLIO AND DIVERSIFIED PORTFOLIO) AND 

TWO DIFFERENT TRANSMISSION SCENARIOS  
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FIGURE 46: WIND MARKET VALUE FOR DIFFERENT LEVELS OF TRANSMISSION CAPACITY  
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FIGURE 47: SOLAR AND WIND CURTAILMENT FOR THE REFERENCE PORTFOLIO AND LIMITED TRANSMISSION CAPACITY IN THE 

CHILEAN ELECTRICITY MARKET  
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diversification as another important flexibility measure. The price decrease of solar 

generation is dramatic because its generation is time-coincident. Due to Chile’s geography, 

the production of solar energy at an hourly level, is highly correlated. 

 

FIGURE 48: MARKET VALUE FOR DIFFERENT TECHNOLOGIES IN THE REFERENCE AND THE WIND-DIVERSIFIED PORTFOLIO IN THE 

CHILEAN ELECTRICITY MARKET 
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4.4.2 Interaction of solar and wind market value and hydro storage: location 

matters  

Some studies state that hydropower with storage slows the decrease in the market value of 

renewable energy as penetration rises [258]. Considering the results presented above, this 

statement appears to be correct but incomplete in the case of the Chilean electricity market, 

because hydro resources can rapidly become exhausted and, after a certain renewable 

penetration, the effect vanishes. In a scenario of massive solar PV, as is expected for Chile, 

the flexibility of hydro resources would be basically used to absorb solar PV production 

fluctuations, especially to cover the ramp produced in the afternoon when solar production 

declines and demand rises. Figure 49 presents wind and solar market values for two 

simulation variants, one with the hydro reservoirs with their normal storage capacity and 

the other one without any reservoirs (reservoir hydro power plants are treated as run-of-

river plants).Both variants receive the same water flows (same energy inflow). When 

storage is restricted, and the temporal flexibility is lost, hydro energy will then be 

immediately used or wasted. As can be seen in Figure 49, a decrease in bulk storage 

capacity, push down the solar market value, while the opposite is true in the case of wind 

market value. Note that after a certain wind - solar penetration, the difference of market 

value between the situation with normal storage and the situation with limited storage 

remains roughly constant, i.e. after a certain penetration of VRE the effect of current hydro 

reservoir capacity on solar market value does no longer increase, reaching approximately 

US$5/MWh.   
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FIGURE 49: WIND AND SOLAR MARKET VALUE FOR NORMAL AND LIMITED HYDRO STORAGE CAPACITIES IN A SCENARIO OF 

MASSIVE SOLAR PV PENETRATION IN CHILE 

 

Spatial diversification and storage are complementary flexibility measures. Spatial 

diversification has positive effects when transmission capacity is constrained. In a scenario 

of constrained transmission, the ability of reducing market value losses when penetration 

increases is very much conditioned by how close the location of renewable energy 

generators are to the congested paths of the network. Also, storage cannot help alleviating 

value loss if there are significant transmission constraints between storage (hydro 

reservoirs in the case of Chile) and renewable power plants.Bad diversification combined 

with a congested transmission network can impede the use of the flexibility provided by 

storage. A very contingent example has occurred in Chile, where solar resources are 

concentrated in the north, and hydro resources are concentrated in the south, and it has 
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become is imperative to maintain large transmission corridors to take advantage of the 

flexibility of the hydro reservoirs to diminish the drop of solar market value.  

The primary constraint for integrating high shares of VREs, and the most important factor 

that pushes down their market value, is the limited temporal coincidence of generation 

profiles with the demand profile of the system. Hydro-storage allows production “to move" 

when it is more useful, so it is one of the most important sources of temporal flexibility in 

power systems. Reservoir hydro plants can mitigate the well-known "duck curve" effect 

(ramps produced in the afternoon when solar production declines and demand rises), 

because when there is high solar penetration, hydro generation is displaced toward the 

night and significantly reduces the afternoon ramp of thermal power plants. Figure 50 

shows the hourly profile for two cases, one simulating low penetration of wind and solar 

and the other simulating a high penetration of these technologies. Every case is simulated 

with two variants, one with limited storage of and the other with normal storage of hydro 

reservoirs. All the simulation cases assume a transmission system without congestion.  
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FIGURE 50: HOURLY PROFILE FOR TWO CASES, ONE SIMULATING LOW PENETRATION OF WIND AND SOLAR AND THE OTHER 

SIMULATING A HIGH SHARE OF THESE TECHNOLOGIES IN THE CHILEAN ELECTRICITY MARKET 

As shown in Figure 50 for low penetration of solar and wind energy, the normal reservoir 

of hydro capacity allows for limiting the cycling of the thermal generation (residual 

demand is almost flat). However, when renewable penetration is increased, the cycling of 

coal and LNG generation is also increased. As shown above, hydro reservoirs provide the 

ability to inject energy when it is needed most: when the solar resource is declining, and 

demand is rising. In the example above, without the presence of the storage, the afternoon 

ramp is covered by expensive thermal generators, including diesel generation. 
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4.5 Conclusions: relevance of VRE spatial diversification in power markets 

Exploiting the best potential sites to integrate them where they provide the highest value to 

the electricity system is no trivial matter. The spatial diversification of renewable 

generators, especially wind power generators, reduces the variability and therefore may 

add value to the system by reducing the needs of operating reserves and flexible traditional 

generators. Also, spatial diversification may reduce the risk of price depression and low 

market values in scenarios with active transmission capacity constraints.  

This chapter does not focus on the reduced variability of the diversified portfolios, but 

rather it presents a methodology and analysis to assess the interaction of spatial 

diversification with the availability of transmission capacities and bulk storage (hydro 

reservoir storage) for the Chilean electricity market.  Unlike most works that evaluate the 

impact of wind diversity by focusing on minimizing wind variability and the ramping of 

wind farms, this study models the impact of that spatial diversification of wind on its own 

market value in scenarios of transmission capacity and storage limitations. The 

effectiveness of the spatial diversification of wind power plants is measured by comparing 

its market value within two portfolios under different transmission and storage available 

capacities. In a scenario of abundant transmission capacity, the value of spatial 

diversification is produced by the reduced variability of the aggregate wind production (as 

per the current literature trend). However, few power systems have unlimited transmission 

capacities. Furthermore, the availability of transmission capacity is dynamic, since 

construction and connection of renewable projects, especially solar and wind power plants, 

is extremely fast.  

In an ideal world without transmission constraints, market value would be a function of the 

share of renewable energies, and the variability and co-variability with other resources (a 

very good theoretical approach is explained by Hirth and Radebach [259]). However, in 

real power markets the value depends very much on the transmission topology and its 

availability. The results in this chapter suggest that wind market value in Chile can vary up 
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to US$10/MWh depending on the level of diversification and the spatial and temporal 

constraints of the system.  Hydro storage is also an extremely important source of 

flexibility that can be used to alleviate the drop in the market value of renewable energy. 

As presented in Section 4.4.2, the current capacity of Chile’s hydro reservoirs may increase 

value of the solar market up to US$5/MWh (depending on the transmission capacity and 

the share of variable renewable energy in the system). Even though these results must be 

observed with caution, because they depend on the assumptions made, they are an 

additional effect of renewable spatial diversification that have been ignored in the 

literature.     

 Expanding the storage capacity of the reservoir will not always increase the market value 

of a specific renewable generation technology, because it depends upon the presence of 

other sources of intermittency. In Chile, the massive penetration of solar PV technology 

exhausts the flexibility of hydro storage in a scenario of abundant transmission availability. 

To take full advantage of the flexibility of hydro resources to incorporate solar PV, is 

imperative to develop and maintain transmission corridors that connect solar resources 

from the north and the hydro resources to the south with the demand centers. In that 

context, a viable regulatory strategy to promote the development of wind power and 

increase its market value in Chile could be to incentivize the spatial diversification to 

reduce the risk of congestion and avoid the "self-cannibalization effect" [191]. It should be 

noted that in this study, traditional hydro storage was evaluated because it is one of Chile’s 

primary resources for energy generation, however,  electrical energy storage (EES) costs 

are rapidly decreasing [55], thus variable generation technologies will be capable of 

regulating their own production sooner than later. Accordingly, another methodology, 

beyond the analysis of this chapter, could be developed to assess the impact of ESS on the 

market value of wind and solar power plants.  

The economic efficiency of generation projects depends upon their location respect to 

transmission constraints. Understanding the impact of the dispersed aggregation of wind 

generation and more generally of renewable energy generators on the power market might 
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help policy makers to take these effects into account and change the “technological 

portfolio” paradigm to a “technological-locational” paradigm. Territory-specific 

characteristics of renewable energies allow policy makers to point toward much more 

regional-specific and accurate strategies and consequently to the most effective and cost-

efficient measures. The promotion of a zone as a renewable energy supplier may have 

more benefits for the system than solely the production of energy if it provides temporal 

and spatial diversity within the generation profile. This research is an argument and 

reminder that policy designs on siting decisions, especially in Chile, should be made with a 

system perspective. First, as explained in Section 4.4.1, the diversification of VRE 

generators solely based on their profiles is useless if there is not enough transmission 

capacity. Transmission enables diversification and Chile has very good potential to 

diversify wind resources throughout its territory as presented in Sections 4.2.2 and 4.3.2. 

Second, while wind market value may increase by diversifying wind generation throughout 

its territory, the availability of hydro reservoirs provides almost all of its flexibility to solar 

generation and increases their market value. As mentioned in Section 4.4.2, this interaction 

only produces benefits if there is enough transmission. 
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CHAPTER  5: OPTIMAL GENERATION INVESTMENT STRATEGY UNDER 

UNCERTAINTY OF THE EXPANSION OF TRANSMISSION 

INFRASTRUCTURE: AN APPLICATION OF REAL OPTIONS 

THEORY AND RISK-RETURN ANALYSIS 

5.1 Introduction: flexibility investments on modular renewable energies 

Renewable energy technologies are increasingly being incorporated into electricity 

markets, not only due to the social and environmental pressure of citizens or as a measure 

to mitigate emissions, but also because they have reached a technological stage, which 

allows them to compete on costs with conventional generation technologies. Consequently, 

the power systems and their planning will have to continue adapting in order to incorporate 

large amounts of renewable energies in short times [187,188,260–262]. 

5.1.1 The fast time to market of renewable energies  

One of the main features of renewable energy technologies and especially solar PV is its 

rapid construction, since large civil works are not required and therefore several hundred of 

megawatts can be developed in few years [263]. Another feature of these technologies, 

especially intermittent renewable energies, is that it is very difficult to forecast their 

generation accurately, which can go from zero to full capacity in an instant, therefore they 

require permanent transmission capacity [238,264]. 

The fast construction time that characterizes renewable generators that in most countries is 

decided by the private sector, along with the centrally planned large transmission 

infrastructure, causes periods of mismatch between the development of the generation and 

the development of transmission [265]. That is, periods in which installed generation 

cannot be fully dispatched due to the lack of transmission. This situation can be caused by 

simultaneous, rapid and uncoordinated installation of new generators that deplete the 

existing transmission capacity [266]. Transmission congestion, causes a production 

limitation and strongly affects the income of a generation plant, as it may reduce marginal 

costs at the point of injection and can even affect long-term contracts [267]. Given that 
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investments in power plants are largely irreversible, since they imply a high degree of sunk 

costs, the investment evaluation must be carried out with tools that incorporate uncertainty 

and the flexibility of waiting or developing the project in stages. 

5.1.2 The link between transmission, its uncertainty and the effect of its scarcity in 

the development of renewable projects 

As the certainty about the entry of new transmission increases in time, the investments in 

generation also increase and therefore waiting times for the commissioning of projects may 

be greater, because all projects simultaneously. request environmental authorizations, 

building permits and connection requests A longer time to enter the market or "time-to-

market" affects the investment return, since the income of the first months has a higher 

present value than the future income. Therefore, a delay of the project, once the investment 

has been made, severely affects the profitability of the project. For example, a project that 

rents 7% and has an economic useful life of 15 years, will approximately lose a point of 

profitability if, the commissioning is delayed one year after the investment was made. 

Both effects, the limitation in production due to the lack of transmission capacity and the 

delays in the commissioning of generation projects are analyzed in this paper to find a 

strategy for the investor. Two well-known techniques are used in this paper: the real option 

theory to consider the flexibility of delaying an investment and the risk-income analysis 

associated with the portfolio theory to evaluate investment by stages. In this context, the 

risk is understood as the possibility that the profitability may be lower than expected and 

the income refers to the expected profitability of the project. 

The rest of this work is divided as follows: section 2 presents a review of the literature on 

real option theory and portfolio analysis; section 3 presents the model developed and the 

main assumptions, section 4 develops a conceptual example; section 5 shows some results 

of the application of this model; and section 6 presents the conclusions of this work. 
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5.2 Real option and portfolio theory and their application on electricity markets: 

A literature review 

The conceptual bases of option theory and portfolio theory are born in the field of finance, 

the first mainly through the work of Black and Scholes [58] and the second through the 

work of Markowitz [21]. 

In the financial sphere, one option is an instrument or contract that gives the right but not 

the obligation, to buy or sell an asset, subject to specific conditions within a certain period. 

There are two basic types of options: those that give the right to buy (call) and those that 

give the right to sell (put). The options are classified as american when the right can be 

exercised at any time before the expiration date and as european when the right can only be 

exercised at a specific time [268]. 

Portfolio optimization theory was a revolution in 1952, since for the first time an 

investment methodology considered the expected return and the risk of investments. At the 

same time, there was no need to study individual assets anymore, but rather their 

contribution to increasing profitability and reducing the risk of an entire portfolio. In fact, 

the quantification of the diversification concept through the correlations between the assets 

returns was a great novelty in the financial field [22]. Likewise, the introduction of the 

efficient frontier that shows all efficient portfolios (maximizing return for a given risk and 

vice versa) is another of the great contributions of Markowitz's work. Figure 51 presents an 

example of the portfolio’s efficient frontier. 
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FIGURE 51: EXAMPLE OF AN EFFICIENT FRONTIER 

5.2.1 Real option theory in electricity markets: incorporating and valuing 

flexibilities 

A real option can be defined as the right, without the obligation, to make an investment 

decision that involves a real asset (delay, abandon or modify) [143]. This flexibility, when 

considered in the economic evaluation of a project can decrease the expected variability of 

the project's value [143,269]. The real option theory allows to explicitly assess investment 

flexibility, which makes this technique very suitable for the evaluation of projects that are 

exposed to great future uncertainty, but that at the same time have some degree of 

flexibility and this, when considered, can add value to the project. 

There are multiple types of real options, but the most common are the following [270]: 

delaying or deferring, developing by stages, escalating the operation, abandonment, 

changing the output or input and growing. These different types of options can be applied 

to multiple projects and the first two options (delaying or deferring and developing in 

stages) are especially suitable for evaluating infrastructure investment decisions that are 

normally very rigid and with large volumes of capital, such as electricity infrastructure 

projects. The sources of value of each of the options are summarized in Table 11. 

Expected return

Suboptimal portfolios.
For a specified risk level
they offer less expected
return than the
portfolios of the
efficient frontier

Each point of the
efficient frontier is
an optimal portfolio
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TABLE 11: MULTIPLE TYPES OF REAL OPTIONS, BASED ON [270] 

Option Source of Value 

Delay /defer Wait for better conditions (higher sales prices, lower costs, have more 

information and reduce risks). 

Develop in 

stages 

Come into the market early, take advantage of high prices and then go on with 

new stages. 

Scale the 

operation 

The firm can increase / decrease its output according to market conditions. 

Leave Operations can be abandoned and capital-intensive equipment can be sold. 

Change the 

output or input 

The productive process of the firm allows to change the output product or the 

output product can be produced with other production factors 

Grow The firm has prior investments, information, knowledge or other vantage points 

that allows to develop new products or processes. 

 

The real option theory has been applied in the evaluation of projects for decades. In 1977 

Myers  [271] was the first to use the option theory in analyzing decisions about real assets 

and present it as real options, since that publication, several applications have been 

developed. A review of real options applications in the petroleum and electrical industry 

and the implementation of environmental policies is presented by Dixit and Pindyck [143]. 

Also, a more recent review of various applications in the energy field is carried out by 

Fernandes et al. [133]. In the area of electricity markets, real option theory has been widely 

used: firstly to value investments facing price uncertainty [272,273] and, more recently, to 

value environmental policies [153,154,274]. Yang et al. [153] uses real option theory to 

analyze the effects of the uncertainty in environmental public policies over investment 

decision in gas, coal and nuclear generators. In other words, the flexibility of delaying the 

generation projects investment is analyzed in the face of regulatory uncertainty represented 

by different scenarios of CO2 prices. Also, there are applications using real option models 

to investigate the impact of technological progress on investment decisions in the 

electricity sector [48].  

Modeling methods of real options can be classified in three types [133,275]. Modeling 

through partial differential equations, where the value of the option is mathematically 



141 

 

 

 

expressed and can therefore be solved analytically or via numerical methods [26]; through 

decision trees and dynamic programming, where future decisions and their relation with 

current decisions are explicitly evaluated [153,154] and finally, they can be modeled via 

Monte Carlo simulations in which multiple evolution scenarios are developed using 

stochastic parameters and then the optimal investment strategy is decided for each scenario 

[276,277]. 

5.2.2 Portfolio optimization applied to electricity markets: literature review 

The application of portfolio optimization theory in electricity markets has been widely 

addressed in the literature, although it has been addressed late after its application in the 

financial field. Most works applying portfolio optimization to electricity markets are 

applied to energy planning aiming to define an optimal technological generation mix. A 

notable exception is the work by Shakouri et al [278] which presents a decision-support 

model to asses and manage volatility in PV generation projects to assist investors of 

community-based PV projects in developing optimized investment strategies.  

The portfolio energy planning literature started from the work of Awerbuch and Berger 

[13] that seek to optimize the future technological mix of the European Union, taking into 

account the levelized system cost and its variability given by the possible trajectories of 

fuel prices and technologies investment costs. Based on this work, a series of subsequent 

works of different authors made improvements and applied the methodology to different 

electricity markets, considering different generation technologies [14,15,74,76,79,81]. 

Some portfolio applications that go beyond levelized costs, integrate the dispatch 

optimization to the definitional problem of the optimal technological mix, without 

assuming pre-established plant factors for generation technologies [88]. Furthermore, other 

works include the operational constraints, this is the case of the work done by Delarue et 

al. [72] and Vithayasrichareon and Macgill [100]. 
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5.2.3 Portfolio and real options theories applied electricity markets: literature 

review 

There is very limited literature that combines both methodologies (real option theory and 

portfolio optimization) to consider the timing of investments due to future uncertainty, as 

well as the cost-risk profile of investment decisions. The first work to incorporate both 

methodologies in the context of investments in electricity markets is the work done by 

Fortin et al. [156]. The authors use real options analysis to find the best timing to invest in 

carbon capture and storage technologies for coal and biomass generation plants and to 

invest in wind generation. This analysis is carried out for different electricity and CO2 

price scenarios, using real option theory to obtain different distributions of investment 

returns. These distributions are used as input for the portfolio optimization to efficiently 

define a cost-risk profile to invest in these technologies. 

The work of Szolgayová et al. [157] takes diversification over time into account. That is, it 

considers the option to change the portfolio in the future. These authors find that the 

possibility of adapting the future portfolio has implications in the investment decision of 

today's portfolio. Another work that uses both methodologies is the work of Fuss et al. 

[158], that seeks to evaluate the technological mix generation in the face of different socio-

economic scenarios considering uncertainty about emission price. They find in their work 

that uncertainty about the emission price is more significant for the investors than the 

uncertainty of socioeconomic future scenarios, especially for risk-adverse investors. 
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5.3 A model to identify the timing of investments based on a portfolio of real 

options 

In this paper, two sources of uncertainty are modeled from the perspective of a firm 

analyzing to invest in the development of a generation project: the uncertainty regarding 

the commissioning of a new transmission line and the uncertainty regarding the delay or 

"time to market" of the generation project. Note that the price of electricity injections are 

not treated as a random variable, since it is assumed that the generation project will have a 

Power Purchase Agreement considering a fixed price at its injection point. 

Two applications are presented in this work, a conceptual and a numerical application. The 

conceptual application only considers the uncertainty associated with the commissioning 

of the transmission line, while in the numerical application both uncertainties are 

considered. The conceptual application considers the commissioning date of the 

transmission line as a categorical variable, that is, different probabilities associated with 

the realizations that the line get into operation at t, t + 1, t + 2, etc. are assumed. The real 

option analysis is solved using the decision trees method, as detailed in Section 3.1.1. In 

the numerical application this uncertainty is treated as a random variable with a given 

distribution, as detailed in Section 3.1.2. Likewise, the uncertainty regarding the delay or 

"time to market" of the generation project is modeled as a random variable with a specific 

distribution detailed in Section 3.2. 

Both sources of uncertainty have a direct impact on the project's value and its profitability. 

Since the renewable generation project can be developed in stages, the investment in each 

stage is evaluated under a cost-risk scheme in order to find the optimal strategy associated 

with these real options. This is solved in the numerical application through a Monte Carlo 

simulation, as shown in Figure 52. 
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FIGURE 52: STAGES OF THE GENERAL METHODOLOGY APPLIED TO THE NUMERICAL APPLICATION PRESENTED IN SECTION 5 

5.3.1 Uncertainty in the commissioning date of the transmission expansion 

infrastructure 

Two resolution methods are used to value the option of delaying the investment. First, in 

the conceptual application the decision tree method is applied in a very simple but 

revealing way. On the other hand, in Section 5 the Monte Carlo method is applied, since 

the presented application is more complex and involves more sources of uncertainty. In 

both cases, the underlying asset is the present value of the generation project's future flows 

while the strike price of the option corresponds to the investment cost of the project. 

Modeling the uncertainty of commissioning date of the transmission using categorical 

variables and decision tree method 

The only source of uncertainty that is modeled in the conceptual application presented in 

Section 4 is the commissioning of the transmission line and therefore the basic structure of 

the decision tree presented in Figure 53 is simple, but it accurately represents such 

uncertainty. 
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FIGURE 53: DECISION TREE ASSOCIATED WITH THE UNCERTAINTY OF THE COMMISSIONING DATE OF THE TRANSMISSION 

INFRASTRUCTURE 

The probabilities p and 1-p represent the firm's view that the line will be operating or not 

will be operating in the period t + 1. Therefore, these probabilities should be estimated 

based on information about the progress of the transmission project and the experts 

criteria. Just as a financial option to purchase (call), the value of the option represents the 

value of the flexibility to wait and observe whether the line started to operate or is delayed. 

Equation ( 19 ) represents the value of the option in the intermediate nodes, while in the 

final nodes the value of the option is represented by the maximum of the difference 

between the present value and strike price (investment cost) and zero (the option is not 

used), as presented in equation ( 20 ): 

 𝐶𝑡 = [𝑝𝑡 𝐶𝑢
𝑡+1 + (1 − 𝑝𝑡)𝐶𝑑

𝑡+1]𝑒−𝑟∆𝑇  ( 19 ) 

 

pt

1-pt

t t+1 t+2

Transmission is operating

Transmission is not operating
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 𝐶𝑡_𝑚𝑎𝑥 =  𝑚𝑎𝑥[𝑉𝑃𝑡_𝑚𝑎𝑥 − 𝐾, 0 ] ( 20 ) 

 

 

Where 𝐶𝑡 represents the value of the option of the intermediate node at t, 𝐶𝑢
𝑡+1 is the value 

of the option of the next node representing when the transmission line starts operating and 

𝐶𝑑
𝑡+1 is the value of the option of the next node when the line does not start operating. 

𝐶𝑡_𝑚𝑎𝑥  is the value of the option in the extreme nodes, 𝑉𝑃𝑡_𝑚𝑎𝑥  is the present value of the 

project at 𝑡_𝑚𝑎𝑥 and 𝐾 is the strike price or investment cost of the project. Also, the 

expression 𝑒−𝑟∆𝑇 discounts the flows at a discount rate of 𝑟. 

The penalty for a generation project that starts operating when the transmission line is not 

available is estimated by reducing its injected energy and not punishing its sale price. 

Losing part of its energy production represents lower revenues in the first years of 

operation and therefore a lower value of the generation project. As explained before a fixed 

price guaranteed by PPA contract was assumed. 

Modeling the uncertainty of commissioning date of the transmission using PERT  

The analysis through tree model discretizes the uncertainty: the transmission infrastructure 

will be available at time t, when, the transmission infrastructure could start its operation at 

any time.  In addition, it is necessary to model the delay of the generation project. 

Therefore, taking these two sources of uncertainty into account, the resolution through the 

tree method becomes very complex. 

To model the uncertainty of the commission time of the transmission line, a Beta 

distribution is used, obtained from project evaluation techniques or PERT (from the 

Program Evaluation and Review Techniques) [279,280]. This technique is widely used to 

model delays for project evaluations [279,280]. Under this methodology, to estimate the 

activity's duration of the project, a beta distribution is used, calibrated with three 

parameters that are determined exogenously: a pessimistic time (𝑏), a probable time or 
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mode (𝑚), an optimistic time (𝑎). Thus, the random variable 𝑥, which represents the time it 

would take to complete the construction of the line, would have a distribution function as 

expressed in ( 21 ): 

 
𝑓(𝑥) =

Γ(𝛼 +  𝛽)

Γ(𝑎)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1 

( 21 ) 

 

 

Where Γ is the gamma function and the parameters α and β are represented by equations ( 

22 ) and ( 23 ). 

 
𝛼 =

4𝑚 +  𝑏 − 5𝑎

𝑏 − 𝑎
 

( 22 ) 

 

 
𝛽 =

5𝑏 −  𝑎 − 4𝑚

𝑏 − 𝑎
 

( 23 ) 

 

 

The previous equations represent a distribution that is a case of the Beta distribution, also 

known as the Pert distribution. The shape of this distribution is presented in Figure 54, 

where on the left a symmetrical PERT distribution is shown, very similar to a normal one 

but with finite tails. On the right side of the figure there is an asymmetric distribution 

where the mode is slightly closer to the upper limit. 
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FIGURE 54: SHAPES OF PERT DISTRIBUTION: ON THE LEFT A SYMMETRICAL DISTRIBUTION AND ON THE RIGHT AN ASYMMETRICAL 

DISTRIBUTION 

 

5.3.2 Modeling the uncertainty of the "time to market" of a generation project 

Normally, given the uncertainty of the commissioning date of a relevant transmission line 

in the system, delaying the investment of a generation project implies greater certainty of 

the line's commissioning date (the project's progresses), but also a higher probability of a 

longer waiting time between the investment time of the generation project and its 

commissioning (time to market). This is because as greater certainty about the line exists, 

the number of incoming generation projects that will request new connections, 

environmental impact assessments, sectoral permits, increases. A longer time to market, 

causes lower returns. One of the main procedures associated with the development of 

electrical infrastructure projects is the environmental impact assessment of the project, as it 

is a topic that is increasingly relevant and demanding  [281,282]. In Chile, the 

environmental impact service (SEIA) approved 165 projects between January 1st, 2010 

and September 30th, 2017 (93 months) and therefore it had an average attention rate of 

1.77 projects per month, furthermore the average processing time for these projects was 

10.9 months [283]. 

Project's waiting modeling by using the queue theory 

The process of permitting  is modeled in this work as a basic waiting process, based on the 

classic queuing theory [284]. Specifically, a tail system of type M / M / 1 is modeled, that 

is, with exponential time between arrivals, exponential service time and one server. In 

a ba bm m
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addition, the queue is of FIFO type (First Input, First Output) as shown in Figure 56. These 

assumptions are traditionally used in queuing theory since times between arrivals distribute 

exponentially, assuming the number of arrivals distribute Poisson, therefore the projects 

request is independent from each other. In the case of the generation projects, the three 

properties of a Poisson process seem to be fulfilled [285]: 

1. Requests arrive one at a time. 

2. The probability of an application arriving at any time is independent when other requests 

arrived. 

3. The probability that a request will arrive at some point is independent of the moment. 

 

FIGURE 55: REPRESENTAION OF A FIFO QUEUE (FIRST INPUT, FIRST OUTPUT) 

If 𝑁(𝑡) is the number of requests during the time period 𝑇, then the probability of 𝑁(𝑡) is 

expressed in equation ( 24 ), where 𝜆 represents the average number of projects arrivals per 

period of time. Therefore, the time between requests distributes as an exponential 

distribution of rate 𝜆 and is represented by equation ( 25 ). Finally, it can be inferred that 

the distribution function of the waiting 𝑊 or total attention time is represented by the 

distribution expressed in equation ( 26 ): 

Start of the
queue

End of the
queue

The project
enter for its
evaluation

End of the
evaluation
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𝑃 {𝑁(𝑇) = 𝑛} =

𝑒−𝜆𝑇(𝜆𝑇)𝑛

𝑛!
 

 

( 24 ) 

 

 𝑃 {𝐼𝐴(𝑡) ≤  𝑇} = 1 − 𝑒−𝜆𝑇 

 

( 25 ) 

 

 𝑃 {𝑊 ≤  𝑇} = 1 − 𝜌𝑒−(𝜇−𝜆)𝑇 ( 26 ) 

Where  𝜇 corresponds to the average attention rate of the system that must be greater than 

𝜆 (so that the queue does not tend to infinity) and 𝜌 = 𝜆/𝜇 is called the system utilization 

factor. The total time of attention has an average represented by equation ( 27 ). 

 
𝑊𝑎 =

1

𝜇 − 𝜆
  

( 27 ) 

 

Finally, the delay time is estimated as the maximum between the difference between the 

total processing time and 12 months and zero, as indicated in equation ( 28 ). Accordingly, 

when attention time takes less than 12 months, it is not considered as a delay. 

 
𝐷 = 𝑚𝑎𝑥(𝑊 − 12, 0) 

( 28 ) 

 

5.3.3 Portfolio analysis of the real options: identifying the optimal investment 

strategy 

The real options that the investor faces are varied, being able to postpone his investment or 

make it in stages as long as the uncertainty is revealed or more information is obtained. 

Each option represents an expected return together with an expected variability of that 

return, and therefore a combination of these options should be chosen based on the 

investor's risk aversion. 
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To obtain return distributions of what would happen when investing different levels of 

capital each year and thus obtain the statistical measures that represent expected return and 

risk, a Monte Carlo simulation is performed for pre-established portfolios. Namely, this 

methodology does not seek to identify the optimal portfolio or the "perfect" combination of 

staging investments, since a firm normally has constraints on the use of capital. For this 

reason, simulation is the most appropriate instrument to solve this problem in order to find 

the differences in risk-return profiles between different possible investment combinations, 

as shown in Figure 56. 

 

FIGURE 56: SIMULATION METHODOLOGY TO EVALUATE THE REAL OPTIONS 

  

Real options
investment

P1

PN

Pm

Do not wait: Invest 100% at 
time t for the entire 
development of the project

Invest X% of the capital and 
buy the option to develop at t 
+1 (reservation of connection 
space)

Invest all the capital in the 
option to invest at t + 2 
(reservation of connection 
space for t + 2)

…
…

…
…

Monte Carlo simulation for waiting time 
computation considering M/M/1 process
for each portfolio Pi

Calculation of return for each portfolio 
considering Pi the waiting times.

Estimation of the statistical descriptors of 
each portfolio Pi and construction of the 
efficient frontier
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5.4 Real option analysis using the decision tree method: a conceptual application 

The transmission capacity's reserve option depends only on three essential parameters: 1) 

the probabilities assigned to the commissioning line's date, 2) the lower value of the 

present value associated with its future project flows due to possible reductions of energy 

injection, and 3) the discount rate or capital cost of the firm that develops the project. This 

is illustrated in a very simple way when analyzing the following case. Assume that with a 

certain probability 𝑝 in year 1 a transmission line starts its operation and on the contrary at 

year 2 it surely starts its operation. In addition, the following parameters are associated 

with the generation project: 

• Present value of future flows without congestion: a 

• Present value of future flows with a year of congestion: α ∙ a, where 0≤α ≤1 and 

represents a penalty factor of the present value due to congestion of the first year. 

• Investment cost of the project: I 

• Discount rate: r  

The net present value that is expected when investing at year 0 is presented in equation ( 

29 ). If the investment is made at year 1, when the uncertainty has already been solved 

(since the line is already operating or it will surely be operating in year 2), the  net present 

value, expressed at year 0, is the one presented in ( 30 ). 

 𝑉𝐴𝑁0 =  𝑝𝑎 +  (1 − 𝑝) ∙ 𝛼𝑎 − 𝐼 ( 29 ) 

 𝑉𝐴𝑁1 = 𝑀𝑎𝑥(𝑎𝑒−𝑟 − 𝐼, 0) ( 30 ) 

When 𝑉𝐴𝑁0  > 𝑉𝐴𝑁1 the investment should be done at year 0, since the future flows are 

greater than the investment. Otherwise, it is convenient to exercise the option of waiting to 

invest at year 1.  Therefore, the inequality (13) represents when it is convenient to invest at 

year 0. 

 𝐷𝑅 =  (𝑝 + 𝛼 − 𝑝𝛼 ) > 𝑒−𝑟 ( 31 ) 
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As can be inferred from the equation above, the decision depends on the probability 𝑝, of 𝛼 

and of 𝑟. Note that the decision does not depend on the investment value of the project or 

its future flows. By using this result it is possible to identify the combinations of possible 

values that would generate one decision or the other. So, for example, if 𝑝 = 1 (the line 

will surely operate at year 1), then naturally it is never convenient to wait. Otherwise, when 

𝑝 = 0 (the line will certainly not start its operation during year 1, but it will do it at year 2), 

then, it will only be advisable to invest at year 0, if the penalty due to congestion (𝛼) is 

close to the unit (that is, the congestion produced by the lack of the transmission line does 

not strongly affect the injections of the project). This analysis is presented in Figure 57 in a 

more generalized manner for different values of p and α and for a discount rate of r =

10%. 

 

FIGURE 57: GENERALIZED CONCEPTUAL ANALYSIS FOR DIFFERENT VALUES OF P AND Α 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 0.2 0.4 0.6 0.8 1

D
R

=
p

+
α

-p
α

α = penalization factor of the present value due to congestion 
during the first year

p=0

p=1

p=0.5

Each line has an 
associated p value

Exercise the option to 
postpone the investment.

exp(-rΔT)
r=10%
ΔT=1

Do not exercise the option to 
postpone the investment. Invest now



154 

 

 

 

Figure 57 shows that for probabilities 𝑝 approximately higher than 90% it is always 

advisable to invest in the first year. Also, if the penalty factor is very high (close to 0), then 

it is only advisable to invest during the first year when the probability that the line starts its 

operation is greater than 90%, in all other cases it is not advisable to invest in the first year, 

rather, it is advisable to wait and invest during the second year. 

The value of the option to wait to invest is expressed in equation ( 32 ) and represents the 

value that this flexibility has and therefore the maximum amount that a firm would be 

willing to invest to have this flexibility (e.g.: pay for reserving a connection space). 

 𝐶 =  𝑎(𝑝 + 𝛼 − 𝑝𝛼)  − 𝑎𝑒−𝑟   ( 32 ) 

5.5 Investment decision of a solar PV generation project in the north of Chile 

considering uncertainty of the commissioning date of the transmission 

infrastructure  

The methodology described in the previous sections is applied to a photovoltaic solar 

project located in the north of Chile. This case study is not strange in Chile, because it is 

exactly what has been happening since 2014 with  generation projects in the North, first 

waiting for the interconnection between the SING and SIC systems and still waiting for the 

500 kV connection between the Cardones and Polpaico substations, which connect the 

north, where solar projects are concentrated due to the excellent solar resource, and the 

center of the country, where a large part of the system's demand is concentrated. 

5.5.1 Uncertainty of the commissioning date of the transmission expansion 

As mentioned in section 3.1.2, the uncertainty of the commissioning time of transmission 

expansion, is modeled using the PERT distribution, for which pessimistic, probable and 

optimistic times must be defined. In this exercise we used an optimistic time of 12 months, 

a probable time of 30 months and a pessimistic time of 36 months. This means that the 

parameters of the distribution are the following: α = 3.957 and β = 2.043. These parameters 
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must be chosen with expert criteria and based on the project's progress. This probability 

distribution is presented in Figure 58. 

 

FIGURE 58: BETA DISTRIBUTION ( 𝜶 = 𝟑. 𝟗𝟓𝟕 AND 𝜷 = 𝟐. 𝟎𝟒𝟑) 

5.5.2 Uncertainty of the processing time of the generation project 

To model the delay of the generation project, the distribution functions are used with 

different project arrival rates λ per month, depending on the year in which the investment 

is made. For the investments of a generation project made in the first years, it is expected 

that the processing time before its commissioning will be shorter due to the high 

uncertainty in the commissioning of the line and therefore the lower influx of project 

requests. In all cases, an attention capacity (μ) of 1.77 projects per month is assumed, as 

indicated in Section 3.2 in relation to the attention rate of the SEIA. Table 12 presents the 

parameters of the distribution function and its final column presents the average time of 

attention resulting for each case. 

TABLE 12: PARAMETERS OF THE DISTRIBUTION OF THE WAITING FUNCTION OF THE GENERATION PROJECT 

Investment 

year  

Requests 

(proyect/month) 

𝝀  

Utilization 

factor 

𝝆 = 𝝀/𝝁 

Average 

waiting time 

(months) 𝑾𝒂 

0 1.678 0.948 10.9 

1 1.699 0.960 14.1 

2 1.714 0.968 17.9 
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Finally, it is established that the delay of a generation project will not be longer than 36 

months beyond the 12 months after the investment was made. That is, the delay is the 

minimum time between 36 months and the waiting time indicated in equation ( 28 ) and is 

represented by the expression ( 33 ). The representation of the distribution of each of the 

modeled delays (according to Table 12 ) is presented in Figure 59. 

 

 𝐷 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑊 − 12, 0),36)  ( 33 ) 

 

FIGURE 59: DISTRIBUTION OF DELAYS FOR EACH YEAR OF INVESTMENT 

5.5.3 Generation project: financial parameters, energy production modeling and 

reduction of injections due to congestion of the transmission system 

The financial parameters of the project, used to perform the NPV calculations, are 

presented in Table 13. These parameters correspond to the standard costs of a photovoltaic 

generation project in northern Chile.   
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TABLE 13: FINANCIAL PARAMETERS OF THE GENERATION PROJECT 

Parameter Value 

Investment   1.300 US$/kW 

Variable costs  0 US$/MWh 

Fixed annual cost 70 US$/kW-año 

Sale price (contract) 80 US$/MWh 

Debt percentage  80% 

Annual debt rate 4% 

Debt duration 25 years 

Discount rate 10% 

Economic life 25 years 

 

For the purpose of determining the monthly injections of the solar generation plant, the 

simulated production is obtained from the “Explorador Solar del Ministerio de Energía” 

[207,208] for a 1 MW capacity plant located in Diego de Almagro12, which results in an 

annual capacity factor of 28%. The monthly production and plant factors are presented in 

Figure 60. 

 

The basic production model is used, for a 1 MW plant, panel temperature coefficient (% / ° C) of -0.45, type 

of arrangement with horizontal tracking (HSAT) and maximum inclination of 45 °, inverter capacity of 1 

MW and efficiency of 96% and a losses factor of 14%. The project was located in Diego de Almagro 

(Latitude -26.3540 and Longitude: -70.0669). 
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FIGURE 60: MONTHLY GENERATION AND CAPACITY FACTOR FOR A 1 MW POWER PLANT IN THE NORTH OF CHILE 

The dispatch cut of the solar plant due to congestion depends on the transmission project 

and how the injections are affected in the connection point of the generation project due to 

a delay in its commissioning. Assuming that there are no other operational elements that 

affect production more than the limitation of the transmission capacity, this study models 

this as a percentage reduction of the monthly injection. For each month without the 

additional transmission capacity, the percentage of reduction of the injections increase. For 

the first year a linear trend is assumed, starting from 20% in January to 39.5% in 

December, with a total reduction of 30% of the expected injection, that is, the project can 

inject 70% of its production when there is congestion in the months of the first year. If the 

line starts operating during the second year, then the injections reductions for the second 

year increase up to 50%. The monthly reduction of the injections due to congestion is 

presented in Figure 61. 
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FIGURE 61: MONTHLY INYECTIONS CUTS DURING THE FIRST AND SECOND YEAR IN CASE OF CONGESTION 

This reduction rule, as the percentage of the injection is reduced, is the same used by the 

operator system in Chile, which in cases of congestions limits the injection of all 

generators in proportion of their injections before the congestion. With the reductions 

presented above, the energy that would be injected by the project for each installed MW 

would be the one presented in Figure 62. 
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FIGURE 62: MONTHLY INJECTIONS WITHOUT CONGESTION, WITH CONGESTION IN THE FIRST YEAR AND WITH CONGESTION IN THE 

SECOND YEAR OF A 1 MW PROYECT 

5.5.4 Construction of a real investment options portfolio 

For investment purposes it is assumed that the firm can invest only at the beginning of 

each year, that is, it can invest at year 0 or alternatively use the option of delaying the 

investment and invest at year 1 or at year 2. Also, taking advantage of the modularity 

feature of photovoltaic projects the option to invest by stages is also considered. 

Specifically, the following "assets" are evaluated: 

Invest at year 0: The investment is made independent of what may happen with the 

transmission and the delay of the generation project. In this case the value of the project 

depends on the month of entry of the transmission and the waiting of the generation 

project, which in this case has an average, of 10.9 months from the time of the investment, 

(i.e., few possibilities of delay, since the project assumes a construction delay of the 

project of 12 months). 

Wait one year: waiting one year to invest implies that a large part of the uncertainty about 

the commissioning date of the transmission line will have already been lost at the starting 

time of operations of the generation plant. However, waiting to invest for the first year 

(and not investing at year 0) implicates a greater possibility of waiting for the processing of 

the generation project, whose processing average time is 14.1 months and therefore a delay 

over the initial 12 months since investment is likely.  

Wait two years: waiting for two years to invest implies that the uncertainty about the 

commissioning date of the transmission line has already been completely lost (it will surely 

be operating at year 3, when the generation project begins to inject). However, in this case 

there is a great probability of a high processing time of the generation project with an 

average of 19.2 months. 

Depending on the risk aversion of the firm, it can choose a combination of the three 

alternatives presented above to configure a portfolio with the desired parameters of net 
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present value and risk. For this analysis, 141 pre-established portfolios are evaluated, 

whose investment percentages vary in steps of 5% as a minimum. Figure 63 presents each 

of the combinations analyzed. The fact that the portfolios are previously defined allows to 

evaluate the true alternatives that a firm has to decide about its capital according to the 

restrictions of its directors (ex .: minimum and maximum percentage of investment in a 

stage,  requirement of a particular use of capital in a stage, requirement to not invest in a 

stage, etc.) 

 

FIGURE 63: PREDETERMINED PORTFOLIOS OF REAL OPTIONS  

5.5.5 Net present value of the different investment options: identifying the efficient 

portfolios 

The histograms associated with the investment "assets" presented in the previous section 

are presented below and as shown in Figure 64, each of these alternatives’ present different 

statistical parameters. 
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FIGURE 64: HISTOGRAMS OF THE NPV OF THE DIFFERENT INVESTMENT OPTIONS 

Figure 65 presents, for each portfolio, the expected net present value against its variability, 

measured as its standard deviation and against CVaR at 5%. The efficient frontier 

(highlighted with red) presents the efficient portfolios, that is for a given risk, those 

portfolios maximize the expected net present value. 

 

FIGURE 65: EFFICIENT FRONTIER- RISK AS STANDARD DEVIATION (LEFT) AND RISK AS 5% CVAR (RIGHT). IN RED THE EFFICIENT 

PORTFOLIOS 

The maximum expected return portfolio is the one obtained from investing all the capital 

in the first year, when the risk of delay of the commissioning date of the line has already 

decreased, but the risk of delay of the generation project has not increased too much. This 

portfolio has a NPV of US $ 130,389 and a deviation coefficient of 50.9% (US $ 66,388). 
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On the other hand, the minimum risk portfolio is obtained when investing a 50% at year 0, 

a 30% at year 1, and 20% at year 2, presenting a NPV of US $ 120,756 and a deviation 

coefficient of 29.7% (US $ 35,851). Unlike the standard deviation, the 5% CVaR allows to 

measure the expected losses for the worst cases (5% worse) and therefore, it is a measure 

that could be more useful than the standard deviation for decision makers that are risk 

averse and therefore want to avoid great situations of losses. Table 14 presents the 

portfolios of the efficient frontier with their respective characteristics. 

 

TABLE 14: CHARACTERISTICS OF THE EFFICIENT PORTFOLIOS 

Id Expected 

NPV 

 (US$) 

Standard 

deviation 

(US$) 

Variation 

coefficient 

Std / VAN 

5% CVAR  

(US$) 

Investment per year 

(%) 

P1 130,389 66,388 50.9% -38,913 0% ; 100%;0% 

P2 129,738 63,287 48.8% -30,674 5%; 95%; 0% 

P3 129,088 60,285 46.7% -22,662 10%; 90%; 0% 

P4 128,438 57,399 44.7% -14,402 15%; 85%; 0% 

P5 127,787 54,645 42.8% -6,323 20%; 80%; 0% 

P6 127,005 51,514 40.6% 806 20%; 75%; 5% 

P7 126,487 49,623 39.2% 8,892 10%; 70%; 20% 

P8 126,222 48,738 38.6% 7,889 20%; 70%; 10% 

P9 125,704 46,603 37.1% 16,019 30%; 65%; 5% 

P10 125,186 45,428 36.3% 22,862 40%; 60%; 0% 

P11 124,922 43,716 35.1% 30,533 45%; 55%; 0% 

P12 124,404 42,600 34.2% 30,704 40%; 55%; 5% 

P13 124,139 41,866 33.7% 30,825 30% 55%; 15% 

P14 123,621 40,248 32.6% 37,301 40%; 50%; 10% 

P15 122,839 38,460 31.3% 43,324 40%; 45%; 15% 

P16 122,321 37,806 30.9% 45,510 50%; 40%; 10% 

P17 122,056 37,316 30.6% 48,853 40%; 40%; 20% 

P18 121,538 36,473 30.0% 50,499 50%; 35% 15% 

P19 120,756 35,851 29.7% 53,205 50%; 20%; 20% 

 

As shown in Figure 65, for the application presented in this paper, both risk measures 

(standard deviation and CVaR) result in the same efficient portfolios. Moreover, all 

efficient portfolios found using CVaR are in the efficient frontier while using the standard 

deviation measure. However, the reverse situation does not occur. This happens, precisely, 

because CVaR strongly penalizes the portfolios that have greater possibility of high losses. 
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The fact of being able to postpone the investment has a value and with the obtained results 

it is possible to estimate it, as well as its variability. For a risk adverse investor, the fact of 

having the possibility of delaying his investment and carrying it out in stages adds great 

value, given the uncertainty. The value of this flexibility could be interpreted, for example, 

as the maximum value that a firm would be willing to pay to reserve a connection space 

and thus ensure its connection and reduce its waiting time for the following years. 

5.6 Conclusions: the value of flexibility under the growing of electricity markets 

In this chapter, a review and application of the real options theory and portfolio 

optimization has been presented to valorize the option of delaying and developing a 

photovoltaic plant by stages. The uncertainty in the date of commissioning of a new 

transmission line required to evacuate the generation and the probable delays in the start-

up of the photovoltaic plant have been considered. The literature review shows that both 

techniques have been used for different objectives in the electricity sector. The real option 

theory has been used, in general, to value projects in the face of fuel prices uncertainty as 

well as uncertainty in environmental policies and CO2 costs. Portfolio theory has been used 

mainly to determine generation mixes considering the uncertainty in the cost of fuels, their 

variability and correlation of prices. There are very few applications where these 

techniques have been used together to address the problem of postponing or investing by 

stages.  

The value of the option to postpone the investment, while isolating the effects of energy 

and power sale prices, depends essentially on the commissioning of the transmission line 

that will evacuate its injection, as well as the discount rate or capital cost associated with 

the firm, as shown in the conceptual application presented in Chapter 4. 

Given the uncertainty in the commissioning date of the transmission line and the possible 

delay in a generation project, it is convenient to have the flexibility to postpone the 

investment and invest in stages depending on the risk aversion of the investor. The option 

to postpone an investment adds value in the evaluation of the project, that is, a project is 
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more valuable when it has the option of delaying its associated investment, as long as the 

cost of that flexibility is less than the expected benefit of having it.  

This work has assumed that there is always available connection capacity (free and open 

access to the transmission system), but in practice that does not happen, therefore the value 

of the investment flexibility is relevant as the only way to ensure the connection space is 

establishing a capacity reserve mechanism. The methodology presented in this paper to 

value the flexibility represents the maximum value that a firm would be willing to pay for 

having such reserve option.  
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CHAPTER  6: GENERAL CONCLUSIONS 

The electric power industry is very dynamic and in constant search of efficiency, especially 

in a world full of uncertainties. Today more than ever, the electric power industry faces a 

high degree of uncertainty in every dimension, from operations to investments. Part of this 

uncertainty is caused by renewable energy technologies that have been experiencing a 

rapid progress and wide deployment, producing a sharp drop in its investment and 

deployment costs and reducing the energy price at which they can supply electricity 

competitively. Indeed, more fundamental changes in the industry are expected over the 

next years. A boost in electricity demand due to electric vehicles, as well as an increase in 

distributed generation, massive storage, and the deployment of smart grids are some of the 

sector’s upcoming challenges. Large investments will be required to address these new 

challenges, and that is why agents need protection and are constantly looking for risk 

management tools. To contribute to this task, this work presents a selection of applications, 

issues, and opportunities for further research on portfolio optimization from different 

perspectives. Some of the main finding that can be found along this work are summarized 

below: 

• From a private perspective, the “correct” return of a portfolio of projects is the 

result of the return on individual projects plus the “interaction” among them. This 

“interaction” is key in portfolio optimization; interaction among projects allows for 

diversification and the cancellation of risks. 

• The literature places little emphasis on the value of waiting or deferring a project or 

a set of projects within the context of a portfolio. Decision makers who are 

unwilling to take risks in the face of insufficient information might be well advised 

to consider the option of waiting.  

• Given the radical changes and uncertainties in energy markets, structural-based 

methods are required to model future behavior of prices, instead of statistical 

approaches which may produce poor prediction of price behavior. 



167 

 

 

 

• Geographical diversification can significantly decrease variability in different time 

frames, especially of wind power production [46,47,107,108,111,184].  

• The most significant absence in the portfolio literature is the lack of spatial 

representation when power system is modeled. Unlike some planning models, most 

portfolio models do not consider the constraints of the transmission system as well 

as the difference and complementarities among renewable profiles at different sites. 

• Unlike most papers that evaluate the impact of wind diversity by focusing on 

minimizing wind variability and the ramping of wind farms, this work use an 

scenario-approach model to  analyze the impacts of spatial diversification of wind 

projects on its own market value in scenarios of transmission capacity and storage 

limitations in the Chilean electricity market. 

o Due to the model does not optimize the generation-transmission 

infrastructure, the scenarios used are variations from the projected scenarios 

by the planner.   

o Renewable market value depends very much on the transmission topology 

and its availability. The results in this work suggest that wind market value 

in Chile can vary up to US$10/MWh depending on the level of 

diversification and the spatial and temporal constraints of the system. 

o The current capacity of Chile’s hydro reservoirs may increase value of the 

solar market up to US$5/MWh (depending on the transmission capacity and 

the share of variable renewable energy in the system). 

o  Even though these results must be observed with caution because they 

depend on the assumptions made, they are additional effects of renewable 

spatial diversification which usually are not taken into account.  

• Renewable market value is very important for regulators or policy makers because 

the development of renewable energy technologies, as well as their market 

integration and support policies depend on their market value. Territory-specific 

characteristics of renewable energies allow policy makers to point toward regional-
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specific strategies and consequently to effective and cost-efficient measures to 

mitigate their market value drop. 

• Smart signaling the siting of renewable power plants, considering the 

diversification of the aggregated profile as well as the transmission availability, 

may provide an opportunity to improve system efficiency, and at the same time, 

improve the market value of renewable generators.  

• Uncertainty on the commissioning date of transmission projects greatly affects the 

evaluation of generation projects: those who have the flexibility to postpone the 

investment and invest in stages have advantages.  

 

Some of the research opportunities found in this work and described along the document 

are briefly described next: 

• Future work should study the coordination between network expansion and generation 

projects. The role of the transmission expansion process is fundamental for 

diversifying the energy matrix and efficiently using the country’s limited geographic 

space.  

• Future studies could contribute by identifying how renewable diversification policies 

may be used as an option to defer transmission investments.  

• Storage technologies are still not considered to be a solution for preventing or 

mitigating risks in portfolio analysis, although their costs are decreasing quickly, and 

they are becoming commercially feasible. Research in this area is slowly being 

integrated into the planning framework. 

• An excellent opportunity for research lies in analyzing the impact of the new small and 

distributed energy systems with the active participation of the demand side of the 

portfolio, changing its composition, or becoming a component of the optimal portfolio 

as an energy resource. 
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• Further work should be done to consider forecast errors in the modeling. Forecasting 

errors are important because unpredictability of VRE affects unit commitment 

decisions and long-term hydro generation decisions, therefore forecast errors may have 

an impact on the system operation. The complementarity of generation profiles also has 

an impact on forecast errors because the aggregated generation of different renewable 

projects may be more predictable, so with enough transmission capacity, a centralized 

forecast model may improve the performance of the operation.  

• The benefits of complementarity of renewable generation profiles should be evaluated 

in a sub-hourly model to account for the benefits on the system reserves, on the 

reduced cycling of thermal power units and more generally, on the operational level of 

the system in that time scale.   

• For the investor perspective, including the electricity price as other source of 

uncertainty, in addition to the commissioning date of relevant transmission projects, 

would be an additional step to going further in understanding the interactions of these 

two sources of risk and the possibilities of mitigation.  

• Future works should study short-term connection reserve mechanisms to facilitate 

investments in modular and rapidly building renewable energies (such as solar and 

wind projects), establishing the necessary safeguards to avoid speculation.  

 



170 

 

 

 

REFERENCES 

[1] Awerbuch S. Portfolio-based electricity generation planning : Implications for 

renewables and energy security. vol. 11. 2004. doi:10.1007/s11027-006-4754-4. 

[2] Conejo AJ, Carrión M, Morales JM. Decision making under uncertainty in 

electricity markets. 1st ed. Springer US; 2010. doi:10.1007/978-1-4419-7421-1. 

[3] Soroudi A, Amraee T. Decision making under uncertainty in energy systems: State 

of the art. Renew Sustain Energy Rev 2013;28:376–84. 

doi:10.1016/j.rser.2013.08.039. 

[4] Santos MJ, Ferreira P, Araújo M. A methodology to incorporate risk and uncertainty 

in electricity power planning. Energy (Accepted Publ 2015;115:1400–11. 

doi:10.1016/j.energy.2016.03.080. 

[5] Prasad RD, Bansal RC, Raturi A. Multi-faceted energy planning: A review. Renew 

Sustain Energy Rev 2014;38:686–99. doi:10.1016/j.rser.2014.07.021. 

[6] Fortes P, Alvarenga A, Seixas J, Rodrigues S. Long-term energy scenarios: Bridging 

the gap between socio-economic storylines and energy modeling. Technol Forecast 

Soc Change 2015;91:161–78. doi:10.1016/j.techfore.2014.02.006. 

[7] Gross R, Blyth W, Heptonstall P. Risks, revenues and investment in electricity 

generation: Why policy needs to look beyond costs. Energy Econ 2010;32:796–804. 

doi:10.1016/j.eneco.2009.09.017. 

[8] Roques FA, Newbery DM, Nuttall WJ. Fuel mix diversification incentives in 

liberalized electricity markets: A Mean-Variance Portfolio theory approach. Energy 

Econ 2008;30:1831–49. doi:10.1016/j.eneco.2007.11.008. 

[9] Muñoz JI, Sánchez de la Nieta AA, Contreras J, Bernal-Agustín JL. Optimal 

investment portfolio in renewable energy: The Spanish case. Energy Policy 

2009;37:5273–84. doi:10.1016/j.enpol.2009.07.050. 



171 

 

 

 

 

[10] Pye S, Sabio N, Strachan N. An integrated systematic analysis of uncertainties in 

UK energy transition pathways. Energy Policy 2015;87:673–84. 

doi:10.1016/j.enpol.2014.12.031. 

[11] Pereira de Lucena AF, Szklo AS, Schaeffer R, Dutra RM. The vulnerability of wind 

power to climate change in Brazil. Renew Energy 2010;35:904–12. 

doi:10.1016/j.renene.2009.10.022. 

[12] Prpich, G., Darabkhani, H., Oakey, J., Pollard S. An investigation into future energy 

system risks : An industry perspective Working Paper 2014:68. 

[13] Awerbuch S, Berger M. Applying portfolio theory to EU electricity planning and 

policy-making. Rep Number IEA/EET 2003;3:69. 

[14] Jansen J, Beurskens LWM, Tilburg X Van. Application of portfolio analysis to the 

Dutch generating mix Reference case and two renewables cases : year 2030 - SE 

and GE scenario 2006. 

[15] Allan G, Eromenko I, McGregor P, Swales K. The regional electricity generation 

mix in Scotland: A portfolio selection approach incorporating marine technologies. 

Energy Policy 2011;39:6–22. doi:10.1016/j.enpol.2010.08.028. 

[16] Arnesano M, Carlucci AP, Laforgia D. Extension of portfolio theory application to 

energy planning problem – The Italian case. Energy 2012;39:112–24. 

doi:10.1016/j.energy.2011.06.053. 

[17] Vithayasrichareon P, MacGill IF. Portfolio assessments for future generation 

investment in newly industrializing countries - A case study of Thailand. Energy 

2012;44:1044–58. doi:10.1016/j.energy.2012.04.042. 

[18] Wu J-H, Huang Y-H. Electricity portfolio planning model incorporating renewable 

energy characteristics. Appl Energy 2014;119:278–87. 

doi:10.1016/j.apenergy.2014.01.001. 



172 

 

 

 

[19] Isik M. Incentives for technology adoption under environmental policy uncertainty: 

Implications for green payments programs. Environ Resour Econ 2004;27:247–63. 

[20] Gross R, Heptonstall P, Blyth W. Investment in electricity generation. UK Energy 

Res Cent 2007. 

[21] Markowitz H. Portfolio selection*. J Finance 1952;7:77–91. doi:10.1111/j.1540-

6261.1952.tb01525.x. 

[22] Fabozzi FJ, Gupta F, Markowitz HM. The legacy of modern portfolio theory. J 

Invest 2002;11:7–22. doi:10.3905/joi.2002.319510. 

[23] Kolm PN, Tütüncü R, Fabozzi FJ. 60 Years of portfolio optimization: Practical 

challenges and current trends. Eur J Oper Res 2014;234:356–71. 

doi:10.1016/j.ejor.2013.10.060. 

[24] Bridges JFP, Terris DD. Portfolio evaluation of health programs: A reply to Sendi et 

al. Soc Sci Med 2004;58:1849–51. doi:10.1016/j.socscimed.2004.01.002. 

[25] Chandra S. A Test of the regional growth-instability frontier using state data. Land 

Econ 2002;78:442. doi:10.2307/3146901. 

[26] Chandra S. Regional economy size and the growth-instability frontier: Evidence 

from Europe. J Reg Sci 2003;43:95–122. doi:10.1111/1467-9787.00291. 

[27] Spelman W. Growth, stability, and the urban portfolio. Econ Dev Q 2006;20:299–

316. doi:10.1177/0891242406291491. 

[28] Conroy ME. Alternative strategies for regional industrial diversification. J Reg Sci 

1974;14:31–46. doi:10.1111/j.1467-9787.1974.tb00427.x. 

[29] Barth J, Kraft J, Wiest P. A Portfolio theoretic approach to industrial diversification 

and regional employment. J Reg Sci 1975;15:9–15. doi:10.1111/j.1467-

9787.1975.tb01127.x. 

 



173 

 

 

 

[30] Barry F, Kearney C. MNEs and industrial structure in host countries: A mean 

analysis of Irealnd’s manufacturing sector. J Int Bus Stud 2006;37:392–406. 

doi:10.1057/palgrave.jibs.8400193. 

[31] Low SA, Weiler S. Employment risk, returns, and entrepreneurship. Econ Dev Q 

2012;26:238–51. doi:10.1177/0891242412452445. 

[32] McAllister RRJ, Smith DMS, Stokes CJ, Walsh FJ. Patterns of accessing variable 

resources across time and space: Desert plants, animals and people. J Arid Environ 

2009;73:338–46. doi:10.1016/j.jaridenv.2008.10.007. 

[33] Sendi P, Al MJ, Gafni A, Birch S. Optimizing a portfolio of health care programs in 

the presence of uncertainty and constrained resources. Soc Sci Med 2003;57:2207–

15. doi:10.1016/S0277-9536(03)00086-8. 

[34] Akter S, Kompas T, Ward MB. Application of portfolio theory to asset-based 

biosecurity decision analysis. Ecol Econ 2015;117:73–85. 

doi:10.1016/j.ecolecon.2015.06.020. 

[35] Figge F. Applying portfolio theory to biodiversity. Biodivers Conserv 2004;13:827–

49. 

[36] Koellner T, Schmitz OJ. Biodiversity, Ecosystem Function, and Investment Risk. 

Bioscience 2006;56:977. doi:10.1641/0006-3568(2006)56[977:BEFAIR]2.0.CO;2. 

[37] Gaydon DS, Meinke H, Rodriguez D, McGrath DJ. Comparing water options for 

irrigation farmers using Modern Portfolio Theory. Agric Water Manag 2012;115:1–

9. doi:10.1016/j.agwat.2012.08.007. 

[38] Marinoni O, Adkins P, Hajkowicz S. Water planning in a changing climate: Joint 

application of cost utility analysis and modern portfolio theory. Environ Model 

Softw 2011;26:18–29. doi:10.1016/j.envsoft.2010.03.001. 

[39] Aerts JCJH, Botzen W, Van Der Veen A, Krywkow J, Werners S. Dealing with 

uncertainty in flood management through diversification 2008;13. 



174 

 

 

 

[40] Prattley DJ, Morris RS, Stevenson MA, Thornton R. Application of portfolio theory 

to risk-based allocation of surveillance resources in animal populations. Prev Vet 

Med 2007;81:56–69. doi:10.1016/j.prevetmed.2007.04.009. 

[41] Dunn DS. The Oxford Handbook of Undergraduate Psychology Education. Oxford 

University Press; 2015. 

[42] Brown JR. Managing the retail format portfolio: An application of modern portfolio 

theory. J Retail Consum Serv 2010;17:19–28. doi:10.1016/j.jretconser.2009.09.001. 

[43] Crowe KA, Parker WH. Using portfolio theory to guide reforestation and restoration 

under climate change scenarios. Clim Change 2008;89:355–70. 

doi:10.1007/s10584-007-9373-x. 

[44] Hurst HE. Long term storage capacity of reservoirs. Trans Am Soc Civ 1951:770–

99. 

[45] Bar-lev D, Katz S. A Portfolio approach to fossil fuel procurement in the electric 

utility industry. J Finance 1976;31:933–47. doi:10.2307/2326437. 

[46] Roques F, Hiroux C, Saguan M. Optimal wind power deployment in Europe-A 

portfolio approach. Energy Policy 2010;38:3245–56. 

doi:10.1016/j.enpol.2009.07.048. 

[47] Rombauts Y, Delarue E, D’haeseleer W. Optimal portfolio-theory-based allocation 

of wind power: Taking into account cross-border transmission-capacity constraints. 

Renew Energy 2011;36:2374–87. doi:10.1016/j.renene.2011.02.010. 

[48] Fuss S, Szolgayová J. Fuel price and technological uncertainty in a real options 

model for electricity planning. Appl Energy 2010;87:2938–44. 

doi:10.1016/j.apenergy.2009.05.020. 

[49] Lindman Å, Söderholm P. Wind power learning rates: A conceptual review and 

meta-analysis. Energy Econ 2012;34:754–61. doi:10.1016/j.eneco.2011.05.007. 



175 

 

 

 

[50] Mullen D, Binz RJ, Binz RJ, Mullen D. Practicing risk-aware electricity regulation: 

2014 Update 2014. 

[51] Chao H. Peak load pricing and capacity planning with demand and supply 

uncertainty. Bell J Econ 1983;14:179–90. doi:Article. 

[52] Barradale MJ. Impact of public policy uncertainty on renewable energy investment: 

Wind power and the production tax credit. Energy Policy 2010;38:7698–709. 

doi:10.1016/j.enpol.2010.08.021. 

[53] Lueken R, Apt J. How storage will transform electric power emissions and markets. 

Carnegie Mellon Univ n.d. 

[54] Ayodele TR, Ogunjuyigbe ASO. Mitigation of wind power intermittency: Storage 

technology approach. Renew Sustain Energy Rev 2015;44:447–56. 

doi:10.1016/j.rser.2014.12.034. 

[55] Obi M, Jensen SM, Ferris JB, Bass RB. Calculation of levelized costs of electricity 

for various electrical energy storage systems. Renew Sustain Energy Rev 

2017;67:908–20. doi:10.1016/j.rser.2016.09.043. 

[56] Madlener R, Wenk C. Efficient investment portfolios for the swiss electricity supply 

sector. SSRN Electron J 2008. doi:10.2139/ssrn.1620417. 

[57] Mcdonald RL, Siegel D. The value of waiting to invest. Q J Econ 1986;101:707–27. 

doi:10.2307/1884175. 

[58] Black F, Scholes M. The pricing of options and corporate liabilities. J Polit Econ 

1973;81:637. doi:10.1086/260062. 

[59] Rohlfs W, Madlener R. Optimal investment strategies in power generation assets: 

The role of technological choice and existing portfolios in the deployment of low-

carbon technologies. Int J Greenh Gas Control 2014;28:114–25. 

doi:10.1016/j.ijggc.2014.06.012. 



176 

 

 

 

[60] Fleten SE, Maribu KM, Wangensteen I. Optimal investment strategies in 

decentralized renewable power generation under uncertainty. Energy 2007;32:803–

15. doi:10.1016/j.energy.2006.04.015. 

[61] Deng SJ, Oren SS. Electricity derivatives and risk management. Energy 

2006;31:940–53. doi:10.1016/j.energy.2005.02.015. 

[62] Huisman R, Mahieu R, Schlichter F. Electricity portfolio management: Optimal 

peak/off-peak allocations. Energy Econ 2009;31:169–74. 

doi:10.1016/j.eneco.2008.08.003. 

[63] Liu M, Wu FF. Portfolio optimization in electricity markets. Electr Power Syst Res 

2007;77:1000–9. doi:10.1016/j.epsr.2006.08.025. 

[64] Gökgöz F, Atmaca ME. Financial optimization in the Turkish electricity market: 

Markowitz’s mean-variance approach. Renew Sustain Energy Rev 2012;16:357–68. 

doi:10.1016/j.rser.2011.06.018. 

[65] Mathuria P, Bhakar R, Li F. GenCo’s optimal power portfolio selection under 

emission price risk. Electr Power Syst Res 2014;121:279–86. 

doi:10.1016/j.epsr.2014.11.006. 

[66] Pindoriya NM, Singh SN, Singh SK. Multi-objective mean – variance – skewness 

model for generation portfolio allocation in electricity markets. Electr Power Syst 

Res 2010;80:1314–21. doi:10.1016/j.epsr.2010.05.006. 

[67] Suksonghong K, Boonlong K, Goh K. Multi-objective genetic algorithms for 

solving portfolio optimization problems in the electricity market. Int J Electr Power 

Energy Syst 2014;58:150–9. doi:10.1016/j.ijepes.2014.01.014. 

[68] Lorca Á, Prina J. Power portfolio optimization considering locational electricity 

prices and risk management. Electr Power Syst Res 2014;109:80–9. 

doi:10.1016/j.epsr.2013.12.004. 

 



177 

 

 

 

[69] Rocha P, Kuhn D. Multistage stochastic portfolio optimisation in deregulated 

electricity markets using linear decision rules. Eur J Oper Res 2012;216:397–408. 

doi:10.1016/j.ejor.2011.08.001. 

[70] Awerbuch S. Investing in photovoltaics: risk, accounting and the value of new 

technology. Energy Policy 2000;28:1023–35. doi:10.1016/S0301-4215(00)00089-6. 

[71] Krey B, Zweifel P. Efficient Electricity Portfolios for Switzerland and the United 

States 2006:1–34. 

[72] Delarue E, De Jonghe C, Belmans R, D’haeseleer W. Applying portfolio theory to 

the electricity sector: Energy versus power. Energy Econ 2011;33:12–23. 

doi:10.1016/j.eneco.2010.05.003. 

[73] Zhu L, Fan Y. Optimization of China’s generating portfolio and policy implications 

based on portfolio theory. Energy 2010;35:1391–402. 

doi:10.1016/j.energy.2009.11.024. 

[74] Bhattacharya A, Kojima S. Power sector investment risk and renewable energy: A 

Japanese case study using portfolio risk optimization method. Energy Policy 

2012;40:69–80. doi:10.1016/j.enpol.2010.09.031. 

[75] Vithayasrichareon P, Riesz J, Macgill I. Using Renewables to hedge against future 

electricity industry uncertainties – An Australian case study. Energy Policy 

2014;76:43–56. doi:10.1016/j.enpol.2014.10.016. 

[76] Bate White LLC. A mean-variance portfolio optimization of California’s generation 

mix to 2020: Achieving California’s 33 percent renewable portfolio standard goal. 

2007. 

[77] García Sandoval ER, Morales-Acevedo A. Optimizing the energy portfolio of the 

Mexican electricity sector by 2050 considering CO2eq emissions and life cycle 

assessment. Energy Procedia 2014;57:850–9. doi:10.1016/j.egypro.2014.10.294. 

 



178 

 

 

 

[78] Losekann L, Marrero GA, Ramos-Real FJ, de Almeida ELF. Efficient power 

generating portfolio in Brazil: Conciliating cost, emissions and risk. Energy Policy 

2013;62:301–14. doi:10.1016/j.enpol.2013.07.049. 

[79] Mcloughlin E, Bazilian M. Application of portfolio analysis to the Irish electricity 

generating mix in 2020. Sustain Energy Irel 2006. 

[80] Cucchiella F, D’Adamo I, Gastaldi M. Modeling optimal investments with portfolio 

analysis in electricity markets. Energy Educ Sci Technol Part A Energy Sci Res 

2012;30:673–92. 

[81] Gotham D, Muthuraman K, Preckel P, Rardin R, Ruangpattana S. A load factor 

based mean-variance analysis for fuel diversification. Energy Econ 2009;31:249–56. 

doi:10.1016/j.eneco.2008.10.004. 

[82] Watts D, Valdés MF, Jara D, Watson A. Potential residential PV development in 

Chile: The effect of Net Metering and Net Billing schemes for grid-connected PV 

systems. Renew Sustain Energy Rev 2015;41:1037–51. 

doi:10.1016/j.rser.2014.07.201. 

[83] Branker K, Pathak MJM, Pearce JM. A review of solar photovoltaic levelized cost 

of electricity. Renew Sustain Energy Rev 2011;15:4470–82. 

doi:10.1016/j.rser.2011.07.104. 

[84] Ouyang X, Lin B. Levelized cost of electricity (LCOE) of renewable energies and 

required subsidies in China. Energy Policy 2014;70:64–73. 

doi:10.1016/j.enpol.2014.03.030. 

[85] Mentis D, Siyal SH, Korkovelos A, Howells M. A geospatial assessment of the 

techno-economic wind power potential in India using geographical restrictions. 

Renew Energy 2016;97:77–88. doi:10.1016/j.renene.2016.05.057. 

[86] EIA. Levelized cost and levelized avoided cost of new generation resources in the 

annual energy outlook 2016. 2015. 



179 

 

 

 

[87] Creara. Determinación de la estructura de costos de proyectos fotovoltaicos de gran 

escala y de escala comercial/residencial en Chile y levantamiento de la respectiva 

línea de base. 2016. 

[88] Sunderkötter M, Weber C. Valuing fuel diversification in power generation capacity 

planning. Energy Econ 2012;34:1664–74. doi:10.1016/j.eneco.2012.02.003. 

[89] Roth IF, Ambs LL. Incorporating externalities into a full cost approach to electric 

power generation life-cycle costing. Energy 2004;29:2125–44. 

doi:10.1016/j.energy.2004.03.016. 

[90] Joskow PL. Comparing the Costs of Intermittent and Dispatchable Electricity 

Generating Technologies. Am Econ Rev 2011;101. 

[91] Ueckerdt F, Hirth L, Luderer G, Edenhofer O. System LCOE: What are the costs of 

variable renewables? Energy 2013;63:61–75. doi:10.1016/j.energy.2013.10.072. 

[92] Benes KJ, Augustin C. Beyond LCOE: A simplified framework for assessing the 

full cost of electricity. Electr J 2016;29:48–54. doi:10.1016/j.tej.2016.09.013. 

[93] Hirth L, Ziegenhagen I. Balancing power and variable renewable: Three links. 

Renew Sustain Energy Rev 2015;50:1035–51. doi:10.1016/j.rser.2015.04.180. 

[94] Van Den Bergh K, Delarue E, D’Haeseleer W. The impact of renewable injections 

on cycling of conventional power plants. Int Conf Eur Energy Mark EEM 2013. 

doi:10.1109/EEM.2013.6607322. 

[95] Troy N, Denny E, O&apos;Malley M. Base-load cycling on a system with 

significant wind penetration. IEEE Trans Power Syst 2010;25:1088–97. 

doi:10.1109/TPWRS.2009.2037326. 

[96] Zon A Van, Fuss S. Investing in Energy Conversion Technologies - An Optimum 

Vintage Portfolio Selection Approach - Adriaan van Zon and Sabine Fuss MERIT , 

Maastricht University - June 2005 2005. 



180 

 

 

 

[97] Escribano Francés G, Marín-Quemada JM, San Martín González E. RES and risk: 

Renewable energy’s contribution to energy security. A portfolio-based approach. 

Renew Sustain Energy Rev 2013;26:549–59. doi:10.1016/j.rser.2013.06.015. 

[98] Huang Y-H, Wu J-H. A portfolio risk analysis on electricity supply planning. 

Energy Policy 2008;36:627–41. doi:10.1016/j.enpol.2007.10.004. 

[99] Vithayasrichareon P, MacGill IF. A Monte Carlo based decision-support tool for 

assessing generation portfolios in future carbon constrained electricity industries. 

Energy Policy 2012;41:374–92. doi:10.1016/j.enpol.2011.10.060. 

[100] Vithayasrichareon P, Macgill IF. Incorporating short-term operational plant 

constraints into assessments of future electricity generation portfolios. Appl Energy 

2014;128:144–55. doi:10.1016/j.apenergy.2014.04.052. 

[101] Samuelson PA. The fundamental approximation theorem of portfolio analysis in 

terms of means, v and higher moments. Rev Econ Stud 1970;37:537–42. 

doi:10.2307/2296483. 

[102] Deng SJ, Xu L. Mean-risk efficient portfolio analysis of demand response and 

supply resources. Energy 2009;34:1523–9. doi:10.1016/j.energy.2009.06.055. 

[103] Sarykalin S, Serraino G, Uryasev S. Value-at-Risk vs . Conditional Value-at-Risk in 

risk management and optimization. Tutorials Oper Res INFORMS 2008:270–94. 

doi:10.1287/educ.1080.0052. 

[104] Revista de Electricidad. Déficit de transmisión y auge solar provocan sobreoferta de 

energía en Copiapó 2015. http://www.revistaei.cl/2015/05/25/deficit-de-

transmision-y-auge-solar-provocaran-sobreoferta-de-energia-en-copiapo/ (accessed 

May 9, 2016). 

[105] Nowamooz Alborz. Inadequacy of transmission lines: A major barrier to the 

development of renewable energy. Environ Energy Law Policy J 2008;3. 

 



181 

 

 

 

[106] Widén J, Carpman N, Castellucci V, Lingfors D, Olauson J, Remouit F, et al. 

Variability assessment and forecasting of renewables: A review for solar, wind, 

wave and tidal resources. Renew Sustain Energy Rev 2015;44:356–75. 

doi:10.1016/j.rser.2014.12.019. 

[107] Hoicka CE, Rowlands IH. Solar and wind resource complementarity: Advancing 

options for renewable electricity integration in Ontario, Canada. Renew Energy 

2011;36:97–107. doi:10.1016/j.renene.2010.06.004. 

[108] Widén J. Correlations between large-scale solar and wind power in a future scenario 

for Sweden. IEEE Trans Sustain Energy 2011;2:177–84. 

doi:10.1109/TSTE.2010.2101620. 

[109] Liu Y, Xiao L, Wang H, Dai S, Qi Z. Analysis on the hourly spatiotemporal 

complementarities between China’s solar and wind energy resources spreading in a 

wide area. Sci China Technol Sci 2013;56:683–92. doi:10.1007/s11431-012-5105-1. 

[110] Santos-Alamillos FJ, Pozo-Vázquez D, Ruiz-Arias J a., Lara-Fanego V, Tovar-

Pescador J. Analysis of spatiotemporal balancing between wind and solar energy 

resources in the southern Iberian Peninsula. J Appl Meteorol Climatol 

2012;51:2005–24. doi:10.1175/JAMC-D-11-0189.1. 

[111] Monforti F, Huld T, Bódis K, Vitali L, D’Isidoro M, Lacal-Arántegui R. Assessing 

complementarity of wind and solar resources for energy production in Italy. A 

Monte Carlo approach. Renew Energy 2014;63:576–86. 

doi:10.1016/j.renene.2013.10.028. 

[112] Watts D, Jara D. Statistical analysis of wind energy in Chile. Renew Energy 

2011;36:1603–13. doi:10.1016/j.renene.2010.10.005. 

[113] Watts D, Oses N, Pérez R. Assessment of wind energy potential in Chile: A project-

based regional wind supply function approach. Renew Energy 2016;96:738–55. 

doi:10.1016/j.renene.2016.05.038. 



182 

 

 

 

[114] Ribeiro F, Ferreira P, Araújo M. The inclusion of social aspects in power planning. 

Renew Sustain Energy Rev 2011;15:4361–9. doi:10.1016/j.rser.2011.07.114. 

[115] Kaldellis JK. Social attitude towards wind energy applications in Greece. Energy 

Policy 2005;33:595–602. doi:10.1016/j.enpol.2003.09.003. 

[116] Swofford J, Slattery M. Public attitudes of wind energy in Texas: Local 

communities in close proximity to wind farms and their effect on decision-making. 

Energy Policy 2010;38:2508–19. doi:10.1016/j.enpol.2009.12.046. 

[117] Varas P, Tironi M, Rudnick H, Rodriguez N. Latin America Goes Electric. IEEE 

Power Energy Mag 2013. doi:10.1109/MPE.2013.2245586. 

[118] Mansilla Torres S. Modernity against Nature . About the aesthetic argument in 

defense of landscapes and territories (Regarding HidroAysén). Alpha (Osorno) 

2013:115–34. 

[119] Ansolabehere S, Konisky DM. Public attitudes toward construction of new power 

plants. Public Opin Q 2009;73:566–77. doi:10.1093/poq/nfp041. 

[120] Talinli I, Topuz E, Uygar Akbay M. Comparative analysis for energy production 

processes (EPPs): Sustainable energy futures for Turkey. Energy Policy 

2010;38:4479–88. doi:10.1016/j.enpol.2010.03.081. 

[121] Boudet H, Clarke C, Bugden D, Maibach E, Roser-Renouf C, Leiserowitz A. 

“Fracking” controversy and communication: Using national survey data to 

understand public perceptions of hydraulic fracturing. Energy Policy 2014;65:57–

67. doi:10.1016/j.enpol.2013.10.017. 

[122] Groothuis PA, Groothuis JD, Whitehead JC. Green vs. green: Measuring the 

compensation required to site electrical generation windmills in a viewshed. Energy 

Policy 2008;36:1545–50. doi:10.1016/j.enpol.2008.01.018. 

[123] Kunreuther H, Easterling D. The Role of Compensation in Howard Kunreuther 

Siting Hazardous Facilities. J Policy Anal Manag 2011;15:601–22. 



183 

 

 

 

[124] Berrens RP, Bohara AK, Jenkins-Smith HC, Silva CL, Weimer DL. Information and 

effort in contingent valuation surveys: Application to global climate change using 

national internet samples. J Environ Econ Manage 2004;47:331–63. 

doi:10.1016/S0095-0696(03)00094-9. 

[125] Truelove HB. Energy source perceptions and policy support: Image associations, 

emotional evaluations, and cognitive beliefs. Energy Policy 2012;45:478–89. 

doi:10.1016/j.enpol.2012.02.059. 

[126] Renn O. Participatory processes for designing environmental policies. Land Use 

Policy 2006;23:34–43. doi:10.1016/j.landusepol.2004.08.005. 

[127] Tahseen S, Karney BW. Reviewing and critiquing published approaches to the 

sustainability assessment of hydropower. Renew Sustain Energy Rev 2017;67:225–

34. doi:10.1016/j.rser.2016.09.031. 

[128] Onat N, Bayar H. The sustainability indicators of power production systems. Renew 

Sustain Energy Rev 2010;14:3108–15. doi:10.1016/j.rser.2010.07.022. 

[129] Evans A, Strezov V, Evans TJ. Assessment of sustainability indicators for 

renewable energy technologies. Renew Sustain Energy Rev 2009;13:1082–8. 

doi:10.1016/j.rser.2008.03.008. 

[130] Shan S, Wang GG. Survey of modeling and optimization strategies to solve high-

dimensional design problems with computationally-expensive black-box functions. 

Struct Multidiscip Optim 2010;41:219–41. doi:10.1007/s00158-009-0420-2. 

[131] Rodrigues T, Miranda V, Sumaili J. Finding representative scenarios in wind power 

or load forecast 2013:1–105. 

[132] Seddighi AH, Ahmadi-Javid A. A sustainable risk-averse approach to power 

generation planning with disruption risk and social responsibility considerations. J 

Clean Prod 2015;105:116–33. doi:10.1016/j.jclepro.2014.12.029. 

 



184 

 

 

 

[133] Fernandes B, Cunha J, Ferreira P. The use of real options approach in energy sector 

investments. Renew Sustain Energy Rev 2011;15:4491–7. 

doi:10.1016/j.rser.2011.07.102. 

[134] Aien M, Hajebrahimi A, Fotuhi-Firuzabad M. A comprehensive review on 

uncertainty modeling techniques in power system studies. Renew Sustain Energy 

Rev 2016;57:1077–89. doi:10.1016/j.rser.2015.12.070. 

[135] Schinko T, Komendantova N. De-risking investment into concentrated solar power 

in North Africa : Impacts on the costs of electricity generation. Renew Energy 

2016;92:262–72. doi:10.1016/j.renene.2016.02.009. 

[136] Goh HH, Lee SW, Chua QS, Goh KC, Kok BC, Teo KTK. Renewable energy 

project: Project management, challenges and risk. Renew Sustain Energy Rev 

2014;38:917–32. doi:10.1016/j.rser.2014.07.078. 

[137] Woo CK, Horowitz I, Moore J, Pacheco A. The impact of wind generation on the 

electricity spot-market price level and variance: The Texas experience. Energy 

Policy 2011;39:3939–44. doi:10.1016/j.enpol.2011.03.084. 

[138] Cutler NJ, Boerema ND, MacGill IF, Outhred HR. High penetration wind 

generation impacts on spot prices in the Australian national electricity market. 

Energy Policy 2011;39:5939–49. doi:10.1016/j.enpol.2011.06.053. 

[139] Winkler J, Gaio A, Benjamin P, Ragwitz M. Impact of renewables on electricity 

markets – Do support schemes matter ? 2016;93:157–67. 

doi:10.1016/j.enpol.2016.02.049. 

[140] Dezem V, Quiroga J. Chile has so much solar energy it’s giving it away for free. 

Bloomberg 2016. http://www.bloomberg.com/news/articles/2016-06-01/chile-has-

so-much-solar-energy-it-s-giving-it-away-for-free (accessed June 2, 2016). 

 

 



185 

 

 

 

[141] Jafarzadeh M, Tareghian HR, Rahbarnia F, Ghanbari R. Optimal selection of project 

portfolios using reinvestment strategy within a flexible time horizon. Eur J Oper Res 

2015;243:658–64. doi:10.1016/j.ejor.2014.12.013. 

[142] Zhang WG, Mei Q, Lu Q, Xiao WL. Evaluating methods of investment project and 

optimizing models of portfolio selection in fuzzy uncertainty. Comput Ind Eng 

2011;61:721–8. doi:10.1016/j.cie.2011.05.003. 

[143] Dixit AK, Pindyck RS. Investment under uncertainty. Princeton University Press; 

1994. 

[144] Glensk B, Madlener R. Multi-period portfolio optimization of power generation 

assets. Oper Res Decis 2013;45:22–30. doi:10.5277/ord130403. 

[145] Tang SL, Tang HJ. Technical note: The variable financial indicator IRR and the 

constant economic indicator NPV. Eng Econ 2003;48:69–78. 

doi:10.1080/00137910308965052. 

[146] Robinson D, Cook WR. Optimal termination adn the IRR revisited. Eng Econ 

1996;41:271–81. doi:10.1017/CBO9781107415324.004. 

[147] Masini A, Menichetti E. Investment decisions in the renewable energy field: An 

analysis of main determinants. Technol Manag Glob Econ Growth (PICMET), 2010 

Proc PICMET ’10 2010. 

[148] Ortega-Izquierdo M, del Río P. Benefits and costs of renewable electricity in 

Europe. Renew Sustain Energy Rev 2016;61:372–83. 

doi:10.1016/j.rser.2016.03.044. 

[149] Davoudpour H, Rezaee S, Ashrafi M. Developing a framework for renewable 

technology portfolio selection: A case study at a R&D center. Renew Sustain 

Energy Rev 2012;16:4291–7. doi:10.1016/j.rser.2012.03.035. 

 



186 

 

 

 

150] Sisodia GS, Soares I, Ferreira P. Modeling business risk: The effect of regulatory 

revision on renewable energy investment - The Iberian case. Renew Energy 

2016;95:303–13. doi:10.1016/j.renene.2016.03.076. 

[151] Weron R. Electricity price forecasting: A review of the state-of-the-art with a look 

into the future. Int J Forecast 2014;30:1030–81. 

doi:10.1016/j.ijforecast.2014.08.008. 

[152] Zhang M, Zhou D, Zhou P. A real option model for renewable energy policy 

evaluation with application to solar PV power generation in China. Renew Sustain 

Energy Rev 2014;40:944–55. doi:10.1016/j.rser.2014.08.021. 

[153] Yang M, Blyth W, Bradley R, Bunn D, Clarke C, Wilson T. Evaluating the power 

investment options with uncertainty in climate policy. Energy Econ 2008;30:1933–

50. doi:10.1016/j.eneco.2007.06.004. 

[154] Sekar RC. Carbon dioxide capture from coal-fired power plants: A real options 

analysis 2005:1–75. 

[155] Boomsma TK, Meade N, Fleten SE. Renewable energy investments under different 

support schemes: A real options approach. Eur J Oper Res 2012;220:225–37. 

doi:10.1016/j.ejor.2012.01.017. 

[156] Fortin I, Fuss S, Hlouskova J, Khabarov N, Obersteiner M, Szolgayova J. An 

integrated CVaR and real options approach to investments in the energy sector. J 

Energy Mark 2008;1:61–85. 

[157] Szolgayová J, Fuss S, Khabarov N, Obersteiner M. A dynamic CVaR-portfolio 

approach using real options: an application to energy investments. Eur Trans Electr 

Power 2011;21:1825–41. doi:10.1002/etep.429. 

[158] Fuss S, Szolgayová J, Khabarov N, Obersteiner M. Renewables and climate change 

mitigation: Irreversible energy investment under uncertainty and portfolio effects. 

Energy Policy 2012;40:59–68. doi:10.1016/j.enpol.2010.06.061. 



187 

 

 

 

[159] Sadeghi M, Shavvalpour S. Energy risk management and value at risk modeling. 

Energy Policy 2006;34:3367–73. doi:10.1016/j.enpol.2005.07.004. 

[160] Shafiee S, Topal E. A long-term view of worldwide fossil fuel prices. Appl Energy 

2010;87:988–1000. doi:10.1016/j.apenergy.2009.09.012. 

[161] Eydeland A, Wolyniec K. Energy and Power Risk Management. 2003. 

[162] Bunn DW, Karakatsani N V. Forecasting electricity prices. London Bus Sch 2003;1. 

[163] Huisman R, Mahieu R. Regime jumps in electricity prices. Energy Econ 

2003;25:425–34. doi:10.1016/S0140-9883(03)00041-0. 

[164] Pindoriya NM, Singh SN, Singh SK. Multi-objective mean-variance-skewness 

model for generation portfolio allocation in electricity markets. Electr Power Syst 

Res 2010;80:1314–21. doi:10.1016/j.epsr.2010.05.006. 

[165] Ruzika S, Wiecek MM. Approximation methods in multiobjective programming. J 

Optim Theory Appl 2005;126:473–501. doi:10.1007/s10957-005-5494-4. 

[166] Caramia M, Dell’Olmo P. Chapter 2: Multi-objective Optimization. Multi-objective 

Manag. Freight Logist., 2008, p. 11–24. doi:10.1007/978-1-84800-382-8. 

[167] Dantzig G, Infanger G. Multi-stage stochastic linear programs for portfolio 

optimization. Ann Oper Res 1993;45:59–76. 

[168] García-gonzález J, Moraga Ruiz de la Muela R, De R, Matres Santos L, Mateo 

González A, Moraga R, et al. Stochastic joint optimization of wind generation and 

pumped-s torage units in an electricity market 2008;23:460–8. 

[169] Lucia JJ, Schwartz ES. Electricity Prices and Power Derivatives: Evidence from the 

Nordic Power Exchange. Rev Deriv Res 2002;5:5–50. 

doi:10.1023/A:1013846631785. 

[170] Hamm G, Borison A. Forecasting Long-Run Electricity Prices. Electr J 2006;19:47–

57. doi:10.1016/j.tej.2006.07.003. 



188 

 

 

 

[171] Yu Z. A spatial mean-variance MIP model for energy market risk analysis. Energy 

Econ 2003;25:255–68. doi:10.1016/S0140-9883(02)00058-0. 

[172] Singh N, Mohanty SR. A review of price forecasting problem and techniques in 

deregulated electricity markets. J Power Energy Eng 2015;3:1–19. 

[173] Conejo AJ, Contreras J, Espínola R, Plazas MA. Forecasting electricity prices for a 

day-ahead pool-based electric energy market. Int J Forecast 2005;21:435–62. 

doi:10.1016/j.ijforecast.2004.12.005. 

[174] Brown DB, Smith JE. Dynamic Portfolio Optimization with Transaction Costs: 

Heuristics and Dual Bounds. Manage Sci 2011;57:1752–70. 

doi:10.1287/mnsc.1110.1377. 

[175] Marathe RR, Ryan SM. On The Validity of The Geometric Brownian Motion 

Assumption. Eng Econ 2005;50:159–92. doi:10.1080/00137910590949904. 

[176] Twomey P, Neuhoff K. Market power and technological bias : the case of electricity 

generation. 2005. 

[177] Yang M, Patiño-Echeverri D, Yang F. Wind power generation in China: 

Understanding the mismatch between capacity and generation. Renew Energy 

2012;41:145–51. doi:10.1016/j.renene.2011.10.013. 

[178] Borenstein S, Bushnell J, Stoft S. The competitive effects of transmission capacity 

in a deregulated electricity industry. RAND J Econ 2000;31:294. 

doi:10.2307/2601042. 

[179] Widén J. Variability and smoothing effects of PV power production. A literature 

survey. 2013. 

[180] Mills A, Wiser R. Implications of Wide-Area Geographic Diversity for Short-Term 

Variability of Solar Power. Energy 2010. 

 



189 

 

 

 

 

[181] David M, Andriamasomanana FHR, Liandrat O. Spatial and temporal variability of 

PV output in an insular grid : Case of Reunion Island. Energy Procedia 

2014;57:1275–82. doi:10.1016/j.egypro.2014.10.117. 

[182] Antonanzas J, Osorio N, Escobar R, Urraca R, Martinez-de-pison FJ, Antonanzas-

Torres F. Review of photovoltaic power forecasting. Sol Energy 2016;136:78–111. 

doi:10.1016/j.solener.2016.06.069. 

[183] Lorenz E, Hurka J, Karampela G, Heinemann D, Beyer HG, Schneider M. Qualified 

forecast of ensemble power production by spatially dispersed grid-connected PV 

systems. 23rd Eur. Photovoltaics Sol. Energy Conf. Val. Spain, 2007. 

[184] Jerez S, Trigo RM, Sarsa  a., Lorente-Plazas R, Pozo-Vázquez D, Montávez JP. 

Spatio-temporal complementarity between solar and wind power in the Iberian 

Peninsula. Energy Procedia 2013;40:48–57. doi:10.1016/j.egypro.2013.08.007. 

[185] Solomon S, Plattner G-K, Knutti R, Friedlingstein P. Irreversible climate change 

due to carbon dioxide emissions. Proc Natl Acad Sci U S A 2009;106:1704–9. 

doi:10.1073/pnas.0812721106. 

[186] Papaefthymiou G, Dragoon K. Towards 100% renewable energy systems: 

Uncapping power system flexibility. Energy Policy 2016;92:69–82. 

doi:10.1016/j.enpol.2016.01.025. 

[187] Elliston B, MacGill I, Diesendorf M. Comparing least cost scenarios for 100% 

renewable electricity with low emission fossil fuel scenarios in the Australian 

National Electricity Market. Renew Energy 2014;66:196–204. 

doi:10.1016/j.renene.2013.12.010. 

[188] Gils HC, Simon S. Carbon neutral archipelago – 100% renewable energy supply for 

the Canary Islands. Appl Energy 2017;188:342–55. 

doi:10.1016/j.apenergy.2016.12.023. 



190 

 

 

 

 

[189] Hirth L. The market value of variable renewables. The effect of solar wind power 

variability on their relative price. Energy Econ 2013;38:218–36. 

doi:10.1016/j.eneco.2013.02.004. 

[190] Borenstein S. The private and public economics of renewable electricity generation. 

J Econ Perspect 2012;26:67–92. doi:10.1257/jep.26.1.67. 

[191] Hirth L, Müller S. System-friendly wind power. How advanced wind turbine design 

can increase the economic value of electricity generated through wind power. 

Energy Econ 2016;56:51–63. doi:10.1016/j.eneco.2016.02.016. 

[192] Eid C, Codani P, Perez Y, Reneses J, Hakvoort R. Managing electric flexibility 

from Distributed Energy Resources: A review of incentives for market design. 

Renew Sustain Energy Rev 2016;64:237–47. doi:10.1016/j.rser.2016.06.008. 

[193] Toledo OM, Oliveira Filho D, Diniz ASAC. Distributed photovoltaic generation and 

energy storage systems: A review. Renew Sustain Energy Rev 2010;14:506–11. 

doi:10.1016/j.rser.2009.08.007. 

[194] D’hulst R, Labeeuw W, Beusen B, Claessens S, Deconinck G, Vanthournout K. 

Demand response flexibility and flexibility potential of residential smart appliances: 

Experiences from large pilot test in Belgium. Appl Energy 2015;155:79–90. 

doi:10.1016/j.apenergy.2015.05.101. 

[195] Good N, Ellis KA, Mancarella P. Review and classification of barriers and enablers 

of demand response in the smart grid. Renew Sustain Energy Rev 2017;72:57–72. 

doi:10.1016/j.rser.2017.01.043. 

[196] Newsham GR, Bowker BG. The effect of utility time-varying pricing and load 

control strategies on residential summer peak electricity use: A review. Energy 

Policy 2010;38:3289–96. doi:10.1016/j.enpol.2010.01.027. 

 



191 

 

 

 

[197] Schreiber M, Wainstein ME, Hochloff P, Dargaville R. Flexible electricity tariffs: 

Power and energy price signals designed for a smarter grid. Energy 2015;93:2568–

81. doi:10.1016/j.energy.2015.10.067. 

[198] Abadie LM. Operating flexibility at power plants: A market valuation. Int J Electr 

Power Energy Syst 2015;64:41–9. doi:10.1016/j.ijepes.2014.07.011. 

[199] Carapellucci R, Giordano L. Upgrading existing coal-fired power plants through 

heavy-duty and aeroderivative gas turbines. Appl Energy 2015;156:86–98. 

doi:10.1016/j.apenergy.2015.06.064. 

[200] Kopiske J, Spieker S, Tsatsaronis G. Value of power plant flexibility in power 

systems with high shares of variable renewables: A scenario outlook for Germany 

2035. Energy 2016. doi:10.1016/j.energy.2017.04.138. 

[201] Degeilh Y, Singh C. A quantitative approach to wind farm diversification and 

reliability. Int J Electr Power Energy Syst 2011;33:303–14. 

doi:10.1016/j.ijepes.2010.08.027. 

[202] Santana C, Falvey M, Ibarra M, García M. Energías Renovables en Chile. El 

potencial eólico, solar e hidroeléctrico de Arica a Chiloé. 2014. 

[203] Benavides C, Gonzales L, Diaz M, Fuentes R, García G, Palma-Behnke R, et al. The 

impact of a carbon tax on the chilean electricity generation sector. Energies 

2015;8:2674–700. doi:10.3390/en8042674. 

[204] Nasirov S, Silva C, Agostini CA. Investors’ perspectives on barriers to the 

deployment of renewable energy sources in Chile. Energies 2015;8:3794–814. 

doi:10.3390/en8053794. 

[205] National Energy Commision of Chile. Capacidad Instalada de Generación 2016. 

https://www.cne.cl/wp-

content/uploads/2015/05/Capacidad_Instalada_Generación.xlsx (accessed February 

1, 2017). 



192 

 

 

 

[206] Ministerio de Energía de Chile. Sistema de información geográfico n.d. 

http://sig.minenergia.cl (accessed March 3, 2017). 

[207] Molina A, Falvey M, Rondanelli R. A solar radiation database for Chile. Sci Rep 

2017;7:1–11. doi:10.1038/s41598-017-13761-x. 

[208] Departamento de Geofísica de la Universidad de Chile. Explorador Solar n.d. 

http://www.minenergia.cl/exploradorsolar/ (accessed March 3, 2017). 

[209] Departamento de Geofísica de la Universidad de Chile. Explorador Eólico n.d. 

http://walker.dgf.uchile.cl/Explorador/Eolico2/ (accessed March 3, 2017). 

[210] National Energy Commision of Chile. Anuario Estadístico 2016 2017. 

https://www.cne.cl/nuestros-servicios/reportes/informacion-y-estadisticas/ (accessed 

April 10, 2017). 

[211] Kern JD, Patino-Echeverri D, Characklis GW. An integrated reservoir-power 

system model for evaluating the impacts of wind integration on hydropower 

resources. Renew Energy 2014;71:553–62. doi:10.1016/j.renene.2014.06.014. 

[212] Winkler J, Pudlik M, Ragwitz M, Pfluger B. The market value of renewable 

electricity - Which factors really matter? Appl Energy 2016;184:464–81. 

doi:10.1016/j.apenergy.2016.09.112. 

[213] Valenzuela J, Wang J. A probabilistic model for assessing the long-term economics 

of wind energy. Electr Power Syst Res 2011;81:853–61. 

doi:10.1016/j.epsr.2010.11.015. 

[214] Sensfuß F, Ragwitz M, Genoese M. The merit-order effect: A detailed analysis of 

the price effect of renewable electricity generation on spot market prices in 

Germany. Energy Policy 2008;36:3076–84. doi:10.1016/j.enpol.2008.03.035. 

 

 



193 

 

 

 

[215] Cludius J, Hermann H, Matthes FC, Graichen V. The merit order effect of wind and 

photovoltaic electricity generation in Germany 2008-2016 estimation and 

distributional implications. Energy Econ 2014;44:302–13. 

doi:10.1016/j.eneco.2014.04.020. 

[216] Gelabert L, Labandeira X, Linares P. An ex-post analysis of the effect of renewables 

and cogeneration on Spanish electricity prices. Energy Econ 2011;33:S59–65. 

doi:10.1016/j.eneco.2011.07.027. 

[217] Würzburg K, Labandeira X, Linares P. Renewable generation and electricity prices: 

Taking stock and new evidence for Germany and Austria. Energy Econ 

2013;40:S159–71. doi:10.1016/j.eneco.2013.09.011. 

[218] Forrest S, MacGill I. Assessing the impact of wind generation on wholesale prices 

and generator dispatch in the Australian National Electricity Market. Energy Policy 

2013;59:120–32. doi:10.1016/j.enpol.2013.02.026. 

[219] Clò S, Cataldi A, Zoppoli P. The merit-order effect in the Italian power market: The 

impact of solar and wind generation on national wholesale electricity prices. Energy 

Policy 2015;77:79–88. doi:10.1016/j.enpol.2014.11.038. 

[220] Azofra D, Jiménez E, Martínez E, Blanco J, Saenz-Díez JC. Wind power merit-

order and feed-in-tariffs effect: A variability analysis of the Spanish electricity 

market. Energy Convers Manag 2014;83:19–27. 

doi:10.1016/j.enconman.2014.03.057. 

[221] National Electricity Coordinator. Generación real del sistema n.d. 

https://www.coordinador.cl/sistema-informacion-publica/portal-de-

operaciones/operacion-real/generacion-real-de-las-centrales/ (accessed June 5, 

2017). 

  



194 

 

 

 

[222] National Electricity Coordinator. Costo Marginal Real n.d. 

https://www.coordinador.cl/sistema-informacion-publica/portal-de-

operaciones/operacion-real/costos-marginales-reales/ (accessed September 5, 2017). 

[223] Nicolosi M, Mills A, Wiser R. The Importance of High Temporal Resolution in 

Modeling Renewable Energy Penetration Scenarios 1 Introduction and Motivation. 

9th- Conf Appl Infrastruct Res 2010. 

[224] Fernandes de Paiva da Silva VL. Value of flexibility in systems with large wind 

penetration. University of London, 2010. 

[225] Kahn E. The reliability of distributed wind generators. Electr Power Syst Res 

1979;2:1–14. doi:10.1016/0378-7796(79)90021-X. 

[226] Katzenstein W, Fertig E, Apt J. The variability of interconnected wind plants. 

Energy Policy 2010;38:4400–10. doi:10.1016/j.enpol.2010.03.069. 

[227] Kempton W, Pimenta FM, Veron DE, Colle BA. Electric power from offshore wind 

via synoptic-scale interconnection. Proc Natl Acad Sci U S A 2010;107:7240–5. 

doi:10.1073/pnas.0909075107. 

[228] Novacheck J, Johnson JX. Diversifying wind power in real power systems. Renew 

Energy 2017;106:177–85. doi:http://dx.doi.org/10.1016/j.renene.2016.12.100. 

[229] Santos-Alamillos FJ, Thomaidis NS, Usaola-García J, Ruiz-Arias JA, Pozo-

Vázquez D. Exploring the mean-variance portfolio optimization approach for 

planning wind repowering actions in Spain. Renew Energy 2017;106:335–42. 

doi:10.1016/j.renene.2017.01.041. 

[230] Mills A, Wiser R. Strategies for Mitigating the Reduction in Economic Value of 

Variable Generation with Increasing Penetration Levels. Lawrence Berkeley Natl 

Lab Rep 2014. 

  



195 

 

 

 

[231] Yekini Suberu M, Wazir Mustafa M, Bashir N. Energy storage systems for 

renewable energy power sector integration and mitigation of intermittency. Renew 

Sustain Energy Rev 2014;35:499–514. doi:10.1016/j.rser.2014.04.009. 

[232] Mahlia TMI, Saktisahdan TJ, Jannifar A, Hasan MH, Matseelar HSC. A review of 

available methods and development on energy storage; Technology update. Renew 

Sustain Energy Rev 2014;33:532–45. doi:10.1016/j.rser.2014.01.068. 

[233] Ilak P, Rajsl I, Krajcar S, Delimar M. The impact of a wind variable generation on 

the hydro generation water shadow price. Appl Energy 2015;154:197–208. 

doi:10.1016/j.apenergy.2015.04.111. 

[234] Gebretsadik Y, Fant C, Strzepek K, Arndt C. Optimized reservoir operation model 

of regional wind and hydro power integration case study: Zambezi basin and South 

Africa. Appl Energy 2016;161:574–82. doi:10.1016/j.apenergy.2015.09.077. 

[235] Benitez LE, Benitez PC, van Kooten GC. The economics of wind power with 

energy storage. Energy Econ 2008;30:1973–89. doi:10.1016/j.eneco.2007.01.017. 

[236] Palchak D, Denholm P. Impact of Generator Flexibility on Electric System Costs 

and Integration of Renewable Energy 2014:27. doi:NREL/TP-6A20-62275. 

[237] Brouwer AS, Van Den Broek M, Seebregts A, Faaij A. Impacts of large-scale 

intermittent renewable energy Sources on electricity systems, and how these can be 

modeled. Renew Sustain Energy Rev 2014;33:443–66. 

doi:10.1016/j.rser.2014.01.076. 

[238] Rodríguez RA, Becker S, Andresen GB, Heide D, Greiner M. Transmission needs 

across a fully renewable European power system. Renew Energy 2014;63:467–76. 

doi:10.1016/j.renene.2013.10.005. 

[239] Bresesti P, Calisti R, Cazzol MV, Gatti A, Provenzano D, Vaiani A, et al. The 

benefits of transmission expansions in the competitive electricity markets. Energy 

2009;34:274–80. doi:10.1016/j.energy.2008.09.008. 



196 

 

 

 

[240] Banez-Chicharro F, Olmos L, Ramos A, Latorre JM. Estimating the benefits of 

transmission expansion projects: An Aumann-Shapley approach. Energy 

2016;118:1044–54. doi:10.1016/j.energy.2016.10.135. 

[241] Brouwer AS, van den Broek M, Zappa W, Turkenburg WC, Faaij A. Least-cost 

options for integrating intermittent renewables in low-carbon power systems. Appl 

Energy 2016;161:48–74. doi:10.1016/j.apenergy.2015.09.090. 

[242] López-Peña Á, Pérez-Arriaga I, Linares P. Renewables vs. energy efficiency: The 

cost of carbon emissions reduction in Spain. Energy Policy 2012;50:659–68. 

doi:10.1016/j.enpol.2012.08.006. 

[243] Warren P. A review of demand-side management policy in the UK. Renew Sustain 

Energy Rev 2014;29:941–51. doi:10.1016/j.rser.2013.09.009. 

[244] Schmidt J, Lehecka G, Gass V, Schmid E. Where the wind blows: Assessing the 

effect of fixed and premium based feed-in tariffs on the spatial diversification of 

wind turbines. Energy Econ 2013;40:269–76. doi:10.1016/j.eneco.2013.07.004. 

[245] Simoes S, Zeyringer M, Mayr D, Huld T, Nijs W, Schmidt J. Impact of different 

levels of geographical disaggregation of wind and PV electricity generation in large 

energy system models: A case study for Austria. Renew Energy 2017;105:183–98. 

doi:10.1016/j.renene.2016.12.020. 

[246] Ludig S, Haller M, Schmid E, Bauer N. Fluctuating renewables in a long-term 

climate change mitigation strategy. Energy 2011;36:6674–85. 

doi:10.1016/j.energy.2011.08.021. 

[247] Gass V, Schmidt J, Strauss F, Schmid E. Assessing the economic wind power 

potential in Austria. Energy Policy 2013;53:323–30. 

doi:10.1016/j.enpol.2012.10.079. 

  



197 

 

 

 

[248] Haller M, Ludig S, Bauer N. Decarbonization scenarios for the EU and MENA 

power system: Considering spatial distribution and short term dynamics of 

renewable generation. Energy Policy 2012;47:282–90. 

doi:10.1016/j.enpol.2012.04.069. 

[249] Poncelet K, Delarue E, Six D, Duerinck J, D’haeseleer W. Impact of the level of 

temporal and operational detail in energy-system planning models. Appl Energy 

2016;162:631–43. doi:10.1016/j.apenergy.2015.10.100. 

[250] de Sisternes F. Quantifying the combined impact of wind and solar power 

penetration on the optimal generation mix and thermal power plant cycling. 11th 

Young Energy Econ Eng Semin 2011:1–12. 

[251] Milligan M, Donohoo P, Lew D, Ela E, Kirby B, Holttinen H, et al. Operating 

Reserves and Wind Power Integration: An International Comparison. 9th Annu Int 

Work Large-Scale Integr Wind Power into Power Syst 2010:1–19. 

[252] National Energy Commision of Chile. Informe Precio de Nudo Primer semestre 

2017 2017. https://www.cne.cl/tarificacion/electrica/precio-nudo-corto-plazo/. 

[253] Scorah H, Sopinka A, van Kooten GC. The economics of storage, transmission and 

drought: Integrating variable wind power into spatially separated electricity grids. 

Energy Econ 2012;34:536–41. doi:10.1016/j.eneco.2011.10.021. 

[254] CDEC SIC. Infotecnica 2015. http://infotecnica.cdec-

sic.cl/Modulos/Instalaciones/CDEC_Instalaciones.aspx (accessed August 15, 2015). 

[255] National Electricity Coordinator. Cotas historicas embalses 2016. 

https://sic.coordinador.cl/wp-content/uploads/2018/02/cotas_iniciales.xls (accessed 

August 7, 2017). 

[256] Lewis GM. High value wind: A method to explore the relationship between wind 

speed and electricity locational marginal price. Renew Energy 2008;33:1843–53. 

doi:10.1016/j.renene.2007.09.016. 



198 

 

 

 

[257] Lewis GM. Estimating the value of wind energy using electricity locational 

marginal price. Energy Policy 2010;38:3221–31. doi:10.1016/j.enpol.2009.07.045. 

[258] Hirth L. The benefits of flexibility: The value of wind energy with hydropower. 

Appl Energy 2016;181:210–23. doi:10.1016/j.apenergy.2016.07.039. 

[259] Hirth L, Radebach A. The Market Value of Wind and Solar Power: An Analytical 

Approach. USAEE Work Pap No 16-241 2016:1–18. 

[260] Prebeg P, Gasparovic G, Krajacic G, Duic N. Long-term energy planning of 

Croatian power system using multi-objective optimization with focus on renewable 

energy and integration of electric vehicles. Appl Energy 2016. 

doi:10.1016/j.apenergy.2016.03.086. 

[261] Krakowski V, Assoumou E, Mazauric V, Maïzi N. Feasible path toward 40-100% 

renewable energy shares for power supply in France by 2050: A prospective 

analysis. Appl Energy 2016;171:501–22. doi:10.1016/j.apenergy.2016.03.094. 

[262] Blakers A, Lu B, Stocks M. 100% renewable electricity in Australia. Energy 

2017;133:471–82. doi:10.1016/j.energy.2017.05.168. 

[263] Akuru UB, Onukwube IE, Okoro OI, Obe ES. Towards 100% renewable energy in 

Nigeria. Renew Sustain Energy Rev 2017;71:943–53. 

doi:10.1016/j.rser.2016.12.123. 

[264] Strbac G, Konstantinidis CV, Moreno R, Konstantelos I, Papadaskalopoulos D. 

Importance of transmission pricing and investment coordination in facilitating cost 

effective integration of renewables: GB and North Seas grid case. IEEE Power 

Energy Mag 2015:1–28. 

[265] Rudnick H, Ferreira R, Mocarquer S, Barroso L. Transmission expansion in fast 

growing economies and the challenges of renewables integration. IEEE Power 

Energy Soc Gen Meet 2012:1–8. doi:10.1109/PESGM.2012.6344864. 

  



199 

 

 

 

[266] Ruiz C, Conejo  a. J. Robust transmission expansion planning. Eur J Oper Res 

2015;242:390–401. doi:10.1016/j.ejor.2014.10.030. 

[267] Nam YW, Park J, Yoon YT, Kim S. Analysis of long-term contract effects on 

market equilibrium in the electricity market with transmission constraints. IEE Proc 

Gener Transm Distrib 2006:383–90. doi:10.1049/ip-gtd. 

[268] Brealey R, Myers S, Allen F. Principles of Corporate Finance. 12th editi. 2016. 

[269] Martínez-Ceseña EA, Mutale J. Application of an advanced real options approach 

for renewable energy generation projects planning. Renew Sustain Energy Rev 

2011;15:2087–94. doi:10.1016/j.rser.2011.01.016. 

[270] Trigeorgis L. Real Options: A primer. In: Alleman J, Noam E, editors. new Invest. 

theory real optioncs its Implic. Telecommun. Econ., Kluwer Academic Publisher; 

1999. 

[271] Myers SC. Determinants of corporate borrowing. J Financ Econ 1977;5:147–75. 

doi:10.1016/0304-405X(77)90015-0. 

[272] Kjærland F. A real option analysis of investments in hydropower-The case of 

Norway. Energy Policy 2007;35:5901–8. doi:10.1016/j.enpol.2007.07.021. 

[273] Lee S-C. Using real option analysis for highly uncertain technology investments: 

The case of wind energy technology. Renew Sustain Energy Rev 2011;15:4443–50. 

doi:http://dx.doi.org/10.1016/j.rser.2011.07.107. 

[274] Laurikka H, Koljonen T. Emissions trading and investment decisions in the power 

sector - A case study in Finland. Energy Policy 2006;34:1063–74. 

doi:10.1016/j.enpol.2004.09.004. 

[275] Amram M, Kulatilaka N. Real Options: Managing Strategic Investment in an 

Uncertain World. 1999. 

  



200 

 

 

 

[276] Nazari MS, Maybee B, Whale J, McHugh A. Climate Policy Uncertainty and Power 

Generation Investments: A Real Options-CVaR Portfolio Optimization Approach. 

Energy Procedia 2015;75:2649–57. doi:10.1016/j.egypro.2015.07.367. 

[277] Hlouskova J, Kossmeier S, Obersteiner M, Schnabl A. Real options and the value of 

generation capacity in the German electricity market. Rev Financ Econ 

2005;14:297–310. doi:10.1016/j.rfe.2004.12.001. 

[278] Shakouri M, Lee HW, Choi K. PACPIM: New decision-support model of optimized 

portfolio analysis for community-based photovoltaic investment. Appl Energy 

2015;156:607–17. doi:10.1016/j.apenergy.2015.07.060. 

[279] Klastoril T. Project Management: Tools and Trade-offs. 1 edition. Pearson Learning 

Solutions; 2011. 

[280] Bright Maynard H. Handbook of Business Administration. McGraw-Hill Book; 

1967. 

[281] Morgan RK. Environmental impact assessment: The state of the art. Impact Assess 

Proj Apprais 2012;30:5–14. doi:10.1080/14615517.2012.661557. 

[282] Lee N, Kirkpatrick C. Relevance and consistency of environmental impact 

assessment and cost-benefit analysis project appraisal. Proj Apprais 1996;11:229–

36. doi:10.1080/02688867.1996.9727548. 

[283] SOFOFA. Observatorio de la Inversion: Catastro de proyectos de inversión 

ingresados al SEIA al tercer trimestre de 2017. 2017. 

[284] Allen AO. Probability, Statistics, and Queueing Theory. Elservier; 1990. 

[285] Ivo Adan JR. Queueing Theory. Eindhoven Univ Technol Dep Math Comput Sci 

2001:180. doi:10.1016/B978-0-12-051050-4.50011-3. 

[286] Levy M, Weitz B. Retailing Management. 3rd editio. McGraw-Hill; 1998. 

  



201 

 

 

 

[287] World Bank Group. Chile GDP per capita 2016. 

http://data.worldbank.org/indicator/NY.GDP.PCAP.CD?locations=CL (accessed 

July 28, 2016). 

 


