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ABSTRACT 

During storage and shipping of blueberries visible and internal fruit damages can lead to 

rejection at the destination. High maturity variability of blueberry, make it valuable to 

study non-destructive methodologies for their internal and external assessment during 

the postharvest. This would improve the quality of blueberries shipped overseas. This 

thesis has two principal themes: the external quality evaluation of blueberries using 

pattern recognition techniques with visible images and, the assessment of internal 

quality using hyperspectral images.  

For external quality evaluation, the automatic detection of distinctive blueberry 

orientations (Stem end and Calyx end) and defective fruit - fungally decayed, shriveled 

and mechanically damaged by impacts or compressed-, were achieved with statistical 

pattern recognition methods. First, the four-classes (including control berries without 

damage) of harvested blueberries were imaged to extract color and geometrical features. 

Features were then selected using sequential forward selection for use by classifiers. 

Finally, results were validated with external 10-fold cross validation. Using linear 

discriminant analysis, support vector machine and a probabilistic neural network was 

able to distinguish the blueberries‘ orientation in 96.5 % of the cases. The classifiers 

achieved average performances of 98.3 %, 96.7 %, and 93.3 % for fungally decayed, 

shriveled, and mechanically damaged blueberries. 



 

vi 

 

 Two sensing modes (i.e. reflectance and transmittance) of hyperspectral imaging 

technique were studied for assessing the internal quality of postharvest blueberries (i.e. 

soluble solids content and softening). This technique combines image processing and 

spectroscopic analysis to build predictive models. For reflectance, better firmness 

correlation coefficient for prediction (Rp = 0.87) were obtained with a push broom 

system, compared to soluble solids content (SSC) predictions (Rp = 0.79). When a 

higher resolution hyperspectral imaging system was employed, better SSC predictions 

(above Rp=0.90) were obtained in comparison with those from firmness (Rp=0.78). 

Transmittance predictions showed lower correlations than reflectance in most cases. 

Fruit orientation was also evaluated, and it was found that slightly better predictions for 

stem end in comparison with equator and calyx. Finally, when wavelengths selection 

was performed, the prediction errors, on average, increased by only 5% when the 

number of wavelengths was reduced from 478 and 295 for reflectance and transmittance 

,respectively, to 90 wavelengths of 10 intervals and 9 wavelengths each. This research 

has demonstrated the feasibility of implementing inspection systems for automatic 

sorting of blueberries for external quality using visible color imaging and for internal 

quality attributes using hyperspectral imaging to enhance product quality and 

marketability. 
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Resumen 

Durante el almacenamiento y el transporte de los arándanos, algunos defectos de la fruta 

pueden provocar rechazos en algún momento de su comercialización haciendo valiosos 

los estudios sobre metodologías no destructivas para su evaluación externa e interna 

durante su poscosecha. De este modo, al ser implementadas, la calidad podría mejorar. 

La presente tesis tuvo dos ejes principales: la evaluación externa de la calidad de 

arándanos poscosecha con técnicas de reconocimiento de patrones de imágenes a color, 

y la evaluación de su calidad interna utilizando imágenes híper espectrales para la 

construcción de modelos predictivos. 

Para la evaluación externa de la calidad en arándanos, se implementó un reconocimiento 

estadístico de patrones para detectar automáticamente las dos principales orientaciones  

(pedicelo y cáliz) y tres de los defectos más comunes: arándanos con desarrollo de 

hongos, encogimiento por deshidratación y arándanos con impactos mecánicos o 

comprimidos. En primer lugar, se adquirieron imágenes de grupos de arándanos 

clasificados en las dos orientaciones y en las cuatro clases de defectos de arándanos 

poscosecha (incluida la clase control). Luego de la adquisición, se extrajeron 

características cromáticas y geométricas para posteriormente seleccionarlas utilizando el 

algoritmo de ―búsqueda secuencial hacia adelante‖. Estas características seleccionadas 

fueron utilizadas para entrenar distintos tipos de clasificadores y determinar cuál de ellos 

entregaba la mejor clasificación. El entrenamiento y prueba del reconocimiento de 
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patrones fue realizado con 10-validación cruzada lo que permitió su validación 

estadística. Como resultado se encontró que los clasificadores que arrojaron mejores 

desempeños fueron el discriminante de análisis lineal, la máquina de soporte vectorial y 

una red neuronal probabilística. Estos clasificadores posibilitaron la distinción de la 

orientación de los arándanos en un 96.8% de los casos. El reconocimiento automático de 

daños fue de un 98,3 %, 96,7 %, and 93,3 % para arándanos con desarrollo de hongos, 

arándanos con encogimiento por deshidratación y arándanos con daño mecánico 

respectivamente en el mejor de los casos.  

Para evaluar la calidad interna de los arándanos (contenido de sólidos solubles y 

ablandamiento), se construyeron modelos predictivos a partir de la información espectral 

de imágenes híper espectrales en dos modos de detección (reflectancia y la 

transmitancia) y tres orientaciones de frutas (pedicelo, cáliz y ecuador). Esta técnica se 

basa en una combinación de procesamiento de imágenes y de análisis espectroscópico. 

De este modo, se obtienen múltiples imágenes con información espectral adecuada para 

construir los modelos. Para las imágenes adquiridas en reflectancia mediante un equipo 

de barrido, se obtuvieron mejores predicciones que firmeza (RP = 0,87) en comparación 

con SSC (RP = 0,79). En otro estudio realizado, cuando se aumentó la resolución de la 

imagen en un sistema estático, se obtuvo una mejor predicción de SSC (por encima de 

Rp = 0,90) de firmeza (Rp = 0,78). Las predicciones obtenidas con imágenes de 

transmitancia muestran una correlación inferior a las obtenidas por reflectancia en la 

mayoría de los casos. Adicionalmente, se evaluó el efecto de la orientación de los 

arándanos, encontrando una mejor, pero muy leve, predicción para las imágenes de 

pedicelo en comparación con las obtenidas para ecuador y cáliz.  

Finalmente, se implementó una selección de longitudes de onda desde las 478 originales 

para las imágenes en reflectancia y desde 295 para transmitancia hasta sólo 90 imágenes 

distribuidas en 10 intervalos de grupos de 9 longitudes de onda cada uno para ambos 

tipos de imágenes. De esta manera, los errores de predicción en promedio aumentaron 

sólo el 5%.  
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Esta investigación ha demostrado la factibilidad del uso de imágenes tanto la 

clasificación automática de calidad externa usando visión por computador así como la 

evaluación de la calidad interna mediante imágenes híper espectrales para mejorar la 

calidad del producto y su comercialización.  
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1. INTRODUCTION 

1.1. Why blueberries? 

Blueberry is an important fruit worldwide whose consumption has increased in recent 

years due to its good flavor and high antioxidant capacity, which is good for anti-aging. 

The United States of America is the leading blueberry exporter, followed by Canada 

(Faoestat 2009). In recent years, countries in the southern hemisphere (e.g., Argentina, 

Chile, New Zealand and South Africa) have increased fruit export to the northern 

hemisphere by taking advantage of seasonal differences in production. But long-distance 

transoceanic shipment requires delivering higher quality and more consistent fresh 

blueberries at the origin country in order to meet the quality standards upon arrival at the 

destination. 

Argentina

Uruguay

Chile
Mtons

20102006
2001

50

16

32

Year
 

Figure 1.1 Evolution of blueberry exportation for the principal producing countries in 

South America (Kong 2009) 

Fruit south hemisphere overall export has been fruit have doubled in recent years. In 

Chile, for example, fruit exportations grew from USD $ 1.4 million in 1999, to USD 2,7 

million in 2010 (Figure, 1.1). Moreover, the blueberry exports lead this improvement; 

between 2001 and 2010, it has increased almost 10 times (Kong 2009).  
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1.2. Automation technology to enhance the quality of blueberries 

When fruits are exposed to light, a small part of the light is reflected at the surface 

causing specular reflectance or gloss, while most of the light energy penetrates into the 

fruit tissue for only a very short distance and then exits from the fruit. The remaining 

part of the light penetrates deeper into the tissue, which is then partially absorbed by 

fruit tissue or passes a section of the fruit before exiting, generating diffuse reflectance 

and/or body reflectance or interactance. Finally, a minimal portion of the light passes the 

whole fruit, producing so called diffuse transmittance or body transmittance (Abbott 

1999). Transmittance measurement is thus strongly affected by the optical properties 

size and shape of fruit, and it requires a high intensity light source (Figure 1.2). Those 

fruit optical properties can be measured by computer vision or hyperspectral sensors and 

in the most of cases is the basis of determination of fruit quality. 

 

Figure 1.2 The optical properties of fruit tissue can help to improve technology using 

image techniques to acquire reflected or transmitted light. 

Accurate determination of blueberry quality is challenging because individual fruits are 

small, dark in color, and vary greatly in external and internal quality characteristics. 

Traditional manual inspection is still widely used; it is slow, unreliable and dependent 



Chapter 1 

 

3 

 

on workers availability. For these reasons, it is increasingly important to study the 

quality improvement of blueberries in the agricultural production and marketing chain 

using automation technologies. Previous studies have shown that applications of 

computer vision in quality control in food are more accurate, safe and quicker than 

human sight (Aguilera and Briones 2005). Computing vision technology which is based 

on image processing, as an alternative to visual inspection, is now being used in various 

foods and agricultural commodities sorting systems; it is objective, consistent, rapid, and 

economical (Brosnan and Sun 2002; Kumar-Patel et al. 2012). Images have been 

effectively used to classify or recognize quality in agricultural and food commodities 

including apple (Malus domestica) (Paulus and Schrevens 1999), strawberry (Fragaria 

spp.) (Bato et al. 2000), pistachio (Pistacia vera) (Pearson and Toyofuku 2000), fungal 

decayed chestnut (Donis-González et al. 2013; Wang et al. 2011b),  potato chip 

(Pedreschi et al. 2006), tortilla (Mery et al. 2010a), pizza (Sun and Brosnan 2003b, a), 

chocolate chip biscuits (Davidson et al. 2001), cheese (Wang and Sun 2002a, b, 2001),  

pork meat (Lu et al. 2000; Faucitano et al. 2005), between others. 

Currently, commercial sorting systems are available. For high-speed sorting of 

agricultural products (up of 2 tons h
-1

) and are able to reject up to 95% of out-of-range 

blueberries. However, these sorters sort blueberries based on the detection of surface 

color, and they are limited or not are able to recognize specific defects such as fungal 

decay and shriveling. Beside color, shape and texture, there are other quality parameters 

that define the blueberries internal quality. Two of the most important ones are softness 

or firmness and sweetness.  

Considerable research has been reported on the development of automatic sorting and 

grading techniques for firmness, a measurement of softening, for blueberries. Currently, 

several commercial sorting systems are available, which are based on detection of the 

impact response of blueberries when they hit a pressure sensor. While commercial 

systems allow high speed sorting, they are only able to reject up to 80% of soft fruit.  

Soluble solids content (SSC), an accepted measure of sweetness, is another important 
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quality attribute for blueberries. It is usually determined from the juice extracted from 

fruit flesh using the refractometric method (Noh and Lu 2007). 

Over the past decade, hyperspectral imaging has emerged as a powerful inspection 

technique for food and agricultural products. The technique allows acquisition of both 

spectral and spatial information about an object simultaneously (ElMasry and Sun 

2010). Since each hyperspectral image is represented by a 3-D spectral data cube or 

hypercube (Geladi et al. 2004; Nicolaï et al. 2006), it is thus advantageous over 

conventional imaging or spectroscopy technique in quality and safety inspection of food 

and agricultural products (Noh and Lu 2007). The technique was applied to small fruits 

like strawberry, a fruit relatively close to blueberry, for detection of bruises (Tallada et 

al. 2006)  and  prediction of dry matter, SSC, acidity or firmness (ElMasry et al. 2007; 

Nagata et al. 2005). These studies have shown the feasibility of hyperspectral imaging 

for measuring the appearance through image processing and physicochemical properties 

using spectral information. 

The purpose of this thesis is to evaluate the suitability of non-destructive measurement 

of blueberries using image techniques. Computer vision and hyperspectral imaging both 

are image-based techniques suitable to assess the quality of agricultural commodities. 

While computer vision is commonly used to evaluate the external fruit appearance, 

hyperspectral imaging allows evaluation of both internal and external characteristics.  

1.3. Hypothesis and objectives  

 

The hypothesis of this thesis is that computer vision and hyperspectral imaging 

techniques are reliable technologies to assess automatically the external and internal 

quality of blueberries. They can thus be used for simultaneous inspection of multiple 

quality aspects of blueberries, such as external defects, soluble solids content, firmness, 

color, size, presence of insects, bruise, mold, and shriveling. Therefore, the general 

objective of this thesis is to evaluate the two important image techniques for 

improvement of the postharvest blueberries quality. 
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This general objective is achieved with the following specific objectives: 

 Develop automatic color image processing algorithms for detection of fruit 

orientation to facilitate fruit defect detection. 

 Create segregations plans by detection of visible fruit diseases. 

 Evaluate the feasibility of hyperspectral imaging techniques utilization to assess 

the internal quality of blueberries.  

 Improve the prediction of internal quality attributes by studying and combining 

different sensing modes and fruit orientation Effect. 

 Enhance image processing efficiency by selection of appropriate wavelengths in 

hyperspectral imaging techniques. 

1.4. Outline 

This thesis consists of one review chapter, three experimental chapters and a conclusion. 

Chapter 2 (review) explains why non-destructive evaluation of berries is valuable 

considering market and consumer requirements and how image-based non-destructive 

technologies afforded in this thesis work. It finally reviews the major scientific advances 

in this field of knowledge. 

In Chapter 3, the external quality of blueberries was evaluated using statistical pattern 

recognition with color images. Algorithms were implemented for identification of three 

classes of defects caused by diseases commonly found in blueberries during postharvest 

storage. Additionally, algorithms were implemented for whether the fruit orientation 

detection. 

Chapter 4 positively answer the question of whether hyperspectral reflectance imaging 

technique is suitable to predict soluble solids content and softening in blueberries, two 

parameters that are most of important o internal quality.  
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Chapter 5 reached an important improvement in the assessment of internal quality of 

blueberries using two sensing modes (transmittance and reflectance) in a high resolution 

hyperspectral imaging system. Moreover, the effect of orientations was further evaluated 

by inclusion of a third orientation (equator). Finally, a methodology to select the most 

appropriate wavelengths was proposed, since the speed of image acquisition and 

processing by a hyperspectral imaging system is not enough to meet the requirement for 

sorting lines in the packinghouse. Chapter 6 concludes this thesis. A thesis overview can 

be found in Figure 1.3 

NON-DESTRUCTIVE TESTING TO IMPROVE 

THE QUALITY OF SMALL FRUIT

ELECTRIC 

NOSE

MAGNETIC 

RESONANCE 

IMAGING

MECHANICAL 

METHODS
NEAR INFRARED 

SPECTROSCOPY

Automatic orientation and diseases 

detection

INTERNAL ASSESSMENT OF BLUEBERRIES 

USING HYPERSPECTRAL IMAGING

EXTERNAL ASSESSMENT OF 

BLUEBERRIES USING 

COMPUTER VISION

Prediction of soluble 

solids content and 

firmness index

Assessment of internal 

qualiity of blueberries 

whit whole and 

selected wavelengths 

CHAPTER 3 CHAPTER 4 CHAPTER 5CHAPTER 2

 

Figure 1.3 Overview of the studies comprising this thesis. 
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2. NON-DESTRUCTIVE TESTING TO IMPROVE THE QUALITY 

OF SMALL FRUIT 

Abstract 

Small fruit such as berries, grapes and cherries are susceptible to postharvest damages 

which need to be assessed at the time of packing. Despite being a common practice, 

quality selection by hand is slow and unreliable, and its cost has increased over time. 

Therefore, the development of quick and reliable new technologies to assess the quality 

of small fruit on-line and without direct intervention is now necessary in compliance 

with more demanding markets. The most important visible quality attributes during 

postharvest include color, shape, and homogeneity, absence of defect fruit such as 

shriveling, fungal decay, and mechanical damage. Internal quality descriptors include 

sweetness, firmness and absence of insects. 

This chapter reviews the principal non-destructive techniques applied to small fruits 

including, impact and vibration, computer vision, hyperspectral imaging, near infrared 

spectroscopy, electric nose, and magnetic resonance.    

2.1. Introduction 

Small fruit is a non-botanical group of fruits, commonly including berries, grape, cherry, 

cherry tomato and others, which are small in size and have elastic properties. These 

fruits command high prices because consumers now associate their consumption with 

beneficial health effects associated to anti-aging properties.  

Commercially, grape, strawberry, blueberry and raspberry are the most important small 

fruits around the world, whose quality depends on physiological and environmental 

factors (FAO 2011). Fresh market requirements exert a pressure to improve sorting 

practices by assessing the quality of individual fruits, which normally is carried out by 

hand; the increment in labor costs has led to the implementation of non-destructive, 

mechanical sorting systems to improve the classification of fruits by firmness. 
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Automated systems replace the tasks that used to be performed by skillful operators with 

eyes and hands (Aguilera and Briones 2005). Image processing is intended to evaluate 

the external fruit quality in replacement of human vision which is the basis of non-

destructive computer vision technology (Brosnan and Sun 2004; Bull 1993; Moreda et 

al. 2009; Rocha et al. 2010). Image analysis of a real scene by computer allows studying 

attributes of large number of products and forming the base of scaled-up processes 

(Zitová and Flusser 2003; Rosenfeld 1988; Golnabi and Asadpour 2007; Finlayson et al. 

2001).  

Near infrared spectroscopy and multi or hyperspectral imaging techniques offer the 

capability of internal quality assessment by measuring internal quality attributes (i.e. 

sugars, firmness, acidity etc.). These techniques are non-destructive technique and 

require little or no sample preparation.   

Although automatic sorters based on these technologies are being used for major large 

fruits such as apple, oranges and pears, their implementation for small fruits has been 

limited up to now.  

2.2. Small fruit 

Small fruit is a non-botanical group of fruits, commonly including berries, grape, cherry, 

cherry tomato and others which are small in size and have elastic properties for texture 

measurement. Their consumption has increased in recent years because of good flavor 

and high antioxidant capacity, which is supposedly good as a anti-aging therapy and has 

positive protective effects against several pathological conditions (i.e. cancer, stroke, 

heart attack and Alzheimer‘s disease (Piljac-Zegarac and Samec 2011). 

Grape production is led by China (9,174,280 MT), Italy (7,115,500 MT) and United 

States of America (6,692,950 MT). Strawberry production is important in United States 

of America (1,782,053 MT), Spain (514,027 MT) and Turkey (302,416 MT); Turkey is 

the main cherry producer (438,550 MT) followed by United States of America and Iran 

with 303,363 MT and 241,117 MT respectively. For blueberry, the trade is commanded 
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by United States of America (196,905 MT), Canada (112,363 MT) and Poland (8,595 

MT). Others small fruits of importance are raspberry,  cranberry, blackberry, 

boysenberry, gooseberry, currants and elderberry (FAO 2011). 

Quality of small fruits is determined by physiological and environmental factors such as 

variety, nutriments and humidity of soil, presence and control of pathogens and 

cultivation practice. The principal negative vectors during fruit development and 

maturity are gray mold, causing fungal decay, anthracnose, alternaria, rhizopus and other 

caused by environmental factors (Table 2.1). Postharvest storage of these fruits is often 

restricted to only a few weeks even under optimal temperature and humidity conditions. 

Moreover, they suffer color change, softening, pitting, peduncle browning and 

dehydration during retail operations  (Linke et al. 2010). 

Quality standards of commercial fresh berry fruits are defined by the law of supply and 

demand. However, the Agricultural Marketing Service from the United States 

Department of Agriculture defines standards for grading fresh fruit. These standards are 

based on ―measurable attributes such as color, caliber and defects absence that describe 

the value and utility of the products‖. In general, the best grade quality standard (U.S. 

No.1) for berries, cherry and grape includes the following factors: similar varietal 

characteristic, mature, cleanness, well colored, not overripe, absence of crushes, split or 

leaking, free from attached stems, molds, decay, insect or evidence, mummified berries, 

clusters. Moreover, the classification in grades implies the fulfillment of size 

requirements (AMS-USDA 2011). Since most of those attributes are visible, the 

implementation of sensing automatic technologies based on computer vision is quite 

adequate and reliable.  

Accurate determination of quality of small fruit is challenging because individual fruits 

are small and vary greatly in external and internal quality characteristics. In packing 

operations small fruit such blueberry, is often graded manually which is slow and 

unreliable and depends on workers‘ availability. For these reasons there is currently 

major interest in automation technology in order to improve fruit quality determination 
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during packaging operations. This chapter reviews several optic technologies in non-

destructive assessment of internal and external quality of small fruits.  

Table 2.1. Appearance attributes and defects and diseases of principal small fruits  

(Gross 2004); (Antonelli et al. 2004); (Walter et al. 1997); (J.P. Kidd 2003); (Perry et al. 

2002) 
Species Diameter 

(mm) 

External appearance Principal diseases and defect causes 

Blueberry  

(Vaccinium sp) 

12 Red to black, round to 

oblong 

Fungal decay caused by gray mold (Botrytis cinnerea), 

irregular maturity in clusters, shriveling, mummy berry, 

anthracnose, Alternaria sp., red ringspot virus, russets, 

anthracnose, Rhizopus (Rhizopus stolonifer). 

Strawberry 

(Fregaria sp.) 

20  

White, red, pink, 

conical 

Soft fruit, gray mold, Rhizopus, leather rot, winter injury. 

Tarnished plant bug, spittle bug, wet stem scars, attached 

stems, green berries. 

Cranberry 

(Vaccinum 

erthrocarpum) 

10 Yellow, round Sunscald, berry speckle, cottonball, ringspot, rots: bitter, early, 

blotch, viscid yellow and black rot. 

 

Blackberry 

(Rubus ursinus, 

Rubus argutus) 

25 Red to black. Fruit is an 

aggregate of small 

drupelets. Round to 

conical. 

Non-uniformity maturity, whitespots, dorsophila suzukii. 

Fungal decay caused by Botrytis cinerea and Colletotrichum 

spp.  

Raspberry 

(Rubus 

idaeobatus) 

20 Yellow to red. Fruit is 

an aggregate fruit 

composed of more or 

less 100 small drupelets 

forming a conical 

structure. 

Fungal decay caused by gray mold, ringspot virus, shriveling, 

leakers, UV damage (white drupelets). Insect injury ascane 

maggot (Pegomya rubiura), redberry mite (acalitus essigi), 

anthracnose  

 

Boysenberry 

(Rubus ursinus x 

idaeus) 

25 Red to Dark purple. 

Fruit is an aggregate 

fruit composed of small 

drupelets. Cylindrical. 

Fungal decay caused by gray mold, yellow rust,  downly 

mildew (dry berry disease)  

Blackcurrant 

(Ribes nigrum) 

10 Black round Irregular maturity in clusters, insect injury; small brown spots 

and fungal decay caused by gray mold.  

Gooseberry 

(Ribes uva-

crispa) 

19 Green, yellow or 

reddish, round 

Irregular maturity in clusters, insect injury fly (Epochra 

canadiensis), Gosseberry fruit worm (Zophodia convolutella), 

slugs and snails (Helix aspersa and Cepaea spp.) Small brown 

spots caused by gray mold. 

Elderberry 

(Sumbucus nigra) 

7 Black,  round Fungal decay caused by gray mold, irregular maturity in 

clusters, insect injury 

Redcurrant 

(Ribes rubrum) 

10 Red, round Fungal decay caused by gray mold, irregular maturity in 

clusters, insect injury 

Loganberry 

(Rubus x 

Loganobaccus) 

20 Red to deep purple, 

conical to cylindrical 

Dryberry disease (Phyllocoptes gracifis), insect injury ascane 

maggot (Pegomya rubiura), redberry mite (Acalitus essigi), 

gray mold, anthacnose. 

Cherry 

(Prunus sp, 

Subgenus 

cerasus) 

15 Yellow, red or purple; 

round 

Fungal decay caused by gray mold, pitting, bruising, 

shriveling, Fungal decay caused by blue mold (Penicillium 

expansum), Alternaria sp., Monilinia fructicola brown rot, 

Cladosporium sp., and Aspergillus niger.  

Grape 

(Vitis sp) 

25 Green, yellow, red, 

purple or black,  round 

to oblong 

Fungal decay caused by gray mold, waterberry, sunburn, 

almeria spot, bunched, shriveling, Black rot (Aspergillus 

niger), blue rot (Penicilliun spp., Rhizopus rot (Rhizopus 

stolonifer or R. oryzae); sun scald. 
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2.3.    Computer vision systems 

Computer vision is one of the most useful technologies to evaluate external fruit quality. 

It is objective, consistent, rapid, and economical. The technology offers an automated 

alternative to manual inspection and is currently being used in various food and 

agricultural sorting systems. While computer vision may be applied using different 

acquisition techniques such as color, magnetic resonance (MRI) and X-ray, visible 

imaging is the most widespread in evaluate food and agriculture products.   

2.3.1.    Image acquisition  

An image is formed when waves from electromagnetic radiation are partially reflected, 

transferred or emitted by an object from a real scene and these waves are captured by 

sensors and transduced in electrical signals as a 2-dimensional array of numbers called a 

matrix. The matrix consists of columns (M) and rows (N) that define small square 

regions called picture elements or pixels (Seeram and Seeram 2008).  In other words, a 

digital image is the interpretation of one or more numerical matrix, where the object of 

interest has numeric affinities that represent colors or gray intensity zones inside the 

image. Thus, computational techniques operated with algebraic principles can detect 

specific fruit features (Leiva-Valenzuela and Aguilera 2013). 

In computer vision, images of external attributes of samples are acquired with charge-

coupled device (CCD) or Complementary metal–oxide–semiconductor (CMOS) cameras 

that capture wavelengths of the visible spectrum (Du and Sun 2004). The extracted 

information depends on both the scene illumination and external elements such as the 

optic system, sensors and signal processing.  In a typical image acquisition system, high-

quality illumination is designed to acquire homogeneous information about the sample 

under testing. Choosing a right illuminant source often is a difficult problem because the 

sample reflectance may induce specular reflectance and saturations forcing adjustment  

to ensure an appropriate processing (Valous et al. 2009).  Therefore, the characteristics 

of the sample surface may increase levels of reflectance producing distortion that 
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changes correct fruit measurements. The object to be measured should maintain an 

appropriate distance to the image device. Moreover, occlusion and shadows should be 

avoided in order to allow correct segmentation and measurement. 

Depending on the application, computer vision configurations vary from in-room to 

outdoor systems. In most in-room applications, image acquisition, light, distance and 

angle of acquisition have to be standardized and a laboratory colorimeter is needed. 

Laboratory colorimeters are extensively used in science to understand color, shape and 

texture changes induced by reactions, time, or chemical treatments of samples, allowing 

the first approach to design a classification process. Commercial vision-based sorters are  

add product value by physically segregation of food and agricultural products into 

quality grades  . They require faster sensors and image processing systems able to reduce 

image blur and classify products in real time. Generally, outdoor system implementation 

requires light and geometric correction. Outdoor systems are generally referred to those 

used in precision agriculture. 

2.3.2.    Preprocessing and segmentation 

The role of preprocessing is to segment the pattern of interest from the background, 

remove noise, normalize the pattern, and perform any other operations which will 

contribute in defining a compact representation of patterns (Jain et al. 2000). 

Specifically after acquisition, images are transformed with algebraic operations to 

improve signal to noise ratio; this stage, known as image pre-processing, includes 

filtering, histogram correction, registration, channel transformations (Ibrahim et al. 

2008). Therefore, subsequent segmentation can be performed. 

Segmentation is the stage where the area of interest is recognized from the background 

region in order to discard most non-relevant elements of the image, or accent important 

regions of interest to be analyzed subsequently. For food application, robust  algorithms 

are required for isolating regions of interest in food color images using threshold and 

morphological operations (Mery and Pedreschi 2005). However, historically, the most 
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used algorithms is the Otsu method (Otsu 1979). Other segmentation algorithms include 

adaptive image segmentation (Jiang et al. 2008), texture segmentation using Gabor 

filters (Zhang 2002), and classification segmentation (Mery et al. 2011). 

After segmentation, color images could be transformed from RGB color channels to 

others (i.e. grayscale; L*,a*, b*; H, S, I coordinates) by applying mathematical relations 

and transformations in order to improve the image processing (León et al. 2006). 

2.3.3.    Statistical pattern recognition 

Pattern recognition studies how machines may ―watch‖ the environment in order 

to take decisions about how an object wedges in a category. A pattern is represented for 

a group of geometric and chromatic features able to define two or more classes.  A 

pattern is represented by a set of features or quantitative attributes able to be segregated 

by decision boundaries between pattern classes establish by concepts of statistical 

decision theory operated in two modes: training or learning and classification or testing. 

In training operation, the features extraction / selection module finds the appropriate 

features for representing the input patterns and the classifier is trained to partition the 

feature space while in the classification mode, the trained classifier assigns the input 

pattern to one of the pattern classes under consideration based on the measured features 

(Figure 2.1) (Jain et al. 2000). Pattern recognition techniques can be applied over a set of 

images to segregate or sort groups of images by setting one or more differentiation 

criteria. Those criteria are defined for extracting and selecting image features, training 

and testing classifiers and validating the methodology. 
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Figure 2.1: The recognition system is operated in two modes: training (learning) and 

classification (testing)  (Jain et al. 2000).  The most common industrial applications of 

computer vision involve the classification stage. Nevertheless, training is closely related 

during the process. It allows a continuous improvement of the system. 

 

2.3.3. 1.   Feature extraction and selection 

After segmentation, the sample´s quantitative attributes from the region(s) of interest (is) 

are measured. When a system is trained, the first step consists of extraction of features 

using algorithms (the most features from known category  images as possible), After 

that, features must be selected by their capacity of correctly separating the classes (Mery 

and Soto 2008). Attributes or features include: Standard geometrical features such as 

area, orientation, Euler number, and solidity; invariant features like Hu and Flusser and 

Suk moments (Hu 1962a; Flusser and Suk 2005) (Table 2.2.); Fourier descriptors which 

facilitates the shape determination of a region and its neighborhood (Persoon and Fu 

1977). Thus, invariant moments are calculated to obtain information about the patterns 

of the shape regardless the overall size of the regions of interest. 

A second group is Intensity features, Haralick and Gupta texture and Local Binary 

Pattern (LBP) features take into account the distribution of the intensity values in the 

region. Haralick features are often extracted in order to obtain information about the 
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intensity values distribution (Table 2.3). Basically, to obtain these textural features a co-

occurrence matrix is computed per intensity image, which represents the joint 

probability distribution of intensity pairs of neighboring pixels. Thereafter, the mean and 

range of a mask containing five different neighboring pixels generated 14 basic Tx 

features summarizing information regarding the overall appearance quality of 

blueberries in each of the different color channels, where darker colors present in 

healthy, ripe fruit have a lower intensity and variability in comparison with lighter colors 

present in shriveled and fungally decayed fruit (Donis-González et al. 2012; Haralick 

1979; Haralick and Shapiro 1993).  Standard intensity features (Table 2.4) are related to 

mean, standard deviation of intensity in region, mean first-order derivative in the 

boundary and second order derivative in the region; contrast features which provide 

information of the intensity between a region and its neighborhood (Mery and Soto 

2008). 

LBP uses both statistical and structural characteristics of texture; it is a powerful tool for 

texture analysis. In the LBP operator, local texture patterns such as means, variances, 

etc. are extracted by comparing the value of neighborhood pixels with the value of the 

central pixel and are represented using binary codes (Kumar and Pang 2002; Pietikäinen 

et al. 2000).  

                    
    

                                             (2.27) 

Where 

 

          
             
            

                         (2.28) 

 

In Which     is the gray value of the central pixel in the circularly symmetric 

neighbourhood,    takes the different eight pixels values from the neighborhood. 
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Table 2.2. Invariant moments 

  Hu moments 
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Where,  

     
   

   
   

   
  

                           (2.8) 

  

and     is the central moment, and   and    describe pixel position of the segmented image (I). 
 

Flusser and Suk moments 

Moments are derived from complex moments of the image: 
 

                              
 

  

 

  
                                                   (2.9) 

 

While the segmented object is rotated by an angle   , each of the complex moments of the image preserves its 

magnitude, as its phase is shifted by        
 

                                                (2.10) 
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Table 2.3. Haralick textural features (Donis-González et al. 2012; Haralick 1979)  

Texture Formula 

 

1. Angular second moment          

  

 (2.11) 

2. Contrast 
            

  

   

  

   

 

    

   

          (2.12) 

3. Correlation                    
    

 

 

 

 (2.13) 

Where          and    are the means and standard deviation of    and   , the partial 

probability density functions. 
 

4. Sum of Squares: 

Variance 
       

 

 

 

       
(2.14) 

5. Inverse difference 

moment 
  

 

        
  

       
(2.15) 

6. Average sum 
         

   

   

 

 

 

 (2.16) 

Where,    is the number of gray tones of the image (I).   and   are the coordinates 

(row and column) of an entry in the coocurrence matrix coordinates. 

7. Variance sum 
       

        

   

   

 (2.17) 

8. Entropy sum 
                     

   

   

    (2.18) 

9. Entropy (                         

  

 (2.19) 

10. Variance difference 
   

    

   

        (2.20) 

11. Entropy difference  
                     

    

   

 (2.21) 

12. Correlation 

measurement - 1  

        
          

 
(2.22) 

13. Correlation 

measurement - 2 
                     

 
  (2.23) 

HX and HY are the entropies of    and   . 

                              

  

 (2.24) 

                                  

  

 (2.25) 

14. Maximum correlation 

coefficient 

Square root of the second largest eigenvalue of: 

        
            

          
 

 (2.26) 
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Fourier and discrete cosine transform coefficients where images are analyzed in the 

frequency domain. In Fourier domain image, each pixel represents a particular frequency 

contained in the spatial domain image; Gabor features are based on 2D Gaussian-shaped 

band-pass filter, with dyadic treatment of the radial spatial frequency range and multiple 

orientations representing measurement in both space and frequency domains (Mery et al. 

2012).  

              
   

    

 
 
        

              (2.29)        

for           . 

where (ik, jk) are the border pixel coordinates for          , L is the number of 

pixels that are part of the perimeter border of a complex number region denoted by 

          with      . 

Gabor filters have been applied to image recognition problems because of its optimal 

localization properties in both the spatial and frequency domains (Huang et al. 2005).  In 

this sense, Gabor features provide information concerning the development of any 

singularity of sample and is a complex exponential modulated by a Gaussian function: 

       
 

        
     

 

 
 
  

  
  

  

  
                           (2.30) 

   and    denote the Gaussian envelope along the   and   axes, and    defines the 

radial frequency. In the frequency domain, the Gabor function acts as a band pass filter, 

using the Gaussian function.  

The self-similar filter banks can be obtained by dilations and rotation of        through 

the generating function: 

          
                                                              (2.31) 

where, 



Chapter 2 

 

21 

 

                                                                        (2.32) 

 and 

 

                                                                              (2.33) 

  and   represent the index for dilation and orientation respectively. S is the total number 

of dilatations and L is the total number of orientations,    is the angle for each 

orientation s. For a given segmented image       , the magnitude of filtered image 

          is obtained by Gabor filter frs:  

                              
                     

  
 

                      (2.34)  

 

Where ―*‖ denotes a 2 dimension convolution operation, and           and           

represent the real (even), and imaginary (odd) parts of the Gabor filter (Eq. 10) 

respectively.  

Table 2.4. Standard intensity features 

Mean: 
 

   
 

 
    
 
      (2.35) 

Standard Deviation: 
 

   
 

 
         

  
                  (2.36) 

Kurtosis: 
 

  
 

 
         

  
   

 
 

 
         

  
    

 
 
  (2.37) 

Skewness: 
 

  
 

 
         

  
   

 
 

 
         

  
    

 
 
               (2.38) 

 

Mean gradient first-order derivative: 
 

        
         

         
  (2.39) 

 

Mean Laplacian Second-order Derivative: 
 

         
         

        

         
                (2.40) 

 

Where,      represents the gray-scale value of pixels in each of the segmented intensity images, and n the 

total number of evaluated pixels (ij) in the segmented image.  
 

 

After the features extraction, normalization is a requirement to process data to facilitate 

the classification; in this way, the extracted features are arranged and transformed in 

order to attain a group of features in the same order of magnitude (Mery and Soto 2008). 
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To conclude with features management,   it is necessary to select the best features before 

classification. Thus, the principal idea is selecting a minor subset of features from total 

features that leads to the smallest classification error (Jain et al. 2000; Zhang 2002). In 

order to reduce the number of features, some strategies are employed. The best strategy 

should optimize a reduced number of features with the maximal classification hits. 

Among the useful  selection strategies are sequential forward selection (SFS), nearest 

neighbor (KNN), linear and quadratic discriminant analysis‖ (LDA /QDA) and ―Rank 

key features by class sorting criteria‖ (RANKFS) based on the ―Relative Operating 

Characteristic curve‖ (R.O.C) and the ―Student test‖ (Jain et al. 2000; Bishop 2007). 

 2.3.3. 3.  Classification and validation 

Once objects of interest are selected and measured, it would be desirable to classify or 

assign them into classes according to selected features. A simple statistical approach is 

the so-called supervised classification in which training sets of previously defined 

classes are selected by the operator (Aguilera and Briones 2005). Useful supervised 

classification algorithms to build decision lines, planes or hyper planes of the selected 

features are: linear and quadratic discriminant analysis (LDA or QDA), Mahalanobis 

distance (MD), support vector machine (SVM), and ―Probablistic Neural Network‖ 

(PNN) (Ren et al. 2006; Leiva et al. 2011; Mery et al. 2010b). Differently, unsupervised 

classification does not require human to have the prior knowledge of the classes, and it 

mainly uses some clustering algorithms to classify an image data (Richards and Jia 

1994). Classification is done using statistic or clustering algorithms such as K nearest 

neighbors (kNN), k-means, hierarchical clustering and mixture models, to determine 

which objects correspond to one or other class. 

Performance of the classifier is measured as the ratio of correctly classified images in 

reference to its supervised categorical class to the total number of tested images. 

Detailed information about statistical pattern recognition can be found in  Jain (2000), 

Duda (Duda et al. 2000), and Bishop (Bishop 2007) . More extensive information about 
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computer vision and image processing can also be found in book and reviews (Sun 

2008; Aguilera and Briones 2005; Russ 1998; Gonzalez et al. 2009). 

2.3.4.    Applications 

The use of color images offers an alternative to visual inspection, and has been broadly 

used in various foods commodities because it is objective, reliable, rapid, and 

economical (Brosnan and Sun 2002; Kumar-Patel et al. 2012). Images have been 

effectively used to classify or recognize quality in several foods including potato chips 

(Pedreschi et al. 2006; Pedreschi et al. 2007), tortillas (Mery et al. 2010a), pizza (Sun 

and Brosnan 2003b, a), chocolate chip biscuits (Davidson et al. 2001), cheese (Wang 

and Sun 2002a, b, 2001),  and pork meat (Lu et al. 2000; Faucitano et al. 2005), salmon 

bones (Mery et al. 2011) 

In detection or classification of  postharvest fruit defects, image processing allows the 

segregation of different quality degrees for fruits such as olive (Riquelme et al. 2008; 

Wang et al. 2011a), apple (Xing et al. 2005; De Belie et al. 1999; Unay and Gosselin 

2006; Throop et al. 2005,Paulus and Schrevens 1999), bayberry (Zhang et al. 2005, Lu 

et al. 2010), pistachio (Pearson and Toyofuku 2000) , grape (Zoffoli et al. 2008), 

blueberry (Leiva et al. 2011; Leiva-Valenzuela and Aguilera 2013),  fungally decayed 

sliced chestnut (Donis-González et al. 2013) , strawberry (Fragaria spp.) (Bato et al. 

2000). 

Comprehensive reviews of non-destructive imaging technology in fruit postharvest have 

been done by Studman (2001), Brosnan and Sun (2004), Kondo (2010), Wu and Sun 

(2013b) and Jackman and Sun (2013).  

However, image processing applications for small fruits are still limited in scope. First 

studies in sweet cherry,  tried to recognize basic fruit parts such as stems (Wolfe and 

Sandler 1985). Later studies  have focused on shape characterization;  a comprehensive 

determination of 3D cherry shapes would permit the understanding of fruit geometry; 

change of fruit shape with development, effects of environmental factors and differences 
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in fruit shape among cultivars (Beyer et al. 2002). Also, freshness of cherry has been 

explained by detection of changes in fluorescence images of peduncles correlating 

chlorophyll properties with color (Linke et al. 2010). This technique not only helped 

verify quality of cherries, but also better understands the physiology of cherries. Simple 

applications of computer vision have also allowed the rating of cherries by color since 

the color of the skin is an important indicator of ripeness and quality in orchard 

(Rosenberger et al. 2004; Wang et al. 2012a).  

In-line computer vision systems completed with image processing to segregate or 

classify fruit are main commercial applications. For strawberries, a traditional 

mechanical system with sorting algorithms to determine color and size was developed 

for grading fruit (Liming and Yanchao 2010a). 

In recent years, some research has been focused on non-destructive recognition of 

images by extraction of patterns (Figure 2.2) to segregate defective berries such as those 

decayed, shriveled or mechanically damaged, and distinguish orientation (Leiva-

Valenzuela and Aguilera 2013). Despite the possibilities offered by computational 

capabilities and new sensors, only a few commercial blueberry sorting systems based on 

images are available. These commercial systems allow for high-speed sorting (up of 2 

tons h
-1

)for overall detection of berry colors and are able to reject up to 95% of bad fruit  

in appearance. However, they cannot recognize defects on fruit surfaces such as fungal 

decay and shriveling.   

A mobile, visible computer vision system  was developed to estimate the yields of wild 

blueberry (Zaman et al. 2008; Zaman et al. 2010; Zhang et al. 2010). The system 

implemented algorithms based on a ―blue index‖ which weighted the blue color on the 

green and red of RGB images, allowing a better detection of mature blueberries in order 

to design models to mapping the yield of orchards  
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Figure 2.2. Automatic detection of defective blueberries using a computer vision system 

(Leiva-Valenzuela and Aguilera 2013). 

2.4.    Near infrared spectroscopy and hyperspectral imaging  

Conventional color or grayscale imaging techniques are inadequate for measuring 

chemical constituents or internal quality attributes of fresh fruit because they only record 

the spatial distribution of light intensities over a broadband spectrum without detailed 

information for individual wavelengths considering that many chemical constituents are 

only sensitive to specific wavelengths. Differently, visible and near-infrared 

spectroscopy (NIRS) has become an important non-destructive technique for chemical 

analysis and quality assessment of agricultural and food products covering the spectral 

region where many components interact with light in the form of absorption, reflection, 

transmission at specific wavelengths (Lu 2008). Hyperspectral imaging (HSI) is a more 
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advanced technology that integrates visible and near-infrared spectroscopy and imaging 

techniques by generation of a spatial map of spectral data.  

2.4.1. Hyperspectral imaging equipment  

A basic hardware hyperspectral imaging system consists of a sample positioning unit, a 

light source and an imaging unit. 

Sample positioning unit can consisted of a mobile or static unit depending on the 

requirement of application. Mobile system is composed of a line belt conveyor, where 

each sample is placed and moved to the imaging area underneath the imaging unit..  

Because a hyperspectral image is composed of multiple spectra, its acquisition of is 

slower than NIRS and its equipment requires the adaptation of the hardware to operate 

under the conditions imposed by sensors. There are basically two types of HIS: tunable 

filter based equipment, which generally acquire hyperspectral images of static samples 

(Ariana and Lu 2010) push broom or line-scan system, where samples are carefully 

placed over a sample holding try which is attached to a motorized linear stage. With this 

system is able to scan samples simultaneously maintaining the control of the sample 

position, the illumination and the acquisition conditions in order to improve the 

performance of experimentation (Leiva-Valenzuela et al. 2013).  

Tungsten halogen lamps usually are used as light source because they are cheap, offer 

high intensity in the near infrared region and the spectral output is continuous. While in 

NIR spectroscopy light is focused on a specific zone of fruit, in hyperspectral reflectance 

imaging light should irradiate the whole surface of sample causing the disadvantage of 

large amounts of heat generation. Additionally, tungsten halogen lamp has a short 

operational lifetime. Finally, the spectral characteristic of the output can drift with time, 

and the radiant energy is not equal in different wavelengths (Cen and He 2007). 

The imaging unit consisted of camera with imaging sensor, an imaging spectrograph 

usually attached to the camera to acquire hyperspectral images. This spectrograph is 

composed for a monochromator and optical components such as collimators, beam 
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splitters, lenses integrating spheres and optical fibres. Monochromator is an optical 

device that transmits a selectable band of wavelengths selected from the wider range of 

wavelengths, thus, can produce monochromatic signals. Spectrophotometers are 

classified according to the type of monochromator: a limited spectral resolution filter 

instrument (wheel monochromator), a scanning instrument (prism or grating 

monochromator) is commonly used to select individual frequencies. Fourier transform 

spectrophotometers generate modulated light using interferometers which convert the 

time domain signal of the light into a spectrum with Fourier transform. Laser system has 

multiple specific wavelength laser light sources, hence acts as monochromator, Acoustic 

optic tunable filter uses optical-band-pass (constituted by an anisotropic crystal which 

change its optic properties when an acoustic wave is applied) to diffract the light in 

specific wavelengths by varying the frequency of acoustic signals (Tang et al. 1998). 

Liquid crystal tunable filter use a birefringent liquid crystal filter to retard light rays 

which pass through in phase. Therefore, wavelengths can be separated obtaining high 

spectral resolution when electronically tunable stages in series are combined. Most 

common by their features photodiode array PDA is being more used. Their high 

acquisition speed and the absence of moving parts allow online fruit grading 

implementation. This system is based in the dispersion of radiation by fixed grater which 

focuses the light onto an array of silicon or Indium Gallium Arsenide photodiode 

detectors (Nicolaï et al. 2007). Detectors quantify the intensity of reflected or 

transmitted and selected light by converting photons into electrons. There are two major 

types of solid state area detector: CCD and CMOS. In both types of cameras, 

photodiodes are made of light sensitive materials such as Silicon (Si), Indium gallium 

arsenide (InGaAs), and mercury cadmium tellurium (MCT or HgCdTe) capable to 

convert radiation energy to electrical signal. The main differences between their, is that 

both photodetector and read out amplifier in each pixel are included within the CMOS 

image sensor improving the imaging speed for online industrial inspection. However 

CMOS cameras acquire images with higher noise and dark current than the CCDs 

because of the on-chip circuits used to transfer and amplify signals, and as a result of 

lower dynamic range and sensitivity than CCDs. (Wu and Sun 2013a). Order-blocking 
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filter can be installed onto the sensor of the camera to prevent wavelengths below or 

above the range of measurement; a fixed focal length lens are attached to the front of the 

spectrograph.  

2.4.2.    Sensing modes 

In NIRS as well in hyperspectral imaging, products are subjected to NIR radiation in 

order to measure their spectra The spectral characteristics of the incident ray are 

modified while it passes through the product due to wavelength dependent absorption 

and scattering processes (Ruiz-Altisent et al. 2010a). This change depends on the 

chemical composition of the product, its light scattering properties which are related to 

the microstructure as well as on the lightning configuration or sensing mode. 

In hyperspectral imaging generation, light interaction with sample can be classified in 

three sensing modes: reflectance, where light source and detector are mounted over the 

sample under a specific angle, thus specular reflection is avoid, transmittance where the 

light source is positioned opposite to the detector in consequence, the penetration of NIR 

radiation into fruit tissue decreases exponentially with the depth (Figure 2.4). In the third 

sensing mode, interactance (not suitable to hyperspectral imaging), the light source and 

detector are positioned parallel to each other in such a way that light due to specular 

reflection cannot directly enter the detector by means of a bifurcated cable in which 

fibers leading to the source and detector are parallel to each other and in contact with the 

product, or by means of a special optical arrangement (Nicolaï et al. 2007). Generally, 

reflectance and interactance are related to chemiometric and food microstructure while 

transmittance has been used in detection of foreign internal materials such as worms or 

pits (Figure 2.3). 

2.4.3.    Hypercube acquisition and spectral image processing 

Hyperspectral images are building of hundreds of contiguous wavebands for each spatial 

position of a product. The resulting spectrum acts like a fingerprint which can be used to 

characterize the composition of that particular pixel Accordingly, each pixel in a 

hyperspectral image contains the spectrum of that specific position (Gowen et al. 2007). 
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In consequence, each hyperspectral imaging is a conjunct of grayscale images which 

represents a single band of spectral wavelength. Therefore, hyperspectral image is a 

conjunct of multiple images acquired at the same time where rows and columns define a 

spatial position for variables which localized a continuous range of wavelengths (Figure 

2.3). 

Hyperspectral imaging is similar to color imaging in the spatial information, but add 

spectral information which increase the capacity of sense minor components such 

chemicals (Wu and Sun 2013a). Additionally, due to NIR light properties, the light 

penetrates objects in higher degree than in color images allowing the interpretation of 

internal phenomena.  

Visible and near infrared (Vis-NIR) covers the spectral region between 400 and 2500 nm 

providing more structural information about vibration behavior of combinations of 

bonds. 

After irradiation of food or agricultural commodities by NIR radiation, the absorption of 

energy of occurs when organic molecular groups O–H, C–H, C–O and N–H start 

vibrating (stretching or bending) and specific wavelengths NIR radiation are 

transformed in heat. In consequence, reflected or transmitted light generates overtones in 

spectrogram signal allowing the interpretation of differences between compositions of 

samples. The NIR region is divided into short-wave NIR (SW-NIR) and medium and 

long wave NIR from 1300 nm. The SW-NIR absorb high overtones band while medium 

and long wave NIR, first or second overtone. Considering the intensity of absorption  

decreases when the overtone increases, SW-NIR is usually applied in transmission 

analysis with long path length and common NIR is used in diffuse reflection analysis 

(Cen and He 2007).  



Chapter 2 

 

30 

 

CCD 

camera

Imaging 

spectrograph

Fixed 

focal lens

Sample

Reflectance 

illumination 

source

Transmittance

 illumination 

source

Reflected 

light

Transmitted 

light

a) b)

Figure 2.3. Sensing modes in hyperspectral image acquisition a) reflectance, b) 

transmittance. 
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Figure 2.4. Understanding hyperspectral imaging acquisition 

 

2.4.3.1   Pre-processing  

For correction of the light source effect, hyperspectral reflectance images are also 

acquired from diffuse reflectance standard using the same imaging parameters as that for 

samples. For transmittance images corrections, generally a cylindrical reference disc 

made from white Teflon is mounted next to the frame of the sample holding unit (Lu and 

Ariana 2013). Dark current images are acquired with the camera shutter being closed. 

Therefore, the intensity values for each hyperspectral image are corrected by the 

reference and transmittance image pixels by pixels in both spatial and spectral 

dimensions (Ariana and Lu 2010; Tallada et al. 2006):  
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           (2.41) 

where RI is the relative reflectance or transmittance at pixel location (x,y), IS is the 

sample image value, ID is the dark frame image value, and IR is the reference image 

pixel value.  

After the relative values of reflectance or transmittance are obtained, each spectrum is 

frequently smoothed by smothering algorithm. The most used is the Savitzky-Golay 

derivative (Savitzky and Golay 1964).  Since the relative reflectance and transmittance 

spectra may vary among the fruit and within each image area, maximum normalization 

is suggested by (Xing and Guyer 2008) . In this way, normalized images result of 

dividing the relative transmittance value at each wavelength by their peak intensity 

value.  Once preprocessing was carried out, segmentation is implemented to segregate 

region of interest from the background for each hypercube image. Generally, images at 

specific wavelengths are choose in order to apply common image processing algorithms 

such threshold selection method from gray-level histogram (Otsu 1979). 

2.4.3.2.   Multivariate analysis 

From region of interest, features such mean intensity or others presented in 2.3.3. 1, are 

extracted. Therefore a matrix of features serves as basis of relation between 

spectroscopy and attributes of samples. Multivariate analysis can be classified into 

qualitative classification and quantitative regression (Wu and Sun 2013a). Qualitative 

regression uses techniques of pattern recognition (see chapter 2.3.3) and quantitative 

regression or prediction performed with algorithms such Partial Least Square regression 

(PLS) or interval partial least square which is suitable for select specific zones from the 

spectra.  

PLS approach was originated around 1975 by Herman Wold. It can analyze data with 

strongly correlated, noisy, and numerous X-variables, and also simultaneously model 

several response variables (Wold et al. 2001).  In spectroscopy, PLS are applied to 
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extract the required information from the convoluted spectra and is required to 

decompose substantial quantity of features into useful information establishing simple 

and comprehensible relationship between NIR or spectral imaging data and chemical 

tested samples attributes (Nicolaï et al. 2007). For these reasons, PLS is one of the most 

popular methods that have been  used to build models with orthogonal latent variables 

that are oriented along directions of maximal covariance between the spectral matrix and 

the response vector (Nicolaï et al. 2007). The latent variables come from a fusion of 

image features obtained using such a method as principal component analysis (PCA). 

Although non-linear techniques are becoming increasingly used, PLS allows simpler 

interpretation and comparison of results, avoiding the overtraining problem that is 

commonly encountered with complex non-linear models.  

Interval partial least squares (iPLS) is one of the commonly used algorithms for 

selecting the most efficient wavelength regions and developing an optimized local PLS 

model built with fewer variables, allowing a reliable spectral data reduction (Nørgaard et 

al. 2005). Basically, in the iPLS method, the entire spectra are first split into smaller 

equidistant regions and PLS regression models are then developed for each of the sub-

intervals, using the same number of latent variables for the selected region with lower 

error. An optimized region can be found by subtracting or adding new variables (Zou et 

al. 2007; Nørgaard et al. 2000a). Hence, iPLS could yield similar prediction results 

without using complete spectra information, while having the advantages of decreased 

computational time and knowing specific wavelength regions useful for predict 

attributes. A flow diagram of an hyperspectral image processing is presented in Figure 

2.5.  

2.4.5.    Applications 

Most applications of NIRS and Hyperspectral imaging in foods include determination of 

sugars, firmness and acidity (Bobelyn et al. 2010; Wu and Sun 2013a) . Therefore, NIRS 

is an attractive non-destructive technique to measure quality in food requiring little or no 

sample preparation; it is flexible and versatile, applicable to multiproduct and multi 
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component analysis, thus enabling testing of both the raw material and the end product, 

as well as allowing simultaneous measurement of several analytical parameters; it 

generates no waste, is less expensive to run than destructive analytical methods 

(González-Caballero et al. 2010b).  

NIRS in non-destructive measurement has been extensively used to evaluate internal 

quality in fruits, particularly in apples (Mendoza et al. 2012; Mendoza et al. 2011; 

Kavdir et al. 2009; Alamar et al. 2007; Peirs et al. 2005; Bobelyn et al. 2010; Peirs et al. 

2001). However considerable less information about applications to small fruit can be 

found.   

In order to assess internal quality of grapes, NIRS, has been used for soluble solid 

content (SSC) and acidity in grapes (Baiano et al. 2012; González-Caballero et al. 

2010a; Parpinello et al. 2013; Fernández-Novales et al. 2009; Cao et al. 2010) and 

strawberry (Sánchez et al. 2012).  

Hyperspectral imaging system was used to classify different varieties of  bayberry 

employing principal component analysis to reduce data and artificial neural networks (Li 

et al. 2007). Also, (Sugiyama et al. 2010) presented a study with NIRS to detect leaves 

and stems as foreign materials in freeze blueberries, this study is part of a major idea that 

evolve and automatic sorter to be implemented in industry.  

New tendencies in NIRS research point out in the implementation of  handle mobile 

systems able to predict SSC directly in bunches in orchards (González-Caballero et al. 

2010b). Furthermore to measure  grape acidity, a portable NIRS equipment was 

developed (Chauchard et al. 2004). 

Since small fruit is difficult to orientate to carry out a reliable measurement, near 

infrared signals are affected to superficial fruit. Therefore, Multispectral and 

hyperspectral image techniques allow the whole inspection of the fruit surface 

improving predictions.  
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Despite the promising results obtained by studies with many wavelengths, the speed of 

image acquisition and processing by a hyperspectral imaging system is not enough to 

meet the present requirement of the sorting lines in the packinghouse. For this reason, 

reduction of spectral dimensionality was considered in several studies, which would 

allow hyperspectral imaging technique to be implemented online as a multispectral 

imaging system with fewer wavelengths. For example, to predict solid soluble content in 

strawberries, (Nagata et al. 2005) selected wavelengths of  915, 765, 870, 695 and, 860 

nm, obtaining 89% correlation coefficients for prediction. In another other experiment to 

detect bruises caused by exerting different pressures with a universal testing machine 

they acquired images from 650 to 1000 nm finally selecting two wavelengths (825 and 

980 nm) using  stepwise linear discriminant analysis. Finally to classify bruised areas, 

they applied different methodologies including discriminant analysis, a normalized 

difference between pixels values and artificial neural networks, achieving similar 

classification accuracies (70-80%) (Tallada et al. 2006). Also HSI has been used to 

detection of bruises in strawberries (Tallada et al. 2006), internal quality factors as 

acidity and solid soluble content (Nagata et al. 2005), quality attributes as moisture 

content, total soluble solids, and acidity (ElMasry et al. 2007). An extensive review of 

HIS applications in strawberries was done by (Nagata and Tallada 2008). In those 

researches, selection of optimal wavelengths was also a primary objective. 
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Figure 2.5. Process of building models to predict internal attributes of blueberries with 

hyperspectral images. 

 

Table 2.5 shows different applications to measure fruit attributes using hyperspectral 

imaging systems. For strawberries, hyperspectral imaging systems have been used to 

evaluate their internal quality, as performed by (Nagata et al. 2005) used a multiple 

linear regression stepwise analysis to determine wavelength and develop calibration 

models to predict firmness and solid soluble content. They estimated firmness of 70% 

full-ripe strawberries using images acquired at a wavelength of 680 nm with a discrete 

correlation coefficient for prediction of 64.5%. 
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Table 2.5. Hyperspectral imaging systems used in different applications to measure fruit 

attributes  

Technique  Wavelengt

h 

(103 nm)  

Fruit, objective,  modeling   Quality descriptor Reference 

HIS 0.4 – 1.0 Injured Apple classification 

with neural network. 

Chilling-injured 

apples and normal 

apples 

(ElMasry et al. 2009) 

HIS 0.320 – 1.1 Rotted Mandarin classification 

with LDA and decision trees  

Penicillium 

digitatum rotten 

mandarins and 

normal mandarins 

 

(Gómez-Sanchis et al. 

2008) 

HIS-

Scattering  

0.4 – 1.0 Apple Mealiness prediction 

with PLS-discriminant analysis 

. 

 

Juiciness, hardness 

and mealiness 

 

(Huang and Lu 2010) 

HIS-

Scattering 

0.64-0.73 Peaches, prediction and 

wavelength selection 

 

Ripeness  (Lleó et al. 2011) 

HIS 1.0-1.6 Apple, discriminant PLS, 

classification 

Bitter pit and corky 

tissue identification 

(Nicolaï et al. 2006) 

HSI laser-

induced 

fluorescence  

0.41 apples, prediction, NN- 

principal components  

Skin hue and 

Chroma, flesh 

chroma, SSC, 

acidity, firmness  

(Noh and Lu 2007) 

In-orchard 

mobile HSI  

0.4–1.0 Green citrus fruit,  classify 

cation with Multidimensional 

Scatter - LDA 

Detection of green 

fruit in a citrus tree 

(Okamoto and Lee 

2009) 

HIS-

reflectance 

0.5 -1.0 Blueberries, prediction using 

PLS- principal components 

Firmness, SSC (Leiva-Valenzuela et al. 

2013) 

HIS 

scattering  

0.5-1.0 Peaches, prediction using MLR Firmness (Lu and Peng 2006) 

HIS-

scattering 

0.45-1.0 Apple, prediction using MLR  

 

Firmness, SSC (Peng and Lu 2007) 

(Peng and Lu 2008) 

HIS-

REF/TRANS 

0.45 – 0.1 Cucumbers, detection using 

PLS Discriminant analysis  

Internal fly 

infestation 

(Lu and Ariana 2013) 

HIS-

scattering 

0.5 -1.0 Apple, prediction using PLS Firmness, SSC (Mendoza et al. 2011) 

HIS 0.45-0.93 Red grapefruits , classify,  

thresholding method based in 

Spectral information divergence  

Differentiation of 

canker from normal 

fruit peels.  

(Qin et al. 2009) 

HIS Spatially 

resolved 

steady-state  

0.5-1.0 Apples, pears, peaches, 

kiwifruits, plum, cucumber 

zucchini squash, tomatoes. 

Optical properties were 

determinate using the steady-

state diffusion theory model 

Optical properties 

proposing a 

methodology to 

evaluate maturity. 

(Qin and Lu 2008) 

HIS- 

reflectance 

0.4-0.7 Jujubes fruits, classification, 

stepwise discriminant analysis. 

Condition of the 

surface condition 

(insect damage), 

stem-end/calyx-

end/cheek  

(Wang et al. 2011c) 

HIS- airborne  0.41 - 0.90 Citrus orchard, classification,  

Neural network  

Yield of citrus 

orchard  

(Ye et al. 2006) 

HIS- airborne 0.41 - 0.90 Citrus orchard, classification,  

Neural network, MLR 

Yield of citrus 

orchard 

(Ye et al. 2008) 
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In grapes, (Chauchard et al. 2004) gave other methodology to select the wavelengths to 

predict acidity. This study suggested the necessity of testing other methodologies to 

select wavelengths to improve prediction. Least-squared support vector machine are 

compared to partial least square and multivariate linear regressions. LS-SVM evaluated 

with ―least one left cross validation‖, produces more accurate prediction with 

performances in the test group of images of 86% in comparison with 77 and 68% of 

traditional least square and multivariate linear regressions.  

Recently, prediction of soluble solids content and firmness has been studied using a 

hyperspectral push broom imaging system (Leiva-Valenzuela et al. 2013). This study 

suggested the two classes sorting by firmness and sweetness.  

2.5. Other techniques  

2.5.1.  Mechanical methods 

Requirements imposed by the fresh market and processing enforce assessing a threshold 

for berries firmness to sort fruit as soft or hard (Prussia et al. 2006). As a result, 

numerous studies have been carried out for nondestructive measurement of small fruit 

firmness. Generally, the measurement systems have simulated the effect of fingers 

squeezing the fruit to detect soft juicy fruits like tomato and berries when sample are 

measured by the creep test, that defines the deformation-time behavior under constant 

load (Abbott 1999). Accordingly, (Slaughter and Rohrbach 1985) (Prussia et al. 2006) 

suggest a standardized firmness measurement of blueberries by measuring the slope of 

force/deformation curves when fruit were subjected to compression by two parallel 

plates under a constant loading velocity. Consequently two commercial instruments 

based on this principle, called FirmTech I and FirmTech II (Bio-Work Inc., Kansas, 

USA), are currently available for measuring blueberry firmness. Nevertheless, these 

instruments are not suitable for in-line sorting use and can induce superficial bruises. 

Less destructive and more automatic methods include vibration (Bower and Rohrbach 

1976), roll-bounce separation (Wolfe et al. 1980), and relaxation modulus measured 

from the amount of impact force during rebound over a rigid piezoelectric transducer 
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(Rohrbach et al. 1982; Lee and Rohrbach 1983), (Delwiche 1987). More recently, an air-

puff rebouncing tester was used to assess the firmness of blueberries, which measures 

the deflection or deformation of the fruit under a puff of pressurized air and in order to 

be implemented in sorting lines (Li et al. 2010).  

Currently, several types of commercial sorting systems are available, which are based on 

detection of the impact response of blueberries when they hit a pressure sensor (e.g., the 

―Berrytek‖ sorting system from Woodside Electronics Corp., CA, USA and ―Soft Sorta‖ 

from BBC Technologies Ltd., Ohaupo, New Zealand). While these commercial systems 

allow a high sorting speed (up of 2 tons h
-1

), they are only able to reject up to 80% of the 

actual soft fruit (http://bbctechnologies.com/en_US/softsorta.htm). Moreover, for 

countries which require long term shipping from origin to destination, mechanical 

selection could slightly affect the external quality by induction of bruises. 

2.5.2.   Methods based in aroma detection 

An electronic nose or electronic sniffer is a non-specific sensor array able to describe the 

atmosphere that surrounds a fruit. In this technology, the sensor detects the reaction 

between volatiles released from a fruit with semi-conductor materials (Simon et al. 

1996). Therefore, sensors respond when are exposed to volatile compounds generating a 

sort of chromatogram with different peaks, then, a characteristic ‗fingerprint‘ (Demir et 

al. 2011). 

Using an electronic nose, packaged blueberry aroma detection for ripeness measuring 

was studied by (Simon et al. 1996).  They detected a low emission of butyl acetate, 2-

butoxyethanol and CO2 when blueberries were in the latest stages of maturity.  Also this 

study combined aroma with color information in order to improve the accuracy. 

Mechanical damage also correlated well with specific volatile compounds product of  

tissues destruction during storage using multivariate analysis, consequently, electronic 

nose was used to classify induced damaged berries (Demir et al. 2011).   

http://bbctechnologies.com/en_US/softsorta.htm
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As other non-destructive techniques presented before, the velocity of aroma 

characterization by these sensors is still too slow. For this reason characterization of 

strawberry aroma with headspace fingerprint - mass spectrometry (HFMS) was 

compared with traditional Gas chromatography - mass spectrometry (GC-MS). In 

specific super oxygen and elevated CO2 modified atmosphere, HFMS can feature fruit 

ripeness faster than GC-MS transferring aroma into the ionization chamber of a mass 

spectrometer avoiding prior chromatographic separation. Hence, HFMS can be 

considered a good tool for rapid screening of strawberry flavor (Berna et al. 2007). In 

the same way, a detection of volatile organic compounds in real time for strawberries, 

blackberries, raspberries, blueberries, white and red currants was used to monitor their 

postharvest aging by proton transfer reaction-mass spectrometry (PTR-MS). This 

technique consists in the ionization of volatile organic compounds by proton 

transference, then aromas can be efficiently measured allowing their storage monitoring 

through the increment of concentration of methanol, acetaldehyde and ethanol (Boschetti 

et al. 1999). 

2.5.3.  Magnetic resonance imaging  

Magnetic resonance imaging is based on the principles of nuclear magnetic resonance 

and has achieved general acceptance as a powerful tool for the diagnosis of clinical 

condition and also in plant science (Clark et al. 1997). MRI is based in quantum 

mechanical properties of certain sample atomic nuclei Nuclei with an odd number of 

protons or neutrons (e.g. 
1
H, 

19
F, 

31
P, and 

13
C) have random spin and precession 

movements. When sample is subjected to energy from specific electromagnetic pulses, 

the low energy protons pass to high energy state making harmonic their precession 

movement. When energy descends, protons pass to relaxed state emitting energy, thus, 

the precessing magnetization induces a small voltage in a surrounding tuned coil by the 

process of electromagnetic induction and it is this voltage which forms the NMR signal 

which is transformed in images (Richardson et al. 2005). Two mean time parameters are 

involved in the volume element of MRI (voxel) formation: t1 and t2. While t1 is referred 
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to spin longitudinal relaxation time, t2 spin-spin relaxation time referred to interaction 

between atoms.      

Magnetic resonance imaging has been widely used to probe into the interior of fruits 

(Clark et al. 1997; Abbott 1999; Abbott et al. 2010). MRI, for example, has been used in 

fruits like apple to characterize tissue (Defraeye et al. 2013), to detect internal browning 

development (Gonzalez et al. 2001), mealiness (Barreiro et al. 1999), core breakdown 

(Lammertyn et al. 2003) and for evaluation of ripening and storage changes (Létal et al. 

2003). In tomato MRI has been used to investigate structural aspects (Musse et al. 

2009a) and monitoring ripening (Musse et al. 2009b). Also table olives (Brescia et al. 

2010) and palm fresh fruit bunches ripening (Saeed et al. 2012) was evaluated with 

MRI. Table 2.3 shows the different techniques to non-destructively measurement of 

small fruit.  

In small fruit, several studies of fruit tissues used magnetic resonance to understand 

structural changes during maturity or postharvest. In black currants (Glidewell et al. 

1998) the structure changes during development were studied observing differences in 

tissues, as in the space around the ovules in the ovary, or consequent on variations in the 

size of cells and vascular architecture of blackcurrants throughout development. More 

specific studies were achieved in order to visualize the damage caused by infection by 

Botrytis cinerea, ripening development and the determination of seeds in strawberry 

when MRI parameters were adjusted (Goodman et al. 1996).  
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Table 2.6. Techniques used to detect or measure small fruit attributes.  
Small fruit Target  Technique Reference 

Cherry  Shapes CV (Beyer et al. 2002) 
 

Blueberry  Orchard yield CV (Swain et al. 2010) (Zaman et al. 2008; Zaman et 

al. 2010; Zhang et al. 2010) 
 

Blueberry  

 

Mold, shriveling, bruises, fruit 

orientation 
 

CV (Leiva-Valenzuela and Aguilera 2013) 

Strawberry  Grading CV (Liming and Yanchao 2010b) 

 
Cherry   in-orchard color rating CV (Wang et al. 2012a) 

 

Cherry  Maturity CV (Linke et al. 2010) 
 

Grape, 

Blueberry  

SSC, Acidity NIRS 

 

(González-Caballero et al. 2010b) 

 
Grape  

 

 NIRS 

 

(Chauchard et al. 2004) 

 

Bayberry  Varieties classification NIRS 
 

 
(Li et al. 2007) 

 

Strawberry,  
 

SSC, pH, bruises, moisture 
content 

HSI  
 

(ElMasry et al. 2007) 
 

 

Cherry Defect MSI (Guyer and Yang 2000) 
 

Cherry 

tomatoes 
  

Defect HIS (Cho et al. 2013) 

 

Strawberry  SSC, firmness HSI  (Nagata et al. 2005) 

 
Blueberry SSC, firmness HSI  (Leiva-Valenzuela et al. 2013) 

 

Strawberry  
 

Bruises HSI  (Tallada et al. 2006) 
 

Blueberry Foreign material detection HSI (Sugiyama et al. 2010) 

 
Strawberry  Maturity EN (Berna et al. 2007) 

 

Blueberry Firmness EN (Simon et al. 1996) 
 

Blueberry  

 

Bruises EN 

 

(Demir et al. 2011) 

 
Blueberry  Mold, yeast EN (Li et al. 2010) 

 

Strawberry  
Table grape  

Cherry  

 

Maturity MRI (Clark et al. 1997) 
 

Strawberry  

Blueberry  
Raspberry  

Blackberry  

Currant  

Maturity PTR-MS  

 
 

 

(Boschetti et al. 1999) 

Abbreviations: PTR-MS proton transfer reaction-mass spectrometry; NIRS:  Near infrared 

spectroscopy, MRI: magnetic resonance imaging, EN: electronic nose, Hyperspectral imaging 

system, CV: computer vision system 
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The most of those studies are focused in the adjustment of MRI parameters and in the 

simple observation of sample. MRI was used to evaluated changes in water status and 

mobility of sugar on cherry tomato during maturity (Ishida et al. 1994). 

Also red raspberry fruits were subjected to micro MRI to study changes in fruit tissue 

determining the movement of hydrogen protons during ripening (Williamson et al. 

1992). Authors empathizes the non-destructive advantages of MRI in comparison with 

scanning electron microscopy.     

(Zion et al. 1994) presented magnetic resonance images that detected hidden pits en real-

time in processed cherries. Evaluating their data, an 88% of performance in pitted 

cherries. Since magnetic resonance imaging (MRI) is still expensive for practical 

implementation requiring  complex equipment and detailed data processing (Jackman et 

al. 2011), literature referred to small fruit postharvest applications is limited. Moreover, 

sorting applications are restricted by its processing velocity and its low resolution 

accented in small fruit. Table 2.6 presented a summary of non-.destructive techniques 

applied to small fruit. 

2.6. Conclusion 

Since small fruits are fragile, high value commodities highly susceptible to postharvest 

damages during transportation or storage, their quality assessment is critical to ensure an 

optimal commercialization. Hence, developing non-destructive technologies is not only 

a challenge, but also a necessity.  

In recent years, non-destructive methods, fundamentally those based in image 

processing, have increasingly been used as a method to segregate fruit such as apple, 

orange and kiwi during postharvest. In small fruit this tendency is slightly more slowly. 

However, due to their many advantages (i.e. non-invasive, absence of sample 

preparation, velocity of results delivery, minimal cost of processing, versatility in types 

of analysis), an increment of research and commercial implementation is projected in 

short time.    
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There are several techniques based in computer vision, NIR spectroscopy, mechanical 

firmness detection, aromas and nuclear resonance, reliable to be implemented in in-line 

sorting systems in packing houses. Mechanical methods to assess firmness use are 

widespread in sorting lines, however may induce slightly superficial bruises which 

might trigger fruit deterioration when commercialization requires long shipping. Still 

slowly and expensive to be implemented in commercial lines, aroma based systems 

allow the whole fruit evaluation determining the overall condition. High cost of 

magnetic resonance imaging systems impedes their implementation. Differently, 

computer vision (CV) and NIR spectroscopy applications are fast, have an affordable 

cost of implementation and presented high performances to detect external attributes or 

are suitable to detect both internal and external attributes correlating with chemical and 

textural information (NIR). However NIR signal spectrometers require a careful 

previous positioning of sample to enhance the signal and make it representative. 

Differently, hyperspectral imaging systems are slower and expensive than computer 

vision and NIR spectrophotometers, however allow both external and internal whole 

characterization of fruit. Therefore, computer vision, NIR spectrometry and 

hyperspectral imaging systems allow better performances in external and internal quality 

descriptors detection or classifications. Therefore, further studies should active explore 

in their implementation. 
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3. AUTOMATIC DETECTION OF ORIENTATION AND DISEASES 

IN BLUEBERRIES USING IMAGE ANALYSIS TO IMPROVE 

THEIR POSTHARVEST STORAGE QUALITY 

 

Abstract 

 

The production of the South American blueberry has increased by over 40% in the last 

decade. However, during storage and shipping, several problems can lead to rejections. 

This work proposes a pattern recognition method to automatically distinguish stem and 

calyx ends and detect damaged berries. First, blueberries were imaged under standard 

conditions to extract color and geometrical features. Second, five algorithms were tested 

to select the best features to be used in the subsequent evaluation of classification 

algorithms and cross-validation. The blueberries classes were control, fungally decayed, 

shriveled, and mechanically damaged. The original 225 features extracted were reduced 

to 20 or fewer with sequential forward selection. The best classifiers were Support 

Vector Machine and Linear Discriminant Analysis. Using these classifiers made it 

possible to successfully distinguish the blueberries‘ orientation in 96.5 % of the cases. 

For classifying blueberries into the fungally decayed, shriveled, and mechanically 

damaged classes, the average performances of the classifiers were above 98 %, 93.3 %, 

and 90 % respectively. All of the experiments were evaluated using external images with 

95 % confidence – 10-fold cross-validation. These results are promising because they 

will allow for the increase in export quality when implemented in production lines. 

3.1. Introduction 

Blueberry is an important fruit worldwide whose consumption has increased in recent 

years due to its good flavor and high antioxidant capacity, which is good for anti-aging. 

The United States of America is the leading blueberry exporter and consumer (FAO 

2009).In recent years, countries in the southern hemisphere (e.g., Argentina, Chile, New 

Zealand and South Africa) have increased fruit export to the northern hemisphere. 

However, long-distance shipping requires delivering higher-quality and more 

consistently fresh blueberries to meet quality standards upon arrival.  
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Accurate determination of blueberry quality is challenging because individual fruits are 

small, dark in color, and vary greatly in external and internal quality characteristics. 

Traditionally, blueberry quality was inspected by hand in sorting lines at the origin of 

fruitproduction for color, size, and the absence of defects and foreign materials. 

However, in blueberry quality assessment, sorting by hand is inefficient and unreliable, 

making the implementation of automatic systems necessary. Previous studies have 

shown that applications of computer vision in quality control in food are more accurate, 

safe and quicker than human inspection (Aguilera and Briones 2005). 

Detailed information about statistical pattern recognition can be found in the work of 

Jain (Jain et al. 2000), Duda (Duda et al. 2000), and Bishop (Bishop 2007) . Previously, 

(Leiva-Valenzuela et al. 2013) incorporated image processing techniques into a push 

broom hyperspectral reflectance system to select areas and extract the mean intensity of 

individual blueberries to predict internal attributes (i.e., soluble solids content and 

firmness). Leiva et al. (2011) used visible and external features to sort fungally diseased 

blueberries and were able to recognize more than 95% diseased singles using linear 

discriminant analysis and 10-fold cross validation.  

Computer vision, as an objective, consistent, rapid, and economical technology, offers 

an automated alternative to visual inspection and is currently being used in various food 

and agricultural sorting systems (Brosnan and Sun 2002; Kumar-Patel et al. 2012). 

Specifically, color computer vision has been used to effectively assess quality in 

strawberries (Fragaria spp.) (Bato et al. 2000), pistachios (Pistacia vera) (Pearson and 

Toyofuku 2000), fungally decayed sliced chestnuts (Donis-González et al. 2013), olives 

(Riquelme et al. 2008; Wang et al. 2011a), apple (De Belie et al. 1999; Xing et al. 2005) 

and bayberries (Lu et al. 2010). Reviews of non-destructive inspection technologies for 

postharvest fruit were reported in Studman (2001) and Brosnan and Sun (2004).  

 Currently, several commercial sorting systems are available for sorting blueberry (e.g., 

the ―Berrytek‖ sorting system from Woodside Electronics Corp., CA, USA, and ―Color 

Sorta‖ from BBC Technologies Ltd., Ohaupo, New Zealand). These commercial 
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systems allow for high-speed sorting (up of 2 tons h
-1

) and are able to reject up to 95% 

of low fruit (http://bbctechnologies.com/en_US/colorsorta.htm). However, these sorters 

are based on the overall detection of berry color, and have limited ability to recognize 

specific defects, such us fungal decay and shriveling. Therefore, using pattern 

recognition algorithms is necessary to improve the ability to separate diseased fruits. 

This chapter proposes a pattern recognition methodology to extract and select visible 

features from images to sort blueberries into four classes—control (good blueberries), 

shriveled, fungally decayed, and mechanically damaged blueberries—and two fruit 

orientations—stem end and calyx end. This research will facilitate the development of 

automatic sorters that can separate fruits exhibiting visible disease damages.  

3.2. Materials and methods 

Experiments were carried out in the Biomaterials Laboratory of the Department of 

Chemistry and Bioprocess Engineering at Pontificia Universidad Católica de Chile 

(PUC) in Santiago, Chile between August 2009 and February 2010. Image processing 

was carried out using Matlab R2007a and its image processing toolbox (The Mathworks, 

Inc., Natick, MA, USA). 

3.2.1. Samples 

―Highbush‖ blueberries, (Vaccinium corymbosum var. ‗Star‘) were acquired from  the 

central region of Chile. Before experimentation, blueberries were stored at 0° C for 8 

weeks to induce different levels of postharvest damage. Before the image acquisition, 

samples were visually inspected and divided into four classes based on appearance and 

surface defects (Figure 3.1). Control blueberries were defined as well-colored, spherical 

fruits free of irregularities such as spots, hairlines, impacts, compression, wrinkles, and 

the present of mold.  

http://bbctechnologies.com/en_US/colorsorta.htm
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Figure 3.1. Examples of dual-orientation blueberry classes after segmentation. Control 

blueberries were defined as well-colored, spherical fruits free of irregularities. Fruits 

with wrinkles over their surfaces were defined as shriveled blueberries. Decayed 

blueberries were fruits with at least one mold spot over their surfaces or a characteristic 

purple color and a relatively softer texture around the pedicel than that of the rest of the 

fruit. Finally, mechanically damaged blueberries were defined as berries with visible 

changes in their external geometry as a result of compression or impact. 

Fruits with wrinkles over their surfaces were defined as shriveled blueberries. In most of 

the cases, wrinkles appeared as concentric curves close to the stem end. Fungally 

decayed blueberries were defined as fruits with at least one isolated mold spot over their 

surfaces or a characteristic purple color and a relatively softer texture around the pedicel 

than that of the rest of the fruit. The threshold area used to distinguish decayed from 

non-decayed fruits was approximately 1/50 of the overall image area. Finally, 

mechanically damaged blueberries were defined as berries with visible changes in their 

external geometry as a result of compression or impact caused by transportation or 

storage.  
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3.2.2. Image acquisition, segmentation and color transformation 

Images were acquired under standard conditions using a DVS-lab colorimeter (Digital 

Vision Solutions, www.divisol.cl). Each fruit was imaged along two orientations, the 

calyx end and stem end, for each class in groups of 15 berries (480 x 640 pixels color 

image). Images were stored in the bitmap picture (BMP) format. 

Image segmentation was implemented in two steps. The first step consisted of the 

recognition of single berries by cropping the original image in pre-defined regions. The 

second step consisted of building a binary mask to recognize the fruit from the 

background using threshold segmentation and morphologic color image operations. 

Those morphologic operations included the elimination of small, isolated groups of 

pixels, the slight erosion of blueberry borders to avoid confusion with shadow pixels, 

and the filling of holes inside the binary segmented images (Otsu 1979; Mery and 

Pedreschi 2005). After segmentation, color images were decomposed into red (R), green 

(G) and blue (B) channels and then converted to grayscale and L*,a*, b* color space 

images using the method of Leon and others (2006), producing seven intensity images. 

Therefore, 1640 images each of 100 x 100 pixels (25 kb for each) were analyzed using 

pattern recognition algorithms.   

3.2.3.    Feature extraction and selection  

The patterns of the different blueberry classes were recognized using ―Balu‖, a free-use 

toolbox for pattern recognition (http://dmery.ing.puc.cl/index.php/balu/) developed in 

the Department of Computer Science, Pontifical Catholic University of Chile, Santiago, 

Chile. 

From the seven intensity images, 225 features were extracted. Six standard features 

describing simple intensity information regarding the mean, standard deviation, and 

mean first and second derivative along the boundaries of the region of interest (Mery et 

al. 2011; Nixon and Aguado 2008), 16 Fourier descriptors (Persoon and Fu 1977), and 

176 rotation invariant local binary pattern features were extracted to compute the texture 

http://dmery.ing.puc.cl/index.php/balu/
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through the relationship between the intensity of each pixel and eight neighbors to 

produce occurrence histograms of local binary patterns (Pietikäinen et al. 2000). Finally, 

invariant moments were calculated to obtain information about pattern shape regardless 

of the size of the regions of interest. Overall, 27 features were extracted from the 

grayscale images, including 7 Hu moments (Hu 1962b) and 4 Flusser and Suk moments 

(Flusser and Suk 2005). The mathematical expressions used to extract all features are 

presented in sub-chapter 2.3.3. After feature extraction, normalization was performed 

(Mery and Soto 2008). The   extracted features were arranged in a   –vector,   

       
 , resulting in the normalized features        : 

        
                

  
 (3.1) 

  takes values from 1 to the number of samples, and   takes values from 1 to the number 

of features.                  are the mean and standard deviation of the  -th feature .  

After extraction and normalization, it was necessary to select the best features before 

classification. Thus, the principal objective is to select a small subset of features from 

the total features that leads to the smallest classification error (Jain et al. 2000; Zhang 

2002). To reduce the number of features, five strategies were tested. The best strategy 

should optimize a reduced number of features with the maximal classification hits. The 

selection strategies used were sequential forward selection (SFS), with the objective 

functions Fisher discriminant, 5-nearest neighbors (5-KNN), and linear discriminant 

analysis (LDA), and Rank key features by class sorting criteria (RANKFS), which does 

not feature an objective function, based on the relative operating characteristic curve 

(ROC) and the Student test (Jain et al. 2000; Bishop 2007). The appropriate number of 

selected features for these strategies was defined as a maximum of 10% of the initially 

extracted features or the number reached when the performance plateau was reached.   

3.2.4. Classification  

To train the pattern recognition algorithms, images were sorted into the four classes 

described in 3.2.1. With the selected features, decision lines, planes or hyper planes were 



 Chapter 3 

 

65 

 

implemented using LDA, Quadratic discriminant analysis (QDA), Mahalanobis distance 

(MD), K nearest neighbors (kNN) (k is the number of neighbors and was fixed to 5), 

Support Vector Machine (SVM), and Probabilistic Neural Network (PNN) (Ren et al. 

2006; Leiva et al. 2011; Mery et al. 2010b).  

The performance of the classifiers was measured as the ratio of correctly classified 

images with respect to their supervised categorical class to the total number of tested 

images.  

3.2.5. Experimentation 

Sixteen experiments were performed to determine the performance of six classification 

arrays and the differences between fruit image orientations: (i) differentiation of stem 

end from calyx end, (ii) differentiation of control blueberries from shriveled blueberries, 

(iii) differentiation of control blueberries from fungally decayed blueberries, (iv) 

differentiation of control blueberries from mechanically damaged blueberries, (v) 

differentiation of control blueberries from all other damaged blueberries, and (vi) the 

classification of the four classes separately. For classification arrays ii, iii, iv, v, and vi, 

the performances of the classifiers were evaluated using images of the two orientations 

separately and both orientations simultaneously.  

To define which strategies of features selection and which classifiers were the best, the 

results of classification array (v)  with both orientations was used as a reference because 

it is the most general classification for detecting diseased blueberries. 

3.2.6. Validation 

The classifiers were validated using a 10-fold stratified cross-validation technique, 

yielding an average estimate of classifier performance with 95% confidence intervals for 

the classification pool (Jain et al. 2000). In the cross-validation, 90% of the samples 

were used for training and 10% were used for 10 validation replications. 

A diagram of the pattern recognition technique applied in this study is shown in Figure 

3.2. 
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3.3   Results and discussion 

3.3.1 Extracting and selecting the best features 

From each blueberry image, 225 features were extracted and then reduced to only 4-13, 

depending on the number of images involved in each experiment. To reduce the number 

of features, 5 combined strategies were used. Designed to have one extractor and one 

classifier, the strategies were able to select the most important features to accurately 

detect blueberry class based on quality and fruit orientation. The best strategy was SFS-

Fisher, which gave the best features to achieve performances close to 95 %. With this 

approach, it was not necessary to use Principal Component Analysis (PCA) or other 

feature fusion techniques that are accompanied by a loss of information. In this study, 

SFS-Fisher selected original features, allowing for shorter processing times in 

production sorting lines. This matter is relevant to industrial applications, in which a 

short processing time is one of the most important requirements. Moreover, the high 

level of features reduction with respect to the number of images used for classification 

helped avoid the problem of overtraining the algorithms. 

Table 3.2 shows the best selected features from the three most relevant experiments: 

differentiation of control from all other damaged blueberries, differentiation of stem end 

from calyx end, and differentiation of control blueberries from fungally decayed 

blueberries. These experiments provide information about the overall appearance of 

blueberries, their orientation, and one of the most serious diseases, fungal decay, which 

can easily spread from one berry to entire clamshells or trays during transportation.  
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Figure 3.2. Recognition of damaged blueberries color images using image patterns. 

Classification improved with the increasing number of features (Figure 3.3). In pattern 

recognition studies, mores features imply better results (Mery and Soto 2008); when new 

features are added, the performance of a classifier improves until a certain limit where 

performance remains stable is reached.  
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Figure 3.3. The classification performance improves with the increment in the number 

of features until reaching a plateau. The average performances for three specific 

situations are exposed: fruit orientation detection (calyx end vs. stem end), single disease 

detection (Fungally decayed vs. control) and control vs. unspecific disease classification 

(Control vs. Shriveled + fungally decayed + mechanically damaged for both 

orientations.  

The best features selected for the detection of diseased blueberries were linear binary 

pattern (LBP), and intensity information. LBP uses both statistical and structural 

characteristics of texture; it is a powerful tool for texture analysis. In the LBP operator, 

local texture patterns such as means, variances, etc. are extracted by comparing the value 

of neighborhood pixels with the value of the central pixel and are represented using 

binary codes. Additionally, the LBP utilized in this chapter were rotational invariant in 

order to avoid false correlation since fruit attributes do not depend on the image rotation 

degree in the acquisition (Kumar and Pang 2002; Pietikäinen et al. 2000). Simple 
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intensity information summarizes the overall appearance quality of blueberries in each 

of the different color channels, where darker colors present in healthy, ripe fruit have a 

lower intensity and variability in comparison with lighter colors present in shriveled and 

fungally decayed fruit. 

Table 3.2. Best features for detection of diseased blueberries for three experiments. 

n Control vs. Shriveled +. 

Fungally decayed + 

Mechanically damaged 

for Both orientations 

Stem end vs. 

Calyx end 

Control vs. Fungally 

decayed for both 

orientations 

1 LBP(1,26) [R] LBP(1,32)[B] Intensity Kurtosis[a] 

2 Intensity Mean[a*] LBP(1,5)[G] LBP(1,33) [R] 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

LBP(1,23) [G] 

Intensity StdDev [b*] 

Intensity Skewness [b*] 

LBP(1,19) [b*] 

LBP(1,7) [B] 

LBP(1,14) [L*] 

Hu-moment-1 

Fourier-des  1  

LBP(1,7)[G] 

Fourier-des  5  

Intensity-Mean 

[b*] 

LBP(1,28)[B] 

Intensity-

Skewness [a*] 

Mean boundary 

gradient[a*] 

LBP(1,22)[b*] 

LBP(1,23)[b*] 

LBP(1,14)[g] 

LBP(1,19)[b] 

LBP(1,20)[g*] 

LBP(1,24)[b*] 

LBP(1,8)[B] 

Intensity-Mean [b] 

Hu-moment2 

LBP(1,19)[L*] 

LBP(1,10)[L*] 

LBP(1,3)[R] 

LBP(1,13)[R] 

LBP(1,17)[b*] 

LBP(1,3)[b*] 

 

 

LBP(o,q): Local binary patterns, where o is the number of pixels compared with q – neighboring pixels. 

LBP features were rotation invariant by consideration of eight orientation values.  

Between the brackets [] are the color channels used to extract features (L* = lightness, a* and b* = color 
opponents, R = red, G = green, B = blue, gray. For references, see Section 2.3. 
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3.3.2. Selecting the classifier 

Eight classifier algorithms were tested to define the most suitable algorithm to sort 

defect classes of blueberries. To this end, one classification experiment was used as a 

reference. This experiment consisted in segregating bad blueberries (generally damaged 

berries: shriveled + fungally decayed + mechanically damaged) from good blueberries 

(control), and images were acquired in both orientations. For the classification 

algorithms LDA, SVM and PNN, the yields were close to 84 %, with a confidence 

interval between 77 and 90%, higher than the yields of QDA, MAH, and KNN, which 

ranged from 71 to 81 %. The worst classifier was MDI, with a performance of 70.7 % 

(Figure 3.4). Thus, LDA, SVM, or PNN could have been chosen as suitable classifiers. 

However, because LDA is simpler than SVM and PNN, it was ultimately chosen.  

3.3.3. Detecting defects and orientations of blueberries 

The classification performance results for the defect and orientation detection of 

blueberries (according to section 3.2.5) are summarized in Table 3.3. 

Table 3.3. Performance for different experimental classifiers of blueberries with visible 

damages.  
              Experiment Performance       (C.I.)* 

Stem end Calyx end Both orientations 

Two classes detection:    
 

-Control vs. Shriveled  

 

93.33 (86.05-100)a 

 

96.67 (91.42-100)a 

 

93.3 (88.18- 98.48)d  

-Control vs. Fungally decayed  98.33 (94.59-100)a 100 (100-100)b 99.00 (96.80, 100) e 

-Control vs. Mechanically  damaged 93.33 (86.05-100)a 90.00 (81.24-98.76)a 87.50 (80.67-94.33)d 

-Control vs. Shriveled +. Fungally decayed + 

Mechanically  damaged 

 

96.67 (92.96, 100.00)d 

 

90.67 (84.24-97.07)d 

 

85.34 (80.00-90.67)c 

-Stem end vs. Calyx end --- --- 96.45 (93.66-99.24)c 

Four classes detection: 

   

 
-Control vs. Shriveled vs. Fungally decayed vs. 

Mechanically  damaged 

 

78.33 (69.83- 86.84)d 

 

74.67 (65.07-84.27)d 

 

63.65 (56.40-70.91)c 

*performances and confidence interval were calculated using 10 fold cross validation with 95% of 
confidence.

 a
 60 images, 

b 
45 images,  

c
225 images,  

d
120 images, 

e
105 images. 
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Figure 3.4. Performance of classifiers used to distinguish ―control‖ from diseased 

blueberries. LDA, SVM, and PNN show the best results (over 82.9. %). Error bars 

represent the confidence interval calculated with 10-fold cross-validation (95% 

confidence). 

In differentiating shriveled blueberries from the control, the performance values ranged 

between 93.3 and 96.7 %. The detection of mechanically damaged blueberries exhibited 

lower performance values between 87.5 and 93.3, while the best results were obtained 

for the detection of fungally decayed blueberries, with performance value ranging 

between 98.3 and 100 %. These specific detections were performed using three different 

fruit orientation groups of images: the first group of images was obtained along the stem 

end, the second along the calyx end, and the third group along both orientations at the 
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same time. In general, the performances obtained for the stem end images were better 

than those for the calyx end images. The images showing both orientations 

simultaneously yielded the worst results for shriveled and fungally damaged but not 

mechanically damaged blueberries. These results reflect the influence of the calyx end 

structures (shaped like a crown of petals), which may adversely affect the image texture 

features and thus the classification. In this study, the detection of blueberry orientation 

was successfully achieved. A preliminary orientation recognition performance of 96.45 

% with a confidence interval of 93.7 and 99.2% was obtained. In a commercial 

environment, it may be impractical to position each fruit into a specific orientation for 

automatic measurement. Moreover, manual orientation may lead to the excessive 

manipulation of each fruit, which could induce mechanical tissue damage.  

Therefore, defect detection methodologies were separately constructed for each of two 

orientations, stem end and calyx end. Only these two orientations were studied because 

they are the predominant orientations when blueberries, which are ellipsoidal in shape, 

with the short axis aligned along the stem-calyx axis, are transported on a conveyor in a 

single layer. 

Today, though manual handling is the most widespread to assess blueberry quality 

throughout the world, machine vision systems are gradually gaining ground. However, 

computer vision methods do not recognize specific defects in blueberries such as drying, 

fungal decay and mechanical damage. This specificity depends on the objective and 

tolerances of the segregation algorithm used. In this sense, the work presented has the 

goal of improving the ability of computer vision methods to detect common visible 

defects and fruit orientation in post-harvest blueberries. Further work should include the 

evaluation of the algorithms in real-time implementation and the development of 

complementary of sensors to simultaneously evaluate the internal quality of blueberries. 
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 3.4 Conclusion 

In this study, a computer vision system was used to acquire color images of different 

diseased blueberries along stem and calyx-end orientations. Of the 225 original features, 

only 4-13 were incorporated using SFS-Fisher. The best classifiers were LDA, SVM and 

PNN. Good orientation detection was obtained, with an average classifier performance 

of 96.45 (10-fold cross-validation). Also, specific visible damages were detected, with 

the best average classifier performances of 96.7, 100.0, and 93.33 % for shriveled 

blueberries, fungally decayed blueberries, and mechanically damaged blueberries, 

respectively. This study shows that the proposed statistical pattern recognition 

methodology is promising for the online sorting and grading of blueberries with respect 

to different defects and orientations. Further improvements in blueberry classification 

may be achieved by studying other non-visible damages and evaluating maturity states 

using an integrated computer vision system equipped with others sensor such as 

hyperspectral cameras.  
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3.5  Abbreviations 

Bit Mapped Picture BMP 

Charge-coupled-device CCD 

Forward orthogonal search algorithm 

maximizing the overall dependency  
FOSMOD 

K-neareast neighbor with n neighbors  n-KNN 

Local binary patterns LBP(o,q) 

Linear discriminant analysis  LDA    

Mahalanobis distance MAH 

Minimal distance MDI 

Probabilistic neural network  PNN 

Quadratic discriminant analysis QDA 

Rank key features by class sorting criteria  RANKFS 

Relative operating characteristic curve ROC 

Sequential forward selection  SFS 

Support vector machine SVM 
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4. PREDICTION OF FIRMNESS AND SOLUBLE SOLIDS 

CONTENT OF BLUEBERRIES USING HYPERSPECTRAL 

REFLECTANCE IMAGING 

Abstract 

 

Currently, blueberries are inspected and sorted by color, size and/or firmness (or 

softness) in packinghouses, using different inspection techniques like machine vision 

and mechanical vibration or impact. A new inspection technique is needed for 

effectively assessing both external features and internal quality attributes of individual 

blueberries. This paper reports on the use of hyperspectral imaging technique for 

predicting the firmness and soluble solids content (SSC) of blueberries. A pushbroom 

hyperspectral imaging system was used to acquire hyperspectral reflectance images from 

302 blueberries in two fruit orientations (i.e., stem and calyx ends) for the spectral 

region of 500-1,000 nm. Mean spectra were extracted from the regions of interest for the 

hyperspectral images of each blueberry. Prediction models were developed based on 

partial least squares method using cross validation and were externally tested with 25% 

of the samples. Better firmness predictions (R = 0.87) were obtained, compared to SSC 

predictions (R = 0.79). Fruit orientation had no or insignificant effect on the firmness 

and SSC predictions. Further analysis showed that blueberries could be sorted into two 

classes of firmness. This research has demonstrated the feasibility of implementing 

hyperspectral imaging technique for sorting blueberries for firmness and possibly SSC to 

enhance the product quality and marketability. 

4.1. Introduction 

Blueberry is an important fruit in the world, and its consumption has increased 

significantly in recent years because consumers like its flavor and antioxidant capacity 

for anti-aging. The United States of America is the leading blueberry exporter, followed 

by Canada (Faoestat 2009). In recent years, countries in the southern hemisphere (e.g., 

Argentina, Chile, New Zealand and South Africa) have increased fruit export to the 

northern hemisphere by taking advantage of seasonal differences in production. But 
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long-distance transoceanic shipment requires delivering higher quality and more 

consistent fresh blueberries at the origin country in order to meet the quality standards 

upon arrival at the destination.  

Accurate determination of blueberry quality is challenging since individual fruit are 

small and dark in color, and vary greatly in external and internal quality characteristics. 

Traditionally, blueberry quality was inspected by humans in situ at the sorting line for 

color, size, and absence of defects and foreign materials. Human sorting is inefficient 

and unreliable. Moreover, humans are not capable of sorting fruit based on soluble solids 

content and firmness, two quality attributes that are not only important to the consumer, 

but also directly impact the shelf life of blueberries. 

Numerous studies have been carried out for nondestructive measurement of blueberry 

firmness. For soft juicy fruits like tomato and berries, firmness measurement based on 

the creep test, which defines the deformation-time behavior under constant load, is 

preferred (Abbott 1999). However, there is no accepted standard method for creep 

measurement. (Slaughter and Rohrbach 1985) assessed the firmness of blueberries by 

measuring the slope of force/deformation curves when fruit were subjected to 

compression by two parallel plates under a constant loading velocity. A commercial 

instrument based on this method, called FirmTech (Bio-Work Inc., Kansas, USA), is 

currently available for measuring blueberry firmness  (Prussia et al. 2006). The 

instrument is, however, only suitable for laboratory use. More recently, an air-puff 

rebouncing tester was used to assess the firmness of blueberries, which measures the 

deflection or deformation of the fruit under a puff of pressurized air (Li et al. 2010).  

Considerable research has been reported on the development of automatic firmness 

sorting and grading techniques for blueberries. Earlier studies from the late 1970s until 

the mid-1980s were primarily focused on mechanical sorting techniques. They include 

vibration (Bower and Rohrbach 1976), roll-bounce separation (Wolfe et al. 1980), and 

relaxation modulus measured from the amount of impact force during rebound over a 

rigid piezoelectric transducer (Rohrbach et al. 1982; Lee and Rohrbach 1983). Currently, 
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several types of commercial sorting systems are available, which are based on detection 

of the impact response of blueberries when they hit a pressure sensor (e.g., the 

―Berrytek‖ sorting system from Woodside Electronics Corp., CA, USA and ―Soft Sorta‖ 

from BBC Technologies Ltd., Ohaupo, New Zealand). While these commercial systems 

allow high speed sorting (up of 2 tons h
-1

), they are only able to reject up to 80% of soft 

fruit (http://bbctechnologies.com/en_US/softsorta.htm).  

Soluble solids content (SSC), an accepted measure of sweetness, is another important 

quality attribute for blueberries. It is usually determined from the juice extracted from 

fruit flesh using the refractometric method (Noh and Lu 2007). In the past 20 years, 

many studies have been reported on predicting SSC in fruits using near-infrared 

spectroscopic technique. The near-infrared (NIR) region, covering approximately 780-

2,500 nm, is related to vibration and combination overtones of the fundamental O–H, C–

H and N–H bonds, which are the primary structural components of organic molecules 

(Sinelli et al. 2011a). Most NIR studies were reported for large size fruits (e.g., apple 

and pear), while only a few studies were focused on small fruits like berries. NIR 

technique is now being used in packinghouses for sorting such fruits as apple for SSC 

and/or internal defects (Nicolaï et al. 2007).  

Over the past decade, hyperspectral imaging has emerged as a powerful inspection 

technique for food and agricultural products. The technique allows acquisition of both 

spectral and spatial information about an object simultaneously (ElMasry and Sun 

2010). Since each hyperspectral image is represented by a 3-D spectral data cube or 

hypercube (Geladi et al. 2004; Nicolaï et al. 2006), it is thus advantageous over 

conventional imaging or spectroscopy technique in quality and safety inspection of food 

and agricultural products (Noh and Lu 2007). Many studies were reported for quality 

evaluation of fruits and vegetables, such as firmness and SSC of apples (Lu 2004), 

detection of surface defects in apples (Lu 2003; Nicolaï et al. 2006), and  internal defects 

in cucumbers (Ariana and Lu 2010). The technique was also applied to small fruits like 

strawberry, a fruit relatively close to blueberry, for detection of bruises (Tallada et al. 

http://bbctechnologies.com/en_US/softsorta.htm
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2006)  and  prediction of dry matter, SSC, acidity or firmness (ElMasry et al. 2007; 

Nagata et al. 2005). These studies have shown the feasibility of hyperspectral imaging 

for measuring the appearance through image processing and physicochemical properties 

using spectral information. However, no study has been reported on using hyperspectral 

imaging for blueberry quality detection. Because of its capability for providing both 

spectral and spatial information, the technique would be suitable for simultaneous 

inspection of multiple quality attributes and defects of blueberries, such as SSC, 

firmness, color, size, presence of insects, bruises, molds, and shriveling.  

This paper reports on the application of hyperspectral imaging technique for predicting 

the SSC and firmness of blueberries in the visible and short-wave near-infrared region of 

500-1,000 nm. Hyperspectral reflectance images were acquired for blueberries in two 

different orientations (i.e., stem-end and calyx-end facing toward the imaging device). 

Calibration models using partial least squares method were developed to predict the 

firmness and SSC, and the effect of fruit orientation on the model performance was 

evaluated.  

4.2. Materials and methods 

Experiments were carried out in the postharvest engineering laboratory of the U. S. 

Department of Agriculture (USDA) Agriculture Research Service (ARS) at Michigan 

State University (MSU) in East Lansing, Michigan, USA between September 2011 and 

February 2012.  

4.2.1. Samples 

Commercial highbush blueberries (Vaccinium corymbosum) were purchased from a 

local grocery store in East Lansing, Michigan on October 10, 2011 (Driscoll Strawberry 

Associated, Inc. Watsonville, CA 95077). The fruit were visually inspected for 

appearance and surface defects. Only those fruit free of visual defects (such as scars, 

cuts, shrivel, etc.) were selected for the experiment. They were stored in a refrigerated 

air storage room at 4 °C for various time periods from three to 14 days before 



 Chapter 4 

 

82 

 

experiments were performed. Blueberries were removed from cold storage three hours 

before the experiment was started to allow the fruit to reach room temperature (~22 ºC). 

4.2.2. Hyperspectral image acquisition 

Hyperspectral images were acquired for 302 blueberry samples using an in-house built 

―pushbroom‖ or ―line-scan‖ hyperspectral reflectance imaging system (Cen et al. 2011a; 

Cen et al. 2011b). 

The system consisted of a mobile sample positioning unit, an imaging unit, a line light 

source, and an in-house developed Windows-based software program to control the 

system and acquire hyperspectral images (Figure 4.1). The sample positioning unit was 

composed of a motorized linear horizontal stage (Twintrac, TSZ8020, US23T22104-

8LS, US Automation, Laguna Hills, CA, USA) and a sample holding tray (11 x 18 x 0.8 

cm) with five rows of 8 mm diameter holes, allowing to place 40 blueberries each time.  

The imaging unit consisted of a high performance 14-bit electron-magnifying charge-

coupled detector (EMCCD) camera (Luca
EM

 R604, ANDOR
TM

 Technology, South 

Windsor, Connecticut, USA), an imaging spectrograph attached to the camera 

(ImSpector V10E, Spectral Imaging Ltd., Oulu, Finland), and an optical lens. The line 

light source consisted of a 20 W tungsten halogen light bulb (HL-2000-HP, Ocean 

Optics, Dunedin, FL, USA) and a spot-to-line converter to provide line light covering a 

spectral range of 360-2,000 nm (FTISL16854-6, Fiberoptics Technology Inc., Pomfret, 

CT, USA). The software allowed saving image files in BIL format (band interleave by 

line) to be processed later.   
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Figure 4.1. Schematic of a pushbroom hyperspectral imaging system for quality 

assessment of blueberries. 

 

Forty blueberries were placed on the sample holding tray which was moving at a speed 

of 1.7 mm s
-1

. Each blueberry was imaged for each of the two orientations, i.e., with the 

calyx end and the stem end facing vertically toward the imaging system. The exposure 

time was adjusted to 200 ms in order to obtain good quality images without saturation. 

Each time, the system was able to scan five blueberries simultaneously for a total of 40 

fruit, resulting in a hypercube of 502 scanning lines  498 spatial pixels  125 

wavelengths between 360 to 1070 nm, with binning operations of 2  8 for the spatial 

and spectral directions, respectively. Each hypercube had a spectral resolution of 6.13 

nm/pixel and spatial resolutions of 0.4 mm/pixel along the scanning line direction and 

0.4 mm/pixel between the scan lines. 
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For correction of light source effects, hyperspectral images were also acquired from a 

99% reflectance panel (Spectralon Target SRT 99-120, Labsphere, Inc., North Sutton, 

NH, USA),   using the same imaging parameters as that for blueberries, except that the 

exposure time was set at 5 ms to avoid saturation. Dark current images were also 

acquired with the camera shutter closed. 

4.2.3. Reference Measurements 

Destructive measurements of firmness index (FI), SSC and skin and flesh color were 

carried out after the image acquisition. A digital colorimeter (Model CR-400, Minolta-

Konica Sensing Inc., Osaka, Japan) was used to measure the skin color of the blueberries 

immediately after the imaging. Surface color was measured from the stem end and the 

calyx end zone of each berry (on the same two sides where hyperspectral images were 

acquired).  

After the color measurements, firmness measurements were performed with a Texture 

Analyzer (model TA.XT2i, Stable Micro Systems, Inc., Surrey, U.K.), following the 

method of (Slaughter and Rohrbach 1985). Each berry fruit was compressed between 

two parallel plates at a constant velocity of 0.5 mm/s for a total deformation of 3 mm. 

The berry was oriented with its stem-calyx axis approximately parallel to the 

compression plates. FI was calculated as the slope of force/deformation curves between 

0.5 mm and 2.5 mm of displacement showing a straight line in most of the cases.  

After FI measurements, each berry was equatorially cut in half. The color of fruit flesh 

was again measured using the digital colorimeter. Thereafter, juice was extracted from 

the two berry halves and SSC (%) was measured using a digital refractometer (model 

PR-101, Atago Co., Tokyo, Japan). 
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4.2.4.    Image processing  

Image processing was carried out using Matlab R2007a and its image processing 

toolbox (The Mathworks, Inc., Natick, MA, USA). A sequence of image processing 

steps for the multi-sample hyperspectral images were taken to generate the data needed 

for prediction models. They included sample image corrections using the reference 

image to obtain relative reflectance images, segmentation and identification of berries, 

and mean spectra calculations.  

The intensity values for each hyperspectral image were corrected by the reference image 

pixels by pixels in both spatial and spectral dimensions (Ariana and Lu 2010; Tallada et 

al. 2006):  

   
               

               
      (4.1) 

Where RI is the relative reflectance at pixel location (x,y), IS is the sample image value, 

ID is the dark frame image value, and IR is the reference image pixel value. The 

dimensions of each hypercube was reduced from 502  498  125 pixels to 502  498  

82 pixels, after removal of the noisy regions of the image beyond the spectral region of 

500-1,000 nm. 

After the preprocessing, an automatic three-step algorithm was implemented to 

segregate each blueberry from the background for each hypercube of 40 blueberries and 

calculate their mean spectra (Figure 4.2). The first step consisted of building a binary 

mask to recognize the fruit from the background using threshold segmentation (Otsu 

1979) in the hypercube. This was accomplished on the spectral image at 672 nm which 

gave the maximum contrast between the blueberries and the background. The second 

step was the recognition of single berries by combining tilting and labeling operations on 

the masked image. Tilting is a partial rotation of images by any angle degrees in the 

counterclockwise direction around its center point and labeling refers to as assigning 

different numbers to different segmented regions going from left to right and up to 
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down. After tilting the mask in a specific angle (15º), each sample was identified 

through correlating the spatial position between the mask and each hypercube 

wavelength. The third step consisted of segmenting each one of the 302 blueberries at 

each of the 82 wavelengths for each of the two orientations (calyx and stem ends), which 

resulted in 49,528 normalized gray scale images of 61 x 61 pixels (10 kb for each 

image). From the regions of interest of each segmented blueberry image, mean 

reflectance was computed by averaging over all pixels. 

4.2.5.  Prediction models for fruit orientation evaluation   

Hyperspectral images or spectroscopic data contain a large amount of information, much 

of which is redundant (Moltó et al. 2010). Hence, a reduction of features was performed 

on the mean reflectance spectra using principal component analysis to obtain no more 

than top 20 principal components. Calibration models for predicting FI and SSC were 

then developed using partial least squares regression (PLSR) for the obtained principal 

components. PLSR generates a set of score vectors by maximizing the covariance 

between the features set and membership matrix (Li et al. 2012). 

 To ensure the models were not over fitted and the prediction results truly represent the 

model performance, the samples were first divided into four separate folds randomly 

(Mery et al. 2011; Mendoza et al. 2011). Three folds (or 75% of all samples) were used 

for calibration and the remaining fold was used for independent test or prediction. 
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Figure 4.2 a) Images of 672 nm used to find regions of interest; b) regions of interest 

obtained using a Otsu threshold and morphological operations; c) labeling of a 

blueberry; d) close-up image of a blueberry at 672 nm; e) the region of interest for the 

blueberry using Otsu threshold and morphological operations to remove false regions; f) 

final image of the blueberry. 

 

Calibration models for FI and SSC were developed using PLSR from the calibration 

samples. Cross validation was used to determine the number of latent variables for the 

calibration models. Thereafter, the calibration models were used to predict the 

independent fold of samples. The models were evaluated using root mean squares errors 

for cross calibration (RMSECV) and prediction (RMSEP).  

RMSEP =  
         

 
  
   

  
      (4.2) 

In addition, correlation coefficients for calibration (Rc) and prediction (Rp) and RPD, 

defined as the ratio between the sample standard deviation and RMSEP, were also 

calculated. RPD values measure the ability of a model for classification (Nicolaï et al. 
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2007). An RPD value between 1.5 and 2 means that the model is able to discriminate 

two classes. Values between 2 and 2.5 indicate that coarse quantitative predictions are 

possible and a value above 2.5 means good to excellent prediction accuracy. 

The above procedure was repeated four times. For each new run, one fold of samples in 

the calibration set was rotated out and replaced with the test samples from the previous 

run. The rotated out samples were then used as the new test samples. Finally, the results 

(i.e., Rc, Rp, RMSECV and RMSEP) from the four runs were averaged to estimate the 

final performance of the models.  

In a commercial operating environment, it may be impractical or impossible to orientate 

each fruit to a specific orientation for optical measurement. Moreover, orientating may 

cause excessive manipulation of each fruit, which could induce tissue damage. 

Therefore, it is necessary to evaluate the effect of fruit orientation on hyperspectral 

imaging prediction of the firmness and SSC of blueberries, so that an appropriate 

approach can be developed for implementation of the technique for automatic sorting. 

For this reason, prediction models for firmness and SSC were built separately from the 

mean spectra data for each of the two orientations, which were designated as T1 for the 

stem end and as T2 for the calyx end. Only these two orientations were studied because 

they are the predominant orientations when blueberries, which are of ellipsoid shape 

with the short axis being aligned along the stem-calyx axis, are transported on a 

conveyor in single layer. Furthermore, two more data arrays were created from the mean 

spectra for the two fruit orientations in order to enhance firmness and SSC prediction. 

 For the first data set, designated as T3, the data acquired for the stem and calyx regions 

for each sample were treated as if they came from two different samples. This would 

allow evaluating the models without considering the orientation of samples. For the 

second data set, or T4, two mean spectra for the stem and calyx end regions were 

averaged to obtain one spectrum. This would simulate the possible implementation of 

two sensors for measuring each blueberry for the two orientations at the same time.  
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Finally, the prediction results from the sets of data (i.e. T1, T2, T3 and T4) were 

compared using Duncan tests with 95% confidence (Statgraphics Centurion XV, 

Statpoint Technologies Inc., Warrenton, VA, USA).  

4.3.   Results and discussion 

The distributions of FI and SSC for the blueberry samples are presented in Figure 4.3. 

The variability of FI, as measured by the ratio between standard deviation and mean of 

the samples, was at least twice that of SSC for the same samples Figure 4.3a.  

 
Figure 4.3.  Distribution of (a) firmness index and (b) soluble solids content for the test 

samples. 

FI measurements for the samples varied between 0.19 and 2.42 N/mm with the mean of 

0.98 N/mm and the standard deviation of 0.46 N/mm. Lower values of FI indicate softer 

fruit. SSC measurements for the samples varied between 6.0% and 18.5% with the mean 

value 10.4% and the standard deviation of 2.1% in Brix (Figure 4.3b). The FI 

distribution showed two modes centered at 0.5 N/mm and 1.4 N/mm, respectively, with 

fewer samples near the mean value. This was not observed for SSC.  

4.3.1. Image and spectral features of blueberries  

A quick visual examination of the hyperspectral image data showed large differences 

between the reflectance images for different blueberries in the NIR region, whereas it 

was difficult to ascertain the reflectance differences for the test samples in the visible 
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region due to their low reflectance (Figure 4). Differences in reflectance between the two 

orientations for the visible and NIR region were not apparent (Figure 4.4).  

 
Figure 4.4.  Relative reflectance images for eight blueberries at different wavelengths, 

with different levels of firmness index (FI) and soluble solids content (SSC). 

Generally, the images for samples with higher SSC and low FI had lower reflectance in 

the NIR region, compared with those samples with low SSC and higher firmness. In 

contrast, blueberries with higher FI and low SSC showed higher reflectance levels in the 

NIR region.  

Figure 4.5 shows the mean relative reflectance spectra of all blueberry samples in the 

stem-end orientation for 500-1,000 nm. Considerably lower and more consistent 

reflectance was observed for all blueberry samples for the visible region of 500-675 nm.  
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Figure 4.5.  Mean relative reflectance spectra for 302 blueberry samples measured from 

the stem-end orientation.  

Beyond 675 nm, reflectance for all samples started to increase dramatically and a peak 

occurred at 765 nm for most of the samples. This range reflects the maturity of 

blueberries accompanied with the change of fruit color caused by anthocyanins and 

chlorophyll (Peshlov et al. 2009). On average, reflectance around 850 nm was about six 

times that of the visible region. In other words, blueberries had much stronger absorption 

in the visible region of up to 675 nm due to the presence of deep dark pigments in the 

skin, compared to that for the rest region of 675-1,000 nm. An absorption peak was 

observed for the samples at 970-980 nm, which was likely attributed to the combination 

effect of OH groups from carbohydrates (970 nm) and water (980 nm), since blueberries 

had a SSC of 6-15% and an estimated water content of 80–90%. Blueberries are high in 

anthocyanin and covered with a layer of wax. Reflectance spectra from the stem-end 

images in the visible region were highly variable in relative term, because less ripe fruit 

had a dominant purple color, compared with the dark color of ripe berries. Likewise, 

greater absolute variability in reflectance was observed for the spectral region of 700-

1,000 nm.  
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4.3.2. Correlation between the color and quality of blueberries 

Since most fruit tested were in a mature or ripe state, variations in the color of the test 

fruit were relatively small and difficult to observe with the naked eye. However, local 

differences in the visible reflectance over the surface of some blueberries were observed 

due to the presence of wax. These differences were not observed in the NIR range. The 

instrumental measurements of fruit skin color showed small changes between the fruit, 

with the mean values of x = 7.07  1.21, y = 7.12 1.22 and z =9.71  1.82. The average 

color measurements for the flesh of all samples were x = 7.39  2.25, y = 7.14  2.40 

and z =5.06  1.30.  

Table 4.1. Correlation of fruit skin and flesh color measurements with firmness index 

(FI) and soluble solids content (SSC) of blueberries. 

 

Color 

parameter 

  Correlation Coefficient 

Skin Flesh 

 FI SSC FI SSC 

x 0.18± 0.10 -0.04±0.02 0.69±0.04 -0.35±0.01 

y 0.18±0.10 -0.04±0.02 0.73±0.03 -0.38+0.00 

z 0.14±0.10 -0.02±0.03 0.54±0.08 -0.24±0.05 

 

Using simple regression analysis, low correlations were obtained of the three skin color 

parameters (i.e. x, y, and z) with FI (R=0.14 - 0.18) and SSC (R=-0.02 - -0.04) (Table 1). 

However, considerably higher correlations were obtained between flesh color and 

firmness (R=0.54 - 0.69 for the three color parameters) (Table 4.1).  

These results showed that skin color is inappropriate for evaluating the firmness and 

SSC of blueberries.  

4.3.3. Prediction of firmness and SSC for fruit orientations 

Calibration and prediction results for the FI of blueberries for the four sets of data are 

summarized in Table 4.2. Rc values ranged between 0.88 and 0.92, while Rp values were 

between 0.83 and 0.87, with the RMSEPs of 0.23-0.26 N/mm. The RPD values were 

between 1.8 and 2.0. The number of latent variables used to predict FI was between 12 

and 16. These results suggested that improvements in the measurement technique and 

data analysis methods are still needed in order to achieve more accurate measurement of 
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the firmness of individual blueberries. However, in postharvest quality sorting and 

grading, we normally do not need to measure the exact value of firmness for each fruit; 

instead, we are only interested in sorting blueberries into different firmness classes. 

Based on the obtained RPD values, it would be feasible to sort blueberries into two 

firmness classes: soft vs. firm (Nicolaï et al. 2007). Classification of the fruit into two 

firmness classes is also in agreement with the firmness distribution of the samples, 

which had two relatively distinctive firmness distribution groups (Figure 3a), and the 

mean value of firmness would be a good criterion to remove soft (less firm) fruit in the 

packing line.  

No statistical differences in the firmness predictions were found (p<0.05, Duncan test) 

for the four data sets (Table 2). This finding is significant because it showed that there is 

no need to orient individual fruit when hyperspectral imaging technique is implemented 

for sorting blueberries. This would, thus, simplify the design of a hyperspectral imaging-

based sorting system.    

The SSC prediction results using the spectral region of 500-1,000 nm were not as good 

as those for firmness, as measured by correlation coefficient, with the Rc values ranging 

between 0.78 and 0.82 and the Rp of 0.69-0.79 (Table 4.2). The models had higher 

RMSEP values between 1.30% and 1.55%, and the values of RPD were only between 

1.3 and 1.6 (Table 4.2). 

Table 4.2 Average prediction results of firmness index and soluble solids content for 

blueberries using partial least squares regression for four different data sets of two fruit 

orientations. 
 Prediction results of Firmness Index, using images in the range of 500 – 1000 nm  

Treatment Latent 

Variables 

Rc RMSECV Rp RMSEP RPD 

T1  12 ± 3 0.883 ± 0.025 0.216 ± 0.022 0.829 ± 0.053 0.26 ± 0.04 A 1.8 ± 0.2 

T2  15 ± 3 0.911± 0.022 0.191 ± 0.022 0.854 ± 0.022 0.24 ± 0.02A 1.9± 0.1 

T3  16 ± 1 0.889 ± 0.007 0.211 ± 0.006 0.851 ± 0.028 0.25 ± 0.01A 1.9 ± 0.1 

T4   16 ± 1 0.918 ± 0.005 0.183 ± 0.006 0.869 ± 0.015 0.23 ± 0.01A 2.0 ± 0.1 

 

Prediction results of Soluble Solids Content using images in the range of 500 – 1000 nm 

Treatment Latent 

Variables 

Rc RMSECV Rp RMSEP RPD 
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 Prediction results of Firmness Index, using images in the range of 500 – 1000 nm  

Treatment Latent 

Variables 

Rc RMSECV Rp RMSEP RPD 

T1  15 ± 3 0.816 ± 0.019 1.196 ± 0.048 0.690 ± 0.012 1.55 ± 0.13 B 1.3 ± 0.1 

T2  13 ± 1 0.818± 0.010 1.143 ± 0.014 0.761 ± 0.036 1.36 ± 0.03 C 1.5 ± 0.1 

T3  18 ± 2 0.780 ± 0.017 1.295 ± 0.038 0.682 ± 0.024 1.53 ± 0.08 B  1.4 ± 0.1 

T4   18 ± 1 0.882 ± 0.016 0.973 ± 0.059 0.788 ± 0.035 1.30 ± 0.10 C 1.6 ± 0.1 

 

Prediction results of Soluble Solids Content, using images in the range of 750 – 1000 nm 

Treatment Latent 

Variables 

Rc RMSECV Rp RMSEP RPD 

T1  9 ± 1 0.741 ± 0.003 1.390 ± 0.048 0.711 ± 0.017 1.48 ± 0.13C  1.4 ± 0.1 

T2  16 ± 5 0.797± 0.039 1.242 ± 0.057 0.728 ± 0.027 1.45 ± 0.12C 1.4 ± 0.1 

T3  18 ± 1 0.737 ± 0.012 1.400 ± 0.036 0.685 ± 0.038 1.50 ± 0.10 C   1.4 ± 0.1 

T4   12 ± 1 0.815 ± 0.014 1.197 ± 0.033 0.764 ± 0.018 1.37 ± 0.08 C  1.5 ± 0.1 

T1: stem end orientation. 

T2: calyx end orientation. 

T3: each orientation (stem end and calyx end) measurement was treated as if it came from a different sample. 

T4: mean spectra for the stem and calyx ends for each berry were averaged.  

Rc: Average correlation coefficient of calibration over four calculations.  

Rp: Average correlation coefficient of prediction over four calculations.  

RMSECV: root mean squares error of cross validation over four calculations. 

RMSEP: root mean squares error of prediction over four calculations. 

RPD: ratio of standard deviation to RMSEP.  

RMSEPs with the same letters are not significantly different at p<0.05 using Duncan test. 

  

There was a statistically significant difference in the prediction results between the two 

orientations; better results were obtained for the stem end (T1) (Rp= 0.76) than for the 

calyx end (T2) (Rp=0.69). Among the four data sets, T4 (i.e., the average of two mean 

reflectance spectra for each fruit) gave better results than T3 (p>0.05, Duncan test) 

(Figure 4.6a).  
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Figure 4.6. Partial least squares prediction of a) firmness for the stem end region (T2) 

and b) soluble solids content (SSC) using the fused spectra from both the stem and calyx 

end regions (T4). 

 

Previous studies (Lu 2004; Ruiz-Altisent et al. 2010b) suggested that the visible spectral 

region is not useful for SSC prediction. Hence, further analyses were performed for the 

NIR region of 750-1,000 nm.  Compared to the spectral region of 500-1,000 nm, the use 

of 750-1,000 nm did not result in significant improvements (p<0.05, Duncan test) for the 

prediction of SSC (the second table vs. third table of Table 4.2). The Rp and RMSEP for 

the stem end for 500-1,000 nm were 0.76 and 1.36%, respectively, in comparison with 

0.73 and 1.45% for 750-1,000 nm. Despite this, the SSC models for 750-1,000 nm had 

fewer latent variables (9-18) for three out of the four data sets, compared with those (13-

18) for 500-1,000 nm. 

4.5. Conclusion 

In this research, a pushbroom hyperspectral imaging system was used to acquire 

reflectance images for blueberries in the stem and calyx end orientations. Relatively 

good predictions of firmness were obtained, with the best Rp of 0.87 and an RPD of 2, 

which suggested the feasibility of sorting blueberries into two firmness classes. Fruit 

orientation did not have a significant effect on firmness prediction, and hence there is no 

need to orient fruit for hyperspectral imaging. Lower correlations (Rp=0.69-0.79) were 

obtained for SSC prediction, compared with those reported for large fruits such as apple 

and citrus. This study showed that hyperspectral imaging is promising for online sorting 
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and grading of blueberries for firmness and perhaps SSC as well. Further improvements 

in firmness and SSC prediction may be achieved through the use of higher spatial and 

spectral resolutions in the acquisition of hyperspectral images and an improved lighting 

design. More research is also needed to assess other blueberry quality attributes or 

properties (e.g., antioxidant compounds) and common defects such as bruise, fungal 

decay, and shriveling.  
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5. ASSESSMENT OF INTERNAL QUALITY OF BLUEBERRIES 

USING HYPERSPECTRAL TRANSMITTANCE AND 

REFLECTANCE IMAGES WITH WHOLE SPECTRA OR 

SELECTED WAVELENGTHS 

 

Abstract 

Hyperspectral imaging has been used in previous studies for assessing firmness and 

soluble solids content of fresh fruit. To apply this technique for automatic sorting and 

grading of blueberries, it is necessary to investigate different sensing modes (i.e., 

reflectance and transmittance), evaluate the effect of fruit orientation on fruit quality 

prediction, and develop robust prediction models with fewer wavelengths. In this study, 

a hyperspectral imaging system was used to acquire reflectance and transmittance 

images from 420 blueberries in three fruit orientations (i.e., stem end, calyx end and 

equator) for the spectral region of 400-1,000 nm. Mean spectra were extracted from the 

regions of interest for the hyperspectral images of each blueberry. Calibration models for 

firmness index (FI) and soluble solids content (SSC) were developed using partial least 

squares regression for the reflectance and transmittance spectra as well as their 

combined data. Further, interval partial least squares (iPLS) regression with 10 different 

intervals of nine wavelengths was used to reduce the spectral dimensionality. Overall, 

reflectance gave better results (the best correlation for prediction (Rp) of 0.90 for SSC 

and 0.78 for FI) than transmittance (Rp of 0.76 for SSC and 0.64 for FI). For reflectance, 

FI and SSC predictions for the stem-end orientation were better than for the other two 

orientations, while fruit orientation had little or insignificant effect on transmittance 

predictions. Combination of reflectance and transmittance spectra did not yield 

improved prediction results for both FI and SSC. The prediction errors for iPLS, on 

average, increased by only 5%, compared to PLS for the whole spectra. The research 

demonstrated that it is feasible to implement hyperspectral imaging technique for sorting 

blueberries for SSC and possibly firmness, using appropriate wavelengths. 
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5.1. Introduction 

In recent years, countries in the southern hemisphere have increased blueberry export to 

the northern hemisphere. Because of the long distance shipment, it is especially 

important to perform internal and external quality determination for individual fresh 

blueberries to ensure their quality upon arrival at the destination. Soluble solids content 

(SSC) is an important parameter in evaluating quality of fruit (Rodriguez-Saona et al. 

2001); it is usually determined from the juice extracted from the fruit flesh using the 

refractometric method (Noh and Lu 2007). Softening of blueberries is a major quality 

concern because it promotes mold development and enzymatic browning, resulting in 

inferior products that are not suitable for marketing. Hence individual blueberries should 

be inspected for firmness to avoid spoilage and possible rejection by the consumer.   

Considerable research has been reported on automatic detection and segregation of 

defective or inferior blueberries. Earlier research from the late 1970s till the mid-1980s 

was mainly focused on segregating soft berries using mechanical techniques such as 

vibration (Bower and Rohrbach 1976), roll bounce (Wolfe et al. 1980), and impact 

(Rohrbach et al. 1982; Lee and Rohrbach 1983). In recent years, more research has been 

focused on non-destructive optical techniques, such as image analysis, to segregate 

defective berries (Leiva-Valenzuela and Aguilera 2013). Reflectance near-infrared 

spectroscopy was used to evaluate the blueberry‘s nutraceutical content (Sinelli et al. 

2008), monitor dehydration (Sinelli et al. 2011b) and build quality grading models 

(Yang et al. 2012). Optical techniques have wide acceptance in agriculture because they 

are efficient and fast in acquiring a large quantity of information and have the potential 

for simultaneous assessment of multiple quality attributes in the case of spectroscopy 

and for simulating human vision in the case of image analysis.  

More recently, hyperspectral imaging technique has emerged as a new technique for 

quality and safety inspection of food and agricultural products(ElMasry and Sun 2010). 

A typical hyperspectral image consists of hundreds or even thousands of narrow-band or 

spectral images, with each pixel in the image being associated with a spectrum which 
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may cover both visible and near-infrared wavelengths. Many studies have been reported 

on using hyperspectral imaging for prediction of firmness and SSC, two important 

quality attributes for large fruits like apple (Lu 2004; Mendoza et al. 2011; Mendoza et 

al. 2012; Romano et al. 2011; Vanoli et al. 2011; Wang et al. 2012b; Peng and Lu 2007, 

2008). Several studies also demonstrated the feasibility of the technique for assessing 

small fruits like strawberry (Nagata et al., (2005) and blueberry (Leiva-Valenzuela et al., 

(2013). Hyperspectral imaging and near-infrared spectroscopy may be implemented in 

different sensing modes (i.e., reflectance, interactance and transmittance). While 

reflectance is the most used, transmittance was also used to detect internal defect such as 

bruises in apple (Clark et al. 2003), pear (Han et al. 2006) and pickling cucumbers 

(Ariana et al. 2006; Ariana and Lu 2010) and predict SSC in cantaloupes  (Dull et al. 

1989) and honeydew melons (Dull et al. 1992), and the SSC and firmness of apples (Fan 

et al., (2009). Transmittance measurements are, however, influenced by such factors as 

fruit geometry and size. Fruit‘s internal structures such as calyx, pit or pedicel can 

change the light transfer pattern by blocking, absorbing or deviating the light passing 

through the fruit. Moreover, spectral profiles could also be affected by irregularities in 

the geometry of samples. In implementing the transmittance mode, it is important that 

sufficient light penetrates the entire fruit without causing damage to the fruit (Fraser et 

al. 2003; Nicolaï et al. 2007; Clark et al. 2003). Blueberries are small in size, round in 

shape and relatively homogeneous in internal structure (i.e., with no hard pit or core). 

Hence it is technically feasible to use hyperspectral transmittance imaging for assessing 

internal quality of blueberries. However for the blueberry industry, neither spectroscopy 

nor hyperspectral imaging is now being used for quality grading or sorting.  

Image processing is a critical step in the application of hyperspectral imaging 

technology. Hyperspectral images are usually processed using such techniques as 

filtering, correction and segmentation, so as to extract specific features such as mean of 

intensity in the region of interest. These features are then used to build linear or 

nonlinear prediction or discriminant models. Partial least squares (PLS) regression is one 

of the most popular methods that have been  used to build models with orthogonal latent 
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variables that are oriented along directions of maximal covariance between the spectral 

matrix and the response vector (Nicolaï et al. 2007). The latent variables come from a 

fusion of image features obtained using such a method as principal component analysis 

(PCA). Although non-linear techniques have been increasingly used recently, PLS 

allows simpler interpretation and comparison of results, avoiding the overtraining 

problem that is commonly encountered with complex non-linear models. However, the 

need for processing a large number of spectral images has been the main obstacle in the 

application of hyperspectral imaging for high-speed online sorting and grading of 

agricultural products. Consequently, considerable studies have been focused on the 

development of spectral data reduction algorithms. Interval partial least squares (iPLS) 

is one of the commonly used algorithms in selecting the most efficient wavelength 

regions for developing an optimized local PLS model built with fewer variables 

(Nørgaard et al. 2005). Basically, with the iPLS method, the entire spectra are first split 

into smaller equidistant regions and PLS regression models are then developed for each 

of the sub-intervals, using the same number of latent variables for the selected region 

with lower error. An optimized region can be found by subtracting or adding new 

variables (Zou et al. 2007; Nørgaard et al. 2000a). Hence, iPLS could yield similar 

prediction results without using complete spectra information, while having the 

advantages of decreased computational time and knowing specific wavelength regions 

from which the most useful information is obtained. 

This article reports on the use of hyperspectral imaging technique for predicting internal 

quality attributes of blueberries using either whole spectra or selected wavelengths in the 

visible and short-wave near-infrared region of 400–1,000 nm. Hyperspectral reflectance 

and transmittance images were acquired for blueberries in three different orientations 

(i.e., stem end, equator and calyx end facing toward the imaging device). Calibration 

models using PLS, coupled with iPLS for selection of wavelengths, were developed to 

predict firmness and SSC, and the effect of fruit orientation on the performance of the 

prediction models was evaluated. 
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5.2. Materials and methods 

Experiments were carried out in the postharvest engineering laboratory of the U. S. 

Department of Agriculture (USDA) Agricultural Research Service (ARS) at Michigan 

State University (MSU) in East Lansing, Michigan, USA between March and May of 

2012.  

5.2.1. Samples 

Commercial ―Rabbit edge‖ blueberries (Vaccinium corymbosum. Var Tifblue), originally 

produced in Chile, were purchased from a local grocery store in East Lansing, Michigan, 

United States of America, on March 22, 2012 (North Bay Produce, Inc. Traverse City, 

MI 49685-0988). The fruit were visually inspected for appearance and surface defects. 

Only those fruit free of visual defects (such as scars, cuts, shrivel, etc.) were selected for 

the experiment. They were stored in refrigerated air at 4 °C for various time periods 

from three to 14 days before experiments were performed. Blueberries were removed 

from cold storage three hours before the experiment was begun to allow the fruit to 

reach room temperature (~22 ºC). 

5.2.2. Hyperspectral image acquisition 

Hyperspectral images were acquired for 420 blueberry samples using a prototype 

hyperspectral imaging system developed in the USDA/ARS postharvest engineering 

laboratory at Michigan State University, East Lansing, Michigan (Ariana and Lu 2010). 

The hyperspectral imaging system (Figure 5.1) consisted of imaging, illumination and 

conveying units. The imaging unit consisted of a 1376 × 1040 pixel charge-coupled 

device (CCD) camera (Sensicam QE, The Cooke Corp., Romulus, MI, USA), an 

imaging spectrograph (ImSpector V10E OEM, Spectral Imaging Ltd., Oulu, Finland) 

covering the spectral range of 400–1,000 nm, and a 23 mm fixed focal lens (Xenoplan, 

Schneider Optics, Hauppauge, NY, USA). Two illumination sources were used in the 

prototype; one was for reflectance and the other for transmittance.  
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The reflectance illuminant was a 150 W tungsten halogen lamp with a DC-regulated 

power supply (Fiberlite A240P, Dolan-Jenner Industries, Lawrence, MA, USA) 

connected to a dual fiber optic line light. The transmittance light source consisted of a 

410 W tungsten halogen lamp with a built-in reflector (FXL/5, Eiko Ltd., Shawnee, KS, 

USA). This lamp was housed in a custom-made enclosure containing mirror and lens to 

direct the light to the sample. The light enclosure was installed underneath the sample 

holding unit coupled with an adjustable diaphragm whose opening was set at 9.15 mm in 

diameter to ensure that only the light that has transmitted the whole blueberry would be 

detected by the hyperspectral imaging unit. The lamp for transmittance measurements 

was controlled by a programmable DC power supply (model VSP-12010, Yorba Linda, 

CA, USA). The hyperspectral imaging system was originally designed for simultaneous 

acquisition of reflectance (400-750 nm) and transmittance (750-1,000 nm) image. For 

this particular study, reflectance and transmittance images were acquired separately, 

both covering the spectral region of 400-1,000 nm, so that we could better compare the 

performance of the two sensing modes for blueberry quality assessment. 
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Figure 5.1 Schematic of the hyperspectral reflectance and transmittance imaging system 

for blueberry quality assessment. 

Each blueberry was placed on the sample holding unity and then imaged for each of the 

three orientations (i.e., with the calyx end, the stem end and equator facing vertically 

toward the imaging system). The exposure time was set at 150 ms and 35 ms for 

reflectance and transmittance, respectively, for obtaining good quality images without 

saturation. Each hypercube consisted of 150 scanning lines  688 spatial pixels  520 

wavelengths covering the spectral region of 400-1,000 nm, after 2  2 binning 

operations for the spatial and spectral directions. Consequently, the hypercubes had a 
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spectral resolution of 1.30 nm/pixel and the spatial resolution of 0.167 mm/pixel along 

the scanning line direction and between the scanning lines. 

For correction of the light source effect, hyperspectral reflectance images were also 

acquired from a 20% diffuse reflectance standard (Spectralon
®
 Reflectance Standard 

SRS-20-010, Labsphere, Inc., North Sutton, NH, USA) using the same imaging 

parameters as that for blueberries. For transmittance images corrections, a cylindrical 

reference disc made from white Teflon (6 mm in diameter and 6 mm in thickness) was 

mounted next to the frame of the sample holding unit, and it was connected with a fiber 

optic line from the front of the lens in the light enclosure toward the disc (Ariana and 

Lu, 2008). Dark current images were acquired with the camera shutter being closed. 

5.2.3.   Blueberry quality measurements 

Destructive measurements of firmness index (FI) and SSC were carried out after the 

image acquisition. Firmness measurements were performed with a Texture Analyzer 

(model TA.XT2i, Stable Micro Systems, Inc., Surrey, U.K.), following the procedure 

used by (Leiva-Valenzuela et al. 2013; Slaughter and Rohrbach 1985). Each berry fruit 

was compressed between two parallel plates at the constant velocity of 0.5 mm/s for a 

total deformation of 3 mm. The berry was oriented with its stem-calyx axis 

approximately parallel to the compression plates. FI was calculated from the slope of the 

force/deformation curve between 0.5 mm and 2.5 mm displacement, which was 

relatively straight in most of the cases.  

After the FI measurements, each berry was equatorially cut in half. Juice was then 

extracted from the two berry halves and SSC (%) was measured using a digital 

refractometer (model PR-101, Atago Co., Tokyo, Japan). 

5.2.4. Image processing  

 

Image processing was carried out using Matlab R2008a and its image processing 

toolbox (The Mathworks, Inc., Natick, MA, USA). The image processing steps included 
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sample image corrections using the reference image to obtain relative reflectance and 

transmittance images, segmentation of berries, and mean spectra calculations.  

The intensity values for each hyperspectral image were corrected by the reference image 

pixels by pixels in both spatial and spectral dimensions (Ariana and Lu 2010; Tallada et 

al. 2006):  

   
               

               
  (5.1) 

where RI is the relative reflectance or transmittance at pixel location (x,y), IS is the 

sample image value, ID is the dark frame image value, and IR is the reference image 

pixel value (Figure 5.2a and 5.2b).  

After the relative values of reflectance or transmittance were obtained, each spectrum 

was smoothed by the Savitzky-Golay derivative algorithm of order zero (Savitzky and 

Golay 1964). The same procedure was implemented for reflectance and 

transmittance.Since the relative reflectance and transmittance spectra varied greatly 

among the fruit and within each image area, maximum normalization (Xing and Guyer 

2008) was applied by dividing the relative transmittance value at each wavelength by the 

peak intensity value in each image. These peaks usually occurred at ~840 nm for 

transmittance and at ~880 nm for reflectance. After further removal of border regions in 

each hypercube layer (Figure 2c) and noisy spectral region reduction, the reflectance 

images were reduced from 400  688  478 pixels to 150  181  520 pixels covering 

the spectral region of 400-1,000 nm, whereas the transmittance images were reduced to 

150 x 181 x 295 for the spectral region of 563-939 nm.  

After the preprocessing, segmentation was implemented to segregate each blueberry 

from the background for each hypercube and calculate their mean spectra (Figure 2d). 

The first step consisted of building a binary mask to recognize each berry from the 

background using the threshold segmentation (Otsu 1979) in the hypercube. This was 

accomplished on the spectral image at 657 nm, which gave the maximum contrast 
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between the blueberries and the background for both reflectance and transmittance 

images. As a result, a total of 602,280 grayscale images for reflectance and 371,700 

images for transmittance, 150 x 181 pixels each and free of background, were obtained 

for the three orientations‘ images (calyx and stem ends and equator) from the 420 

blueberries. Mean reflectance and transmittance were computed by averaging over all 

pixels from the regions of interest for each segmented blueberry image. 

5.2.5.   Prediction models for soluble solids content and firmness  

Calibration models for predicting SSC and FI were developed using PLS (Figure 5.2e). 

To ensure the models were not over fitted and the prediction results truly represented the 

model performance, the samples were first divided into four separate folds randomly 

(Donis-González et al. 2013; Mery et al. 2012). Three folds (or 75% of all samples) 

were used for calibration and the remaining fold was used for independent test or 

prediction. Leave-one-out cross validation was used to determine the number of latent 

variables for the calibration models. Thereafter, the calibration models were used to 

predict the independent samples. The models were evaluated using root mean squares 

errors for cross validation (RMSECV) and prediction (RMSEP), referred to as 

calibration variance and imprecision of prediction model, respectively.  

RMSEP =  
         

 
  
   

  
      (5.2) 

In addition, correlation coefficients for calibration (Rc) and prediction (Rp) and residual 

predictive deviation (RPD), defined as the ratio between the sample standard deviation 

and RMSEP, were also calculated. RPD values measure the ability of a model for 

classification (Nicolaï et al. 2007).  
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Figure 5.2 Flow diagram for the assessment of internal quality of blueberries.  

The above procedure was repeated four times. For each new run, one fold of samples in 

the calibration set was rotated out and replaced with the test samples from the previous 

run. The rotated out samples were then used as the new test samples. Finally, the results 
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(i.e., Rc, Rp, RMSECV, RMSEP and RPD) from the four runs were averaged to estimate 

the performance of the models.  

The prediction results from different sets of data were compared using Duncan tests with 

95% confidence (Statgraphics Centurion XV, Statpoint Technologies Inc., Warrenton, 

VA, USA).  

5.2.6. Wavelengths selection 

 Hyperspectral images contain a large amount of information, much of which is 

redundant (Moltó et al. 2010). Moreover, processing of hyperspectral images in real time 

is still too slow and impractical for industrial applications. For this reason, it is necessary 

to select the best known wavelengths from the entire spectra data.  

To select the best wavelengths, interval PLS (iPLS) was used (Figure 5.2f). This method 

builds a series of sub PLS models in adjacent but non-overlapping intervals with the 

same dimensions as that for the conventional PLS to minimize the RMSECV with cross 

validation (Xu et al. 2012; Nørgaard et al. 2000b). In the present study, 90 wavelengths 

were selected for each of 12 cases (i.e., two quality attributes × two sensing modes × 

three fruit orientations), which were evenly distributed in 10 intervals of nine adjacent 

wavelengths each (Figure 5.2e). The intervals could be adjacent but not overlapped. The 

intervals that provided the lowest RMSECVs were selected with the same criterion used 

in whole spectra PLS prediction. 

5.3.    Results and discussion 

The SSC and FI distributions for blueberry samples are presented in Figure 5.3. The 

variability for SSC, as measured by the ratio of standard deviation to the mean of 

samples, was 31.1%, more than doubling 15.0% for FI; it was also quite large compared 

with other fruits such as apple. For instance, the apple samples tested by Mendoza et al. 

(2011) had the variability of 10.7% and 28.2% for SSC and firmness, respectively, for 

three varieties of apple.  
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Figure 5.3.  Distribution of (a) soluble solids content (SSC) and (b) firmness index (FI) 

for 420 blueberry samples.   

Large SSC and FI variations among the blueberries are good for building robust 

calibration models; they also suggest the need of having an effective quality sorting 

technique in order to assure consistent quality. 

5.3.1.  Spectral characters of blueberries 

Figure 5.4 shows the normalized mean relative reflectance and transmittance spectra for 

the 420 blueberry samples. Noisy signals beyond 400-1,000 nm for reflectance and 

beyond 563-939 nm for transmittance were discarded. Two distinctive regions were 

observed from the reflectance spectra (Figure 5.4a). The first region was in the visible 

region between 400 nm and 650 nm. In this region, the blueberries had low relative 

reflectance (<40%). Prior to the normalization, the variation of spectra among the 

samples for the visible region was smaller (~20%). However, after the normalization, the 

spectra‘s variation in the visible region was greater than that for the NIR infrared. Lower 

values of reflectance in the visible region were attributed to the relatively homogeneous, 

dark color of the fruit and the absorption of light by anthocyanins in mature blueberries 

at 490-550 nm (Yang et al. 2012; Peshlov et al. 2009). For the second region starting 

around 650 nm, reflectance increased rapidly and reached a peak at a wavelength close 

to 800 nm and another peak at 900 nm. Reflectance decreased rapidly at the wavelengths 

of 900-1,000 nm, which was likely attributed to the combination effect of OH groups 

from carbohydrates and water at 970 nm since blueberries had a SSC of 8-18% and an 
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estimated water content of 80-90%. Since the hyperspectral imaging system used in this 

study had a higher spectral resolution than the one used in our previous study (Leiva-

Valenzuela et al. 2013), it allowed to better distinguish the two reflectance peaks.  

 

Figure 5.4.  Relative reflectance (a) and transmittance (b) spectra, after normalization by 

the maximum value of each spectrum, for 420 blueberry samples measured from the 

stem-end orientation.  

 

 

 

 The transmittance spectra were smoother with fewer features, compared with the 

reflectance spectra. Below the visible wavelength at 600 nm, no or little light was 

transmitted through the fruit. Transmittance increased steadily from 600 nm and reached 

peak around 840 nm. Blueberries had good transmittance in the near-infrared region of 

750-939 nm. It should be pointed out that the ranges of values for the original 

reflectance and transmittance spectra prior to the normalization were quite different 

because they were corrected using two different reference materials and because of the 

different lighting setups for the two sensing modes. The normalization procedure 

minimized the effect of fruit size (5.5% variation among the samples) on the 

transmittance spectra. The procedure, when combined with the Savitzky-Golay 

smoothing algorithm, improved firmness and SSC prediction results by about 10% (the 

results are not further discussed below).   
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5.3.2. Prediction of soluble solids content and firmness  

 

Table 5.1 shows the SSC and FI prediction results from the PLS models with whole 

spectra for the three fruit orientations plus their combination that was obtained by 

averaging the spectra of three orientations for both reflectance and transmittance modes.  

 

Figure 5.5.  Curves of the root mean squares error for cross validation (RMSECV) for 

(a) soluble solids content (SSC) and (b) firmness index (FI) prediction, where symbols 

REF and TRA refer to reflectance and transmittance, respectively, followed with a 

specific fruit orientation (i.e., EQU for equator, STE for stem end and CAL for calyx 

end). 
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Table 5.1. Calibration and prediction results for soluble solids content (SSC) and 

firmness index (FI) of blueberries using partial least squares regression for three fruit 

orientations and their average spectra. 
Orientation PC Rc RMSECV Rp RMSEP RPD 

SSC prediction, using reflectance images  

Stem end 29 ±3 0.952 ± 0.007 0.61 ± 0.04 0.888 ± 0.022 0.94 ± 0.11 AB  2.1 ± 0.2 

Calyx end 28 ± 3 0.936± 0.013 0.70 ± 0.07 0.869 ± 0.009 1.01 ± 0.07 B 2.0 ± 0.1 

Equator 28 ± 2 0.952 ± 0.005 0.61 ± 0.03 0.900 ± 0.020 0.88 ± 0.02 A   2.3 ± 0.0 

Average 30 ± 0 0.960 ± 0.003 0.56 ± 0.02 0.926± 0.014 0.76± 0.07 C  2.6 ± 0.2 

SSC prediction, using transmission images  

Stem end  8 ± 2 0.733 ± 0.015 1.35 ± 0.03 0.719 ± 0.046 1.39 ± 0.05 D  1.4 ± 0.0 

Calyx end  9 ± 1 0.774± 0.014 1.26 ± 0.03 0.760 ± 0.031 1.31 ± 0.06 D 1.5± 0.1 

Equator  8 ± 2 0.741 ± 0.017 1.33 ± 0.04 0.725 ± 0.024 1.40 ± 0.09 D   1.4 ± 0.1 

Average 10 ± 1 0.769 ± 0.009 1.27 ± 0.02 0.753 ± 0.029 1.35 ± 0.06 D  1.5 ± 0.1 

FI prediction, using reflectance images   

Stem end 22 ± 7 0.855 ± 0.034 0.27 ± 0.03 0.770 ± 0.022 0.33 ± 0.02 E  1.5 ± 0.1 

Calyx end 16 ± 1 0.753 ± 0.007 0.34 ± 0.00 0.692 ± 0.017 0.38 ± 0.02 FG  1.4 ± 0.1 

Equator 17 ± 1 0.781 ± 0.014 0.32± 0.01 0.732 ± 0.015 0.35 ± 0.02EF   1.5 ± 0.1 

Average 25 ± 5 0.865 ± 0.026 0.26 ± 0.02 0.782 ± 0.020 0.33 ± 0.03 E  1.6 ± 01 

FI prediction, using transmission images  

Stem end  9 ± 2 0.620 ± 0.019 0.41 ± 0.01 0.589 ± 0.002 0.42 ± 0.02 H 1.2 ± 0.1 

Calyx end 10 ± 1 0.672± 0.007 0.38 ± 0.00 0.636 ± 0.024 0.40 ± 0.01 GH 1.3 ± 0.0 

Equator 10 ± 2 0.672 ± 0.054 0.38 ± 0.02 0.636 ± 0.038 0.40± 0.02 H 1.3 ± 0.1 

Average 10 ± 3 0.660 ± 0.035 0.39 ± 0.02 0.634 ± 0.011 0.40 ± 0.02 GH       1.3 ± 0.1 

PC: Number of principal components; Rc: Average correlation coefficient of calibration over four calculations; Rp: 

Average correlation coefficient of prediction over four calculations; RMSECV: Average root mean squares error of 

cross validation over four calculations; RMSEP: Average root mean squares error of prediction over four calculations. 

RPD: Ratio of standard deviation to RMSEP; RMSEPs with the same letter(s) are not significantly different at p<0.05 

using Duncan test. 

The optimal number of principal components (PCs) for each PLS model was determined 

based on the minimization of RMSECV. This statistical parameter indicates the 

modeling error or calibration variance, thus the imprecision (quality) of the calibration 

model when tested internally. The RMSECV curves for different PCs were plotted 

(Figure 5), and the optimal number of PCs was chosen when the global minimum in 

RMSECV was reached. As shown in Figure 5.5 and Table 5.1, better calibration 

performances were generally obtained with 8-13 PCs for transmittance and 16-30 for 

reflectance. Fewer numbers of PCs for both SSC and FI models for transmittance are in 

agreement with the fact that the transmittance spectra had fewer features compared to 
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the reflectance spectra (Figure 5.4). The number of PCs for each of the three orientations 

was quite consistent for SSC prediction with reflectance and for both SSC and FI 

prediction with transmittance.  

Blueberry orientation had small or no significant effect on SSC and FI prediction (Table 

5.1). For reflectance, SSC predictions for the calyx-end direction were not as good as 

that for the stem-end and equatorial directions (Rp of 0.87 versus 0.88 and 0.90). 

Likewise, FI predictions for the stem end were better than for the calyx end and equator 

(Rp of 0.77 versus 0.69 and 0.73). For transmittance, the differences in SSC and FI 

prediction for the three orientations were either insignificant or quite small (Rp of 0.72-

0.76 for SSC and Rp of 0.59-0.64 for FI). The different reflectance prediction results for 

the three orientations may be explained from the external structures of blueberries. The 

surface of the calyx end is more irregular compared to the stem end region, and these 

irregularities would have affected light reflectance measurements, which may explain 

why the predictions of SSC and FI for the calyx end for reflectance were lower than that 

for the stem end and equator. In transmittance mode, light passes the whole fruit, and it 

is thus reasonable to expect that fruit orientation would have less effect on transmittance 

measurements, compared to reflectance mode.  

When the two sensing modes were compared (p<0.05, Duncan test), significantly better 

results for SSC and FI prediction for the three fruit orientations were obtained with 

reflectance than with transmittance (Table 5.1). For SSC predictions with reflectance, Rc 

values ranged between 0.94 and 0.96, with Rp of 0.87-0.90, RMSEPs of 0.88-1.01% and 

RPDs of 2.1-2.3. In comparison, lower SSC prediction results for transmittance were 

obtained, with Rc of 0.73-0.77 and Rp of 0.72-0.76, RMSEP of 1.31-1.40% and RPD of 

1.4-1.5. The same tendency for FI predictions was observed; reflectance gave better 

results with Rp of 0.69-0.78, RMSEP of 0.33-0.38 N/mm and RPD of 1.4-1.6, compared 

to transmittance with Rp of 0.59-0.64, RMSEP of 0.40 -0.42 N/mm and RPD 1.2-1.3. 

These results demonstrated that transmittance mode was not as suitable as reflectance 
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mode for prediction or classification of blueberries for firmness and SSC, as further 

shown in Figure 5.6. 

FI predictions using either reflectance or transmittance were not as good as those for 

SSC. The differences between SSC and FI results from this study are in general opposite 

to the results reported previously (Leiva-Valenzuela et al. 2013). Factors like variety and 

the different condition of blueberries for the two studies may have contributed to these 

differences. The blueberries tested in this study were conspicuously different from those 

in the previous study; the mean FI value and the coefficient of variation for this study 

were 1.67 N/mm and 15.0% respectively, versus 0.98 N/mm and 46.9% in the previous 

study. Larger FI variations in the samples are conducive to achieving a higher 

correlation coefficient.  

No or little improvement was found when the two sensing modes were combined, i.e., 

the normalized mean reflectance and transmittance spectra were combined into one 

single spectrum for each sample, compared with reflectance alone (Table 5.2 versus 

Table 5.1). For SSC, the RMSEP for the reflectance data averaged over the three fruit 

orientations was 0.76% versus 0.81% for the combined sensing modes, with the 

corresponding RPD of 2.6 versus 2.5. Moreover, no improvement in FI prediction was 

also obtained when reflectance and transmittance were combined; the RPD of 1.6 was 

the same as that for reflectance alone. Furthermore, SSC or FI predictions for the three 

orientations were not statistically different (p<0.05, Duncan test). This suggests that 

there is no need to orient individual fruit when hyperspectral reflectance imaging 

technique is implemented for sorting SSC blueberries, which would simplify the sorting 

system design. In conclusion, reflectance alone is sufficient for assessing blueberry 

quality and there is no need to integrate reflectance with transmittance. 
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Figure 5.6. Partial least squares predictions of: a) soluble solids content (SSC) by 

reflectance, b) SSC by transmittance, c) FI by reflectance and d) FI prediction by 

transmittance, for both calibration and testing sets of samples in the stem end 

orientation. 
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Figure 5.7. Calibration and prediction results from using selected wavelength intervals 

for the stem end spectra for: a) soluble solids content (SSC) in reflectance and b) 

firmness index (FI) in transmittance.  
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Table 5.2. Calibration and prediction results for soluble solids content (SSC) and 

firmness index (FI) of blueberries in three fruit orientations and their average spectra, 

using partial least squares regression for the combined reflectance and transmittance 

images. 
Orientation PC Rc RMSECV Rp RMSEP RPD 

SSC prediction 

Stem end 30± 0 0.943 ± 0.003 0.66 ± 0.02 0.878 ± 0.008  0.97 ± 0.03 AB  2.1± 0.1 

Calyx end 30± 1 0.933± 0.003 0.72 ± 0.02 0.873 ± 0.028 1.01 ± 0.08 A  2.0± 0.2 

Equator 29 ± 1 0.941 ± 0.003 0.67 ± 0.02 0.896 ± 0.019  0.89 ± 0.07 AC 2.2 ± 0.2 

Average 30 ±1 0.948 ± 0.002 0.63 ± 0.01 0.915 ± 0.008 0.81 ± 0.03 C 2.5 ± 0.1 

FI prediction 

Stem end 21±1 0.832 ± 0.013 0.29 ± 0.01 0.780 ± 0.041  0.33 ± 0.03 DE  1.6 ± 0.1 

Calyx end 23±4 0.831± 0.029 0.29 ± 0.02 0.750 ± 0.025  0.35 ± 0.02E 1.5 ± 0.1 

Equator 20 ± 1 0.810 ± 0.009 0.30 ± 0.01 0.767 ± 0.021  0.34 ± 0.02 DE    1.5 ± 0.1 

Average 21 ± 1 0.830 ± 0.003 0.28 ± 0.00 0.793 ± 0.016 0.32 ± 0.01 D   1.6 ± 0.0 

PC: Number of principal components; Rc: Average correlation coefficient of calibration over four calculations; Rp: 

Average correlation coefficient of prediction over four calculations; RMSECV: Average root mean squares error of 

cross validation over four calculations; RMSEP: Average root mean squares error of prediction over four calculations. 

RPD: Ratio of standard deviation to RMSEP; RMSEPs with the same letter(s) are not significantly different at p<0.05 

using Duncan test. 

5.3.3  Spectral dimension reduction  

Despite the encouraging results obtained using all wavelengths, the speed of image 

acquisition and processing by a hyperspectral imaging system is not enough to meet the 

requirement for the sorting lines in the packinghouse. For this reason, reduction of 

spectral dimensionality was further considered in this study, which would allow 

hyperspectral imaging technique to be implemented online as a multispectral imaging 

system with a few wavelengths. Wavelengths selection was accomplished using iPLS 

with 10 intervals of nine wavelengths each. 

Figure 5.7 shows the selected wavelength intervals in reflectance and transmittance for 

prediction of SSC and FI for the three fruit orientations. Mean spectra for the three 

orientations were reduced to 90 selected wavelengths distributed in 10 groups each of 

nine wavelengths. The majority of intervals that were selected for SSC and also for FI 

prediction were in the NIR region (Figure 5.7). This finding is in agreement with 

previous studies (Lu 2004; Ruiz-Altisent et al. 2010b) that the visible spectral region is 

not useful for SSC prediction. For SSC prediction, the most repeatedly selected 
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wavelengths were from 870 nm to 980 nm. For FI prediction, wavelengths in both 

visible and NIR regions were needed.  

The majority of intervals that were selected for SSC and also for FI prediction were in 

the NIR region (Figure 5.7). This finding is in agreement with previous studies (Lu 

2004; Ruiz-Altisent et al. 2010b) that the visible spectral region is not useful for SSC 

prediction. For SSC prediction, the most repeatedly selected wavelengths were from 870 

nm to 980 nm. For FI prediction, wavelengths in both visible and NIR regions were 

needed.  

 

Prediction results for SSC and FI using the two sensing modes for the selected 

wavelengths by iPLS are summarized in Table 5.3. Figure 5.8 shows predictions of SSC 

and FI using reflectance and transmittance images for the stem end with reduced 

wavelengths for one of the four model runs.  

 

Generally, prediction results for the whole spectra and selected wavelengths are quite 

close. Only in SSC prediction using reflectance for the equator orientation, was 

statistical difference between the whole spectra and wavelength intervals observed 

(p<0.05 using Duncan test). The RMSEPs for SSC prediction using reflectance spectra 

were between 0.76-1.01% for the entire spectra, compared with 0.95-1.11% for the 

reduced data set and an average decrease of 10.3%. For FI prediction using whole 

spectra or selected wavelength intervals, no significant changes were observed for both 

sensing modes. Hence it is possible to substantially reduce the number of images needed 

for the model building. 
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Figure 5.7. Selected wavelength intervals for a) predicting soluble solids content (SSC) 

and b) firmness index (FI) using reflectance (REF) and transmittance (TRA) images for 

the three fruit orientations (i.e., stem end or STE, calyx end or CAL and equator or 

EQU).  
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Table 5.3.  Calibration and prediction results for soluble solids content (SSC) and 

firmness index (FI) for blueberries using partial least squares regression for 10 selected 

intervals each of nine wavelengths 
Orientation PC Rc RMSECV Rp RMSEP RPD % Dif 

SSC prediction, using reflectance images  

Stem end 21 ±1 0.918 ± 0.008 0.79 ± 0.03 0.882 ± 0.029 0.95 ± 0.09 A  2.1 ± 0.2 -0.82 

 

Calyx end 17 ± 1 0.862± 0.008 1.01 ± 0.03 0.832 ± 0.037 1.11 ± 0.10 B 1.8 ± 0.2 -9.50 

 

Equator 19 ± 2 0.888 ± 0.008 0.91 ± 0.03 0.840 ± 0.012 1.11 ± 0.06 B    1.8 ± 0.1 -20.46 

** 

SSC prediction, using transmission images  

Stem end 8 ± 2 0.742 ± 0.021 1.33 ± 0.04 0.721 ± 0.028 1.38 ± 0.05 C  1.4 ± 0.1 -0.89 

Calyx end 10 ± 1 0.792± 0.010 1.21 ± 0.03 0.770 ± 0.018 1.29 ± 0.02 D 1.5± 0.0 -1.57 

Equator 6 ± 1 0.726 ± 0.017 1.37 ± 0.04 0.714 ± 0.049 1.39 ± 0.10 C   1.4 ± 0.1 -0.25 

FI prediction, using reflectance images   

Stem end 16 ± 0 0.817 ± 0.011 0.30 ± 0.01 0.772 ± 0.041 0.33 ± 0.03 E  1.6 ± 0.1 -1.71 

Calyx end 15 ± 1 0.765 ± 0.010 0.33 ± 0.01 0.689 ± 0.041 0.38 ± 0.02 EF  1.4 ± 0.1 0.78 

Equator 17 ± 1 0.787 ± 0.008 0.32± 0.01 0.708 ± 0.046 0.37 ± 0.02EF   1.4 ± 0.1 3.99 

FI prediction, using transmission images  

Stem end  9 ± 3 0.648 ± 0.032 0.39 ± 0.01 0.597 ± 0.070 0.41 ± 0.02 F 1.2 ± 0.1 -0.88 

Calyx end 11 ± 1 0.683± 0.009 0.38 ± 0.00 0.641 ± 0.036 0.40 ± 0.01 EF 1.3 ± 0.0 -0.55 

Equator  7 ± 2 0.596 ± 0.064 0.41 ± 0.03 0.559 ± 0.067 0.43± 0.02 F 1.2 ± 0.1 6.85 

PC: Number of principal components; Rc: Average correlation coefficient of calibration over four 

calculations; Rp: Average correlation coefficient of prediction over four calculations; RMSECV: Average 

root mean squares error of cross validation over four calculations; RMSEP: Average root mean squares 

error of prediction over four calculations. RPD: Ratio of standard deviation to RMSEP; RMSEPs with the 

same letter(s) are not significantly different at p<0.05 using Duncan test. % Dif: Percent difference in the 

RMSEP between using all wavelengths and selected wavelengths. Positive values indicate better 

predictions using selected wavelengths, ** Denote statistic differences between whole and reduced spectra 

predictions. 
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Figure 5.8. Calibration and prediction results from using selected wavelength intervals 

for the stem end spectra for: a) soluble solids content (SSC) in reflectance and b) 

firmness index (FI) in transmittance.  

5.3. 4. Discussion 

The findings of the research have demonstrated that it is technically feasible to sort 

blueberries into two SSC or sweetness classes using reflectance mode, since the RPD 

values for the three fruit orientations were between 2.1 and 2.6. There is no need to 

orient blueberries for online sorting in reflectance mode since fruit orientation had only 

small or insignificant effect on the reflectance prediction of SSC and FI. 

While lower correlations were obtained for firmness prediction in the current study due 

in part to the relatively small range of sample firmness distributions, it is still possible to 

sort blueberries into two classes of firmness using reflectance, in view of the overall 

findings from this study and our previous one (Leiva-Valenzuela et al., 2013). Further 

improvements in image processing by integrating other image features like image 

textures and entropies etc. could lead to better prediction of FI and SSC.  
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Compared to reflectance, transmittance generally performed less satisfactorily for SSC 

and firmness prediction. Hence this sensing mode is not recommended for SSC or 

firmness sorting since it is also more difficult to implement in the commercial 

application.  

Finally, using selected wavelengths only resulted in small or no significant decreases in 

SSC and FI prediction accuracy. It is, therefore, feasible to implement hyperspectral 

imaging technique with a few optimal wavelengths for commercial online sorting of 

blueberries. 

5.5. Conclusion 

This study compared SSC and FI prediction results obtained using hyperspectral 

reflectance and transmittance modes for whole or reduced spectra. The effect of three 

fruit orientations (i.e., stem end, calyx end and equator) on the prediction model 

performance was also evaluated. Overall, reflectance mode performed significantly 

better than transmittance mode in predicting SSC and FI. Good predictions of SSC were 

obtained for the whole reflectance spectra, with the best Rp of 0.93 and an RPD of 2.6. 

Fruit orientation only had small or insignificant effect on SSC and FI prediction in 

reflectance mode with the better results for SSC and FI being obtained for the equator 

and stem end directions, respectively, and it had insignificant influence on transmittance 

measurement.  

 

Lower correlation coefficients were obtained for FI prediction using the reflectance data, 

with the best Rp of 0.78 and an RPD of 1.6, which were in part attributed to smaller 

firmness variations in the test samples. Results from the iPLS wavelengths selection 

showed that using the reduced data set, in most cases, increased the standard error by no 

more than 5% for prediction of FI and SSC. Hence it is feasible to implement 

hyperspectral imaging technique with a few selected wavelengths for online sorting of 

blueberries into two classes of SSC and possibly firmness.  
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6. GENERAL CONCLUSION AND FUTURE PROSPECTS 

6.1 Conclusion  

 Since small fruits are highly susceptible to postharvest damage during transportation or 

storage, their quality assessment is critical to ensure  optimal commercialization. Hence, 

developing non-destructive technologies is not only a challenge, but also a necessity.  

There are several techniques based on computer vision, NIR spectroscopy, mechanical, 

impact or vibration firmness detection, electric nose and nuclear resonance, which have 

been or could be implemented in in-line sorting systems in packing houses. Mechanical 

methods to assess firmness are widespread in sorting lines, however, they may induce 

slightly superficial bruises which might trigger fruit deterioration during the long 

shipping of blueberries. Still slowly and expensive to be implemented in commercial 

lines, aroma-based systems allow determining the overall condition of a whole batch of 

fruit. High cost of magnetic resonance imaging systems impedes their implementation. 

Differently, computer vision and NIR spectroscopy are fast, have an affordable cost in  

implementation and are suitable to or detect external attributes (CV) or detect both 

internal and external attributes correlating with chemical and textural information (NIR). 

However NIR measurement requires careful  positioning of the fruit in order to obtain 

reliable signals and make it representative. Hyperspectral imaging systems, on the other 

hand, are slower and expensive than computer vision and NIR spectrophotometers; 

however, they allow both external and internal characterization of fruit. Therefore, 

computer vision, NIR spectrometry and hyperspectral imaging are suitable technologies 

for detection or classification of small fruit attributes for external and internal quality. 

Further studies should, thus, actively explore their implementation in sorting lines. 

In the evaluation of visible attributes of blueberry, a representative small fruit, a 

computer vision system was used to acquire color images of different types of diseased 

or defective blueberries along the stem and calyx-end orientations. A large number of 

original features were reduced using features selection algorithms such SFS-Fisher. The 

best classifiers were linear discriminant analysis, support vector machine and 
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probabilistic neural network. Good orientation detection was obtained. Also, fruit with 

visible damage were detected, with over the overall classification accuracy of 90% for 

shriveled blueberries, fungally decayed blueberries, and mechanically damaged 

blueberries, respectively. This research shows that the proposed statistical pattern 

recognition methodology is promising for inline sorting and grading of blueberries for 

different defects and orientations.  

This research, for the first time, used hyperspectral imaging technique to assess the 

internal quality of blueberry. Reflectance images for blueberries in the stem and calyx 

end orientations were acquired. Relatively good predictions of firmness were obtained, 

suggesting the feasibility of sorting blueberries into two firmness classes. Fruit 

orientation did not have a significant effect on firmness prediction, and hence there is no 

need to orient fruit for hyperspectral imaging. Lower correlations were obtained for 

soluble solids content prediction, compared with those reported for large fruits such as 

apple and citrus. This study showed that hyperspectral imaging is promising for online 

sorting and grading of blueberries for firmness and perhaps soluble solids content as 

well.  

The third study compared soluble solids content and firmness prediction results obtained 

using hyperspectral reflectance and transmittance modes for whole or reduced spectra. 

This is important since hyperspectral imaging system acquired a large amount of data for 

each fruit. In addition, the effect of three representative fruit orientations (i.e., stem end, 

calyx end and equator) on the prediction model performance was also evaluated. 

Overall, reflectance mode performed significantly better than transmittance mode in 

predicting soluble solids content and firmness. Good predictions of soluble solids 

content were obtained for the whole reflectance spectra, Fruit orientation only had small 

or insignificant effect on soluble solids content and firmness prediction in reflectance 

mode with the better results for soluble solids content and firmness being obtained for 

the equator and stem end directions, respectively, and it had insignificant influence on 

transmittance measurement.  
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Results from the wavelengths selection showed that using the reduced data set, in most 

cases, increased the standard error by no more than 5% for prediction of firmness and 

soluble solids content. Hence, it is feasible to implement a hyperspectral imaging 

technique with a few selected wavelengths for online sorting of blueberries into two 

classes of soluble solids content and possibly firmness.  

6.2 Future prospects  

The findings of the research have demonstrated that it is technically feasible to detect 

externally diseased fruit using a visible computer vision system; also, it is feasible to use 

hyperspectral imaging to sort blueberries into two sweetness and two firmness classes in 

reflectance mode with whole or reduced wavelengths. Results also showed that there is 

no need to orient blueberries for online sorting in reflectance mode since fruit orientation 

had only small or insignificant effect on the reflectance prediction internal quality. 

Further improvements in image processing by integrating other image features like 

image textures, entropies and tri-dimensional characterization of hypercubes could lead 

to better prediction of internal quality. More research is also needed to assess other 

blueberry quality attributes or properties (e.g., antioxidant compounds, internal bruising) 

and other common defects such as insect and foreign material presence. Additionally 

efforts should be focused on the implementation of high performance sorters using 

spectral images able to segregate small fruits quickly (not only blueberries) for internal 

quality (i.e. soluble solids content and firmness) as well as external attributes.
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