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MATÍAS NEGRETE PINCETIC

DANIEL OLIVARES QUERO
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The thinker tries to determine and to represent

the nature of the world through logic. He knows

that reason and its tool, logic, are

incomplete—the way an intelligent artist knows

full well that his brushes or chisels will never

able to express perfectly the radiant nature of an

angel or a saint. Still they both try, the thinker as

well as the artist, each in his way. They cannot

and may not do otherwise. Because when a man

tries to realize himself through the gifts with

which nature has endowed him, he does the best

and only meaningful thing he can do.

–HERMANN HESSE,

Narcissus and Goldmund
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ABSTRACT

The significant integration of volatile renewable energy sources in power systems has

raised concerns that motivate the use of greater operational details in expansion planning.

Economic and reliable investment plans in this new paradigm can be obtained through the

development of improved tools for electricity generation and transmission infrastructure

planning. In this regard, this work proposes a stochastic programming model for plan-

ning the expansion of hydrothermal power systems. The model considers representative

days with high temporal resolution and uncertainty in water inflows. This allows to cap-

ture inter-hourly phenomena such as load and renewable profile chronologies, ramping

constraints and energy storage management. In addition, multiple long-term scenarios in

the investment scale are included to obtain investment plans that yield reliable operations

under extreme conditions. The Progressive Hedging Algorithm is applied to decompose

the problem on a long-term scenario basis and to use computational resources efficiently.

Numerical experiments on the Chilean power system show that the use of representative

days outperforms the use of load blocks in both cost and reliability metrics. Results also

show that reservoir hydroelectric plants provide higher flexibility to the system, enabling

an economic and reliable integration of volatile and intermittent resources. Experiments

also illustrate the impacts of considering extreme long-term scenarios in the obtained in-

vestment plans.

Keywords: Hydrothermal power systems, power system expansion planning, progressive

hedging algorithm, stochastic programming, long-term uncertainty.
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RESUMEN

La significativa integración de fuentes renovablesvolátiles de energı́a en los sistemas

de potencia da pie a preocupaciones que motivan el uso de mayores detalles operacionales

en la planificación de expansión de capacidad. Planes de inversión más económicos y con-

fiables pueden ser obtenidos en este nuevo paradigma a través del desarrollo de mejores

herramientas de planificación para infraestructura de generación y transmisión eléctrica.

En este contexto, este trabajo presenta un modelo de programación estocástica para plan-

ificar la expansión de sistemas de potencia hidrotérmicos. El modelo considera incer-

tidumbre en los afluentes de agua y dı́as representativos con alta resolución temporal. Esto

permite capturar fenómenos inter-horarios, como cronologı́a de perfiles de demanda y re-

cursos renovables, restricciones de rampa y manejo de embalses. En adición, se incluyen

escenarios de largo plazo para obtener planes de inversión confiables bajo condiciones

extremas. El algoritmo Progressive Hedging es aplicado para descomponer el problema

de optimización en sus escenarios de largo plazo y usar los recursos computacionales de

manera eficiente. Experimentos numéricos sobre el sistema eléctrico de Chile muestran

que el uso de dı́as representativos supera al uso de bloques de demanda en métricas de

costo y confiabilidad. Los resultados también muestran que las plantas hidroeléctricas de

embalse proveen mayor flexibilidad al sistema, permitiendo una integración económica y

confiable de recursos volátiles. Los experimentos también ilustran el impacto de consid-

erar escenarios de largo plazo sobre los planes de inversión obtenidos.

Palabras Claves: Generación eléctrica hidrotérmica, planificación de sistemas de po-

tencia, algoritmo progressive hedging, programación estocástica, incertidumbre de largo

plazo.
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1. INTRODUCTION

1.1. Context

The impending threat of a climate change caused by anthropogenic greenhouse-gas

emissions has moved nations to adopt transformative actions. The Paris Agreement reached

in 2015 includes significant emissions reduction pledges related to the energy sector,

which require that unprecedented amounts of renewable energy sources be incorporated

into power grids. This raises several challenges, since according to the International En-

ergy Agency (2016), “structural changes to the design and operation of the power system

are needed to ensure adequate incentives for investment and to integrate high shares of

variable wind and solar power”.

The power system industry is characterized by high capital cost investments on in-

frastructure and long project lifetimes. Hence, generation and transmission construction

decisions have a strong impact on future operations. Plans for power system expansion

and transformation must be elaborated rigorously in order to make it flexible and robust

enough to assimilate variable and uncertain energy sources and be able to meet the pro-

jected load in a reliable manner.

Power system expansion planning models play a key role in easing the transition to

low carbon grids and economies. The use of these models provides valuable insights

to decision makers regarding system behavior and evolution, and allows estimating the

impact of technologies, policies and external phenomena on the grid. Nevertheless, system

interactions are becoming increasingly more complex, so these models must be adapted to

a new paradigm by re-thinking some often used assumptions and simplifications.
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1.2. Power System Expansion Planning

Transmission Expansion Planning (TEP) and Generation Expansion Planning (GEP)

are tools that support investment decision making in the power system so that future elec-

tric demand may be satisfied in the most economic way with a desired level of reliability.

These tools have been formalized into models through mathematical programming for

more than half a century (Massé & Gibrat, 1957). GEP and TEP have traditionally been

addressed separately, as computational power and optimization methods have not been

able to cope with the size of coordinated problems up until recently. This work will refer

indistinctly to either generation and/or transmission Expansion Planning as EP, given that

problem structures are similar and decisions involved are analogous.

1.2.1. Expansion Planning Problem Definition

EP is formulated as an optimization problem whose objective is to minimize invest-

ment and operations costs over a certain time horizon. Size and timing of generation

and/or transmission projects construction are key decision variables. Generator dispatch

levels and power flow through transmission lines are variables that allow estimating the

cost of operating the infrastructure decided by the model. This problem structure is termed

a bi-level program, since the decisions taken at operations depend on the variable values of

the investment level. The problem structure can be observed in the diagram in Figure 1.1.

The optimization problem presented in Figure 1.1 can be represented by a bi-level

program written in the following compact manner for a multi-period horizon:
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minimize
GEP / TEP

Investment costs

Operational costsConstruction
Fixed O&M

Fuel consumption
Variable O&M

subject 
to

Resource limits

+

Budget limits

Policy requirements Generation output limits

Transmission line flow limits

Security constraints

Policy requirements

Optimal Power Flow or
Unit Commitment

subject 
to

Environmental requirements

Figure 1.1. Optimization problem structure for Expansion Planning.

min
x

∑
p∈P

[
c>p xp +Q(p, xp)

]
(1.1a)

s.t. D x ≥ e (1.1b)

where Q(p, xp) = min
yp

d>p yp (1.2a)

s.t. Wyp ≥ up − Txp (1.2b)

Zyp ≥ vp (1.2c)

The objective function presented in (1.1a) minimizes total costs, which are the sum-

mation of both investment and operational costs over all studied periods. Investment de-

cisions in each period represented by xp —size, location and type of generator units and

transmission lines– are constrained by the equations in (1.1b), which describe the high-

level problem. Such constraints include resource and budget bounds, as well as policy

and environmental requirements. The latter have been included in the planning process

only since recent decades, when the impacts of large electrical projects both on the natural
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and social environments have began to be understood and considered relevant to decision-

making.

Operational costs in each period are obtained through the low-level optimization pro-

gram, where investments are taken as fixed variables and operational decisions represented

by yp —unit dispatch levels, line flows, storage management— are taken to minimize the

cost of supplying load, summed in (1.2a). Constraints in (1.2b) link investment and opera-

tional variables together, by limiting dispatches and flows according to available capacity.

Constraints in (1.2c) assure that operations are carried out in an economic and reliable

manner. This may include constraining:

• Generation output levels

– According to an economic dispatch, where units are allowed to freely adjust

their output between timepoints.

– Through a Unit Commitment formulation, where minimum up and down

times, ramping limits and minimum generation levels must be obeyed.

• Transmission line flows

– By a transport model, where it is assumed that line flows may be controlled,

and voltage and angles are ignored. This is equivalent to any logistics

model.

– Using a Direct Current formulation, where angles can be taken into account.

– With an Alternate Current model, where all the electric phenomena are con-

sidered.

Some models consider only continuous variables and compile optimization problems

that are known as Linear Programs, which can be efficiently solved by commercial solvers.

Other works propose models with binary and/or integer variables and are known as Mixed-

Integer Linear Programs, which are harder to solve. These variables allow representing ei-

ther discrete unit commitment in operations or discrete unit size construction. Moreover,

some works present Non-Linear Programs to include generator heat rate curves, but have
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to overlook details in other features to avoid unreasonable computation times. Commer-

cial models and academic work take multiple assumptions and formulate different types

of optimization programs. Whereas the structure may be the same, or similar, as the one

exposed in (1.1a)–(1.2c), the specific variables, parameters and constraints may vary ac-

cording to the study that is being carried out, in order to focus on key aspects and be able

to model the studied system in a reasonable way.

Recent research on EP models has focused on:

• Capturing greater operational detail to better assess the costs of supplying

demand once the investments have been carried out and obtain more flexible in-

vestment plans. Conventional controlled generation mixes have been assumed

to be able to adjust their outputs to match smooth demand profiles without sig-

nificant costs, but increasing shares of energy sources that can vary their outputs

rapidly and uncontrollably are being incorporated in power grids.

• Considering uncertainty endogenously to obtain investment plans that hedge

against multiple scenarios on an optimal way. Decision makers have tradition-

ally run several deterministic case studies to get insights on each distinct scenario

and then elaborated plans based on expert opinions or heuristic methods1.

• Modeling new technologies to analyze their impact on system operations and

evolution. Novel products and services that participate in the grid, such as elec-

tric vehicles, demand response, distributed generators, batteries, and others, of-

fer distinct capabilities and may be added to conventional technologies.

• Applying decomposition techniques to reduce the computational time needed

to reach a certain optimality gap. Decomposition methods allow harnessing the

power of parallel and distributed computation, as well as reducing memory re-

quirements in several cases.

1The Merriam-Webster dictionary defines heuristic as an adjective that indicates “involving or serving as an
aid to learning, discovery, or problem-solving by experimental and especially trial-and-error methods”
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1.2.2. Centralized and Market Based Decision Making

Even though the problem definition presented in Section 1.2.1 is general and can ac-

commodate any specific EP model, there has traditionally been a distinction in literature

for different ways of representing decision making. Models were initially developed to aid

central planners in vertically integrated power grids. Their goal was to minimize the social

cost of expanding the grid and had the absolute attributions for executing any generation

and transmission projects as needed. In recent decades, there has been an introduction of

competition elements in several power grids around the globe, specially in the generation

segment. In consequence, decisions on project construction are no longer made by a single

agent, but by several firms that participate in markets.

Abundant academic literature has been published that aims to accommodate this new

decision making paradigm and propose various EP models that take into account market

considerations and competition, as the survey by Kagiannas et al. (2004) shows. Recent

work has been done on simultaneous coordination of the GEP and TEP problems in ther-

mal systems considering both single agent (Barati et al., 2015; Alizadeh & Jadid, 2011)

and competitive environments (Pozo et al., 2013; Motamedi et al., 2010), such as Cournot

competition. Consideration of both transmission and generation projects in the same plan-

ning process provides valuable insights to decision makers, even for a firm that participates

in a single segment.

Despite the introduction of market elements in power system expansion, tools that

render centralized expansion plans are still widely used by different parties:

Power System Companies: Centralized plans are a proxy for system expansion

under perfect competition, so they can be used to estimate lower bounds for the

returns of private investments.

Technology Developers: The value proposition of products and projects may be

quantified by evaluating against a perfect competition proxy.
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State and Regulatory Agencies: Even if decisions are not taken on a centralized

manner, expansion models allow understanding system dynamics and interac-

tions, as well as giving insights on the impact of economic and environmental

policies.

Given its current validity and valuable applications, this work considers a centralized

decision making approach, where expansion plans are formulated by minimizing social

cost over the studied horizon.

1.3. State of the Art

1.3.1. Representation of Operations

An assumption that has been widely applied in EP models is that system load varies

in a relatively slow manner, so that the only relevant operational costs and constraints are

those of producing energy. This allows representing load through discrete load blocks

instead of a chronological load profile. These blocks can be obtained by arranging the

hourly demand curve of a specific time horizon on a decreasing order in what is called a

load duration curve —typically one for each month—, and then discretized into a rela-

tively small set of load blocks (Seifi & Sepasian, 2011). A scheme of this procedure can

be observed in Fig. 1.2.

L
oa

d 
(M

W
)

Chronological
Load Profile

Load Duration
Curve

Load Blocks
Discretization

Figure 1.2. Load block discretization procedure.

The use of load blocks significantly reduces the size of the problem. A typical model

may use between 5 and 10 blocks per month to represent load, which is a couple of orders



8

of magnitude less than the 720 or 744 hours encompassed in that interval. This simplifi-

cation has been reasonably applied to conventional systems, where thermal and hydraulic

generators are able to follow the smooth load profiles without significant costs additional

to the production of energy.

Nevertheless, a larger share of renewable energy implies steep uncontrolled generation

ramps. In the presence of these energy sources, conventional generators may not be able

to provide enough flexibility in order to follow a no longer smooth net load curve. Alter-

natively, operational and maintenance costs could increase due to unit cycling, increased

number of startups, and frequency variations. The load block procedure cannot model

these inter-hour effects, such as ramping constraints or unit commitments. In addition, it

fails to capture the chronology of load and renewable resource profiles. Thus, an invest-

ment plan produced by a model that considers a discrete representation of load may yield

uneconomical or unreliable operations over its actual dispatch.

Several recent works have focused on better representing chronological operations’

phenomena in the planning process. A novel approach proposed by Wogrin et al. (2016)

consists on discretization of time-dependent parameters into system states rather than load

blocks. This allows considering the temporal relation between load and renewable re-

source profiles when discretizing time into states. In addition, constraints between system

states are formulated so that some chronology of the hours that they bundle is maintained.

In the referenced paper, the authors manage to represent storage management in EP.

Another novel approach is the use of representative intervals with hourly resolution.

These intervals may consist on days or weeks that are sampled from the studied horizon

using different techniques and their hourly resolution allows modeling detailed operational

constraints and concurrence of load and renewable resource profiles. Outputs of interest,

such as costs and supplied energy, have to be scaled by the number of days or weeks that

a certain selection represents. Nelson et al. (2012) applied this approach to study a large

scale system with high resolution. This has also been applied by Palmintier & Webster

(2016) to successfully incorporate a full Unit Commitment formulation into an EP model.



9

New technologies, such as demand response, have also been endogenously incorporated

in EP models through this technique (Jonghe et al., 2012). Moreover, recent work by van

Stiphout et al. (2017) has shown that considering highly detailed operational reserves can

have significant impacts on the optimal investment plan. Fig. 3.5 exhibits a schematic for

the sampling and modeling of representative intervals.

L
oa

d 
(M

W
)

Chronological
Load Profile

Sampling of
the Profile

Hourly
Operations

Figure 1.3. Representative interval selection procedure.

1.3.2. Representation of Uncertainty

One common simplification in early EP models was to take a deterministic approach,

where a single scenario is taken into account in the optimization problem. The decision

making process for an entity then involved running several individual case studies and

deciding between the possible investment plans through expert knowledge or heuristic

methods, such as minimizing the maximum regret or other rules (Velasquez et al., 2016).

Nonetheless, the increased increased volatility of energy resources’ availability and

cost has led to endogenously include uncertainty in EP. Thus, obtained investment plans

are optimal considering several scenarios. Stochastic programming has been widely adopted

to this extent2. When the probability distribution of an uncertain phenomenon can be

known or estimated through studies, then it is possible to discretize the distribution into

a finite number of scenarios. Each scenario is then assigned a probability and the opti-

mization minimizes total expected costs. This method has been applied in EP to account

2For outstanding educational material regarding Stochastic Programming and its application in several fields,
please refer to Birge & Louveaux (1997).
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for uncertain phenomena in the operational scale, such as daily wind profiles (Jin et al.,

2014) and monthly load profiles (Park & Baldick, 2015). Stochastic programming leads

not only to economic plans under uncertainty, but also to more reliable systems that can

accommodate volatility

The use of discrete scenarios to represent parameter uncertainty has also been extended

to the investment scale. A statistical extrapolation procedure to generate scenarios for load

growth and fuel prices is presented and tested in an EP model by Feng & Ryan (2013).

In contrast, Li et al. (2016) formulate discrete climate change effects scenarios according

to expert opinions for EP. Even though there are works that use complex mathematical

procedures to formulate discrete scenarios in the long term, there are doubts about whether

it is methodologically correct to make decisions based on speculations that ignore singular

events that may perturb long term trends or on opinions that may be slanted by imperfect

knowledge or personal biases.

Robust Optimization (RO) is another tool that has been used to obtain reliable ex-

pansion plans when the probability distribution underlying an uncertain phenomenon is

unknown. This approach considers that some parameters are uncertain and that their val-

ues will fall into distribution-free bounded intervals. The methodology then focuses on

obtaining an optimal solution for the worst-case scenario under a certain defined degree

of conservatism. Investment plans obtained this way are then hedged against the risk of

those parameters taking the worst-case values. This methodology has been applied both

to GEP (Dehghan et al., 2014) and to TEP (Dehghan et al., 2016).

Fig. 1.4 shows scenario tree diagrams that represent the three approaches described in

this section.

1.3.3. Hydrothermal Coordination

Water reservoirs can be used in hydrothermal systems to hedge against different un-

certainties and to provide flexibility in operations, since hydroelectric generators have fast
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Single Scenario
Optimizations

Stochastic 
Programming

worst case

Robust
Optimization

Investment 
Decisions

Operational 
Decisions

Time Periods Time Periods Time Periods

Figure 1.4. Schematic approaches to uncertainty in expansion planning.

ramp rates, no minimum up or down times, and no startup costs. Significant research

has focused on modeling hydrothermal operations and including uncertainty of inflows

themselves on the medium term —from weeks to months—, which is termed hydrother-

mal coordination. This problem has three characteristics which make it more difficult to

address than purely thermal operations:

(i) The use of stored water carries no immediate marginal cost that can be compared

to that of thermal generators (i.e. fuel cost to produce an additional unit of

energy) in order to determine optimal dispatches.

(ii) Operational decisions are tightly linked between time points, since reservoir wa-

ter levels depend on decisions taken in previous days and hours.

(iii) The primary source of energy is inherently uncertain.

Even if the use of water to generate an additional unit of energy implies no marginal

cost, it does have an opportunity cost. Water that is used in the present cannot be used in

the future to displace expensive fuel-based generation. On the other hand, it may happen

that the best time to use that water is actually the present. Fig. 1.5 shows how saving water

for future times reduces the cost of power generation then, but increases the present gen-

eration cost, and vice-versa. System operators that control reservoir hydro power plants

must solve this hydrothermal coordination problem to obtain optimal water values that
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minimize the total cost of generation over the studied horizon. This value is then consid-

ered as a marginal cost in short term —days to weeks— operations planning. In power

systems with wholesale markets, private owners of hydroelectric generator plants must

solve a similar problem, but with the objective of finding an optimal bidding price that

maximizes their return.

System Cost

Total Cost

Future Cost
Function

Current Cost
Function

Optimal Water Storage

Water Value

Storage Current Period

Figure 1.5. Current, future and total water cost functions.

Most hydrothermal Independent System Operators use the Stochastic Dual Dynamic

Programming (SDDP) methodology first presented by Pereira & Pinto (1991) to consider

large inflow scenario trees when coordinating operations. Derived formulations, such as

the one by Abgottspon & Andersson (2016), allow solving the problem of the private

company bidding in a wholesale market with the same methodology. SDDP offers the

advantage of being able to solve multi-stage and multi-reservoir problems in reasonable

computation times. Models based in this technique deliver operational policies that firms

and operators can follow and assigns value to the use of water in each period, allowing the

application of economic dispatches and unit commitments.

However, a recent review by Hemmati et al. (2013) finds that not enough attention has

been paid on how to incorporate these operational procedures in EP models. Reservoir
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management under various scenarios is a complex problem due to constraints that link the

system state —reservoir water levels— throughout a time horizon. The SDDP methodol-

ogy can successfully solve the hydrothermal coordination problem, but its optimal solution

depends on the topology of the grid. Therefore, it cannot be endogenously incorporated in

EP models to represent operations.

Some studies do use SDDP in EP through an iterative process (Campodónico et al.,

2003; Oliveira et al., 2007; Vinasco et al., 2014). This is presented in Fig. 1.6. The EP

problem is solved considering a simple representation of operations to obtain an invest-

ment plan. This is then passed on to a separate hydrothermal coordination model which

is solved for the fixed proposed expansion plan with a large inflow scenario tree to obtain

optimal water use strategies. Costs and decisions are contrasted with a convergence cri-

terion (e.g. total costs change less than a certain percentage on successive iterations). If

the criterion is not met, then the iterative process continues by exchanging investment and

operation policies between the models.

Expansion Planning

Operations Coordination
(SDDP)

Convergence Criteria
Check

Investment costs and decisions

Operational costs and decisions

Hydrothermal coordination

Unit construction plan

Figure 1.6. Iterative process diagram for EP with SDDP.

Despite being the conventional model for operations coordination, the SDDP method-

ology is not well suited to be incorporated into EP, because of the following reasons:

(i) A global optimum is not guaranteed to be reached and there is a lack of bounding

methods to quantify optimality gaps.
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(ii) Its use of load blocks impede the representation of relevant phenomena, as has

been discussed in Section 1.3.1.

(iii) Long setup and computation times of the iterative process may render it im-

practical for its use by a decision maker that aims to run several different case

studies.

Therefore, there has been an effort to include reservoir management and inflow sce-

nario trees in EP models without drawing on SDDP. The main difficulty of including

endogenous inflow scenario trees in EP models is that the system’s state is linked between

time points —through reservoir water levels—, so including additional hydrological sce-

narios makes the problem size grow exponentially. This has led most work to adopt deter-

ministic approaches and carry out optimizations for different individual hydro scenarios,

which casts doubts on the performance of expansion plans obtained even with elaborate

models, such as the one proposed by Khodaei et al. (2012). Moreover, EP models in

literature consider hydrological basins in an aggregated way, grouping many generators

together. This ignores the fact that cascaded water from upstream reservoirs can be used

in multiple downstream generators to produce power, as well as ignores the difference in

individual power plant water heads.

Embedded hydrological scenarios have been included in early research using SP to

consider multiple seasonal water availability states in small systems (Sanghvi & Shavel,

1986). More recent work has focused on larger systems and multiple independent inflow

scenarios that span throughout the many years of the operational horizon (Costa et al.,

1990; Kenfack et al., 2001). Greater detail in uncertainty has been captured by Gil et al.

(2015) via a scenario reduction methodology to obtain yearly inflow scenarios.

Nonetheless, all of these works use load blocks to represent operations, and thus ignore

the phenomena described in Section 1.3.1. These methodologies could lead to investment

plans that present problems or higher costs in their actual operations, given that a recent
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operational study carried on the hydrothermal grid of Chile for high penetration of renew-

ables concludes that “the operational flexibility supplied by reservoir hydro power plants

is indispensable to manage the intra-daily and hourly variability of net demand, reduc-

ing its impact on thermal plants”(CDEC-SING, 2016)3. Additionally, models in literature

avoid the exponential explosion of problem size by considering that no water storage is

allowed between years. This way, operations are independent on a yearly basis because

water levels are effectively reseted. This greatly simplifies the problem, but ignores the

capability that many systems have of storing water in large reservoirs on an interannual

basis to hedge against hydrological uncertainty.

1.4. Contributions

This work proposes an EP model that performs a centralized and simultaneous coor-

dination of generation and transmission investments in hydrothermal systems. It is spe-

cially suited for systems with high penetration of volatile energy sources, since it captures

chronology of operations on representative days with hourly resolution, which are chosen

with a clustering technique. This allows to consider the concurrence of load and renew-

able profiles, to constrain generator ramps, and to model hourly reservoir management.

Multiple investment periods and endogenous inflow uncertainty in the operational scale

are considered. In contrast to previous works, inter-annual water storage is allowed within

each multi-year period and operations consider an inflow scenario tree in each period,

which provides a more accurate representation of hydrothermal coordination. Addition-

ally, the water network is modeled in detail, so that spilled flows are cascaded and different

hydraulic efficiencies are considered.

Another innovative aspect of the model is the consideration of a nominal long-term

scenario, which is the most likely to happen, and several extreme long-term scenarios,

which may have severe impacts on the system, such as a significant inflow reduction.

Decisions in the investment scale must then hedge the risk of these events. This is achieved

3Independent System Operator.
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by assigning near-zero probabilities to the extreme long-term scenarios, so that they do not

affect the objective function of the model, but only further constrain its feasible region.

This avoids the need of quantifying the probability of high impact events that are hard

to predict. Total cost caps are implemented for each extreme long-term scenario, so the

decision maker using this tool can set limits on the total cost he is willing to incur in each

case.
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In summary, the main contributions of this work are as follows:

• A new EP model for generation and transmission EP in hydrothermal systems

is proposed, which uses representative days with hourly resolution and allows

inter-annual water storage. Uncertainty in inflows is considered in the opera-

tional scale and, simultaneously, extreme long-term scenarios are considered in

the investment scale.

• Numerical experiments are carried out and results highlight the need to consider

intra-hourly phenomena in systems with high renewable penetration. The rel-

evance of the intra-day flexibility that reservoir hydro power plants provide is

illustrated. Additionally, the flexibility that inter-annual water storage provides

is reported. Finally, it is also shown that small changes in the investment plan

can better prepare the system for extreme long-term scenarios.

Additionally, the model is a Linear Program, which can be efficiently tackled by com-

mercial solvers. The problem is solved through a scenario based decomposition technique

called Progressive Hedging Algorithm (PHA) to achieve lower computation times for large

scale systems. The algorithm is adapted so that scenarios with near-zero probabilities can

be included without affecting numerical performance.

The rest of this document is organized as follows. The mathematical formulation of the

proposed model is exhibited in Section 2. The scenario structure, components and solution

method of the optimization problem are described in detail. Numerical experiments are

reported in Section 3 for a dataset representing the Chilean power system. Conclusions

are drawn on Section 4 and future work is outlined in Section 5.
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2. MODEL FORMULATION AND SOLUTION METHOD

2.1. Scenario and Temporal Structure

This Section presents the scenario and decision structure over operational and invest-

ment timescales for the proposed EP model. Generation and transmission investment de-

cisions are taken in every period and installed capacity is accumulated. Uncertainty un-

folds throughout successive periods and is captured in long-term scenarios. Every period

consists of multiple years in which operational decisions, such as power dispatch, trans-

mission flows, water storage management, among others, are obtained for a number of

representative days with hourly resolution. Uncertainty in the short term is captured by

inflow scenarios. Fig. 2.1 shows the decision structure for one long-term scenario, where

inflow scenarios unfold as branches from each investment node.

Construction 
Decisions

Dispatch 
Decisions

1 2 n+1 n+2 2nn

Investment Period 1 Investment Period 2

built capacity

low
low

Operational Years

Figure 2.1. One long-term scenario structure with inflow scenario trees in
each investment period.

Using water to generate power in hydroelectric plants implies no immediate marginal

cost for the system, so a boundary condition must be set in order to prevent the excessive

depletion of reservoirs. Previous works on hydrothermal EP set initial reservoir volumes

on each year as parameters and constrain the model so water levels at the end of the year

reach at least that value (e.g. see the works by Khodaei et al. (2012); Sanghvi & Shavel

(1986); Costa et al. (1990); Kenfack et al. (2001); Gil et al. (2015)). In consequence,
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reservoir levels are reseted on a yearly basis and flows that come into the system can only

be stored and used within the same year.

Our model allows inter-annual storage in reservoirs by resetting water levels only after

a multi-year investment period. Water is then allowed to be stored between several years

and used in any of them. This better represents operations in hydrothermal systems, since

dispatch decisions in each year must account for all possible scenarios that could follow.

For example, in a year with high inflow availability a system operator would consider stor-

ing water for subsequent years to hedge against the risk of future low inflow availability. If

the next year actually presents high inflow availability, then spillage or overflow of reser-

voirs is possible. The operator must then make a decision for operations in the first year

that considers both possible futures. This is termed as non-anticipativity in SP, because

decisions makers cannot exactly anticipate what is going to happen.

The proposed model is first formulated for only one long-term scenario, such as the

one in Fig. 2.1. Section 2.2 outlines the notation and Section 2.3 presents and discusses

the mathematical formulation. The model is then extended to accommodate multiple long-

term scenarios in Section 2.4.

2.2. Notation Under One Long-Term Scenario

2.2.1. Sets and Indices

P Set of investment periods, indexed by p.

D Set of representative days, indexed by d.

H Set of hours, indexed by h.

Hd Set of hours in day d.

Hp Set of hours in period p.

S Set of inflow scenarios, indexed by s.

Γh,s Set of inflow scenarios that follow the same trajectory as inflow scenario s up

to hour h.
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B Set of buses, indexed by b.

G Set of all generators, indexed by g.

Gb Set of generators located in bus b.

GH Set of hydro generators.

L Set of transmission lines, indexed by `.

Lin
b Set of transmission lines directed into bus b.

Lout
b Set of transmission lines directed out of bus b.

N Set of nodes in the water network, indexed by n.

NR Set of water nodes that are reservoirs.

C Set of connections in the water network, indexed by c.

Cinn Set of connections directed into water node n.

Coutn Set of connections directed out of water node n.

2.2.2. Parameters Under One Long-Term Scenario

θh Scaling factor of hour h. It is the number of hours that are represented by

hour h in its year. It is numerically the same as the number of days that as

represented by the day this hour belongs to.

yp Length of period p [years].

πs Probability of inflow scenario s in any given year.

fp Factor to bring costs in period p to present value.

φGfix
g,p Annual fixed Operation & Maintenance (O&M) costs of generator g on period

p [US$/MW/year].

φGinv
g,p Annualized investment costs of generator g on period p [US$/MW/year].

φLfix
`,p Annual fixed O&M costs of transmission line ` on period p [US$/MW/year].

φLinv
`,p Annualized investment costs of transmission line ` on period p [US$/MW/year].

φOM
g Variable O&M costs of generator g [US$/MWh].

φfuel
g,p Fuel cost of generator g on period p [US$/MWh].

lb,h Demand load in bus b and hour h [MW].

ηL` Transmission efficiency factor of line `.
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cg,h Maximum generating capacity factor for generator g in hour h as fraction of

installed capacity.

bGg,p Existing built capacity of generator g that will be operational in period p [MW].

bL`,p Existing built capacity of transmission line ` that will be operational in period

p [MW].

BG
g Investment cap per period for generator g [MW].

BL
` Investment cap per period for line ` [MW].

CG
g Upper bound on installed capacity for generator g [MW].

CL
` Upper bound on installed capacity for line ` [MW].

rupg Upward ramping rate of generator g as fraction of installed capacity.

rdng Downward ramping rate of generator g as fraction of installed capacity.

wn,h,s Natural water inflow into node n at hour h and inflow scenario s [m3/h].

V i
n Initial stored water at each reservoir n ∈ NR [m3].

V n,h,s Lower water volume storage limit for node n at hour h and inflow scenario s

[m3].

V n,h,s Upper water volume storage limit for node n at hour h and inflow scenario s

[m3].

ηHg Hydraulic efficiency of generator g ∈ Gh [MW/(m3/h)].

2.2.3. Variables Under One Long-Term Scenario

BG
g,p Capacity construction decision of generator g at period p [MW].

BL
`,p Capacity construction decision of line ` at period p [MW].

CG
g,p Cumulative capacity of generator g on period p [MW].

CL
`,p Cumulative capacity of line ` on period p [MW].

Pg,h,s Dispatch level of generator g at hour h under inflow scenario s [MW].

F`,h,s Power flow through line ` at hour h under inflow scenario s [MW].

Db,h,s Power dumped in bus b at hour h under inflow scenario s [MW].

Wc,h,s Water flow through connection c at hour h under inflow scenario s [m3/h].

Vn,h,s Stored water volume in water node n at hour h under inflow scenario s [m3].
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2.3. Optimization Problem Under One Long-Term Scenario

Under each long-term scenario, the proposed optimization model is described by (2.1)–

(2.15).

2.3.0.1. Objective Function

min
∑
p∈P

fp

{[∑
g∈G

CG
g,p(φ

Gfix
g,p + φGinv

g,p )

+
∑
`∈L

CL
`,p(φ

Lfix
`,p + φLinv

`,p )

]
yp

+
∑
h∈Hp

∑
s∈S

θhπs

[∑
g∈G

Pg,h,s(φ
OM
g + φfuel

g,p )
]}

(2.1)

The objective is to minimize total investment and expected operational costs over all

inflow scenarios, which are calculated as in (2.1). Annualized investment and yearly fixed

O&M costs are considered for generation and transmission capacity, which are multiplied

by the number of years in each period. Variable O&M and fuel costs are calculated for

power generation in each representative hour and inflow scenario, and are scaled up to the

period and multiplied by its probability to calculate total expected costs. A factor is used

to bring costs to present value and the amounts are summed up for all periods.

2.3.0.2. Power system operational constraints

lb,h +
∑

`∈Loutb

F`,h,s +Db,h,s =
∑
g∈Gb

Pg,h,s +
∑
`∈Linb

ηL` F`,h,s ∀b ∈ B, h ∈ H, s ∈ S

(2.2)
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Db,h,s ≥ 0 ∀b ∈ B, h ∈ H, s ∈ S (2.3)

The power balance constraint is expressed in (2.2). Load at each bus and hour must be

satisfied by local generators and power imports from other buses for every inflow scenario.

Excess power is allowed to be dumped at no cost and no loss of load is permitted, which is

implied from (2.3). Transmission is represented by a transport model in which power flows

may be routed in any direction, though imports in each bus are penalized by a constant

efficiency factor. The extension to other transmission representations, such as DC power

flow, are straightforward and can be accommodated in the model.

0 ≤ F`,h,s ≤ CL
`,p ∀` ∈ L, h ∈ Hp, s ∈ S, p ∈ P (2.4)

0 ≤ Pg,h,s ≤ CG
g,p cg,h ∀g ∈ G, h ∈ Hp, s ∈ S, p ∈ P (2.5)

Eq. (2.4) constrains transmission flow according to capacity. Generation dispatch lev-

els are also limited by infrastructure, but by an hourly capacity factor as well, as shown in

(2.5). For variable generators, cg,h represents the fraction of the installed capacity that can

be dispatched according to the amount of renewable resource present in each hour. For

other generators this parameter represents the average available capacity.

Pg,h+1,s − Pg,h,s ≤ rupg CG
g,p ∀g ∈ G, h ∈ Hd, d ∈ D, s ∈ S (2.6a)

Pg,h,s − Pg,h+1,s ≤ rdng CG
g,p ∀g ∈ G, h ∈ Hd, d ∈ D, s ∈ S (2.6b)

The use of representative days with hourly resolution allows the implementation of

ramping constraints (2.6a) and (2.6b). Ramp rates are regarded as fractions of the current

installed capacity for each project. The hours of each day are considered in a circular

manner, implying that dispatch in the last hour ramps to the first of the same day.
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2.3.0.3. Power system construction constraints

CG
g,p = bGg,i +

p−1∑
i=1

BG
g,i ∀g ∈ G, p ∈ P − {1} (2.7)

CL
`,p = bL`,i +

p−1∑
i=1

BL
`,i ∀t ∈ L, p ∈ P − {1} (2.8)

Eqs. (2.7) and (2.8) show how cumulative installed capacity considers existing infras-

tructure plus new additions. Expansions that are decided on one period are considered to

finish construction just before the start of the next period. Existing capacity, represented

by bGg,i and bL`,i, is specified on a period basis to account for capacity that is decommissioned

after projects reach the end of their lifetimes.

0 ≤ BG
g,p ≤ BG

g ∀g ∈ G, p ∈ P (2.9a)

0 ≤ CG
g,p ≤ CG

g ∀g ∈ G, p ∈ P (2.9b)

0 ≤ BL
`,p ≤ BL

` ∀` ∈ L, p ∈ P (2.10a)

0 ≤ CL
`,p ≤ CL

` ∀` ∈ L, p ∈ P (2.10b)

Investment in each period is limited in (2.9a) and (2.10a) to reflect labor, resource or

capital mobilization bounds. Additionally, cumulative capacities are capped in (2.9b) and

(2.10b) to reflect resource and terrain availability, and other factors.

2.3.0.4. Hydraulic system constraints.

wn,h,s +
∑
c∈Cinn

Wc,h,s + Vn,h,s =
∑

c∈Coutn

Wc,h,s + Vn,h+1,s ∀n ∈ N , h ∈ H, s ∈ S

(2.11)
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The water network is composed of nodes, which receive natural inflows and can store

water, and connections, which can transport water downstream between them. It is the

equivalent of a common transportation graph, with nodes and edges. Conservation of

mass at each node, hour and inflow scenario is enforced in (2.11), where the difference

between inflows and outflows is reflected on an increase or decrease of stored water.

V n,h,s ≤ Vn,h,s ≤ V n,h,s ∀n ∈ N , h ∈ H, s ∈ S (2.12)

Water volume storage at each node is constrained by (2.12) to reflect design and terrain

limits, as well as regulatory requirements that vary between locations and time of year.

Non reservoir nodes have no storage capability (i.e. V n,h,s and V n,h,s take a value of 0)

and act merely as junctions.

V i
n = Vn,first(Hp),s ∀n ∈ NR, p ∈ P , s ∈ S (2.13a)

V i
n ≤ Vn,last(Hp),s ∀n ∈ NR, p ∈ P , s ∈ S (2.13b)

Boundary conditions are relevant modeling decisions in problems with storage. To the

best of our knowledge, all previous EP work with hydro has considered initial and final

stored water volumes in a year as parameters, so operational years become independent

intervals and water management is only allowed within that horizon (e.g. see Khodaei et

al. (2012); Sanghvi & Shavel (1986); Costa et al. (1990); Kenfack et al. (2001); Gil et al.

(2015)). This work extends the management horizon to a multi-year investment period.

Constraint (2.13a) sets the water volume of reservoirs at the first hour of each period —

first(Hp)— to given values. Constraint (2.13b) ensures that at least the initial water

volume of each reservoir is reached at the last hour of each period —last(Hp)—, in order

to avoid excessive usage.

Pg,h,s/η
H
g ≤ Wc,h,s ∀g ∈ GH , h ∈ H, s ∈ S (2.14)

Eq. (2.14) shows how the power system and the water network are linked at hydroelec-

tric generators, where water flows are used to produce electricity. We assume a constant
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hydraulic efficiency to avoid non linearities in the problem. This simplification is widely

used and has been shown by Gjelsvik et al. (2010) to present little error in medium term

hydrothermal operations, even for reservoirs with significant head differences. Spilled

water is cascaded downstream and can be used by other power plants.

Vn,h,s = Vn,h,s′ ∀n ∈ N , s′ ∈ Γh,s, h ∈ H, s ∈ S (2.15)

In order to enforce non-anticipativity, Eq. (2.15) forces water storage decisions in ev-

ery hour to be the same in all inflow scenarios that are indistinguishable up to that moment.

2.4. Extension to Multiple Long-Term Scenarios

The linear program outlined in (2.1)–(2.15) can be written in the following compact

manner:

min
x

∑
p∈P

[
c>p xp +

∑
s∈S

πsQ(p, xp, s)

]
(2.16a)

s.t. D x ≥ e (2.16b)

where Q(p, xp, s) = min
yp,s

d>p yp,s (2.17a)

s.t. Wyp,s ≥ up − Txp (2.17b)

Here, (2.16a) summarizes (2.1) by representing capacity decisions —variables CL,

CG, BL, BG— in period p by the vector xp, their investment costs by cp and their con-

straints (2.7)–(2.10b) by (2.16b). Operational costs in each inflow scenario and period are

represented by the function Q, which reflects the total cost of dispatch decisions —P , F ,

D, W , V—, represented by the vector yp,s. In turn, (2.17b) condenses constraints (2.2)–

(2.6b) and (2.11)–(2.15). The problem can then be generalized to accommodate multiple
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long-term scenarios as follows.

min
x

∑
ω∈Ω

γω

(∑
p∈P

[
cωp
>xω

p +
∑
s∈S

πsQ(p, xω
p , s, ω)

])
(2.18a)

s.t. (xω
p , y

ω
p,s) ∈ ∆ω

p (2.18b)

xω
p = xω′

p ∀ω′ ∈ Ψω
p , p ∈ P , ω ∈ Ω (2.18c)

Let the set of all long-term scenarios be Ω, indexed by ω, and their probabilities be

γω. The objective function of the multiple scenario extension can then be expressed as

in (2.18a). If ∆p is the space of all combinations of xp and yp,s that satisfy constraints

(2.16b) and (2.17b) in a given period p, then ∆ω
p is the space of feasible combinations

of xω
p and yω

p,s for long-term scenario ω, enforced in (2.18b). Different parameters and

cost coefficients may be specified in each long-term scenario. Non-anticipativity is en-

forced in (2.18c), where construction decisions in each period are forced to be equal for

all long-term scenarios that are indistinguishable up to that moment, gathered in the set

Ψω
p . Figure 2.2 illustrates a long-term scenario tree with 3 trajectories.

Construction decisions Dispatch decisions

Nominal scenario

ω1

ω2

ω3

Period 1 Period 2 Period 3

Figure 2.2. Long-term scenario tree structure with one nominal scenario
and two extreme scenarios.
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As discussed in Section 1.3.2, multiple works on EP formulate long-term scenario

trees and assign probabilities according to different methods so that obtained investment

plans have the least expected cost. However, assigning discrete probabilities to scenarios

that span several decades where unfolding phenomena are not completely understood may

become an insurmountable challenge.

This work captures long term uncertainty by minimizing investment and operations

costs for an nominal scenario —highlighted in Fig. 2.2—, while also accounting for ex-

treme scenarios that unfold in different periods. The probability of occurrence of the ex-

treme scenarios is considered to be near-zero, so the optimization problem (2.18a)–(2.18c)

ignores their costs. Hence, these extreme scenarios only add constraints to the problem

so the system is prepared to meet the required load in a reliable manner in such cases.

However, only considering feasibility in those long-term scenarios could result in invest-

ment plans which imply unacceptably high operational costs in the extreme scenarios. An

upper bound on total cost —φcap
ω — for each long-term scenario is then implemented in the

additional constraint (17d), in order to set the maximum cost the decision maker is willing

to accept in extreme scenarios.

∑
p∈P

[
cωp
>xω

p +
∑
s∈S

πsQ(p, xω
p , s, ω)

]
≤ φcap

ω ∀ω ∈ Ω (17d)

2.5. Solution Method

The complete problem structure defined in (2.18a)–(17d) consists on several long-term

scenarios linked by investment decisions. The problem is decomposed and solved using

the Progressive Hedging Algorithm (PHA) first proposed by Rockafellar & Wets (1991).

This method has received significant interest recently, because it can take advantage of

modern parallel and distributed computing to reduce solution times for large problems.

It has been successfully applied to power system problems, such as stochastic EP that

considers variability of load and renewable output profiles (Muñoz & Watson, 2015), and
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medium term hydrothermal operations scheduling (Dos Santos et al., 2009). Advanced

schemes have focused on reducing solution time by adaptively changing algorithm pa-

rameters throughout its execution (Zéphyr et al., 2014), and establishing lower bound

computation methods to be able to calculate an optimality gap (Gade et al., 2016).

Algorithm 1 gives an overview on the PHA, where f(x) represents the objective func-

tion in (2.16a). It is an augmented Lagrangian method that decomposes the problem on a

long-term scenario basis by relaxing the non-anticipativity constraint (2.18c). The objec-

tive function of each long-term scenario subproblem is then augmented with penalizing

factors that steer each solution toward a non-anticipative optimum.

Algorithm 1 Progressive Hedging
1: i← 0, gap←∞
2: wω

i ← 0 ∀ω ∈ Ω
3: xω

i ← argminx[f(xω
i )]

s.t. [(2.16b)− (2.17b)]
4: while gap ≥ ε do
5: xi ←

∑
ω∈Ω γ

ωxω
i

6: i← i+ 1
7: wω

i ← wω
i−1 + ρ>(xω

i−1 − xi−1) ∀ω ∈ Ω
8: xω

i ← argminx [f(xω
i ) + wω

i
>xω

i + 1
2
ρ>‖xω

i − xi)‖2]
s.t. [(2.16b)− (2.17b)]

9: gap←
∑

ω∈Ω‖xω
i − xi‖2

The proposed model does not include costs on extreme long-term scenarios in the ob-

jective function of the problem and only consider them for reliability enforcement. How-

ever, the PHA cannot be directly applied to a problem that has scenarios with null proba-

bilities. Instead, these extreme scenarios are assigned minuscule probabilities so that their

costs fall within the optimality gap of the applied solver software. However, this raises a

problem for the PHA.

Having scenarios with probabilities that range orders of magnitude in difference in-

creases solving time significantly, because the weighted averaged value of a variable cal-

culated in Line 5 in each iteration will result in a value excessively close to that of the
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scenario with high probability. In consequence, penalization factors for the nominal long-

term scenario calculated on Line 7 will be light. This causes variable values in the nominal

scenario to change by only a small amount in each iteration, so a great number of iterations

are needed for convergence.

An alternative formulation drawn from Birge & Louveaux (1997) is implemented,

which is also proven to achieve convergence and optimality for convex problems. Instead

of calculating a variable value average weighted by the scenario probabilities, Line 5 can

be replaced by a simple arithmetic average as shown in (2.19). To maintain the proof of

convergence to the optimum, the penalty factor for all variables must be multiplied by

the inverse of the probability of their scenario. Line 7 in the original algorithm can then

be replaced by (2.20). This formulation allows convergence in a reasonable number of

iterations in this application.

xi ←
∑

ω∈Ω xω
i

|Ω|
(2.19)

wω
i ← wω

i−1 +
1

γω
ρ>(xω

i−1 − xi−1) ∀ω ∈ Ω (2.20)
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3. IMPLEMENTATION AND COMPUTATIONAL EXPERIMENTS

3.1. Problem Data and Setup

The proposed model was implemented by developing new modules in the open source

SWITCH platform, which is a planning tool based in Python/Pyomo and publicly avail-

able1. The problems are solved with the Gurobi 7.0 solver using the Barrier Method with

a 0.01% duality gap on an Intel Xeon E5-2620 24-core machine with 32 GB of RAM

memory.

Case studies comprise 10 two-year investment periods spanning from 2020 to 2039 on

the future interconnected power system of Chile. As of 2016, it consisted on two separate

systems that served an aggregate 71.68 TWh per year with nearly 20 GW of installed

capacity. Bus load and renewable generator profiles were constructed from actual 2015

data. Future load was projected using estimated load growth rates. Existing and proposed

generator and transmission line characteristics were obtained from Comisión Nacional de

Energı́a (2016a,b) and reduced to a total of 68 aggregated existing and new generators and

23 transmission lines that connect 20 buses. The technologies used by these projects are

described in Table 3.1.

Transmission line investment costs consider a constant overnight cost per unit of dis-

tance and power. This represents the incremental cost of longer lines and more robust

structures and conductors, and results in an investment cost curve illustrated on Fig. 3.1

as the linear cost function. Nonetheless, investment costs in transmission lines exhibit a

behavior more similar to that of the quadratic cost function illustrated in the same Fig-

ure, since there are significant economies of scale in their construction. In this work,

the proposed model uses a linear cost function to avoid non-linearities in the optimiza-

tion problem. This represents a reasonable approximation of costs as long as resulting

investment in capacity is sufficiently small or large.

1The online public repository where the SWITCH model is published can be found at:
https://github.com/switch-model/switch.
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Table 3.1. Generator technologies with average characteristics.

Technology Projects Fuel
Overnight

Cost
[US$/kW]

Fixed O&M
Cost

[US$/kW]

Average
Fuel Cost
in 2020

[US$/MWh]

Ramp Rate
[fraction of
capacity]

Hydro RoR 8 — 3100 50 — 1.0
Hydro Series 5 — 3400 14 — 1.0

Hydro Reservoir 12 — 3100 14 — 1.0
Wind 11 — 2100 40 — 1.0

Solar PV 9 — 1950 25 — 1.0
OCGT 6 Diesel 946 8 200 0.5
CCGT 5 Gas 1100 14 89 0.3

ICE 5 Diesel 910 30 166 1.0
ST 7 Coal 3000 35 41 0.0

MW⋅km

$

MW⋅km

$

In
ve

st
m

en
t c

os
t

Linear cost function Quadratic cost function

Figure 3.1. Schematic investment cost functions for transmission projects.

Hydroelectric projects include units that can store water (Reservoir), units located

downstream from them that use cascading flows (Series), and run-of-river projects (RoR).

The main water basins are schematically represented in Fig. 3.2 with their water network.

The remaining sets of input data can be found in Appendix A, and both the model and

its input files are available upon e-mail request to the author2.

2E-mail address: bmaluend@uc.cl
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Figure 3.2. Schematic of water networks in the two most relevant hydraulic
basins of Chile.

Section 3.2 reports two experiments on the hydrothermal model for one long-term sce-

nario defined by (2.1)–(2.15). The sampling of representative days and inflow scenarios

that are used in the experiments is outlined in Section 3.2.1. A comparison of the invest-

ment plans obtained when using load blocks and representative hourly days is performed

in Section 3.2.2 and the effect of inter annual water storage is explored in Section 3.2.3.

Long term uncertainty is considered in Section 3.2.4 through several long-term scenarios,

where the PHA is used to solve the problem.

3.2. One Long-Term Scenario Hydrothermal Model

3.2.1. Representative Operational Days and Inflow Scenarios

To formulate inflow scenarios for these case studies, hydrological series need to be

understood. A study by Aravena & Gil (2015) states that hydrological timeseries in Chile

present little autocorrelation, so each year’s hydrology can be assumed independent of
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previous years. In addition, inflow records are used as a distribution from which to sample

possible scenarios. In consequence, careful sampling of hydrologies may allow capturing

most of the effects of inflow uncertainty, while reducing the problem size considerably.

The hierarchical clustering methodology was used to sample inflow scenarios, where

all possible occurrences are grouped into clusters that exhibit similar characteristics. A

representative scenario is then selected for each group. The similarity of timeseries is

usually calculated through a measure of distance. In this work, the Dynamic Time Warp-

ing distance was used as the measuring metric. This method has shown to be the most

adequate when comparing timeseries, since it measures similarity of shape as well as

magnitude (Liao, 2005). The 56 current historical records (1960-2015) were clustered

into 3 representative years using hierarchical clustering and Dynamic Time Warping as a

distance metric. The representative inflow scenario for each cluster was taken to be the

hydrology for which the cluster’s variance in respect to it was the minimum. Fig. 3.3

exhibits the historical hydrologies clusters and the representative years highlighted in red.
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Figure 3.3. Hydrologies clustered into 3 groups, with representative year
highlighted.

Scenario trees were then constructed by combination resulting in 9 different trajecto-

ries for each 2-year period. An additional inflow scenario with null probability is added

to each period to enforce reliability, which is the worst registered hydrology —the year
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1998— multiplied by a factor of 0.8. This replaces the need for capacity reserve con-

straints present in other EP models. The resulting scenario tree can be observed in Fig. 3.4,

where only the first 3 periods of the simulation are exhibited.

Investment Periods

Period 1 Period 2 Period 3 Period...

Operational Years

1 2 3 4 5 6

2005
1974
1962
1998 0.8

Figure 3.4. Inflow scenario structure for one long-term scenario.

Representative days were chosen by the same methodology of hierarchical clustering

based on the Dynamic Time Warping distance metric, sampling from actual aggregated

daily net load curves from the Chilean system on the year 2015. The 10% of days with the

most abrupt evening ramps were clustered together and the remaining 90% were clustered

into 3 samples. As with inflow scenarios, the representative day from each cluster was

then chosen as the one which minimized the variance of the cluster around it. The use

of 4 representative days implied a total of 96 hours per year. The chosen dates and their

weights —the amount of days in their cluster— are highlighted in Fig. 3.5, where the

clusters of daily net load curves are exhibited.

3.2.2. Case Study 1: Hourly Resolution Versus Load Blocks

The effect of time resolution is examined by comparing the outputs of a model that

considers representative days with hourly resolution —the RD model— with those of an

equivalent model that considers monthly load blocks —the LB model—. The RD model

is completely described by (2.1)–(2.15). The LB model is analogous, though hours are
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Figure 3.5. Aggregated daily net load curves grouped in 4 clusters with
representative date highlighted.

replaced by load blocks, ramping constraints (2.6a)–(2.6b) are ignored and water storage is

balanced on a monthly instead of hourly in (2.11). Inflows, renewable resource availability

and load profiles were discretized into 8 blocks per month to be inputted in the LB model,

for a total of 96 blocks per year that matches the number of hours in the RD model.

In order to compare the LB and RD models for different levels of flexibility in the

system, each model is run with three different portfolios of new must-build reservoir hydro

power plants equivalent to 3.75 G, 2.5 GW, and 0 GW of new capacity. Investment plans

for the 2.5 GW case can be observed in Fig. 3.6.

The LB model delivers a construction plan with more investment on PV and Run-

of-River projects when compared with the RD model, which builds more combined cy-

cle units. This reflects the fact that the LB model averages renewable resource and load

profiles —as described in Section 1.3.1— and thus ”flattens” the fine granularity differ-

ences that can be captured hourly. The LB model invests on additional diesel open cycle

units, but dispatches them infrequently on the main inflow scenarios, because they are
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Figure 3.6. Generation investment plans yielded by the LB and RD models
for 2.5 GW of must-build reservoir hydro new capacity.

built to provide sufficient capacity for the drought scenario. This contrasts with the use

of combined cycle capacity both to provide energy and power sufficiency in the hourly

formulation.

These results indicate that the use of load blocks in EP models will provide investment

plans with a higher amount of renewable capacity in comparison with the use of represen-

tative days. This must be taken into account by decision makers when performing EP by

either method.

For further analysis, the operational performance of the investment plans obtained by

the LB and RD models are assessed using an economic dispatch model with ramping

constraints, spanning all the hours of the 2022-2039 horizon and all inflow scenarios in

each period. This experiment allows comparing the performance of both methods of sam-

pling and representing time in EP models. Whereas an economic dispatch with ramping
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constraints lacks some constraints that a full unit commitment formulation may have, it

adequately represents real operations cost for comparing two expansion plans.

To implement this test, the model described by (2.1)–(2.15) is ran by fixing the vari-

ables BG
g,p and BL

`,p to the values of each investment plan. It is possible that some invest-

ment plan is not able to supply all demand in every hour and scenario, so load is allowed

to be curtailed at a fixed cost. Unserved load is represented by the non-negative variable

Ub,h,s defined for all buses, hours and inflow scenarios, and its cost is symbolized by φUL.

Eqs. (2.1) and (2.2) then change to Eqs. (3.1) and (3.2) for this experiment, respectively.

The parameter φUL is set at a fixed value of 500 US$/MWh.

min
∑
p∈P

fp

{ ∑
h∈Hp

∑
s∈S

θhπs

[∑
b∈B

Ub,h,sφ
UL +

∑
g∈G

Pg,h,s(φ
OM
g + φfuel

g,p )
]}

(3.1)

lb,h +
∑

`∈Loutb

F`,h,s +Db,h,s = Ub,h,s +
∑
g∈Gb

Pg,h,s +
∑
`∈Linb

ηL` F`,h,s ∀b ∈ B, h ∈ H, s ∈ S

(3.2)

Cost results for the 2.5 GW level of must-build new hydro capacity are exhibited in

Fig. 3.7. It can be observed that the construction plan resulting from the LB model has

a higher investment cost, because of the greater construction of renewable power plants.

This greater renewable resource capacity allows the LB model to incur in less operational

costs than the RD model, which invests less on infrastructure, but incurs in higher op-

erational costs. Nevertheless, the total cumulative costs (i.e. total investment costs plus

the operational costs up until each period) are always lower for the RD model plan. The

present value of the total investment and operations costs for the LB model is 3.3% higher

than for the RD model when their investment plans are operated on all of the hours in the

studied horizon.

Besides costs, the reliability and efficiency of an investment plan is relevant as well.

The amount of unserved load can be taken as a measure of reliability, for it indicates the

capability of a construction plan of serving load both in terms of energy and of power.
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Figure 3.7. Expected costs for the production costing simulations of the
investment plans generated by the LB and RD models for the 2.5 GW new
hydro case.

The efficiency of the system may be considered as the capability of making good use of

the infrastructure. Hence, the amount of dumped energy should be examined to determine

how much of the electricity generation is being wasted. Fig. 3.8 reports the comparison

of both these variables when operations are run on the LB and the RD models. Reported

magnitudes are expected values over all 9 inflow scenarios in each period.

It can be observed that the investment plan produced by the LB model performs worse

in both reliability and efficiency metrics. Whereas the RD model plan leaves almost no

load unserved, the LB system increasingly fails to provide energy to all consumers as more

renewable capacity is built, up to more than 1% per period. This is caused by the inability

of the generation mix to provide enough controlled ramping capacity. The amount of

dumped energy behaves similarly, since as more renewable capacity is built by the LB

model, increasing amounts of energy is curtailed. Generation simply occurs in moments
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Figure 3.8. Comparison of expected dumped energy and unserved load in
production costing simulations of the investment plans rendered by the RD
and LB models.

when there is not enough demand and energy is lost up to more than 2% per period.

Differences reach their peak at the 2036 period, when the LB construction plan dumps

more than 8 times as much as the RD plan.

Cost and operational metrics for all levels of must-build hydro capacity are summa-

rized in Table 3.2. It can be observed that the investment plan produced by the RD model

yields between 1.88% and 3.38% smaller total costs (investment and operation) than the

LB plan depending on the amount of must-build hydro power. Moreover, curtailed energy

throughout the operational horizon can reach up to 1.96% of total generation with the LB

plan when no new reservoir hydro plants are built. Similarly, unserved load when oper-

ating the LB investment plan increases as new hydro capacity diminishes. These results

show that representative days offer a better representation of operational conditions than

load blocks, given their ability to capture intra-day flexibility requirements. In addition,
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the differences between the two approaches are more apparent when the amount of new

reservoir hydro capacity is lower. This highlights the role of hydro power as a relevant

source of intra-day flexibility to accommodate high levels of renewables.

Table 3.2. Total Cost and Operational metrics of LB and RD investment plans

Must-build
Hydro
(GW)

Total Cost
(Billion 2015US$)

Unserved Load
(%)

Curtailed Energy
(%)

LB RD ∆% LB RD LB RD
0 35.63 34.98 1.88 0.72 0.02 1.96 0.12

2.5 32.25 31.20 3.38 0.73 0.01 1.45 0.20
3.75 30.75 29.86 2.98 0.68 0.00 1.32 0.32

This experiment shows that the use of load blocks to represent load and time in EP

models overestimates the amount of renewable capacity that is economic and reliable

to incorporate, even for flexible hydrothermal systems. The use of representative days

with hourly resolution better captures flexibility requirements in a system with volatile

resources.

3.2.3. Case Study 2: Effects of Inter-annual Storage

As previously discussed, proposed hydrothermal EP models in literature allow water

storage and use exclusively within each year (e.g. see the work by Khodaei et al. (2012);

Sanghvi & Shavel (1986); Costa et al. (1990); Kenfack et al. (2001); Gil et al. (2015)). To

explore the potential benefits of allowing this feature, the results obtained when using the

model described in Section 2.3 and a variation where no inter-annual storage is allowed

are compared. Additionally, the effect of non-anticipativity constraints in the resulting

investment plan is explored through the use of another variation of the model.

The first formulation is termed the Intra-annual model (IA) and only allows water

storage on a yearly basis. The non-ancitipativity constraint expressed in (2.15) is not

applied, since operational decisions in one year are independent from other years. Con-

straints (2.13a) and (2.13b), which enforce boundary conditions, are then applied on a
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yearly basis instead of per period. The second formulation is named Inter-annual model

with perfect foresight (PF) and allows water storage over multiple years throughout each

inflow scenario, but ignores the non-anticipativity constraint (2.15). Finally, the full model

described by (2.1)–(2.15) is tested and termed Inter-annual model with non-anticipativity

(NA). Several optimizations are carried out varying the applied discount rate used to cal-

culate the factor fp that brings costs to present value. This allows comparing not only the

magnitude of costs, but also the timing of investment costs incurred on by each formula-

tion. Results are reported in Table 3.3.

Table 3.3. Total investment costs (Billion 2015US$)

Discount rate NA IA PF
0% 37.63 38.27 +1.69% 37.61 -0.07%
2% 46.25 46.92 +1.46% 46.24 -0.01%
4% 37.67 38.25 +1.56% 37.69 +0.06%
7% 28.06 28.50 +1.56% 28.05 -0.04%

10% 21.07 21.47 +1.87% 21.07 -0.02%
12% 17.56 17.91 +2.00% 17.55 -0.01%
14% 14.70 14.99 +2.03% 14.69 -0.03%

Table 3.4. Average wall clock time per process (s).

Inter-annual with
non-anticipativity

Intra-annual Inter-annual with
perfect foresight

Instantiation 704.8 194.1 692.3
Solve 298.6 119.9 296.9
Total 1003.4 314.0 989.2

Present value of all investment costs incurred on by each formulation is presented

in Table 3.3 for several discount rates. The Intra-annual model incurs in 1.56% higher

investment costs than the Inter-annual model with non-anticipativity when the discount

rate is set at its nominal value of 7%. As the value of this parameter increases, cost

differences increase to up to 2.03%. Results show that this is caused by the timing of

constructions. Capacity addition decisions are similar, but slightly shifted in time. The

earlier investments by the IA model arise from the need for more capacity on dry years,
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whereas the other models can store water on high inflow availability years to use it on

drier years and, thus, delay the need for new units as load increases. Examination of the

investment plans rendered by the IA and the NA and PF models show that the former

builds more combined cycle units than the latter, which build more open cycle plants that

are used sporadicly to complement hydro power during net load peaks.

Results also indicate that enforcing non-anticipativity in operations does not imply

significantly different optimal investment plans. The PF model operates infrastructure in a

more efficient way and generally needs less investment than the NA model, though the dif-

ference in cost did not surpass 0.1% for any of the studied cases. Nonetheless, this results

are specific to the studied dataset and may not hold for other problem setups. Increasing

the number of inflow scenarios, the reservoir capacity of the system and the number of

years per period are factors that could increase the relevance of non-anticipativity in dis-

patch decisions and increase the differences between investment plans obtained by these

two model formulations.

Table 3.4 shows wall clock timings for model instantiation and solution processes for

each formulation. Reported solve times include wall clock time spent passing the instance

to the solver and receiving results after the optimization. Solver time for the PF model is

roughly the same as for the full NA model. Both these formulations take 3–4 times longer

total time to be solved than the IA model. A trade-off then exists between conservativeness

of water storage and solution time of the model.

3.2.4. Case Study 3: Robustness of the Expansion Plan

The PHA described in Section 2.5 is implemented by modifying the open source PySP

stochastic programming module of the Pyomo package. As in Sections 3.2.2 and 3.2.3, the

Barrier Method is used to solve the optimization problems, though the optimality gap is

relaxed to 0.1% to achieve lower computation times. Near-zero probabilities for extreme

long-term scenarios are set to γ = 10−4, so their cost is practically ignored in the expected

value minimization. The modified PHA requires that penalty factors ρ associated with
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extreme scenarios’ variables be amplified by a factor of 104, to maintain the convergence

proof. The algorithm is set to stop at a maximum of 12 iterations or when the convergence

metric xc calculated in (3.3) is equal to or less than 1200 MW. The metric xc is the sum

of difference between all variables in all scenarios with respect to the average value, so a

lower value indicates that scenario variables are converging.

xc =
∑
ω∈Ω

∑
i∈I

|xω
i − xi| (3.3)

Various ρ setting strategies are tested for convergence and speed by Watson & Woodruff

(2011). Our work adopts the cost proportional strategy, where ρ values are equal to the

cost coefficients in the objective function of each variable, scaled by a constant factor.

Numerical tests were carried out to determine constant scale factors that produced better

convergence and lower computational times.

Five extreme long-term scenarios are considered, named EXT1 through EXT5, whose

effects are the same, but diverge from the nominal scenario in different periods. The long-

term scenario tree structure can be observed in Fig. 3.9, where the period in which the

effects of each extreme scenario begin is pictured. The parameter changes that are applied

in each of said scenarios are the following.

• Fuel costs are increased by 25%.

• Overnight costs for fossil fueled generators are increased by 25%.

• Water inflows are reduced by 50%.

Equation (17d) in Section 2.4 establishes cost caps for each extreme long-term sce-

nario, in order to avoid total cost spikes due to the small probabilities assigned. Several

optimizations are carried out considering different caps to assess the impact of the long-

term scenario tree upon the investment plan decided in the nominal scenario. To determine

meaningful caps for this analysis, lower and upper bounds (φmin
ω and φmax

ω ) are calculated
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Figure 3.9. Tree diagram of long-term nominal and extreme scenarios.

for each long-term scenario. The lower bounds φmin
ω are obtained by calculating the opti-

mal planning and operations for each scenario ω deterministically. The upper bounds φmax
ω

are obtained by calculating the optimal operations in each scenario ω using the investment

plan of the nominal long-term scenario, which is the equivalent of ignoring the long-term

scenario in the planning process. Cost caps for each scenario are calculated as a linear

combination of both bounds through different values of λ in (3.4). The lower and upper

bounds of all extreme scenarios can be found in Table 3.5.

φcap
ω = λφmin

ω + (1− λ)φmax
ω ∀ω ∈ Ω (3.4)

For every proposed value of λ, the problem is solved through both an Extensive For-

mulation (EF) and through the proposed PHA. This allows benchmarking performance
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Table 3.5. Total cost bounds (Billion 2015 US$) for each extreme long-
term scenario.

Scenario Lower Bound
(φmin

ω )
Upper Bound

(φmax
ω )

EXT1 40.85 45.09
EXT2 38.99 43.11
EXT3 37.29 39.95
EXT4 35.43 37.30
EXT5 33.68 34.85

parameters of the decomposition algorithm against the “brute force” optimization method.

In order to capture the potential computational advantages of problem decomposition and

distributed computation, each problem and subproblem is allowed to be solved using only

4 computer cores. So, the 6 scenarios portrayed in Figure 3.9 can be solved in parallel in

each iteration of the PHA using the 24 available cores of the workstation, whereas the full

EF problem is solved in only 4. This experimental setup represents the common situation

where no large computer server is available, but several medium-sized ones are.

The total costs of the nominal long-term scenario under various values of λ is reported

in Figure 3.10 for both solution methods. Another metric of interest is total solver wall

clock time taken by each method, which is displayed in Figure 3.11.

Figure 3.10 shows total costs in the nominal scenario, which are on average 1.47%

higher when obtained through the PHA than with the EF. This is due to termination of

the decomposition algorithm once the convergence criterion is met. If this criterion was

to be made stricter, the objective function value would be closer to that of the EF, though

solving time would increase. For λ values less than 0.25, the PHA was not able to meet the

convergence criterion within the 12 maximum iterations. In those cases, objective function

values are lower than the optimal values obtained through the EF, because the average

solution at that moment is not admissible on all scenarios. Given enough iterations, the

algorithm should converge upon the optimal solution. Nonetheless, experiments with a
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treme long-term scenario.

significantly higher number of maximum iterations failed to converge on a reasonable

amount of time and, thus, are excluded from the reported data.



48

The curve that is generated by joining the data points in Figure 3.10 is relevant, since

it shows that 75% of the costs that the system would incur in, if extreme scenarios are

ignored and actually take place, can be avoided with minimal additional investments. Rel-

atively small changes in construction decisions allow hedging against most of the risk.

The remaining 25% is shown to be expensive to hedge against, given the high increase in

the slope of the cost curve. For a λ value of 0.1 the problem becomes unfeasible, since the

cost caps are so strict that they cannot be met simultaneously in all scenarios.

A comparison between solving times using the EF and the PHA is reported in Fig-

ure 3.11. These experiments were carried out in a single machine by restricting the use

of processor cores, but it allows assessing the potential of distributed computation when

no large computer server is available, but several medium ones are. For all values of λ

where the PHA meets the convergence criterion within the specified maximum number of

iterations, it requires less solver wall clock time than the EF. This difference increases as

λ does. Nevertheless, the time difference is reduced for lower values of λ, whereas the

solution obtained by the PHA may even become unfeasible because of early optimization

termination. Thus, when cost caps are strict, the PHA does not offer advantages, and when

caps are relaxed, the decomposition technique speeds up solving time significantly with

low cost objective value differences in comparison with the EF.
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4. CONCLUSIONS

The challenge of evaluating how much renewable energy can be integrated in power

systems in an economic and reliable manner can be met with the development of new

planning tools. These should allow better assessment of flexibility and robustness require-

ments and can provide key insights to decision makers for the development of policies and

investment plans.

A novel expansion planning model that can handle large-scale integration of volatile

energy sources for hydrothermal grids has been presented. Operations are represented with

an hourly resolution using selected representative days, the water network is explicitly

modeled, and inflow uncertainty is endogenously accounted for.

The model is tested through numerical experiments on the power system of Chile.

Model characteristics are highlighted and key indicators are benchmarked against conven-

tional models found in the literature. A first case study shows that the use of representative

days with hourly resolution, in contrast to traditional discrete load blocks, produces more

flexible investment plans. The system performs better both in terms of economic and reli-

ability metrics, such as dumped energy and loss of load. In addition, the proposed model

highlights the significant role of reservoir hydro power in providing intra-day flexibility.

A second set of experiments illustrates the capability of reservoirs for hedging the sys-

tem against inflow uncertainty by storing water throughout successive years. Results in-

dicate that extending the storage horizon generates less conservative investment plans that

shift some investments into the future and that build more peaking units and less baseload

capacity. Nonetheless, solution times are increased, implying a trade-off. Another ob-

tained insight is that enforcing non-anticipativity in operational decisions practically does

not change the optimal investment plan.

Several extreme long-term scenarios with near-zero probability were considered in a

third case study, where the problem is solved through the Progressive Hedging Algorithm.
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A key insight obtained from the results is that the investment cost increase to hedge the

system against risk of extreme scenarios follows a piecewise linear curve. Small changes

in the nominal investment plan hedge against most of the long-term risk, but the remainder

requires significantly more investments. Regarding optimization time, a trade off was

identified. When cost caps are relaxed, the PHA requires significantly less solution time

than the Extensive Form, but as the caps become more strict, the decomposition algorithm

fails to converge within the maximum iteration limit.

The literature review and the case studies carried out in this work both highlight the

need to further enhance investment and operational models with features that support

assessing high-resolution chronological flexibility requirements. In a new paradigm of

large-scale integration of volatile generation resources, it is key to incorporate greater de-

tail of operations in planning activities. This allows a better evaluation of the amount of

renewable energy that can be economically and reliably built and operated, and a better

understanding on how other technologies, such as reservoir hydro power, can provide a

suitable complement to achieve the goal of cleaner and economic grids.
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5. FUTURE WORK

The presented work was implemented by extensively extending the capabilities of the

open-source Python-based SWITCH model. Some features, such as the hydroelectric net-

work modeling and code efficiencies, have already been pushed to the public repository

in which SWITCH is maintained. Curating, documenting and publishing other developed

new features are pending tasks. This will allow access to them by any member of the

academy, industry and civil society, in the hopes of encouraging further discussion on the

power systems of the future and on how to decarbonize the grid.
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APPENDIX A. INPUT DATA

Table A.1. Generation technologies.

Generation Technology
Project

Lifetime
(Years)

Energy
Source

Scheduled
Outage Rate

Forced
Outage Rate

Maximum
Built Capacity

(MW)

Combined Cycle Gas Turbine (CCGT) 25 Gas 0.08 0.026 700

Steam Turbine (ST) 30 Coal 0.1 0.033 700

Internal Combustion Engine (ICE) 20 Diesel 0.05 0.05 400

Hydroelectric Reservoir 80 Water 0.094 0.051 3000

Hydroelectric Run-of-river 40 Water 0.04 0.03 600

Hydroelectric in Series 40 Water 0.05 0.051 800

Open Cycle Gas Turbine (OCGT) 25 Diesel 0.08 0.04 500

Solar PV 25 Solar 0 0.02 900

Wind Turbines 25 Wind 0.01 0.02 500

Table A.2. Generators.

Generator
Generation
Technology

Bus φOM

(US$/MWh)
Heat rate

(MBTU/MWh)
BG

(MW)
ηH

Existing
Capacity

(MW) |Year

CCGT Alto Jahuel CCGT Alto Jahuel 3.85 7.13 740 340 1997

CCGT Ancoa CCGT Ancoa 6 7 1200 0 -

CCGT Encuentro CCGT Encuentro 6.37 6.86 1200 400 2001

CCGT Mejillones CCGT Mejillones 4.03 7.34 2100 1200 2004

CCGT Quillota CCGT Quillota 7.45 6.95 2200 1000 2002

Machicura SIgnacio
Hydro

Reservoir
Ancoa 0 132 0.512 132 1985

Los Condores
Hydro

Reservoir
Ancoa 0 150 6.000 150 2018

Colbun
Hydro

Reservoir
Ancoa 0 472.8 1.429 473 1985

Pehuenche
Hydro

Reservoir
Ancoa 0 568.3 1.667 568 1991

Cipreses
Hydro

Reservoir
Ancoa 0 105.8 2.786 106 1995

Pangue
Hydro

Reservoir
Charrua 0 465.8 0.885 466 1996

El Toro
Hydro

Reservoir
Charrua 0 448.7 4.740 449 1973
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Ralco Palmucho
Hydro

Reservoir
Charrua 0 689 1.590 689 2004

Hydro Charrua
Hydro

Reservoir
Charrua 0 1500 1.920 1500 2029

Rapel
Hydro

Reservoir
Rapel 0 376.6 0.674 377 1968

Hydro Pto Montt
Hydro

Reservoir
Pto Montt 0 1000 1.550 1000 2023

Canutillar
Hydro

Reservoir
Pto Montt 0 171.6 1.920 172 1990

RoR Alto Jahuel
Hydro
RoR

Alto Jahuel 0 544.2 2.777 544 2011

RoR Ancoa
Hydro
RoR

Ancoa 0 1000 0.839 173 2015

RoR Charrua
Hydro
RoR

Charrua 0 1000 1.448 360 2015

RoR Itahue
Hydro
RoR

Itahue 0 900 2.608 418 2015

RoR Polpaico
Hydro
RoR

Polpaico 0 600 4.030 177 2008

RoR Pto Montt
Hydro
RoR

Pto Montt 0 1000 0.629 20 2014

RoR Quillota
Hydro
RoR

Quillota 0 200 1.900 40 1989

RoR Temuco
Hydro
RoR

Temuco 0 900 0.724 129 2015

Isla Curi LAlta
Hydro
Series

Ancoa 0 202 2.270 202 1997

Angostura
Hydro
Series

Charrua 0 316 0.450 316 2014

Antuco
Hydro
Series

Charrua 0 319.2 1.630 319 1981

Abanico
Hydro
Series

Charrua 0 114.1 1.270 114 1959

Rucue Quilleco
Hydro
Series

Charrua 0 249 1.880 249 1998

ICE Itahue ICE Itahue 22.20 7.93 94 47 2008

ICE Lagunas ICE Lagunas 9.00 12.00 93.6 47 1991

ICE Los Vilos ICE Los Vilos 27.00 8.72 248.2 124 2008

ICE PdAzucar ICE PdAzucar 28.00 8.72 350 175 2007

ICE Pto Montt ICE Pto Montt 28.00 8.72 250 125 2007

OCGT Alto Jahuel OCGT Alto Jahuel 2.80 10.53 300 150 2004

OCGT Cardones OCGT Cardones 24.40 9.50 1200 126 2000

OCGT Charrua OCGT Charrua 3.50 10.30 600 250 2007
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OCGT DdAlmagro OCGT DdAlmagro 16.10 10.30 520 196 2005

OCGT Hualpen OCGT Hualpen 6.00 12.00 600 88 2004

OCGT Quillota OCGT Quillota 5.14 9.52 250 100 1994

PV Alto Jahuel Solar PV Alto Jahuel 0 800 0 -

PV Cardones Solar PV Cardones 0 1500 434 2015

PV Encuentro Solar PV Encuentro 0 1200 660 2015

PV DdAlmagro Solar PV DdAlmagro 0 1200 441 2015

PV Laberinto Solar PV Laberinto 0 1000 220 2016

PV Lagunas Solar PV Lagunas 0 1500 64 2015

PV Maitencillo Solar PV Maitencillo 0 1200 300 2015

PV PdAzucar Solar PV PdAzucar 0 1000 0 -

PV Polpaico Solar PV Polpaico 0 1000 150 2016

ST Ancoa ST Ancoa 3.37 9.8 1500 0 -

ST Encuentro ST Encuentro 2.09 11.22 1425 625 1990

ST DdAlmagro ST DdAlmagro 3.37 9.80 1000 0 -

ST Hualpen ST Hualpen 4.21 9.89 1000 780 2007

ST Maitencillo ST Maitencillo 1.63 9.02 1200 650 1999

ST Mejillones ST Mejillones 4.92 9.82 1000 700 2007

ST Nogales ST Nogales 4.02 9.97 1000 750 2009

Wind Cardones Wind Cardones 0 700 0 -

Wind Charrua Wind Charrua 0 800 155 2015

Wind Encuentro Wind Encuentro 0 800 210 2015

Wind DdAlmagro Wind DdAlmagro 0 700 284 2015

Wind Hualpen Wind Hualpen 0 800 30 2015

Wind Los Vilos Wind Los Vilos 0 1000 168 2015

Wind Maitencillo Wind Maitencillo 0 700 301 2015

Wind Rapel Wind Rapel 0 400 18 2015

Wind PdAzucar Wind PdAzucar 0 800 442 2015

Wind Polpaico Wind Polpaico 0 800 0 -

Wind Pto Montt Wind Pto Montt 0 800 101 2015
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Table A.3. Fuel costs per period.

Period
Gas

(US$/MBTU)

Diesel

(US$/MBTU)

Coal

(US$/MBTU)

2020 12.64 18.05 4.12

2022 13.04 21.42 4.19

2024 13.45 23.03 4.26

2026 13.80 24.52 4.32

2028 14.17 26.10 4.39

2030 14.39 27.12 4.43

2032 14.86 29.31 4.51

2034 15.35 31.50 4.56

2036 15.78 33.24 4.66

2038 16.22 34.50 4.73
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Table A.4. Transmission lines.

Transmission Line Length
(km)

etaL
Existing
Capacity

(MW)

BL

(MW)

Alto Jahuel-Ancoa 335 0.985 2800 5000

Alto Jahuel-Itahue 185 0.980 800 2000

Alto Jahuel-Rapel 119 0.980 386 2000

Ancoa-Charrua 190 0.990 2600 4000

Cardones-Maitencillo 265 0.990 3400 4500

Charrua-Hualpen 72 0.980 1130 2000

Charrua-Temuco 205 0.980 1000 2000

Encuentro-Laberinto 133 0.990 800 2000

Encuentro-Mejillones 153 0.990 800 2000

DdAlmagro-Cardones 148 0.980 400 3000

Itahue-Ancoa 160 0.980 300 1000

Lagunas-Encuentro 173 0.990 800 2000

Los Vilos-Nogales 97 0.985 446 2000

Maitencillo-PdAzucar 207 0.985 3400 5000

Mejillones-Cardones 600 0.970 3000 5000

Mejillones-Laberinto 205 0.990 800 2000

Nogales-Polpaico 84 0.990 3000 4000

Nogales-Quillota 27 0.990 446 1000

PdAzucar-Los Vilos 228 0.985 900 2000

PdAzucar-Polpaico 405 0.970 3400 2000

Polpaico-Alto Jahuel 72 0.990 4000 6000

Quillota-Polpaico 50 0.990 2000 3000

Temuco-Pto Montt 370 0.980 600 2000

Table A.5. Transmission line parameters.

Overnight Cost
(US$/MW/km)

Project Lifetime
(Years)

Fixed O&M Costs
(US$/MW)

1000 30 30
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