
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERIA

IMPLEMENTING A POWER HARDWARE

IN-THE-LOOP PLATFORM USING THE

DAMPING IMPEDANCE METHOD

FELIPE ANTONIO CHAPARRO PÉREZ

Tesis para optar al grado de

Magı́ster en Ciencias de la Ingenierı́a

Profesor Supervisor:

JAVIER PEREDA TORRES

Santiago de Chile, Octubre 2020

c©MMXX, FELIPE ANTONIO CHAPARRO PÉREZ

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERIA

IMPLEMENTING A POWER HARDWARE

IN-THE-LOOP PLATFORM USING THE

DAMPING IMPEDANCE METHOD

FELIPE ANTONIO CHAPARRO PÉREZ

Miembros del Comité:

JAVIER PEREDA TORRES

FELIPE NUÑEZ

TOMÁS ÁVILA

DIEGO LOPEZ-GARCIA

Para completar las exigencias del grado de

Magı́ster en Ciencias de la Ingenierı́a

Santiago de Chile, Octubre 2020

c©MMXX, FELIPE ANTONIO CHAPARRO PÉREZ

Javier Pereda (Oct 27, 2020 14:50 ADT)
Javier Pereda

Felipe Nuñez (Oct 27, 2020 23:09 ADT)
Felipe Nuñez

Diego López-García (Oct 28, 2020 09:35 ADT)
Diego López-García

https://adobefreeuserschannel.na2.documents.adobe.com/verifier?tx=CBJCHBCAABAA_4Wc2wCh9xQgyVigKpjOtXhuHGqDv47J
https://adobefreeuserschannel.na2.documents.adobe.com/verifier?tx=CBJCHBCAABAA_4Wc2wCh9xQgyVigKpjOtXhuHGqDv47J
https://adobefreeuserschannel.na2.documents.adobe.com/verifier?tx=CBJCHBCAABAA_4Wc2wCh9xQgyVigKpjOtXhuHGqDv47J
https://adobefreeuserschannel.na2.documents.adobe.com/verifier?tx=CBJCHBCAABAA_4Wc2wCh9xQgyVigKpjOtXhuHGqDv47J

A mi familia, en particular a mi madre

Soledad y a Ester, quienes me han

cuidado desde siempre.

AGRADECIMIENTOS

En primer lugar me gustarı́a dar las gracias a mi profesor guı́a, Javier Pereda, por su

paciencia, apoyo, consideración. Por aceptarme como su alumno y guiarme, incluso cuan-

do los temas de investigación resultaban eran nuevos para ambos.

Quisiera agradecer también a el apoyo de los proyectos de Fondap y fondecyt mediante los

proyectos: ANID/FONDAP/15110019, ANID/PIA/ACT192013 y ANID/ FONDECYT/

1171142. Agradezco a mis amigos, por su apoyo y alegrı́a. Por estar ahı́ para mi tanto en

los momentos felices como en los más complicados. Y sobre todo, por quererme y acep-

tarme como soy.

Doy las gracias a Engie Laborelec, tanto a su equipo chileno como belga. Agradezco

profundamente a Sebastı́an Michels por creer en mı́, darme la oportunidad de realizar la

práctica profesional con la compañı́a y por convencerlos de patrocinar mi tésis. A Tomás

Ávila, por ser un gran apoyo, por sus concejos y ayuda, además de por aceptar ser parte

de la comisión evaluadora. También agradezco a Luis Valenzuela, a Antonı́o Alarcón y a

todo el personal de Laborelec Chile.

Agradezco sinceramente al equipo de Power Systems en Laborelec Bélgica por hacer mi

estadı́a en Bruselas un tiempo muy ameno y enriquecedor. Agradezco muy especialmente

a Stijn Uytterhoeven, Olivier Ducarme, Loic Maudoux y Christ Scheldeman por su apo-

yo y ayuda. Por permitirme realizar los experimentos y siempre estar dispuestos a ayudar

cuando lo requerı́. Una mención especial merece Laura Terán, cuyo apoyo fue crucial en

la última etapa de este trabajo, durante la pandemia.

Finalmente, quisiera agradecer a mi familia, a mi madre Soledad, que siempre me ha apo-

yado, querido, protegido y entendido; y a Ester, quién ha estado ahı́ para mı́ desde que

tengo memoria. Entre ambas, no podrı́a pedir una mejor familia.

IV

GENERAL INDEX

AGRADECIMIENTOS . IV

FIGURE INDEX . VIII

TABLE INDEX . XV

RESUMEN . XVI

ABSTRACT . XVII

1. INTRODUCTION . 1

1.1. The role of power hardware in-the-loop in testing 2

1.2. State-of-art of PHIL . 7

1.3. Original contribution of the thesis . 15

1.3.1. Objectives . 16

1.3.2. Hypothesis . 17

1.3.3. Methodology . 17

1.3.4. Organisation of the thesis . 19

2. Interface algorithms: An implementation oriented review 20

2.1. Introduction . 20

2.2. Ideal transformer method (ITM) . 21

2.2.1. Stability considerations . 22

2.2.2. Accuracy considerations . 28

2.3. Ideal transformer method with low pass filter 32

2.3.1. Stability considerations . 32

2.3.2. Accuracy considerations . 34

2.4. Partial circuit duplication (PCD) . 37

2.4.1. Stability considerations . 38

V

2.4.2. Accuracy considerations . 43

2.5. Damping Impedance method (DIM) . 48

2.5.1. Stability considerations . 49

2.5.2. Accuracy considerations . 57

2.6. Effects of an active HUT . 64

2.6.1. Effects on an active HUT on stability 66

2.6.2. Effects on an active HUT on accuracy 67

2.7. Chapter conclusion . 70

3. Impedance identification . 72

3.1. Introduction . 72

3.2. Identification procedure overview . 73

3.3. Data gathering . 74

3.4. Correlation functions and power spectral density 75

3.5. Spectral analysis . 78

3.6. Windowing . 81

3.7. Excitation . 83

3.7.1. Sine and sum of sines . 83

3.7.2. Step function . 84

3.7.3. White noise & Pseudo Random Binary Sequences (PRBS) 85

3.8. Spectral analysis: implementation and offline results 88

3.9. Parametric identification . 93

3.10. Levenberg-Marquartd method . 97

3.11. Chapter conclusion . 103

4. Software implementation & simulation results 104

4.1. Introduction . 104

4.2. Opal-RT model structure . 105

4.3. Software implementation: Electrical simulation 108

VI

4.4. Software implementation: Identification Routine 113

4.5. Software implementation: Measurements 114

4.6. Simulation results . 116

4.6.1. Passive load . 116

4.6.2. Active load . 127

4.7. Problems of spectral analysis in the active load case 137

4.8. Chapter conclusion . 143

5. Hardware implementation & experimental results 145

5.1. Introduction . 145

5.2. Guidelines for programming for real time with Matlab Simulink and RT-LAB145

5.2.1. Discrete solvers and algebraic loops 145

5.2.2. Using code compatible with code generation 147

5.3. Changes to subsystems . 148

5.4. Physical components of PHIL platform 151

5.4.1. OPAL-RT target: OP5600 . 151

5.4.2. Voltage amplifier . 152

5.4.3. Delta electronica DC source . 154

5.4.4. HUTs . 155

5.5. Testing: Passive load . 156

5.6. Testing: Solar inverter . 164

5.7. Chapter conclusion . 176

6. Conclusions . 177

BIBLIOGRAFY . 180

ANEXO A. Additional Resources . 190

VII

FIGURE INDEX

1.1. Testing methodologies . 2

1.2. LVRT voltage profile. [2020] IEEE . 3

1.3. CHIL and PHIL architecture . 5

1.4. Amplifier size comparison . 10

1.5. ITM interface algorithm . 11

1.6. DIM algorithm . 12

1.7. Block diagram of the WSI technique. [2017] IEEE 14

1.8. Block diagram of the postprocessing routine to identify the parametric impedance.

Implemented in LabVIEW [2017] IEEE . 15

2.1. ITM interface algorithm . 22

2.2. ITM algorithm block diagram . 23

2.3. Comparison between stable and unstable cases of ITM algorithm 25

2.4. Comparison between stable and unstable cases of ITM algorithm. Nyquist

diagram . 26

2.5. Difference between real system and system with delay approximation. 28

2.6. Naturally coupled system . 29

2.7. NCS vs ITM . 30

2.8. ITM. Deviations with respect to NCS . 31

2.9. ITM method with lowpass filter. Block diagram 32

2.10. Comparison between ITM and ITM with lowpass filter IAs 33

2.11. Comparison between ITM and ITM with lowpass filter IAs. 34

VIII

2.12. Closed loop response of system with low pass filter compared to ITM and NCS

systems . 35

2.13. ITM with low pass filter. Deviations with respect to NCS 36

2.14. PDC algorithm . 37

2.15. PCD block diagram: forward path . 38

2.16. PCD block diagram: complete . 38

2.17. PCD. Comparison between purely resistive and purely inductive Zab 40

2.18. Nyquist contours of PCD algorithm. Multiple values for Zab 42

2.19. PCD vs ITM vs ITM with lowpass filter . 42

2.20. Simplified control loop . 43

2.21. PCD accuracy. Multiple values . 45

2.22. PCD. Multiple values of Zab. Deviations with respect to NCS 46

2.23. PCD accuracy vs other interface algorithms 47

2.24. PCD. Deviations with respect to NCS . 47

2.25. DIM algorithm . 49

2.26. DIM forward path . 50

2.27. DIM left side solved by superposition . 50

2.28. DIM control block diagram . 51

2.29. DIM control block diagram: modified . 52

2.30. Nyquist contours of DIM algorithm. Multiple values for ZDIM 55

2.31. Comparison between the different interface algorithms 56

2.32. Comparison between the NCS and DIM . 59

2.33. DIM. Multiple value of ZDIM . 61

2.34. DIM. Multiple value of ZDIM . Deviations with respect to NCS 61

2.35. Comparison between the different values of Zab 62

IX

2.36. Comparison between different IAs . 62

2.37. Comparison between different IAs. Deviation with respect to the NCS 63

2.38. Active HUT . 64

2.39. Block diagram of ITM IA with an active HUT 65

2.40. Block diagram of PCD IA with an active HUT 65

2.41. Block diagram of DIM IA with an active HUT 65

2.42. Naturally coupled system with an active HUT 67

3.1. Data gathering environment . 75

3.2. Spectrum of several input signals . 85

3.3. LFSR implementing PRBS7: x7 + x6 + 1 88

3.4. Identification circuit for case 1: RL . 90

3.5. Identification circuit for case 2: RLC . 91

3.6. Results for RL filter identification . 91

3.7. Results for RLC filter identification . 92

3.8. Results for RL filter identification . 96

3.9. Results for RLC filter identification . 96

3.10. Least square ID. N = 2000 . 97

3.11. RL circuit ID with LM method. N = 2000 102

3.12. RL circuit ID with LM method. N = 10000 102

4.1. PHIL platform structure . 105

4.2. OPAL RT model structure . 106

4.3. Software structure . 107

4.4. Top view of Simulink model . 108

4.5. Overview of subsystem SM computations 110

X

4.6. Implementation of the DIM algorithm . 111

4.7. Implementation of a variable impedance . 111

4.8. Amplifier and HUT . 112

4.9. Implementation of data sampler . 113

4.10. Implementation of the ID routine . 114

4.11. Implementation of the DIM algorithm . 115

4.12. Simplified diagram of the simulation . 117

4.13. Identification process. First 2 attempts . 118

4.14. Identification process. Fist 10 attempts . 119

4.15. Simulation voltage. RL load . 120

4.16. Simulation current. RL load . 121

4.17. Active power. RL load . 121

4.18. Reactive power. RL load . 122

4.19. Voltage relative error. RL load . 123

4.20. Voltage relative error zoom. RL load . 123

4.21. Current relative error. RL load . 124

4.22. Current relative error zoom. RL load . 124

4.23. Active power relative error. RL load . 125

4.24. Active power relative error zoom. RL load 126

4.25. Reactive power relative error. RL load . 126

4.26. Reactive power relative error zoom. RL load 127

4.27. SM computations subsystem used for simulation with inverter 128

4.28. Grid tied inverter . 129

4.29. Current control scheme . 129

XI

4.30. Simplified diagram of the simulation . 130

4.31. RMS voltage. Inverter load . 131

4.32. Voltage relative error. Inverter load . 132

4.33. RMS current. Inverter load . 132

4.34. Current relative error. Inverter load . 133

4.35. Current relative error zoom. Inverter load 133

4.36. Active power. Inverter load . 134

4.37. Active power relative error. Inverter load 134

4.38. Active power relative error zoom. Inverter load 135

4.39. Reactive power. Inverter load . 135

4.40. Reactive power relative error. Inverter load 136

4.41. Reactive power relative error zoom. Inverter load 136

4.42. Model of a feedback system . 137

4.43. Identification scenario of an active HUT . 141

5.1. Algebraic loop example . 146

5.2. Subsystems at deadlock . 147

5.3. The subsystems executing in series . 147

5.4. Subsystems executing in parallel . 147

5.5. Block handling I/O . 149

5.6. Detail of I/O block . 150

5.7. Real time simulator internal architecture. 151

5.8. Operational limits of Amplifier . 152

5.9. Amplifier bandwidth . 153

5.10. Amplifier step response . 154

XII

5.11. Delta electronika DC source . 154

5.12. Huawei inverter topology . 156

5.13. Experiment setup with passive load . 157

5.14. Experiment with passive load: RMS Voltage. 158

5.15. Experiment with passive load: % of error for RMS voltage. 159

5.16. Experiment with passive load: % of error for RMS voltage. Zoom 159

5.17. Experiment with passive load: RMS current. 160

5.18. Experiment with passive load: % of error for RMS current. 160

5.19. Experiment with passive load: % of error for RMS current. Zoom 161

5.20. Experiment with passive load: Active power. 161

5.21. Experiment with passive load: Active power. % of error for active power. . . . 162

5.22. Experiment with passive load: % of error for active power. Zoom. 162

5.23. Experiment with passive load: Reactive power. 163

5.24. Experiment with passive load: % of error for reactive power. 163

5.25. Experiment with passive load: % of error for reactive power. Zoom. 164

5.26. Experiment setup with solar inverter . 165

5.27. RMS voltage during test . 166

5.28. RMS current during test . 166

5.29. Active power during test . 167

5.30. Reactive power during test . 167

5.31. Active power during test. Zoom . 169

5.32. Reactive power during test. Zoom . 169

5.33. Current waveform before first ZDIM update while feedback is on 170

5.34. Current waveform after first ZDIM update while feedback is on 170

XIII

5.35. Current waveform during first ZDIM update while feedback is on 171

5.36. RMS voltage during second test . 172

5.37. RMS current during second test . 173

5.38. Active power during second test . 173

5.39. Reactive power during second test. 174

5.40. Active power during second test. Zoom . 174

5.41. Reactive power second during test. Zoom 175

5.42. Current waveform with almost no phase error 175

A.1. Huawei inverter technical data . 190

A.2. Puissance Plus power specification . 191

A.3. Puissance Plus accuracy specification . 191

A.4. Puissance Plus time specification . 192

A.5. Puissance Plus physical specifications . 192

A.6. OP1400 amplifier technical data . 193

XIV

TABLE INDEX

1.1. Amplifier comparison . 9

2.1. System Parameters . 26

2.2. Stability Margins. ITM . 27

2.3. Stability Margins. ITM with low pass filter - System 1 33

2.4. Stability Margins. PCD - System 1 . 41

2.5. Stability Margins. DIM - System 1 . 55

2.6. Interface algorithms: Summary . 70

2.7. Interface algorithms: Open-loop transfer functions 70

3.1. Parameters of identified systems . 90

4.1. Simulation parameters: passive load . 117

4.2. Simulation parameters: Inverter load . 130

5.1. Experiment parameters: passive load . 157

5.2. Experiment parameters: inverter load . 165

XV

RESUMEN

El testeo y la validación son partes esenciales del desarrollo de cualquier dispositivo

eléctrico de potencia. Las simulaciones Power Hardware in-the-loop pueden desempeñar

un papel vital en la mejora de la fase de prueba de estos dispositivos, permitiendo escena-

rios de prueba realistas y, reducir costes, riesgos y ahorrar tiempo. Esta tesis presenta un

trabajo de investigacion sobre la implementación práctica de una plataforma de simulación

PHIL utilizando el Damping Impedance Method. Para tener éxito, esto requiere la identi-

ficación de la impedancia del dispositivo bajo prueba. Presentamos una estrategia de iden-

tificación basada en el análisis espectral, para obtener una identificación no paramétrica

de la impedancia del HUT, seguida de una rutina de ajuste que obtiene una representación

paramétrica de la misma. A continuación se simula la plataforma PHIL para probar su

funcionamiento ası́ como el de la rutina de identificacion con HUT pasivos y activos. La

implementación de la plataforma PHIL se realiza en un simulador multi-nucleo de tiempo

real, lo que permite que la simulación eléctrica y la rutina de identificación se ejecuten en

paralelo, en un mismo dispositivo. Se realiza luego, una verificación experimental de los

escenarios simulados. Se encuentra una diferencia fundamental entre la identificación de

los HUT pasivos y activos y se proponen y aplican estrategias sobre como hacer frente a

ella. Finalmente, se dan recomendaciones sobre la realizacion de más simulaciones PHIL

con la plataforma.

Palabras Claves: Power hardware in-the-loop, Damping impedance method, Solar in-

verter, Interface algorithm, Real-time, OPAL-RT

XVI

ABSTRACT

Testing and validation are essential parts of the development of any electrical power

device. Power hardware in-the-loop simulations can play a vital role in improving the tes-

ting phase of these devices, allowing for realistic testing scenarios while at the same time

reducing costs, risks and saving time. This thesis presents research on the practical im-

plementation of a PHIL simulation platform using the damping impedance method. To be

successful this requires the identification of the impedance of the hardware under test. We

present an identification strategy based on spectral analysis, to obtain a non-parametric

identification of the HUT’s impedance, followed by a fitting routine that obtains a para-

metric representation of it. The PHIL platform is then simulated to test the identification

routine with passive and active HUTs. Implementation of the PHIL platform is done in a

multi-core real-time target, allowing for the electrical simulation and identification routine

to run in parallel, on the same device. Experimental verification of the simulated scenarios

is performed. A fundamental difference between the identification of passive and active

HUTs is found and strategies on how to cope with it are proposed and implemented. Fi-

nally, recommendations are given about the realisation of further PHIL simulations with

the platform.

Keywords: thesis template, document writing, (Write here the keywords relevant

and strictly related to the topic of the thesis).

XVII

1. INTRODUCTION

Testing and validation are essential parts of the development cycle of any complex

engineering project. Whether this project is structured using a V-model (Fowler, 2015), a

waterfall model (Petersen, Wohlin, y Baca, 2009), an iterative model (Grogan, De Weck,

Ross, y Rhodes, 2015), or any of the many popular project development methodologies,

testing and validation will always take up a significant part of the system’s development.

Power electrical devices are no different, and are often subjected to rigorous and ex-

tensive testing during their development. Furthermore, countries and international organi-

sations often dictate norms and standards that these devices must comply with, in order

to be introduced into the market. This is specially true for grid connected devices, whe-

re to be allowed interconnect with the electrical grid, they must comply with a series of

standards and regulations covering subjects such as safety (Parise, 2013), operational ca-

pabilities (IEEE Standard Association, 2018), compliance with communication standards

(IEEE Standard Association, 2011), (IEC, 2010), among many others. Devices such as

synchronous machines, wind turbines, residential solar inverters, battery storage devices

or a simple transformer, must all undergo lengthy testing and validation before being ready

to enter the market and be put in service. Even devices which are not required to meet a

certain standard still go through lengthy testing procedures as engineers seek to ensure

they perform accordingly to the expectations set during the design stage. This may pro-

ve challenging, as it often involves the design of complex testing environments meant to

realistically replicate the conditions to which a device will be exposed during its operation.

Whichever the case, Power Hardware in-the-loop (PHIL) simulations can play an in-

valuable role during the testing phase of a product’s development, potentially reducing

costs, saving time, reducing risks, and improving the safety and accuracy of the testing

procedures.

1

1.1. The role of power hardware in-the-loop in testing

The approaches used for testing power electrical devices are many, ranging from offli-

ne simulation using simplified models, to physical testing done with the finished product.

We can organise these different approaches as seen in the diagram below 1.1.

Testing of electrical
power devices

Open-loop tests Closed-loop tests

Guideline tests Physical testsOff-line open loop
similation

closed-loop off-line
simulationReal-time simulation

Software in-the-loop Power hardware in-the-
loop (PHIL)

Controller hardware in-
the-loop (CHIL)

FIGURE 1.1. Testing methodologies

We first, divide the different methodologies in either open-loop or closed-loop testing.

This distinction related to the ability of the device tested, or Hardware Under Test (HUT),

to exert influence to the testing environment. In open-loop tests, the testing conditions are

pre-set at the start of the test and the actions of the HUT are not able to influence them;

whether because the HUT is incapable or because these influences are simply not fed-back

to generate the appropriate change.

Open-loop tests are often used to certify compliance with a standard. These type of

tests can be called guideline tests, as the tests variables applied to the HUT must follow a

specific set of predefined guidelines in order for the test to be valid.

An example of this type of test would be the one mandated by the IEEE 1547.1 stan-

dard to verify the voltage support features for distributed energy resources (DERs). In this

test, a source varies the RMS voltage level at the point of interconnection (POI) with the

2

HUT. A voltage profile is preset for the test, and to pass, the HUT must perform a set

of acceptable actions in response to that profile. Figure 1.2, taken from (IEEE Standard

Association, 2020), shows an example of a Low voltage ride-through (LVRT) test profile.

FIGURE 1.2. LVRT voltage profile. [2020] IEEE

During this test it is explicitly required that the actions of the HUT in no way affect the

voltage profile applied to it by more than 1 % of the set value. While this may be reasonable

since the goal of the test is grid compatibility; it must be noted that this behaviour is not

necessarily an accurate representation of the conditions the HUT will encounter during

operation. One would expect the HUT to have no impact on the voltage of its POI, if

this has a very low short circuit ratio (ie: the HUT is connected to a very strong grid).

In reality though, it is easy to think of common scenarios where this would not be true,

such as the HUT begin connected at the end of a distribution feeder or in a temporarily

islanded microgrid. Here, we would expect the response of the HUT to significantly affect

3

the voltage of its POI. The change in the voltage produced by the device, will in turn have

an affect how the device responds and so on, possibly leading to the HUT presenting a

very different response than that of the standard test. We can see that while useful, these

types of tests may not be enough to ensure the adequate operation of a device under real

conditions.

By contrast, closed-loop tests take into consideration the effects the operation of the

HUT has, and alter the testing conditions accordingly. Because of this, they can provide a

much better approximation of the behaviour of the HUT in a given situation.

The simplest example of this would be a complete physical test or a field test. In this

type of test, any action the HUT takes, has an effect in the rest of the system and vice versa,

simply because of the physics of the situation. It goes without saying that this test would

provide the results closest to reality, because it is reality. However, it is also easy to see that

this method of testing is extremely expensive as each scenario involves the construction of

a physical system to test the HUT. An example of this type of testing facility is the REIDS

project off the coast of Singapore. A microgrid testbed built in collaboration between

Engie, Schneider Electric and the Nanyang Technological University (Peng y Wild, 2017).

Today, the most popular form of testing, by far, is the use of computer simulation.

Just like physical testing, circuit simulation is also a closed-loop method as the effects the

HUT and the rest of the simulation have over each other are calculated and applied at each

time-step. Powerful circuit simulators such as Power Factory, Matlab/Simulink or PLECS

have made possible to quickly and cost-effectively develop models of electric devices.

These models can be easily modified and tested in complex simulated environments that

are quick to build and adjust. All these advantages have made simulation the primary tool

used to develop and test electrical devices. The main problem with computer simulation is

that the fidelity of the results is dependant on how accurately the models represent the real

device. Provided with precise models, simulation can be amazingly accurate but highly

4

precise models are often difficult to produce. The effects of parasitic components, elec-

tromagnetic interference, computational delays of micro-controllers and communication

problems may all cause the real device to behave differently from the simulated model,

under the right conditions. Because of this, even the most confident developers still per-

form extensive hardware tests to validate their results and contrast the dynamics of the real

device with the models used to develop it.

It is here where real-time simulation techniques such as Controller Hardware in-the-

loop (CHIL) and Power hardware in-the-loop (PHIL) can significantly contribute to the

testing of an electrical device. These two techniques aim to combine the best elements

of physical testing and computer simulation. Figure 1.3 shows the typical configurations

used in CHIL and PHIL experiments.

Controller
under test

Real-Time
Simulator

D/A A/D

D D

A/D D/A

D D

Power device
under test

Real-Time
Simulator

D/A

A/D

Power
amplifier

HV

HV/HC

Measurement
devices

FIGURE 1.3. CHIL and PHIL architecture

In a CHIL experiment the HUT is the real physical device, often a microcontroller

designed to control some system. This device is interfaced with a simulated testing envi-

ronment that runs in real-time. This means that time in the simulation runs at the same

speed as in the outside world. This allows the HUT to react to the stimuli coming from

5

the simulation and respond to it as it would under real operating conditions. The simula-

tion in turn, senses the response of the HUT, calculates its effect on the simulated system

and modifies the variables presented to the HUT. The communication between the HUT

and the simulation can be done through analog and/or digital signals, depending on the

requirements of each specific experiment.

This testing methodology is extensively used in the automotive industry. Here, the

independent systems of the vehicles are connected to a simulation of the rest of the car.

This allows the development process to advance at a much faster pace as, for example,

the team that develops the throttle system does not need the motor and transmission to

be ready, but only a simulation of them, to implement and test their system on the micro-

controllers that will be used in the car. This approach allows for the fidelity of physical

testing and the ease of implementation and flexibility of computer simulation.

Power hardware in-the-loop is the extension of this idea, to power devices and electri-

cal networks. In a PHIL experiment the HUT is a power device interfaced to a simulated

electrical system through the use of a voltage or current amplifier. Like in CHIL experi-

ments, the electrical system is simulated in real time and the effects of the HUT, measured

and incorporated to it at every timestep. The amplifier then applies the calculated voltage

or current to the HUT, and so on, completing the feedback loop. This approach retains

many of the benefits of CHIL experiments, as fidelity and flexibility will be high.

PHIL simulations are specially suited for experiments where the effects of the HUT on

the testing environment are predicted to be large, or are also of interest. An example of this

would be, like presented before, the simulation of a distribution feeder where a relatively

large DER is connected. Here, the effects of the network on the HUT would likely be

as important as the effects the HUT has on the network. This problem in particular, has

received much interest by researchers and industry alike, with the advent of distributed

generation (Radatz, Kagan, Rocha, Smith, y Dugan, 2016), (Nassif, 2018) ,(Wang y De

Leon, 2020).

6

Another example where PHIL would be particularly useful, would be the in testing of

motor drives. Here, a simulated motor could be connected to the real drive (Lemaire, Si-

card, y Belanger, 2015), (Zyuzev, Mudrov, y Nesterov, 2016). We can see how simulating

the responses of the motor to the control actions of the drive, is of crucial importance to

asses its performance. A PHIL simulation allows to perform these types of tests, even if

the motor is not yet built.

Nonetheless, PHIL simulations pose additional challenges when compared to CHIL,

often making them more difficult to implement. Instability may occur as a consequence

of the properties of the interface used to connect both systems. Also, the non-idealities of

this interface may also affect the accuracy of the simulation (Ren, Steurer, y Woodruff,

2007). Thus, while PHIL simulations present a great opportunity to improve and speed-up

the testing process of a power device, they must be implemented taking the appropriate

considerations, to achieve good results.

1.2. State-of-art of PHIL

As explained in the previous section, Power Hardware in-the-loop (PHIL) is a real-

time simulation technique in which a physical power device, often referred to as Hardware

Under Test (HUT), and a virtual electrical system, referred to as Rest of System (ROS), are

connected via an interface allowing them to exchange power. Physically this is achieved

by power amplifier able to supply or sink the power dictated by the electrical simulation.

Computationally this interface is performed by an Interface Algorithm (IA) which is res-

ponsible for commanding the power amplifier and feeding back the effects of the real

system into the simulation. Both the amplifier and these interface algorithms, are key to

the success of a PHIL experiment and have been subject of much study in literature.

For the amplifier, two main technologies exist: switch-mode amplifiers and linear

amplifiers. Switching amplifiers are usually AC/DC/AC power converters (they can be

AC/DC for DC PHIL experiments) that use a variety of control and modulation strategies

7

to track the reference given by the real-time simulation (Karapanos, De Haan, y Zwets-

loot, 2011). To simulate a 3-phase system, 3-leg and 4-leg inverters are used, the latter to

allow for unbalanced operation. Multiple control strategies have also been suggested and

implemented, such as: PI, PID, predictive control, etc. Different topologies for filters have

also been suggested in the literature, but the most common remain the LC and LCL filters

(Lehfuss et al., 2012). Switch-mode amplifiers are convenient for PHIL applications due

to their relatively low cost per kW of power and their ability to operate in 4 quadrants wit-

hout much restrictions, as they can just feed power back to the grid. They are also highly

efficient and available in a wide range of power, from just a few kW to several MW. They

can be implemented in a modular fashion and are often the only option for high voltage

applications. Their main drawback is their generally high input lag and low bandwidth gi-

ving them a comparatively poor dynamic performance. Moreover, their complex structure

and dynamics can have a significant effect in the stability of a PHIL simulation, often in

unintuitive ways (Marks, Kong, y Birt, 2018b). Some attempts of using high switching

frequencies have succeeded on mitigating these drawbacks (Benigni, Helmedag, Abdal-

rahman, Piłatowicz, y Monti, 2011).

The second technology used for PHIL amplification are linear amplifiers. These am-

plifiers use an amplification stage consisting on multiple MOSFETs in parallel operating

in their linear region. The control of this type of amplifier is very simple, as the refe-

rence can often just be fed to the amplification stage directly. However, many devices

add a compensation loop that performs load regulation. The main benefit of this type of

amplifier is its performance. Input delay is much lower than switching amplifiers of com-

parable power and bandwidth is also higher. Harmonic distortion is also very low, as there

is no switching activity going on. This makes them very well suited for simulations where

accuracy is key. Yet, linear amplifiers have many drawbacks when compared with their

switch-mode counterparts. They are more expensive in a per kW basis, they are less effi-

cient as the MOSFETs operate in their linear region, and they have trouble sinking their

rated power, as they normally cannot feed power back to the grid and rely on internal

8

resistors and fans to dissipate the excess power. This in turn makes them less compact,

requiring more valuable lab space. They cannot handle high voltages as their design ma-

kes it so, the MOSFETs must bear a large part of the rated voltage of the device. This

means that linear amplifiers are confined to low to mid power applications. A comparison

between two commercial PHIL amplifiers can be seen in table 1.1, figures 1.4a, 1.4b and

further technical information about both devices can be found in annex A. While PHIL

amplifier design and control is a fascinating topic, worthy of much discussion, it is outside

the scope of this thesis.

TABLE 1.1. Amplifier comparison

Device PA-3X7000-AC-DC-4Q-400V OP1400 Series

Brand Puissance Plus OPAL-RT

Technology Linear amplifier Switching amplifier

Semiconductors Silicon MOSFET SiC MOSFET

Power Range 21kW 10-15kW

Voltage range 0-565V RMS / ± 1120V DC 0-380V RMS / ± 400V DC

Phases 3 phases 3, 6 or 9 phases

Bandwidth (-3db) DC - 70kHz DC - 10kHz

Slew rate 65V/µs 5V/µs

Input delay < 7µs 5,5µs− 8,3µs

THD < 0,7 % (max) < 2 %@10kHz

Absorption capacity 50 % (dissipative) 100 % (non-dissipative)

Size
1950mm x 800mm

x 800mm (38U)

< 178mm x 482.6mm

x 500mm (4U)

9

(A) Puissance Plus PA-3X7000-AC-
DC-4Q-400V amplifier

(B) OP1400 amplifier

FIGURE 1.4. Amplifier size comparison

The second part of a PHIL interface is the interface algorithm. The early successful

implementations of PHIL used the simplest IA of all, the Ideal Transformer Method or

ITM, see in figure 1.5. This method consists of a controlled voltage source in the hardware

side and a current source that feeds back the current from the HUT to the simulation. We

see the ITM being used in applications such as a test bed for electric ship motors Liu et al.

(2005), Steurer et al. (2007), and for PV converters Seo et al. (2011) and Langston et al.

(2012). However, researchers quickly realised the downsides of the ITM. Its poor stability

made it so applications often required the inclusion of filters on the feedback current,

decreasing accuracy (Iwado, Ohori, Hattori, y Funaki, 2015). To alleviate this problem,

several researchers applied compensation strategies to the ITM. In Ainsworth et al. (2016)

we see how these compensation techniques are applied in an experiment where a battery

inverter is connected to a simulated distribution feeder. In the experiment, a simulated

transformer and the large and slow power amplifier introduce notable distortions in the

simulation. In Marks et al. (2018a) we see a more general approach for compensation of

ITM interfaces.

10

ROS ITM HUT

Software Hardware

FIGURE 1.5. ITM interface algorithm

Over the years, other interface algorithms were proposed such as the Transient First-

order Approximation (TFA) (Wu, Lentijo, y Monti, 2004), Transmission line model (TLM)

(Wu y Monti, 2005), Multi-rate partitioning (Lehfuß, Lauss, y Strasser, 2012), etc. But no-

ne have shown considerable improvements in stability and performance over the ITM with

compensation and are not widely used.

11

.
ROS DIM HUT

Software Hardware

FIGURE 1.6. DIM algorithm

An interface algorithm that has shown significant improvements in both stability and

accuracy over the ITM is the Damping Impedance Method or DIM (Brandl, 2017) and

(Hatakeyama, Riccobono, y Monti, 2016) . This algorithm differs from the ITM as it adds

a virtual damping impedance ZDIM in the software side. It also feeds back both the current

and voltage of the HUT. A diagram of the DIM IA can be seen in figure 1.6. The main

advantage of the DIM algorithm is that its properties depend on the choice of the ZDIM .

It has been shown that if this damping impedance perfectly matches the impedance of the

HUT, the simulation is guaranteed to be stable (Zhang, 2016). Further more, accuracy is

also preserved. This raises a new challenge though, as knowledge of the HUT’s impedance

is unlikely to be available. Because of this, several implementations of the DIM algorithm

use some method to estimate ZHUT .

Some implementations of PHIL platforms using the DIM IA use very simple metho-

dologies to estimate the ZHUT . In Paran y Edrington (2013) an estimate is obtained by

12

using the magnitudes and phase of the voltage and current. It is assumed that the HUT can

be modelled as an LR filter and parameters for R and L are obtained, as seen in equations

1.1 through 1.3.

RMS(V)

RMS(I)
(cosϕ+ jsinϕ) = RDIM + jωLDIM (1.1)

RMS(V)

RMS(I)
(cosϕ) = RDIM (1.2)

RMS(V)

RMS(I)
(sinϕ) = ωLDIM →

RMS(V)

RMS(I)

sinϕ

ω
= LDIM (1.3)

This approach has been applied by Paran, Fleming, Li, y Edrington (2014) in simu-

lations with harmonics loads and by Jiang, Li, Xin, Wang, y Wang (2019) in a PHIL

simulations of MMC-HVDC device. Despite the relative success of this method, there are

clear drawbacks to it. First, it is not easy to generalise as different HUTs will have diffe-

rent topologies for ZHUT . Assuming that every HUT can be treated as an LR filter is not

accurate to represent a variety of HUTs. Second, the estimate will only prove accurate for

the fundamental frequency used to calculate the RMS values and phase, this means that if

an HUT presents some other dynamics at higher frequencies, they will not be taken into

consideration, reducing the accuracy of the simulation.

A second approach to estimating ZHUT has been proposed by Siegers y Santi (2014)

and implemented by Liegmann et al. (2016) and Riccobono et al. (2017). This approach

uses a technique called Wide band Identification to obtain an estimate of the impedan-

ce of the HUT across a large range of frequencies. This is essentially a spectral analysis

technique where correlation analysis is used to obtain a non-parametric identification of a

system. This information is then used to derive a parametric model for ZHUT . The met-

hod proposed by the authors, makes up for the shortcomings of the previous attempts to

use the DIM IA, by obtaining a much more accurate estimate of ZHUT without needing

prior knowledge of its topology. This improvement however, came at the cost of heavily

increasing the computational burden. To cope with this, the author resorted to running the

13

estimation procedure in a dedicated real-time PC, regularly communicating the estimates

for ZHUT to the electrical simulator. A diagram of the system implemented by Liegmann

et al. (2016) and Riccobono et al. (2017) is shown in figures 1.7 and 1.8.

Measurements of the current and voltage of the interface are taken and used by the

dedicated real time PC using LabVIEW. This PC calculates the Discrete Fourier Transform

of both measurements and uses it to obtain a non parametric estimate of the impedance.

Then it uses a fitting routine based on the least squares method to the a parametric transfer

function. Finally, the known topology of the Load is used to determine parameters for R,

L and C. The detailed process used is shown in figure 1.8. This estimate for Z(s) are then

passed to another real-time PC that runs the electrical simulation and controls the amplifier

via Vref in figure 1.7. The results obtained with this approach seem to confirm the claims

made by the authors of increased accuracy.

FIGURE 1.7. Block diagram of the WSI technique. [2017] IEEE

14

FIGURE 1.8. Block diagram of the postprocessing routine to identify the parame-
tric impedance. Implemented in LabVIEW [2017] IEEE

1.3. Original contribution of the thesis

The main contribution of this thesis is the implementation of a PHIL platform that

uses the damping impedance method, as well as an identification routine to allow it to

adapt to different HUTs. This thesis was performed in collaboration with Engie Laborelec

and the experimental work was performed in their facilities at Linkebeek, Belgium. Their

main interest in the implementation of this PHIL platform was that it should be capable of

performing the widest possible range of PHIL simulations, utilising varied HUTs. Thus, a

thorough analysis of the different interface algorithms was performed in chapter 2 where

the strength and weaknesses of each were evaluated, arriving at the conclusion that the

DIM IA was the best alternative. Given that the DIM IA was selected, a method for iden-

tifying the HUTs impedance was needed. Seeing the success of the approach by Liegmann

et al. (2016) and Riccobono et al. (2017), a similar strategy was implemented, described

in chapter 3. Novel contributions where made in the implementation of this strategy. Ta-

king advantage of the multi-core nature of the OP5600 real-time target from OPAL-RT,

allocation of separate cores for the electrical simulation and the identification procedure

was possible, eliminating the need for a second real-time target. This allowed us to run

15

the electrical simulation and identification routine in parallel without them significantly

interfering with one another. This allows for a much simpler setup, requiring only 3 main

components: the OP5600 real-time target, a 21kW 4-quadrant linear amplifier by Puis-

sance Plus, and the HUT. Furthermore, the entire setup can be programmed and modified

using only MATLAB/SIMULINK and OPAL-RT’s RT LAB software.

We verify the results obtained by Liegmann et al. (2016) and Riccobono et al. (2017)

through both simulation and physical experimentation with similar types of passive loads.

We also performed both simulation and experimental verification of the application of this

technique to active HUTs, in our case a residential solar inverter (Huawei SUN2000L-

3KTL). The results allow for a more careful understanding of the strengths and limitations

of the strategy used, helping to understand better its possible use cases and further deve-

lopment.

1.3.1. Objectives

The objectives of this thesis are all related to the successful implementation of a flexi-

ble PHIL platform, capable of performing stable and accurate PHIL simulations in a wide

rage of experimental conditions.

1.3.1.1. General objective

To make a comprehensive analysis of the different interface algorithms used in PHIL

simulations and select one for implementation. Then, the implementation of flexible PHIL

simulation based in DIM impedance identification techniques, capable of a wide range of

simulations with different HUTs.

1.3.1.2. Specific objectives

1. Review the properties of the different interface algorithms.

2. Implement a PHIL platform.

3. Test the PHIL platform with passive loads to verify the results obtained in other

works and through simulation.

16

4. Test the PHIL platform with active HUTs and evaluate its performance.

5. Provide a comprehensive analysis and recommendations towards the realisation

of PHIL experiments in the future, using the platform.

1.3.2. Hypothesis

The formulation of the hypothesis is in relation to the implementation of a functioning

PHIL platform.

H1 Among the different interface algorithm, the damping impedance has the best

performance in terms of stability and accuracy.

H2 The strategy selected to estimate the impedance of the HUT can provide accurate

estimates for passive and active HUTs.

1.3.3. Methodology

To meet the objectives and prove of disprove the hypothesis, first we will perform a

theoretical analysis of the different IAs and study their properties. We will then perform

simulations to confirm the predictions of the theoretical analysis. Finally, the PHIL plat-

form is implemented and the simulated scenarios are replicated to confirm or refute our

predictions.

1.3.3.1. Evaluation methodology

To evaluate the stability and accuracy of the different interface algorithms we will

select two systems with different ratios between the software impedance and the hardware

impedance, and then compare the effects each interface algorithm has on the systems

through the use of nyquist and bode plots. The accuracy will be evaluated in relation to the

Naturally coupled system or NCS, the system where no interface is present.

During the simulations, the same approach will be taken. The system without the

PHIL interface will be simulated, to provide a baseline. The results of the simulations of

the PHIL platform will be compared to this baseline.

17

The same approach will be taken during the experimental phase, in the case of the

passive load. The results of the experiments will be compared with the baseline obtained

through simulation. Finally for the active HUT, as its topology and control structures are

unknown we can only evaluate its performance qualitatively. To determine if the simula-

tions is accurate or not, we will observe whether the measured variables display the same

characteristic behaviour present in all other accurate PHIL simulations.

1.3.3.2. Evaluation variables

To evaluate the stability of the different IAs quantitatively we will compare:

1. Gain margin

2. Phase margin

In terms of accuracy, we will compare how well their bode plots, track that of the NCS.

This will be done in both absolute terms, and terms of the error between them, measured

in dB.

For the simulations, 4 variables will be measured at both sides of the interface. These

4 variables will be compared against the values obtained in the simulation of the NCS.

1. Voltage

2. Current

3. Active power

4. Reactive power

Finally, the same variables will be measured during the practical experiments perfor-

med in with the PHIL platform. In the experiments with a passive load, these quantities

will be compared against a baseline obtaines thorugh simulation. In the case of the active

HUT, we will only asses the qualitative behaviour of these variables, given that a baseline

cannot be obtained.

18

1.3.4. Organisation of the thesis

Chapter 2 studies the properties of several interface algorithms in terms of their sta-

bility and accuracy. We show how several key variables affect the performance of each

interface algorithm and how they may lead to instability or inaccuracies during experi-

ments. We establish which of the interface algorithms presents the best performance and

select it for our PHIL platform.

In Chapter 3 we study the identification routine that will be used to obtain an estimate

of the impedance of the HUT, needed for the damping impedance method IA. We explain

the theoretical background and mathematical tools needed to perform the non-parametric

identification of the HUT. We then explain how we derive from this information a pa-

rametric representation of the HUT’s impedance, by applying the Levenberg-Marquardt

algorithm to fit a rational.

Chapter 4 covers the software implementation of the system in MATLAB/SIMULINK

and the results obtained through simulation. We show how the strategy proposed provides

good results for passive loads, but that its applications for active devices may be limited.

In Chapter 5 we present the hardware implementation of the PHIL platform, cove-

ring the necessary changes needed to adapt the model for real time operation. We as well

present the experimental results that confirm our predictions stemming from the simula-

tions.

Finally, Chapter 6 contains the conclusions of the thesis, reviewing the main results

and providing recommendations for the realisation of PHIL experiments using the plat-

form.

19

2. INTERFACE ALGORITHMS

2.1. Introduction

In order to link both the real and virtual parts of an electrical system in a PHIL simu-

lation, an interface algorithm (IA) is required. This is the layer of software that ensures the

electrical variables seen in the real circuit match those of the simulation.

Many of these interface algorithms trace their origin back to techniques used in circuit

simulation software, meant to solve large and complex circuits efficiently. These techni-

ques, called relaxation techniques, split a large circuit in pieces and then link them together

by placing interfaces between them. They then solve each sub-circuit separately and cal-

culate their effect on the surrounding circuits. These effects are then used to recalculate

each sub-circuit until both sides of a given interface converge (Newton y Sangiovanni-

Vincentelli, 1984). Interface algorithms like the ideal transformer method (ITM), partial

circuit duplication (PDC) and the damping impedacence method (DIM), are merely varia-

tions of these interfaces adapted for real time operation.

However, this adaptation is not without drawbacks. While in an offline simulation

one has the luxury of time to perform as many iterations as needed to get the sides of

the interfaces to converge, in PHIL simulations that is not the case. This can cause both

stability and accuracy problems that can render the results of a given PHIL simulation

useless. As such, knowledge of the properties of each IA is key. The exploration of such

properties will the main subject of this chapter.

Ease of implementation is also a major concern. Given the real time nature of PHIL

simulations, an interface algorithm that is too computationally demanding may be hard to

implement, or require the simulation to have a large time-step, compromising accuracy.

Another algorithm may require an extra physical component added to the HUT in order to

work, which can lead to a drop in simulation accuracy, added complexity of the simulation

setup, or even to large power losses in high power simulations.

20

With this in mind, several interface algorithms have been proposed (Wu et al., 2004),

(Ren, 2007),(Lehfuß et al., 2012). Comparisons and analysis between them are also abun-

dant in the literature (Hatakeyama et al., 2016), (Brandl, 2017).

In this section we proceed to present these different interface algorithms described in

the literature, analyse their properties and select one for the implementation of a PHIL

simulation platform. The methods covered will be: the Ideal Transformer Method or ITM,

Ideal Transformer Method with a lowpass filter, Partial Circuit Duplication or PCD and

finally the Damping impedance method or DIM. While interesting, other proposed inter-

face algorithms have not proven very effective in experimental setups and thus will not be

analysed.

2.2. Ideal transformer method (ITM)

The ideal transformer method is the simplest and most straight forward of the interface

algorithms, making it widely used. It is an adaptation of the I-type interface used by circuit

solvers, presented in Newton y Sangiovanni-Vincentelli (1984).

Figure 2.1 presents the circuit diagram of the ITM algorithm. Here, the Hardware

Under Test (HUT) is represented as impedance ZHUT , highlighted in the rightmost red

box. The simulated power system, to which the HUT is connected is represented as its

Thevenin equivalent by voltage source Vg and the impedance Zs, altogether denominated

Rest of System (ROS) highlighted on the leftmost red box. Finally the interface algorithm

is shown in the middle blue box.

The algorithm consist of one controlled voltage source, an output impedance Zab re-

presenting the power amplifier, and a current source, feeding back the current of the real

device into the simulation. Transfer functions Ga and Gb represent the distortions introdu-

ced by the amplifier and current sensor respectively. The delay e−sta is perhaps the most

influential quantity as it represents the sum of the computational delay (ie: the timestep of

21

the simulation) plus the input lag of the amplifier. By comparison e−stb represents the de-

lay of the current sensor but this quantity is usually much smaller than e−sta, hence much

less important.

ROS ITM HUT

Software Hardware

FIGURE 2.1. ITM interface algorithm

2.2.1. Stability considerations

The most important job of an interface algorithm is to deliver a stable PHIL simulation

and it is here where the ITM algorithms has its greatest weakness. This can be understood

intuitively as explained in Zhang (2016), if we only focus on the two main components Zs

and ZHUT .

Example 2.1. Let ε[k] be a small error in the amplification of Vs to VHUT during

timestep k. This error ε[k] would in turn cause an error in the current of the real device.

22

∆IHUT [k] = ε[k]/ZHUT (2.1)

This current error would then be read by the sensor and fed back into the simulation

in the next time step. Maintaining Vg constant, we can see that the amplification error ε

in timestep k has effectively been amplified by the ratio Zs/ZHUT as seen in the equation

below.

Vs[k + 1] = Vg − Zs ∗ Is[k + 1]→ ∆Vs[k + 1] = −ε[k]Zs/ZHUT (2.2)

From example 2.1, one could theorise that if Zs
ZHUT

> 1, an amplification error made at

any point would be amplified on each timestep quickly causing the simulation to become

unstable and thus, useless. While this is the case when the impedances of both sides are

purely resistive, adding an inductive or capacitive component to it makes the analysis more

complex. Deriving the open loop transfer function from the block diagram on figure 2.2

can give us a more formal explanation as to why the system can turn unstable.

+
-

FIGURE 2.2. ITM algorithm block diagram

GOL =
Zs

Zab + ZHUT
GaGbe

−s(ta+tb) (2.3)

For simplicity, we will ignore the dynamics of the amplifier and sensors, represented

byGa andGb. These are indeed an important part of the interface algorithm, however, with

good component selection their effects on stability should be minimal. This, as the ideal

response of these components is to have 0db gain and no impact in the phase, throughout

23

the relevant frequency range of the experiment. We may also neglect the effects of Zab,

as the output impedance of the amplifier will generally be much smaller than both Zs and

ZHUT .

With this in mind, we can see that the gain of the open loop function will be set by the

ratio between Zs and ZHUT at each specific frequency. At the same time, the delay will

cause the phase to drop as frequency increases. This will mean that, if ‖ Zs
ZHUT

‖ > 1 when

phase reaches -180◦ the system will enter into positive feedback with a loop gain higher

than 0db, becoming unstable.

This has interesting consequences for the case where both Zs and ZHUT are a resistor

and an inductor in series (Z = R+sL). Here we see that the gain of the open loop transfer

function will be given by the ratio of resistances for low frequencies and by the ratio of

inductance at higher end of the spectrum. Thus, a system where LHUT > Ls would always

be unstable, regardless of the value of ta. The opposite case isn’t a guarantee of stability

either as a system where LHUT < Ls, but where RHUT > Rs could also be unstable, if the

delay was small enough that the loop gain is still above 0db by the time the phase reaches

-180 ◦.

This can be seen in figures 2.3 and 2.4 where we plot the Bode and Nyquist diagrams

of two systems where Zs and ZHUT are modelled as a resistance and an inductance in

series. In System 1, the ratio between the software and hardware resistances is 1:2, while

the ratio of the inductances is 2:1. This case is unstable, as even if the DC gain is smaller

than 1 by the time the delay of the system takes the phase to -180◦ (highlighted by the

dotted red line) the magnitude of the open loop transfer function is mainly determined by

the inductance ratio, which is greater than 1. System 2 is the opposite. Here, resistance

ratio is 2:1 and inductance ratio is 1:2. Predictably, the system is stable as the delay is

small enough, that it only takes the phase to -180 (highlighted by the dotted blue line)

after the gain is primarily set by the ratio of inductances. The complete parameters of both

24

cases can be found in table 2.1. We can quantify the stability of the systems by calculating

their respective gain and phase margins, seen in table 2.2.

FIGURE 2.3. Comparison between stable and unstable cases of ITM algorithm

25

FIGURE 2.4. Comparison between stable and unstable cases of ITM algorithm.
Nyquist diagram

TABLE 2.1. System Parameters

Parameter System 1 System 2

Rs 1 Ω 2 Ω

RHUT 2 Ω 1 Ω

Ls 2mH 1mH

LHUT 1mH 2mH

ta 100 µs 100 µs

tb 1 µs 1 µs

Zab 0,01Ω + 10µH 0,01Ω + 10µH

Ways of finding more precise conditions for stability have been proposed in Zhang

(2016) and Brandl (2017). However, both of these approaches have potential flaws.

26

TABLE 2.2. Stability Margins. ITM

Gain margin Phase margin

System 1. ITM 0.5 dB -148.8 ◦

System 2. ITM 1.9 dB 137.4 ◦

In Zhang (2016) the author attempts to use the Routh-Hurwitz stability criteria to find

conditions for stability based on the values of the impedances and the delay. To do this,

it approximates the delay with a first order Pade approximation. This allows the author to

find the poles of the system and then determine when it will be stable. However, the ap-

proximation of the delay introduces serious distortions that significantly affect the stability

of the system as seen in figure 2.5. We can see that the behaviour of the phase is heavily

distorted making the system appear more stable than it actually is.

Using higher order approximations makes for a more accurate description of the sys-

tem but results in ever more complicated conditions for stability as the order of the cha-

racteristic equation of the system increases, reducing the practical value of the approach.

In Brandl (2017), the author plots the Nyquist contours of the systems while varying

the relation between Zs and ZHUT to form a 3D image. This approach is helpful as it

allows us to visualise the impact the change in ratio of these two variables has in the

stability of the system, as we know that while the contour does not enclose the -1,0 point,

the system will be stable. However, as we have seen previously, the ratio between Zs and

ZHUT is usually not constant throughout a given frequency range, meaning that there isn’t

a single Nyquist contour associated to one value of this ratio. Thus, the results presented

can be misleading.

As such, the best and most general way to address the stability of an IA is to to rely

on the standard tool to asses stability: Nyquist diagrams and gain and phase margins. This

is the approach we will use throughout our analysis.

27

FIGURE 2.5. Difference between real system and system with delay approximation.

2.2.2. Accuracy considerations

The second most important objective of a PHIL IA is to provide accurate results. But

what exactly do we mean by accurate? In this context, accuracy will be considered in

relation to the real physical system, where the IA is not present. This system will be called

the Naturally coupled system or NCS, for short. Given how we have chosen to represent

our electrical system, the NCS will be nothing more that the voltage divider between Zs

andZHUT . We will use this as reference to compare the behaviour of the ITM algorithm. In

order to compare all IAs fairly we must use the same system for all accuracy comparisons.

This will be System 2, described in table 2.1 as it is stable with all IAs.

28

NCS

FIGURE 2.6. Naturally coupled system

Calculating transfer function from Vg to VHUT is trivial, resulting in:

GNCS =
VHUT
Vg

=
ZHUT

Zs + ZHUT
(2.4)

As we wish for our PHIL simulation to mimic the behaviour of the NCS as closely

as possible, we would like that the closed loop transfer function of the IA resembles the

one of the NCS. The closed loop transfer function for the ITM algorithm can be calculated

using the diagram shown in figure 2.2.

Gcl =
Gae

−sta ZHUT
ZHUT+Zab

1 +Gae−sta ·Gbe−stb · Zs
ZHUT+Zab

=
Gae

−staZHUT
ZHUT + Zab + Zs ·Gae−staGbe−stb

(2.5)

Other than the effect of Zab, which ideally should be very small, we can see that if

distortion introduced by the sensors and amplifier is low and delays are short, the results

obtained will be the same as the NCS. We can also see that all the sources of inaccuracies

come from hardware limitations and not from the interface algorithm itself. Because of

this, the ITM is one of the most accurate of the interface algorithms.

29

The sensor and amplifier distortion functions, while at first might look like a mayor

issue, generally have very limited impact in a PHIL simulation. Proper selection of compo-

nents and good experiment design should make it so that these functions are generally very

close to unity and thus, have little impact. Even in cases where this is not possible, such

as in high power PHIL simulations where the amplifier may have low bandwidth and high

input lag, these effects can be mitigated by active compensation as shown in (Ainsworth et

al., 2016), (Marks et al., 2018a). For our platform however, as we will see in Chapter 5, we

have chosen a linear amplifier with an extremely low output impedance, high bandwidth

and low input lag, meaning that amplifier distortion should not be a problem.

This leaves delays as the most important source of inaccuracies within a PHIL simu-

lation. In particular, the delay ta, that represents the sum of the computation delay plus

the amplifier input delay, will be the main source of error as it will likely be orders of

magnitude larger that the sensor delay.

FIGURE 2.7. NCS vs ITM

30

The main effect of the delay is to make the phase of the system increase with fre-

quency. This means that any behaviour of the system at frequencies higher than that of the

delay, will not be represented accurately. These effects are not limited to the phase though,

as the delay can cause oscillations in the magnitude of the closed loop transfer function as

frequency increases past the period of the delay, as seen in figure 2.7. To avoid any adverse

effect, it is crucial that all the relevant dynamics of the simulation are within the bandwidth

set by the delay’s period. Most the time, these spurious high frequency dynamics will be

filtered out naturally due to the limited bandwidth of the amplifier and/or sensor. Regard-

less, it is still good practice to place a low pass filter somewhere within the control loop

with a cut off frequency just short of the delay’s. The addition of a low pass filter in the

feedback path of the system can also increase stability, as seen in the next section.

The errors with respect to the NCS can be more clearly seen in figure 2.8. Here we

show the difference between the two transfer functions. We also plot a 0.5dB range, co-

rresponding to ± 5.92 % of deviation with respect to the NCS.

FIGURE 2.8. ITM. Deviations with respect to NCS

31

2.3. Ideal transformer method with low pass filter

This interface algorithm is a straight forward approach to the stability problems of the

ITM. It deals with them by adding a low pass filter to the current feedback path in the

standard ITM. The stabilising effect from this filter comes from reducing the magnitude

of the open loop transfer function at high frequencies, so that by the time the delay pushes

the phase of the system below -180◦, it is already below 0dB. The open loop transfer

function can be derived from the system’s block diagram, just like the prior case. The

control diagram can be seen in figure 2.9. Note the addition of GLPF in the feedback path.

+
-

FIGURE 2.9. ITM method with lowpass filter. Block diagram

2.3.1. Stability considerations

The effects the filter has in the stability can be seen in the figures 2.10 and 2.11 where

we compare the Bode and Nyquist plots of the regular ITM and the ITM with a low

pass filter. We use system 1 from the previous section as it was unstable for the regular

ITM, however we have managed to stabilise it with a second order low pass filter with a

cut off frequency of 1200 Hz. We can appreciate how in the Nyquist contour the higher

frequencies are attenuated, preventing the contour from encircling the (-1,0) point. The

effects of the filter are even more evident in the stability margins of the system, seen in

table 2.3.

In practice, this method is very straight forward to implement as it only requires a

rough estimation of the plant’s impedance and knowledge of the system’s delay in order

to design a filter that can stabilise the system.

32

Nonetheless, this method is not without drawbacks, as the lowpass filter will change

the behaviour of the system at high frequency which will results in loss of simulation ac-

curacy. In particular, it can be seen as an increase in the mismatch between the simulation

and the HUT active and reactive power as the effect will compound with the one produced

by the PHIL simulation’s delay (Ainsworth et al., 2016).

TABLE 2.3. Stability Margins. ITM with low pass filter - System 1

Gain margin Phase margin

ITM 0.5 dB -148.8 ◦

ITM with lowpass filter 1.2 dB 26.4 ◦

FIGURE 2.10. Comparison between ITM and ITM with lowpass filter IAs

33

FIGURE 2.11. Comparison between ITM and ITM with lowpass filter IAs.

2.3.2. Accuracy considerations

To evaluate the accuracy of this method we will again use the closed loop transfer

function of the system. This function can be derived from diagram 2.9 and as expected,

it is similar to that of the normal ITM but with the addition of the low pass filter in the

denominator.

Gcl =
Gae

staZHUT
ZHUT + Zab + Zs ·GaestaGbestb ·GLPF

(2.6)

The impact of the lowpass filter on the systems accuracy can be seen in figures 2.12

and 2.13. Here, a 1200 Hz lowpass filter was applied to the system in case 1 and its closed

loop transfer functions is compared with the regular ITM and the NCS system. We see two

main effects. First, the bandwidth of the system has been reduced by the low pass filter.

Previously, the behaviour of the ITM was similar to that of the NCS until the influence of

34

the delay came into play. Now, the magnitude of the system starts differing from the NCS

much sooner as a consequence of the low pass filter. This is clearly visible in figure 2.13

where the ITM with lowpass filter leaves the 0.5 dB error band almost a full decade sooner

than the regular ITM.

FIGURE 2.12. Closed loop response of system with low pass filter compared to
ITM and NCS systems

A second effect is the attenuation of the oscillations in the magnitude at higher fre-

quencies, present in the regular ITM. A difference in the magnitude of the systems is still

observed between the ITM with a low pass filter and the NCS. For the NCS, the magnitude

will be given by the inductance ratio, producing the corresponding attenuation or amplifi-

cation of the high frequencies. By contrast, the magnitude of these higher frequencies for

the ITM with a lowpass filter will be 0dB, meaning that they will not be attenuated nor

amplified. This may sound counter intuitive at first, but it must be remembered that the

lowpass filter is in the feedback path and as such it will prevent high frequency signals

35

from propagating back and affect the system’s stability but it will not prevent these signals

from reaching the output if they are present in the reference.

FIGURE 2.13. ITM with low pass filter. Deviations with respect to NCS

36

2.4. Partial circuit duplication (PCD)

The partial circuit duplication algorithm is based on V-type interface used by rela-

xation based circuit solvers shown in Newton y Sangiovanni-Vincentelli (1984). In this

algorithm, the interface consist on two voltage sources, each controlled by the voltage of

the opposite side. A linking component is Zab is also added. The structure of the PCD al-

gorithm can be seen in figure 2.14. The PCD algorithm shows outstanding characteristics

regarding stability, however, it has a lacklustre performance in terms of accuracy and ease

of implementation.

ROS PCD HUT

Software Hardware

FIGURE 2.14. PDC algorithm

37

2.4.1. Stability considerations

As with previous interface algorithms, to further analyse the stability of the PCD we

will first obtain is control block diagram and corresponding open loop transfer function.

Example 2.2. Let us start with Vs. This voltage is taken by the voltage amplifier Uamp

and it is applied to the hardware side. There, VHUT will be the result of the voltage divider

between ZHUT and Zab.

FIGURE 2.15. PCD block diagram: forward path

This voltage is then sensed and applied to back to the simulation through Ud. Now, to

form Vs we see that it will be the sum of the contributions made by Vg and Ud.

Vs = Vg ·
Zab

Zs + Zab
+ Ud ·

Zs
Zs + Zab

(2.7)

Using equation 2.7 we can complete the block diagram for the PCD algorithm.

++

FIGURE 2.16. PCD block diagram: complete

The diagram obtained in example 2.2 allows us to easily obtain the open loop transfer

function. Unlike the other two method studied thus far, the diagram for the PCD algorithm

38

has a feedforward part. This part can be neglected when calculating the open loop transfer

function as it is not part of the feedback loop. With this in mind, we can calculate the

open loop transfer by simply multiplying the blocks in the loop. This yields the following

function. We must also keep in mind that the PCD has a positive feedback loop rather than

a negative one. Thus, to analyse its stability and compare it with the previous algorithms

we will analyse −GOL.

−GOL = −Gae
−sta ·Gbe

−stb Zs · ZHUT
(Zab + Zs)(Zab + ZHUT)

(2.8)

By inspecting equation 2.8, we can notice something remarkable; unless Ga or Gb

make it so, it is impossible for the magnitude of the open loop transfer function to have a

value above 1. This means that unless the distortions of the amplifier or sensors amplify

the signals in some way it is impossible for the PCD algorithm to be unstable. This is

because the rightmost part of the transfer function is always less that 1. This makes the

PCD the most stable of the interface algorithms.

‖ Zs · ZHUT
(Zab + Zs)(Zab + ZHUT)

‖ < 1 (2.9)

While the transfer function’s gain can theoretically never be more than one, the gain

margin can be still be close to 0dB if Zab is very small, putting the system dangerously

close to being unstable, as seen in figure 2.18. The key to the PCD’s stability is the linking

component, as increasing the value of Zab, will always reduce the gain of the open loop

transfer function. The larger the impedance of this component, the more stable the system

will be.

We also see, as shown in figure 2.17, that the resistive and inductive parts of the linking

impedance have different effects on the system. A large resistive component (blue curve)

will reduce the gain of the open loop transfer function by a lot at DC and low frequencies

but will have a limited effect at the high end of the spectrum if both Zs and Zhut have an

39

inductive part. This, as the impedance of the inductive part will increase with frequency

while the resistive part stays the same. This can be seen in the nyquist diagram as the gain

approaches 1 at high frequencies while forming a circle due to the influence of the delay.

FIGURE 2.17. PCD. Comparison between purely resistive and purely inductive Zab

The inductive part (orange curve) will have the opposite behaviour, having negligible

effects at low frequencies causing the DC gain to be 1. As frequency increases, the gain of

the open loop transfer function will be given by the following ratio: Ls·LHUT
(Lab+Ls)(Lab+LHUT)

.

As such, to use the PCD algorithm effectively, one must choose Zab to have a resistive

part big enough in relation to those of Zs and ZHUT to make sure the DC gain has a

relatively safe gain margin, while also choosing a topology similar to that of Zs and ZHUT

to ensure that as frequency grows, the impedance of Zab follows the behaviour of the other

two, and thus we have a gain smaller than 1 throughout the frequency spectrum without

sacrificing accuracy.

40

Figure 2.18 shows the the nyquist curves of the PCD algorithm for different values of

Zab while the values for the stability margins for each case can be seen in table 2.4. The

values of Zab are a multiple of the base Zab used for the rest of the algorithms. We see how

low values of Zab make for very slim stability margins. As the value of this component

increases, so does the stability of the system. However, as seen in the next section, large

values forZab will result in a loss of accuracy, thus a trade off has to be made between large

stability margins and high accuracy. Figure 2.19 compares an instance of the PCD where

Zab was chosen to give reasonable stability margins, while sacrificing as little accuracy in

the process, to the previous IAs we have reviewed.

TABLE 2.4. Stability Margins. PCD - System 1

Gain margin Phase margin

Zab · 1 0.13 dB INF

Zab · 3 0.386 dB INF

Zab · 10 1.25 dB INF

Zab · 30 3.22 dB INF

Zab · 100 8.55 dB INF

Zab · 300 18.5 dB INF

41

FIGURE 2.18. Nyquist contours of PCD algorithm. Multiple values for Zab

FIGURE 2.19. PCD vs ITM vs ITM with lowpass filter

42

2.4.2. Accuracy considerations

The main drawback of the PCD algorithm is its poor accuracy (Brandl, 2017). The

reason is that the stability of the IA depends on the magnitude of the linking impedance,

the larger the magnitude, the more stable the system. But the value Zab takes, greatly

affects the voltage tracking of the IA. Like the previous methods, we will use the closed

loop transfer function of the IA to study its accuracy.

Example 2.3. The diagram shown in figure 2.15 can be simplified by defining transfer

functions F, G and H. Each corresponding to one part of the loop, as shown in figure 2.20.

F ++ G

H

FIGURE 2.20. Simplified control loop

This allows for the calculation of the closed loop transfer function using equation

2.13. Note that the sign in the denominator of the transfer function is negative due to the

positive sign in the feedback loop.

F =
Zab

Zab + Zs
(2.10)

G =
ZHUT

Zab + ZHUT
Gae

−sta (2.11)

H =
Zs

Zab + Zs
Gbe

−stb (2.12)

GCL =
F ·G

1−G ·H
(2.13)

43

Using this, the complete closed loop transfer function of the PCD algorithm is shown

in equation 2.14.

GCL =
Zab · ZHUT ·Ga · e−s(ta)

(Zab + Zs)(Zab + ZHUT)− Zs · ZHUT ·Ga ·Gb · e−s(ta+tb)
(2.14)

Unlike the previous IAs, it is not clear from equation 2.14 that the PCD should produ-

ce accurate results under ideal conditions. Nonetheless, this is the case. To show this, we

will assume no delays and no distortion.

Example 2.4. LetGa = Gb = 1 and ta = tb = 0. With these ideal conditions equation

2.14 can be further simplified.

GCL =
Zab · ZHUT

(Zab + Zs)(Zab + ZHUT)− Zs · ZHUT
(2.15)

GCL =
Zab · ZHUT

(Z2
ab + Zab · Zs + Zab · ZHUT + Zs · ZHUT − Zs · ZHUT

(2.16)

GCL =
ZHUT

Zab + Zs + ZHUT
(2.17)

From equation 2.17 it becomes clear that if Zab = 0, then the transfer function will

equal that of the NCS.

Example 2.4 illustrates the main disadvantage of the PCD IA. Even in the ideal sce-

nario, there is an inherent trade off between stability and accuracy. The larger Zab is, the

more stable the system but also the more inaccurate. The problem is ever more pronounced

when the effects of the delay are considered. Figure 2.21 shows the closed loop functions

of the PCD algorithm for different values of Zab. While it remains true that in general,

increasing Zab makes the system less accurate, very low values of Zab can have problems

of accuracy as well. We see how the case when Zab ∗ 1 is good at low frequencies but the

accuracy worsens considerably at the at the high end of the spectrum. It is instead Zab ∗ 10

44

the case that shows the best performance overall across the frequency range, as seen in

figures 2.21 and 2.22.

FIGURE 2.21. PCD accuracy. Multiple values

45

FIGURE 2.22. PCD. Multiple values of Zab. Deviations with respect to NCS

The performance compared to the previous interface algorithms is also lacklustre.

While any PHIL experiment using the PCD is almost guaranteed to be stable if Zab is suf-

ficiently large to account for any problems the distortion functions might cause, this will

come at the cost the experiment’s accuracy. Figures 2.23 and 2.24 compare the performan-

ce of the PCD with in our best case scenario, with the IAs previously studied. We see that

even the best case of the PCD performs worse than the ITM or even the ITM with lowpass

filter, being accurate in a narrower band of band of frequencies. We also see that even in

this band of frequencies there are small magnitude inaccuracies, product of the non-zero

values of Zab. The performance of the phase of the system is even worse, presenting sig-

nificant error much earlier than the other two algorithms. As such the PCD, while very

stable, will often fail to produce useful results in a PHIL simulation.

46

FIGURE 2.23. PCD accuracy vs other interface algorithms

FIGURE 2.24. PCD. Deviations with respect to NCS

47

2.5. Damping Impedance method (DIM)

So far, none of the methods studied have provided the combination of stability and

accuracy needed for a reliable PHIL platform as they presented us with a trade-off bet-

ween the two. There is however, a third interface algorithm derived from the hybrid I-V

type interface, presented in Newton y Sangiovanni-Vincentelli (1984). This IA, called the

damping impedance method (DIM), can be understood as a combination of the ITM and

PCD via the addition of a damping impedance ZDIM , as seen in figure 2.25. By inspecting

the algorithm we notice that the value of this impedance will greatly impact the behaviour

of the algorithm in terms of stability and accuracy. If the damping impedance value is zero,

then the algorithm will behave like the PCD as the voltage Ud will be equal to Vs, assu-

ming Zab is very small. If ZDIM is infinity, we can effectively eliminate that branch of the

model and we are left with the ITM algorithm. Thus, we can conclude that the properties

of the DIM algorithm will vary between these two extremes.

48

.
ROS DIM HUT

Software Hardware

FIGURE 2.25. DIM algorithm

In fact, the DIM algorithm provides us with a solution to do away with the trade-

off between accuracy and stability. This gain is not without cost though, as it requires

significant effort to implement.

2.5.1. Stability considerations

To analyse in detail the stability of the DIM IA and the effects ZDIM has on it, we

will once again study the open loop transfer function of the system. To do this, we must

first obtain the control block diagram.

Example 2.5. Let us start with the value of Vs in figure 2.25. This voltage is sampled

and used as input for the amplifier. As such it becomes Uamp by passing through Gae
−sta .

49

UsingUamp, IHUT can be calculated simply using the Ohm law. VHUT can now be obtained

by multiplying the current by ZHUT .

FIGURE 2.26. DIM forward path

With VHUT and IHUT , we can now obtainUd and Id in the left side of the circuit. This is

done by multiplying them by the sensor’s transfer functions: Gbe
−stb and Gce

−stc . Finally

Vs can be calculated by superposition, separating the left side of the DIM algorithm in

three circuits and adding the contributions from Vg, Id and Ud.

FIGURE 2.27. DIM left side solved by superposition

The contributions from Vg and Ud are easy to calculate as they are voltage dividers.

The contribution from Id, by contrast, is obtained by calculating the voltage at the current

source and then subtracting the voltage drop at Zab.

50

Vs1 =
ZDIM + Zab

Zs + Zab + ZDIM
· Vg (2.18)

Vs2 = −
(

(Zs + Zab) · ZDIM
Zs + Zab + ZDIM

− Zab · ZDIM
Zs + Zab + ZDIM

)
· Id

= − Zs · ZDIM
Zs + Zab + ZDIM

· Id (2.19)

Vs3 =
Zs

Zs + Zab + ZDIM
· Ud (2.20)

Vs = vs1 + vs2 + vs3 (2.21)

The calculation of Vs allows us to draw the feedback paths of the control diagram,

thus completing it.

++

++

FIGURE 2.28. DIM control block diagram

From the block diagram shown in figure 2.28 we can easily calculate the open loop

transfer function of the system to analyse the stability of the system.

Example 2.6. To calculate the open loop transfer function we must first make a few

changes to the diagram obtained in example 2.5, as seen in figure 2.29. This change allows

as to sum both feedback paths.

51

++

++

FIGURE 2.29. DIM control block diagram: modified

We can now apply the same method used to calculate the transfer function of the

PCD, shown in example 2.3 to simplify the control block diagram, as seen in figure 2.20.

Defining the transfer functions F,G and H, for each part of the loop we get:

F =
ZDIM

Zs + Zab + ZDIM
(2.22)

G =
Gae

sta · ZHUT
Zab + ZHUT

(2.23)

H =
Gbe

stb · Zs
Zs + Zab + ZDIM

+
−Gce

stc · Zs · ZDIM
ZHUT · (Zs + Zab + ZDIM)

=
Gee

ste · Zs · (ZHUT − ZDIM)

ZHUT · (Zs + Zab + ZDIM)
(2.24)

The assumption that the sensor delays and distortions are equal (Gbe
−stb = Gce

−stc =

G−stee) allows us to further simplify H . While this may not be necessarily true in practice,

the distortion and delay introduced by the sensors tend to have a negligible effect when

compared to the distortion and input delay of the amplifier. Also, Depending on the com-

plexity of the simulation, the computational delay might be large as well, when compared

to the sensor delay. Thus, the effects of this simplification are likely to be very minor.

52

To calculate the open loop transfer we must break the control loop just before the

feedback point and multiply the function along it. Since feed-forward part of the system,

represented by F, is not part of the feedback loop, we exclude it from the calculation as it

has no effect in the stability of the system. With this, the open loop transfer function will

be G ·H .

Gol = G ·H = Zs ·Gee
ste ·Gae

sta
(ZHUT − ZDIM)

(Zab + ZHUT)(Zs + Zab + ZDIM)
(2.25)

The open loop transfer function seen in 2.25 is particularly interesting as quick inspec-

tion will reveal that if ZHUT = ZDIM , the function will be zero, regardless of simulation

delay. This is important as the open loop transfer function being zero guarantees the sta-

bility of the IA as errors caused during one simulation cycle cannot propagate to the next

(Paran, 2013).

Much like the PCD, we note that there is an entire range of values for ZDIM where

stability will be guaranteed. If ZDIM = 0 then the magnitude of the transfer function

cannot possibly be higher than 1 unless the distortions functions make it so, as Zab will

always be more than 0. This will be true as well for the entire interval ZHUT > ZDIM > 0

as Gol decreases in magnitude as the value of ZDIM approaches the value ZHUT .

∣∣∣∣ (Zs · ZHUT)

(Zab + ZHUT)(Zab + Zs)

∣∣∣∣ < 1 (2.26)

We also note that if ZDIM < 2 · ZHUT a similar situation occurs.

∣∣∣∣ −(Zs · ZHUT)

(Zab + ZHUT)(Zab + Zs + 2 · ZHUT)

∣∣∣∣ < 1 (2.27)

The results above seem promising as unlike the ITM algorithm, stability is not enti-

rely dependent on the impedance ratio of Zs and ZHUT , but instead, in the right choice of

53

ZDIM . We also know that there is an entire range of values for ZDIM where stability gua-

ranteed, if we disregard the effects of the distortion functions. Finally, if ZDIM = ZHUT

the system cannot be unstable, no matter how long the delay or how bad the distortion.

As such, if given the choice, ZDIM should equal ZHUT in any implementation of the DIM

algorithm.

In reality though, precise knowledge of ZHUT will rarely be available, meaning that it

is important to look at the behaviour of the DIM IA when there mismatch between ZHUT

and ZDIM . Figure 2.30 shows the Nyquist contours of the DIM algorithm for different

values of ZDIM in relation with ZHUT . Like the PCD, due to the positive feedback present

in the algorithm, we plot −Gol, so that a direct comparison with the other algorithms can

be made.

As predicted, the system was stable for all cases within the interval 2 · ZHUT >

ZDIM > 0. In fact, the system remained stable until ZDIM was four times larger than

ZHUT , showing that range of values of ZDIM for which the system will be stable is large.

Compared to the previous interface algorithms, the DIM IA performs extremely well in

terms of stability, provided the choice of ZDIM is reasonable. Figure 2.31 compares the

DIM IA with the algorithms studied previously. We note that the stability margins are far

greater than those of all previous methods, even when the error of ZDIM is considerable,

as seen in table 2.5.

54

TABLE 2.5. Stability Margins. DIM - System 1

Gain margin Phase margin

ZDIM = ZHUT INF INF

ZDIM = 0,8 · ZHUT 17 dB INF

ZDIM = 1,2 · ZHUT 18.2 dB INF

ZDIM = 0 · ZHUT 0.13 dB INF

ZDIM = 2 · ZHUT 6.13 dB INF

ZDIM = 4 · ZHUT 0.101 dB INF

ZDIM = 5 · ZHUT -1.05 dB -177 ◦

FIGURE 2.30. Nyquist contours of DIM algorithm. Multiple values for ZDIM

55

FIGURE 2.31. Comparison between the different interface algorithms

56

2.5.2. Accuracy considerations

For the DIM interface algorithm to be an ideal candidate for practical implementation

it must not only be highly stable but also accurate. Like the with the previous IAs we will

use its closed loop transfer function to study its behaviour. To calculate this function we

will use the same procedure as for the PCD, shown in example 2.3.

Example 2.7. We can calculate the closed loop transfer function as:

GCL =
F ·G

1−G ·H
(2.28)

Where F, G and H are defined as shown in example 2.6. Again, we make the assum-

ption that estb = estc = este and Ga = Gb = Ge, so that we can sum both feedback

paths.

F =
ZDIM

Zs + Zab + ZDIM
(2.29)

G =
Gae

sta · ZHUT
Zab + ZHUT

(2.30)

H =
Gbe

stb · Zs
Zs + Zab + ZDIM

+
−Gce

stac · Zs · ZDIM
ZHUT · (Zs + Zab + ZDIM)

=
Gee

ste · Zs · (ZHUT − ZDIM)

ZHUT · (Zs + Zab + ZDIM)
(2.31)

With this, the closed loop transfer function of the DIM IA is as follows.

GCL =
ZHUT · ZDIM ·Gae

−sta

(Zab + ZHUT)(Zs + Zab + ZDIM)−Ga ·Ge · e−s(ta+te)Zs(ZHUT − ZDIM)
(2.32)

In the previous section, we learned that the optimal value for ZDIM in terms of sta-

bility was for it to be equal to ZHUT . This meant that the system was stable regardless of

57

delay or distortion. As it turn out, this choice of damping impedance is not only optimal

for stability but for accuracy as well .

Example 2.8. Let us return to the closed loop transfer function in equation 2.32 and

substitute ZDIM = ZHUT .

GCL =
ZHUT · ZDIM ·Gae

−sta

(Zab + ZHUT)(Zs + Zab + ZDIM)−Ga ·Ge · e−s(ta+te)Zs(ZHUT − ZDIM)

(2.33)

GCL =
Z2
HUT ·Gae

−sta

(Zab + ZHUT)(Zs + Zab + ZHUT)
(2.34)

From here, it is easy to see that if Zab ≈ 0 the DIM algorithm will yield accurate

results.

GCL =
Z2
HUT ·Gae

−sta

(0 + ZHUT)(Zs + 0 + ZHUT)
(2.35)

GCL =
ZHUT ·Gae

−sta

Zs + ZHUT
(2.36)

(2.37)

From example 2.8, it becomes clear that the choice ZDIM = ZHUT , yields the best

results in terms of both, stability and accuracy. Figure 2.32 confirms this, as we see that the

DIM method provides results which are almost identical to those of the NCS in terms of

magnitude. The only difference between the two is the effect of the amplifier delay in the

phase. One important observation is that the oscillations in the magnitude seen at higher

frequencies in the previous IAs are not present.

58

FIGURE 2.32. Comparison between the NCS and DIM

This is because when ZHUT and ZDIM are perfectly matched, the open loop transfer

function is zero, meaning that the feedback path has no effect on the voltage VHUT . This

eliminates the effects internal delays have on the system, as seen as in the denominator of

the transfer function where the term containing the delays is no longer present.

Nonetheless, if there is even a tiny mismatch between the impedances, these effect

will reappear. Thus, it is still advised to filter the feedback signals in the same manner as

with all the other IAs.

In practice, we are almost guaranteed to have a mismatch between ZHUT and ZDIM

as perfect information about the impedance of the HUT is unlikely to be available. Most

of the time, to implement the DIM IA we will either make a guess or try to obtain so-

mehow a good estimate for ZHUT to use as ZDIM . Either way, our choice of ZDIM will

be subject to a certain degree of error meaning we must also understand how these error

affect the accuracy of the IA. Figures 2.33 and 2.34 compare the NCS with systems using

59

the DIM IA with varying degrees of error in the choice of ZDIM . Fortunately, we see that

the DIM method is quite resilient to errors in the choice of ZDIM as, for low frequencies,

even poorly estimates produce accurate results. For higher frequencies, the correct choice

of ZDIM becomes much more important as accuracy is greatly reduced if even a small

mismatch between the impedances is present.

Another important factor to achieve high accuracy is to reduce the value of Zab as

much as possible as it will have a negative effect in the simulation’s accuracy. Given that

unlike the PCD, the stability of the simulation is not dependant on the value of this im-

pedance, this is not a problem. In fact, in the DIM IA, Zab only represents the output

impedance of the power amplifier which will generally be very low. Still, the effects of

Zab are not negligible, as high large values for this impedance can seriously affect the

results of a PHIL simulation, even if ZHUT and ZDIM are perfectly matched.

Despite the the above, the DIM algorithm has the potential for the best performan-

ce of all the IAs studied, seen in figures 2.36 and 2.37.This, as when ZDIM is perfectly

matched, we can even do away with some of the artefacts that affected the ITM, product

of the internal delays. It also gets rid of the trade-off between stability and accuracy pre-

sent, in all the other interface algorithms at the expense of increased complexity. This as

we now must find an acceptable estimate for ZHUT to use as ZDIM to achieve an stable

and accurate simulation. Still, the challenge of finding the right value for ZDIM can be

tackled in different ways, either by having prior knowledge about the HUT or by using an

identification strategy to obtain a good estimate.

60

FIGURE 2.33. DIM. Multiple value of ZDIM

FIGURE 2.34. DIM. Multiple value of ZDIM . Deviations with respect to NCS

61

FIGURE 2.35. Comparison between the different values of Zab

FIGURE 2.36. Comparison between different IAs

62

FIGURE 2.37. Comparison between different IAs. Deviation with respect to the NCS

63

2.6. Effects of an active HUT

So far we have analysed all interface algorithms representing our Hardware under test

by the impedance, ZHUT . This model is only valid for HUTs made out of passive devices,

such as resistors, inductances or capacitors. Nonetheless, the most interesting applications

of PHIL simulations have to do with active HUTs such as motors, inverters, rectifiers, etc.

Thankfully, the analysis we have made so far can be easily extended to cover these types

of HUTs.

HUT

FIGURE 2.38. Active HUT

Instead of modelling our HUT with a just a single impedance, we will add a voltage

source to the HUT. This voltage source will represent the active component of the HUT

and it can have any behaviour. In the case of an inverter, this voltage source will repre-

sent the transistors as well as all the control logic of the device. The impedance ZHUT

will represent the output impedance of the device. In our inverter example, this would

be the output filter. With this representation we can modify the control diagrams of the

Interface algorithms to account for active HUTs. Figures 2.39 through 2.41 shown these

modifications.

64

+ - - +++

FIGURE 2.39. Block diagram of ITM IA with an active HUT

++ -+ ++

FIGURE 2.40. Block diagram of PCD IA with an active HUT

++ -+ ++

++

FIGURE 2.41. Block diagram of DIM IA with an active HUT

65

2.6.1. Effects on an active HUT on stability

A reasonable question that arises from the inclusion of an active HUT is whether it

affects the stability of the PHIL simulation. We can answer this question by calculating

the transfer function from UHUT to VHUT for the different IAs.

For the ITM this function is the following:

GITMU−V = 1−
ZHUT

Zab+ZHUT

1 +GaGbe−s(ta+tb) Zs
Zab+ZHUT

(2.38)

We notice that the denominator the GU−V is nothing but 1 + GOL, meaning that the

poles of this transfer function are the same as those of the of the closed loop transfer fun-

ction shown in the previous section. As such, we can say that the addition of an active HUT

makes no difference regarding the stability of the interface algorithm. In fact equation 2.38

can be simplified to:

GITM(U−V)
= 1−

ZHUT
Zab+ZHUT

1 +GOL

(2.39)

A remark has to be made though, that the stability of the IA is not the same as the

stability of the PHIL simulation as a whole. If the actions of the HUT were to turn the real

system unstable, the same would happen in the PHIL simulation. That instability would

not be a result of the IA but rather of the electrical dynamics of the simulated network.

A similar situation occurs with the PCD and DIM IAs. This should come as no sur-

prise given the model that we have chosen for our active HUT. This, as all the complex

dynamics that the HUT will have, stemming from its control systems for example, are

lumped into the UHUT and treated as a disturbance. The only part of the HUT that is

relevant for the IA will be its electrical components represented in ZHUT . For the PDC

and DIM however, the influence of UHUT over VHUT is slightly different as they use the

measured voltage as a feedback variable. For those, GU−V is shown in equations 2.40 and

66

2.41. Nonetheless, the poles of the GU−V remain the same as those of their respective IA’s

closed loop transfer functions.

GPCD(U−V)
=

Zab(Zab + Zs)

(Zab + Zs)(Zab + ZHUT)− Zs · ZHUT ·Ga ·Gb · e−s(ta+tb)
(2.40)

GDIMU−V
=

(Zab + ZHUT)(Zs + Zab + ZDIM) + ZsZHUT ·Ga ·Gb · e−s(ta+tb) − ZHUT (Zs + Zab + ZDIM)

(Zab + ZHUT)(Zs + Zab + ZDIM)− Zs(ZHUT − ZDIM) ·Ga ·Gb · e−s(ta+tb)
(2.41)

2.6.2. Effects on an active HUT on accuracy

Another questions that arises with the inclusion of an active HUT is whether accuracy

is preserved. To calculate the effects UHUT has over VHUT and to determined whether the

different IAs produce accurate results we must first establish a baseline. As in the previous

analysis this will be the response of the NCS, now modified to include an active HUT.

HUTROS

NCS

FIGURE 2.42. Naturally coupled system with an active HUT

From figure 2.42, it is easy to see that the correct value for the voltage VHUT will be:

VHUT = Vg ·
ZHUT

Zs + Zab + ZHUT
+ UHUT

Zs + Zab
Zs + Zab + ZHUT

(2.42)

67

To see under which conditions accuracy is preserved, we will use the transfer fun-

ctions presented in the previous section. For the ITM, the same conditions of low delay

and distortion are necessary to maintain accuracy, in the presence of an active HUT.

GITMU−V = 1−
ZHUT

Zab+ZHUT

1 +GaGbe−s(ta+tb) Zs
Zab+ZHUT

(2.43)

= 1− ZHUT
Zab + ZHUT + Zs ·GaGbe−s(ta+tb)

(2.44)

=
Zab + Zs ·GaGbe

−s(ta+tb)

Zab + ZHUT + Zs ·GaGbe−s(ta+tb)
(2.45)

Equation 2.45 shows as well that same problems caused by the internal delays will be

present. They can however, still be mitigated with the inclusion of a low pass filter in the

feedback path as seen in equation 2.46.

GLPFU−V

Zab + Zs ·GaGbe
−s(ta+tb)

Zab + ZHUT + Zs ·GaGbGLPF e−s(ta+tb)
(2.46)

For the PCD, the situation is similar. We note in equation 2.48 that should Ga · Gb ·

e−s(ta+tb) ≈ 1, we can obtain the correct result. We note that unlike the other algorithms,

in the PCD Zab is not just the output impedance of the power amplifier but an added

physical component whose values is critical for the stability of the simulation. Just like in

the normal case, high values will compromise accuracy.

GPCD(U−V)
=

Zab(Zab + Zs)

(Zab + Zs)(Zab + ZHUT)− Zs · ZHUT ·Ga ·Gb · e−s(ta+tb)
(2.47)

=
Zab(Zab + Zs)

Z2
ab + ZsZab + ZHUTZab + ZsZHUT − ZsZHUT

(2.48)

=
Zab + Zs

Zs + Zab + ZHUT
(2.49)

68

Finally, the impacts of an active HUT on the DIM IA are perhaps the most interesting.

The IA remains accurate given the right conditions but unlike in the passive case, ZDIM =

ZHUT does not completely eliminate the effects of the feedback loops. While a perfect

matching of ZDIM and ZHUT is still able to eliminate the effects of the internal delays,

it does not remove the distortion and delay of the sensors from the equation, like in the

passive case. Applying ZDIM = ZHUT to equation 2.50 still leaves Ga · Gb · e−s(ta+tb) in

the numerator. Only when we make Ga ·Gb · e−s(ta+tb) ≈ 1 in equation 2.51, we can begin

to obtain the correct answer.

GDIMU−V
=

(Zab + ZHUT)(Zs + Zab + ZDIM) + ZsZHUT ·Ga ·Gb · e−s(ta+tb) − ZHUT (Zs + Zab + ZDIM)

(Zab + ZHUT)(Zs + Zab + ZDIM)− Zs(ZHUT − ZDIM) ·Ga ·Gb · e−s(ta+tb)

(2.50)

=
(Zab + ZHUT)(Zs + Zab + ZHUT) + ZsZHUT ·Ga ·Gb · e−s(ta+tb) − ZHUT (Zs + Zab + ZHUT)

(Zab + ZHUT (Zs + Zab + ZHUT)

(2.51)

=
(Zab + ZHUT)(Zs + Zab + ZHUT) + ZsZHUT − ZHUT (Zs + Zab + ZHUT)

(Zab + ZHUT)(Zs + Zab + ZHUT)
(2.52)

=
(Zab + ZHUT)(Zs + Zab + ZHUT) + ZsZHUT − ZHUT · Zs − ZHUT · Zab − Z2

HUT

(Zab + ZHUT)(Zs + Zab + ZHUT)
(2.53)

=
(Zab + ZHUT)(Zs + Zab + ZHUT)− ZHUT (Zab + ZHUT)

(Zab + ZHUT)(Zs + Zab + ZHUT)
(2.54)

=
Zs + Zab

Zs + Zab + ZHUT
(2.55)

In summary, adding an active HUT does not significantly alter the properties of each

IA, meaning these should remain both stable and accurate under the same conditions for

passive and active HUTs alike.

69

2.7. Chapter conclusion

Throughout this chapter we have described the different interface algorithms proposed

in the literature and analysed their properties in relation to accuracy and stability. We

have also discussed what are the challenges of implementing each IA. Tables 2.6 and 2.7

synthesise the findings of this chapter, comparing the IAs across several dimensions of

interest.

TABLE 2.6. Interface algorithms: Summary

Characteristic ITM ITM w LPF PCD DIM

Stability Low Moderate Best Very High

Accuracy Best High Low Very High

Complexity Low Low Low High

Added physical components No No Yes No

Sensors Current Current Voltage Voltage & Current

TABLE 2.7. Interface algorithms: Open-loop transfer functions

Interface algorithm Open-loop transfer function

ITM −Ga ·Gbe
−s(ta+tb) Zs

Zab+ZHUT

ITM w LPF −GLPF ·Ga ·Gbe
−s(ta+tb) Zs

Zab+ZHUT

PCD Gae
−sta ·Gbe

−stb Zs·ZHUT
(Zab+Zs)(Zab+ZHUT)

DIM Gee
ste ·Gae

sta Zs·(ZHUT−ZDIM)
(Zab+ZHUT)(Zs+Zab+ZDIM)

Much like previous works, we find that the damping impedance method provides

the best performance of all the IAs, allowing us to not have to compromise between the

stability and accuracy of a simulation. This improved performance comes at the cost of

ease of implementation as we must now find a way to estimate ZHUT . Having considered

all the facts, we provide recommendations about when to use each interface algorithm.

70

If it is known that the impedances of the simulated network and the HUT will not

form an unstable combination, we advice the use of the ITM. This, as it is the simplest IA

to implement and will result in an accurate simulation provided the delays and distortions

are low. We advice as well, the addition of a lowpass filter on the current feedback to

mitigate the effect of the internal delays. If it is not certain that Zs and ZHUT form an

stable pair, one may still try to verify this experimentally, as using the ITM vs the DIM IA

for example, may save much valuable time and resources. This however, should only be

attempted if both the HUT and amplifier are properly protected in the case the experiment

results in instability.

Should Zs and ZHUT form a unstable pair for the ITM, one may attempt to stabilise

the simulation by lowering the cut-off frequency of the lowpass filter. This is simple to

implement and test, and may prove very cost effective. This should only be done, if the

phenomena one wishes to study are all within the bandwidth of the lowpass filter. If this is

not the case, the results will prove inaccurate.

Finally, if neither of the approaches presented above results in a satisfactory simula-

tion, one must use DIM as it allows for an stable and accurate simulation regardless of the

values of Zs and ZHUT . This of course presents a new challenge: the estimation of ZHUT .

Given that our goal is to implement a PHIL platform that is able to perform the widest

possible range of simulations, the DIM IA is the logical choice. This means that we must

design and implement a procedure that allows us to obtain a good guess of the value of

ZHUT , for any device we wish to test. This is precisely the path we have chosen and is the

content of the next few chapters.

71

3. IMPEDANCE IDENTIFICATION

3.1. Introduction

As was established in Chapter 2, the best performing interface algorithm for PHIL

simulations is the DIM, however its implementation presents the challenge of identifying

ZHUT . Given that our goal is to implement a PHIL platform capable of a wide rage of

experiments, the ITM is not a suitable option, given its stability problems. This means that

we must implement a way of finding a good estimate of the HUTs impedance, to perform

our PHIL simulations.

Ideally any implemented identification routine must run concurrently with the execu-

tion of the electrical simulation. Achieving this can be challenging, as the electrical si-

mulation must be run with a very small time step, potentially limiting the identification

techniques that can be used. This, as complex and computationally heavy identification

algorithms may not execute fast enough to not interfere with the simulation.

To get around this, as it will be explained in Chapter 4, we took advantage of the

multiple cores in the PHIL simulation target allocating one core to exclusively run the

identification algorithm. It was also possible to get the cores to run with different time

steps. This allowed the electrical simulation to run with a very small time step, thus not

compromising simulation accuracy, while giving ample time in other core to run a rather

complex identification routine.

The identification routine selected for this application performs first a non-parametric

identification technique known as spectral analysis followed by parameter fitting process.

Spectral analysis was selected as a first step as it allows to identify the impedance

over large range of frequencies allowing to better characterise the HUT’s impedance. The

use of this technique has been proposed by several researchers (Siegers y Santi, 2014)

(Liegmann et al., 2016) and has been used successfully in PHIL platforms that use the

DIM IA, such as that implemented by Riccobono et al. (2017). After spectral analysis,

72

parameters are fitted to the gathered data, using the Levenberg-Marquartd algorithm to

produce the final impedance model.

Many previous works use a very simpler strategy, measuring only the magnitude and

the phase of the voltage and current to estimate the resistance and inductance of the HUT

(Paran y Edrington, 2013),(Jiang et al., 2019). While simple, this will only find a good

estimate for ZHUT at the fundamental frequency but may miss important, high frequency

features of the devices impedance. Instead, spectral analysis captures much the informa-

tion about the HUT’s impedance over a broad frequency spectrum, allowing for a more

accurate simulation.

It is one of our hypothesis that together, these two techniques will allow for an identi-

fication routine that successfully identifies the HUT’s impedance on a timely manner and

with the precision required by the DIM interface algorithm. In this chapter, the procedure

and the mathematical tools to perform the identification process will be explored with a

emphasis on their practical implementation.

3.2. Identification procedure overview

Non-parametric identification is often used when one has little to no knowledge about

the system at hand. Given that our goal is to obtain an identification routine that is able

to deal with the widest range of HUT’s possible and that we are unlikely to have prior

knowledge of the design or construction of the HUT, non-parametric identification was

chosen to as the first step in our identification routine.

Given that our goal is to obtain an approximation of the transfer function of the impe-

dance of the HUT spectral analysis was chosen among many non-parametric identification

techniques as it presents a straightforward procedure to obtain such information. This pro-

cess has the following steps:

1. Excite the system with an appropriate input

2. Measure the systems input and output

73

3. Perform a correlation analysis with the measured input and output

4. Take the Discrete Fourier transform of the quantities in the previous step to obtain

an estimate of their power spectral densities (PSD)

5. Divide both power spectral densities to obtain an estimate of the frequency res-

ponse of the system.

Once an empiric estimate for the frequency response of the impedance has been found,

we apply the levenberg-Marquardt algorithm to get a parametric model of the impedance

based on the generated data.

3.3. Data gathering

Given the nature of our PHIL platform, the impedance of the HUT must be identified

while the rest of the simulation is ongoing and be re-identified during the simulation at

fixed intervals. This means that our impedance will not just be subject to our identification

input, but also to the signals coming from the rest of the simulation. In fact, these signals

will be, with all certainty, of a much greater amplitude than the identification input itself.

Added to this, we will have noise generated by the amplifier and the current sensors. Thus,

our system can be described by the following equation 3.1.

y(t) = u(t)G(q) + e(t)H(q) (3.1)

Here, u(t) will be the sum of our selected identification input id(t), in this case, white

noise, and the signals coming from the rest of the simulation s(t). G(q) the system that we

wish to identify while e(t) and H(q) represent disturbances related to the process and the

way these disturbances influence the output.

The identification environment can be better understood with the aid of figure 3.1. We

can see how u(t) is given as the amplifiers input to form the voltage that is applied to the

HUT, VHUT . Afterwards, the current of the HUT is measured by a current sensor. This

74

final signal will be our identification output y(t), thus by studying it and its relation with

u(t) we aim to identify G(q).

+
+

Voltage
amplifier

Current
sensor

FIGURE 3.1. Data gathering environment

3.4. Correlation functions and power spectral density

Spectral analysis relies on obtaining an estimate for the power spectral density of

the input and output of a process by exploiting its relationship with their corresponding

correlation functions. As such, it will be helpful to introduce all these concepts. Further

reading about these concepts can be found in Chapters 1 and 2 of Spectral Analysis of

Signals by Stoica y Moses (2005) and Chapter 3 of System identification Torsten y Stoica

(1989c) . Equations 3.2 and 3.3 in definition 3.1 introduce the auto correlation and cross

correlation functions.

Definition 3.1. The autocorrelation function of a signal x(t) is given by

rxx(τ) := E[u(t+ τ)u(t)] (3.2)

while the cross correlation between two signals y(y) and x(t) is given by

ryx(τ) := E[y(t+ τ)u(t)] (3.3)

Where E[x] is the expected value operator.

75

While these are the rigorous definitions of the correlation functions we require, they

are not very helpful in terms of empirically calculating them. Nonetheless, these quantities

can be estimates as seen in equations 3.4 and 3.5, in definition 3.2.

Definition 3.2. For a real, discrete signal x[n] of length N, its autocorrelation function

can be estimated as

r̂xx(τ) :=
1

N

N∑
k=1

x[k]x[k + τ], |τ | ≤ N − 1 (3.4)

The cross correlation function between two real, discrete signals y[k] and x[k], both

of length N can be estimated by

r̂yx(τ) :=
1

N

N∑
k=1

y[k]x[k + τ], |τ | ≤ N − 1 (3.5)

We will also introduce the concept of power spectral density, periodogram and its

relation with the correlation functions. These are important as the PSD can act as a proxy

for the spectral content of a given quantity and can be calculated from the correlation

functions by the Wiener-Khinchin theorem.

Theorem 3.1. Given a discrete time series x[n], the power spectral density Φx(ω) is

Φx(ω) =
∞∑

τ=−∞

rxx[τ]e−iωτ (3.6)

Where rxx[τ] is the autocorrelation function of x[n].

This tells us that the PSD of a signal can be obtained by taking the Fourier transform

of its correlation function. Furthermore, the inverse is also true, taking the inverse Fourier

transform of the PSD will grant us the respective correlation function. This one-to-one

correspondence means that the correlation function and the PSD hold, in essence, the

same information.

76

Theorem 3.2. Given the power spectral density Φx(ω), its autocorrelation function

is given by:

rxx[τ] =
1

2π

∫ π

−π
Φx(ω)eiωτdω (3.7)

The periodogram is an estimate of the PSD that converges to the actual value when

T (and in consequence N, to maintain ∆t) approach infinity. This method for estimating

the PSD can usually be computed more efficiently as it just needs to calculate the Fourier

transform of the data, which is done through the FFT algorithm. Nonetheless, using the

periodogram is not without drawbacks, as seen in further sections.

Definition 3.3. The periodogram of a real valued sequence x[n] of length N, period

T and sample time ∆t = T/N is given by:

Un(ω) =
1√
N

N−1∑
N=0

x[n]e−i2πω∆t (3.8)

Φ̂x(ω)P =
1

N

∣∣∣Un(ω)
∣∣∣2 (3.9)

We can also define a periodogram to estimate the cross power spectral density bet-

ween two signals x[n] and y[n].

Yn(ω) =
1√
N

N−1∑
N=0

y[n]e−i2πω∆t (3.10)

Φ̂yx(ω)P =
1

N
Yn(ω)Un(ω)∗ (3.11)

77

3.5. Spectral analysis

Spectral analysis aims to obtain an estimate of the transfer function of a system based

on estimations of the PSD of the systems inputs and outputs. Given our data generating

model described in 3.1, equations 3.12 and 3.13 hold true. These two equations relate the

estimated PSD’s with the transfer functions G(ejω) and H(ejω).

Φy(ω) =
∣∣G(ejω)

∣∣2Φu(ω) + σ2
∣∣H(ejω)

∣∣2 (3.12)

Φyu(ω) = G(ejω)Φu(ω) (3.13)

Equation 3.13 tells us allows us that G(ejω) can be calculated by dividing Φyu(ω)

by Φu(ω). Thus an estimate of the plant can be obtained with the estimates of this two

quantities. Let us verify equations 3.12 , 3.13.

Example 3.1. Given our data gathering model in equation 3.1 where:G(q) andH(q)

represent the dynamics of the input and perturbations as shown in equation 3.14. q is the

shift operator; while g(k) and h(k) are the respective weighting functions of G(q) and

H(q) in the time domain.

G(q) =
∞∑
k=0

g(k)q−k H(q) =
∞∑
k=0

h(k)q−k (3.14)

Assuming u(t) is an stationary stochastic process and it is uncorrelated to the distur-

bance e(t), let us calculate Φy to try to prove equation 3.12.

First we will calculate the autocorrelation of y(t).

78

ry = Ey(t+ τ)yT (t) (3.15)

=
∞∑
j=0

∞∑
k=0

g(j)Eu(t+ τ − j)uT (t− τ)gT (k)+

∞∑
j=0

∞∑
k=0

h(j)Ee(t+ τ − j)eT (t− τ)hT (k) (3.16)

=
∞∑
j=0

∞∑
k=0

g(j)ru(τ − j + k)gT (k) +
∞∑
j=0

∞∑
k=0

h(j)re(τ − j + k)hT (k) (3.17)

Now we can take the discrete Fourier transform to obtain Φy

Φy =
1

2π

∞∑
τ=−∞

∞∑
j=0

∞∑
k=0

g(j)e−ijωru(τ − j + k)e−i(τ−j+k)ωgT (k)eikω+

∞∑
τ=−∞

∞∑
j=0

∞∑
k=0

h(j)e−ijωre(τ − j + k)e−i(τ−j+
1
2π
k)ωhT (k)eikω (3.18)

=
1

2π

∞∑
j=0

∞∑
k=0

g(j)e−ijω
[∞∑
τ
′
=−∞

ru(τ
′
)e−iτ

′
ω
]
gT (k)eikω+

1

2π

∞∑
j=0

∞∑
k=0

h(j)e−ijω
[∞∑
τ ′=−∞

re(τ
′
)e−iτ

′
ω
]
hT (k)eikω (3.19)

=
[∞∑
j=0

g(j)e−ijω
]
Φu

[∞∑
k=0

gT (k)eikω
]
+

[∞∑
j=0

h(j)e−ijω
]
Φe

[∞∑
k=0

hT (k)eikω
]

(3.20)

= G(e−iω)ΦuG(e−iω)T +H(e−iω)ΦuH(e−iω)T (3.21)

= |G(e−iω)|2Φu + σ2|H(e−iω)|2 (3.22)

79

The proof for equation 3.13 follows the same logic. We first calculate the crosscorre-

lation between u(t) and y(t).

ryu = Ey(t+ τ)uT (t) (3.23)

=
∞∑
j=0

g(j)Eu(τ − j)uT (t− τ) (3.24)

=
∞∑
j=0

g(j)ru(τ − j) (3.25)

Again, taking the Fourier we obtain Φyu.

Φyu =
1

2π

∞∑
τ=−∞

∞∑
j=0

g(j)e−ijωru(τ − j)e−i(τ−j)ω (3.26)

=
∞∑
j=0

g(j)e−ijω
[1

2π

∞∑
τ ′=−∞

ru(τ
′
)e−i(τ

′
)ω
]

(3.27)

= G(e−iω)Φu (3.28)

Example 3.1 shows equation 3.13 holds true, meaning we can obtain the frequency

response of system G(ejω) by dividing Φyu(ω) by Φu(ω). This in turn, means that we can

obtain an estimate of Ĝ(ejω) with equation 3.33. Given real signals y[k] and u[k], Φ̂yu(ω)

and Φ̂u(ω) can be calculated as follows:

r̂u(τ) :=
1

N

N∑
k=1

u[k]u[k − τ] (3.29)

r̂yu(τ) :=
1

N

N∑
k=1

y[k]u[k − τ] (3.30)

80

Φ̂u(ω) =
N∑

τ=−N

r̂u(τ)e−iωτ (3.31)

Φ̂yu(ω) =
N∑

τ=−N

r̂yu(τ)e−iωτ (3.32)

Ĝ(ejω) =
Φ̂yu(ω)

Φ̂u(ω)
(3.33)

Alternatively, we may also try using the periodogram to calculate estimates for the

spectrum Φ̂u and Φ̂yu directly using equations 3.9 and 3.11, as Yn(ω) and Un(ω) can be

calculated efficiently through the FFT algorithm.

Φ̂u(ω)P =
1

N

∣∣∣Un(ω)
∣∣∣2 (3.34)

Φ̂yu(ω)P =
1

N
Yn(ω)Un(ω)∗ (3.35)

3.6. Windowing

The process laid out so far will often produce poor results. In the case where u(t) is an

stochastic process, then the estimates for the spectrum will not converge to the true spec-

trums as the number of samples goes to infinity. In particular Φ̂yu will on average behave

like Φyu, but its variance will not tend to zero. For further reading about the statistical

properties of the periodogram, see (Brillinger, 1981). One of the reasons for this is that

the estimate for r̂yu(τ) will be inaccurate for large values of τ . Given that our estimate for

Φ̂yu in equation 3.32, weights all values of r̂yu(τ) equally, meaning the whole estimation

will lose accuracy. A similar analysis holds true for r̂u(τ) and Φ̂u.

Given that the poorly estimated values of the correlations functions r̂yu(τ) and r̂u(τ)

when τ is large are the cause of the inaccuracies, the problem may be resolved if these

81

values are given less weight in, while values where τ is closer to zero are given more

importance. This can be done via the application of a lag window w(τ).

A lag window is a function by which we will multiply our computed correlation se-

quence. It should be 1 for τ = 0 and decrease as τ increases, being 0 for large values of τ .

We will call the length of this window γ.

Several windowing functions have been proposed in the literature with the most com-

mon being the rectangular function, seen in w1(τ); The Hann function, w2(τ); and Ham-

ming function, w3(τ) . For our application the Hann window was selected as it has been

tried and tested in applications similar to ours.

Example 3.2. Some common windowing functions

w1(τ) =

1 |τ | ≤ γ

0 |τ | > γ
(3.36)

w2(τ) =

1
2
(1 + cos(πτ

γ
)) |τ | ≤ γ

0 |τ | > γ
(3.37)

w3(τ) =

0,5383− 0,4616(cos(πτ
γ

)) |τ | ≤ γ

0 |τ | > γ
(3.38)

With the application of a widowing function, equations 3.31 and 3.32 become, effec-

tively yielding the practical equations that will be used to perform the spectral estimation.

This method is known as the Blackman-Tukey method for spectral estimation (Blackman

y Tukey, 1958).

Φ̂yu(ω) =

γ∑
τ=−γ

w(τ)r̂yu(τ)e−iωτ (3.39)

Φ̂u(ω) =

γ∑
τ=−γ

w(τ)r̂u(τ)e−iωτ (3.40)

82

The regardless of the chosen windowing function, the length γ of said functions will

have an important effect on the identification process. Choosing γ too large will not provi-

de the desired effect to reduce the influence of the poorly identified values of the correla-

tion functions for large τ . Choosing gamma too small and the spectrum will be smoothed,

potentially getting rid of important sharp peaks and reducing frequency resolution of the

identification. The choice of γ is not straightforward however literature recommends choo-

sing between 5 % to 10 % of the number of samples and see if whether the results contain

all the detail that is needed for the identification. If not, γ should be increased until the

results are satisfactory. (Ljung, 1999, pp. 168–197)

Windowing techniques can also be implemented to obtain better spectral estimates

with the periodogram method, in fact this is the basis of the Welch method for spectral

estimation (Welch, 1967). Nonetheless, this method can be harder to implement and the

estimates it provides are not statistically better than the ones provided by the Blackman-

Tukey method. Still it remains popular and viable option for spectral estimation.

3.7. Excitation

In order to identify the frequency response of a given system, it is necessary to excite

said system with a known signal. However the properties of this signal are relevant to the

identification process and hence it must be adequately selected.

3.7.1. Sine and sum of sines

Given that the aim of this process is to identify the frequency response of system,

using a sinusoidal signal may seem as a reasonable option. As we know, when excited

with a sinusoidal input a LTI system it will start to oscillate with a certain magnitude and

phase with respect to the input. In theory, if we took several sinusoidal inputs of different

frequencies and applied them one by one to the system, we could calculate the magnitude

and phase of each point and thus reconstruct the frequency response. This is indeed a valid

identification technique however it is very time inefficient requiring many separate test to

83

obtain the information needed. It is also not possible to apply this technique in an online

scenario thus not resulting practical for this application.

3.7.2. Step function

Step functions -by contrast- have a much wider spectral content as it can be seen in

figure 3.2. In fact, in steps most of the energy is concentrated in the lower frequencies. This

is generally useful as lower frequency poles tend to dominate the dynamics of real systems

making them specially important for identification purposes. The step response is also an

important dynamic in and of it self for most systems, as control inputs are often steps or

series of steps. From this response, useful information can be easily obtained, quantities

such as: rise time, settling time, overshoot as well as potential resonance frequencies can

all be identified with this method. Because of this, steps are common identification inputs

for simple systems. However, a step function is not a suitable identification input for our

application. In a PHIL platform the identification routine must be run while the rest of

the simulation is running without affecting the validity of the results. Applying a step of

sufficient magnitude to properly identify the HUT’s impedance,ZHUT , would undoubtedly

alter the simulation in a significant way. Furthermore, identification inputs should ideally

be persistent over time in order to properly identify systems with complex dynamics.

84

FIGURE 3.2. Spectrum of several input signals

3.7.3. White noise & Pseudo Random Binary Sequences (PRBS)

Given the requirements of the application, the identification input needs to be small

enough to not interfere with the PHIL simulation and it needs to have a wide spectral

content in order to properly identify the plant. It should also ideally be persistent over

time. As such, the perfect identification input for this application is discrete white noise.

Discrete white noise is a stationary stochastic process with the characteristic that each

sample is not correlated with each other.

Example 3.3. We call discrete white noise to a discrete-time random process X(t) if

E[X[n]] = 0

V ar[X[n]] = σ2

and its autocorrelation function rxx(τ) only has non-zero value for τ = 0 where

rxx(0) = δ[0]σ2

85

This is particularly useful as it implies that the power spectral density (PSD) of discre-

te white noise is even across all frequencies, with magnitude σ2. This is a direct application

of the theorem 3.1. From this is it trivial to prove that the PSD of white noise is a constant

σ2.

Example 3.4. Let e[n] be discrete white noise of variance σ2. Its autocorrelation

function is given by:

ree(τ) = δ(0)σ2

Then, taking its discrete-time Fourier transform we obtain.

Φee(ω) =
∞∑

τ=−∞

Ree(τ)e−iωτ =
∞∑

τ=−∞

δ(0)σ2e−iωτ = σ2 ·
∞∑

τ=−∞

δ(0)e−iωτ = σ2 · 1

Unfortunately, white noise is notoriously difficult to generate computationally. It is

also impossible to reproduce as real white noise cannot exist, given that it has infinity

power.

Example 3.5. The Power can be calculated from its PSD

P =
1

π

∫ ∞
−∞

Φxx(ω)dω (3.41)

From this, we can see that given the even PSD of white noise, the integral above would

equal∞

P =
1

π

∫ ∞
−∞

Φee(ω)dω =
1

π

∫ ∞
−∞

σ2dω =∞ (3.42)

In reality phenomena usually associated with white noise, such as thermal noise, co-

rrespond to the behaviour of white noise filtered by a low pass filter. For identification

purposes, we simply require the input to properly excite all the relevant modes of the

86

system, meaning that as long as the frequency content remains relatively even in the fre-

quency band of interest, it will provide good identification results, even if the spectrum

goes to zero for very high frequencies. Nonetheless, the problem of efficiently generating

a white noise analogue still remains. White noise is notoriously difficult to generate using

a computer, as true random behaviour is impossible to obtain from a purely deterministic

system. Thus, a common analogue for white noise is a pseudo random binary sequence or

PRBS.

A PRBS is a binary sequence that seems random for up to N elements until they start

repeating themselves, unlike true random sequences, that are infinite. They also have the

property that their autocorrelation function has only two values. In fact this property is

usually used to define these sequences.

Definition 3.4. A PRBS is periodic signal of length M that shifts between two values:

a and −a; and whose autocorrelation function is given by:

ru(τ) =

a2 τ = 0,M, 2M, ...

−a2/M elsewhere
(3.43)

We can see that the autocorrelation function is remarkably similar to that of white

noise, provided a = σ, at least if only one period is considered. This as if the length of

the sequence is very large, −a2/M will be close to zero. Given the insight provided by

theorems 3.1 and 3.2, the autocorrelation function and the PSD contain essentially the

same information. Meaning that if their autocorrelation functions become more similar

as M goes to infinity, so will their respective spectrum. Figure 3.2 shows that indeed, the

spectrum of a PRBS is very similar to that of white noise. For further reading about the

spectral properties of white noise and PRBS sequences see (Torsten y Stoica, 1989b).

As mentioned above, PRBS’s are useful because they have similar statistical proper-

ties to white noise but are easy to generate in a computer. They are generated by circuits

called Linear-feedback shift register (LSFR). These circuits are made from a series of

87

shift registers or delays and XOR gates, figure 3.3 shows the practical implementation of

a sequence generator. These circuits can also be represented by mod 2 polynomials. Alt-

hough there are a large number of possible generating circuits, only a few will produce

a sequence with the properties we are looking for. In particular, we want to use circuits

that produce maximum length sequences, that is, the go through 2N − 1 different values

before repeating themselves. Circuits that can represented by primitive polynomials will

produce these types of sequences. The concept of a primitive polynomial is beyond the

scope of this thesis and further reading about this topic can be found in (Berlekamp, 1968)

and (Weisstein, 2020). Nonetheless, some examples are shown below. These are used to

generate a PRBS of a given length.

PRBS7 = x7 + x6 + 1 (3.44)

PRBS9 = x9 + x5 + 1 (3.45)

PRBS11 = x11 + x9 + 1 (3.46)

PRBS23 = x23 + x18 + 1 (3.47)

FIGURE 3.3. LFSR implementing PRBS7: x7 + x6 + 1

3.8. Spectral analysis: implementation and offline results

Given everything stated in previous sections of this chapter, we are ready to implement

and test the procedure described in section 3.2. The identification input selected was a

88

PRBS signal given is statistical similarity to white noise. The identification process can be

summarised by algorithm 1.

Algorithm 1: Spectral analysis

Result: Non parametric model Ĝ(eiω) of impedance ZHUT

Initialization
Generate PRBS of length 5N
Apply PRBS; // Excite the system

Extract measurements: u(t) and y(t)
// Measure the system

Splits u(t) and y(t) in 5 segments
Discard 1st segment
Average 4 remaining segments to get u(t) and y(t)
Apply equations 3.29 and 3.30 to calculate r̂u(τ) and r̂yu(τ)

// Correlation analysis

Apply window w(τ) to r̂u(τ) and r̂yu(τ)
// Windowing

Use equations 3.40 and 3.39 to calculate Φ̂u and Φ̂yu

Divide Φ̂yu by Φ̂u to obtain Ĝ(eiω) // Estimated transfer function

Algorithm 2: LM method

Data: G(eiω)
Result: Parametric model of impedance ZHUT

Initialisation
while Stop conditions are not met do

Calculate error γ(x)
// Calculate error function

Calculate J
// Calculate Jacobian

Split γ(x) and J into their real and imaginary parts and form γn
and Jn

// Form γn and Jn

while true do
Calculate h using eq. 3.76

// Calculate perturbation

if γ(x+ h) < γ(x) then
xnew = x+ h
λ = λ ∗ α

else
λ = λ ∗ β
exit inner loop

// Update x and λ

end

end

end

1

Two scenarios were used to test the identification algorithm. The models used can be

seen in figures 3.4 and 3.5 and the parameters can be found in table 3.1 :

1. The first system involves a simple LR filter. To simulate a grid, a 50Hz 220V

RMS signal s(t) is given alongside the identification input id(t). The sum of both

signals will be u(t). The output of the system, y(t) will be the measured current,

thus Ĝ(eiω) will be the filter impedance.

2. The second scenario involves an RLC filter. Here, we will identify its transfer

function between its input and the voltage of the resistance. Just as in case 1, a 50

Hz 220 VRMS signal is added on top of the identification input.

89

The N was selected at 10000 for both cases and γ was set at 12.5 % of N. A simulation

time of 8 seconds was selected alongside a sample time of 160µs. This allows for 5N

samples to be collected. The results for cases 1 and 2 are shown in figures 3.6.

TABLE 3.1. Parameters of identified systems

R L C

System 1 1 Ω 1mH N/A

System 2 3.3 Ω 1mH 330µC

FIGURE 3.4. Identification circuit for case 1: RL

90

FIGURE 3.5. Identification circuit for case 2: RLC

FIGURE 3.6. Results for RL filter identification

91

FIGURE 3.7. Results for RLC filter identification

Both test scenarios show the good results as the routine was able to properly identify

both circuits. A loss of accuracy can be seen as frequency increases and we approach

the Nyquist frequency. This loss of accuracy can be attributed to the windowing function

which limits our frequency resolution. Regardless, the results obtained seem appropriate

for the frequency band of interest.

Some errors are present in the identification which are to be expected, given that our

estimates for the spectrum are random variables that, as N goes to infinity, their mean will

converge to the real spectrum and their variance will decrease to zero. This could be a

problem if the information obtained from our spectral analysis was used directly, this will

not be the case as this information will be used to obtained a parametric identification of

our system.

92

3.9. Parametric identification

In the previous section we have obtained a non parametric model of our impedance,

however a problems remains. Our true goal is to identify the impedance of the HUT in a

PHIL simulation and to implement that impedance into the DIM interface algorithm. For

this, we need a model of ZHUT that is simple to implement. Thankfully, the information

obtained through our spectral analysis allows for a very straight forward approach. If we

wish to obtain the parameter of the transfer function of impedance, we must only fit a

rational function to the date generated by the spectral analysis.

To do this, we can solve a least squares problem to make the data fit a rational function.

To use least squares for this we must adapt the problem as seen in Bañuelos, Gutiérrez, y

Gustavsen (2017a, pp. 7–17). We start by defining our model structure in N(s)
D(s)

.

F (s) ∼=
N(s)

D(s)
=
a0 + a1s+ a2s

2 + ...+ ans
n

1 + b1s+ b2s2 + ...+ bnsn
(3.48)

As we want to fit N(s)
D(s)

to the data F (s), we can define an error term as follows.

ε = F (s)− N(s)

D(s)
(3.49)

Multiplying both sides by D(s) we get:

ε′ = εD(s) = F (s)D(s)−N(s) (3.50)

Then equating everything to zero.

F (s)(1 + b1s+ b2s
2 + ...+ bns

n)− (a0 + a1s+ a2s
2 + ...+ ans

n) = 0 (3.51)

93

From here, our unknown coefficients can be found. Equation 3.51 gives us one equa-

tion for every data point k. This implies we will have an overdetermined system with k

equations of the form Ax = b where:

Ak = [1 sk · · · snk − skF (sk) · · · − snkF (sk)] (3.52)

x = [a0 a1 · · · an b1 b2 · · · bn]T (3.53)

b = [F (s1) · · · F (sk)]
T (3.54)

We know that s and F (s) are complex, meaning that A and b will be complex as well.

To apply the least squares methodology we must obtain purely real matrices. To do this

we will evaluate A and b and then split the real and imaginary parts.

Ar = real(A) (3.55)

Ai = imag(A) (3.56)

br = real(b) (3.57)

bi = imag(b) (3.58)

From this, we form new matrices An and bn.

An =

Ar
Ai

 (3.59)

bn =

br
bi

 (3.60)

94

Now our system Anx = b is purely real and we can apply the least squares method.

The objective function of the least squares problem is, as always:

mı́n
x
||Anx− bn||2 (3.61)

Where the solution for x is given by

ATnAnx = ATnbn (3.62)

One last useful technique for solving equation 3.62 is to use QR decomposition. If A

is anm×nmatrix then,A = QR, where Q beingm×n and R is a upper triangular matrix

of n× n. Also QTQ = I .

With this 3.62 becomes :

[QR]TQRx = [QR]T bn (3.63)

RTQTQRx = RTQT bn (3.64)

RTRx = RTQT bn (3.65)

Rx = QT bn (3.66)

With this final equation 3.66 we can efficiently solve for x and get the parameters we

need for our model. Results for the parametric identification of cases 1 and 2 can be seen

in figures 3.8 and 3.9. Initially this seemed to work as the results of the identification were

good when N = 10000. The spectral analysis produced good results and in turn the least

squares method was able to produce accurate parameters.

95

FIGURE 3.8. Results for RL filter identification

FIGURE 3.9. Results for RLC filter identification

96

Nonetheless, this changes as N is reduced. This causes the quality of the spectral

analysis data to deteriorate and heavily impacts the performance of the least squares met-

hod. We can see this in figure 3.10.

FIGURE 3.10. Least square ID. N = 2000

This is to be expected as literature says the least squares method is generally biased

towards higher frequencies and given that these can be poorly estimated by the spectral

analysis, using the least squares technique may probe unreliable. Thus, we require a new

method for solving the parameter fitting problem.

3.10. Levenberg-Marquartd method

The Levenberg-marquardt (LM) method is an optimisation based technique that ite-

ratively improves the parameters of a function to minimise the sum of the square error

between it and a given data set. This method was proposed by Levenberg (Levenberg,

1944) and Marquardt (Marquardt, 1963) as a combination of two of the most popular

97

minimisation methods: the Gradient Descent (GD) method and the Gauss-Newton (GN)

method.

Consider the model F̂ (s, x) as a function of frequency s and a set of parameters

x = [x1, x2, · · · , xn] which needs to be fitted to the data F (s). The objective function

of our optimisation problem will be given by:

γ(x) =
1

2

Ns∑
k=1

(F̂ (sk, x)− F (sk))
2 (3.67)

Where Ns is the number of samples in our data set. Further manipulation of equation

3.67 gives:

γ(x) =
1

2
(F̂ (sk, x)− F (sk))

T (F̂ (sk, x)− F (sk)) (3.68)

γ(x) =
1

2
F̂ (sk, x)T F̂ (sk, x)− F̂ (sk, x)TF (sk) +

1

2
F (sk)

TF (sk) (3.69)

As with all these methods, the goal is to find in each iteration a perturbation h for the

parameters x that decreases the value of γ(x). The LM method does this by combining the

updates formulas of the of the GN and GD methods.

The gradient descent method, as its name implies, calculates hGD so that the change

in parameters produces the steepest descent. Thus the update equation for this method id

given by:

hGD = −JT (F̂ (sk, x)− F (sk)) (3.70)

This method behaves well when we are far from the optimal solution, approaching

quickly to the optimal solution. Nonetheless, when close to it convergence slows down

significantly as the gradient flattens.

98

The Gauss-Newton method, on the other hand assumes the γ(x) is approximately

quadratic near the solution, hence it uses a first order Taylor series to approximate the

model.

F̂ (s, x+ h) ≈ F̂ (s, x) +
∂F̂ (s, x)

∂x
h = F̂ (s, x+ h) + Jh (3.71)

We can substitute equation 3.71 in equation 3.68 and obtain:

γ(x+ h) =
1

2
F̂ T F̂ − F̂ TF +

1

2
F TF + (F̂ − F)TJh+

1

2
hTJTJh (3.72)

Taking the derivative with respect to h and equating to 0 to minimise γ(x), we get.

0 = (F̂ − F)TJ + hTJTJ (3.73)

hGN = (JTJ)−1JT (F̂ − F) (3.74)

This approach behaves very well when close to the solution but it will be very slow to

converge if we start far from it as it will not take large steps as the GD method.

The Levenberg Marquardt method combines the strengths of both the previous met-

hods, behaving as the GD method when far from the local minimum and like the GN met-

hod when close to it, achieving overall faster convergence. This is done by adaptatively

changing a parameter λ call the Levenberg-Marquardt parameter. The update equation for

the LM method can be seen in 3.75.

(JTJ + λI)hLM = −JT (F̂ − F) (3.75)

From the update equation it is clear that when λ is large, the method will behave like

the GD method, as the contribution of the hessian will be overpowered by λI . Then as

99

λ decreases the method will resemble more and more the GN method. A modification

of equation 3.75 where I is replaced by the diagonal of the hessian matrix is also very

common in the literature.

(JTJ + λdiag(JTJ))hLM = −JT (F̂ − F) (3.76)

The only problems that remains then, is how to update λ to achieve the behaviour des-

cribed above. While different implementations of the LM method have different method

to update they all follow the same strategy: when γ(x) decreases so does λ. Following this

general rule, the update of λ will be performed as follows:

If for any given iteration k γ(xk +hk) < γ(xk) then the changes to x are accepted

and xk+1 = xk + hk. We also decrease λ by: λk+1 = λk ∗ α where α < 1.

On the contrary if γ(xk + hk) > γ(xk) then the changes to the parameters are not

accepted and xk+1 = xk. λ is then increased by: λk+1 = λk ∗ β where β > 1.

Finally, we must take into account the fact that γ will be complex functions, and so

will J as F (s) is complex. To overcome this we will apply the same technique as in the

regular least squares method and take their real and imaginary parts to form a new vector

γn(s) and Jacobian Jn. With this, the process to apply the LM method can be summarised

in algorithm 2.

100

Algorithm 1: Spectral analysis

Result: Non parametric model Ĝ(eiω) of impedance ZHUT

Initialization
Generate PRBS of length 5N
Apply PRBS; // Excite the system

Extract measurements: u(t) and y(t)
// Measure the system

Splits u(t) and y(t) in 5 segments
Discard 1st segment
Average 4 remaining segments to get u(t) and y(t)
Apply equations 3.29 and 3.30 to calculate r̂u(τ) and r̂yu(τ)

// Correlation analysis

Apply window w(τ) to r̂u(τ) and r̂yu(τ)
// Windowing

Use equations 3.40 and 3.39 to calculate Φ̂u and Φ̂yu

Divide Φ̂yu by Φ̂u to obtain Ĝ(eiω) // Estimated transfer function

Algorithm 2: LM method

Data: G(eiω)
Result: Parametric model of impedance ZHUT

Initialisation
while Stop conditions are not met do

Calculate error γ(x)
// Calculate error function

Calculate J
// Calculate Jacobian

Split γ(x) and J into their real and imaginary parts and form γn
and Jn

// Form γn and Jn

while true do
Calculate h using eq. 3.76

// Calculate perturbation

if γ(x+ h) < γ(x) then
xnew = x+ h
λ = λ ∗ α

else
λ = λ ∗ β
exit inner loop

// Update x and λ

end

end

end

1

In testing the LM method proved far more reliable that the simple least squares. Pro-

viding similar results to when N is large but outperforming when N is reduced and the

quality of the spectral analysis decreases. It also does not exhibit the bias toward higher

frequencies that the least squared method has. While this approach turns out to be less

efficient that the regular least squares as the algorithm takes more time run, its better per-

formance and robustness make it our choice for the practical implementation of the PHIL

platform.

101

FIGURE 3.11. RL circuit ID with LM method. N = 2000

FIGURE 3.12. RL circuit ID with LM method. N = 10000

102

3.11. Chapter conclusion

Throughout this Chapter we have described the the mathematical tools needed for the

implementation of the proposed identification routine as well as the sequence of actions

needed to obtain useful model for the HUT’s impedance. In particular we have seen how

windowing is crucial in order to obtain good results out of spectral analysis as the estima-

tions given often have high variance. To deal with this problem and size of the window

γ, as well as the number of samples N of the recording must be selected with care and

be subject to validation and testing. The trade off between frequency resolution and re-

duction of variance implicit in the choice of window size must be kept in mind. Once the

non-parametric identification is done, obtaining a good model out of it requires a robust

parameter fitting routine. While regular least-squares approach appeared to provide good

results when provided clean data by the previous identification stage, as soon as quality

decreased it stopped providing useful results. This method was also seen to be biased to-

wards fitting the higher frequency components as more data point are placed there. By

contrast the LM method proved much more reliable, providing useful results even in the

presence of noisy or poor quality data from spectral analysis. Thus, the LM method was

selected to for the parameter fitting stage of the identification routine, despite its higher

computational cost.

103

4. SOFTWARE IMPLEMENTATION & SIMULATION RESULTS

4.1. Introduction

Chapters 2 and 3 laid out the different concepts and tools needed to implement a

PHIL platform. The damping impedance method was selected as our interface algorithm

of choice and a process to overcome its mayor disadvantage, the fact that we need to

identify ZHUT , was presented and tested. This Chapter will cover the implementation and

testing of PHIL platform in a Matlab Simulink simulation while Chapter 5 will show the

hardware implementation of the real PHIL platform using the model developed in this

chapter as a base.

A PHIL platform has 3 mayor elements, a real simulation target, a power amplifier

and a HUT. Figure 4.1 shows the structure of the implemented PHIL platform.

The real time simulator can be seen in blue. It runs all the electrical simulations, the

identification algorithm, handles the I/O and processes the measurements for immedia-

te use or for recording. Normally a real time target would have trouble handling many

different tasks as the electrical simulation requires a very short time step, leaving little

processing time for other functions. In our implementation however, we take advantage of

the many processing cores of the real time target, to run each process independently. This

simplifies the implementation as the job of multiple devices is done by a single one.

The amplifier, seen in figure 4.1 in red, is the link between the real part of the simula-

tion, in this case, the HUT, and its software side. Its job is to take the voltage commands

coming from the simulation and turn them into high voltage and high power signals, to

apply them to the HUT. This device must be very fast at responding to voltage commands,

as significant delays in reaching the desired set point will heavily compromise the stability

of any interface algorithm. It must also be powerful enough to supply or sink the power

the HUT demands.

104

Finally, the HUT is the device or circuit with which we want to interface our simula-

tion and it is directly connected to the amplifier. Its voltage and current must be measured

at the connection point so they can be fed back into the simulation.

All these components will be simulated to test the performance of the identification

routine and the interface algorithm.

Amplifier

HUT

OPAL - RT
Host PC

 10V Analog
output

TCP/IP

FIGURE 4.1. PHIL platform structure

4.2. Opal-RT model structure

The tool we will use to build the software for the real time target, RT-LAB, requires us

structure our model in an specific way. Given that the Simulink model built in this chapter

will be the basis of the hardware implementation, we will use the same structure . The

program requires us to split the model in subsystems. It then assigns each subsystem to a

different core. The tool allows for 3 types of subsystem which must be differentiated by

their name as seen in figure 4.2. Every model must have one master subsystem denoted

by SM before its name. Then systems may have multiple slave subsystems, denoted by

the SS before their name. Both master and slaves subsystems will be compiled into an

executable file to run in real time and will be assigned each to a different core if available.

The communication between these subsystems is synchronous, meaning that during the

real time execution the timing of each core will be consistent with all the other. Each

subsystem may have its own different timestep, however all timesteps in a given model

have to be a multiple of the smallest one.

105

The system may also have one console subsystem, denoted by SC before its name, this

subsystem will not be compiled and will not be loaded on to the real time target. Instead it

will run in the host PC and it is used to display measurements and send user commands of

the simulation. Unlike the communication between SM and SS subsystems, the commu-

nication between the host and the real time simulation is asynchronous, meaning accuracy

in timing is not guaranteed. Because of this the console subsystem may only display infor-

mation sent from the real time simulation or have controls that allow the user to interact

with it. No calculations or processing is allowed in this subsystem. Further reading about

the structure needed for real time compatible models and other related topics can be found

in OPAL-RT’s extensive Resource Center (OPAL-RT, 2020b).

FIGURE 4.2. OPAL RT model structure

This will mean that the top view of our model will correspond to 4 subsystems: 3 for

computations and 1 for monitoring. The structure can be seen in figure 4.3 and the imple-

mentation in figure 4.4. SM Computation is the subsystem where the electrical simulation

occurs, SS ID runs the identification routine and SS RMS calculates power and RMS va-

lues. The rest of this chapters explores the implementation of each of these subsystems

that will be assigned to each core in the of the real time target.

106

SM_computations
electrical simulation

and I/O

SS_ID
ID procedure and
parameter fitting

SS_RMS
Measurements and

sampling

Monitoring & plots
Estimated Z
parameters

V & I
measurnments

V & I
Frame

Power and
RMS values

SS_console

FIGURE 4.3. Software structure

107

Z	params

I	and	V

frame

Monitoring

SM_computations

Discrete
0.0002	s.

PQRMS

I	and	V

est	params

monitoring	ID

Monitoring	sim

SC_console

Frame

est	params

z	params

Monitoring

SS_ID

VI PQRMS

SS_RMS

FIGURE 4.4. Top view of Simulink model

4.3. Software implementation: Electrical simulation

The subsystem SM computations, seen in cyan in figure 4.4, will be dedicated to run-

ning the electrical simulation. This subsystem will contain the entire simulated network

that we wish to interface with the HUT. It will also contain the implementation of our

interface algorithm meaning that in the hardware implementation, the analog outputs con-

trolling the voltage amplifier and the analog inputs coming from the voltage and current

sensors. Figure 4.5 shows an overview of the subsystem. In it, we can clearly distinguish

three parts:

1. Our implementation of the DIM interface algorithm highlighted in violet and seen

in figure 4.6.

108

2. The amplifier and HUT, highlighted in red and purple and seen in figure 4.8

3. A data sampler highlighted in green and seen in figure 4.9.

In figure 4.6 we can see all the parts of the DIM algorithm described in section 2.5. The

subsystem shown in green, labelled ROS or rest of system, contains the simulated network

to which we want to connect our HUT. Thus making the variables Isim and VDIM the

current and voltage of the point of connection. We also see Zab representing the impedance

of the amplifier in the software side. An extra high value resistor is added in parallel to

avoid simulation problems cased by having an inductor and a current source in series. Next

we see both controlled sources being controlled by measurements coming from the HUT.

Finally ZDIM is implemented using a subsystem. The impedance ZDIM changes du-

ring the simulation, to match identified value of ZHUT . Given that the HUT could have any

unknown topology, implementing ZDIM with electrical components is impossible. Instead

ZDIM is implemented as shown in figure 4.7. First, the voltage between the terminals of

the subsystem is measured, this voltage filtered to remove any high frequency noise and

is then passed through a time varying discrete transfer function block. This block receives

its parameters from the identification subsystem and implements the identified dynamic.

A delay block is placed before the transfer function block to prevent algebraic loops, as

these cannot exist in real time simulations. This block allows us to mimic the dynamic of

any HUT, regardless of its topology.

109

Interface	Algorithm

Sampler

HUT
Amplfier

2

[Ueut]

[Ueut]

[Ieut]

N

period

bit

N

P

[PRBS]

[PRBS]

s-
+

s -
+

+

ZAB

[VB]
v+

- [Vdim]

[Vdim]

+

Z_extra

Z-1

[Ieut]

s
- + +

ZAB1

v+
- [VB]

+

Z_HUT

i+ -
[Ieut] [Vdim]

[VB]

[Ieut]

i+ -

[I_sim]

[I_sim]

params

+
-

Z	DIM

1
I	and	V

	Computation	time

			Real	step	size

								Idle	time

						Nb	overruns

Rst	overruns

1
Z	params

N*P

N*P

sample

N

out

Sampler	1

sample

N

out

Sampler	2

[1:N*P]

U

Idx11
YS

U

Idx11
YS

2
frame

3
Monitoring

0

-K-[Vdim]

1/10[I_sim]

OP5142EX1	Ctrl
Board	index:	0
Mode:Master

Error

IDs

Slot	1	Module	A	Subsection	1Volts

'OP5142EX1	Ctrl'

[VB] -K-

1/10[Ieut]

OpWriteFile
acq.	group	26

Vsim

ROS

OpComm
Ts	=	ts_e

Z-1

i+ -

FIGURE 4.5. Overview of subsystem SM computations

110

Interface	Algorithm

Sampler

Grid	tied	inverter
Amplifier

10

[Ueut]

[Ueut]

[Ieut]

N

period

bit

N

P

[PRBS]

[PRBS]

s-
+

s -
+

+

ZAB

[VB]

v+
- [Vdim]

[Vdim]

+

Z_extra

Z-1

[Ieut]

s
- + +

ZAB1

[Vdim]

[VB]

[Ieut]

i+ -

[I_sim]

[I_sim]

params

+
-

Z	DIM

1
I	and	V

	Computation	time

			Real	step	size

								Idle	time

						Nb	overruns

Rst	overruns

1
Z	params

N*P

N*P

sample

N

out

Sampler	1

sample

N

out

Sampler	2

[1:N*P]

U

Idx11
YS

U

Idx11
YS

2
frame

3
Monitoring

0

-K-[Vdim]

1/10[I_sim]

OP5142EX1	Ctrl
Board	index:	0
Mode:Master

Error

IDs

Slot	1	Module	A	Subsection	1Volts

'OP5142EX1	Ctrl'

[VB] -K-

1/10[Ieut]

OpWriteFile
acq.	group	26

Vsim

ROS

OpComm
Ts	=	ts_e

Z-1

v+
-

[VB]

i+ -

[Ieut]

Vgrid

A1

B1

FIGURE 4.6. Implementation of the DIM algorithm

Impedance
terminals

s -
+

Z	current

v+
-

+

1
params

1
+

2

-

stvdtf

Time	Varying	Discrete
Transfer	Function

S-Function

Z-1
v

i

FIGURE 4.7. Implementation of a variable impedance

111

2

[Ueut]

[Ueut]

[Ieut]

N

period

bit

N

P

[PRBS]

[PRBS]

s-
+ s -

+

+

ZAB

[VB]

v+
- [Vdim]

[Vdim]

+

Z_extra

Z-1

[Ieut]

s
- + +

ZAB1

v+
- [VB]

+

Z_HUT

i+ -

[Ieut]

[Vdim]

[VB]

[Ieut]

i+ -

[I_sim]

[I_sim]

params

+
-

Z	DIM

1
I	and	V

	Computation	time

			Real	step	size

								Idle	time

						Nb	overruns

Rst	overruns

1
Z	params

N*P

N*P

sample

N

out

Sampler	1

sample

N

out

Sampler	2

[1:N*P]

U

Idx11
YS

U

Idx11
YS

2
frame

3
Monitoring

0

-K-[Vdim]

1/10[I_sim]

OP5142EX1	Ctrl
Board	index:	0
Mode:Master

Error

IDs

Slot	1	Module	A	Subsection	1Volts

'OP5142EX1	Ctrl'

[VB] -K-

1/10[Ieut]

OpWriteFile
acq.	group	26

Vsim

ROS

OpComm
Ts	=	ts_e

Z-1

i+ -

v+
-

FIGURE 4.8. Amplifier and HUT

As shown in section 2.5, VDIM is perhaps the most important signal as it is the output

of the simulation as well as the input to the amplifier, shown in red. To allow the system

to identify the HUT a PRBS is added to VDIM before being fed to the amplifier. The

amplifier is simply modelled as a controlled voltage source with and input delay. The

HUT, shown in red, is an RL filter in this case. In reality the HUT could be any number

of complex devices, but an RL filter allows for a direct comparison of the results with the

ones obtained in the offline identification.

The last part of this subsystem is the voltage an current sampler. Given that our iden-

tification routine needs a large chunk of data at once to perform the identification routine,

this part of the subsystem samples the voltage and current of the HUT and records it then

until it has collected N · P samples, where P is the number of sections that will be ave-

raged, and N is the length of each section . Once it has finished, it updates its output

presenting the N · P samples to the identification routine all at once.

112

2

[Ueut]

[Ueut]

[Ieut]

N

period

bit

N

P

[PRBS]

[PRBS]

s-
+ s -

+

+

ZAB

[VB]

v+
- [Vdim]

[Vdim]

+

Z_extra

Z-1

[Ieut]

s
- + +

ZAB1

v+
- [VB]

+

Z_HUT

i+ -

[Ieut]

[Vdim]

[VB]

[Ieut]

i+ -

[I_sim]

[I_sim]

params

+
-

Z	DIM

1
I	and	V

	Computation	time

			Real	step	size

								Idle	time

						Nb	overruns

Rst	overruns

1
Z	params

N*P

N*P

sample

N

out

Sampler	1

sample

N

out

Sampler	2

[1:N*P]

U

Idx11
YS

U

Idx11
YS

2
frame

3
Monitoring

0

-K-[Vdim]

1/10[I_sim]

OP5142EX1	Ctrl
Board	index:	0
Mode:Master

Error

IDs

Slot	1	Module	A	Subsection	1Volts

'OP5142EX1	Ctrl'

[VB] -K-

1/10[Ieut]

OpWriteFile
acq.	group	26

Vsim

ROS

OpComm
Ts	=	ts_e

Z-1

i+ -

v+
-

FIGURE 4.9. Implementation of data sampler

4.4. Software implementation: Identification Routine

This subsystem SS ID, seen in figure 4.10, implements the identification process des-

cribed in chapter 3. It uses the data frame received from the electrical simulation subsys-

tems with the samples of V and I and uses them to perform spectral analysis and then

obtain parameters for ZDIM .

Both the spectral analysis routine and the parameter fitting routine are implemented

using interpreted functions that execute a Matlab function in an m file. The spectral analy-

sis routine receives V and I and uses them to calculate G(eiω) as a complex curve. Then it

passes G(eiω) and the complex frequency vector to the parameter fitting routine. This rou-

tine fits rational functions of several different orders, up to 4th order, to the data of G(eiω)

using the LM method, choosing the best fit to obtain parameters for ZDIM . To do this, the

LM method requires an initial guess for the parameters each time we wish to identify the

HUT. Naturally on the first identification this guess will be given by the user, however on

each subsequent identification, the previous identified values will be used. This is helpful

as even if the initial guess is poor due to lack of knowledge of the HUT and first identifi-

cation produces a poor model, the next time the routine is ran, it will have a much better

starting point.

113

Since the parameters identified through this process correspond to that of a continuous

time transfer function, and we implemented ZDIM with a discrete model, the identified

transfer function needs to be discretized. The final block of the subsystem performs this

discretization by applying the tustin method (s ≈ 2·(z−1)
T ·(z+1)

). Finally the system outputs the

parameters our variable impedance implementation requires. The basis for the implemen-

tation of the LM method in Matlab can be found in (Bañuelos, Gutiérrez, y Gustavsen,

2017b, pp. 17–44)

1
Est	params

iteration

func_calls

2
params	z

	Computation	time

			Real	step	size

								Idle	time

						Nb	overruns

Rst	overruns

1
Frame

ts

previous_p

curve

freq

enable

P

d_num

d_den

least	squares	
N

v

y

N

Ts

Mag

freq

gamma

Sepctral	analysis

ts

P

n

d

y

ts

FIGURE 4.10. Implementation of the ID routine

4.5. Software implementation: Measurements

The final subsystem of the model is the measurements subsystem seen in figure 4.11.

This subsystem takes the measurements fro the electrical simulation and calculated elec-

trical quantities of interest such as active and reactive power as well as RMS values of

voltages and currents.

114

RMS

1
VI

RMS

RMS

RMS

V

I

P

Q

V

I

P

Q

1
PQRMS

OpComm
Ts	=	ts_e

I	eut

V	eut

Vsim

Isim

FIGURE 4.11. Implementation of the DIM algorithm

115

4.6. Simulation results

The model described in the previous sections, while meant to run in Simulink, is

designed to exhibit the same behaviour as the final model to be deployed in the real time

target. The physical parts of the simulation such as the HUT and amplifier were modelled

to resemble their real counterparts.

To consider a PHIL simulation successful, it must achieve the two goals described

in chapter 2: be both stable and accurate. In section 2.5 we established that when using

the DIM algorithm both stability and accuracy are tied to a proper identification of ZHUT .

Given that in the simulation environment we know the HUT we can establish a baseline

and evaluate the quality of the identification. This baseline is obtained by simulating the

circuit with out the PHIL interface, ie, the naturally coupled system (NCS). This will give

us reference values for voltage, current and power to assess the quality of the simulation.

To call the simulation a success, it must adequately identify the impedance of the HUT,

and provide an electrical simulation with results within a few % point of error with respect

to the naturally coupled system. To test the simulation, two scenarios where constructed:

one with a passive load and one with an active load. The results are shown below.

4.6.1. Passive load

The tested scenario uses as HUT and LR filter where R = 8,8Ω and L = 9mH , so

it can be later compared to a real circuit. The ROS was a 220V RMS voltage source with

a 5Ω impedance in series. A simplified diagram of the circuit is presented in figure 4.12.

Further relevant parameters can be found in table 4.1.

We can see that that the HUT is properly identified by second 6, as the software side

and hardware side variables all equalise. This can be confirmed if we plot the identified

parameters and compare it with the theoretical bode. Figure 4.13 shows the identification

process at work. We see that the initial guess given was very bad. This resulted the first

identification iteration to provide a poor model for ZHUT . However, the next iteration uses

116

previous parameters as its starting point, leading to a successful identification in the second

attempt. Following identifications either improve the model performance or remain within

close proximity as seen in figure 4.14.

TABLE 4.1. Simulation parameters: passive load

Parameter Value

N 2000

P 5

Window size (γ) 250

SM computations timestep 100µs

SS RMS timestep 200µs

SS ID timestep 2s

Software impedance (Zs) 5Ω

DIM

FIGURE 4.12. Simplified diagram of the simulation

117

FIGURE 4.13. Identification process. First 2 attempts

118

FIGURE 4.14. Identification process. Fist 10 attempts

The initial miss identification of ZHUT is also visible in the behaviour of all electrical

variables. Figures 4.15, 4.16, 4.17 and 4.18 show how the voltage, current, active power

and reactive power behaved during the simulation. We see how it isn’t until second 6,

119

when ZHUT is identified successfully, that the variables of the software side and hardware

side equalise and their values converge towards those of the reference circuit (NCS).

FIGURE 4.15. Simulation voltage. RL load

120

FIGURE 4.16. Simulation current. RL load

FIGURE 4.17. Active power. RL load

121

FIGURE 4.18. Reactive power. RL load

Figures 4.19 and 4.20 show the percentage of error with respect to the naturally

coupled system (NCS), of the software side and hardware side variables. Voltage is the

most accurate variable with average relative errors with respect to the reference circuit of

less than 0.9 %.

Figures 4.21 and 4.22 show that current behaves similarly well with average error

between 0.5 % and 1 % for the software side and 1 to 1.5 % for hardware side, once the

identification is complete.

122

FIGURE 4.19. Voltage relative error. RL load

FIGURE 4.20. Voltage relative error zoom. RL load

123

FIGURE 4.21. Current relative error. RL load

FIGURE 4.22. Current relative error zoom. RL load

124

Active power also behaved well, with average errors of 0.5 % to 1 % in the software

side and 1 to 2 % in the hardware side, as seen in figure 4.23 and 4.24. Finally, the results

for reactive power can be seen in figure 4.25 and 4.26. Reactive power is usually the har-

dest variable to obtain accurately, as in most cases, it tends to be small when compared to

active power. In these situations, a small error in the phase between the voltage and current

will lead to very little change in active power, specially in relative terms, but to substantial

changes in reactive power. Thus small inaccuracies in the experiment will disproportiona-

tely affect the results for reactive power, leading to high relative error. The opposite would

be true, in a scenario where reactive power is much greater than active power. Here, active

power would be subject to higher degrees of error.

Despite the above, results show an average errors of 2 to 3 % in the software side while

the hardware side shows error of less than 2 % with respect to the reference. Overall, this

is comparable with results from and after applying compensation strategies.

FIGURE 4.23. Active power relative error. RL load

125

FIGURE 4.24. Active power relative error zoom. RL load

FIGURE 4.25. Reactive power relative error. RL load

126

FIGURE 4.26. Reactive power relative error zoom. RL load

4.6.2. Active load

For this scenario the RL filter in the previous simulation was replaced with a grid

tied inverter, with a simple L output filter. For convenience, the inverter was simulated

using using an average model as detailed electrical simulations with transistors require

very short timesteps and would not contribute relevant information to the experiments, in

this context. The only subsystem that saw changes with respect to the previous experiment

was SM computations. Figure 4.27 shows this subsystem and how the simulated inverter

was integrated.

127

Grid	tied	inverter

Sampler

Interface	Algorithm

Amplifier

10

[Ueut]

[Ueut]

[Ieut]

N

period

bit

N

P

[PRBS]

[PRBS]

s-
+

s -
+

+

ZAB

[VB]
v+

- [Vdim]

[Vdim]

+

Z_extra

Z-1

[Ieut]

s
- + +

ZAB1

[Vdim]

[VB]

[Ieut]

i+ -

[I_sim]

[I_sim]

params

+
-

Z	DIM

1
I	and	V

	Computation	time

			Real	step	size

								Idle	time

						Nb	overruns

Rst	overruns

1
Z	params

N*P

N*P

sample

N

out

Sampler	1

sample

N

out

Sampler	2

[1:N*P]

U

Idx11
YS

U

Idx11
YS

2
frame

3
Monitoring

0

-K-[Vdim]

1/10[I_sim]

OP5142EX1	Ctrl
Board	index:	0
Mode:Master

Error

IDs

Slot	1	Module	A	Subsection	1Volts

'OP5142EX1	Ctrl'

[VB] -K-

1/10[Ieut]

OpWriteFile
acq.	group	26

Vsim

ROS

OpComm
Ts	=	ts_e

Z-1

v+
-

[VB]

i+ -

[Ieut]

Vgrid

A

B

FIGURE 4.27. SM computations subsystem used for simulation with inverter

Figure 4.28 shows the model used for the inverter. A PLL is used to provide a voltage

reference synchronised with the grid as well as its angle. The current control, shown in

figure 4.29, is implemented using two PI controllers in the dq axis. To achieve this on a

single phase system, a time delay is applied to the current to create a second virtual phase

with a 90 ◦ shift. Then, we apply the αβ0/dq0 transformation to obtain the currents in the

d and q axis. A PI controller makes sure the currents in both axis meet their references with

128

minimal error. Finally, we revert back to the stationary reference frame by applying the in-

verse of the previous transformation (dq0/αβ0). From here, we use only the α component

as the voltage reference for the inverter (Uref).

1
Vgrid

+

L5

i+ -

[Ieut]

In
Freq
wt

Uref

A

B

+

-

[wt] [Ieut]

[wt]

I

wt

Uref

CC

1
A1

2
B1

FIGURE 4.28. Grid tied inverter

αβ0
wt dq0

0

PID(s)

PID(s)

0.3

1 0

dq0
wt αβ0

-K-

1/nom

-K-

1/Inom

1
I

2
wt

1
Uref

FIGURE 4.29. Current control scheme

A simplified diagram of the simulation is shown in figure 4.30. As in the previous

case, the software side consist on a 220VRMS AC source and a series impedance Zs. The

inverter is powered by a 400VDC source. Further relevant parameters can be found in

table 4.2.

129

DIM

Inverter

FIGURE 4.30. Simplified diagram of the simulation

TABLE 4.2. Simulation parameters: Inverter load

Parameter Value

N 2000

P 5

Kp 14.7027

Ki 62.8319

Window size (γ) 250

SM computations timestep 100µs

SS RMS timestep 200µs

SS ID timestep 2s

Software impedance (Zs) 0,01Ω + 17µH

The experiment with the inverter did not provide satisfactory results. While variables

on the hardware side are very accurate with relative error being close to zero, results

for active and reactive power on the simulation side are consistently biased and display

relatively large error. Figures 4.31, 4.33, 4.36 and 4.39 show how the voltage, current,

active and reactive power behaved during the simulation. We see that while the hardware

side was very accurate, the results in the software side where consistently biased. Results

130

for active power show a relative error between 4 and 6 % as seen in figure 4.38 once the

impedance is identified. However the biggest problems lie with the reactive power where

relative error reaches between -7 % and -15 % 4.41. Such large error imply there is a

problem with our approach and indeed there is.

FIGURE 4.31. RMS voltage. Inverter load

131

FIGURE 4.32. Voltage relative error. Inverter load

FIGURE 4.33. RMS current. Inverter load

132

FIGURE 4.34. Current relative error. Inverter load

FIGURE 4.35. Current relative error zoom. Inverter load

133

FIGURE 4.36. Active power. Inverter load

FIGURE 4.37. Active power relative error. Inverter load

134

FIGURE 4.38. Active power relative error zoom. Inverter load

FIGURE 4.39. Reactive power. Inverter load

135

FIGURE 4.40. Reactive power relative error. Inverter load

FIGURE 4.41. Reactive power relative error zoom. Inverter load

136

4.7. Problems of spectral analysis in the active load case

The problem shown in previous section can be explained due to a poor identification

of ZHUT . Unlike the case for the passive load, were spectral analysis proved useful, we

will see that for this case the estimates we obtain will be biased, making this technique

unfit for identifying HUT such as our inverter. We will explore the reason behind this

and confirm it repeating the experiment in section with the real PHIL platform and a real

inverter. We will then present a small work around that both support our claim about why

spectral analysis fails while partially solving the issue with it.

An explanation for the problem with the experiment above can be found in Chapter

10 of Systems identification by Torsten y Stoica (1989a), which explains the concerns and

challenges one must consider when identifying systems under closed-loop operation. The

problem lays in the fact that as our HUT now operates as a closed-loop system, there is a

feedback path that affects the dynamics between u(t) and y(t). More precisely the inverter

case can be modelled as seen in figure 4.42, where q−1 is the shift operator.

+ - ++

FIGURE 4.42. Model of a feedback system

For this type of system, we get that we can calculate u(t) and y(t) considering the

feedback as follows. w

137

y(t) = [I +Gs(q
−1)F (q−1)]−1[Gs(q

−1)L(q−1)v(t) +H(q−1)e(t)] (4.1)

u(t) = [L(q−1)− F (q−1)(I +Gs(q
−1)F (q−1))−1Gs(q

−1)L(q−1)]v(t)

− F (q−1)(I +Gs(q
−1)F (q−1))−1H(q−1)e(t) (4.2)

Now taking the SISO case and assuming the feedforward part as L(q−1) ≡ 1 for

simplicity, we can reduce equations 4.1 and 4.2 into the following:

z(t) = F (q−1)H(q−1)e(t) (4.3)

y(t) =
1

1 +Gs(q−1)F (q−1)
[Gs(q

−1)v(t)− 1

F (q−1)
z(t)] (4.4)

u(t) =
1

1 +Gs(q−1)F (q−1)
[v(t) + z(t)] (4.5)

Calculating the spectrum Φyu and Φu we obtain equations

Φyu(ω) =
1

|1 +Gs(e−iω)F (e−iω)|2
[Gs(e

−iω)Φv(ω)− 1

F (e−iω)
Φz(ω)] (4.6)

Φu(ω) =
1

|1 +Gs(e−iω)F (e−iω)|2
[Φv(ω) + Φz(ω)] (4.7)

Then Ĝ(e−iω) can be calculated as in equation 3.33.

Ĝ(eiω) =
Φyu

Φu

=
Gs(e

−iω)Φv(ω)− 1
F (e−iω)

Φz(ω)

Φv(ω) + Φz(ω)
(4.8)

From equation 4.8 we can quickly spot that if (z(t) = 0,Φz(ω) = 0) then the estimates

gives exactly the dynamic of Gs(e
−iω).

138

Ĝ(e−iω) = Gs(e
−iω) (4.9)

Since z(t) = F (q−1)H(q−1)e(t). This leaves us with three possibilities: F (q−1) = 0,

H(q−1) = 0, or e(t) = 0. Since all real systems will have some source of noise and we

have seen in section 3.5 and in simulation that systems where H(q−1) 6= 0 can be properly

identified, only F (q−1), the feedback dynamic remains as possible culprit.

To verify this, we can calculate the difference between Ĝ(e−iω) and Gs(e
−iω) in the

general case. This, we can calculate using 4.8 and obtain 4.10.

Ĝ(e−iω)−Gs(e
−iω) = − Φz(ω)

Φz(ω) + Φv(ω)

1 +Gs(e
−iω)F (e−iω)

F (e−iω)
(4.10)

Substituting for the spectrum of z(t), Φz(ω) = |F (e−iω)|2|H(e−iω)|2Φe(ω) in 4.10

and evaluating a F (e−iω) = 0 results in the difference between the real dynamic and the

estimate is 0.

Ĝ(e−iω)−Gs(e
−iω) = − |F (e−iω)|2|H(e−iω)|2Φe(ω)

|F (e−iω)|2|H(e−iω)|2Φe(ω) + Φv(ω)

1 +Gs(e
−iω)F (e−iω)

F (e−iω)

(4.11)

Ĝ(e−iω)−Gs(e
−iω) = − |F (e−iω)||H(e−iω)|2Φe(ω)

|F (e−iω)|2|H(e−iω)|2Φe(ω) + Φv(ω)
(1 +Gs(e

−iω)F (e−iω))

(4.12)

Ĝ(e−iω)−Gs(e
−iω) = − 0 · |H(e−iω)|2Φe(ω)

0 · |H(e−iω)|2Φe(ω) + Φv(ω)
(1 +Gs(e

−iω) · 0) (4.13)

Ĝ(e−iω)−Gs(e
−iω) = 0 (4.14)

This means that only in open loop operation the system will be identifiable through

spectral analysis as F (q−1) ≡ 0. For cases where there is feedback, the technique will

give biased estimates. This is a problem as our active HUT is indeed a closed loop system.

139

As such, spectral analysis is likely not suitable for identifying active HUT while these are

powered on.

In fact, upon further research the proper identification of the output impedance of

power devices appears to pose several challenges. According to Ljung (1999) and refe-

rencing to figure 4.42, when dealing with closed loop systems there are 3 approaches for

identification:

Direct approach: Proceed as if the system operates in an open loop and use u(t)

and y(t) to identify the system.

Indirect approach: use v(t) and y(t) to identify the close loop dynamic and the

use prior knowledge of F (q−1) to calculate Gs(q
−1).

Joint input-output identification: Treat both u(t) and y(t) as inputs of a system

driven by v(t) and noise. Then identify the characteristics of the feedback and

plant using a joint model.

For PHIL applications our HUT is likely to be a closed-loop system such as a solar

inverter, wind turbine, synchronous generator, or any other active electrical machine. For

the case of a grid tied inverter, the model shown in figure 4.43 is particularly helpful,

though the conclusion derived from it can apply to a variety of different HUTs. Given that

we are simply interested in the dynamics of the output impedance of the HUT, this will

be our plant Gs(q
−1). The current across this impedance will be the output of our plant,

y(t), while the voltage across the impedance will be u(t). It is easy to see that the voltage

across the impedance will be the difference between the voltage of the grid (or the PHIL

amplifier in this case) and the voltage generated by the HUT. In our diagram, this will be

the difference between v(t) and f(t). Finally, the rest of the inverter, both the control logic

and the behaviour as a voltage source, can be represented as F (q−1). This, as the goal of an

inverter in a grid tied scenario, is essentially to control the flow of current through its POI

by manipulating voltage generated by the switching of its transistors. With this insight,

140

we can know assess the feasibility of each of the presented approaches for identifying the

output impedance.

+ - ++

FIGURE 4.43. Identification scenario of an active HUT

Ideally, we would simply use the direct approach as it is the most straightforward

way of identifying a closed-loop system. Simply measure u(t) and y(t) and fit a model

accordingly. Nonetheless, this presents serious practical challenges, particularly, measu-

ring u(t). In most HUTs the output impedance is not readily accessible for measurements

making the direct measurement of u(t) impossible.

If the direct approach cannot be applied, then using the indirect approach may be the

best option. The measurements for this method should be always available as only the

amplifier voltage and current are required. However, in this case what will be identified

will be the dynamics of the whole HUT, feedback included. Thus, to separate the dynamics

of the HUT’s output impedance needed for the DIM algorithm, prior knowledge of F (q−1)

is needed. This poses challenges as the control laws of the HUT may not be known or

provided by the manufacturer. Obtaining them from the dynamics of the inverter, will

present a complex challenge all on its own.

141

Finally the joint input-output approach is met with the same difficulty of the direct

approach, the lack of a direct way of measuring u(t). This approach is used when the dy-

namics of the whole system are of interest, not justGs(q
−1). Thus, if u(t) can be measured,

it could be used to not only identify the output impedance, but also the control dynamics

of the HUT.

Given this analysis, we should conclude that a straightforward way of identifying the

output impedance, as presented in Chapter 3, of closed-loop system without any prior

knowledge of it, is likely not possible, at least if u(t) cannot be measured. Any algorithms

seeking to continuously re-identify ZHUT of a closed loop HUT during the simulation will

face the challenges described above.

As such, the need for continuous re-identification of Gs(q
−1) should be carefully exa-

mined as it posses the biggest challenge for a successful PHIL simulation using the DIM

algorithm. Given that most changes in the behaviour of an active HUT are due to changes

in its control laws F (q−1), instead of its output impedance Gs(q
−1), for some experiment

it can be entirely possible to obtain accurate results by identifying ZHUT while the HUT is

powered off. During this time, and depending on HUT topology, the identification proce-

dure can be carried out effectively as described in Chapter 3, as F (q−1) will essentially be

0 and the system will be in an open loop condition. Then, once a model of the output impe-

dance has been obtained, the PHIL simulation can commence. This approach will produce

accurate results, as long as the physical parameters of ZHUT don’t change significantly

during the experiment, or if there isn’t an significant topological change when the HUT is

turned on. Whether this strategy is applicable or not to an experiment, is something that

must be determined case by case.

Despite the above, identification of the HUT’s output impedance while powered off,

can provide relatively simple way for achieving stable and highly accurate PHIL experi-

ments involving active HUTs, whenever the conditions are right for its application.

142

To back the recommendations made above, experimental results are presented in the

next Chapter. We will show how online identification of a passive HUT is not a problem,

but that as soon as the HUT is a close-loop system, the estimates for ZHUT become biased

and accuracy suffers greatly. Then we test the same identification routine to identify the

output impedance of the active HUT while it is powered off and keep this estimate to use

it during the simulation. We show how this approach delivers the same degree of stability

and accuracy as the passive HUT case with the drawback that the impedance cannot be

re-identified while the simulation is running.

4.8. Chapter conclusion

In this Chapter we have presented the structure of the PHIL platform as well as its im-

plementation in Simulink, following the design philosophy needed for a later implemen-

tation in a real time target. We showed how the model is divided into several subsystems,

each with a very distinct task, and how they all relate with one another.

The subsystem SM computations implements the DIM interface algorithm. While

most of it is fairly straight forward, the implementation of a variable impedance, capa-

ble of representing any SISO transfer function represented a particular challenge.

The identification routine was implemented in the subsystem SS ID. In this subsys-

tem, both the spectral analysis and the parametric fitting were programmed using the cus-

tom Matlab function block. This allowed us to translate the Matlab scripts used in previous

sections to blocks fit for their us in Simulink.

Along with the software implementation, the results of the software testing of the plat-

form were delivered as well. Here we corroborate that for the case of passive HUTs, the

platform performs well. Nonetheless, we discover that for active HUTs spectral analysis

fails to deliver good results. An explanation for these results is then given, and a dee-

per analysis of the of the identification of closed-loop systems in the environment of a

PHIL platform is given. Through this analysis, possible solutions and their challenges are

143

theorised and proposed. Finally, a workaround is presented that allows us to use the exis-

ting identification routine to achieve successful experiments. This is to simply identify the

HUT while it is powered off, as during that time, it will behave as an open loop system.

This solution should suffice for the needs of the majority of PHIL experiments though it

is not without drawbacks as we sacrifice the ability to re-identify the output impedance of

the HUT during the simulation.

144

5. HARDWARE IMPLEMENTATION & EXPERIMENTAL RESULTS

5.1. Introduction

As explained in chapter 4 the software for the real time target will be based on the

simulation presented in that chapter. RT-LAB allows us to take a working Simulalink

model and add a few specialised blocks to transform it into a program that can be compiled

and run in real time. The first part of this chapter will focus on the general programming

guidelines to follow and things to avoid when programming for real time with Simulink

and RT-LAB. Then changes needed to get the simulation presented in chapter 4 to run in

the real time target will be revised and explained. Finally we will cover the physical part

of the PHIL platform and how it interfaces with the simulation.

5.2. Guidelines for programming for real time with Matlab Simulink and RT-LAB

In order to ensure that a Simulink can be properly compiled into code that can run in

real-time on the OPAL-RT platform, a few guidelines and considerations must be follo-

wed. Here we present several that one must keep in mind to avoid compilation or run-time

errors, later in the development process.

5.2.1. Discrete solvers and algebraic loops

To allow for real time execution, several measures have to be taken to ensure the

final result can run outside Simulink. First and foremost, the simulation must be discrete,

with a solver with a fixed time step. Continuous time simulation or even discrete time

simulations with variable time steps solvers cannot be compiled into c code and thus those

options must not be selected.

A far less obvious consideration, are algebraic loops. Algebraic loops often occur

in feedback paths, very common when programming in Simulink, when the input for a

certain calculation requires its output in the first place to be already available, an example

145

can be seen in figure 5.1 . While Simulink can normally break these, programs meant to

be run in real time can’t, so these will result in compilation errors.

+ -

FIGURE 5.1. Algebraic loop example

Thankfully these loops have a rather simple fix, inserting a memory or delay block in

the feedback path will break the loop as the simulation can use the previous state of the

output to calculate the input.

5.2.1.1. Subsystem communication

As previously explained, RT-LAB separates each subsystem and assigns it to a diffe-

rent core of the target. For this to work properly the communication between subsystems

must be handled in specific ways. The first consideration is the addition of OpComm block.

These blocks serve three main functions:

1. They tell RT-LAB how subsystems must be communicated, this is crucial as this

connections between cores become hardware communication links when the de-

ployed in the target

2. They provide RT lab information about the types of variables communicated bet-

ween subsystems

3. When inserted in the console subsystem, they allow for the monitoring of signals

from the simulation via acquisition groups.

Subsystem’s outputs must also be carefully managed in order to achieve an efficient

execution in real time. During execution, all subsystems will try run their code at the start

of each timestep, however if the input of one subsystem depends on the output of another,

this subsystem must wait until the output is available. This may lead to two subsystems

instead of executing one after the other, or even enter into a dead lock, instead of running in

146

parallel defeating the purpose of assigning them to different cores. This can be prevented

by placing memory, delays or integrator blocks before the outputs of the subsystems, this

way, the results of the previous timestep will be available at the start of the current timestep

to the receiving subsystem, allowing both to run in parallel. Examples of this can be seen

in figures 5.2, 5.3, 5.4, taken from OPAL-RT (Wei, 2017).

FIGURE 5.2. Subsystems at deadlock

FIGURE 5.3. The subsystems executing in series

FIGURE 5.4. Subsystems executing in parallel

5.2.2. Using code compatible with code generation

All code used in the Simulink model will be compiled into a C-file via Matlab coder

and loaded on to the real time target. However there is a great number of Matlab commands

which are not compatible with code generation ad thus should not be used in any part of the

model or in scripts that the model will run at any given time. Another concern is variable

size and the corresponding memory allocation. When compiling code to be deployed in

embedded systems the compiler must know or be able to predict the size of all variables

147

in the program, signals with variable size must be avoided or at least, their maximum

size must be specified so that the memory allocation can occur. In fact, unpredictability of

output size is one of the primary reasons commands are not supported for code generation.

This can be a concern if custom functions are used in the program as Matlab must be

able to their output size. Further reading about Matlab functions compatible with code

generation can be found in (Mathworks, 2020)

5.3. Changes to subsystems

Taking into consideration the guidelines presented above, we will proceed to make

changes to the model’s subsystems to allow for it to be compiled and loaded into the

target.

The main changes to SM computations were that the HUT is now replaced by the

I/O module. This module handles the analog output that controls the voltage amplifier, as

well as the analog inputs coming from the sensors. To do this, it uses specialised blocks

provided by OPAL-RT which configure the FPGA that handles the I/O. Three other signals

are sent to the analog outputs: the sensed voltage of the HUT, the current of the simulation,

and the current of the HUT. These 4 analog signals are sent to BNC outputs so they can

be easily viewed with an oscilloscope.

148

5

[Ueut]

[Ueut]

[Ieut]

N

period

bit

N

P

[PRBS]

[PRBS]

+

ZL

s-
+ s -

+

+

ZAB

[VB]

v+
- [Vdim]

[Vdim]

+

Z_extra

+

Z_extra1

[Ieut]

[Vdim]

[VB]

[Ieut]

i+ -

[I_sim]

[I_sim]

params

+
-

1
I	and	V

	Computation	time

			Real	step	size

								Idle	time

						Nb	overruns

Rst	overruns

1
Z	params

OpComm
Ts	=	ts_e

2
frame

3
Monitoring

[I_sim]

OP5142EX1	Ctrl
Board	index:	0
Mode:Master

Error

IDs

[VB]

[Ieut]

[Ieut]

[VB]

V_EUT

V_sens

I_sim

I_eut

VB

I_EUT

I/O

OpWriteFile
acq.	group	26

OpWriteFile
acq.	group	27

FIGURE 5.5. Block handling I/O

149

0

1
V_EUT

1
VB

2
I_EUT

15.33

61.16

Slot	1	Module	B	Subsection	1
Volts
Status

'OP5142EX1	Ctrl'

Slot	1	Module	A	Subsection	1Volts

'OP5142EX1	Ctrl'

2
V_sens

3
I_sim

4
I_eut

-K-

-K-

1/10

1/10

FIGURE 5.6. Detail of I/O block

To allow for better balance of the computational load and to take more advantage

from the parallelisation, the sampler that forms the frame for the identification subsystem

is moved from SM computations to SS measurements subsystem as this system showed

less cpu utilisation during testing.

All subsystems were fitted with Opcomm block, to handle communication with other

subsystems. Monitoring block were added as well, to review the performance of the simu-

lation and check that all subsystems were completing their calculation in their designated

timesteps. Opwrite block were added to SM computation and SS measurements to store

the measurements into files for later processing. Finally, delays and memory block were

150

put at the outputs of the subsystems to avoid the execution problems laid out in section

5.2.1.1.

5.4. Physical components of PHIL platform

5.4.1. OPAL-RT target: OP5600

The real time simulation target is an OP5600 from OPAL-RT. These real time simula-

tion targets are specialised computers designed execute the code with precise timing and

handle the incoming and outgoing signals required to run a PHIL simulation.

FIGURE 5.7. Real time simulator internal architecture.

The device has two main parts: one dedicated to computation and one dedicated to

I/O. The simulator used during testing has two CPUs of six cores each, for a total of 12

available cores. Each core runs at a speed of 3Ghz giving the simulator ample power to

run code in real time. The I/O part correspond to up to 5 FPGAs which can be fitted into

the system. Our simulator had 1 analog I/O card and 1 digital I/O card. Providing in total:

16 analog outputs, 16 analog inputs and 32 digital I/O (OPAL-RT, 2020a) . The device

also has 5 PCIe expansions slots, enabling the addition of many available models. The

simulator used was installed with a CANBUS communication card and an Ethernet port

expansion card.

151

5.4.2. Voltage amplifier

The voltage amplifier is the physical component that forms the interface between the

HUT and the simulation. Because of this, it is crucial that the device is able to respond to

commands given by the simulation with a very short delay. It must also be able to provide

or sink all the power required by the HUT. The amplifier used in the PHIL platform is the

PA-3X7000-AC-DC-4Q-400V-54A-4G from puissance plus. The device is a 3-phase, 4-

quadrant linear voltage amplifier capable of delivering up to 7kW per phase. While sinking

power the rating is reduced as shown in figure . Given that the power used during the ex-

perimental tests will not surpass 4kVA, the amplifier is more that capable of supplying and

sinking all the necessary power. A chart provided by the manufacturer of the operational

limits of the device is shown in figure 5.8.

FIGURE 5.8. Operational limits of Amplifier

152

The device is also very fast with the manufacturer guaranteeing rise and fall times

of less than 7µs and with a voltage regulation bandwidth of 70kHz. With these charac-

teristics, we can foresee that the amplifier dynamics will have very little impact on the

performance of the PHIL platform, as the slower dynamics of the rest of the simulation

will dominate, given that the electrical simulation timestep is 100 µs. Figures 5.9 and 5.10

show the manufacturer’s provided data on bandwidth and step response. It is worth noting

that our device was not equipped to function as a current source so the current regula-

tion curve, in red, can be ignored. Further information about the device can be seen in its

datasheet (Puissance Plus, 2020).

FIGURE 5.9. Amplifier bandwidth

153

FIGURE 5.10. Amplifier step response

5.4.3. Delta electronica DC source

A high power DC source was an accessory part of the platform. The specific model

was the SM 1500-CP-30 from Delta electronika, this bi-directional power supply is capa-

ble of providing between 0-1500V DC and delivering or sinking up to 15kW of power.

The device can be controlled via its front panel as well as through telnet commands. The

device may also be controlled via an analog input, potentially turning it into an amplifier

however the device dynamic is far too slow for that. The main goal of this device is to

power the solar inverter during testing. Further information about the SM 1500-CP-30 can

be found in (Delta elektronika B.V., 2020)

FIGURE 5.11. Delta electronika DC source

154

5.4.4. HUTs

Two HUTs were used in testing of the PHIL platform. The first HUT was an RL

filter made out of a large resistance cage and in series with an inductor. Both components

provided a large range of possible values with the inductor having 8 terminals allowing for

7 different inductance values, ranging from 2 to 18mH . In testing, the value of 9mH was

used. The resistance cage also allowed for several different connections, however given its

low overall resistance, all possible connections were put in series, adding up to 8.8 Ω.

The second HUT used was a residential solar inverter from Chinese manufacturer

Huawei (SUN2000L-3KTL). The grid tied, single phase inverter had a rated AC power

output of 3kW and a maximum apparent power of 3.3 kVA. On the DC side, the device

could be connected to up to 4.5 kWp of solar panels split in two arrays and operating

between 160VDC and 480VDC. A connection to a specific type of battery was also avai-

lable. This inverter is of transformerless design, meaning there is no transformer isolating

the inverter from the grid, only an output filter. A systems level diagram of the inverter can

be seen in figure 5.12. However, the manufacturer does not provide information about the

filter topology. In fact, this will likely be the case for most HUTs tested in a PHIL platform

so it is imperative that our identification routine is able to identify the device’s impedance.

Further information about the device can be found in its datasheet (Huawei, 2016) and in

annex A.1. The topology is of the device is very interesting as we can see that the output

filter is after the isolation relays. This quality will prove useful during testing.

155

FIGURE 5.12. Huawei inverter topology

5.5. Testing: Passive load

This test replicated the conditions described in section where we simulated the PHIL

platform with a an RL filter as load. In this instance, the HUT is now a real RL filter

made out of a large resistance cage and a high power inductance. While the inductor was

labeled 9 mH upon measuring with a universal bridge it measured 9.6mH . The resistance

measured 8.85 Ω. The voltage amplifier seen in section 5.4.2 is used to make the interface

between the real time simulator and the HUT. The voltage level set to was to 230V RMS

156

and a 5Ω impedance was placed as software impedance. The layout can be see figure 5.13.

The parameters selected for the simulation can be seen in table 5.1.

CORE 1
electrical simulation

and I/O

CORE 3
ID procedure and
parameter fitting

CORE 2
Measurements and

sampling

RT- LAB Monitoring

Amplifier
Estimated

parameters

V & I
measurnments

V & I
Frame

Power and
RMS values

OPAL - RT

Host PC

FIGURE 5.13. Experiment setup with passive load

TABLE 5.1. Experiment parameters: passive load

Parameter Value

N 2000

P 5

Window size (γ) 250

SM computations timestep 100µs

SS RMS timestep 200µs

SS ID timestep 2s

Software impedance (Zs) 5Ω

Results were satisfactory, as expected, given that the load was passive and the results

from the spectral analysis should be reliable. Given that the topology of the HUT is known,

we can simulate the naturally coupled circuit and obtain a reference as we did with the

157

simulation results. We observe that during the start of the simulation fit is poor, however

once ZHUT is identified, the simulation becomes highly accurate.

Results for the voltage can be seen figures 5.14, 5.15 and 5.16. The results obtained are

consistent with the simulation with the voltage of both hardware and simulation reaming

close to the reference. The relative error ranges for the simulation voltage is on average

2 % while the hardware voltage has a deviation of 1 % with respect to the reference. The

results for the current are similar and can be seen in figures 5.17 and 5.18 5.19 with the

relative error of both the simulation and hardware of 2 %. Finally, active and reactive

power show the same dynamic as the voltage and current. Figures 5.20, 5.21 and 5.22

shows that simulation power is dead on the reference while the hardware is only 1 % off.

The results are similarly good for reactive power as seen in figures 5.23, 5.24 and 5.25 ,

where simulation reactive power is almost at the reference and while the hardware presents

a maximum error of 2 %.

FIGURE 5.14. Experiment with passive load: RMS Voltage.

158

FIGURE 5.15. Experiment with passive load: % of error for RMS voltage.

FIGURE 5.16. Experiment with passive load: % of error for RMS voltage. Zoom

159

FIGURE 5.17. Experiment with passive load: RMS current.

FIGURE 5.18. Experiment with passive load: % of error for RMS current.

160

FIGURE 5.19. Experiment with passive load: % of error for RMS current. Zoom

FIGURE 5.20. Experiment with passive load: Active power.

161

FIGURE 5.21. Experiment with passive load: Active power. % of error for active power.

FIGURE 5.22. Experiment with passive load: % of error for active power. Zoom.

162

FIGURE 5.23. Experiment with passive load: Reactive power.

FIGURE 5.24. Experiment with passive load: % of error for reactive power.

163

FIGURE 5.25. Experiment with passive load: % of error for reactive power. Zoom.

5.6. Testing: Solar inverter

Following the test with a passive load, we proceed to test the platform with a solar

inverter as HUT powered by a DC source. The inverter used is the Huawei SUN2000L-

3KTL described in section 5.4.4 while the DC source is the SM 1500-CP-30 from Delta

Electronika shown in section 5.4.3. True to our goal of creating a system that can adapt

to any HUT, no changes were made to the code of the systems from the previous test.

Parameters such as timestep and number of samples were also maintained. Figure 5.26

shows the setup for this experiment. The only change is on the impedance on the software

side as it was given values more representative of network connection. Table 5.2 shows

the parameters used for this test.

Results from this test are initially disappointing showing the same problems the si-

mulation testing revealed: the spectral analysis provides biased models for the filter im-

pedance due to the effect of feedback from the inverter control. This can be seen in the

164

figures 5.29 and 5.30 which show how the active and reactive power behaved during the

test. While no reference is available for this test as we naturally coupled system cannot be

simulated, because of the lack of a detailed model of the inverter, we can be sure that the

results of the test are inaccurate as the variables of the software and hardware sides do not

converge.

CORE 1
electrical simulation

and I/O

CORE 3
ID procedure and
parameter fitting

CORE 2
Measurements and

sampling

RT- LAB Monitoring

Amplifier
Estimated

parameters

V & I
measurnments

V & I
Frame

Power and
RMS values

OPAL - RT

Host PC

DC source

400V DC

+-

FIGURE 5.26. Experiment setup with solar inverter

TABLE 5.2. Experiment parameters: inverter load

Parameter Value

N 2000

P 5

Window size (γ) 250

SM computations timestep 100µs

SS RMS timestep 200µs

SS ID timestep 2s

Software impedance (Zs) 0,059Ω + 10µH

165

FIGURE 5.27. RMS voltage during test

FIGURE 5.28. RMS current during test

166

FIGURE 5.29. Active power during test

FIGURE 5.30. Reactive power during test

167

However, closer inspections of the results reveals a possible solution. The before star-

ting to supply power the inverter goes through a connection process taking approximately

80 seconds. During this process the inverter checks, the voltage levels in the connection

point, checks the grounding of the connection and connects to the internet. During this

process the connection relays of the device are open. Going back to the inverter topology

in figure 5.12, we see that the filter of the device is past the connection relays meaning

that in fact, it is always connected to the network. Now, looking at the curves for active

and reactive power we notice that the software and hardware variables are matched during

the connection process and only after the inverter start injecting power into the simulated

grid, the simulation becomes inaccurate. In fact the simulations becomes inaccurate six

seconds after the device start supplying energy, before that software and hardware varia-

bles are nearly identical. This happens because six seconds after the device start feeding

the grid, the parameters for ZDIM are updated with the first re identification performed

while the control of the inverter had an impact on the filter. We can confirm this by loo-

king at the current waveform before and after this change, as seen in figures 5.33, 5.34

and 5.35. We notice that after ZDIM is updated with estimates obtained while the device

was on, the current shows significant phase error. This gives us an idea: identify the filter

before the inverter start providing power and then keep that estimate for the remainder of

the simulation.

168

FIGURE 5.31. Active power during test. Zoom

FIGURE 5.32. Reactive power during test. Zoom

169

FIGURE 5.33. Current waveform before first ZDIM update while feedback is on

FIGURE 5.34. Current waveform after first ZDIM update while feedback is on

170

FIGURE 5.35. Current waveform during first ZDIM update while feedback is on

A second test is performed using the same system as before, with one modification:

after 30 seconds the module that implements ZDIM will stop updating its parameters. To

rule out any other difference between the two simulations, the rest of the identification pro-

cess was kept running and its results discarded. This ensures that any improvements are

only due to the change in ZDIM and not due to not having to run the complex identifica-

tion routine or having the PRBS disturbing the voltage of the connection point. The results

of the test, shown in figures 5.38 and 5.39, confirm the changes were useful as hardware

and software variables are matched. Further more, the phase error present in the current is

gone, as seen in figure 5.42. This in turn proves our hypothesis that the cause of the inac-

curacies was the feedback due to the inverter control messing the spectral analysis. Figures

5.40 and 5.41 show that hardware and software active and reactive power within 20W and

20 VAr respectively and remain accurate even during fast transients. The dynamics during

transients is very important as it is indicative that even the behaviour of ZHUT at higher

171

frequencies was captured during the identification process. The results seem to indicate

that the identification process has been successful, and that the results can be trusted. This

validates the approach stated in section 4.7. Furthermore, this achieved our initial goal, to

have a PHIL platform capable of delivering accurate results without prior knowledge of

the HUTs topology or control laws.

FIGURE 5.36. RMS voltage during second test

172

FIGURE 5.37. RMS current during second test

FIGURE 5.38. Active power during second test

173

FIGURE 5.39. Reactive power during second test.

FIGURE 5.40. Active power during second test. Zoom

174

FIGURE 5.41. Reactive power second during test. Zoom

FIGURE 5.42. Current waveform with almost no phase error

175

5.7. Chapter conclusion

In this Chapter we presented the hardware implementation of our PHIL platform des-

cribing each of the components used, covering their capabilities and limitations. We also

explained how the software model presented in Chapter 4 was modified to run in real ti-

me, as well as the considerations and rules one must take into account when programming

something for real time simulation.

Finally we put our PHIL platform to the test, to validate our predictions from the pre-

vious Chapter. We see that results match our expectations, and that the platform performs

well for the passive HUT case while failing to provide good results for the active HUT due

to the interference’s of the feedback in the identification process.

We also show that the solution proposed in section 4.7, of identifying the device’s

output impedance while the feedback is not present and then use that model for the rest

of the simulation proved useful, allows for a stable and accurate simulation. However,

this approach sacrifices the capability to re-identify the impedance during the simulation.

This could impact accuracy in longer simulations were the electrical parameters of the

output impedance vary due to heating or some other reason. It is also not a valid approach

if the ZHUT is expected to vary significantly during the simulation due to changes in its

topology.

176

6. CONCLUSIONS

In chapter 2, we performed a thorough analysis of the different interface algorithms,

showing that the DIM has the best performance in terms of stability and accuracy, if the

damping impedance matches that of the HUT. In fact, when ZHUT = ZDIM , it became

impossible for the system to become unstable. We also saw, how even relatively large

mismatches between these two impedances, of up to 400 %, still managed to produce

a stable simulation, in cases where the ITM proved unstable. The IA also managed to

produce accurate results, provided the impedance matching was good. While even large

impedance mismatches showed good accuracy at lower frequencies, to achieve accurate

results throughout the frequency spectrum, good impedance matching was required. The

ITM and ITM with low pass filter remain an option though, as their easy implementation

can potentially save valuable time and resources. However they should only be considered

if the conditions of the experiment allow for their use. Thus, the DIM remains the only

interface algorithm capable of delivering successful PHIL simulations regardless of the

impedances ratio between the HUT and the ROS. Because of this reliability, the DIM was

the algorithm selected for the implementation of the PHIL platform.

Chapter 3 delves deep into the strategy selected to identify the impedance of the HUT.

Encouraged by the good results showed in Liegmann et al. (2016) and Riccobono et al.

(2017), we chose a strategy based on spectral analysis rather than simply rely on measuring

magnitude and phase at a particular frequency. Testing of the identification routine showed

good results, as it was capable of correctly identifying the spectrum of the tested systems

across a wide range of frequencies and fit a parametric model of the appropriate order to

them. Testing was done with different topologies and results were good either way.

Chapter 4 provides perhaps the biggest contribution of the thesis as we simulate the

entire PHIL platform. We find that the methodology used, provided good results in cases

with passive HUTs but failed when the HUT had an inner feedback loop that affects the

variables used for the identification. In this cases, spectral analysis will instead provide

177

an estimate of the entire dynamics of the device, not just its output impedance, which is

what is needed to ensure stability and accuracy, as shown in chapter 2. As we are unable

to separate the dynamics of the output impedance from those of the rest of the system, our

estimates for ZHUT are flawed, leading to poor accuracy. It is worth noting that despite a

poorly estimated ZHUT , the simulations remained stable. This is to be expected as results

in chapter 2 indicated that the DIM IA was very resilient to errors in the choice of ZDIM

in terms of stability. We then proceed to evaluate different approaches that can indeed be

successful in identifying ZHUT however we concluded that none of them were easy to

apply. In the general case, only the indirect approach is applicable to identify the system,

however this requires prior knowledge of the feedback loop of the device, in order to

separate the two dynamics.

The results obtained through simulation are verified experimentally in chapter 5. For

the case of an active HUT, we used a commercial residential inverter, whose control logic

or output impedance were unknown to us. While our technique failed at first due to the

reasons outlined in chapter 4, we were able to perform still able to perform a successful

PHIL simulation with the device. Knowing it was the feedback loop of the inverter’s con-

trol systems what caused the identification to fail, we took advantage of a period that the

inverter uses to test for grid conditions before connection, to identify its output impedance

without the influence of the control system. Once identified, re-identification was stopped

and the simulation proceeded as normal. This allowed for a PHIL simulation with the same

degree of accuracy as in the passive load case.

Given the results, we can say that only hypothesisH1 can be confirmed, as it is indeed

true that the DIM will provide the best performance possible of all the interface algorithms

currently described in the literature. However, this is only guaranteed if the damping im-

pedance matches the impedance of the HUT.

For hypothesis H2, results indicate that it is only partially true. The approach used

will be successful only when the HUT does not have an internal feedback loop that can

178

interfere with the identification. In this cases the identification will provide accurate results

and lead to a successful PHIL experiment. When internal feedback loop are present in the

HUT, the results of the identification will provide an estimate for the entire system, not

just the output impedance. This will compromise the simulations accuracy and potentially,

even its stability.

With these findings in mind and given the challenges of continuously re-identifying

the output impedance of an HUT with inner feedback loops, considerations should be

made about whether this is really necessary during a PHIL simulation, or if identification

at the beginning of the simulation is sufficient to ensure stability and accuracy. As such

we leave as future work the identifications of the different scenarios where this would be

possible and the ones where re-identification is crucial. We also leave as future work the

identification of the methods that would allow, given knowledge of the feedback dynamics,

provide us with an estimate of the HUT’s impedance, when using the indirect method of

identification.

Finally, we also leave as future work the testing of the platform with a broader range

of devices, such as electric motors, rectifiers, statcoms or other types of active HUTs, to

determine the cases where continuous re-identification is really necessary.

179

BIBLIOGRAFY

Ainsworth, N., Hariri, A., Prabakar, K., Pratt, A., y Baggu, M. (2016). Modeling

and compensation design for a power hardware-in-the-loop simulation of an AC dis-

tribution system. En Naps 2016 - 48th north american power symposium, procee-

dings. doi: 10.1109/NAPS.2016.7747941

Bañuelos, E., Gutiérrez, J. A., y Gustavsen, B. (2017a). Fitting methods. En Ra-

tional fitting techniques for the modelling of electric power components and systems

using matlab emviroment (pp. 7–17). Intech. doi: 10.5772/intechopen.71358

Bañuelos, E., Gutiérrez, J. A., y Gustavsen, B. (2017b). Matlab algorithms and ap-

plications. En Rational fitting techniques for the modelling of electric power com-

ponents and systems using matlab emviroment (pp. 17–44). Intech. doi: 10.5772/

intechopen.71358

Benigni, A., Helmedag, A., Abdalrahman, A. M. E., Piłatowicz, G., y Monti, A.

(2011). FlePS: A power interface for Power Hardware In the Loop. En Proceedings

of the 2011 14th european conference on power electronics and applications (pp. 1–

10).

Berlekamp, E. R. (1968). Algebraic coding theory. New York: McGraw-Hill.

Blackman, R. B., y Tukey, J. W. (1958). The Measurement of Power Spectra from

the Point of View of Communications Engineering â Part I. Bell System Technical

Journal. doi: 10.1002/j.1538-7305.1958.tb03874.x

Brandl, R. (2017). Operational range of several interface algorithms for different

power hardware-in-the-loop setups. doi: 10.3390/en10121946

180

Brillinger, D. R. (1981). The estimation of power spectra. En Time series: Data

analysis and theory (Second ed., pp. 116–185). San Francisco: Holden Day.

Delta elektronika B.V. (2020). SM15K - series (Inf. Téc.). Zierikzee: Delta elec-

tronika. Descargado de https://www.delta-elektronika.nl/upload/

PRODUCT{ }MANUAL{ }SM15K{ }P0110{ }V201908.pdf

Fowler, K. (2015). V-Model. En Developing and managing embedded systems and

products (cap. 1).

Grogan, P. T., De Weck, O. L., Ross, A. M., y Rhodes, D. H. (2015). Interactive

models as a system design tool: Applications to system project management. En

Procedia computer science. doi: 10.1016/j.procs.2015.03.015

Hatakeyama, T., Riccobono, A., y Monti, A. (2016). Stability and accuracy analysis

of power hardware in the loop system with different interface algorithms. En 2016

ieee 17th workshop on control and modeling for power electronics, compel 2016.

doi: 10.1109/COMPEL.2016.7556671

Huawei. (2016). SUN2000L-2/3/3.68/4/4.6/5KTL (Inf. Téc.). Shenzhen, Chi-

na. Descargado de https://www.solaryours.com/wp-content/

uploads/2018/11/SUN2000L.pdf

IEC. (2010). Communication networks and systems for power utility automation -

Part 7-4: Basic communication structure - Compatible logical node classes and data

object classes.

IEEE Standard Association. (2011). IEEE Guide for Smart Grid Interoperability

of Energy Technology and Information Technology Operation with the Electric Po-

wer System (EPS), End-Use Applications, and Loads. doi: 10.1109/IEEESTD.2011

.6018239

181

https://www.delta-elektronika.nl/upload/PRODUCT{_}MANUAL{_}SM15K{_}P0110{_}V201908.pdf
https://www.delta-elektronika.nl/upload/PRODUCT{_}MANUAL{_}SM15K{_}P0110{_}V201908.pdf
https://www.solaryours.com/wp-content/uploads/2018/11/SUN2000L.pdf
https://www.solaryours.com/wp-content/uploads/2018/11/SUN2000L.pdf

IEEE Standard Association. (2018). IEEE Std. 1547-2018. Standard for Intercon-

nection and Interoperability of Distributed Energy Resources with Associated Elec-

tric Power Systems Interfaces. doi: 10.1109/IEEESTD.2018.8332112

IEEE Standard Association. (2020, may). IEEE Standard Conformance Test Pro-

cedures for Equipment Interconnecting Distributed Energy Resources with Elec-

tric Power Systems and Associated Interfaces. IEEE Std 1547.1-2020, 1–282. doi:

10.1109/IEEESTD.2020.9097534

Iwado, N., Ohori, A., Hattori, N., y Funaki, T. (2015, oct). Stabilization techniques

of power hardware-in-the-loop simulation with time delay compensation. En 2015

ieee international telecommunications energy conference (intelec) (pp. 1–5). doi:

10.1109/INTLEC.2015.7572293

Jiang, S., Li, G., Xin, Y., Wang, L., y Wang, W. (2019). Interface algorithm de-

velopment for PHIL simulations of MMC-HVDC devices via real-time impedance

matching. The Journal of Engineering. doi: 10.1049/joe.2018.8691

Karapanos, V., De Haan, S., y Zwetsloot, K. (2011). Real time simulation of a

power system with VSG hardware in the loop. En Iecon proceedings (industrial

electronics conference). doi: 10.1109/IECON.2011.6119919

Langston, J., Schoder, K., Steurer, M., Faruque, O., Hauer, J., Bogdan, F., . . .

Katiraei, F. (2012). Power hardware-in-the-loop testing of a 500 kW photovol-

taic array inverter. En Iecon proceedings (industrial electronics conference). doi:

10.1109/IECON.2012.6389595

Lehfuss, F., Lauss, G., Kotsampopoulos, P., Hatziargyriou, N., Crolla, P., y Roscoe,

A. (2012). Comparison of multiple power amplification types for power Hardware-

in-the-Loop applications. En 2012 ieee workshop on complexity in engineering,

compeng 2012 - proceedings. doi: 10.1109/CompEng.2012.6242959

182

Lehfuß, F., Lauss, G., y Strasser, T. (2012). Implementation of a multi-rating inter-

face for Power-Hardware-in-the-Loop simulations. En Iecon proceedings (industrial

electronics conference). doi: 10.1109/IECON.2012.6389004

Lemaire, M., Sicard, P., y Belanger, J. (2015). Prototyping and Testing Po-

wer Electronics Systems Using Controller Hardware-In-the-Loop (HIL) and Power

Hardware-In-the-Loop (PHIL) Simulations. En 2015 ieee vehicle power and pro-

pulsion conference, vppc 2015 - proceedings. doi: 10.1109/VPPC.2015.7353000

Levenberg, K. (1944). A method for the solution of certain non-linear problems in

least squares. Quarterly of Applied Mathematics. doi: 10.1090/qam/10666

Liegmann, E., Riccobono, A., y Monti, A. (2016). Wideband identification of impe-

dance to improve accuracy and stability of power-hardware-in-the-loop simulations.

En 2016 ieee international workshop on applied measurements for power systems,

amps 2016 - proceedings. doi: 10.1109/AMPS.2016.7602873

Liu, Y., Steurer, M., y Ribeiro, P. (2005). A novel approach to power quality as-

sessment: Real time hardware-in-the-loop test bed. IEEE Transactions on Power

Delivery. doi: 10.1109/TPWRD.2005.844251

Ljung, L. (1999). Nonparametric time - and - frequency-domain methods. En Sys-

tem identification: Theory for the user (pp. 168–197). Upper saddle river, New Jer-

sey: Prentice Hall.

Marks, N. D., Kong, W. Y., y Birt, D. S. (2018a). Interface Compensation for Power

Hardware-in-the-Loop. En Ieee international symposium on industrial electronics.

doi: 10.1109/ISIE.2018.8433620

183

Marks, N. D., Kong, W. Y., y Birt, D. S. (2018b). Stability of a switched mode

power amplifier interface for power hardware-in-the-loop. IEEE Transactions on

Industrial Electronics. doi: 10.1109/TIE.2018.2814011

Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear

Parameters. Journal of the Society for Industrial and Applied Mathematics. doi:

10.1137/0111030

Mathworks. (2020). Functions and Objects Supported for C/C++ Code Gene-

ration. Descargado 2020-04-29, de https://la.mathworks.com/help/

coder/ug/functions-and-objects-supported-for-cc-code

-generation.html

Nassif, A. B. (2018). An Analytical Assessment of Feeder Overcurrent Protection

with Large Penetration of Distributed Energy Resources. IEEE Transactions on In-

dustry Applications. doi: 10.1109/TIA.2018.2810260

Newton, A. R., y Sangiovanni-Vincentelli, A. L. (1984). Relaxation-Based Elec-

trical Simulation. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems. doi: 10.1109/TCAD.1984.1270089

OPAL-RT. (2020a). OP5600V2 System description. Descargado 2020-04-29, de

https://wiki.opal-rt.com/display/HDGD/OP5600V2

OPAL-RT. (2020b). OPAL-RT resource center. Descargado de https://www

.opal-rt.com/resource-center/

Paran, S. (2013). Utilization of Impedance Matching to Improve Damping Impe-

dance Method- Based Phil Interface. Florida State University Libraries.

184

https://la.mathworks.com/help/coder/ug/functions-and-objects-supported-for-cc-code-generation.html
https://la.mathworks.com/help/coder/ug/functions-and-objects-supported-for-cc-code-generation.html
https://la.mathworks.com/help/coder/ug/functions-and-objects-supported-for-cc-code-generation.html
https://wiki.opal-rt.com/display/HDGD/OP5600V2
https://www.opal-rt.com/resource-center/
https://www.opal-rt.com/resource-center/

Paran, S., y Edrington, C. S. (2013). Improved power hardware in the loop interface

methods via impedance matching. En 2013 ieee electric ship technologies sympo-

sium, ests 2013. doi: 10.1109/ESTS.2013.6523758

Paran, S., Fleming, F., Li, D., y Edrington, C. S. (2014). Utilization of adaptive

PHIL interfaces for harmonic load cases. En Iecon proceedings (industrial electro-

nics conference). doi: 10.1109/IECON.2014.7049066

Parise, G. (2013). A new summary on the IEC protection against electric shock.

IEEE Transactions on Industry Applications. doi: 10.1109/TIA.2013.2244547

Peng, X., y Wild, J. (2017). Innovative Microgrid Solution for Renewable Energy

Integration within the REIDS Initiative. En Energy procedia. doi: 10.1016/j.egypro

.2017.12.733

Petersen, K., Wohlin, C., y Baca, D. (2009). The waterfall model in large-scale

development. En Lecture notes in business information processing. doi: 10.1007/

978-3-642-02152-7 29

Puissance Plus. (2020). 4Q Power Amplifiers AC - DC - Three - Pha-

se - 3x7000VA (Inf. Téc.). Mountauban: Puissance Plus. Descargado

de https://www.puissanceplus.com/assets/produitspdf/

Amplifier4QACDCThreephases3x7kVAlimitedabsorptionV7.pdf

Radatz, P., Kagan, N., Rocha, C., Smith, J., y Dugan, R. C. (2016). Assessing ma-

ximum DG penetration levels in a real distribution feeder by using OpenDSS. En

Proceedings of international conference on harmonics and quality of power, ichqp.

doi: 10.1109/ICHQP.2016.7783416

Ren, W. (2007). Accuracy Evalaution of Power Hardware-in-the- Loop (PHIL) Si-

mulation. Florida State University Libraries.

185

https://www.puissanceplus.com/assets/produitspdf/Amplifier4QACDCThreephases3x7kVAlimitedabsorptionV7.pdf
https://www.puissanceplus.com/assets/produitspdf/Amplifier4QACDCThreephases3x7kVAlimitedabsorptionV7.pdf

Ren, W., Steurer, M., y Woodruff, S. (2007). Applying controller and power

hardware-in-the-loop simulation in designing and prototyping apparatuses for fu-

ture all electric ship. En Ieee electric ship technologies symposium, ests 2007. doi:

10.1109/ESTS.2007.372124

Riccobono, A., Liegmann, E., Pau, M., Ponci, F., y Monti, A. (2017). Online Pa-

rametric Identification of Power Impedances to Improve Stability and Accuracy of

Power Hardware-in-the-Loop Simulations. IEEE Transactions on Instrumentation

and Measurement. doi: 10.1109/TIM.2017.2706458

Seo, H. R., Park, M., Yu, I. K., y Song, B. M. (2011). Performance analysis and

evaluation of a multifunctional grid-connected PV system using power hardware-in-

the-loop simulation. En Conference proceedings - ieee applied power electronics

conference and exposition - apec. doi: 10.1109/APEC.2011.5744862

Siegers, J., y Santi, E. (2014). Improved power hardware-in-the-loop interface al-

gorithm using wideband system identification. En Conference proceedings - ieee

applied power electronics conference and exposition - apec. doi: 10.1109/APEC

.2014.6803459

Steurer, M., Bogdan, F., Ren, W., Sloderbeck, M., y Woodruff, S. (2007). Controller

and power hardware-in-loop methods for accelerating renewable energy integration.

En 2007 ieee power engineering society general meeting, pes. doi: 10.1109/PES

.2007.386022

Stoica, P., y Moses, R. (2005). Spectral analysis of Signals. Upper saddle river,

New Jersey: Prentice Hall.

Torsten, S., y Stoica, P. (1989a). Identification of systems operating in a closed

loop. En Systems identification (pp. 381–416). Cambirdge, UK: Prentice Hall.

186

Torsten, S., y Stoica, P. (1989b). Input signals. En Systems identification (pp. 96–

137). Cambirdge, UK: Prentice Hall.

Torsten, S., y Stoica, P. (1989c). Nonparametric methods. En Systems identifica-

tion (First ed., pp. 32–58). Cambirdge, UK: Prentice Hall.

Wang, W., y De Leon, F. (2020). Quantitative Evaluation of der Smart Inverters

for the Mitigation of FIDVR in Distribution Systems. IEEE Transactions on Power

Delivery. doi: 10.1109/TPWRD.2019.2929547

Wei, L. (2017). Tutorial: RT-LAB for Real-Time Simulation Applications in Power

Electronics (Inf. Téc.). Montreal, Canada: OPAL-RT tecnologies.

Weisstein, E. W. (2020). Primitive polynomials. Descargado 2020-04-26, de

https://mathworld.wolfram.com/PrimitivePolynomial.html

Welch, P. D. (1967). The Use of Fast Fourier Transform for the Estimation of Po-

wer Spectra: A Method Based on Time Averaging Over Short, Modified Periodo-

grams. IEEE Transactions on Audio and Electroacoustics. doi: 10.1109/TAU.1967

.1161901

Wu, X., Lentijo, S., y Monti, A. (2004). A novel interface for Power-Hardware-In-

the-Loop simulation. En Proceedings of the ieee workshop on computers in power

electronics, compel. doi: 10.1109/CIPE.2004.1428147

Wu, X., y Monti, A. (2005). Methods for partitioning the system and performance

evaluation in power-hardware-in-the-loop simulations - Part I. En Iecon proceedings

(industrial electronics conference). doi: 10.1109/IECON.2005.1568912

Zhang, Z. (2016). Power Hardware in-the-loop test system. Graz: Bibliothek der

TU Graz.

187

https://mathworld.wolfram.com/PrimitivePolynomial.html

Zyuzev, A. M., Mudrov, M. V., y Nesterov, K. E. (2016, oct). PHIL-system for

electric drives application. En 2016 ix international conference on power drives

systems (icpds) (pp. 1–4). doi: 10.1109/ICPDS.2016.7756687

188

ANEXO

ANEXO A. DEVICE TECHNICAL INFORMATION

FIGURE A.1. Huawei inverter technical data

190

FIGURE A.2. Puissance Plus power specification

FIGURE A.3. Puissance Plus accuracy specification

191

FIGURE A.4. Puissance Plus time specification

FIGURE A.5. Puissance Plus physical specifications

192

FIGURE A.6. OP1400 amplifier technical data

193

