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A dynamic nonlinear coupled differential equations model of tumor growth and re-

sponse to radiotherapy:

Mathematical modeling plays a key role in understanding and predicting tumor growth

as well as in anticipating the effects of the different treatments available. It may help to

improve radiotherapy outcome providing important insights into some biological mech-

anisms of cancer to be incorporated into the treatment planning routine. In this thesis,

a non-spatial, continuous mathematical model to simulate tumor growth and response

to radiotherapy was developed. It is based on nonlinear ordinary differential equations,

which model the most relevant biological mechanisms. Simulations were performed to

fit the model to experimental growth curves, as well as to study the tumor response to

a radiotherapy treatment. The sensitivity of the model to the different parameters was

also analyzed. An open-source interface, which allows to interactively study the impact

of the different parameters in the tumor growth, was developed. The model developed

reflects known tumor behaviors and agrees within uncertainties with experimental data

of tumor growth and radiation response. The response to treatment was found to be

significantly sensitive to the tumor composition at the moment of irradiation. This thesis

provides a tool to increase the understanding of tumor behavior. Different ways to deep

in the present study and to improve the model developed are proposed as future work.
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1. Introduction

Cancer is one of the leading causes of morbidity and mortality around the world, with

approximately 14 million new cases estimated in 2012. This number is expected to in-

crease by about 70% over the next two decades [1]. However, due to the advances in

technology, it is a disease that nowadays can be treated and cured in many cases. Ra-

diotherapy has been one of the two most effective treatments, and it is estimated that

more than half of all cancer patients are treated with radiotherapy during the course of

their illness [2, 3].

Radiotherapy uses ionizing radiation to kill tumor cells by damaging their genetic ma-

terial. Since in reality not only the malignant cells are killed but also the healthy tissue

is affected by radiation, modern radiotherapy is today concentrated in improving all the

technology involved in treatment delivery, in order to apply the therapeutically sufficient

dose to the tumor volume while sparing the surrounding normal tissues. In this regard,

one of the challenges is the incorporation of biological information into the treatment

planning routine. For example, a clear and detailed understanding of tumor progression

is required. In order to achieve this, mathematical modeling represents a promising tool

to provide important insights into the biological mechanisms behind this complex dis-

ease.

Mathematical modeling plays a key role in understanding and predicting tumor growth

as well as anticipating the effects of the different treatments available. It can be useful

to check the consistency of some biological hypothesis or to identify which measure-

ments are needed to test a particular theory. Mathematical models may be classified

according to their scale or whether the spatial dimension is integrated or not. At the

microscopic scale, cells are tracked and usually considered individually by discrete

modeling [4, 5, 6]. At macroscopic scales, continuum modeling is often used, where

the evolution of densities or volume fractions describes tumor behavior [7, 8, 9]. Ac-

cording to the spatial dimension clasification, non-spatial models, usually employing

ordinary differential equations (ODEs), consider the overall status of some tumor fea-

tures (such as volume, mass or radius) versus time [10, 11]. On the other hand, spatial

models consider the spatial distribution of some internal tumor characteristics and their
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evolution in time. Usually partial differential equations (PDEs) are used for that, such

as reaction-diffusion equations. (Principles from continumm mechanics are also some-

times considered [9, 12]).

The objective of this study is to develop a non-spatial, continuous mathematical model

based on nonlinear ordinary differential equations to simulate tumor growth and re-

sponse to radiotherapy, considering certain biological mechanisms involved in tumor

evolution. It must be able to reproduce tumor behavior, fitting measured growth and

response curves data. As part of the goals, a study of parametric sensitivity is per-

formed in order to identify which parameters of the model have greater impact on the

simulated tumor growth and response. The final intention is to create a tool for simulat-

ing tumor behavior, during radiotherapy, using previously known experimental data of

tumor growth together with some radiobiological parameter values. In the future, this

may allow simulating the outcome of different treatment strategies and increasing the

understanding on tumor behavior for the developing of personalized treatment plan-

ning.

Following this introduction, chapter 2 contains the theoretical framework used in this

thesis. Then, a description of the methods and materials, with the details about the

implementation of all simulations performed, is given in chapter 3. The main results

are presented in chapter 4 and the corresponding discussion is addressed in chapter

5. Finally, chapter 6 presents a brief conclussion of this work, and the future work

proposed is given in chapter 7.
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2. Theoretical framework

2.1 Tumor radiobiology

2.1.1 Tumor growth

A tumor is an abnormal growth of tissue possessing no physiological function that

arises from rapid and uncrontrolled cellular proliferation due to genetic mutations [13].

This unrestrained growth implies a metabolic demand that rapidly exceeds the diffusion

limit of oxygen and nutrients, reason why the tumor needs to develop its own nutrient

supply in order to continue growing [14, 15]. Thus, two stages in the growth of a tumor

can be distinguished: initial avascular growth and subsequent vascular growth, which

in turn may induce metastatic spread [12]. During the second phase, new vasculature

is formed from the pre-existing blood vessels by a process known as angiogenesis,

which starts with the production of VEGF (vascular endothelial growth factors), a sig-

nal protein, released by cancer cells in this case, that travels to nearby vessels and

induces vascular growth. Nevertheless, the new vasculature is functionally abnormal,

very primitive and chaotic in nature. Furthermore, this process lags behind the faster

tumor growth. As a result, new vessels are unable to meet the requirements on oxy-

gen and nutrients of the rapidly expanding tumor mass, leading to the appearance of

hypoxic areas in the tumor [14, 15].

From a macroscopic point of view, the tumor growth curve (i.e., volume versus time)

has a shape characterized by two defined stages: an initial exponential portion related

to rapid tumor growth, followed by a saturation zone of reduced growth [16, 17]. Expo-

nential growth is possible when enough availability of nutrients and oxygen is present

(during the initial avascular growth). Later, because of a lower availability of nutrients

and oxygen, the growth becomes slower (saturation zone during vascular growth).

2.1.2 Radiation damage

Ionizing radiation (IR), as its name evokes, is a type of radiation carrying on enough

energy to ionize (liberate electrons from) atoms and molecules within matter. When
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ionizing radiation is absorbed in biological material, cell damage may occur in one of

two ways: direct or indirect. Direct damage is caused when radiation interacts directly

with the deoxyribonucleic acid (DNA) molecule, critical target of the cell. Atoms are ion-

ized or excited, leading to a chain of events that eventually produce biological damage

[18]. Indirect damage is caused by free radicals produced when radiation interacts with

other molecules (mainly water) within the cell. These molecules are highly reactive and

produce a cascade of chemical changes leading to the disruption of the DNA structure,

which may also conclude with irreversible biological damage.

Because of the random nature of energy deposition by IR, any component of the cell

may be damaged, but most of them are present in multiple copies and therefore dam-

aging a few does not have great repercussions. Instead, DNA is present in only two

copies and encodes information required to synthetize proteins and regulate many

celullar functions. Therefore, when it is damaged the cell viability is endangered. How-

ever, cells have developed a series of efficient repair processes to withstand this harm.

This is the reason why, in spite of the approximately 105 ionizations produced in one

cell by 1 Gy (1Gy=1 J/Kg) of radiation dose, resulting in more than 2000 lessions to

the DNA, only approximately the 30% of the cells are killed in such an event [14]. Cells

that cannot repair their DNA die, or lose their ability to generate colonies. Dead cells

are reabsorbed by macrophages through a process called phagocytosis.

2.2 Linear-quadratic model and oxygen effect

The Linear-Quadratic (LQ) model quantifies the survival of cells exposed to IR. Ac-

cording to this model, the survival fraction SF of cells irradiated with a single dose d is

expressed as: [18]

SF = e−(αd+βd2) (2.1)

This model assumes that there are two components to cell kill by radiation, represented

by the linear and quadratic terms. The parameter α describes the unrepairable (lethal)

cell damage. The parameter β describes the repairable (sub-lethal) damage that, ac-

cumulated, eventually produces death.

12



It is known that the response of cells to IR is strongly dependent on the oxygen avail-

ability, being the hypoxic cells more resistant [14]. This can be explained by the "oxygen

fixation hypothesis" [19]: when radiation is absorbed in a biological material, free rad-

icals R• are produced within the cell (e.g., in water or/and DNA). These free radicals

may break chemical bounds and initiate the chain of processes that leads to biological

damage. The radicals produced in the critical target (DNA) are unstable molecules

and will react rapidly with oxygen to produce another radical, finally resulting in a sta-

ble change in the chemical composition of the target. This damage is said to be "fixed"

and is more difficult to repair. If no oxygen is present, R• molecules have a longer

half-life and can react with H+, thus chemically restoring its original form. In this case,

no damage occurs [14].

The dependence of radiation damage with oxygen can be quantified through a pa-

rameter called the oxygen enhancement ratio (OER). The OER is defined as the ratio

between the dose required to produce a certain biological effect in hypoxic conditions

and the dose required to produce the same effect in oxic conditions (or under the actual

oxygen concentration) [18]:

OER =
D (hypoxic)
D (oxic)

∣∣∣∣
same biological effect

(2.2)

Therefore, an OER value of 3 means that hypoxic cells need 3 times more dose than

oxic cells to get the same biological effect. When the oxygen effect is not considered,

the LQ-model could lead to cell killing overestimation (or survival fraction underestima-

tion). One way to overcome this issue is to incorporate the oxygen dependence in the

cell killing expression. The OER has been quantified as [20]:

OER(PO2) =
OERm · PO2 +Km

PO2 +Km

(2.3)

where OERm is the maximum OER value, PO2 is the oxygen partial pressure, and Km

is the oxygen partial pressure at which OER = (OERm + 1)/2. Then, the surviving

fraction can be determined by:

SF = e
−( α

OERm
d·OER(PO2

)+ β

OER2
m
d2·OER2(PO2

))
(2.4)
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where α and β refer to oxic conditions.

2.3 Tumor control probability

One of the relevant endpoints in radiotherapy is the Tumor Control Probability (TCP),

which is the probability that a given dose of radiation will lead to tumor control. "Tumor

control" means that all the clonogenic tumor cells (cells that are able to proliferate

and form new tumors) are either killed or have lost their ability to produce colonies.

TCP versus dose is a dose-response relationship represented by a sigmoid curve (see

Figure 2.1). The probability of control tends to zero at very low doses and tends to 1 at

very large doses. This continuous shape, in contrast to a sudden discontinuity between

0 and 1, can be explained by the radiosensitivity variability in a population of patients

and from the random nature of cell killing. Although there are several functions with the

properties mentioned, the following logistic formulation is commonly used [14]:

TCP (D) =
1

1 + e−b0−b1D
(2.5)

where D is the total dose and b0 and b1 are fitting parameters.

Figure 2.1: Example of a TCP curve, where the probability of tumor control is given in percent-
age [14].

TCP curves are commonly used to quantify the response to treatment instead of tumor

volume evolution with dose, because of temporal inflammation processes ocurring in

tumors during and after irradiation. This implies that in many tissues, the tumor volume

increases during the course of the treatment despite the reduction of the number of

living tumor cells.
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2.4 The model in Lefebvre et al. (2016)

A brief description of a previous study on tumor modeling, on which the present model

is based, is given here. For details see the reference cited. In [9] a spatial model was

built, using the observations from medical images (CT scans), for modeling growth and

resistance to drug therapies of liver gastrointestinal stromal tumor metastases. The

model parameters values were estimated through comparison with clinical data from

the images, for which a numerical reconstitution of the CT scans was developed. After

this calibration, the model reproduced qualitatively and quantitatively the spatial tumor

evolution of one specific patient.

This spatial model developed consists in a set of non-linear partial differential equations

(PDEs). The tumor is described through densities of proliferative cancer cells and

necrotic cells. Healthy cells are also included to model the healthy tissue surrounding

the tumor. Cell density variations are driven by transport equations. Vascularization

and nutrients supply are taken into account with the introduction of only one variable

that describes both, since nutrients are supplied to the tumor by the vascularization.

The evolution of this quantity is described with a diffusion equation. The effect of growth

factors on vascularization is also considered through another variable, standing for

the mean concentration of endothelial growth factors (EGF) produced by cancer cells.

This quantity modulates the amount of nutrients/vascularization through an integro-

differential equation. The rates of cell proliferation and (natural) death due to lack of

nutrients depend on the amount of nutrients available, through regularized Heaviside

functions.
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3. Methods and materials

3.1 Dynamic tumor Model

In the following sections, the mathematical model of tumor growth and response to ra-

diotherapy developed in this work is presented. This model, consisting on a group of

coupled ordinary differential equations, takes into account the biological mechanisms

involved in tumor evolution like: nutrient-dependent tumor growth leading to initial ex-

ponential growth and subsequent Gompertzian-like slower growth, hypoxia induced

tumor vascularization driven by tumor angiogenesis, which depends on endothelial

growth factors concentration, cell death due to lack of nutrients, radiation-induced cell

killing with an indirect simulation of the oxygen effect and reabsorption of dead cells.

The modeling of tumor growth, based on a previous work by Lefebvre et al. [9], is

described in section 3.1.1. Section 3.1.2 describes the modeling of the radiotherapy

treatment and the corresponding tumor response.

3.1.1 Modeling tumor growth

The growth of a tumor is described by the following five ordinary differential equations

for the proliferative (tumor) cells, P , healthy cells, H, necrotic cells, N , vascularization

providing nutrients and oxygen, M , and endothelial growth factors (EGF), ξ :

dP

dt
= (γpp(M)− γpd(M))P (3.1)

dH

dt
= (γhp(M)− γhd(M))H (3.2)

dN

dt
= γpd(M)P + γhd(M)H − δ(εδ +M)N (3.3)

dM

dt
= C0H

(
1− M

2Mth

)
− ηp(M)P − ηh(M)H + C1ξ (3.4)

dξ

dt
= aP (εξ − γpp(M)/γ0p)− λξ (3.5)

16



The main difference from the reference study (by Lefebvre et al.) is that the present

model does not consider a spatial description, therefore ordinary differential equations

instead of partial differential equations are used. Cells and nutrient transport, arising

from reaction or diffussion are not present here. Equations (3.1)-(3.3) have the same

form of their corresponding from [9], except that they do not include the terms related

to death due to drug treatments. Equation (3.4), compared to its counterpart from [9],

also includes terms associated to the consumption of nutrients/oxygen by the healthy

cells and the dependency of the vascularization with the EGF (last two terms of (3.4)).

Again, in equation (3.5), spatial related terms are not included, neither terms related

with the drug treatment, as done in [9].

The quantities γpp and γpd correspond to the proliferation and death rate functions,

respectively, for the tumor cells P . γhp and γhd are the corresponding proliferating and

death rates for the healthy cells H. These rates depend on the availability of nutrients

(M ) in the form:

γpp(M) =


0 M ≤ 0

γ0p
1+tanh(R(M−Mth))

2
M > 0

(3.6)

γpd(M) = γ1max (0,− tanh(R(M −Mth))) (3.7)

γhp(M) =


0 M ≤ 0

γ0h
1+tanh(R(M−Mth))

2

(
1− H

H0

)
M > 0

(3.8)

γhd(M) = Chγ1max (0,− tanh(R(M −Mth))) (3.9)
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where it is established that in absence of M no proliferation is possible, and natural

cell death occurs only when M is lower than a reference value Mth, which corresponds

to the hypoxia/nutrients starvation threshold. Equations (3.6) and (3.9) are the same

as in [9]. The tumor cell death rate, γpd, was defined here in the same form of healthy

cell death rate, instead of having the same form of γpp, as it is done in [9]. While no

proliferation rate of healthy cells is considered in [9], in the present model it is defined

through equation (3.8). This function is similar to the proliferation rate of tumor cells,

but includes a term to reflect the homeostasis property of the healthy tissue. There is

proliferation only while H < H0, where H0 is the initial number of healthy cells.

The nutrient consumption is described by ηp(M) for P cells and ηh(M) for H cells.

Unlike [9], where these rates are constant, the present model defines consumption

rates as functions of M , given by:

ηp(M) =


0 M ≤ 0

η1 tanh
(

M
Mth

)
M > 0

(3.10)

ηh(M) =


0 M ≤ 0

η2 tanh
(

M
Mth

)
M > 0

(3.11)

These dependencies were inspired by the fact that the oxygen consumption rate re-

mains practically constant for high oxygen levels and decreases (rapidly) as the oxygen

concentration decreases [21].

Most of the parameters involved in the previous equations are related with biological

mechanisms: γ0p and γ0h are the maximum proliferation rates, i.e the ones for well
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oxygenated conditions, for tumor and healthy cells, respectively; γ1 is the maximum

apoptosis rate for tumor cells and Ch is the ratio of healthy to tumor cells maximum

apoptosis rates; δ is the elimination rate of necrotic cells and εδ is a parameter ensur-

ing the elimination proccess still occur in case M is equal to zero; C0 is the angiogenic

capacity rate of the healthy tissue; η1 and η2 are the maximum rates of nutrient con-

sumption by tumor and healthy cells, respectively; C1 accounts for the dependency of

the vascularization with the EGF; a is the angiogenic excitability rate; εξ stands for the

ground production of growth factors by cancer cells and λ is the elimination rate of

angiogenic growth factor signal. Finally, R is a numerical parameter for regulating the

steepness of the hyperbolic tangent function. Consequently, this parameter allows to

modulate the softness of the regularized Heaviside functions that drive the rates of cell

proliferation and cell death (equations (3.6)-(3.9)).

The parameter δ, associated with death cells reabsorption, is defined through the equa-

tion:

δ(εδ +Mth) =
ln(2)

7
(3.12)

which establishes that the amount of necrotic cells is reduced by a factor of 2 in a pe-

riod of time of approximately seven days [6]. This model assumes that this occurs at

M =Mth.

The growth rate of tumor cells γ0p is defined through the doubling time DTp, which is

the time required for the tumor cells to double its volume, as:

γ0p =
ln(2)

DTp
. (3.13)

The tumor volume is the sum of the three existing type of cells divided by the cell

density, ρ, which is assumed to be equal among the different cell types and remains

constant throghout time. Therefore, tumor evolution is driven by the dependence on

time of the quantity P +H +N . Then, the tumor volume V is calculated as:

V =
P +H +N

ρ
. (3.14)

All the parameters used to model tumor growth are summarized in Table 3.1.
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The equations (3.1)-(3.5) govern the tumor growth before radiotherapy treatment and

between treatment fractions of irradiation.

Table 3.1: List of the parameters of the model with their meaning and units (d=day).

Parameter Meaning Unit

DTp Doubling time of tumor cells d

γ0h Growth rate of healthy cells 1/d

γ1 Apoptosis rate of tumor cells 1/d

Ch Ratio of healthy cells to tumor cells apoptosis rate

R Smoothing parameter -

Mth Hypoxia threshold -

C0 Angiogenic capacity rate of healthy tissue 1/d

C1 Dependence of vascularization with the EGF rate 1/d

η1 Consumption rate of tumor cells 1/d

η2 Consumption rate of healthy cells 1/d

λ Elimination rate of angiogenic growth factor signal 1/d

a Angiogenic excitability rate 1/d

εξ Ground production of EGF -

εδ Ground elimination rate of necrotic cells -

ρ Cell density cells/cm3

3.1.2 Modeling radiotherapy treatment

This model considers that radiotherapy is delivered instantaneously. This is adequate

for the high dose rates usually achieved in external radiotherapy and assumes that

damage repair does not occur during irradiation [14]. Fractionated treatments are sim-

ulated using a fraction size of 2 Gy (this value might be easily changed to other values).

Irradiation takes place once a day, 5 days a week, with no irradiation during weekends.

Cell death due to irradiation is modeled as a stochastic process in the following way:

(i) Just before a treatment fraction is delivered, the amount of tumor and healthy cells

is computed.

(ii) The survival probability for each cell type (tumor and healthy) is calculated.

(iii) A stochastic cell kill is applied: a random number between 0 and 1 is sorted for
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each cell (tumor and healthy). If this number is lower than the probability pre-

viously calculated, this cell remains alive. Otherwise, it dies due to the current

treatment fraction delivered.

(iv) The number of surviving cells is computed and used to update the initial condi-

tions of the tumor ODE system, which is solved from this instant until the time

corresponding to the next fraction.

The survival probability (S) is given by the LQ model described in section 2.2:

S = exp

[
−αeff (OER)

(
d+

d2

(α/β)eff (OER)

)]
(3.15)

where αeff and (α/β)eff correspond to the effective values of α and α/β, respectively.

These values depend on the oxygen enhancement ratio, as they do in equation (2.4),

in the form:

αeff (OER) =
α

OERm

OER (3.16)

(α/β)eff (OER) =
α/β

OER
OERm (3.17)

The OER has the same form as in equation (2.3), but replacing PO2 by M :

OER(M) =
M ·OERm +Km

M +Km

(3.18)

The parameter Km was fixed as a function of the hypoxia threshold and the maximum

value of the OER:

Km =Mth(OERm − 2) . (3.19)
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The parameters α and α/β have different values for tumor and healthy cells (different

radiosensitivity), consequently the survival probability S will be different for each type

of tissue. The radiosensitivity of tumor cells was taken to be 3 times larger than the

radiosensitivity of healthy cells, based on previous studies [22].

3.2 Tumor response quantification

Tumor response is quantified through TCP curves. To generate a TCP curve, the re-

sponse of the virtual tumor to radiotherapy is simulated several times and at different

dose levels. To include interpatient radiosensitivity variations, each one of the n simu-

lations at each dose level is performed with a different α value. This value is sampled

from a Gaussian distribution, with a mean (intrinsic) α value and a standard deviation

equal to 15% of the mean, as done in previous studies [23, 24]. At each dose level,

the fraction of controlled tumors is determined, being the TCP value for that dose.

TCP curves are fitted to the logistic TCP model (equation 2.5), using the bootstrapping

method to quantify the associated uncertainties [25]. The tumor control dose 50%,

TCD50 (defined as the dose at which 50% of tumor control probability is reached), is

calculated as:

TCD50 =
−b0
b1

. (3.20)

3.3 Computational tools

All the codes for modeling the tumor growth and treatment response, were written and

solved in MATLAB R2016b and R2017a (The Mathworks Inc., MA). Additionally, the

tumor growth model was also implemented in Python language (Python 3.6.3 version)

using Jupyter Notebook [26], an open-source web application that allows to create and

share documents containing codes. This code was used to change interactively some

values of the parameters of the tumor growth model and visualize the effect. Section

3.3.1 provides a brief description of this program. The main codes (Matlab and Python)

developed in this study are shown in the Appendix (Section 9).
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3.3.1 Python interactive tool

This tool allows to perform parametric sensitivity studies instantaneously, showing the

impact of certain parameter values variations in the evolution of the tumor model. This

is achieved through the manipulation of slider buttons. For each parameter there is a

slider button, which one can move according to a range of values previously defined.

Together with the panel of all parameter sliders, the plots of the quantities of interest

are displayed. The curve of the evolution with time of any quantity can be shown (P , H,

N , V , etc. ). The change of the curve due to parameters values variation is visualized

while moving the corresponding slider.

3.4 Pre-clinical experimental data

Pre-clinical experimental data of tumor growth and response to radiotherapy treatment

were used for the studies performed in this thesis. In order to fit the model to exper-

imental growth data, four human head and neck squamous cell carcinoma (HNSCC)

tumor growth curves (from three different cell lines) were considered: OSC19 and HN5

lines from [27], FaDu line from [28], and FaDu line from Bothwell et al. [29]. The re-

sponse to treatment was compared with experimental dose response data taken from

Yaromina et al. [30]. Since the FaDu tumor cell line was used for all the analyses

performed in this study (growth fitting, treatment response and parametric sensitivity),

only the reference studies corresponding to this tumor cell line are described in this

section.

Bothwell et al. (2016) [29]: In this work, the preclinical effect of vascular disrupting

agents (VDAs) was investigated using in vivo models of human HNSCC of the FaDu

tumor cell line. A subcutaneous xenograft model was established by the inoculation of

1×106 FaDu cells into the flank of mice. Tumor volume measurements were performed

to assess tumor response to VDA therapy. The curve corresponding to the control

group was used for comparison with the tumor growth model developed in this thesis.

Yaromina et al. (2011) [30]: In this work, microenvironmental parameters during frac-
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tionated irradiation in human HNSCC xenografts were studied. Tumor pieces (∼1mm

in diameter) of six different tumor cell lines were transplanted subcutaneously into nude

mices. Depending on the tumor type, 30 to 160 Gy total doses were given in 30 frac-

tions within 6 weeks. Among others, local tumor control probabilities due to radio-

therapy were determined. TCP curves were calculated and radiation response was

quantified as the dose required to control 50% of tumors (TCD50). Data correspond-

ing to the FaDu tumor cell line was considered for comparison with the responses

simulated in the present study because its response is intermediate, not too sensitive

neither too resistant. Additionally, information about the tumor volume achieved since

transplantation (Vy) (until treatment) and the mean value of the elapsed time between

tumor transplantation and the beginning of the treatment (ty), were also considered as

a reference to the model.

3.5 Simulations

Simulations performed in this study aimed to check if the tumor model reproduces the

behavior of real tumors. Aditionally, the impact of the different parameters on tumor

growth and response was also studied. Regarding tumor growth, the reproduction of

the growth curves (volume versus time) shape and the development of hypoxia were

investigated. Regarding treatment response, the level of oxygenation and the oxygen

dependent response behavior were analyzed. Adjustments of the model to experimen-

tal curves/data were performed in order to obtain the parameter values that allow to

reproduce these real scenarios.

The simulations performed can be divided in:

1. simulation of tumor growth, used to fit the parameters of the model to experimen-

tal growth data, and get the corresponding parameters values,

2. simulation of radiotherapy treatment and tumor radiation response (as TCP curves)

with and without oxygen effect, and

3. parametric sensitivity analysis of the model through the inspection of tumor growth

and TCP curves over a range of values for each parameter.
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Details about how simulations were implemented are presented in the next subsec-

tions. The model parameters affecting tumor growth (those in equations (3.1)-(3.11))

were varied in order to fit the model to experimental data. The parameters involved in

the response to radiation, namely the ones related with cells radiosensitivity, were fixed

to values taken from the literature, and are shown in Table 3.2.

Table 3.2: Biological parameters of treatment response used for the simulations.

Parameter Value

Maximum value of the OER OERm 2.5 [20, 31]

Radiosensitivity of tumor cells (LQ model)
αp 0.41 Gy−1 [32, 33]

(α/β)p 10 Gy [34]

Radiosensitivity of healthy cells (LQ model)
αh 0.13 Gy−1 [22]

(α/β)h 4.4 Gy [35]

Two different proportions of tumor and healthy cells composing the initial tumor were

investigated. First, the tumor is assumed to be composed by 90% tumor cells and 10%

healthy cells (case A). Second, a composition of 10% tumor cells and 90% healthy

cells, was considered (case B). This was done in view of the variable information avail-

able regarding tumor composition. A tumor is known to be composed of tumor cells,

part of them called stem cells, and stroma (which include normal cells), but the amount

of each one is not clearly established (see Section 5.1.1 for a major discussion). Some

previous studies consider only tumor cells (although different kinds of them) for model-

ing tumor growth [10, 36]. Other models include normal cells in the simulation of tumor

growth [5, 6].

3.5.1 Growth curves fitting

The methodology followed to fit the model of tumor growth to the experimental growth

curves available (OSC19, HN5 & FaDu) was similar in all cases. Since the FaDu tumor

cell line was also used to evaluate the model of response to radiation, details about the

fitting of this tumor growth curve will be presented here.
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To fit the experimental FaDu growth curve from Bothwell et al. [29], the simulation is

performed starting from the first point of the experimental curve (volume versus time).

The two proportions of tumor and healthy cells assumed led to two different sets of

parameters values, A1 and B1, that fit this experimental curve. To fit the experimental

growth data from Yaromina et al. [30], which consists only in the initial tumor volume

implanted and the tumor volume just before the beginning of the treatment (ty, Vy), the

two proportion cases were also considered, leading to sets A2 and B2, respectively.

For the other HNSCC lines (OSC19, HN5, FaDu from [28]), only case A was consid-

ered.

For the determination of both A1 and B1 sets of parameters, the initial condition on tu-

mor size was first set according to the value derived from the experimental curve from

[29] (∼77.12 mm3 tumor volume). Then, the following procedure was carried out: some

parameters values, such as those standing for the doubling time (DTp), cell density (ρ)

and rate of necrotic cells elimination (δ), were established within ranges according to

information found in the literature [15, 36, 37, 38]; for other parameters, preliminary

values based on the model by Lefebvre et al. [9] were chosen; the remaining parame-

ters were set performing a manual preliminary adjustment to the experimental growth

curve, using the Python interactive interface for evaluating tumor evolution. Then, a fit

of the model to the experimental growth curve was performed, based on least squares

differences minimization. For this, the manually adjusted parameter values were used

as first guess.

Parameter values from sets A1 and B1 were used as a reference to define sets A2

and B2, that fit the experimental data point (ty,Vy) for the FaDu tumor cell line from

Yaromina et al. [30], used to study the response to radiotherapy. First, the initial condi-

tion on the tumor size was changed to fulfill the one described in [30] (a tumor volume

of ∼0.52 mm3, corresponding to ∼1 mm of diameter). The two different proportions of

tumor and healthy cells were again considered. Then, starting from the values of sets

A1 and B1, certain parameters were readjusted (see Table 4.1 from Section 4), using

the Python interactive tool, in order to fit the point (ty,Vy). This led to A2 and B2 sets of

parameter values, respectively. The meaning of the labels for all sets above-mentioned

is summarized in Table 3.3.
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Table 3.3: Summary of the labels used for the sets of parameters.

Label Proportion case

A 90% tumor cells, 10% healthy cells

B 10% tumor cells, 90% healthy cells

Label Experimental data

1 Bothwell et al. [29]

2 Yaromina et al. [30]

The initial conditions used to solve the PDE system in all the tumor growth simulations

were established according to the information found in the corresponding publication.

These conditions are specified in Table 3.4. For the case of the OSC19 and HN5 tumor

cell lines, the number of cancer cells inoculated is given [27]. This number was used

as the initial number of tumor cells (P0) and an initial tumor composition of 90% tumor

cells and 10% healthy cells was considered to define the initial number of healthy cells

(H0) (rows 2 and 3 of Table 3.4). For the case of FaDu growth curves, the information

available is the initial tumor volume, therefore the initial number of tumor and healthy

cells is affected by the value of the cell density parameter (ρ). Additionally, these values

depend on the proportion of tumor and healthy cells considered. The initial conditions

for the necrotic cells (N ), nutrients/oxygen (M ), and endothelial growth factors (ξ) were

the same for all lines simulated: N0 = 0, M0 = 4, ξ0 = 2.

Table 3.4: Initial conditions used for the simulations. For OSC19 and HN5 lines (upper rows),
the quantities P0 and H0 are shown separately. For FaDu line (bottom row), the total number of
initial cells P0 +H0 is given, since the invididual values for P0 and H0 depend on the proportion
of tumor and healthy cells (A or B) considered. FaDu from Altogen Laboratory [28] (left), FaDu
from Bothwell et al. [29] (middle) and FaDu from Yaromina et al. [30] (right).

OSC19 [27] HN5 [27]

P0 1×105 cells 2×105 cells

H0 1.1×104 cells 2.2×104 cells

FaDu [28] FaDu [29] FaDu [30]

P0 +H0 77.12 ·ρ cells 67.77 ·ρ cells 0.52 ·ρ cells
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3.5.2 Tumor response to a radiotherapy treatment

3.5.2.1 Evolution during and after a radiotherapy treatment

The response of the virtual tumor to radiotherapy treatment was checked for sets A2

and B2. A treatment of 30 fractions of 2 Gy in 6 weeks, starting at day 24 from the

beginning of the growth (as in [30]), was simulated. All evolution curves, including

tumor volume, nutrients/oxygen, tumor cells and healthy cells, were stored.

3.5.2.2 TCP with and without oxygen effect

Treatment response was simulated using the parameter values from sets A2 and B2.

The response of these two virtual tumors was then compared to the response data from

[30]. Moreover, the influence of oxygen in the response of the virtual tumors was stud-

ied by performing simulations with and without considering the oxygen effect. Here,

“with oxygen effect” refers to the dependence of the radiosensitivity parameters, α and

α/β, with oxygen (through the OER), as is established in the model through equations

(3.15)-(3.18). “Without oxygen effect” means that this dependence is omitted, there-

fore keeping these values as constants and recovering the original LQ expression for

the survival fraction (equation (2.1)). It is worth to mention that the effect of oxygen in

other mechanisms such as proliferation or cell death due to lack of nutrients/oxygen

was considered in the two simulations. Values of TCD50 were calculated from the sim-

ulated TCP curves.

3.5.3 Parametric sensitivity analysis

In order to analyze the sensitivity of the model to the different parameters and identify

which affect more importantly growth and response, a general parametric sensitivity

study was performed. For each parameter, three different values (initial, minimum and

maximum) were used to calculate growth and response curves while maintaining all

the other parameters values fixed. Set A2 was used as the reference for this analysis.

The initial (‘init’) values correspond to the ones achieved in the fitting to the experi-

mental curve (see Table 4.1, Section 4). The selection of the minimum (‘min’) and

maximum (‘max’) values was done according to the following: the interactive Python
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tool was used to evaluate whether a certain parameter importantly modified the growth

curve, meaning that its variation effect was visible. For those parameters whose vari-

ation sensibly affects the growth, the minimum and maximum values were chosen in

such a way that the growth curve fit the experimental point (ty, Vy) ±10% of the tumor

volume (in the ordinate axis). In other words, the parameter values that make the tumor

growth curve pass through the point (ty,Vy+0.1Vy) and through the point (ty,Vy− 0.1Vy)

were defined as the extremes (minimum or maximum) values. For those parameters

whose variation seems to have almost no effect in the growth curve, the minimum and

maximum values were selected as 1/10 and 10 times the initial value, respectively. In

addition to these criteria, for some parameters, the range of variation was constrained

to values found in the literature (for DTp and ρ). The parameter γ0h, on the other hand,

was also constrained to not exceed the maximum value of γ0p (given by the minimum

DTp value). It is worth noting that in some cases the parameter turned out to be hybrid,

in the sense that the variation in one direction significantly modified the growth curve

but not in the other direction.
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4. Results

4.1 Python interactive tool

The tumor growth model was implemented in Python, as an interactive tool, in order

to visualize the relative importance of the different parameters on the tumor growth. A

screenshot of the interface developed for this interactive analysis of the tumor model

is shown in Figure 4.1. Additionally, a working example code of the Python interactive

tool can be found in the Appendix (Section 9).

Figure 4.1: Screenshot of the interface coded in Python, using Jupyter Notebook, developed
for evaluating tumor growth interactively. The example shows the experimental growth curve
(black points and line), with error bars, of the OSC19 tumor cell line from [27].

30



4.2 Simulations

4.2.1 Growth curves fitting

Figure 4.2 shows the simulated growth curves (tumor volume versus time) adjusted to

the experimental growth curves. Black dots with error bar correspond to the experi-

mental data and blue solid lines correspond to the simulated virtual tumor.
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Figure 4.2: Fit of the model to the experimental growth curves of three tumor cell lines: (a)
OSC19 [27], (b) HN5 [27], (c) FaDu from Altogen Labs [28], and (d) FaDu from Bothwell et al.
[29]. Simulations performed with case A of tumor composition (90% of tumor cells and 10% of
healthy cells at t=0 days).

Parameter values of sets A1, B1, A2 and B2, which fit the experimental data of the

FaDu tumor cell line from Bothwell et al. [29] and Yaromina et al. [30], are shown in

Table 4.1. Figure 4.3 shows the tumor growth curves simulated with sets A1 and B1.

Figure 4.4 shows the tumor growth curves simulated with sets A2 and B2 to fit the

volume achieved in the study of Yaromina et al. at day 24.
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Table 4.1: Parameters values used for the simulations. Set A1 and B1 fit the experimental
data from [29]. Sets A2 and B2 fit the experimental data from [30]. Refer to Table 3.1 for the
corresponding units. Last two rows show the initial conditions (considering the value of the cell
density ρ and the proportion case) used for each case.

Parameter A1 B1 A2 B2

DTp 3.07 1.2 1.4 1.2

γ0h 0.20 0.20 0.20 0.20

γ1 5.0e-3 5.0e-3 5.0e-3 5.0e-3

Ch 1.0 1.0 1.0 1.0

R 2.4 2.4 2.4 2.4

Mth 2.0 2.0 2.0 2.0

C0 6.61e-06 1.20e-06 6.61e-06 9.0e-06

C1 4.62e-2 2.30e-2 4.62e-2 4.22e-2

η1 1.96e-07 1.95e-07 1.96e-07 1.95e-07

η2 1.7e-07 1.55e-07 1.7e-07 1.55e-07

λ 4.69 4.48 4.69 4.48

a 3.11e-06 2.48e-06 3.11e-06 3.16e-06

εξ 2.71 2.71 3.17 2.71

εδ 0.7 0.7 0.7 0.7

ρ 1e8 1e8 1e8 1e8

P0 6.1×106 cells 6.8×105 cells 4.7×104 cells 5.2×103 cells

H0 6.8×105 cells 6.1×106 5.2×103 cells 4.7×104 cells
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Figure 4.3: Fit of the model to the experimental growth curve (black points, with error bars) of
FaDu tumor cell line from Bothwell et al. [29], with the two proportions of tumor and healthy
cells considered. (a) Set A1. (b) Set B1.
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Figure 4.4: Tumor growth curves for FaDu cells simulated with (a) set A2 and (b) set B2. Red
dashed lines indicate the position of the experimental data point (ty, Vy) from Yaromina et al.
[30].

4.2.2 Tumor response to a radiotherapy treatment

4.2.2.1 Evolution during and after a radiotherapy treatment

The evolution of the virtual tumors (A2 and B2) during a radiotherapy treatment of 30

fractions of 2 Gy is shown in Figure 4.5. For both sets it is observed that when the treat-

ment starts, tumor and healthy cells decrease rapidly. After irradiation has ceased, the

population of healthy cells increases again. Tumor cells also regrow if, at least, one

tumor cell remains alive at the end of the treatment (which is the case in these simula-

tions).

Regarding tumor composition, as already mentioned, two different proportion of tumor

and healthy cells were considered for the tumor initial condition (yielding to sets A2 and

B2). However, at the moment in which treatment begins, this proportion was changed

due to the tumor growth. At day 24, when the treatment starts, the tumor was com-

posed mainly for tumor cells (more than 99%) for both sets. Healthy cells, on the other

hand, were found to be in a proportion of approximately 0.02% in set A2, and 0.2% in

set B2.
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Figure 4.5: Evolution of relevant tumor quantities with radiotherapy treatment simulated with
set A2 (solid line) and set B2 (dash-dotted line). Tumor volume (upper left), nutrients/oxygen
supply (upper right), tumor cells in logaritmic scale (bottom left), and healthy cells in logaritmic
scale (bottom right).

4.2.2.2 TCP with and without oxygen effect

Figure 4.6 shows the TCP curves calculated with and without oxygen effect on tumor

sensitivity to radiation, for the two sets simulated. Values of dose required to control

50% of tumors (TCD50) are presented in the figure. Red curves correspond to the case

in which the oxygen radiosensitivity dependence is taken into account to simulate the

response. Black curves represent the cases for which oxygen effect was not consid-

ered. It can be seen that these curves are shifted to the left with respect the red ones

by 15.45 Gy for set A2, and by 41.21 Gy for set B2. The TCD50 value reported by

Yaromina et al. [30] was 61.5 Gy, with an uncertainty range of 56-68 Gy. This is also

shown in Figure 4.6.
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Figure 4.6: Simulated TCP curves (points), and logistic fitting (lines), with oxygen effect (red)
and without oxygen effect (black), for set A2 (left) and set B2 (right). The TCD50 value reported
in [30], with its corresponding uncertainty, is also shown (blue circle and horizontal bar).

4.2.3 Parametric sensitivity analysis

Figures 4.7-4.21 show simulated tumor growth curves (without treatment) and TCP

curves calculated with each parameter value. Black solid lines correspond to the initial

parameter value, blue dashed lines to the minimum value, and red dotted ones to the

maximum value. The three parameter values are shown in the figure. TCD50 values

resulting for those parameter values are also presented in the charts.
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Figure 4.7: Simulated tumor growth curves (left) and dose-response curves (right), for the three
different values of the parameter DTp.
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Figure 4.8: Simulated tumor growth curves (left) and dose-response curves (right), for the three
different values of the parameter γ0h.
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Figure 4.9: Simulated tumor growth curves (left) and dose-response curves (right), for the three
different values of the parameter γ1.
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Figure 4.10: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter Ch.
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Figure 4.11: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter R.
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Figure 4.12: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter Mth.
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Figure 4.13: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter C0.
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Figure 4.14: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter C1.
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Figure 4.15: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter η1.
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Figure 4.16: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter η2.
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Figure 4.17: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter λ.
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Figure 4.18: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter a.
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Figure 4.19: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter εξ.
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Figure 4.20: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter εδ.
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Figure 4.21: Simulated tumor growth curves (left) and dose-response curves (right), for the
three different values of the parameter ρ.

These figures show how the different parameters affect the growth and the response

of the tumor. The higher the values of the angiogenic capacity rate, C0, angiogenic

excitability rate, a, dependence of nutrients/oxygen (vascularization) with EGF rate, C1,

and ground production of growth factors, εξ, the faster the tumor growth (leading to

larger tumors) and consequently higher TCD50 values were observed. On the other

hand, higher values of tumor cells doubling time DTp, smoothing parameter R, tumor

cell death rate, γ1, hypoxia threshold, Mth, nutrient consumption by tumor cells, η1, and

elimination rate of angiogenic growth factor signal, λ, led to slower growth and there-

fore response curves are shifted towards lower doses. For the healthy cells, variation

of nutrients/oxygen consumption rate, η2, is observed to produce a small difference in

tumor growth, but almost no effect on the response curve (Figure 4.16). Regarding

the cell density parameter, ρ, (Figure 4.21) high values lead to smaller tumors, but no
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Table 4.2: List of parameters values (min, init and max) used for the parametric sensitivity
analysis, together with the corresponding TCD50 values obtained. The uncertainty (for a 95%
level of confidence) of the calculated TCD50 value is shown, only for the one corresponding
to the initial parameter value. Parameter value variation in percentage is also shown for each
parameter.

Symbol
Parameter value Mean %

variation

TCD50 (Gy)

min init max min init max

DTp 1.32 1.4 1.49 6 61.48

59.70

(± 1.09)

58.05

γ0h 0.02 0.20 0.55 132 59.31 59.88

γ1 5.0e-4 5.0e-3 31.8.0e-3 313 59.94 56.73

Ch 0.1 1 10 495 58.91 58.75

R 2.10 2.4 2.70 12.5 61.31 58.27

Mth 1.85 2 2.20 8.7 61.37 57.65

C0 6.61e-7 6.61e-06 19.00e-6 138 57.94 63.77

C1 4.51e-2 4.62e-2 4.72e-2 2.3 57.30 61.24

η1 1.92e-7 1.96e-07 2.00e-7 2 61.24 56.73

η2 1.7e-8 1.7e-07 1.7e-6 495 60.15 58.97

λ 4.59 4.69 4.81 2.3 61.76 56.85

a 3.04e-6 3.11e-06 3.18e-6 2.3 57.65 61.25

εξ 3.08 3.17 3.25 2.6 57.42 61.20

εδ 0.07 0.7 7.00 495 58.79 59.53

ρ 0.89e8 1e8 1.13e8 12 58.79 60.16

significant difference in the TCD50 value is observed. Finally, the parameters standing

for the healthy cells growth rate, γ0h, the necrotic cells ground elimination, εδ, and the

healthy tissue apoptosis rate factor, Ch, (Figures 4.8, 4.20 and 4.10) showed to have

no effect on the tumor evolution and response, in the ranges studied.

The parameters values (min, init and max) used for the parametric sensitivity analysis,

and the corresponding values of TCD50 resulted from the response simulations for each

parameter value, are summarized in Table 4.2. The variation of the parameter value in

percentage is also shown (column 5). This number corresponds to the average value

of the percent variation in both directions.
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5. Discussion

5.1 The tumor model

A model of tumor growth and tumor response to radiotherapy treatment was developed

and studied. With the simulations performed it was verified that the model is able to

adequately reflect well known tumor behaviors such as: initial exponential growth and

proliferation saturation due to deprivation of nutrients and oxygen; tumor regression as

a response to radiation, and the effect of hypoxia on the tumor response to treatment.

The model agrees within uncertainties with pretreatment experimental data of tumor

growth and, in some cases, with radiation treatment tumor response data. Never-

theless, there is scarce bibliography to assure the clinical significance of the values

associated in this thesis to some parameters. This study included the development of

a tool to visually analyze how the model parameters affect tumor growth and response

to treatment. In the following lines, a discussion about some relevant biological aspects

related to certain model parameters or assumptions is presented.

5.1.1 Tumor composition: proportion of cancer and healthy cells

Solid tumors are complex structures composed of cancer (neoplastic) cells and stroma,

in variable proportions. The stroma is the supportive tissue of neoplastic cells and

comprises extracellular matrix components (e.g., proteins, collagen) and nonmalignant

cells such as fibroblasts, blood vessels, inflammatory cells, macrophages, among oth-

ers. Tumor cells can be classified in proliferating and non-proliferating cells [39]. Within

the first ones, one can find: cancer stem cells, which have unlimited proliferative ca-

pacity, responsible for initiating and driving tumor growth, and finitely proliferating cells.

The proportion of cancer and normal cells within a tumor is not clearly established.

Previous published studies state that surrounding stroma (therefore, non-cancer cells)

is reduced in squamous cell carcinomas [40] while other authors suggest that, for many

tumor types, most of the cells that comprises the tumor volume are not malignant [41].

What is clear is that the actual composition of the tumor microenvironment is highly

variable, with differences even seen in different areas of the same tumor [42].
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In this study, the tumor cells (P ) represent the totality of cancer cells: stem, proliferative,

and non-proliferative cells. Hence, the parameters referring to their properties stand

for an average of the individual parts. In view of the lack of clear information about

the percentage of tumor and normal (healthy) cells composing a tumor, tumor growth

was simulated from two distinct initial conditions scenarios: tumor composition of 90%

tumor cells and 10% healthy cells, and the inverse proportion. It is worth to mention

that a real human tumor might differ in composition from an encapsulated tumor (as

the xenograft model simulated here), for which a higher amount of tumor cells would

be expected. Therefore, the assumption of 90% of tumor cells composing the initial

tumor is perhaps closer to this scenario.

5.1.2 Doubling time

The doubling time (DT) is defined as the amount of time required for a quantity to dou-

ble its value. In this context, it could refer to the number of cells of a certain type, or

to a tumor volume. The DT of human tumors shows variability for different kinds of

cancer cells and tumors types [43], and also depends on whether they grow in human

patients or have been transplanted into experimental animals [14]. The doubling time

is known to be also dependent on factors such as tumor volume, nutrient concentration

[44], or tumor location [45]. The DT value should depend on the measuring time, since

DT increases with tumor volume [14, 46, 47, 48]. This is related with the growth satu-

ration usually arising from the lack of nutrients/oxygen. Although no clear specification

about the standard procedure for assessing this parameter was found, it appears that

an usual method is to measure, either the number of cells or volume, during the expo-

nential phase of the tumor growth [44, 48].

Previous studies have reported different values for the DT of the FaDu cell line, for

models in vitro (e.g., 2.08 days [49], 1.2 – 2.8 days [15]), or in vivo (e.g., 2.6 days [50],

3-4 days [51], 4 days [30], 4.48 days [37], 4.5 [52]). The in vivo values are reported as

volume doubling time, while the in vitro values, although not explicitly said, should refer

to population doubling time since it is the tumor cell line what has been proliferating.
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Equation (3.13) is commonly used to calculate the tumor cells growth rate, assuming

the exponential growth regime. Since in this model the DTp stands for the tumor cells,

this parameter should take values closer to the in vitro published values. However,

the whole reported DT range (1.2 – 4.5 days) was considered for the fitting and the

sensitivity analysis. This is justified considering the uncertainty on tumor composition

previously explained (Section 5.1.1) and by the fact that this parameter might vary

between different conditions of inoculation and others above mentioned. Note that,

with the exception of set A1, the fitted DTp values resulted within the range of the in

vitro reported values (see Table 4.1).

5.1.3 Cell density

The number of cells contained in 1 cm3 of tumor is not exactly established and therefore

it has been let as a variable in this model. Commonly, a tumor reaching 1 cm3 of

volume, corresponding approximately to 1 g of weight, is assumed to contain 109 cells

[14] although different numbers have been suggested by other studies. This variability

is reflected in other computational tumor models such as [36], where 108-109 cells for a

H&N tumor of this size is assumed. On the other hand, it has been suggested [38] that

mostly in epithelial tumors a number of 108 might be more realistic, and even more, for

desmoplastic tumors cellularity might be 107/cm3. According to this information and

assuming that different cell types have different sizes, in the present study the cellular

density of the virtual tumor is adjusted through the parameter ρ, which is allowed to

vary between 107 and 109 cells per cm3. However, a ρ value of 108 resulted from all

cases of tumor growth fitting (since this value was taken as the initial guess).

5.2 Simulations

5.2.1 Growth curves fitting

The present model was able to fit experimental curves chosen for comparison in this

study. Sets A1 and B1 differ, among others, in the DTp value, which is smaller for set

B1. This could mean that, despite initially there are only 10% of tumor cells, most of

them may be fastly proliferating cancer stem cells.
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The adjustment of the parameters for sets A2 and B2 was performed manually in order

to change the minimum number of parameters values with respect to sets A1 and B1.

Since the fitting of the second FaDu experimental data (from Yaromina et al. [30]) was

made using only two experimental points (the initial volume and (ty,Vy)), a free param-

eter optimization (with the least square difference minimization method) may lead to a

set of parameter values with no biological meaning.

From sets 1 to sets 2, two or three parameters (DTp and εξ, or, C0, C1 and a) were

modified in order to adjust to the experimental point (ty, Vy) from [30] (see Table 4.1).

Although it is the same tumor cell line as in [29], 1 and 2 refer to different experimental

settings (different animals, different tumor sizes, etc.), hence it seems reasonable to

get parameters values that are slightly different. Other parameters could have been

varied from sets 1 to sets 2, since several combinations of parameter values can be

found to fit the experimental curves.

5.2.2 Tumor response to a radiotherapy treatment

5.2.2.1 Evolution during and after a radiotherapy treatment

The evolution of the virtual tumors under a radiotherapy treatment of 30 fractions was

simulated. From Figure 4.5 it is observed that after the end of the treatment, the num-

ber of cells increases again if any cell, cancer or healthy, survives. This is in agreement

with the definition of tumor control: killing of all tumor cells.

Regarding the tumor microenvironment variations, in Figure 4.5 it is also observed

that, after the first treatment fraction, the nutrient and oxygen availability (M ) increases

rapidly, which is consistent with the known reoxygenation process after irradiation. This

is related with the large fraction of cells dying after every treatment fraction, which

produces a nutrients/oxygen consumption decrease, allowing this quantity to increase.

In set A2 the increment of M is rapid and reaches a value approximately equal to 44%

of the well oxygenated M value (M0 = 4). In set B2 this increment is slower than in A2

but reaches a higher M value (53% of the well oxygenated M value) after 30 fractions.

Although the process of reoxygenation is reproduced by the model, initial levels of M

are not achieved, i.e., only partial nutrients/oxygen recovery is observed. This could
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be explained by the fact that vascular cells are included as part of healthy cells in this

model, and thus they die due to radiotherapy in the same way that normal tissue does.

In reality, vascular cells are not sensitive to the radiation doses applied in standard

treatments (with 2 Gy per fraction) [53]. Consequently, there is a permanent portion of

vascular tissue that maintains certain level of nutrients and oxygen supply, which is not

simulated by this model. One way to improve this issue would be to consider vascular

cells as an independent (more radioresistant) population of cells.

5.2.2.2 TCP with and without oxygen effect

TCP curves were calculated for both cases with and without considering oxygen effect,

for the two virtual tumors A2 and B2. For both sets a shift on the TCD50 values was

observed in Figure 4.6. This is consistent with the fact that hypoxia results in an in-

creased radioresistance of the cells, which was considered in the construction of the

model (equations (3.15) - (3.17)). This shift has been previously reported in the studies

(about different tumor types) by Moulder et al. [54], Baumann et al. [55], and Wang

et al. [56], among others. From these references, it is also observed that the shift

magnitude varies between approximately 3 to 20 Gy. In the present study the resulting

shift magnitude was 15.45 Gy for set A2 and 41.21 Gy for set B2.

For set A2, the TCD50 value resulted within the range reported by Yaromina et al. [30],

(56-68 Gy), when oxygen effect is accounted for (Figure 4.6, left). Set B2 showed

higher values of TCD50, leading to agreement with the TCD50 reported in [30] when

the oxygen effect is not accounted for. However, when oxygen effect is considered,

this value exceeded the range reported in [30] by approximately 35 Gy (Figure 4.6,

right). One explanation for this could be that, despite of the lower proportion of tumor

cells considered as the initial condition in set B2, the amount of tumor cells when the

treatment starts is similar for both sets (accounting for more than the 99% of the cells),

and the proliferation rate (γ0p) is larger in set B2, due to the smaller value of the dou-

bling time parameter for this set. Additionally, set B2 presents a higher recovery of M

(thanks to the larger amount of healthy cells, compared to A2), which implies a higher

availability of nutrients/oxygen for P cells to grow.

Additionally, from Figure 4.6 it is observed that the TCP shift between both oxygen sce-
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narios is larger for set B2. This could be explained considering that, at the moment in

which treatment begins, this set presents a larger amount of healthy cells. This implies

a higher reoxygenation and nutrient supply (higher M level) and consequently a larger

cell proliferation. Then, when the oxygen effect is considered, the reduced cell killing

is combined with this fact, producing a total proliferation rate higher than the corre-

sponding one when no oxygen effect is accounted for. Consequently, tumor control is

reached later, and the shift of the response curves results larger for set B2. Initially, the

reason for the larger shift of set B2 was thought to be related with the larger tumor cells

proliferation rate (because of the smaller DTp). In order to verify this, a simulation for

set A2, with a smaller DTp value (same as in set B2) was performed. As a result, no

change on the magnitude of the shift was observed. Then, the shift amplification effect

mentioned was attributed to the difference in the reoxygenation capacity between both

sets.

The evolution of M and the radiosensitivity parameter of tumor cells, αp eff , during

treatment, as a function of dose, was also calculated. This is shown in Figures 5.1 and

5.2 of the current section. These curves were generated plotting the mean values of

M and αp eff , over the n simulations performed, at each dose level (same as used for

the TCP calculation). Curves on the left correspond to set A2 while curves on the right

correspond to set B2.
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Figure 5.1: Evolution of nutrients/oxygen (M ) (mean value over n = 80 simulations) as a
function of the total treatment dose. Uncertainty bars corresponding to a 95% confidence
interval are also included. (a) Set A2, (b) set B2.
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Figure 5.2: Evolution of radiosensitivity parameter for tumor cells (αp eff ) (mean value over
n = 80 simulations) as a function of the total treatment dose. Uncertainty bars corresponding
to a 95% confidence interval are also included. (a) Set A2, (b) set B2.

For set A2, it is observed that M takes higher values when no oxygen effect is consid-

ered. This is not observed in set B2, whereM takes similar values for both curves at the

beginning of the treatment, and later M becomes larger for the scenario considering

the effect of oxygenation. The fact thatM is higher when no oxygen effect is considered

might be explained in the following way: when cell killing does not consider the oxygen

effect, the α parameter is larger, leading to a larger cell killing. Consequently, after

irradiation a smaller number of cells remains alive, causing a decreased consumption

of nutrients/oxygen and finally leading to a larger M value. On the other hand, when

the cell killing considers the presence of oxygen, i.e., the existence of hypoxia, the α

parameter is lower, which results in less cell death (larger SF, see equation (3.15)).

This implies more nutrients/oxygen consumption and consequently smaller values of

M . This is observed in set A2 (less amount of healthy cells), where the evolution of M

seems to be dominated by the cells consumption. Instead, in set B2 (higher amount of

healthy cells than A2), the evolution of M is probably affected by the higher amount of

healthy cells. Then, a higher healthy cell SF (i.e., considering oxygen effect) results in

a higher availability of nutrients and oxygen (see equation (3.4)). This effect compen-

sates the higher consumption, reason why the order of both curves results different for

both sets.

Regarding the evolution of the radiosensitivity parameter α, from Figure 5.2, no impor-

tant difference between A2 and B2 was observed. Additionally, for both sets, when
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oxygen effect is considered, no obvious variability on the α value is appreciated during

treatment. This is because the reoxygenation effect is not large enough to produce

a variation on the α value distinguishable among the interpatient variability. This is

verified in Figure 5.3, where the evolution of this quantity, for one patient, was plotted

against dose. The α variation with respect its initial value (beginning of the treatment)

is about 3% for set A2, and 7% for set B2. Therefore, this change is concealed when

an interpatient variability of 15% is considered for the TCP calculation (in Figure 5.2).
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Figure 5.3: Evolution of radiosensitivity parameter for tumor cells (αp eff ) as a functon of dose,
for one patient. (a) Set A2, (b) set B2.

From this part of the study, it is also worth to note that for both cases, 90% and 10%

of tumor cells composing the initial tumor, the percentage of tumor cells is more than

99% at the moment of the treatment. Moreover, despite the lower percentage of healthy

cells at this time, the little difference existing between both sets on this quantity (0.02%

versus 0.2%) implied a significant difference in the response. However, this observation

should be taken with awareness of the given inter-relationship between the quantities

M and H established by this model. This difference in response might suggest that

when experimental studies of tumor control probability are performed, not only the

tumor volume matters, but also the distribution of cells within the tumor at the moment

of the treatment is relevant.
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5.2.3 Parametric sensitivity analysis

A parametric sensitivity analysis of the present model was performed. This allowed to

study the effect of the different parameters on tumor evolution and served to provide

a consistency check of the tumor model developed in this work. For the majority of

the parameters, the parameters value variation led to the expected results. In gen-

eral, higher tumor growth rates were related to higher TCD50 values. For some other

parameters, the interpretation of the resulting tumor growth and TCP curves was not

straightforward. These ones are discussed in the following subsections. It is worth to

note that, from the results displayed in Figures 4.7- 4.21, and according to the percent

variation on the parameter value shown in Table 4.2, the parameters to which the model

resulted to be more sensitive were: C1, η1, λ, a and εξ (Figures 4.14, 4.15, 4.17, 4.18

and 4.19). These parameters were increased and decreased in a range of (2-2.7)%,

which produced, on average, a variation of 3.4% on the TCD50 value.

5.2.3.1 Cell density ρ

A higher value of this parameter is observed to result in a smaller tumor volume growth

rate. Nevertheless, this is only valid when the tumor volume is studied as a function of

time. If, instead, the number of cells was analyzed, the behavior of the curves (cells

versus time) for the min and max ρ values would be inverted, i.e., the higher density

would result in a larger amount of cells within the tumor volume (data not shown).

Despite the tumor growth curve changed with the variation of ρ (see Figure 4.21),

practically no change is observed for the TCP curves (1.37 Gy of difference in TCD50).

This might be due to the fact that the difference in cell density is not large enough to

modify the response. As it is pointed out by Webb and Nahum [57], as well as by Munro

and Gilbert [58], the TCP varies slightly with the number of cells. More precisely, for

a decrease of 1 order of magnitude in cell density, the ratio of the corresponding TCP

values is about 1.69. The variation of ρ considered for this analysis was about 12%

(mean value of the min and max value with respect the initial value). This implied a

difference of 1.6% on the number of tumor cells at day 24 (when treatment starts),

which resulted in a negligible difference on the TCD50 values.
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5.2.3.2 Healthy cells consumption rate η2

As shown in Table 4.2, η2 was varied within a range of two orders of magnitude (which

implied a mean percent variation of 495%). A small difference was observed in the

tumor growth curves, between the minimum and maximum values, and no change in

TCP was appreciated (Figure 4.16). However, the maximum value of this parameter, for

which the corresponding growth curve is shifted with respect the other ones, exceeds

the value of the consumption rate of tumor cells (by 1 order of magnitude). This would

not in agreement with a real scenario, where tumor cells usually have a higher nutrients

(such as glucose) consumption [59].

5.2.3.3 Parameters with negligible impact

The parameters γ0h, corresponding to the grotwh rate of the healthy cells, Ch, standing

for the healthy tissue apoptosis rate (compared to γ1), and εδ, which accounts for the

ground elimination of necrotic cells, turned out to have no effect on the growth and

response curves in the range of values here examined (Figures 4.8, 4.10 and 4.20).

Note that the parameter value variation was of more than 100% in the three cases.

Therefore, the model might be simplified by fixing the value of these parameters. For

example, the apoptosis rate could be the same for both type of cells, the healthy cell

growth rate could be setted as half the value of the tumor cell growth rate, and the εδ

parameter value could be fixed in some value within the range studied (for example,

0.5).

5.3 Limitations of this study

The model developed in this study helps to better understand tumor growth and re-

sponse to radiotherapy, focusing on how different biological mechanisms are involved

in tumor progression. However, as any mathematical model, there are limitations re-

lated with its implementation. These will be discussed in this section.

Some parameters included in this model have not been validated before. Conse-

quently, it is a model containing some free parameters, which introduces a significant

degree of degeneration. This implies that more than one combination of parameter
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values allows to fit the experimental data of tumor growth and treatment response.

Therefore, those values have to be carefully chosen from reasonable ranges based on

biological information, which is currently limited.

Another limitation comes from the lack of consideration of the spatial dimension. The

model only considers the overall status of the tumor size. Therefore, there is no infor-

mation about the spatial distribution of tumor components, and no insight about how

microscopic features of tumor composition and evolution are related with the macro-

scopic behavior.

This model considers that the tumor is composed by tumor and healthy cells, but it

does not consider different kinds of subpopulations within the tumor cells. Additionally,

there is uncertainty regarding the percentage of tumor and normal cells composing a

tumor. This was only partially assessed comparing cases A and B in this study. Also,

the model does not reproduce the complete reoxygenation proccess (i.e., recovery of

nutrients/oxygen initial level) after irradiation, probably due to the fact that vascular

cells are included within the healthy cells, therefore they die due to radiation as healthy

tissue does.

The model is able to fit to available experimental data on tumor growth, and it also

reproduces some experimental response data, finding agreement within uncertainties.

However, no complete data sets, including growth and response for the same tumor,

were found. Therefore, tumor growth and tumor response curves were compared with

data of the same tumor type but from different studies. Only limited information about

tumor growth was available for the response data set. A more correct validation of the

model with experimental data would be possible if both sets of curves, from the same

study, were available.

There are many biological mechanisms involved in tumor growth and response, a lot

of them which are not completely understood today, such as the immune effect [60].

In a similar manner, clinical studies and data addressing these particular processes

are still incomplete. Mathematical modeling is subject to the current understanding

and therefore must make assumptions and simplifications of incompletely understood
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biological processes.

53



6. Conclusion

A mathematical non-spatial model to simulate tumor growth and response to radio-

therapy treatment was developed. A fitting to experimental tumor growth curves was

performed in order to adjust the model parameters. The model is able to reproduce

tumor behavior and to fit specific experimental data of tumor growth. In parallel, an

open-source interface (coded in python), which allows to interactively study the impact

of the different parameters in the tumor growth, was created. This tool might be spe-

cially useful as complementary material for radiobiology students as it helps to visualize

the effect of different biological mechanisms in tumor growth.

Simulations of tumor response to radiotherapy were performed, with and without con-

sidering the effect of the oxygen on the cell killing. A shift on the TCP curves between

both scenarios was verified. The response to treatment was found to be significantly

sensitive to the amount of healthy cells within the tumor at the moment of irradiation.

When oxygen effect was considered, the TCD50 value resulted within the range ob-

served on the experimental data with which it was compared. The sensitivity of the

model to the different parameters was also studied. In general, when the parameter

variation implied higher tumor growth, higher TCD50 values were observed. The pa-

rameters C1, η1, λ, a and εξ, were found to be the ones to which the model is more

sensitive. The parameters γ0h, Ch and εδ resulted to have negligible impact on the tu-

mor growth and response.

The model developed was found to be significantly sensitive to the amount of healthy

cells included in the tumor volume. The reoxygenation process after irradiation is how-

ever not completely reproduced by the model, probably because of the killing of vascu-

lar cells, considered as healthy cells.

The model developed allows to perform radiobiology studies and to compare results

with different experimental data. It is a tool available for free use (the main code is

included in the Appendix), versatile and easily editable to perform different simulations

upon user requirement.
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7. Future work

The developed model might be expanded to explore additional biological aspects and

better reproduce tumor evolution.

The present model allows to easily change the treatment fraction size. Therefore, future

studies exploring the outcome under other fractionation schedules can be performed.

It would be also possible and interesting to study the response if the two cases of tu-

mor composition considered in this study were defined at the moment when treatment

starts, instead of being the tumor condition at time zero.

Regarding the model construction, it would be possible to simplify this model, for in-

stance, by setting to constant values those parameters whose variation did not show

great impact neither in tumor growth nor in response. This, in turn, would allow to better

understand the behavior of the remaining parameters. At the same time, comparison

of the model with more experimental data might be useful to identify the variability of

the different parameters values between tumors, perhaps also allowing to fix certain

model parameters values. Certainly, better knowledge about the mechanisms involved

in tumor progression, allowing to establish more specific ranges of parameters values,

is required in order to reduce the degree of degeneration of the model.

Another way to improve the present model might be to incorporate vascular cells as an

independent quantity from healthy cells, therefore allowing to assign them a different

radiosensitivity parameter. This could be significant for a better simulation of the pro-

cess of reoxygenation after irradiation.

Finally, the incorporation of the spatial dimension into the model represents the largest

future refinement with which the present model may be improved.
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9. Appendix

9.1 Python interactive tool code

%m a t p l o t l i b i n l i n e

import numpy as np

import pylab as p l t

from i pyw idgets import *
from sc ipy . i n t e g r a t e import ode in t

from IPython . d i sp lay import d i sp lay

# Parameter i n i t i a l values ( d=days )

DTp = 2.0 # Doubl ing t ime tumor c e l l s ( d )

y0h = 0.2 # P r o l i f e r a t i o n ra te hea l thy c e l l s ( 1 / d )

y1 = 5.0e−3 # Apoptosis ra te tumor c e l l s ( 1 / d )

Ch = 1.0 # Apoptosis ra te hea l thy c e l l s ( compared to y1 )

R = 2.4 # Smoothing parameter

Mth = 2.0 # Hypoxia th resho ld

C0 = 6.61e−6 # Angiogenic capac i t y o f hea l thy t i s s u e ( 1 / d )

C1 = 4.62e−2 # Link between n u t r i e n t s / v a s u l a r i z a t i o n and EGFs ( 1 / d )

eta1 = 1.96e−7 # N u t r i e n t consumption ra te by tumor c e l l s ( 1 / d )

eta2 = 1.70e−7 # N u t r i e n t consumption ra te by hea l thy c e l l s ( 1 / d )

lam = 4.7 # E l i m i n a t i o n ra te o f angiogenic growth f a c t o r s i g n a l ( 1 / d )

a = 3.11e−6 # Angiogenic e x c i t a b i l i t y ( 1 / d )

epsx i = 2.71 # Ground produc t ion o f growth f a c t o r by cancer c e l l s

epsdel ta = 0.7 # Ground e l i m i n a t i o n o f n e c r o t i c c e l l s

r ho_ fac to r = 1.0 # Factor to change the c e l l dens i t y

# D e f i n i t i o n o f the f u n c t i o n to s imu la te and p l o t tumor growth curve

def p l o t _ e v o l u t i o n (R, Mth , DTp, y0h , y1 , Ch, C0, C1, eta1 , eta2 , \

lam , a , epsxi , epsdel ta , r ho_ fac to r ) :

# P r o l i f e r a t i o n ra te o f tumor c e l l s

y0p = np . log ( 2 ) / DTp

# E l i m i n a t i o n ra te o f n e c r o t i c c e l l s

de l t a = np . log ( 2 ) / ( 7 * ( epsdel ta+Mth ) )

# D e f i n i t i o n o f growth and death ra tes f u n c t i o n s f o r tumor c e l l s
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def ypp (M) :

i f M <= 0:

return 0

else :

return y0p * ( 1 . + np . tanh (R* (M−Mth ) ) ) / 2 .

def ypd (M) :

E = −np . tanh (R* (M−Mth ) )

i f E>0:

return y1 *E

else :

return 0

# D e f i n i t i o n o f growth and death ra tes f u n c t i o n s f o r hea l thy c e l l s

def yhp (M,H) :

i f M <= 0:

return 0

else :

return y0h * ( 1 . + np . tanh (R* (M−Mth ) ) ) / 2 . * ( 1 −H/H0)

def yhd (M) :

E = −np . tanh (R* (M−Mth ) )

i f E>0:

return Ch* y1 *E

else :

return 0

# D e f i n i t i o n o f the ra te o f n u t r i e n t consumption f o r tumor c e l l s

def eta_p (M) :

i f M <= 0:

return 0

else :

return eta1 *np . tanh (M/ Mth )

# D e f i n i t i o n o f the ra te o f n u t r i e n t consumption f o r hea l thy c e l l s

def eta_h (M) :

i f M <= 0:

return 0

else :

return eta2 *np . tanh (M/ Mth )
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# I n i t i a l condi tons ( Bothwel l e t a l . )

P0 = rho_ fac to r *0 .90*67.77 e5

H0 = rho_ fac to r *0 .10*67.77 e5

N0 = 0.

M0 = 2.0*2

Xi0 = 2.

# Exper imental data

t ime = [−1 , 3 , 5 , 8 , 11.0113 , 14.0123 , 17.0132 , 20.0142]

volume = [67.7699 , 227.738 , 312.057 , 370.37 , 445.232 , 643.814 , 814.815 , 758.865]

yneg = [44.9173 , 122.143 , 177.305 , 202.522 , 121.355 , 11.8203 , 159.18 , 171.001]

ypos = [49.6454 , 121.355 , 178.881 , 204.098 , 123.719 , 12.6084 , 157.604 , 173.365]

t i m e _ s h i f t = 1 # f o r s h i f t i n g the curve along the x ax is

t ime = np . asarray ( t ime ) [ : ] + t i m e _ s h i f t

# Def ine system of d i f f e r e n t i a l equat ions desc r i b ing the tumor growth

def dW_dt (W, t ) :

Wdot = np . zeros ( 5 )

Wdot [ 0 ] = ( ypp (W[3] ) − ypd (W[ 3 ] ) ) *W[ 0 ] # Tumor c e l l s

Wdot [ 1 ] = ( yhp (W[ 3 ] ,W[1] ) − yhd (W[ 3 ] ) ) *W[ 1 ] # Healthy c e l l s

Wdot [ 2 ] = ypd (W[ 3 ] ) *W[ 0 ] + yhd (W[ 3 ] ) *W[ 1 ] \

− de l t a * ( epsdel ta+W[ 3 ] ) *W[ 2 ] # Necro t i c c e l l s

Wdot [ 3 ] = C0*W[1 ] * (1 . −W[ 3 ] / ( 2 * Mth ) ) − eta_p (W[ 3 ] ) *W[ 0 ] \

− eta_h (W[ 3 ] ) *W[ 1 ] + C1*W[ 4 ] # N u t r i e n t s / v a s c u l a r i z a t i o n

Wdot [ 4 ] = a*W[ 0 ] * ( 1 . + epsxi−ypp (W[ 3 ] ) / ( y0p+0.00001))− lam *W[ 4 ] # EGF

return Wdot

# Solve the ODE system

t = np . l i nspace (0 ,40 ,400)

W0 = [ P0 , H0, N0,M0, Xi0 ]

Wsol = ode in t ( dW_dt , W0, t )

# Store s o l u t i o n as volume values (mm^3)

P = Wsol [ : , 0 ] * ( 1 0 0 0 / 1 e8 ) / r ho_ fac to r

H = Wsol [ : , 1 ] * ( 1 0 0 0 / 1 e8 ) / r ho_ fac to r

N = Wsol [ : , 2 ] * ( 1 0 0 0 / 1 e8 ) / r ho_ fac to r

M = Wsol [ : , 3 ]

Xi = Wsol [ : , 4 ]

# Def ine ( s imulated ) tumor volume
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tumor = (P + H + N)

# P lo t s imulated tumor growth curve toge ther w i th the exper imenta l growth curve

p l t . p l o t ( t , tumor , l a b e l = " Tumor " )

p l t . e r r o rba r ( t ime , volume , ye r r =[ yneg , ypos ] , marker= ’ o ’ , \

l i n e s t y l e = ’− ’ , co l o r = ’ k ’ , capsize =5)

p l t . p l o t ( t , P , l a b e l = "P" )

p l t . p l o t ( t , H, l a b e l = "H" )

p l t . p l o t ( t , N, l a b e l = "N" )

p l t . t i c k l a b e l _ f o r m a t ( s t y l e = ’ s c i ’ , ax is= ’ y ’ , s c i l i m i t s = (0 ,0 ) )

p l t . x l a b e l ( " Time ( days ) " )

p l t . y l a b e l ( " Volume (mm^3) " )

p l t . g r i d ( )

p l t . legend ( )

# Def ine the s l i d e r but tons o f each model parameter . S p e c i f i c a t i o n o f the range

# of values , the step f o r vary ing the parameter value and the i n i t i a l d e f a u l t

# parameter value .

R_s l ide r = F l o a t S l i d e r (min=0 , max=15 , step =0.1 , value=R)

Mth_s l ide r = F l o a t S l i d e r (min=0.5 , max=4 , step =0.05 , value=Mth )

DTp_sl ider = F l o a t S l i d e r (min=0.5 , max=5.5 , step =0.01 , value=DTp)

y0h_s l i de r = F l o a t S l i d e r (min=0 , max=1.5 , step =0.01 , value=y0h )

y 1 _ s l i d e r = F l o a t S l i d e r (min=0 , max=28 , step =0.1 , value=y1 )

Ch_s l ider = F l o a t S l i d e r (min=0.1 , max=10 , step =0.1 , value=Ch)

C0_s l ider = F l o a t S l i d e r (min=0 , max=50 , step =0.5 , value=C0)

C1_s l ider = F l o a t S l i d e r (min=0 , max=8 , step =0.01 , value=C1)

e t a 1 _ s l i d e r = F l o a t S l i d e r ( min=0 , max=4 , step =0.01 , value=eta1 )

e t a 2 _ s l i d e r = F l o a t S l i d e r ( min=0 , max=16 , step =0.01 , value=eta2 )

lam_s l i de r = F l o a t S l i d e r ( min=0 , max=10 , step =0.01 , value=lam )

a _ s l i d e r = F l o a t S l i d e r ( min=0 , max=10 , step =0.01 , value=a )

e p s x i _ s l i d e r = F l o a t S l i d e r (min=1 , max=5 , step =0.01 , value=epsx i )

e p s d e l t a _ s l i d e r = F l o a t S l i d e r (min=0 , max=5 , step =0.01 , value=epsdel ta )

r h o _ f a c t o r _ s l i d e r = F l o a t S l i d e r (min=0.1 , max=10 , step =0.01 , value= rho_ fac to r )

# Create i n t e r a c t i v e p l o t

i n t e r a c t ( p l o t _e vo l u t i on , R=R_sl ider , Mth=Mth_s l ider , DTp=DTp_sl ider , \

y0h=y0h_s l ider , y1=y1_s l ide r , Ch=Ch_sl ider , C0=C0_sl ider , C1=C1_sl ider , \

eta1= e ta1_s l i de r , eta2= e ta2_s l i de r , lam= lam_s l ider , a=a_s l i de r , \

epsx i= epsx i_s l i de r , epsdel ta= epsde l t a_s l i de r , r ho_ fac to r = r h o _ f a c t o r _ s l i d e r ) ;
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9.2 Matlab main codes

9.2.1 Tumor growth

% TUMOR GROWTH SIMULATION

% This f u n c t i o n i s c a l l e d from another f i l e which conta ins the parameter

% values and the i n i t i a l cond i t i ons ( IC ) taken from the exper imenta l data

function F = TumorGrowth (DTp, y0h , y1 , Ch, R, Mth , C0, C1, . . .

eta1 , eta2 , lambda , a , epsxi , . . .

epsdel ta , rho_ fac to r , IC )

% FUNCTION INPUTS :

% y0p : Doubl ing t ime tumor c e l l s ( d=days )

% y0h : P r o l i f e r a t i o n ra te hea l thy c e l l s ( 1 / d )

% y1 : Apoptosis ra te tumor c e l l s ( 1 / d )

% Ch : Apoptosis ra te hea l thy c e l l s ( compared to y1 )

% R : Smoothing parameter

% Mth : Hypoxia th resho ld

% C0 : Angiogenic capac i t y o f hea l thy t i s s u e ( 1 / d )

% C1 : L ink between n u t r i e n t s / v a s u l a r i z a t i o n and EGFs ( 1 / d )

% eta1 : N u t r i e n t consumption ra te by tumor c e l l s ( 1 / d )

% eta2 : N u t r i e n t consumption ra te by hea l thy c e l l s ( 1 / d )

% lambda : E l i m i n a t i o n ra te o f angiogenic growth f a c t o r s i g n a l ( 1 / d )

% a : Angiogenic e x c i t a b i l i t y ( 1 / d )

% epsxi : Ground produc t ion o f growth f a c t o r by cance

% epsdel ta : Ground e l i m i n a t i o n o f n e c r o t i c c e l l s

% rho_ fac to r : Factor to change the c e l l dens i t y

% I n i t i a l cond i t i ons

P0 = IC ( 1 ) * rho_ fac to r ;

H0 = IC ( 2 ) * rho_ fac to r ;

IC = [ P0 ;H0 ; IC ( 3 ) ; IC ( 4 ) ; IC ( 5 ) ] ;

% D e f i n i t i o n o f ra tes o f n e c r o t i c c e l l s reabsorp t ion and tumor c e l l s growth

de l t a = log ( 2 ) / ( 7 * ( epsdel ta+Mth ) ) ;

y0p = log ( 2 ) / DTp ;

% D e f i n i t i o n o f growth and death ra tes fu n c t i o n s f o r tumor c e l l s

function gamma_pp = ypp (M)

i f (M<=0)
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gamma_pp = 0;

else

gamma_pp = y0p *(1+ tanh (R* (M−Mth ) ) ) / 2 ;

end

end

function gamma_pd = ypd (M)

E = −tanh (R* (M−Mth ) ) ;

i f (E>0)

gamma_pd = y1 *E ;

else

gamma_pd = 0;

end

end

% D e f i n i t i o n o f growth and death ra tes fu n c t i o n s f o r hea l thy c e l l s

function gamma_hp = yhp (M,H,H0)

i f (M<=0)

gamma_hp = 0;

else

gamma_hp = y0h * ( (1+ tanh (R* (M−Mth ) ) ) / 2 ) * ( 1 −H/H0 ) ;

end

end

function gamma_hd = yhd (M)

E = −tanh (R* (M−Mth ) ) ;

i f (E>0)

gamma_hd = Ch* y1 *E ;

else

gamma_hd = 0;

end

end

% D e f i n i t i o n o f the ra te o f n u t r i e n t consumption f o r tumor c e l l s

function Eta_p = eta_p (M)

i f (M<=0)

Eta_p = 0;

else

Eta_p = eta1 * tanh (M/ Mth ) ;

end
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end

% D e f i n i t i o n o f the ra te o f n u t r i e n t consumption f o r hea l thy c e l l s

function Eta_h = eta_h (M)

i f (M<=0)

Eta_h = 0;

else

Eta_h = eta2 * tanh (M/ Mth ) ;

end

end

% D e f i n i t i o n o f the System of ODEs desc r ib ing tumor growth

function Wdot = f ( t ,W)

Wdot (1 ,1 ) = ( ypp (W(4))−ypd (W( 4 ) ) ) *W( 1 ) ;

Wdot (2 ,1 ) = ( yhp (W( 4 ) ,W( 2 ) ,H0)−yhd (W( 4 ) ) ) *W( 2 ) ;

Wdot (3 ,1 ) = ypd (W( 4 ) ) *W( 1 ) + yhd (W( 4 ) ) *W( 2 ) − de l t a * ( epsdel ta+W( 4 ) ) *W( 3 ) ;

Wdot (4 ,1 ) = C0*W(2)*(1 −W( 4 ) / ( 2 * Mth))−eta_p (W( 4 ) ) *W(1)−eta_h (W( 4 ) ) *W(2)+C1*W( 5 ) ;

Wdot (5 ,1 ) = a*W( 1 ) * (1 + epsxi−ypp (W( 4 ) ) / ( y0p+0.00001))− lambda *W( 5 ) ;

end

% Time step and t ime per iod f o r so l v i ng

increment = 0 .01 ;

tspan = 0: increment : 4 0 ;

% Solv ing the System of ODEs

[ t ,W] = ode45 (@( t ,W) f ( t ,W) , tspan , IC ) ;

% Store s o l u t i o n i n new va r i a b l e s .

% Convert to volume values (mm^3) f o r P, H and N c e l l s .

P = W( : , 1 ) * ( 1 0 0 0 / 1 e8 ) / r ho_ fac to r ;

H = W( : , 2 ) * ( 1 0 0 0 / 1 e8 ) / r ho_ fac to r ;

N = W( : , 3 ) * ( 1 0 0 0 / 1 e8 ) / r ho_ fac to r ;

M = W( : , 4 ) ;

Xi = W( : , 5 ) ;

% Define tumor volume

tumor = P + H + N;

% FUNCTION OUTPUT

F = [ t ,P ,H,N,M, Xi ] ;

end
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9.2.2 Tumor response to radiotherapy

% TUMOR GROWTH AND RADIOTHERAPY TREATMENT

% This f u n c t i o n i s c a l l e d from another f i l e which conta ins the parameter

% values ( o f growth and response ) and the i n i t i a l cond i t i ons ( IC ) taken

% from the exper imenta l data .

function F = Growth_Radiotherapy (DTp, y0h , y1 , Ch, R, Mth , C0, C1, eta1 , eta2 , . . .

lambda , a , epsxi , epsdel ta , OERm, d , alpha_p , alpha_h , . . .

alphabeta_p , alphabeta_h , rho_ fac to r , IC , OxygenEff )

% I n i t i a l cond i t i ons

P0 = IC ( 1 ) * rho_ fac to r ;

H0 = IC ( 2 ) * rho_ fac to r ;

IC = [ P0 ;H0 ; IC ( 3 ) ; IC ( 4 ) ; IC ( 5 ) ] ;

% D e f i n i t i o n o f ra te o f n e c r o t i c c e l l s reabsorp t ion and ra te o f

% tumor c e l l s growth

de l t a = log ( 2 ) / ( 7 * ( epsdel ta+Mth ) ) ;

y0p = log ( 2 ) / DTp ;

% Determine i f oxygen e f f e c t would be considered

i f ( OxygenEff ==0)

km = 0;

else

km = Mth * (OERm−2);

end

% D e f i n i t i o n o f growth and death ra tes fu n c t i o n s f o r tumor c e l l s

function gamma_pp = ypp (M)

i f (M<=0)

gamma_pp = 0;

else

gamma_pp = y0p *(1+ tanh (R* (M−Mth ) ) ) / 2 ;

end

end

function gamma_pd = ypd (M)

E = −tanh (R* (M−Mth ) ) ;

i f (E>0)
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gamma_pd = y1 *E ;

else

gamma_pd = 0;

end

end

% D e f i n i t i o n o f growth and death ra tes fu n c t i o n s f o r hea l thy c e l l s

function gamma_hp = yhp (M,H,H0)

i f (M<=0)

gamma_hp = 0;

else

gamma_hp = y0h * ( (1+ tanh (R* (M−Mth ) ) ) / 2 ) * ( 1 −H/H0 ) ;

end

end

function gamma_hd = yhd (M)

E = −tanh (R* (M−Mth ) ) ;

i f (E>0)

gamma_hd = Ch* y1 *E ;

else

gamma_hd = 0;

end

end

% D e f i n i t i o n o f the ra te o f n u t r i e n t consumption f o r tumor c e l l s

function Eta_p = eta_p (M)

i f (M<=0)

Eta_p = 0;

else

Eta_p = eta1 * tanh (M/ Mth ) ;

end

end

% D e f i n i t i o n o f the ra te o f n u t r i e n t consumption f o r hea l thy c e l l s

function Eta_h = eta_h (M)

i f (M<=0)

Eta_h = 0;

else

Eta_h = eta2 * tanh (M/ Mth ) ;

end
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end

% D e f i n i t i o n o f the OER as a f u n c t i o n o f M

function OER_value = OER(M)

OER_value = (M*OERm+km ) / (M+km ) ;

end

% D e f i n i t i o n o f the Alpha parameter as a func ion o f M

function a lpha_e f f = Alpha (M, alpha )

a lpha_e f f = alpha *OER(M) /OERm;

end

% D e f i n i t i o n o f the AlphaBeta parameter as a func ion o f M

function a lphabeta_e f f = AlphaBeta (M, alphabeta )

a lphabeta_e f f = alphabeta *OERm/OER(M) ;

end

% D e f i n i t i o n o f s u r v i v a l f r a c t i o n o f the LQ model

function s f = S(M, alpha , alphabeta )

s f = exp(−Alpha (M, alpha ) * ( d+d*d / ( AlphaBeta (M, alphabeta ) ) ) ) ;

end

% D e f i n i t i o n o f the System of ODEs, desc r ib ing tumor growth before rad io therapy

% treatment and between t reatment f r a c t i o n s o f i r r a d i a t i o n .

function Wdot = f ( t ,W)

Wdot (1 ,1 ) = ( ypp (W(4))−ypd (W( 4 ) ) ) *W( 1 ) ;

Wdot (2 ,1 ) = ( yhp (W( 4 ) ,W( 2 ) ,H0)−yhd (W( 4 ) ) ) *W( 2 ) ;

Wdot (3 ,1 ) = ypd (W( 4 ) ) *W( 1 ) + yhd (W( 4 ) ) *W( 2 ) − de l t a * ( epsdel ta+W( 4 ) ) *W( 3 ) ;

Wdot (4 ,1 ) = C0*W(2)*(1 −W( 4 ) / ( 2 * Mth))−eta_p (W( 4 ) ) *W(1)−eta_h (W( 4 ) ) *W(2)+C1*W( 5 ) ;

Wdot (5 ,1 ) = a*W( 1 ) * (1 + epsxi−ypp (W( 4 ) ) / ( y0p+0.00001))− lambda *W( 5 ) ;

end

% RADIOTHERAPY TREATMENT IMPLEMENTATION

% Time step and t ime per iod f o r so l v i ng

increment = 0 . 1 ;

tspan = 0: increment :140 ;

W = [ ] ;

t = [ ] ;

i n de x _ i n f = 1 ;

c u r r e n t _ f r a c t i o n = 0;
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dose_level = 0 ;

count_days = 0;

% Radiotherapy s t a r t s a t day 24. 30 of 2 Gy are de l i ve red ( i n t h i s example ) ,

% wi th no t reatment dur ing " weekends " .

for i = 240:641

i f (mod( tspan (1 , i ) ,1)==0 && tspan (1 , i )~=0)

count_days = count_days +1;

i f ( mod( count_days +1 ,7) ~=0 && mod( count_days ,7)~=0 )

c u r r e n t _ f r a c t i o n = c u r r e n t _ f r a c t i o n +1;

tspan_aux = tspan (1 , i n d e x_ i n f : i ) ;

[ t_aux , W_aux ] = ode45 (@( t ,W) f ( t ,W) , tspan_aux , IC ) ;

t = [ t ; t_aux ] ;

W = [W; W_aux ] ;

% Cel l k i l l i n g

N_p = round (W( i , 1 ) ) ;

N_h = round (W( i , 2 ) ) ;

Sp = S(W( i , 4 ) , alpha_p , alphabeta_p ) ;

Sh = S(W( i , 4 ) , alpha_h , alphabeta_h ) ;

vec_randoms = rand (1 ,N_p ) ;

% Computation o f l i v i n g and death c e l l s a f t e r t rea tment f r a c t i o n

P_al ive = length ( f ind ( vec_randoms<=Sp ) ) ;

P_dead = length ( f ind ( vec_randoms>Sp ) ) ;

vec_randoms = rand (1 ,N_h ) ;

H_al ive = length ( f ind ( vec_randoms<=Sh ) ) ;

H_dead = length ( f ind ( vec_randoms>Sh ) ) ;

% Update the i n i t i a l cond i t i ons f o r so l v i ng the ODE system

P0 = P_al ive ;

H00 = H_al ive ;

N0 = W( i , 3 ) + P_dead + H_dead ;

M0 = W( i , 4 ) ;

Xi0 = W( i , 5 ) ;

IC = [ P0 ; H00 ;N0 ;M0; Xi0 ] ;

% Update the cu r ren t dose l e v e l

i n de x _ i n f = i +1;

dose_level = c u r r e n t _ f r a c t i o n * 2 ;

end

end

end
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% To compute e v o l u t i o n a f t e r t rea tment ends

tspan_aux2 = tspan (1 , i n d e x _ i n f : size ( tspan , 2 ) ) ;

[ t_aux , W_aux ] = ode45 (@( t ,W) f ( t ,W) , tspan_aux2 , IC ) ;

t = [ t ; t_aux ] ;

W = [W; W_aux ] ;

% Store s o l u t i o n . Convert to volume values (mm^3) f o r P, H and N c e l l s .

P = W( : , 1 ) * ( 1 0 0 0 / 1 e8 ) / r ho_ fac to r ;

H = W( : , 2 ) * ( 1 0 0 0 / 1 e8 ) / r ho_ fac to r ;

N = W( : , 3 ) * ( 1 0 0 0 / 1 e8 ) / r ho_ fac to r ;

M = W( : , 4 ) ;

Xi = W( : , 5 ) ;

% D e f i n i t i o n o f tumor volume

tumor = P + H + N;

% Funct ion OUTPUT

F = [ t , tumor ,P,H,N,M, Xi ] ;

end

9.2.3 TCP simulation

% TCP SIMULATION

% This f u n c t i o n i s c a l l e d from another f i l e which conta ins the values o f the growth

% parameters to be used , the i n i t i a l cond i t ions , the number o f p a t i e n t s (NumOfRuns)

% to be simulated , and the value o f the boolean ’ OxygenEff ’ which t e l l s whether the

% oxygen e f f e c t must be considered or not .

function [ TCPcurve ] = TCP(DTp, y0h , y1 , Ch, R, Mth , C0, C1, eta1 , eta2 , lambda , . . .

a , epsxi , epsdel ta , rho_ fac to r , IC , OxygenEff , NumOfRuns)

% I n i t i a l cond i t i ons

P0 = IC ( 1 ) * rho_ fac to r ;

H0 = IC ( 2 ) * rho_ fac to r ;

IC = [ P0 ;H0 ; IC ( 3 ) ; IC ( 4 ) ; IC ( 5 ) ] ;

% D e f i n i t i o n o f ra te o f n e c r o t i c c e l l s reabsorp t ion and ra te o f

% tumor c e l l s growth

de l t a = log ( 2 ) / ( 7 * ( epsdel ta+Mth ) ) ;

y0p = log ( 2 ) / DTp ;
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% Radiotherapy parameters

OERm = 2 . 5 ; % OER maximum value

d = 2; % Frac t i on s ize

alpha_p = 0 .41 ; % Alpha f o r tumor c e l l s

alpha_h = 0 .13 ; % Alpha f o r hea l thy c e l l s

alphabeta_p = 10; % Alpha / Beta f o r tumor c e l l s

alphabeta_h = 4 . 4 ; % Alpha / Beta f o r hea l thy c e l l s

% Parameters f o r TCP c a l c u l a t i o n

mean_alpha = alpha_p ; % Mean alpha value f o r the

% gaussian d i s t r i b u t i o n

sigma_alpha = 0.15* alpha_p ; % Sigma value f o r the gaussian

% d i s t r i b u t i o n

N = NumOfRuns ; % Number o f p a t i e n t s s imulated

tcp = 0;

s a t u r a t i o n = 0;

TCP_curve = [ ] ;

f r a c t i o n = 1;

index = 1;

% TCP c a l c u l a t i o n

while ( sa tu ra t i on <7)

dose_level = 2* f r a c t i o n ;

n_con t ro l = 0 ;

for i =1:N

% Sort alpha value ( o f tumor c e l l s ) from a gaussian d i s t r i b u t i o n

sor t_alpha_p = mean_alpha + sigma_alpha . * randn ( 1 , 1 ) ;

% Cal l " Evo lu t i on " . This f u n c t i o n ( almost equal to

% " Growth_Radiotherapy " ) s imu la te tumor ev o l u t i o n under

% rad io therapy t rea tment and stop the t rea tment when the

% dose l e v e l des i red i s reached .

% Ns : number o f tumor c e l l s a l i v e a f t e r t rea tment

Ns = Evo lu t i on ( y0p , y0h , y1 , Ch, R, Mth , de l ta , C0, C1, eta1 , . . .

eta2 , lambda , a , epsxi , epsdel ta , OERm, d , . . .

sort_alpha_p , alpha_h , alphabeta_p , alphabeta_h , . . .

IC , dose_level , OxygenEff ) ;

i f (Ns==0)

n_con t ro l = n_con t ro l +1;
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end

end

% Compute the tcp as the number o f c o n t r o l l e d cases over the t o t a l

% number o f p a t i e n t s s imulated

t cp = n_con t ro l /N;

% Create the TCP curve

TCP_curve ( index , 1 ) = dose_level ;

TCP_curve ( index , 2 ) = tcp ;

i f ( tcp ==1) , s a t u r a t i o n = s a t u r a t i o n +1; end

f r a c t i o n = f r a c t i o n +2;

index = index +1;

end

TCPcurve = TCP_curve ;

end
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