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Abstract

The oscillation of solutions of f ′′
+ A f = 0 is discussed by focusing on four separate situations. In

the complex case A is assumed to be either analytic in the unit disc D or entire, while in the real case A
is continuous either on (−1, 1) or on (0,∞). In all situations A is expected to grow beyond bounds that
ensure finite oscillation for all (non-trivial) solutions, and the separation between distinct zeros of solutions
is considered.

In the complex case, it is shown that the growth of the maximum modulus of A determines the minimal
separation of zeros of all solutions, and vice versa. This gives rise to new concepts called zero separation
exponents, which measure the separation of zeros of either all solutions or of individual analytic functions.
In D these quantities are defined in terms of the hyperbolic distance, while in the complex plane the
Euclidean distance is used. As a by-product of these findings, the 1955-result of B. Schwarz, which asserts
that supz∈D |A(z)|(1 − |z|2)2 < ∞ if and only if the zero-sequences of all solutions are separated in
the hyperbolic sense, is rediscovered. The striking plane analogue established reveals that the Euclidean
distance between all distinct zeros of every solution is uniformly bounded away from zero if and only if A
is a constant. As an outgrowth of the results, new information on the zero distribution of solutions in the
classical polynomial coefficient case is also obtained. The main results are proved by using a method of
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localization, which naturally induces characterizations of certain subclasses of locally univalent functions
in terms of the growth of their pre-Schwarzian and Schwarzian derivatives.

In the real case, it is shown that the separation of zeros of non-trivial solutions is restricted according to
the growth of A, but not conversely.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to offer a unified and consistent discussion on the oscillation of
solutions of the linear differential equation

f ′′
+ A f = 0 (1.1)

in different situations. The methods employed here give a new approach to this classical topic.
In the real case, A = A(x) is assumed to be continuous either on a finite open interval or on a
half-bounded interval. In the complex case, A = A(z) is analytic either in the open unit disc D
or in the whole complex plane C. Under these assumptions all zeros of all non-trivial solutions
of (1.1) are simple. The treatment that follows produces estimates for the separation of zeros
of non-trivial solutions in terms of the growth of the coefficient, whenever the coefficient grows
sufficiently fast permitting infinite oscillation for non-trivial solutions. In the instance of complex
differential equations the converse problem is also addressed. It turns out that lower bounds for
the separation of zeros induce growth restrictions to the coefficient. Therefore, in particular, a
one-to-one correspondence between the separation of zeros of solutions and the growth of the
maximum modulus of the coefficient is obtained. The proofs of the main results rest upon a
method of localization providing with an effective tool that takes full advantage of classical
results due to Kraus, Nehari and Sturm, which are the foundation of this study. The results and
classifications obtained are discussed by means of several non-trivial examples that also illustrate
the variety of different phenomena, with regard to the distribution of zeros of solutions, that may
occur.

Our motivation originates from the Euler differential equation

f ′′
+

c

x2 f = 0, x ∈ (0,∞). (1.2)

By [12, p. 20] it is known that, if c ≤ 1/4, then (1.2) is disconjugate, which means that every
non-trivial solution vanishes at most once. If c > 1/4, then all solutions have infinitely many
zeros by Sturm’s theorem on interlacing zeros, see [5, Chapter 2]. In fact, the fine line between
disconjugacy and infinite oscillation can be refined by means of logarithmic terms, see [12, p. 20].
The differential equation

f ′′
+

c

(1 − x2)2
f = 0, x ∈ (−1, 1), (1.3)

is an analogue of (1.2) on the interval (−1, 1), see [8, p. 161] and [35, p. 162]. Now (1.3) is
disconjugate for c ≤ 1, and for c > 1 every solution vanishes infinitely many times. Moreover,
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the hyperbolic distance between two consecutive zeros of any non-trivial solution of (1.3) is
exactly π/

√
c − 1, which is easily verified by means of [8, Eq. (2)].

In order to make more refined statements, one is led to consider coefficients of the form

A(x) =
1 + ϵ(|x |)

(1 − x2)2
, x ∈ (−1, 1),

and to determine the order to which the continuous function ϵ(r) > 0 must decay to zero
as r → 1− to give distinction between finite and infinite oscillation. By [8, Theorem 1] this
distinction is given by ϵ(r) = log−2(1 − x). Again the constant coefficient is optimal in the
sense that (1.1) becomes oscillatory, i.e., it possesses a non-trivial solution having infinitely
many zeros, if ϵ(r) = c log−2(1 − x) for any c > 1. Our intention is to analyse those cases
when the coefficient A(x) grows essentially faster than (1− x2)−2; say A(x) = (1− x2)−2−p for
p > 0. Since (1.1) is then oscillatory, it is sensible to determine lower bounds for the hyperbolic
distance between consecutive zeros. These lower bounds tend to zero near the endpoints of the
interval (−1, 1), at rates depending on the growth of A(x)(1 − x2)2 near x = ±1, and hence we
consider coefficients satisfying the growth restriction

A(x) ≤
1

ψ(|x |)2(1 − x2)2
, x ∈ (−1, 1),

where ψ = ψ(r) is a positive function approaching to zero as r → 1−. The utilized techniques
are based on localization, and they also render optimal results for half-bounded intervals, which
are modelled by (0,∞).

Considerations in D run parallel to the ones on (−1, 1). For example, if

|A(z)| ≤
1

(1 − |z|2)2
, z ∈ D, (1.4)

then every non-trivial solution of (1.1) vanishes at most once in D. In another form, this
corresponds to the well-known theorem of Z. Nehari [33, Theorem 1], which provides with a
sufficient condition for injectivity of a locally univalent meromorphic function in D in terms
of the growth of its Schwarzian derivative. If (1.4) holds only in an annulus {z ∈ D : a <

|z| < 1} for some a ∈ (0, 1), then by a result of B. Schwarz [35, Theorem 1] all non-trivial
solutions vanish at most finitely many times in D. A quantitative version of Schwarz’s theorem
[9, Theorem 1] shows that the number of zeros of non-trivial solutions of (1.1) in D is then at most
O (1/(1 − a)). As in the real case, infinite oscillation is possible provided that the numerator in
(1.4) is replaced by any constant strictly greater than 1.

The distinction between finite and infinite oscillation in the complex case is not as well
understood as in the real case. In particular, it is no longer true that

|A(z)| ≤
1 + log−2(1 − |z|)

(1 − |z|2)2
, z ∈ D,

implies finite oscillation for non-trivial solutions of (1.1). In fact, if ϵ : [0, 1) → (0,∞) is a
continuous function satisfying ϵ(r)/(1 − r) → ∞, as r → 1−, then there exists an analytic
coefficient A, depending on ϵ, such that

|A(z)| ≤
1 + ϵ(|z|)

(1 − |z|2)2
, z ∈ D,
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and (1.1) is oscillatory, see [9, Theorem 5]. An important discovery [35, Theorems 3 and 4], also
due to B. Schwarz, characterizes the separation of distinct zeros in terms of the growth of the
coefficient in a certain special case. To be more precise, this neat result states that the distance
between distinct zeros of non-trivial solutions of (1.1) is uniformly bounded away from zero in
the hyperbolic sense if and only if

sup
z∈D

|A(z)|(1 − |z|2)2 < ∞. (1.5)

For the best possible constant lower bound for the separation of zeros, under the restriction
(1.5), we refer to [26]. Corresponding to the preceding case of the real interval, we investigate
coefficients that satisfy the growth restriction

|A(z)| ≤
1

ψ(|z|)2(1 − |z|2)2
, z ∈ D,

where ψ = ψ(r) decays to zero as r → 1−. The method of localization employed on the interval
(−1, 1) for the real differential equation (1.1) not only provides with results for the separation
of zeros of non-trivial solutions of (1.1) in D with respect to the hyperbolic metric, but also
addresses via Kraus’ theorem [31] the converse direction resulting growth restrictions for the
coefficient A. This reveals the following new discovery with regards to oscillatory equations:
The growth of the maximum modulus of A determines the minimal separation of zeros of all
solutions, and vice versa. Our main result in the unit disc case is therefore a true generalization
of Schwarz’s characterization.

The counterpart of Nehari’s result in the case of the complex plane is the trivial condition
A ≡ 0. In fact, this condition corresponds to the sole disconjugate differential equation (1.1)
with an entire coefficient, see Lemma 24 below. Our analysis on the equation (1.1) with an
entire coefficient A ≢ 0 results in a one-to-one correspondence between the Euclidean distance
between zeros of non-trivial solutions and the growth of the maximum modulus of A. As an
immediate consequence of the results obtained the following striking analogue of Schwarz’s
characterization [35, Theorems 3 and 4] for the complex plane case is established: The Euclidean
distance between distinct zeros of non-trivial solutions of (1.1) is uniformly bounded away from
zero if and only if the entire coefficient A is a constant. It is worth mentioning that our analysis
on the plane case is based on the same methods that we employ in D, and therefore we strongly
rely on the classical theorems of Nehari and Kraus related to univalent functions in D.

As a byproduct of our analysis, we end up characterizing certain classes of locally univalent
functions in terms of the growth of their pre-Schwarzian and Schwarzian derivatives. These
classes generalize so-called locally uniformly univalent functions, and they are of independent
interest.

Finally, we mention that our results regarding the complex case give a new point of view on the
connection between the coefficient and solutions of (1.1). It is well-known that the three concepts
— the growth of the coefficient, the growth of solutions and the quantity of zeros of solutions
— are closely related [23]. In this regard, our contribution is to introduce the notion of zero
separation exponents, which measure the separation of zeros either of all non-trivial solutions
of (1.1) or of individual analytic functions. In D these concepts ΛDE(A) and Λ( f ) are defined
in terms of the hyperbolic distance, while in C the corresponding quantities ΥDE(A) and Υ( f )
involve the Euclidean distance. Our findings clearly show that in view of differential equations,
the separation of zeros of non-trivial solutions gives a fourth quantity, which is firmly linked to
the previously found three other quantities.
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2. Real intervals

In this section, we study the oscillation of solutions of

f ′′
+ A(x) f = 0 (2.1)

on an interval I of the real line, assuming that A(x) is continuous on I . The standard choices for
I are finite intervals and half-bounded intervals. Without loss of generality, we limit our analysis
to (−1, 1) and (0,∞).

2.1. Interval (−1, 1)

Our point of departure is Theorem 1 below, which concerns the hyperbolic distance between
consecutive zeros of solutions of (2.1) on the open interval (−1, 1). This result is stated in terms
of an auxiliary function ψ satisfying the technical condition (2.2), which is studied in detail in
Section 2.3.

Recall that, for any complex numbers z1 and z2 in the unit disc D, the pseudo-hyperbolic
distance ϱp(z1, z2) and the hyperbolic distance ϱh(z1, z2) between z1 and z2 are given by

ϱp(z1, z2) =
ϕz1(z2)

 and ϱh(z1, z2) =
1
2

log
1 + ϱp(z1, z2)

1 − ϱp(z1, z2)
,

where ϕa(z) = (a − z)/(1 − az). Correspondingly,

∆p(a, r) =

z ∈ D : ϱp(z, a) < r


and ∆h(a, r) =


z ∈ D : ϱh(z, a) < r


are the pseudo-hyperbolic and the hyperbolic open discs of radius r > 0 centred at a ∈ D,
respectively. We employ the same notation with obvious modifications also in the real case.

Theorem 1. Let A be a continuous function in (−1, 1), and let ψ : [0, 1) → (0, 1) be a non-
increasing function such that

K = sup
0≤x<1

ψ(x)

ψ


x+ψ(x)
1+xψ(x)

 < ∞. (2.2)

If

A(x)

ψ(|x |)(1 − x2)

2
≤ M < ∞, x ∈ (−1, 1), (2.3)

then the hyperbolic distance between any distinct zeros x1 and x2 of any non-trivial solution
of (2.1) satisfies

ϱh(x1, x2) ≥ log

1 +
ψ(|th(x1,x2)|)

max


K
√

M,1


1 −
ψ(|th(x1,x2)|)

max


K
√

M,1
 , (2.4)

where th(x1, x2) is the hyperbolic mid-point of x1 and x2.

Proof. Let { f1, f2} be a solution base of (2.1), and set h = f1/ f2. Then the Schwarzian derivative

Sh =


h′′

h′

′

−
1
2


h′′

h′

2
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satisfies the identity Sh = 2A. For a ∈ (−1, 1), set ga(x) = (h ◦ ϕa)

ψ(|a|)r x


, where

r = min

(K

√
M)−1, 1


. Then the assumption (2.3) yields

Sga (x)(1 − x2)2 = Sh

ϕa(ψ(|a|)r x)

 
ϕ′

a(ψ(|a|)r x)
2 
ψ(|a|)r

2
(1 − x2)2

≤ 2M


ϕ′

a


ψ(|a|)r x


ψ(|a|) (1 − x2)

1 −

ϕa(ψ(|a|)r x)

2
ψ

|ϕa(ψ(|a|)r x)|


2

r2

= 2M


1 − x2

1 −

ψ(|a|)r x

2
2 

ψ(|a|)

ψ

|ϕa(ψ(|a|)r x)|

2

r2

≤ 2M

 sup
a∈(−1,1)

ψ(|a|)

ψ


|a|+ψ(|a|)
1+|a|ψ(|a|)


2

r2
≤ 2

for all x ∈ (−1, 1).
Since v′′

+ (1 − x2)−2v = 0 has a non-vanishing solution
√

1 − x2 on (−1, 1), every non-
trivial solution of u′′

+
1
2 Sga (x)u = 0 has at most one zero in (−1, 1) by Sturm’s comparison

theorem [5, Chapter 2]. In particular, this is true for

u(x) =
( f ◦ ϕa)


ψ(|a|)r x


ϕ′

a


ψ(|a|)r x


ψ(|a|)r

, x ∈ (−1, 1),

where f is any non-trivial solution of the Eq. (2.1). We conclude that every non-trivial solution
f of (2.1) has at most one zero in

∆p

a, ψ(|a|)r


= ∆h


a,

1
2

log
1 + ψ(|a|)r

1 − ψ(|a|)r


, a ∈ (−1, 1). (2.5)

Assume that f is a non-trivial solution of (2.1) having two distinct zeros x1 < x2 in (−1, 1),
and take a = th(x1, x2). The above argumentation shows that

ϱh(x1, x2) ≥ log
1 + ψ(|a|)r

1 − ψ(|a|)r
= log

1 + ψ(|th(x1, x2)|)r

1 − ψ(|th(x1, x2)|)r
,

for otherwise (2.5) for a = th(x1, x2) would contain two distinct zeros of f . The claim (2.4)
follows by substituting the value of r .

We note that a zero-separation result parallel to Theorem 1, without the condition (2.2), can be
obtained by applying Sturm’s comparison theorem in the line segments between distinct zeros.
For example, if A is a continuous function in (−1, 1) satisfying (2.3), where ψ : [0, 1) →

0,
√

M/π


is non-increasing, then an application of [5, Theorem 8, p. 47] yields

ϱh(x1, x2) ≥
1
2

log

1 +
2π ψ(max{|x1|,|x2|})

√
M
√

1+4π2 ψ(max{|x1|,|x2|})
2/M+1


1 −

2π ψ(max{|x1|,|x2|})
√

M
√

1+4π2 ψ(max{|x1|,|x2|})
2/M+1

 (2.6)

for all distinct zeros x1 and x2 of every non-trivial solution f of (2.1).
With regard to Theorem 1, it is known that the separation of zeros of non-trivial solutions of

(2.1) does not restrict the growth of the coefficient A. This follows from [20, Corollary 5, p. 346],
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which implies that (2.1) is disconjugate whenever
 1
−1 max{A(x), 0} dx ≤ 2. Therefore, if A is

chosen appropriately, then max|x |≤r A(x) exceeds any pre-given function in growth, while (2.1)
is disconjugate.

The following example illustrates Theorem 1. It is useful to notice that, if x1, x2 ∈ (−1, 1)
such that x1 < x2, then the hyperbolic mid-point th(x1, x2) is given by

th(x1, x2) =
exp


ϱh(x1, x2)


(1 + x1)− (1 − x1)

exp

ϱh(x1, x2)


(1 + x1)+ (1 − x1)

. (2.7)

Example 2. Consider the differential equation

f ′′
+

1

(1 − x)4
f = 0 (2.8)

on the interval (−1, 1). In this case infinite oscillation of non-trivial solutions occurs only near
the point x = 1. A solution base { f1, f2} of (2.8) is given by means of the functions

f1(x) = (1 − x) cos
1

1 − x
and f2(x) = (1 − x) sin

1
1 − x

,

and hence the zeros xk of f = α f1+β f2 are the solutions of tan

1/(1−xk)


= −β/α. Evidently,

xk = 1 − (µ + kπ)−1
∈ (−1, 1), k ∈ Z, for some µ ∈ [−π/2, π/2) depending on the value

−β/α. Direct computation shows that

ϱh(xk, xk+1) =
1
2

log


2µ+ 2π(1 + k)− 1
2µ+ 2πk − 1


∼

1
2k
, k → ∞,

where A ∼ B means that A/B → 1 in the limit process in question. If we define ψ(x) =

(1 − x)/2, then

(1 − x2)2ψ(x)2 A(x) =
(1 + x)2

4
≤ 1 = M, x ∈ (−1, 1),

and further,

K = sup
0≤x<1

ψ(x)

ψ


x+ψ(x)
1+xψ(x)

 = sup
0≤x<1

(2 − x) = 2.

Theorem 1 implies that

ϱh(xk, xk+1) ≥ log
1 +

1
2ψ

th(xk, xk+1)


1 −

1
2ψ

th(xk, xk+1)

 = log


T + 3
T + 1


∼

1
2kπ

, k → ∞,

where T = 2
√
(2µ+ 2πk − 1)(2µ+ 2π(1 + k)− 1).

The following example generalizes the analysis in Example 2.

Example 3. Suppose that p : (−1, 1) → (0,∞) is a continuously differentiable function with a
strictly negative derivative, and limx→1− p(x) = 0. Now, the functions

f1 =
p
−p′

cos
1
p

and f2 =
p
−p′

sin
1
p

are linearly independent solutions of (2.1) with A = (p′)2/p4
+ (1/2)Sp.
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If we choose p(x) = (1 − x)α, α > 0, then

A(x) =
α2

(1 − x)2+2α +
1
4

1 − α2

(1 − x)2
.

If ψ(x) = 2−1(1 − x)α , then both the actual distance between consecutive zeros xk and xk+1,
and the estimate from Theorem 1, are asymptotically equal to a constant multiple of 1/k. We
omit the details of these computations.

The last example concerning the interval (−1, 1) deals with damped harmonic oscillators.
Note that the weight functions ψ(x) = exp


−(1 − x)−1


and ψ(x) = (1 − x)α for α > 0 satisfy

the assumption (1 − x2)2ψ(x)2ξ(x) → 0, as x → 1−, in Example 4.

Example 4. Letψ be a twice continuously differentiable positive function on (−1, 1), and define

ξ(x) = −
1
2
ψ ′′(x)

ψ(x)
+

x

1 − x2

ψ ′(x)

ψ(x)
+

1
4


ψ ′(x)

ψ(x)

2

+
1

(1 − x2)2
.

If (1 − x2)2ψ(x)2ξ(x) → 0, as x → 1−, then there exists a continuous function A on (−1, 1)
with

A(x) ∼
1

(1 − x2)2ψ(x)2
, x → 1−, (2.9)

such that (2.1) possesses linearly independent solutions

f1(x) =


(1 − x2)ψ(x) sin

 x

0

dt

(1 − t2)ψ(t)


,

f2(x) =


(1 − x2)ψ(x) cos

 x

0

dt

(1 − t2)ψ(t)


.

(2.10)

To prove the existence of A with the property (2.9), we argue as follows. Let F(x) be a positive
and twice continuously differentiable function on (−1, 1). Then the functions

y1(x) = F(x)−1/4 sin
 x

0
F(t)1/2 dt


,

y2(x) = F(x)−1/4 cos
 x

0
F(t)1/2 dt


,

are linearly independent solutions of

y′′
+ B(x)y = 0, B(x) = F(x)+

1
4

F ′′(x)

F(x)
−

5
16


F ′(x)

F(x)

2

,

see [28, pp. 478–479]. Choose F(x) = (1 − x2)−2ψ(x)−2. Then the functions y1 and y2
are respectively equal to the functions f1 and f2 in (2.10). A simple computation yields
B(x) = F(x)+ξ(x). Since ξ(x)/F(x) → 0, as x → 1−, by assumption, we have B(x) ∼ F(x),
as x → 1−. Note that, if (1 − x2)ψ(x) → 0, as x → 1−, then all solutions of (2.1) decay to zero
as x → 1−, no matter how fast the coefficient grows as x → 1−.

2.2. Positive real axis

By a suitable Möbius transformation, Theorem 1 can be translated to the half-bounded interval
(0,∞). Note that, if we are interested in the oscillation of solutions near the infinity, the property
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Ψ(x) = Ψ


1
x


in Theorem 5 is not needed. As in the case of Theorem 1, the separation of zeros

of non-trivial solutions of (2.1) does not restrict the growth of the coefficient A on (0,∞).

Theorem 5. Let A be a continuous function on the interval (0,∞), and let Ψ : (0,∞) → (0, 1)

be non-increasing on [1,∞) such that Ψ(x) = Ψ


1
x


for all x ∈ (0,∞), and

K = sup
1≤x<∞

Ψ (x)

Ψ


x 1+Ψ (x)
1−Ψ (x)

 < ∞. (2.11)

If

A(x)

Ψ(x)x

2
≤ M < ∞, x ∈ (0,∞), (2.12)

then the Euclidean distance between any distinct zeros x1 and x2 of any non-trivial solution
of (2.1) satisfies

|x1 − x2| ≥ 2 min


2K
√

M
−1

, 1


ta(x1, x2)Ψ

tg(x1, x2)


,

where ta(x1, x2) and tg(x1, x2) are the arithmetic and the geometric mean value of x1 and x2,
respectively.

Proof. Assume that f is a non-trivial solution of (2.1) having two zeros 0 < x1 < x2 < ∞. Let

T (y) = (1 + y)/(1 − y). Consequently, g(y) = f (T (y))(T ′(y))−
1
2 is a solution of

g′′
+ B(y)g = 0, B(y) = A


T (y)


T ′(y)

2
= A


T (y)

 4

(1 − y)4
, (2.13)

having two zeros −1 < y1 < y2 < 1, where y1 = T −1(x1) and y2 = T −1(x2). We pro-
ceed to show that (2.13) satisfies the hypothesis of Theorem 1, if the non-increasing function
ψ : [0, 1) → (0, 1) is defined by ψ = Ψ ◦ T . By (2.11),

sup
0≤y<1

ψ(y)

ψ


y+ψ(y)
1+yψ(y)

 = sup
0≤y<1

Ψ

T (y)


Ψ


T (y) 1+Ψ (T (y))
1−Ψ (T (y))

 = K < ∞.

Moreover, (2.12) implies

B(y)

ψ(|y|)(1 − y2)

2
= 4 A


T (y)

 
Ψ

T (|y|)


T (y)

2
≤ 4M, y ∈ (−1, 1).

Note that, if y is negative, then Ψ

T (|y|)


= Ψ


1/T (y)


= Ψ


T (y)


, while if y is positive,

then Ψ

T (|y|)


= Ψ


T (y)


trivially.

We conclude from Theorem 1 that the zeros y1 and y2 satisfy (2.4), and hence y2 − y1

1 − y2 y1

 ≥
2ψ

|th(y1, y2)|


r

1 + ψ

|th(y1, y2)|

2r2
> ψ


|th(y1, y2)|


r, r =

1

max


2K
√

M, 1
 ,

where th(y1, y2) is the hyperbolic mid-point of y1 and y2. By means of (2.7) we get

ψ

|th(y1, y2)|


= Ψ


T (|th(y1, y2)|)


= Ψ


T (th(y1, y2))


= Ψ

√
x1x2


.
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Therefore, x2 − x1

x1 + x2

 ≥
Ψ
√

x1x2


max


2K
√

M, 1
 ,

which proves the claim.

We note that a zero-separation result parallel to Theorem 5, without the condition (2.11), can
be obtained with the aid of (2.6) and the Möbius transformation T (y) = (1 + y)/(1 − y). The
details are omitted.

The following example illustrates Theorem 5.

Example 6. We discuss the oscillation of solutions of (2.1) on the infinite end of [1,∞) by
considering A(x) ≡ 1 with Ψ defined on [1,∞) by Ψ(x) = 1/(2x). Then

A(x)

Ψ(x)x

2
=

1
4

= M,

and a simple computation shows that K = 3 in (2.11). Consecutive zeros xk < xk+1 of non-
trivial solutions of (2.1) are separated in the Euclidean sense by π , since these solutions are
linear combinations of sin and cos, and hence xk+1 = xk + π . In this case, Theorem 5 yields

|xk − xk+1| ≥
2
3

2xk + π

2
1

2
√

xk(xk + π)
→

1
3
, k → ∞.

We close this section with two examples concerning the asymptotic growth of the coefficient
in the infinite end of positive real axis. Note that weight functions Ψ(x) = e−x and Ψ(x) = x−α

for α > 0 satisfy the assumption x2Ψ(x)2ξ(x) → 0, as x → ∞, in Example 7.

Example 7. Let Ψ be a twice continuously differentiable positive function on [1,∞), and define

ξ(x) = −
1
2

Ψ ′′(x)

Ψ(x)
−

1
2x

Ψ ′(x)

Ψ(x)
+

1
4


Ψ ′(x)

Ψ(x)

2

+
1

4x2 .

If x2Ψ(x)2ξ(x) → 0, as x → ∞, then there exists a continuous function A on [1,∞) with
A(x) ∼ x−2Ψ(x)−2, as x → ∞, such that (2.1) possesses linearly independent solutions

f1(x) =


xΨ(x) sin

 x

1

dt

t Ψ(t)


, f2(x) =


xΨ(x) cos

 x

1

dt

t Ψ(t)


.

The proof is similar to that in Example 4. Note that, if x Ψ(x) → 0, as x → ∞, then all solutions
of (2.1) decay to zero as x → ∞, no matter how fast the coefficient grows as x → ∞.

Example 8. Suppose that A(x) = x−2Ψ(x)−2, where Ψ(x) = x−α and α > 1. On the one
hand, Theorem 5 shows that any two zeros xn−1 < xn < xn−1 + 1 of any non-trivial solution of
(2.1) satisfy

|xn−1 − xn| & ta(xn−1, xn)Ψ

tg(xn−1, xn)


& xnΨ(xn) = x1−α

n , xn → ∞.

The notation h(r) & g(r) means that there exists a constant C > 0 such that h(r) ≥ C g(r) for
all sufficiently large r . Note that the lower bound for the separation of zeros induces an upper
bound for the number of zeros. In particular, we conclude that each non-trivial solution f of
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(2.1) has n(r, f, 0) . rα zeros on the interval [1, r) for 1 < r < ∞. On the other hand, since
A′(x)A(x)−3/2

→ 0, as x → ∞, [16, Lemma 4] shows that

n(r, f, 0) ∼
1
π

 r

1


A(x) dx ∼

1
πα

rα, r → ∞.

Consequently, the estimate for the counting function of zeros resulting from Theorem 5 is of the
correct order of magnitude.

2.3. Discussion on the weight functions

In this section we consider the weight function ψ appearing in Theorem 1. The proof of
Theorem 1 shows that the hypothesis on ψ can be relaxed. In particular, if ψ : (−1, 1) → (0, 1)
satisfies

K = sup
a∈(−1,1)

sup
x∈(−1,1)

ψ(a)

ψ(ϕa(ψ(a)x))
< ∞, (2.14)

and A(x)

ψ(x)(1 − x2)

2
≤ M on (−1, 1), then we deduce (2.4) with th(x1, x2) in place of

|th(x1, x2)|. For example, in the case of Example 2 this implies the finite oscillation of non-trivial
solutions near the point x = −1. By using (2.14) instead of (2.2) we get a result more general
than Theorem 1, but not too much is gained by this generalization. This is due to the fact that
(2.2) for ψ : [0, 1) → (0, 1) non-increasing is not very restrictive, because it permits ψ to either
decrease arbitrarily fast or arbitrarily slowly. Namely, if ψ : [0, 1) → (0, 1) is differentiable and
convex such that ψ(x) → 0+, as x → 1−, then

ψ


x + ψ(x)

1 + xψ(x)


≥ ψ(x)+ ψ ′(x)


x + ψ(x)

1 + xψ(x)
− x


≥ ψ(x)


1 + ψ ′(x)

1 − x2

1 + xψ(x)


,

where

lim
x→1−


1 + ψ ′(x)

1 − x2

1 + xψ(x)


= 1.

It follows that K < ∞ in (2.2). On the other hand, if ψ : [0, 1) → (0, 1) is concave and
ψ(x) → 0+, as x → 1−, then the image of [x, 1) under ψ lies above the line segment joining
(x, ψ(x)) and (1, 0). Hence

ψ(x)

1 − x


1 −

x + ψ(x)

1 + xψ(x)


≤ ψ


x + ψ(x)

1 + xψ(x)


,

which implies

ψ(x)

ψ


x+ψ(x)
1+xψ(x)

 ≤
1 + xψ(x)

1 − ψ(x)
→ 1+, x → 1−,

and we again deduce (2.2). It is also worth noticing that
ψ


x+ψ(x)
1+xψ(x)


ψ(x)

− 1

 =


ψ(x)− ψ


x+ψ(x)

1+xψ(x)


x −

x+ψ(x)
1+xψ(x)

 1 − x2

1 + xψ(x)
,
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and hence (2.2) holds, if the Lipschitz condition

sup
0<s<t<1

ψ(s)− ψ(t)

s − t

 < ∞

is satisfied.

Example 9. We construct a non-increasing function ψ for which (2.2) fails. We only have to fix
the value of ψ at a point sequence tending to 1, while the behaviour of ψ elsewhere is not of
the essence. In particular, ψ can be made continuous or differentiable on [0, 1) if needed. Let
xk = 1 − 2−k , and let εk ∈ (0, 1) be a strictly decreasing sequence such that εk → 0+, as
k → ∞. Define ψ(x1) = 1/4, and define the values yk, ψ(yk) and ψ(xk+1) inductively by

yk =
xk + ψ(xk)

1 + xkψ(xk)
, ψ(yk) = εkψ(xk) and ψ(xk+1) = ψ(yk), k ∈ N.

Since ψ(xk) < 1/3 < (2 + xk)
−1, we conclude xk < yk < xk+1 for all k ∈ N. By the

construction, we have

ψ(xk)

ψ


xk+ψ(xk )
1+xkψ(xk )

 =
ψ(xk)

ψ(yk)
=

1
εk

→ ∞, k → ∞,

and hence (2.2) fails. Note that ψ(yk) lies below the line segment joining (xk, ψ(xk)) and
(xk+1, ψ(xk+1)), which implies that ψ is not concave, while ψ(xk) lies above the line segment
joining (yk−1, ψ(yk−1)) and (yk, ψ(yk)), which shows that ψ is not convex.

We finish this section with a result, which may be of independent interest. It shows
that for all non-increasing and continuous functions ψ : [0, 1) → (0, 1), the expression

ψ(x)ψ


x+ψ(x)
1+xψ(x)

−1
in (2.2) is bounded outside of a relatively small exceptional set. The proof

is influenced by the standard proof of Borel’s lemma needed in Nevanlinna theory.

Theorem 10. Let ψ : [0, 1) → (0, 1) be a non-increasing and continuous function, and let
k > 1. Then there exists a constant C > 0, depending on k, such that

ψ(x) < k ψ


x + ψ(x)

1 + xψ(x)


(2.15)

outside a set E ⊂ [0, 1) of x-values satisfying


E dx/(1 − x) ≤ C < ∞.

Proof. Let E ⊂ [0, 1) be the set of x-values for which (2.15) is false. If E = ∅ or if sup E < 1,
then there is nothing to prove. Hence, we may suppose that sup E = 1.

Let x1 = inf E . We proceed to define a sequence {xn} of points in [0, 1) inductively. Suppose
that xn is defined for some n ∈ N, and write

x ′
n =

xn + ψ(xn)

1 + xnψ(xn)
.

It is clear that xn < x ′
n < 1. Let then xn+1 = inf


E \ [0, x ′

n)

. Since each set E \ [0, x ′

n) is
non-empty by the assumption sup E = 1, this process produces an infinite sequence {xn}. Note
that by the continuity of ψ the inequality (2.15) is false at each point x = xn, n ∈ N. Thus E
contains the sequence {xn}. From the definition of xn+1 it follows that there are no points of E
in (x ′

n, xn+1). Hence E ⊂


∞

n=1[xn, x ′
n].
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The sequence {xn} is increasing by the construction. We prove that xn → 1−. Suppose on
the contrary that xn → r−, as n → ∞, for some r ∈ (0, 1). Since xn < x ′

n ≤ xn+1, we have
x ′

n → r−. Now

x ′
n − xn =

(1 − x2
n)ψ(xn)

1 + xnψ(xn)
→

(1 − r2)ψ(r)

1 + rψ(r)
> 0, n → ∞,

by the continuity of ψ . This contradicts the fact that x ′
n − xn → 0+, as n → ∞.

It remains to estimate the logarithmic measure of the set


∞

n=1[xn, x ′
n]. Since ψ is non-

increasing and xn ∈ E , we have

ψ(xn+1) ≤ ψ(x ′
n) = ψ


xn + ψ(xn)

1 + xnψ(xn)


≤

1
k
ψ(xn).

Inductively,

ψ(xn+1) ≤
1
k
ψ(xn) ≤ · · · ≤

1
knψ(x1) ≤

1
kn ,

and hence x ′

n+1

xn+1

dx

1 − x
= log

1 − xn+1

1 − x ′

n+1
= log

1 + xn+1ψ(xn+1)

1 − ψ(xn+1)
≤ log

1 + ψ(xn+1)

1 − ψ(xn+1)

≤ log
kn

+ 1
kn − 1

≤
kn

+ 1
kn − 1

− 1 =
2

kn − 1
.

Finally,
E

dx

1 − x
≤

∞
n=0

 x ′

n+1

xn+1

dx

1 − x
≤

∞
n=0

2
kn − 1

< ∞,

since k > 1, and we are done.

The function ψ in Example 9 shows that Theorem 10 is no longer true without an exceptional
set.

3. Unit disc

In this section, we discuss the oscillation of solutions of

f ′′
+ A(z) f = 0 (3.1)

in the unit disc, assuming that the analytic coefficient A grows essentially faster than (1−|z|2)−2

near the boundary of D. In particular, the following considerations fall on the interplay between
the growth of the coefficient and the separation of zeros of solutions of (3.1). This section gives
a detailed account of both radial and non-radial estimates, and ties new results to the existing
oscillation theory.

For the convenience of the reader, we begin with some elementary observations in hyperbolic
geometry. If z and z⋆ are two points in any pseudo-hyperbolic disc ∆p(a, r), where a ∈ D and
r ∈ (0, 1), then the hyperbolic mid-point th(z, z⋆) ∈ ∆p(a, r); the same is obviously true for all
hyperbolic discs. The following assertions, which explore the geometric position of th(z, z⋆) in
terms of z, z⋆ ∈ D, are needed later. Suppose that {zn} and {z⋆n} are sequences of points in D, and
ζ ∈ ∂D:

(i) If zn, z⋆n → ζ , then th(zn, z⋆n) → ζ , as n → ∞;
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(ii) If th(zn, z⋆n) → ζ and |zn − z⋆n| → 0+, then zn, z⋆n → ζ , as n → ∞;
(iii) If |th(zn, z⋆n)| → 1− and |zn − z⋆n| → 0+, then |zn|, |z⋆n| → 1−, as n → ∞.

3.1. Radial weights

Our first result concerning the unit disc case resembles Theorem 1. It shows that the separation
of zeros of non-trivial solutions of (3.1) is essentially dictated by the boundary behaviour of
the coefficient, and, in contrast to the real case, also vice versa. Note that R⋆ in (3.3) is a
discontinuous function of R; if R = 0, then the assertion concerns D, while if R > 0, then
the result relates to certain annuli in D. See Section 2.3 for a detailed study of the condition (3.2).

Theorem 11. Let A be analytic in D, R ∈ [0, 1), and letψ : [R, 1) → (0, 1) be a non-increasing
function such that

K = sup
R⋆≤r<1

ψ(r)

ψ


r+ψ(r)
1+rψ(r)

 < ∞, (3.2)

where

R⋆ =


ψ(R)+ R

1 + ψ(R)R
, if 0 < R < 1,

0, if R = 0.
(3.3)

(i) If the coefficient A satisfies

|A(z)|

ψ(|z|)(1 − |z|2)

2
≤ M < ∞, R ≤ |z| < 1, (3.4)

then the hyperbolic distance between any distinct zeros z1 and z2 of any non-trivial solution
of (3.1), for which |th(z1, z2)| ≥ R⋆, satisfies

ϱh(z1, z2) ≥ log

1 +
ψ(|th(z1,z2)|)

max


K
√

M,1


1 −
ψ(|th(z1,z2)|)

max


K
√

M,1
 . (3.5)

(ii) Conversely, if (3.5) is satisfied for all distinct zeros z1 and z2 of every non-trivial solution of
(3.1), for which |th(z1, z2)| ≥ R, then the coefficient A satisfies

|A(z)|

ψ(|z|)(1 − |z|2)

2
< 3K 2 max{K 2 M, 1}, R⋆ ≤ |z| < 1. (3.6)

Proof. (i) Let { f1, f2} be a solution base of (3.1), and set h = f1/ f2 so that Sh = 2A. For a ∈ D,

set ga(z) = (h ◦ ϕa)

ψ(|a|)r z


, where r = 1/max


K

√
M, 1


. If |a| ≥ R⋆, where R⋆ is given

by (3.3), then

ϕa

ψ(|a|)r z


∈ ∆p


a, ψ(|a|)r


⊂ ∆p


a, ψ(R)


⊂

z ∈ D : R ≤ |z|


, z ∈ D,

and for these values of a, the assumption (3.4) yields

|Sga (z)|(1 − |z|2)2 =
Sh

ϕa(ψ(|a|)r z)

 ϕ′
a


ψ(|a|)r z

2 ψ(|a|)r
2
(1 − |z|2)2

≤ 2M

 ϕ′
a


ψ(|a|)r z

ψ(|a|)(1 − |z|2)
1 − |ϕa


ψ(|a|)r z


|2

ψ

|ϕa(ψ(|a|)r z)|

2

r2
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= 2M


1 − |z|2

1 − |ψ(|a|)r z|2

2 
ψ(|a|)

ψ

|ϕa(ψ(|a|)r z)|

2

r2

≤ 2M

 sup
|a|≥R⋆

ψ(|a|)

ψ


|a|+ψ(|a|)
1+|a|ψ(|a|)


2

r2
≤ 2

for all z ∈ D. Therefore ga is univalent in D for any |a| ≥ R⋆, and we conclude that h = f1/ f2
is univalent in each hyperbolic disc

∆h


a,

1
2

log
1 + ψ(|a|)r

1 − ψ(|a|)r


, |a| ≥ R⋆.

Assume now that f is a non-trivial solution of (3.1) having two distinct zeros z1, z2 ∈ D, for
which |th(z1, z2)| ≥ R⋆, and take a = th(z1, z2). Since ϱh(z1, a) = ϱh(z2, a) = (1/2)ϱh(z1, z2),
it follows that

ϱh(z1, z2) = 2ϱh(z1, a) ≥ log
1 + ψ(|a|)r

1 − ψ(|a|)r
.

The claim (3.5) follows by substituting the values of a and r .
(ii) Assume that all distinct zeros z1, z2 ∈ D of every non-trivial solution of (3.1), for which

|th(z1, z2)| ≥ R, satisfy (3.5). First, we show that each non-trivial solution of (3.1) vanishes at
most once in

∆h


a,

1
2

log
1 + Ra

1 − Ra


= ∆p(a, Ra), Ra =

ψ(|a|)

K max


K
√

M, 1
 ,

for |a| ≥ R⋆, where R⋆ is given by (3.3). Assume on the contrary, that there exists a non-trivial
solution of (3.1) having two distinct zeros z1, z2 ∈ ∆p(a, Ra) for some |a| ≥ R⋆. It follows that
th(z1, z2) ∈ ∆p(a, Ra), and consequently,

|th(z1, z2)| <
|a| + Ra

1 + |a|Ra
≤

|a| + ψ(|a|)

1 + |a|ψ(|a|)
.

Hence

ψ(|a|)

ψ

|th(z1, z2)|

 ≤
ψ(|a|)

ψ


|a|+ψ(|a|)
1+|a|ψ(|a|)

 ≤ K (3.7)

by (3.2). We deduce from the antithesis and (3.7) that

ϱh(z1, z2) < log
1 + Ra

1 − Ra
= log

1 +
ψ(|a|)

K max


K
√

M,1


1 −
ψ(|a|)

K max


K
√

M,1
 ≤ log

1 +
ψ(|th(z1,z2)|)

max


K
√

M,1


1 −
ψ(|th(z1,z2)|)

max


K
√

M,1
 .

This estimate contradicts (3.5), since th(z1, z2) ∈ ∆p

a, ψ(R)


⊂ {z ∈ D : |z| ≥ R}. Hence

each non-trivial solution of (3.1) vanishes at most once in ∆p(a, Ra) for every |a| ≥ R⋆.
Second, since z → ϕa(Raz) maps D onto ∆p(a, Ra), the discussion above shows that

ga(z) = h

ϕa(Raz)


is univalent in D for all |a| ≥ R⋆. For these values of a, we have

|Sga (z)|(1 − |z|2)2 =
Sh

ϕa(Raz)

 |ϕ′
a(Raz)|2 R2

a(1 − |z|2)2 ≤ 6, z ∈ D,
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by Kraus’ theorem [31]. For another reference, see [33, p. 545]. Take z = 0 and use Sh = 2A to
obtain

2|A(a)|(1 − |a|
2)2

ψ(|a|)2

K 2 max{K 2 M, 1}
≤ 6, |a| ≥ R⋆.

The assertion (3.6) follows.

We point out that a zero-separation result parallel to Theorem 11(i), without the condition
(3.2), can be obtained by applying Sturm’s comparison theorem rather than applying Nehari’s
univalence criteria. For example, if A is an analytic function in D satisfying (3.4) for R = 0,

where Ψ : [0, 1) →


0,

√
M/π


is non-increasing and continuous, then a straightforward

application of [28, Corollary on p. 579] yields ϱh(z1, z2) ≥ 2−1 log

(1 + ρ)/(1 − ρ)


, where

ρ =
π

√
M
ψ


max{|z1|, |z2|} +

π
√

M
ψ

max{|z1|, |z2|}


1 + max{|z1|, |z2|}

π
√

M
ψ

max{|z1|, |z2|}



·


1 −


π

√
M
ψ

max{|z1|, |z2|}

2

,

for all distinct zeros z1 and z2 of every non-trivial solution f of (3.1). We may also apply Sturm’s
comparison theorem directly on the hyperbolic geodesics between distinct zeros, and then obtain
a slightly different lower bound for the separation of zeros corresponding the estimate (2.6). In
this approach the weight function ψ is not required to be continuous. For a similar reasoning,
see [7, p. 19].

Conversely, by a modification of the proof of Theorem 11(ii), if M ∈ (0,∞) andψ : [0, 1) →
0,

√
M


is non-increasing, and if all distinct zeros z1 and z2 of every non-trivial solution satisfy

ϱh(z1, z2) ≥ log
1 + ψ


max{|z1|, |z2|}


/
√

M

1 − ψ

max{|z1|, |z2|}


/
√

M
,

then

|A(z)|


ψ


|z| + ψ(|z|)/

√
M

1 + |z|ψ(|z|)/
√

M


(1 − |z|2)

2

≤ 3M, z ∈ D.

The advantage of these results, when compared to Theorem 11, is the fact that the technical
condition (3.2) is not needed. However, when (3.2) is satisfied, then one may use either these
results or Theorem 11, and find the most useful estimate for each purpose by studying the
different constants appearing in the statements and the behaviour of the weight function ψ in
the points in question.

Theorem 11(i) is proved by means of [33, Theorem I], although we could equally use
[33, Theorem II], and estimate the growth of |Sga (z)| without the weight (1 − |z|2)2. This is
due to the fact that ψ does not attain the value 1. The same is also true for Theorems 15(i) and
25(i) below. Moreover, Schwarz’s results [35, Theorems 3 and 4] (see also [26]) follow from
Theorem 11(i) by choosing R = 0 and ψ ≡ C ∈ (0, 1) sufficiently large.

We turn to consider the situation in which the quantity supz∈D |A(z)|(1 − |z|2)2 is no longer
finite.
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Example 12. Let q ∈ (1,∞), and consider the locally univalent analytic function p(z) =
log(e/(1 − z))

q in D. The functions

f1(z) =
1

p′(z)
sin


p(z)

, f2(z) =

1
p′(z)

cos


p(z)


are linearly independent solutions of (3.1) with

A(z) =


p′(z)
2

+
1
2

Sp(z)

=
1

(1 − z)2

q2


log
e

1 − z

2(q−1)

+
1
4

+
1
4

1 − q2
log e

1−z

2

 .
Zeros of f1 are real, and they are given by zk = 1 − exp


1 − (kπ)1/q


, k ∈ Z. Evidently,

ϱh(zk, zk+1) =
1
2

log
1 + ϱp(zk, zk+1)

1 − ϱp(zk, zk+1)
∼
π

2q
(πk)1/q−1, k → ∞.

An application of Theorem 11 with ψ(r) = (1/2)

log(e/(1 − r))

1−q , satisfying (3.2) for

K =

log(2e)

q−1 yields

ϱh(zk, zk+1) & ψ

|th(zk, zk+1)|


∼

1
2
(πk)1/q−1, k → ∞.

We conclude that the estimate resulting from Theorem 11 is of the correct order of magnitude.

The following two examples concern the case when |A(z)| grows at most like a negative
power of 1 − |z|, as |z| → 1−. The set of all such analytic functions is known as the Korenblum
space A−∞, whose theory is rich. For example, A−∞ contains all classical Hardy and Bergman
spaces of the disc. It is also well-known that in the sense of differential equations, functions in
A−∞ play a similar role in D as polynomials do in C; see Section 4, and for example [11,22].

Example 13. For β > 0, the functions

f j (z) = (1 − z)
β+1

2 exp

(−1) j+1i

(1 − z)β


, j = 1, 2, (3.8)

are linearly independent solutions of (3.1), where

A(z) =
β2

(1 − z)2β+2 +
1
4

1 − β2

(1 − z)2
. (3.9)

Functions f1 and f2 are non-vanishing, and the zeros of f = α f1 + β f2, where αβ ≠ 0, are
given by

zk = 1 −


2

c + 2πk

1/β

, k ∈ Z.

Here c is a complex constant, which agrees with the principal value of −i log(−β/α).
Take α = −1 and β = ei , which imply that c = 1, and further, all zeros zk of f = α f1 + β f2

are real. Moreover, ϱh(zk, zk+1) ∼ (2βk)−1, as k → ∞, while Theorem 11 with ψ(r) =
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(1/2)(1 − r)β , K = 2β and M = β2
+ 1/16 gives us the estimate

ϱh(zk, zk+1) ≥
ψ

|th(zk, zk+1)|


max


K

√
M, 1

 ∼
1

max


2β

β2 + 1/16, 1


2πk

, k → ∞.

Differential equations in Examples 12 and 13 are solvable, and therefore we are able to verify
that the bounds for the separation of zeros of solutions given by Theorem 11 are of the correct
order of magnitude. In the following example we investigate a differential equation, which is
too complicated to be solved explicitly. However, a notable amount of information about the
solutions can be retrieved whenever the behaviour of the coefficient is known. The coefficient A
in Example 14 is given as an infinite product, which has regularly spaced zeros in D. It turns out
that A grows regularly in a large subset of D, and possesses similar growth properties to what
is commonly seen with lacunary series. The weights ω satisfying (3.10) are known as regular
weights, see for example [37]. We write g(r) ≍ h(r), if there are positive constants C1 and C2,
which are independent of r , such that C1 g(r) ≤ h(r) ≤ C2 g(r) for all sufficiently large r .

Example 14. Let 0 < p < ∞ and let ω : [0, 1) → (0,∞) be a continuous function such that 1
0 ω(r) dr < 1,

1
ω(r)

 1

r
ω(s) ds ≍ (1 − r), (3.10)

and  1
r ω(s) ds

 p
2

1 − r
→ 0+, r → 1−.

By [37, Lemma 1.1(i)] there are constants 0 < α ≤ β, depending on ω, such that
1 − r

1 − t

α  1

t
ω(s) ds ≤

 1

r
ω(s) ds

≤


1 − r

1 − t

β  1

t
ω(s) ds, 0 ≤ r ≤ t < 1. (3.11)

Following [15], let A be the infinite product defined by

A(z) =

∞
k=1

Fk(z) =

∞
k=1

1 + ak znk

1 + a−1
k znk

, z ∈ D, ak =

  1
1−n−1

k
ω(s) ds 1

1−n−1
k+1
ω(s) ds

p

,

where nk+1/nk = q for all k ∈ N, and q is any fixed natural number strictly greater than β/α.
Define L = qαp and U = qβp. By choosing r = 1−n−1

k and t = 1−n−1
k+1 in (3.11) we conclude

1 < L < ak < U < ∞ for all k ∈ N. Moreover, note that Lq > U , which is needed later. We
begin with a discussion on the properties of A, and then proceed to consider solutions of (3.1).

Function A is analytic in D, since |Fk(z)| = |ak | ϱp

a−1

k ,−znk

< U < ∞ for all z ∈ D, and

∞
k=1

|Fk(z)− 1| ≤

∞
k=1

|ak − a−1
k | |z|nk

1 − a−1
k |z|nk

≤
ak − a−1

k

1 − a−1
k

∞
k=1

|z|nk ≤ (U + 1)
∞

k=1

|z|nk
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converges uniformly on compact subsets of D; see [38, Theorem 15.4]. Regarding the growth of
A, we conclude from [15] that

M(r, A) .

 1

r
ω(s) ds

−p

, 0 ≤ r < 1, (3.12)

where M(r, A) = max|z|=r |A(z)| is the maximum modulus of A. In addition, by a modification
of [15], there exists a subset of [0, 1), namely

F =

∞
k=1


a

−n−1
k (1−δ)

k a
−n−1

k+1δ

k+1 , a
−n−1

k δ

k a
−n−1

k+1(1−δ)

k+1


, δ ∈ (0, 1/2),

such that

M(r, A) ≍

 1

r
ω(s) ds

−p

, r ∈ F. (3.13)

The lower density d(F) of F is positive, provided that δ is sufficiently small, since

d(F) = lim inf
r→1−

m

F ∩ [r, 1)


1 − r

≥ lim
k→∞

a
−n−1

k+1δ

k+1 a
−n−1

k+2(1−δ)

k+2 − a
−n−1

k+1(1−δ)

k+1 a
−n−1

k+2δ

k+2

1 − a
−n−1

k δ

k a
−n−1

k+1(1−δ)

k+1

≥ lim
k→∞


U−δ/q−(1−δ)/q2

1/nk
−


L−(1−δ)/q−δ/q2

1/nk

1 −

U−δ−(1−δ)/q

1/nk

=


1−δ

q +
δ

q2


log L −


δ
q +

1−δ

q2


log U

δ +
1−δ

q


log U

−→
log Lq

− log U

q log U
> 0, δ → 0+,

by Bernoulli–l’Hospital’s rule.
The following discussion deals with a-points of A, where a ∈ C. The zeros of A can be found

explicitly, and in particular, there are exactly nk distinct zeros on each circle

z ∈ D : |z| =

a−1/nk
k


. This implies that the non-integrated counting function of zeros in {z ∈ D : |z| ≤ r}

satisfies n(r, A, 0) ≍ (1 − r)−1, as r → 1−. Similarly as in the proof of [13, Theorem 3], a
laborious calculation shows that

T (r, A) ∼ log M(r, A) ∼ N (r, A, a) ∼ −p log

 1

r
ω(s) ds


, r → 1−,

for all a ∈ C. Here T (r, A) is the Nevanlinna characteristic of A, and N (r, A, a) is the integrated
counting function for a-points of A.

We turn to consider the properties of solutions of the differential equation (3.1). Let ψ :

[0, 1) → (0, 1) be a non-increasing function such that

ψ(r) ≍

 1
r ω(s) ds

 p
2

1 − r
, r → 1−. (3.14)
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By choosing tr =
r+ψ(r)
1+rψ(r) in (3.11), we obtain

sup
0≤r<1

ψ(r)

ψ(tr )
≤ sup

0≤r<1


1 − tr
1 − r

1−βp/2

= sup
0≤r<1


1 − ψ(r)

1 + rψ(r)

1−βp/2

< ∞,

from which (3.2) follows. Now Theorem 11 ensures two things. First, the pseudo-hyperbolic
distance between any two distinct zeros z1 and z2 of any non-trivial solution f of (3.1) satisfies
ϱp(z1, z2) & ψ(|th(z1, z2)|). Second, there must exist a sequence fn of non-trivial solutions of
(3.1), such that each fn possesses two distinct zeros zn, z⋆n ∈ D, with |th(zn, z⋆n)| > 1 − 1/n
and

ψ

|th(zn, z⋆n)|


. ϱp(zn, z⋆n) . τ


|th(zn, z⋆n)|


, n ∈ N, (3.15)

where τ : [0, 1) → (0, 1) is any non-increasing function, which satisfies (3.2) and the requirement
1 < τ(r)/ψ(r) → ∞, as r → 1−. To prove the second inequality in (3.15), suppose that there
exists n ∈ N such that (3.5) with τ in place of ψ is valid for all distinct zeros z and z⋆ of every
non-trivial solution of (3.1), for which |th(z, z⋆)| > 1 − 1/n. Then, (3.14) and (3.13) imply
that 

τ(r)

ψ(r)

2

≍


τ(r)(1 − r)

2 1
r ω(s) ds

p ≍ M(r, A)

τ(r)(1 − r2)

2
, r ∈ F,

where M(r, A)

τ(r)(1 − r2)

2
is uniformly bounded for all r ∈ (R⋆, 1) by Theorem 11(ii), and

where R⋆ is given by (3.3) with R = 1 − 1/n. This is clearly a contradiction, which proves that
for each n ∈ N there corresponds a non-trivial solution fn of (3.1) having two distinct zeros
zn, z⋆n ∈ D such that |th(zn, z⋆n)| > 1 − 1/n and

ϱh(zn, z⋆n) < log
1 + C τ


|th(zn, z⋆n)|


1 − C τ


|th(zn, z⋆n)|

 , (3.16)

where C > 0 is a constant independent of n. The second inequality in (3.15) follows. Note that,
if τ(r) decays to zero as r → 1−, then by (3.16) we have |zn|, |z⋆n| → 1−, as n → ∞.

3.2. Non-radial weights

We take the opportunity to state a slightly more general version of Theorem 11. This modi-
fication utilizes non-radial weights, and it preserves the local information on zeros of solutions
more accurately than its radial counterpart. It is useful to keep in mind the geometric properties
of hyperbolic mid-points, which were mentioned in the beginning of Section 3, since these ele-
mentary observations allow us to pinpoint the accumulation points of the sequences of zero-pairs
with minimal separation. Note that a condition similar to (3.17) arises naturally in a study of
certain classes of meromorphic functions closely related to the normal functions [2].

Theorem 15. Let A be analytic in D, and let ψ : D → (0, 1/2) be such that

K = sup
a,z∈D

ψ(a)

ψ

ϕa(ψ(a)z)

 < ∞. (3.17)

Let ζ ∈ ∂D, R ∈ (0, 2], and

R⋆ =


R/5, if 0 < R < 2,
2, if R = 2.

(3.18)
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(i) If the coefficient A satisfies

|A(z)|

ψ(z)(1 − |z|2)

2
≤ M < ∞, z ∈ D ∩ D(ζ, R), (3.19)

then the hyperbolic distance between any distinct zeros z1 and z2 of any non-trivial solution
of (3.1), for which |ζ − th(z1, z2)| < R⋆, satisfies

ϱh(z1, z2) ≥ log

1 +
ψ(th(z1,z2))

max


K
√

M,1


1 −
ψ(th(z1,z2))

max


K
√

M,1
 . (3.20)

(ii) Conversely, if (3.20) is satisfied for all distinct zeros z1 and z2 of every non-trivial solution
of (3.1), for which |ζ − th(z1, z2)| < R, then the coefficient A satisfies

|A(z)|

ψ(z)(1 − |z|2)

2
< 3K 2 max{K 2 M, 1}, z ∈ D ∩ D(ζ, R⋆). (3.21)

Proof. The proof of Theorem 15 is similar to that of Theorem 11, and hence we content ourselves
to merely indicate the necessary changes.

(i) Let ga(z) = (h ◦ ϕa)

ψ(a)r z


, where h is a quotient of any two linearly independent

solutions f1 and f2 of (3.1), and r = 1/max


K
√

M, 1


. If a ∈ D and |ζ − a| < R⋆, then

ϕa

ψ(a)r z


∈ ∆p


a, ψ(a)r


⊂ ∆p(a, 1/2) ⊂ D ∩ D(ζ, R), z ∈ D. (3.22)

If a ∈ D and |ζ − a| < R⋆, then (3.19) and (3.22) imply that

|Sga (z)|(1 − |z|2)2 ≤ 2M


1 − |z|2

1 − |ψ(a)r z|2

2 
ψ(a)

ψ

ϕa(ψ(a)r z)

2

r2
≤ 2, z ∈ D.

We conclude that ga is univalent in D for any a ∈ D satisfying |ζ − a| < R⋆. Consequently, h is
univalent in each hyperbolic disc

∆h


a,

1
2

log
1 + ψ(a)r

1 − ψ(a)r


, a ∈ D, |ζ − a| < R⋆,

and the claim (3.20) follows by choosing a = th(z1, z2), where z1 and z2 are any two distinct
zeros of any non-trivial solution of (3.1), for which |ζ − th(z1, z2)| < R⋆.

(ii) Assume that all distinct zeros z1, z2 ∈ D of every non-trivial solution of (3.1), for which
|ζ − th(z1, z2)| < R, satisfy (3.20). First, we prove that each non-trivial solution of (3.1) vanish
at most once in

∆h


a,

1
2

log
1 + Ra

1 − Ra


= ∆p(a, Ra), Ra =

ψ(a)

K max


K
√

M, 1
 ,

for any a ∈ D satisfying |ζ − a| < R⋆, where R⋆ is given by (3.18). Assume on the contrary,
that there exists a non-trivial solution of (3.1) having two distinct zeros z1, z2 ∈ ∆p(a, Ra) for
such a. Since th(z1, z2) ∈ ∆p(a, Ra) ⊂ ∆p


a, ψ(a)


, and further, z → ϕa(ψ(a)z)maps D onto

∆p

a, ψ(a)


, we obtain

ψ(a)

ψ

th(z1, z2)

 ≤ sup
a∈D


sup

z∈∆p(a,ψ(a))

ψ(a)

ψ(z)


= sup

a,z∈D

ψ(a)

ψ

ϕa(ψ(a)z)

 = K .
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Now

ϱh(z1, z2) < log
1 + Ra

1 − Ra
= log

1 +
ψ(a)

K max


K
√

M,1


1 −
ψ(a)

K max


K
√

M,1
 ≤ log

1 +
ψ(th(z1,z2))

max


K
√

M,1


1 −
ψ(th(z1,z2))

max


K
√

M,1
 ,

which contradicts (3.20), since th(z1, z2) ∈ ∆p

a, 1/2


⊂ D ∩ D(ζ, R).

Second, since z → ϕa(Raz) maps D onto ∆p(a, Ra), the discussion above shows that
ga(z) = h


ϕa(Raz)


is univalent in D for all a ∈ D ∩ D(ζ, R⋆). Now

2|A(a)|(1 − |a|
2)2

ψ(a)2

K 2 max{K 2 M, 1}
≤ 6, a ∈ D ∩ D(ζ, R⋆),

by Kraus’ theorem [31], or alternatively [33, p. 545], which proves the assertion (3.21).

The strength of Theorem 15 is demonstrated in the following example.

Example 16. Let A be an analytic function in D, and assume that

p = inf


α ≥ 0 : sup

z∈D
|A(z)|


|1 − z|α(1 − |z|2)

2
< ∞


> 0. (3.23)

Let q > p, and denote ψ(z) = |1 − z|q/2q+1. Now ψ : D → (0, 1/2), and K in (3.17) satisfies

K = sup
a∈D


sup

z∈∆p(a,ψ(a))

ψ(a)

ψ(z)


≤ sup

a∈D


sup

z∈∆p(a,1/2)

1 − a

1 − z

q


≤ 3q .

According to (3.23) there exists a positive constant M such that (3.19) holds.
First, zero-sequences of non-trivial solutions of (3.1), which are contained in D \ D(1, r) for

some r > 0, are separated in the hyperbolic sense by Theorem 15. This follows from the fact that
ψ is bounded away from zero in D \ D(1, r). In particular, this means that any zero-sequence
converging to any ζ ∈ ∂D \ {1} is separated in the hyperbolic metric. Second, there exists an
infinite sequence of zero-pairs of non-trivial solutions of (3.1) such that the separation between
the zeros in each pair is minimal. To make this vague statement more precise, let ε ∈ (0, p). For
each n ∈ N there corresponds a pair of zeros (zn, z⋆n) of a non-trivial solution fn of (3.1) such
that |1 − th(zn, z⋆n)| < 1/n, and

log
1 + Cε |1 − th(zn, z⋆n)|

p+ε

1 − Cε |1 − th(zn, z⋆n)|p+ε
≤ ϱh(zn, z⋆n) < log

1 + Cε |1 − th(zn, z⋆n)|
p−ε

1 − Cε |1 − th(zn, z⋆n)|p−ε
, (3.24)

where Cε is a constant depending only on ε. The first inequality in (3.24) follows from the first
assertion of Theorem 15 with R = 2, and it is valid for all zero-pairs of all non-trivial solutions
of (3.1). Assume on the contrary, that there exists n ∈ N such that the second inequality in
(3.24) in false. That is, all zero-pairs (z, z⋆) of every non-trivial solution of (3.1), for which
|1 − th(z, z⋆)| < 1/n, satisfy

ϱh(z, z⋆) ≥ log
1 + Cε |1 − th(z, z⋆)|p−ε

1 − Cε |1 − th(z, z⋆)|p−ε
.

The second assertion of Theorem 15 now implies that p < p −ε, which is obviously impossible.
Remark that th(zn, z⋆n) → 1, as n → ∞, and hence zn, z⋆n → 1, as n → ∞, by (3.24).
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Note that, if q ≥ 0, and the coefficient A satisfies |A(z)| |1 − z|2q (1 − |z|2)2 → 0+, as
|z| → 1−, then z = 1 is the only possible accumulation point of the zeros of non-trivial solutions
of (3.1) by [21, Theorem 8]. However, condition (3.23) allows zeros to accumulate to any point
on ∂D.

The last result in this section is a local version of Theorem 15. The proof is an easy
modification of that of Theorem 15, and hence is omitted.

Theorem 17. Let A be analytic in D, ζ ∈ ∂D, and let Ω(ζ ) ⊂ D be a simply connected domain
such that Ω(ζ ) ∩ D = {ζ }. Let s ∈ (0, 1), and let ψ : D → (0, s) be such that

K = sup
a∈Ω(ζ )

sup
z∈D

ψ(a)

ψ

ϕa(ψ(a)z)

 < ∞.

(i) If the coefficient A satisfies |A(z)|

ψ(z)(1 − |z|2)

2
≤ M < ∞ for all z ∈


w∈Ω(ζ )

∆p(w, s), then the hyperbolic distance between any distinct zeros z1 and z2 of any non-
trivial solution of (3.1), for which th(z1, z2) ∈ Ω(ζ ), satisfies (3.20).

(ii) Conversely, if (3.20) is satisfied for all distinct zeros z1 and z2 of every non-trivial
solution of (3.1), for which th(z1, z2) ∈


w∈Ω(ζ )∆p(w, s), then the coefficient A satisfies

|A(z)|

ψ(z)(1 − |z|2)

2
< 3K 2 max{K 2 M, 1} for all z ∈ Ω(ζ ).

Theorem 17(ii) implies that, if the analytic coefficient A has a singularity of the type (ζ−z)−α

for some α > 2 at a point z = ζ ∈ ∂D, then each simply connected domain Ω(ζ ) ⊂ D satisfying
Ω(ζ )∩D = {ζ } contains infinitely many zero-pairs of non-trivial solutions of (3.1) with minimal
separation; compare to Corollary 32 below.

3.3. Connection to the existing oscillation theory

We state the following observations on Theorem 11: If A is analytic in D, and ψ : [0, 1) →

(0, 1) is a non-increasing function satisfying (3.2), then

sup
z∈D

|A(z)|

ψ(|z|)(1 − |z|2)

2
< ∞ ⇐⇒ inf

(z j ,zk )∈Γ0(A)

ϱp(z j , zk)

ψ(|th(z j , zk)|)
> 0, (3.25)

where we define Γr (A) for r ∈ [0, 1) to be the set of pairs (z1, z2) such that z1, z2 ∈ D are
distinct zeros of the same non-trivial solution of (3.1), and |th(z1, z2)| ≥ r . In particular, if the
coefficient A is analytic in D such that the expression supz∈D |A(z)|


ψ(|z|)(1 − |z|2)

2 is finite,
and if there exists a solution f of (3.1) whose zero-sequence has a subsequence {zn}, which
satisfies ϱp(zn, zn+1)/ψ


|th(zn, zn+1)|


→ 0+, as n → ∞, then f ≡ 0.

If ψ : [0, 1) → (0, 1) is a non-increasing function such that limr→1− ψ(r) = 0, and there
exists a constant t ∈ (0, 1) for which

sup
0≤r<1

ψ(r)

ψ


r+t
1+r t

 < ∞, (3.26)

then by modifying the proof of Theorem 11, one can show that

lim
|z|→1−

|A(z)|(ψ(|z|)(1 − |z|2))2 = 0 ⇐⇒ lim
r→1−

inf
(z j ,zk )∈Γr (A)

ϱp(z j , zk)

ψ(|th(z j , zk)|)
= ∞.

For example, ψ(r) = (1 − r)α/2, α > 0, satisfies (3.26) for any fixed t ∈ (0, 1).
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Depending on the assumptions on the auxiliary function ψ , the separation condition in
(3.25) may also be expressed in terms of ϕ-separation, which was introduced in [2]. Note that
|th(z1, z2)| ≤ max{|z1|, |z2|} for all z1, z2 ∈ D.

We proceed to compare Theorem 11 with existing results in the literature. To this end, several
definitions and observations are required. For p > 0, the growth space H∞

p consists of those
analytic functions g in D, for which

∥g∥H∞
p

= sup
z∈D

|g(z)|(1 − |z|2)p < ∞.

Recall that the union of all these spaces is the Korenblum space A−∞. Moreover, we say that
g ∈ H∞

p provided that p = inf {q > 0 : g ∈ H∞
q }. The order of growth σM (g) of an analytic

function g in D, with respect to the maximum modulus, is given by

σM (g) = lim sup
r→1−

log+ log+ M(r, g)

− log(1 − r)
.

If A is an analytic function in D, and (3.1) admits a non-trivial solution f which vanishes at
distinct points zn and z⋆n satisfying |zn − z⋆n| < εn for all n ∈ N, then the following affirmations
are valid by Theorem 11:

(i) If 0 < εn < C1 exp

−C2/(1 − |zn|)


for some C1,C2 > 0, then the infimum part of (3.25)

fails for the weight ψ(r) = (1−r)α/2 for all α > 0, and hence A ∉ A−∞. As a consequence
we get [14, Theorem 5].

(ii) If 0 < εn < C1 exp

−C2 exp


C3/(1 − |zn|)


for some C1,C2,C3 > 0, then the infimum

part of (3.25) fails for the weight ψ(r) = exp

−1/(1 − r)α


for all α > 0, and hence

σM (A) = ∞.

It is well-known that the growth of the coefficient of (3.1) is related to the growth of solutions,
and to the number of zeros of solutions. Our aim is to connect the separation of zeros of
solutions of (3.1) to these widely studied properties in the case that the coefficient belongs to
the Korenblum space. To this end, we introduce a new quantity, which measures the separation
of zeros of non-trivial solutions of (3.1). Supposing that A is an analytic function in D, we define
the zero separation exponent for (3.1) to be

ΛDE(A) = inf


q > 0 : inf
(z j ,zk )∈Γ0(A)

ϱp(z j , zk)

(1 − |th(z j , zk)|)q
> 0


, (3.27)

with the convention that ΛDE(A) = ∞ if the infimum in (3.27) is zero for all q > 0.
The following result, which is a consequence of Theorem 11, underscores the linkage between

existing growth results and the separation of zeros. Note that the equivalence of (i) and (iv) in
Corollary 18 below is valid for all λ > 0.

Corollary 18. Let A be an analytic function in D, and λ ∈ (1,∞). Then, the following assertions
are equivalent:

(i) A ∈ H∞

2λ+2;
(ii) All non-trivial solutions f of (3.1) satisfy σM ( f ) = λ;

(iii) There is a solution f of (3.1) such that σM ( f ) = λ;
(iv) ΛDE(A) = λ.
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Proof. Equivalence of (i), (ii) and (iii) is essentially known: Implication from (i) to (ii), and
hence to (iii), follows from [11, Theorem 1.4]. Assume that (iii) holds. Then [11, Corollary 1.3]
and [21, Lemma 2] prove that A ∈ H∞

p for all p > 2(λ+1), and (i) follows by [11, Theorem 1.4].
We complete the proof by showing that (i) and (iv) are equivalent. Let ε > 0 be such that

λ− ε/2 > 1. If (iv) holds, then

inf
(z j ,zk )∈Γ0(A)

ϱp(z j , zk)

ψ(|th(z j , zk)|)
> 0 for ψ(r) = 2−1(1 − r)λ+ε/2,

and

inf
(z j ,zk )∈Γ0(A)

ϱp(z j , zk)

ψ(|th(z j , zk)|)
= 0 for ψ(r) = 2−1(1 − r)λ−ε/2.

In the former case we have supz∈D |A(z)|

ψ(|z|)(1 − |z|2)

2
< ∞ by (3.25), while in the latter

case this supremum is infinite. This proves (iv) ⇒ (i). The proof of (i) ⇒ (iv) is similar, and
hence the details are omitted.

Conditions (i) and (ii) in Corollary 18 are not equivalent for λ = 1, since (3.1) with
A(z) = −4z/(1 − z)4 admits a bounded solution exp


−(1 + z)/(1 − z)


. Recent findings in [10]

show that there is a clever way to measure the growth of slowly growing analytic functions in
D, and it seems that the assumption λ ∈ (1,∞) in Corollary 18 can be relaxed to λ ∈ (0,∞),
provided that the order of growth is defined differently.

When discussing the quantity of zeros of solutions, it is natural to measure the growth of the
coefficient by means of integrated estimates. The order of growth of an analytic function g in D,
with respect to the Nevanlinna characteristic T (r, g), is

σT (g) = lim sup
r→1−

log+ T (r, g)

− log(1 − r)
.

Moreover, the exponent of convergence of the zero-sequence {zn} of g is

λ(g) = inf


β > 0 :

∞
n=1

(1 − |zn|)β+1 < ∞


.

Note that λ(g) measures the quantity of zeros of g, whereas ΛDE(A) quantifies the minimal
separation of zeros of all non-trivial solutions of (3.1). Despite of the apparent differences of
these quantities, for non-trivial solutions f of (3.1), ΛDE(A) and λ( f ) are closely related.

Theorem 19. Let A be an analytic function in D. Then

sup
f
λ( f ) ≤ ΛDE(A) ≤ 1 + sup

f
λ( f ), (3.28)

where the supremums are taken over all non-trivial solutions f of (3.1). In particular, the
quantities sup f λ( f ) and ΛDE(A) are finite or infinite at the same time.

Proof. To prove the first inequality in (3.28), assume that ΛDE(A) = λ < ∞, for otherwise there
is nothing to prove. Then A ∈ H∞

2λ+2 by Corollary 18, and hence
D

|A(z)|
1
2 (1 − |z|2)λ+ε dm(z) < ∞, ε > 0.

Therefore all non-trivial solutions f of (3.1) satisfy λ( f ) ≤ λ = ΛDE(A) by [23, Theorem 1.5].
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If 1 + sup f λ( f ) = λ ∈ [1,∞), then
D

|A(z)|
1
2 (1 − |z|2)λ−1+ε dm(z) < ∞, ε > 0,

by [23, Theorem 1.5]. Hence A ∈ H∞
p for all p > 2 + 2λ by the subharmonicity. We deduce

that ΛDE(A) ≤ λ = sup f λ( f )+ 1 by Corollary 18.

Inequalities in (3.28) are reminiscent to the well-known inequalities σT (g) ≤ σM (g) ≤

1+σT (g), which are satisfied for all analytic functions g in D. However, estimates in Theorem 19
concern zeros of functions, which are solutions of the same differential equation (3.1).

3.4. Zeros of individual functions

The following argument is a modification of Hille’s example in [35, Eq. (2.12)], and it
shows that we can find a sequence of zero-pairs of non-trivial solutions, which converges to
the boundary singularity of the coefficient, even though all such solutions have at most two zeros
in D.

Example 20. Let A(z) = −8/(1 − z2)2. Then A is analytic in D, and differential equation (3.1)
admits a non-vanishing solution base { f1, f2}, where

f1(z) =


1 − z2


1 − z

1 + z

3/2

and f2(z) =


1 − z2


1 − z

1 + z

−3/2

.

Since f1/ f2 assumes every a-point at most twice in D, all non-trivial solutions of (3.1) have at
most two zeros in D. For n ∈ N, we define fn = f1 + f2/n. Then fn has exactly two zeros
zn, z⋆n ∈ D, which are given by

zn =
1 − n−1/3 exp(iπ/3)

1 + n−1/3 exp(iπ/3)
and z⋆n =

1 − n−1/3 exp(iπ/3)

1 + n−1/3 exp(iπ/3)
.

If we let n → ∞, then zn and z⋆n = zn converge to z = 1 inside the unit disc such that
ϱp(zn, z⋆n) =

√
3/2 for all n ∈ N. Application of Theorem 11 shows that the pseudo-hyperbolic

distance between any distinct zeros of any non-trivial solution of (3.1) is at least
√

2/4.

Since ΛDE(A) measures the separation of zeros of all non-trivial solutions of (3.1), it can be
considered as a property of the differential equation (3.1) itself. Alongside with ΛDE(A) we can
also consider the separation of zeros of individual functions whether or not they are solutions of
a differential equation (3.1). If {zn} is the zero-sequence of an analytic function f in D, then we
define the zero separation exponent for f to be

Λ( f ) = inf


q > 0 : inf
j≠k

ϱp(z j , zk)

(1 − |th(z j , zk)|)q
> 0


, (3.29)

and set Λ( f ) = ∞, if the infimum in (3.29) is zero for all q > 0. Further, set Λ( f ) = 0 if f has
only finitely many zeros in D, or if f has multiple zeros.

Evidently, Λ( f ) ≤ ΛDE(A) for all solutions f of (3.1). The next example illustrates that for
some non-trivial solutions f of (3.1) we can have Λ( f ) = 0, while for other solutions f of (3.1)
Λ( f ) and ΛDE(A) are equal.
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Example 21. In the case of Example 13, weights ψ(r) = 2−1(1 − r)α for α > 0 together
with (3.25) show that ΛDE(A) = β. However, both base functions f1 and f2 in (3.8) are non-
vanishing, and hence Λ( f1) = Λ( f2) = 0. By Example 13 there is a solution, for example
f = − f1 + ei f2, for which Λ( f ) = ΛDE(A). Moreover, the convergence exponent of f satisfies
λ( f ) = β.

We remark that all non-trivial solutions f of (3.1) are of maximal growth. Namely, [11, The-
orem 1.4] and [30, Theorem 2] show that σM ( f ) = β and σT ( f ) = max{0, β − 1}.

We conclude this discussion by comparing the quantities λ( f ) and Λ( f ). On the one hand, it is
obvious that Λ( f ) . λ( f ) is not true for all analytic functions in D. For example, one can easily
find a Blaschke product B for which Λ(B) = ∞ and λ(B) = 0. In fact, Λ( f ) . λ( f ) is not
true even for solutions of (3.1), since [14, Theorem 5] shows that we can construct a differential
equation (3.1) having a solution f such that Λ( f ) = ΛDE(A) = ∞ while λ( f ) = 0. On the
other hand, if Λ( f ) is finite, then λ( f ) is finite. The proof of the sharp inequality λ( f ) ≤ 2Λ( f )
is similar to the proof of Theorem 33 below, and hence is omitted.

Note the following observation concerning solutions of differential equation (3.1). If A ∈

H∞

2λ+2 for λ > 1, then [23, Corollary 1.6] ensures the existence of a solution f such that
λ − 1 ≤ λ( f ) ≤ λ. Now Λ( f ) ≥ (λ − 1)/2, which means that there is at least one non-trivial
solution, whose zero-sequence contains infinitely many zeros, such that the separation between
distinct zeros becomes small near the boundary.

3.5. Uniform local univalence

Theorem 11 gives rise to natural subclasses of Uloc(D), the class of locally univalent analytic
functions in D. Namely, let ψ : [0, 1) → (0, 1) be a non-increasing function such that (3.2) is
satisfied. We write f ∈ Uψ provided that there exists δ ∈ (0, 1) such that f is univalent in each
hyperbolic disc

∆h


a,

1
2

log
1 + ψ(|a|)δ

1 − ψ(|a|)δ


, a ∈ D.

Functions in Uψ are called ψ-uniformly locally univalent functions in D. The following theorem
characterizes these functions f among Uloc(D) by means of the growth of their pre-Schwarzian
derivatives f ′′/ f ′ and their Schwarzian derivatives S f .

Theorem 22. Let f ∈ Uloc(D), and let ψ : [0, 1) → (0, 1) be a non-increasing function such
that (3.2) is satisfied. Then the following assertions are equivalent:

(i) f ∈ Uψ ;

(ii) supz∈D

 f ′′(z)
f ′(z)

ψ(|z|)(1 − |z|2) < ∞;

(iii) supz∈D |S f (z)|

ψ(|z|)(1 − |z|2)

2
< ∞.

Proof. The implication (iii) ⇒ (i) is implicit in the proof of Theorem 11.
If f ∈ Uψ , then there exists δ ∈ (0, 1) such that ga(z) = ( f ◦ ϕa)


ψ(|a|)δz


is univalent

for all a ∈ D. Take ha(z) =

ga(z) − ga(0)


/g′

a(0) so that ha(0) = 0 and h′
a(0) = 1. Now ha

belongs to the Schlicht class of normalized univalent functions in D, and hence the modulus of
the coefficient of z2 in the Maclaurin expansion of ha is bounded by two. Consequently,

ψ(|a|)δ

 f ′′(a)

f ′(a)
(1 − |a|

2)− 2a

 =

g′′
a (0)

g′
a(0)

 = |h′′
a(0)| ≤ 4,
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and it follows that f ′′(a)

f ′(a)

ψ(|a|)(1 − |a|
2) ≤ 6, a ∈ D.

Thus (i) implies (ii).
Suppose that the analytic function f ′′/ f ′ satisfies

sup
z∈D

 f ′′(z)

f ′(z)

ψ(|z|)(1 − |z|2) = M < ∞.

Define ρ =

|z|+ψ(|z|)


/

1+|z|ψ(|z|)


∈ (|z|, 1). A standard application of Cauchy’s integral

formula shows that f ′′

f ′

′

(z)

 ≤

M

ρ,

f ′′

f ′


ρ − |z|

, |z| < ρ. (3.30)

Now  f ′′

f ′

′

(z)

 ψ(|z|)(1 − |z|2)
2

≤ M


ρ,

f ′′

f ′


ψ(ρ)(1 − ρ2)


ψ(|z|)(1 − |z|2)

2
ψ(ρ)(1 − ρ2)(ρ − |z|)

,

where 
ψ(|z|)(1 − |z|2)

2
ψ(ρ)(1 − ρ2)(ρ − |z|)

=
ψ(|z|)


1 + ψ(|z|)|z|

3
ψ(ρ)(1 − ψ(|z|)2)

≤
8K

1 − ψ(0)
.

It follows thatS f (z)
 ψ(|z|)(1 − |z|2)

2
≤

 f ′′

f ′

′

(z)

 ψ(|z|)(1 − |z|2)
2

+
1
2

 f ′′(z)

f ′(z)

ψ(|z|)(1 − |z|2)

2

≤
8K M

1 − ψ(0)
+

M2

2

for all z ∈ D, and thus (ii) implies (iii).

The following example explores Example 13 in terms of uniform local univalence.

Example 23. Consider the locally univalent analytic function

f =
f1 − f2

f1
= 1 − exp


−2i

(1 − z)β


, β > 0,

induced by the linearly independent solutions f1 and f2 in (3.8) of the differential equation in
Example 13. Now

f ′′(z)

f ′(z)
=

−2iβ

(1 − z)1+β
+

1 + β

1 − z
and S f (z) = 2A(z) =

2β2

(1 − z)2+2β +
1 − β2

2(1 − z)2
,

where A is the coefficient function in (3.9). Clearly, conditions (ii) and (iii) in Theorem 22 are
satisfied for ψ(r) = 2−1(1 − r)β . We conclude that f is ψ-uniformly locally univalent.



410 M. Chuaqui et al. / Advances in Mathematics 245 (2013) 382–422

4. Complex plane

In this section, we consider the oscillation of solutions of

f ′′
+ A(z) f = 0 (4.1)

assuming that the coefficient A is entire. Since some non-trivial solutions of (4.1) with a constant
coefficient A ≢ 0 have infinitely many zeros, no restriction for the growth of A, other than
A ≡ 0, imply finite oscillation for all non-trivial solutions. In fact, if A ≢ 0, then Lemma 24
below shows that (4.1) possesses a non-trivial solution f such that µ( f ) ≥ 1, where

µ( f ) = inf


β > 0 :

∞
n=1

|zn|
−β < ∞


denotes the exponent of convergence of the zeros {zn} of f . Although the analogy of Nehari’s
result reduces to the trivial case A ≡ 0, differential equation (4.1) can be disconjugate in some
unbounded subsets of C. For example, if there exists an unbounded quasi-disk, in where the
coefficient A is sufficiently small, then each non-trivial solution f of (4.1) vanishes at most once
there [29].

Lemma 24. Let A be entire. If every non-trivial solution f of (4.1) satisfies µ( f ) < 1, then
A ≡ 0.

Proof. Let f1 and f2 be linearly independent solutions of (4.1), and define h = f1/ f2. By
Nevanlinna’s second fundamental theorem, we have

T (r, h) ≤ N (r, h)+ N (r, 1/h)+ N

r, 1/(h − 1)


+ S(r, h) (4.2)

outside an exceptional set E of finite linear measure. Now [6, Theorem 2.5.8] implies that there
exists ε > 0 such that T (r, h) = O(r1−ε) for all r ∈ [0,∞) \ E , and hence for all r sufficiently
large [32, Lemma 1.1.1]. By applying standard logarithmic derivative estimates [17, Corollary 2]
to 2A = Sh , we conclude that A ≡ 0.

4.1. Radial and non-radial weights

The following theorem gives an estimate for the separation of zeros in terms of the growth of
coefficient, and vice versa.

Theorem 25. Let A be entire, R ∈ [0,∞), and let Ψ : [R,∞) → (0,∞) be a non-increasing
function such that

K = sup
R⋆≤r<∞

Ψ(r)
Ψ

r + Ψ(r)

 < ∞, (4.3)

where

R⋆ =


R + Ψ(R), if 0 < R < ∞,

0, if R = 0.
(4.4)

(i) If the coefficient A satisfies

|A(z)|Ψ(|z|)2 ≤ M < ∞, R ≤ |z| < ∞, (4.5)
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then the Euclidean distance between any distinct zeros z1 and z2 of any non-trivial solution
of (4.1), for which the Euclidean mid-point |ta(z1, z2)| ≥ R⋆, satisfies

|z1 − z2| ≥
2Ψ

|ta(z1, z2)|


max


K

√
M, 1

 . (4.6)

(ii) Conversely, if (4.6) is satisfied for all distinct zeros z1 and z2 of every non-trivial solution of
(4.1), for which |ta(z1, z2)| ≥ R, then the coefficient A satisfies

|A(z)|Ψ(|z|)2 ≤ 3K 2 max{K 2 M, 1}, |z| ≥ R⋆. (4.7)

Proof. (i) Let { f1, f2} be a solution base of (4.1), and set h = f1/ f2 so that Sh = 2A. For a ∈ C,

define Φa(z) = a + Ψ(|a|)r z, where r = min


K
√

M
−1

, 1


, and consider the function

ga = h ◦ Φa in the unit disc D. If |a| ≥ R⋆, where R⋆ is given by (4.4), then |Φa(z)| ≥ R, and
hence the assumption (4.5) yields

|Sga (z)|(1 − |z|2)2 =
Sh

Φa(z)

 |Φ′
a(z)|

2(1 − |z|2)2 ≤ 2M


Ψ(|a|)

Ψ

|Φa(z)|

2

r2

≤ 2M


Ψ(|a|)

Ψ

|a| + Ψ(|a|)

2

r2
≤ 2M K 2r2

≤ 2

for all z ∈ D. Therefore ga is univalent in D for any |a| ≥ R⋆ by Nehari’s univalence criterion
[33, Theorem 1]. Hence h = f1/ f2 is univalent in each Euclidean disc D


a,Ψ(|a|)r


, |a| ≥ R⋆,

and consequently, condition (4.6) is true for any distinct zeros z1, z2 ∈ C of any non-trivial
solution of (4.1), for which |ta(z1, z2)| ≥ R⋆.

(ii) Assume that (4.6) holds for all distinct zeros z1 and z2 of every non-trivial solution of
(4.1), for which |ta(z1, z2)| ≥ R. As in the proof of Theorem 11, we deduce that each non-trivial
solution of (4.1) vanishes at most once in

D(a, Ra), Ra =
Ψ(|a|)

K max


K
√

M, 1
 , |a| ≥ R⋆,

where R⋆ is given by (4.4). It follows that ga = h ◦ Φa , where h is a quotient of any two linearly
independent solutions of (4.1) and Φa(z) = a + Raz, is univalent in D for all |a| ≥ R⋆. Now

|Sga (z)|(1 − |z|2)2 =
Sh

Φa(z)

 |Φ′
a(z)|

2(1 − |z|2)2 ≤ 6, z ∈ D,

by Kraus’ theorem [31], or [33, p. 545]. Since Sh = 2A, by choosing z = 0 we get

2|A(a)|
Ψ(|a|)2

K 2 max{K 2 M, 1}
≤ 6, |a| ≥ R⋆,

from which (4.7) follows.

We can obtain a zero-separation result similar to Theorem 25(i), without the condition (4.3),
by applying Sturm’s comparison theorem rather than Nehari’s univalence criteria. For example,
if A is entire and it satisfies (4.5) for R = 0, where Ψ : [0,∞) → (0,∞) is non-increasing and
continuous, then a straightforward application of [28, Corollary on p. 579] yields

|z1 − z2| ≥
π

√
M

Ψ


max{|z1|, |z2|} +
π

√
M

Ψ

max{|z1|, |z2|}


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for all distinct zeros z1 and z2 of every non-trivial solution f of (4.1). We may also apply Sturm’s
comparison theorem directly on the Euclidean geodesics between distinct zeros, and then obtain
a slightly different lower bound for the separation of zeros. In this approach the weight function
Ψ is not required to be continuous. For a similar reasoning, see [7, p. 19].

Conversely, if Ψ : [0,∞) → (0,∞) is non-increasing, and we assume

|z1 − z2| ≥
2

√
M

Ψ

max{|z1|, |z2|}


, 0 < M < ∞,

instead of (4.6), then an argument similar to the proof of Theorem 25(ii) gives

|A(z)|Ψ


|z| +
Ψ(|z|)
√

M

2

≤ 3M, z ∈ C.

The advantage of these results, when compared to Theorem 25, is the fact that the technical
condition (4.3) is not needed. However, when (4.3) is satisfied, then one may use either these
results or Theorem 25, and find the most useful estimate for each purpose by studying the
different constants appearing in the statements and the behaviour of the weight function Ψ in
the points in question.

The following example illustrates Theorem 25.

Example 26. The functions f1(z) = exp

−(ez

+ z)/2


and f2(z) = exp

(ez

− z)/2


are non-
vanishing linearly independent solutions of (4.1) with an entire coefficient A(z) = −


e2z

+1

/4,

see [4, p. 356]. Moreover, the zeros of α f1 + β f2, where αβ ≠ 0, are the points z ∈ C for which
exp


ez


= −α/β. Among these points we may pick a subsequence zn = log

log(−α/β)+i 2πn


for n ∈ N, where log denotes the principal branch of the complex logarithmic. Evidently,
|zn − zn+1| ∼ n−1, as n → ∞. An application of Theorem 25 with Ψ(r) = exp(−r), for
which K = e in (4.3), yields |zn − zn+1| & Ψ


|ta(zn, zn+1)|


∼ Ψ(log n) = n−1, as n → ∞.

We conclude that the estimate resulting from Theorem 25 is of the correct order of magnitude.

Corresponding to Section 3.2, the proof of Theorem 25 shows that we can also consider non-
radial weights Ψ . Namely, if there are constants C > 0 and R ≥ 0 such that the function
Ψ : C → (0,C) satisfies

K = sup
a∈C

sup
z∈D

Ψ(a)
Ψ

a + Ψ(a)z

 < ∞, (4.8)

and |A(z)|Ψ(z)2 ≤ M for R ≤ |z| < ∞, then we deduce (4.6) with ta(z1, z2) in place
of |ta(z1, z2)| for any distinct zeros z1 and z2 of any non-trivial solution of (4.1), for which
|ta(z1, z2)| ≥ R⋆, where R⋆ is given by (4.4). An observation corresponding to above applies for
the converse statement.

4.2. Discussion on the weight functions

Weight functions are a subject of more detailed inspection in Section 2.3; here we merely point
out a few differences. If Ψ : [0,∞) → (0,∞) is non-increasing, differentiable and convex, then

Ψ(r)
Ψ

r + Ψ(r)

 ≤
Ψ(r)

Ψ(r)+ Ψ ′(r)Ψ(r)
=

1
1 + Ψ ′(r)

for r large enough, and it follows that Ψ satisfies (4.3). However, the only non-increasing and
concave mappings from [0,∞) to (0,∞) are constants. It is also worth noticing that
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Ψ

r + Ψ(r)


Ψ(r)

− 1 =
Ψ

r + Ψ(r)


− Ψ(r)

r + Ψ(r)

− r

,

and hence (4.3) holds, if we assume the Lipschitz condition

sup
0<s<t<∞

Ψ(s)− Ψ(t)
s − t

 < 1.

We next construct a non-increasing function Ψ : [0,∞) → (0,∞), for which (4.3) fails.
The following construction only defines Ψ at a point sequence tending to infinity; Ψ can be
made continuous or differentiable on [0,∞) if needed. Define rk = 2k for n ∈ N, and define
Ψ(r1) = 1. Let εk ∈ (0, 1) be a decreasing sequence such that εk → 0+, as k → ∞. We
define values yk,Ψ(yk) and Ψ(rk+1) inductively by yk = rk + Ψ(rk),Ψ(yk) = εkΨ(rk) and
Ψ(rk+1) = Ψ(yk), respectively. Since Ψ is non-increasing and {rk} is increasing, we deduce that
Ψ(rk) < rk , and further, rk < yk < 2rk = rk+1 for all k ∈ N. Moreover,

Ψ(rk)

Ψ

rk + Ψ(rk)

 =
1
εk

→ ∞, k → ∞.

We have the following elementary analogue of Theorem 10: Let Ψ : [R,∞) → (0,∞) be
a continuous and non-increasing function, and let k > 1. Then there exists a constant C > 0,
depending on k, such that Ψ(x) < k Ψ


x + Ψ(x)


outside a set E ⊂ [R,∞) of x-values

satisfying


E dx ≤ C < ∞.

4.3. Observations on Theorem 25

If A is entire, and Ψ : [0,∞) → (0,∞) is a non-increasing function satisfying (4.3), then
Theorem 25 implies that

sup
z∈C

|A(z)|Ψ(|z|)2 < ∞ ⇐⇒ inf
(z j ,zk )∈Γ0(A)

|z j − zk |

Ψ

|ta(z j , zk)|

 > 0, (4.9)

where Γr (A) for r ∈ [0,∞) is the set of pairs (z1, z2) such that z1, z2 ∈ C are distinct zeros
of the same non-trivial solution of (4.1), and |ta(z1, z2)| ≥ r . In particular, if A is entire,
supz∈C |A(z)|Ψ(|z|)2 is finite, and there exists a solution f of (4.1), whose zero-sequence has a
subsequence {zn}, which satisfies |zn+1 − zn|/Ψ


|ta(zn, zn+1)|


→ 0+, as n → ∞, then f ≡ 0.

As in the unit disc case, if we assume that Ψ : [0,∞) → (0,∞) is a non-increasing function
such that limr→∞ Ψ(r) = 0, and there exists a constant t ∈ (0,∞) for which

sup
r∈[0,∞)

Ψ(r)
Ψ(r + t)

< ∞, (4.10)

then by modifying the proof of Theorem 25, we conclude

lim
|z|→∞

|A(z)|Ψ(|z|)2 = 0 ⇐⇒ lim
r→∞

inf
(z j ,zk )∈Γr (A)

|z j − zk |

Ψ

|ta(z j , zk)|

 = ∞.

For example, if Ψ(r) = (1 + r)−α for α > 0, then (4.10) holds for any t ∈ (0,∞).
Assume that A is entire and (4.1) has a non-trivial solution f which vanishes at distinct

points zn and z⋆n satisfying |zn − z⋆n| < εn for all n ∈ N. The following claims are immediate
consequences of Theorem 25:
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(i) If 0 < εn < M1 exp

−M2|zn|


for some M1,M2 > 0, then the infimum part of (4.9) fails

for the weight Ψ(r) = (1 + r)−α for all α > 0, and hence A is not a polynomial.
(ii) If 0 < εn < M1 exp


−M2 exp(M3|zn|)


for some M1,M2,M3 > 0, then the infimum part

of (4.9) fails for the weight Ψ(r) = exp(−rα) for all α > 0, and hence ρ(A) = ∞. Here, as
usual,

ρ(g) = lim sup
r→∞

log log M(r, g)

log r

denotes the order of growth of an entire function g. As a consequence we get [3, Corollary 1];
for further discussion, see [14, p. 347].

4.4. Polynomial coefficients

The special case Ψ ≡ c > 0 of Theorem 25 along with Liouville’s theorem yield the
following corollary, which can be considered as a plane analogue of the classical unit disc result
by Schwarz [35, Theorems 3 and 4]. Recall that Schwarz’s result gives a characterization, in
terms of the growth of the coefficient, to the case when the hyperbolic distance between any
distinct zeros of any non-trivial solution is uniformly bounded away from zero.

Corollary 27. Let A be entire. Then the Euclidean distance between all distinct zeros z1 and z2
every non-trivial solution f of (4.1) is uniformly bounded away from zero if and only if A is
constant.

Note that, if the coefficient A is a constant, then we can solve (4.1). It follows that the
Euclidean distance between any distinct zeros of any non-trivial solution is uniformly bounded
away from zero. An alternative proof of the converse assertion is presented at the end of
Section 4.4. The following result goes further than Corollary 27.

Corollary 28. Let A be entire. The coefficient A is a polynomial of degree n if and only if
|z1 −z2|


1+|z1 +z2|/2

n/2 is uniformly bounded away from zero for all distinct zeros z1, z2 ∈ C
of every non-trivial solution of (4.1).

Proof. If A(z) = anzn
+an−1zn−1

+· · ·+a1z+a0 is a polynomial, where the leading coefficient
an ≠ 0, then M(r, A) ≍ rn for all sufficiently large r . If we choose Ψ(r) = (1 + r)−n/2, then

Ψ(r)
Ψ

r + Ψ(r)

 =


1 +

1

(1 + r)1+n/2

n/2

≤ 2n/2, 0 ≤ r < ∞,

and hence (4.3) holds. Therefore, if A is entire, then the assertion follows from Theorem 25.

Example 29 below deals with a-points of a quotient of two linearly independent solutions of
(4.1) with a polynomial coefficient A.

Example 29. If P is a polynomial of degree d > 1, then for any distinct a-points z(a) and z⋆(a)
of the function

f (z) =

 z

0
exp


−2P(ζ )


dζ, z ∈ C,

the expression |z(a) − z⋆(a)|

1 + |ta(z(a), z⋆(a))|

d−1 is uniformly bounded away from zero,
and further, for each ε > 0 there corresponds a sequence {an} of complex numbers, such that
each an has two preimages z(an) and z⋆(an) under f , for which

taz(an), z⋆(an)
 ≥ n for all

n ∈ N, and
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|z⋆(an)− z(an)|


1 +
taz(ak), z⋆(an)

d−1−ε

→ 0+, n → ∞.

This follows from Theorem 25, since g1 = eP and g2 = eP f are linearly independent solutions
of

g′′
−


P ′′(z)+


P ′(z)

2g = 0, deg

P ′′

+ (P ′)2


= 2(d − 1), (4.11)

and the a-points of f are exactly the zeros of the solution g2 − ag1 of (4.11).

If A is entire and µ ∈ [1,∞), then A is a polynomial of deg(A) ≤ 2µ − 2 if and only if
all non-trivial solutions f of (4.1) satisfy ρ( f ) ≤ µ; see [23, Theorem 1.1] and the original
references therein. It is also true that these conditions are equivalent to the requirement that all
non-trivial solutions f of (4.1) satisfy µ( f ) ≤ µ [23, Theorem 1.3]. Note that µ( f ) measures
the quantity of zeros of f , but it does not imply any lower bound for the Euclidean distance
between two distinct zeros. Theorem 25 enables us to resolve this matter. Supposing that A is
entire, we define the zero separation exponent for (4.1) to be

ΥDE(A) = inf


q > 1 : inf
(z j ,zk )∈Γ0(A)

|z j − zk |

1 + |ta(z j , zk)|

q−1
> 0


, (4.12)

with the convention that ΥDE(A) = ∞ if the infimum in (4.12) is zero for all q > 1.
The following result, which emerges as a corollary of Theorem 25, shows that for solutions f

of (4.1), the quantities ρ( f ), µ( f ) and ΥDE(A) are closely related. Note in Corollary 30 that not
all values µ ∈ [1,∞) are permitted, since the degree of the polynomial coefficient must be an
integer. In particular, if any of the following equivalent conditions is true for some µ ∈ [1,∞),
then it follows that all the other conditions are valid, and further, µ belongs to a certain finite set
of permitted rational numbers.

Corollary 30. Let A be entire and µ ∈ [1,∞). Then, the following assertions are equivalent:

(i) The coefficient A is a polynomial of deg(A) = 2µ− 2;
(ii) All non-trivial solutions f of (4.1) satisfy ρ( f ) = µ;

(iii) There is a solution f of (4.1) such that ρ( f ) = µ;
(iv) All non-trivial solutions f of (4.1) satisfy µ( f ) ≤ µ, and there exists a solution f for which

µ( f ) = µ;
(v) ΥDE(A) = µ.

Proof. By combining [16, Theorem 5], [23, Corollary 1.4], [32, Proposition 5.1], it is easy to see
that conditions (i), (ii) and (iv) are equivalent. To conclude that condition (iii) can be added to
this list of equivalent conditions, it is suffices to prove that (iii) ⇒ (i), since (ii) ⇒ (iii) is trivial.
Assume that (iii) holds. Now standard estimates for the logarithmic derivatives [17, Corollary 3]
show that A is a polynomial, and (i) follows by [32, Proposition 5.1].

We complete the proof by showing that (i) and (v) are equivalent. Case µ = 1 is evident by
Corollary 27. Suppose that µ > 1, and let ε > 0 be such that µ− ε/2 > 1. If (v) holds, then

inf
(z j ,zk )∈Γ0(A)

|z j − zk |

Ψ(|ta(z j , zk)|)
> 0 for Ψ(r) = (1 + r)1−µ−ε/2,

and

inf
(z j ,zk )∈Γ0(A)

|z j − zk |

Ψ(|ta(z j , zk)|)
= 0 for Ψ(r) = (1 + r)1−µ+ε/2.
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In the former case we have supz∈C |A(z)|Ψ(|z|)2 < ∞ by (4.9), and hence the entire function A
is a polynomial with deg(A) ≤ 2(µ−1)+ε. In the latter case we have supz∈C |A(z)|Ψ(|z|)2 = ∞

by (4.9), and hence deg(A) ≥ 2(µ− 1)− ε. This proves (v) ⇒ (i). Conversely, if (i) holds, then
ΥDE(A) ≤ µ by Corollary 28, while (4.9) yields ΥDE(A) ≥ µ− ε/2. Thus (i) ⇒ (v).

If A ≢ 0 is entire, then Corollary 30 shows that sup f µ( f ) = ΥDE(A), where the supremum is
taken over all non-trivial solutions f of (4.1). Alongside with ΥDE(A), which can be considered
as a property of the differential equation (4.1) itself, we define another property measuring the
separation of zeros of individual functions. If {zn} is the zero-sequence of an entire function f ,
then we define the zero separation exponent for f to be

Υ( f ) = inf


q > 1 : inf
j≠k

|z j − zk |

1 + |ta(z j , zk)|

q−1
> 0


, (4.13)

and set Υ( f ) = ∞, if the infimum in (4.13) is zero for all q > 1. Further, set Υ( f ) = 1 if f has
only finitely many zeros in C, or if f has multiple zeros.

Evidently Υ( f ) ≤ ΥDE(A) for all solutions f of (4.1), and the strict inequality is possible,
for example, for non-vanishing solutions. As in the corresponding case of the unit disc,
Υ( f ) . µ( f ) is not true even for individual solutions of (4.1) with an entire coefficient,
see [3, Corollary 1]. The proof of the sharp inequality µ( f ) ≤ 2Υ( f ) is similar to the proof
of Theorem 33 below, and hence is omitted.

We proceed to consider the geometric distribution of zeros of solutions of (4.1) with a
polynomial coefficient A. According to [28, Chapter 7] all but finitely many zeros of any
non-trivial solution of (4.1) lie in critical sectors constructed over symmetrically spaced radii
emanating from the origin, see also [16, Lemma 2]. The number of critical sectors is deg(A)+2.

Let A be a polynomial of deg(A) = n, and let f by any non-trivial solution of (4.1). It follows
that f is an entire function of order of growth ρ( f ) = (n+2)/2, see Corollary 30. Let us consider
the growth of | f (z)| in different parts of the complex plane, as |z| → ∞. We expect | f (z)| to
be small when z is close to the zeros of f that are located in the critical sectors, with finitely
many possible exceptions. However, either | f (z)| → ∞ or | f (z)| → 0, as z → ∞, in between
two consecutive critical sectors, see [18, Theorem E]. By Phragmén–Lindelöf theorem there
must exist at least one pair of consecutive critical sectors such that | f (z)| → ∞, as z → ∞,
in between them, for otherwise f would be a constant. Define D =


z ∈ C : | f (z)| ≥ 1


.

Clearly all zeros of f belong to the complement of D. Since ρ( f ) = (n + 2)/2, it follows from
[36, Theorem 1] that the two-dimensional upper density of D satisfies

lim sup
r→∞

m


D ∩ D(0, r)


πr2 ≥
1

n + 2
. (4.14)

Since there are n + 2 symmetrical critical sectors, the lower bound in (4.14) corresponds to the
portion of one sectorial domain between two consecutive critical sectors.

For a slightly more precise analysis, let r θ(r) be the length of the longest arc of |z| = r con-
tained in D. Then θ(r) is the angle in which this arc is seen from the origin. For a fixed ε ∈ (0, 2),
let F =


r ∈ [1,∞) : θ(r) ≤ (2 − ε)π/(n + 2)


. Such angular restriction again corresponds to

a sectorial domain between two consecutive critical sectors. Now [1, Theorem 3] shows that

n + 2
2

≥ lim sup
r→∞

π

log r

 r

1

dt

t θ(t)
≥

n + 2
2 − ε

lim sup
r→∞


F∩[1,r ]

dt
t

log r
.

This shows that the upper logarithmic density logdens(F) ≤ (2 − ε)/2 < 1.
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The following theorem, whose proof is an easy modification of that of Theorem 25, allows us
to supplement the existing knowledge on zero distribution of solutions of (4.1) with polynomial
coefficients. If θ ∈ [0, 2π) and 0 < s < R, then

Ωθ (R, s) =

z ∈ C : |z − reiθ

| < s for some r > 0


\ D(0, R)

defines an infinite half-strip domain of width 2s in the complex plane.

Theorem 31. Let A be entire, R ∈ (0,∞) and Ψ : [R,∞) → (0,∞) be a non-increasing
function such that (4.3) holds, where R⋆ = R + Ψ(R).

(i) If the coefficient A satisfies |A(z)|Ψ(|z|)2 ≤ M < ∞ for all z ∈ Ωθ (R, s), where
θ ∈ [0, 2π) and s ∈ (Ψ(R), R), then the Euclidean distance between any distinct zeros
z1 and z2 of any non-trivial solution of (4.1), for which the Euclidean mid-point ta(z1, z2) ∈

Ωθ

R + Ψ(R), s − Ψ(R)


, satisfies (4.6).

(ii) Conversely, if (4.6) is satisfied for all distinct zeros z1 and z2 of every non-trivial solution of
(4.1), for which ta(z1, z2) ∈ Ωθ (R, s), where s ∈ (Ψ(R), R), then the coefficient A satisfies

|A(z)|Ψ(|z|)2 ≤ 3K 2 max{K 2 M, 1}

for all z ∈ Ωθ

R + Ψ(R), s − Ψ(R)


.

The following corollary indicates that, although almost all zeros of individual non-trivial
solutions of (4.1) lie in a small portion of the complex plane, one finds infinitely many pairs
of zeros with minimal separation in each radial direction, provided that all zeros of all non-trivial
solutions of (4.1) are taken into account.

Corollary 32. Let A be a polynomial of deg(A) = d. Then, each Ωθ (1, s), where θ ∈ [0, 2π)
and s ∈ (0, 1), contains infinitely many pairs of zeros (zn, z⋆n) of non-trivial solutions fn of (4.1),
such that supn∈N |zn − z⋆n| n(d−ε)/2 < ∞ for all ε > 0.

Proof. Let θ ∈ [0, 2π) and s ∈ (0, 1) be fixed, and define Ψ(r) = (1 + r)−(d−ε)/2, where ε > 0
is sufficiently small. Take N ∈ N large enough such that Ψ(n) < s/2 for all natural numbers
n > N .

Suppose that there exists a natural number n > N such that all distinct zeros z and z⋆ of
every non-trivial solution of (4.1), for which ta(z, z⋆) ∈ Ωθ (n, s/2), satisfy (4.6) with z1 = z and
z2 = z⋆. Theorem 31(ii) now implies that expression |A(z)|Ψ(|z|)2 is uniformly bounded for all
z ∈ Ωθ


n + Ψ(n), s/2 − Ψ(n)


. This is clearly a contradiction, since regardless of the argument

|A(z)|Ψ(|z|)2 ≍
|z|d

(1 + |z|)d−ε
≍ |z|ε → ∞, |z| → ∞.

We conclude that, for each natural number n > N there corresponds a non-trivial solution fn of
(4.1), such that fn has two distinct zeros zn, z⋆n ∈ C, for which ta(zn, z⋆n) ∈ Ωθ (n, s/2) and

|zn − z⋆n| ≤
1

1 + |ta(zn, z⋆n)|
(d−ε)/2

≤
C

(1 + n)(d−ϵ)/2
,

where C > 0 is a constant independent of n. Assertion follows, since evidently zn, z⋆n ∈ Ωθ (1, s)
for all sufficiently large n ∈ N.

The following theorem concerns the separation of zeros of individual solutions of (4.1) with
a polynomial coefficient.
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Theorem 33. Let A be a polynomial of deg(A) = d.

(i) If 0 ≤ d ≤ 2, then all non-trivial solutions f of (4.1) satisfy Υ( f ) ≤ (d + 2)/2, and there
exists a solution f such that Υ( f ) = (d + 2)/2.

(ii) If d > 2, then all non-trivial solutions f of (4.1) satisfy Υ( f ) ≤ (d + 2)/2, and there exists
a solution f such that Υ( f ) ≥ (d + 2)/4 + 1.

Proof. The case d = 0 follows from Corollary 27. Since all non-trivial solutions f satisfy
Υ( f ) ≤ ΥDE(A) = (d + 2)/2 for any d by Corollary 30, it suffices to find a solution f for
which Υ( f ) has the desired lower bound depending on d.

Let now d ≥ 1. By Corollary 30 there exists a solution f such that µ( f ) = (d + 2)/2. In
particular, f has infinitely many zeros. By [25, Theorem 1] there are d + 2 modified half-strips
in the complex plane such that these sets contain all but finitely many zeros of f . Moreover,
the widths of these modified half-strips tend to zero at a rate depending on d = deg(A),
when approaching the infinity. It follows that at least one of these modified half-strips, say
Ω , contains a sequence {zn} of zeros of f such that convergence exponent of {zn} equals to
(d + 2)/2 = µ( f ). Without loss of generality, we may suppose that Ω belongs to the right
half-plane and is symmetric with respect to the positive real axis. Denote

R j :=

z ∈ C : j ≤ Re(z) < j + 1


, j ∈ N,

and let ε > 0. By (4.13) there exists a constant c > 0 such that, if K j = cj−(Υ ( f )−1+ε/4), then
D(zn, K j ) ∩ D(zm, K j ) = ∅ for all distinct zeros zn, zm ∈ Ω ∩ R j and j large enough.

If d = 1, then [25, Theorem 1] yields

area

 
z∈Ω∩R j

D(z, K j )

 . 2
 j+1+K j

j−K j


x−1/2

+ K j


dx . max


K j ,
1

j1/2


.

Let N j denote the number of zeros of f belonging to Ω ∩ R j , so that

N j .
1

πK 2
j

area

 
z∈Ω∩R j

D(z, K j )


. max


1

K j
,

1

j1/2 K 2
j


. (4.15)

If the maximum in (4.15) is equal to K −1
j , then

∞
n=1

1

|zn|Υ ( f )+ε
.

∞
j=1


zn∈ R j

1

|zn|Υ ( f )+ε
.

∞
j=1

N j

jΥ ( f )+ε
< ∞,

and hence 3/2 = µ( f ) ≤ Υ( f ), where the first equality follows from Corollary 30. If the
maximum in (4.15) is equal to j−1/2 K −2

j , then

∞
n=1

1

|zn|2Υ ( f )−3/2+ε
.

∞
j=1


zn∈ R j

1

|zn|2Υ ( f )−3/2+ε
.

∞
j=1

N j

j2Υ ( f )−3/2+ε
< ∞,

which implies µ( f ) ≤ 2Υ( f )− 3/2, and hence Υ( f ) ≥ 3/2. The assertion follows for d = 1.
If d = 2, then [25, Theorem 1] yields

area

 
z∈Ω∩R j

D(z, K j )

 . 2
 j+1+K j

j−K j


log x

x
+ K j


dx . max


K j ,

log j

j


,



M. Chuaqui et al. / Advances in Mathematics 245 (2013) 382–422 419

while if d > 2, then

area

 
z∈Ω∩R j

D(z, K j )

 . 2
 j+1+K j

j−K j


x−1

+ K j


dx . max


K j ,
1
j


.

We may follow the reasoning in the case d = 1 to obtain (d + 2)/2 = µ( f ) ≤ 2Υ( f )− 2, from
which the assertion follows.

The example below concerns the Airy differential equation, whose solutions arise in many
practical applications. For a generalization of the Airy integral, see [19].

Example 34. The classical Airy differential equation f ′′
− z f = 0 possesses a special contour

integral solution called the Airy integral Ai. Let {zn} denote its zero-sequence. It is known that
zeros zn are real and negative for all n ∈ N [34, p. 415], and they satisfy [27, Theorem 2] the
asymptotic estimate

zn ∼ −


3π
8


4n − 1

2/3

, n → ∞. (4.16)

Theorem 25 with Ψ(r) = (1 + r)−1/2 proves that all distinct zeros z1 and z2 of Airy integral
satisfy the separation condition |z1 − z2| ≥ 2


2 + |z1 + z2|

−1/2. This estimate is of the correct
order of magnitude, since

|zn − zn+1| ∼


2π2

3n

1/3

,
2

√
2 + |zn + zn+1|

∼


4
√

2
3πn

1/3

, n → ∞,

by (4.16). Note also that Υ(Ai) = 3/2 by the proof of Theorem 33.

We close this section by giving an alternative proof of the converse assertion of Corollary 27.
Suppose that the zeros of every non-trivial solution f of (4.1) are separated in terms of the
Euclidean metric; that is, all zeros are simple, and Υ( f ) = 1 for all non-trivial solutions f of
(4.1). Then, for any fixed non-trivial solution f there is a constant δ > 0 such that for any z0 ∈ C
the Euclidean disc D(z0, δ) contains at most one zero of f . A simple geometric observation
reveals that n(r, f, 0) = O(r2) and N (r, f, 0) = O(r2), as r → ∞, for all non-trivial solutions
f of (4.1).

Let f1 and f2 be linearly independent solutions of (4.1), and define h = f1/ f2. By
Nevanlinna’s second fundamental theorem (4.2) holds outside an exceptional set E of finite linear
measure. By the discussion above, T (r, f ) = O(r2) for all r ∈ [0,∞) \ E , and hence for all r
sufficiently large [32, Lemma 1.1.1]. By applying standard logarithmic derivative estimates [17,
Corollary 2] to 2A = Sh , we conclude that A is a polynomial of deg(A) ≤ 2. This is in
contradiction with Theorem 33, unless A is a constant function.

4.5. Uniform local univalence

Theorem 25 gives rise to certain natural subclasses of locally univalent functions. Functions
f satisfying (i) in Theorem 35 below are called as Ψ -uniformly locally univalent functions in C.

Theorem 35. Let f be a locally univalent entire function, and let Ψ : [0,∞) → (0,∞) be a
non-increasing function such that (4.3) is satisfied for R⋆ = 0. Then the following assertions are
equivalent:
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(i) There exists δ > 0 such that f is univalent in each disc D (a,Ψ(|a|)δ) for all a ∈ C;

(ii) supz∈C

 f ′′(z)
f ′(z)

Ψ(|z|) < ∞;

(iii) supz∈C | S f (z)|Ψ(|z|)2 < ∞.

Proof. The proof of Theorem 25 shows that (iii) implies (i). Moreover, if (i) is satisfied, then
the function ga = f ◦ Φa , where Φa(z) = a + Ψ(|a|)δz is univalent in D for all a ∈ C. Take
ha(z) = (ga(z)− ga(0))/g′

a(0) so that ha(0) = 0 and h′
a(0) = 1. Then f ′′(a)

f ′(a)

Ψ(|a|)δ =

g′′
a (0)

g′
a(0)

 = |h′′
a(0)| ≤ 4,

and (ii) follows.
Assume that (ii) is satisfied so that

sup
z∈C

 f ′′(z)

f ′(z)

Ψ(|z|) = M < ∞.

Let ρ = |z| + Ψ(|z|). An application of the Cauchy formula gives (3.30), and hence f ′′

f ′

′

(z)

Ψ(|z|)2 ≤ K M


ρ,

f ′′

f ′


Ψ(ρ)

Ψ(|z|)
ρ − |z|

≤ K M, z ∈ C.

It follows thatS f (z)
Ψ(|z|)2 ≤

 f ′′

f ′

′

(z)

Ψ(|z|)2 +
1
2

 f ′′(z)

f ′(z)

Ψ(|z|)2

≤ K M +
1
2

M2

for all z ∈ C, and thus (iii) is satisfied.

5. Concluding remarks

The results reported in this paper fall into two distinct categories. In Section 2 we compare
the separation of zeros of non-trivial solutions of

f ′′
+ A f = 0 (5.1)

to the growth of the continuous real-valued coefficient A on a real interval, whereas in Sections 3
and 4 we discuss the corresponding concepts in a complex domain. Even though the approach
we take applies in both instances, there are some profound differences between the real and
complex cases no matter how similar they may seem. In the complex case, it is well-known that
the growth of the coefficient, the growth of solutions and the quantity of zeros of solutions are
closely related. By the results obtained, it is justified to say that the separation of zeros of all
non-trivial solutions gives the fourth quantity (ΛDE(A) in the disc and ΥDE(A) in the plane),
which is firmly ensconced among the other three. However, these ties are not carried over into
the real case, as the following facts show. First, by Examples 4 and 7, an arbitrarily fast growing
coefficient may permit all solutions to be bounded. Second, an elementary corollary [5, p. 48]
of Sturm’s comparison theorem states that, if A is non-positive, then (5.1) is disconjugate. We
derive the same conclusion whenever the integral of A is sufficiently small [20, Corollary 5,
p. 346]. Therefore the absolute value of the coefficient may grow arbitrarily fast while all non-
trivial solutions vanish at most once. Third, Sturm’s theorem on interlacing zeros shows that,
if one non-trivial solution has infinitely many zeros, then the same is true for all solutions. In
particular, if one non-trivial solution has two zeros, then there are no zero-free solutions, to say
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nothing of zero-free solutions bases. In contrast to this, zero-free solution bases are possible in
the complex case [4,24]. For classical results on the oscillation regarding the real case, see, for
example, [39] and the references therein. In conclusion, the connections between the growth of
the coefficient, the growth of solutions, and the zero separation of solutions of (5.1) in the real
case are different from those in the complex case.
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ODE’s, Proc. Edinb. Math. Soc. (2013) in press.
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[22] J. Heittokangas, R. Korhonen, J. Rättyä, Linear differential equations with coefficients in the weighted Bergman
and Hardy spaces, Trans. Amer. Math. Soc. 360 (2008) 1035–1055.
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