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Stark-Ladder Resonances in the Propagation of Electromagnetic Waves
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We discuss the existence of the electromagnetic Stark ladder in some optic systems by studying the

propagation of light. The transmission coefficient is calculated by means of the transfer-matrix method.
It is shown that although the transfer matrix is diA'erent from the quantum case it can give, in some par-
ticular configurations, a Stark-ladder resonance structure similar to the one observed in quantum sys-

tems. The relation between these resonances and a Fabry-Perot-like interference is discussed. Con-

sideration is given to the observability of these ladders in the laboratory.

PACS numbers: 78.65.—s, 73.40.—c, 78.20.Dj, 78.90.+t

V(x+ np) V(x) +Eenp, (2)

n being an arbitrary integer.
Although the existence of SLR from a theoretical

point of view was controversial for some years and their
observation in the laboratory was questioned until recent-

ly, at present their existence is well established.
In this Letter, we discuss the existence of "electromag-

netic SLR" for light traveling in appropriate stratified

media, starting with the analogy between the equations
that describe the quantum and electromagnetic phenom-

ena. This analogy has mainly been discussed in papers
where the Anderson localization for photons, photon
band structure, or elastic band structure is studied. It
has been pointed out in some of these papers that carry-
ing out transport experiments with electrons presents too
many difficulties due to the electron-electron and elec-
tron-phonon interactions and the scattering caused by
the impurities. Furthermore, for the case of SLR, it is

necessary to use very strong electric fields which increase
the difticulties. This has made the interpretation of the
results doubtful in most of the cases. On the other hand,
with photons these problems are not present and observa-
tion of the SLR appears to require less restrictive experi-
mental setups.

For the electromagnetic case the system we are refer-
ring to is a medium with a dielectric function e(z)

As is well known, Stark-ladder resonances' (SLR),
that is, a series of virtual states whose energy is equally
spaced, appeared for the first time in quantum mechan-
ics in the study of a charged particle in the presence of a
one-dimensional potential V(x) of the form

V(x) -V, (x)+Eex,

where V~(x) is a periodic potential of period p and Eex
is the potential of the particle of charge e in the presence
of a constant electric field of intensity —E. We note
that the potential of Eq. (1) has the crucial property

which, for a given frequency to, depends only on z and
can be expressed as a sum of a periodic function of
period p plus a linear term of slope g. Thus e(z) satisfies
an equation similar to Eq. (2), i.e.,

e(z+np) -e(z)+gnp. (3)

For this system the propagation of transverse elec-
tromagnetic waves of frequency to is described by

[tl /clz +e(z)k 1F(z) =Q F(z), (4)

which is obtained from the wave equation after a Fourier
transform from the variables x, y, and t to the variables

k„k», and to. Here F(z) represents any of the com-
ponents of the electromagnetic field, Q k„+k», and
k =co/c, c being the speed of light. This equation is simi-
lar to the Schrodinger equation with Q and e(z) play-
ing the roles of the energy and the potential, respectively.
However, from a mathematical point of view, these two
problems are not totally equivalent. The boundary con-
ditions at the interfaces that the wave function and the
electromagnetic field must satisfy are diferent.

Let us discuss briefly a property of Fq. (4) for infinite
systems. If we replace z by z —np in (4), we obtain

[t) /8z +e(z)k IF'(z) =(Q +gnpk )F'(z), (5)

where F'(z) =F(z —np). Equation (5) is similar to Eq.
(4) except for the term added to Q . Therefore, if for a
given value Qo of Q there is a nontrivial solution of (4)
then there must be a family of solutions (the Stark
ladder) for other values of Q given by Qo+gnpk .
This implies in turn that the distance between any two
adjacent solutions of that family (measured in units of
k ) is gp. The same arguments are applicable to the
Schrodinger equation with the indicated changes and
when the potential is given by Eq. (1).

Although the above reasoning suggests the existence of
the SLR, it does not prove they they indeed exist, since it
starts from the hypothesis that there exists a solution as-
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sociated with Qo. Neither is the existence of a continu-
um of Q values around Qo excluded, in such a way that
the Qo family could be indistinguishable from other solu-
tions. A family of solutions must be special or different
in some sense (for example, a family of resonances) with

respect to the neighbor solutions in order to be observ-
able.

We know that in finite quantum systems, where Eq.
(1) is satisfied only in a restricted interval of x, such spe-
cial families of solutions are sometimes present, ' ' and
therefore we expect that it is also true for the elec-
tromagnetic case. In what follows we will show that un-

der certain circumstances those families of resonances
indeed exist. In particular, we will restrict ourselves to
systems where the dielectric function is equal to a real
constant for intervals as shown in Fig. l. As we can see,
in each interval of length p we have two sublayers of
widths pi and p2 (pi+p2 p) with different values of
c(z). These values are given by the superposition of a
series of steps with increasing height plus a series of bar-
riers with height h.

In order to observe the resonances we have studied the
behavior of the transmission coefficient T as a function
of Q keeping co fixed for the case of polarized light with

magnetic field parallel to the interfaces. T was calculat-
ed by means of the expression

k;-(Q, o,k;),
k =(QO, —k ),
k i =co/c k,
k;/e'i =k; —/e' — =k,

(7a)

(7b)

(ga)

(gb)

calculated by using the well-known transfer-matrix
method. However, in order to introduce our notation we
discuss briefly the method used here. We have assumed
that the left end of our system is at z =z0=0 and we
have defined the slab number —

1 as the vacuum at z & 0
with e-i =1 (see Fig. 2). The right end is the layer
number N at z & z~. We have assumed also that from
the region z & 0 a plane wave incident on the system
with wave vector k which has a positive z component.
Since in each layer the function e(z) is a constant, the
solutions of (4) are also plane waves. We have denoted

by k; the wave vector of the plane wave traveling to the
right in the slab number i with dielectric function t. ; as
shown in Fig. 2. At the interface z =z;+i the light is

partly reflected with wave vector k and partly transmit-
ted with wave vector It;+1 to the slab i+ l. All the wave

vectors are in the x-z plane.
If k; and k; denote the magnitude and the z com-

ponent of k;, respectively, it can be shown that

transmitted power ~T I ET I
12

incident power

and

k; -k(e; —q') '" (gc)

where
~ Ei ~

and [ ET
~

are the electric-field intensities
associated with the incident and transmitted electromag-
netic waves, respectively, while ei and eT are the dielec-
tric functions of the first and last layers. The fields were

with q Q/k. Thus Q is the component parallel to the
interfaces of the wave vector k; and has the same value
in all the layers due to Snell's law. Since Q =ksin8(ru/
c) sin8, where 8 is the angle of incidence, the experiment
can be carried out with monochromatic light by chang-
ing 8 only. We see that the values of Q are bounded ac-
cording to the relation 0 ~ Q ~ k. This is another
difference with respect to the quantum case since there

1 I X

z, z;

zan+i

Zo .- Zq

w-P, = Pp
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FIG. 1. Plot of «(z) vs z (solid line). The function w(z) is a
sum of a linear term of slope g (broken line) plus a periodic
function of period p. The points z; are such that z;+2 z;+p
and the value of e(z) inside the interval [z; ~,z;] is z,g+ I for i

even or z;g+1+h fori odd.

FIG. 2. The multilayered medium with dielectric function
as in Fig. 1. In the slab i a traveling ray, with wave vector k; in

the x-z plane, is reflected and refracted at the interface z;+l.
The index i runs from —I (corresponding to the vacuum at
z & 0) to iV (corresponding to the last layer at z )zz).
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FIG. 3. Plots of the transmission coefficient as a function of
q for different values of gp. The values of h and N are 10 and

201, respectively. The curve f of Fig. 4 is also a member of
this group corresponding to gp 0.1.

FIG. 4. Plots of the transmission coefficient as a function of
q' for different values of h on a logarithmic scale. The values
of gp and N are 0.1 and 201, respectively. Inset: An ampli-
fication of the peak marked with arrow in curve f.

the energy is not restricted.
Since any component of the total electric field in the

slab i must satisfy Eq. (4), they are of the form

a;exp(ik;z)+b;exp( ik;z) —with a; and b; constants. It
can shown that the vectors (a;,b; ) and (a;~ ~, b;+~) are
related by means of a 2 x 2 transfer matrix M; associated
with the interface i whose elements (M;)" and (M;) '
are given by

(M;) "~'-
—,
' (1 ~tt)exp(+i(k;-ik;p))z;+)], (9)

with a=@;k;+~/e;~~k;. As mentioned, this matrix is dif-
ferent from the one in the quantum case. ' However,
this is not surprising since the boundary conditions are
different.

We have used the product MjvM~ ~ M2M~Mo in

order to find the relation between the vectors (a —~, b —~)
and (aN, bz). Finally, the transmission coefficient was

calculated by using that relation.
In Figs. 3-5 we have plotted T as a function of q for

different values of the parameters defined in Fig. 1. In
all figures k =10 m ', p2=10 m, and p~ p2/10,
which correspond to a wavelength of 2zx10 A in the
optic region and an interval p2 of the order of two wave-

lengths. The six curves in Fig. 3 show the evolution of
the plot T vs q as a function of gp. As we can see, for
gp=0 we obtain the Bloch-theorem prediction, i.e., a
band structure due to the periodicity of the system.
However, if gp is sufficiently increased, the structure
evolves to a series of "equally" spaced peaks which we

identify as the SLR. When gp is further increased to
0.1, we obtain the curve f of Fig. 4. In this case the
SLR are sharper.

The curves in Figs. 4 and 5 show the effect of the pa-
rameter h. The scale on the h axis in Fig. 4 is nonlinear
in order to show more clearly how the SLR are formed.
On the other hand, in Fig. 5 the scale is linear and we

have an abrupt change from curve a to curve b. Note

that although in all the cases e(z) satisfies Eq. (3), only
for some values of gp and h are the SLR apparent.
These two figures show that when h =0 there is no SLR
structure. This was also the case for the simpler system
with p~ =p2, h 0. In most of the plots there are too
many peaks and it can be laborious to identify a given
family of resonances. Even in a "clear" plot such as Fig.
4, curve f, when the interval around each resonance is

analyzed with a finer mesh, one can distinguish neigh-
boring resonances (see, for example, the inset in Fig. 4).

From curves f in Figs. 3-5, it is clear that when the
SLR are present the distance between peaks increases
with gp. In Fig. 4, curve f, the value of gp is double that
in Fig. 5, curve f, so that the separation between peaks is
"double" in Fig. 4, curve f. However, because of the
finite size of the system, the separation of the SLR is not
exactly the predicted value gp, a property that has also
been observed in finite quantum systems. ' However,
the discrepancy is sma11. For example, for the case cor-

FIG. 5. Same as Fig. 4 but for gp 0.05 and )V=101 and a
linear scale on the h axis.
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responding to Fig. 4, curve f, the average distance be-
tween peaks is 0.099027 while gp =0.1. In Fig. 3, curve

f, the average distance is 0.0195 while gp=0. 02. This
discrepancy is reflected in the fact that there are 51
peaks in Fig. 3, curve f, instead of 50, as expected from
the quotient 1/0.02.

The values of the parameters N, g, p, h, and m needed
in order to have clear SLR can be varied in a relatively
wide range. In particular, the values of these parameters
corresponding to curves f in Figs. 4 and 5 imply that the
values of e(z) must be as large as 21 and 9.5, respective-

ly, with a null imaginary part. At present, values of that
order in the optic and infrared regions can be obtained in

some semiconductors such as Ge, Si, GaAs, or GaP. '

By combining some of these materials with ZnS or ZnSe
(Ref. 15) in different concentrations one can obtain a
wide range of values of e(z).

We have also done an analysis of the relation between
the structure of the plots T vs q and the interference
phenomenon. The idea was to consider couples of inter-
faces as an interferometer of the Fabry-Perot type. ' lt
was found that electromagnetic SLR can also be expect-
ed from the calculation of the q values which produce
destructive interference in the reflection at the interfaces,
even in the simpler case when the values of the ampli-
tude transmission and reflection coefficients at each in-

terface are not taken into account. These coefFicients are
related with the intensities of the electromagnetic waves
in each reflection and transmission. They determine in

turn the relative importance of the multiple reflections
that also were neglected. However, it was found that
there is no simple relationship between these values of q
and the real positions of the resonances. The process of
interference which is the origin of the structure of the
plots T vs q may be quite complex.

Actually, the selection of the particular system with its
corresponding values of q, associated with distinguish-

able SLR, can be done after calculations are performed
with the transfer-matrix method. This process led us to
demonstrate explicitly that the electromagnetic SLR
indeed exist.
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