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ABSTRACT

Physics-informed neural networks (PINNs) have become increasingly popular, espe-

cially for solving partial differential equations (PDEs). PINNs can incorporate physical

information about the process into the neural network architecture, reducing the solution

space and making them an alternative when limited, sparse, and irregular data is available.

The objective of this thesis is to construct and evaluate the performance of a physics-

informed neural network for measuring dust fluxes during the Last Glacial Maximum and

Holocene periods. This methodology combines data analysis with physical principles to

improve prediction accuracy. The results show that PINNs are a promising alternative to

statistical methods such as Kriging when limited information is available.

In this study, physical modeling of the dust deposition was incorporated and PINNs

accurately predicted the physical realistic flows of dust along the dominant wind direc-

tions. The findings of this study are promising, showing that PINNs can be used as an

effective alternative when limited and irregular data is available.

Keywords: Physics-informed neural networks; machine learning; predictive modeling;

numerical diffusion; deep learning method.
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RESUMEN

Las redes neuronales informadas por fı́sica (PINNs, por sus siglas en inglés) se han

vuelto cada vez más populares, especialmente para resolver ecuaciones diferenciales par-

ciales (EDPs). Las PINNs pueden incorporar información fı́sica sobre el proceso en la

arquitectura de la red neuronal, reduciendo el espacio de solución y convirtiéndolas en

una alternativa cuando hay datos limitados, dispersos e irregulares disponibles.

El objetivo de esta tesis es construir y evaluar el rendimiento de una red neuronal in-

formada por fı́sica para medir los flujos de polvo durante los periodos del Último Máximo

Glacial y Holoceno. Esta metodologı́a combina el análisis de datos con principios fı́sicos

para mejorar la precisión de la predicción. Los resultados muestran que las PINNs son una

alternativa prometedora a los métodos estadı́sticos como Kriging cuando hay información

limitada disponible.

En este estudio se incorporó la modelización fı́sica de la deposición de polvo y las

PINNs predijeron con precisión los flujos realistas de polvo a lo largo de las direcciones

de viento dominantes. Los resultados de este estudio son prometedores, mostrando que

las PINNs pueden ser utilizadas como una alternativa efectiva cuando hay datos limitados

e irregulares disponibles.

Palabras Claves: Physics-informed neural networks; machine learning; predictive

modeling; numerical diffusion; deep learning method.
xvii



1. INTRODUCTION

1.1. Dust Modeling

The deposition of dust on the Earth’s surface provides the terrestrial biosphere and sur-

face ocean with micronutrients, affecting biogeochemical cycles. Additionally, dust parti-

cles can reflect or absorb incoming solar radiation, leading to changes in surface tempera-

ture and atmospheric circulation patterns. Changes in dust fluxes may have contributed to

past climate variations, such as glacial-interglacial cycles [Lambert et al., 2015].

Previous efforts to simulate dust deposition under past climatic conditions were con-

ducted using various global climate models. The complex nature of mineral dust aerosol

emission makes it difficult to represent accurately in weather and climate models [Kok

et al., 2014]. Hence, there are significant differences in dust load and spatial distribution

among various dust simulations, even under modern conditions [Lambert et al., 2015].

The DIRTMAP database was designed to serve as a global validation dataset for use

with earth system models of the paleo-dust cycle [Kohfeld and Harrison, 2001]. The

dataset includes information on aeolian dust in ice cores, marine cores, and terrestrial sites,

including loess-palaeosol successions and lacustrine cores for the Last Glacial-Interglacial

cycle. Only a few sites around the world provide these conditions. The data includes,

in addition to detailed locational information, mineralogy, geochemistry, sedimentology,

geochronology, and derived accumulation rates [Derbyshire, 2003].

In Lambert et al. [2015], interpolation is performed with the Kriging method for The

Dust Indicators and Records of Terrestrial and Marine Palaeoenvironments (DIRTMAP)

data. These are compared with four models (CCSM, MIROC, MIROC-ESM, and MRI).

The main results show that model outputs suggest that most climate models put too much

emphasis on North African sources and underestimate sources in Asia and the Americas.

In particular, models underestimate dust deposition in “High Nutrient Low Chlorophyll”

(HNLC) regions.

1



1.2. Thesis Objective

Kriging is a geostatistical interpolation technique that assigns weights to nearby data

points based on a distance function. An advantage of Kriging is that it also provides a

variation estimate for the interpolation. A disadvantage of Kriging is that it loses accuracy

when a few data points are concentrated, leaving large areas uncovered.

To accurately estimate dust fluxes in the past due to sparse data and the uncertainty

of predictions where no data is available, we will incorporate physical information in

addition to observed data to provide valuable insights into the dust flux process. The

objective of this thesis is to improve the accuracy of estimating global dust fluxes during

the Last Glacial Maximum and Holocene periods by combining data analysis with a partial

differential equation that corresponds to the physical principles. By doing so, we aim to

obtain more accurate estimates that are consistent with the underlying physical processes.

1.3. The Proposed Hypothesis

A Physics-Informed Neural Network (PINN) is a machine learning method that incor-

porates physical information related to the data into the neural network architecture. This

technique allows the neural network to learn and generalize from limited and noisy data.

By incorporating physical information into a physics-informed neural network, we

can improve the accuracy of sparse and irregularly located climatological data on Earth,

particularly for DIRTMAP data during the Last Glacial Maximum and Holocene periods.

Combining measured data with a climate model in a single prediction that is more accurate

than each component alone can achieve this improvement. The modeling of the global dust

flow using a partial differential equation will provide the necessary physical information

to improve the accuracy of the estimations.
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1.4. Thesis Overview

This section provides a summary of the main contents of each chapter in this thesis.

First, in Chapter 2, an explanation of the theoretical basis of the Kriging method will be

provided to compare it with the PINN method, which is explained in Chapter 3.

Next, in Chapter 4, the performance of these methods will be evaluated by analyzing

the one-dimensional time-dependent diffusion equation and transport equation under dif-

ferent conditions. In addition, in Chapter 5, the study will be extended to two-dimensional

time-dependent PDE problems to understand different parameters for the appropriate con-

struction of the PINN.

Chapter 6 presents the dust fluxes dataset for the Last Glacial Maximum and Holocene

times. For each period, two datasets are included: the DIRTMAP database and the sim-

ulations from the Community Earth System Model (CESM). In Chapter 7, the PINN’s

capability to model transport phenomena will be tested on the simulated data from the

LGM.

Finally, in Chapter 8, the kriging interpolation performed in [Lambert et al., 2015]

for the DIRTMAP database will be compared with the PINN’s prediction. Here, we will

see that the major advantage of using PINN instead of the kriging method is the direct

incorporation of physical information, such as the influence of wind. Additionally, the

Earth’s surface will be approximated using spherical coordinates, which take into account

distances in latitude with periodic boundary conditions.
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2. KRIGING

This chapter briefly describes the kriging method used for dust interpolation in DIRTMAP,

as described in [Lambert et al., 2015]. The method assumes that a variable can be ex-

plained by the distance of neighboring variables. It was developed by Georges Matheron,

who named the technique after D.J. Krige, a South African mining engineer who did some

early work on the topic [Query, 2017].

There are certain statistical assumptions in the kriging method. Let Y (s) denote the

realization of a regionalized variable at location s. The assumptions are as follows:

(i) Second-order stationarity: The data is stationary of order two, meaning that local

distributions have the same constant mean and variance.

(ii) Spatial dependence: The first and second moments of the difference between

regionalized variables, i.e., Y (s + h) − Y (s), depend only on the separation

distance h and not on the location s.

The variogram γ is defined as

2γ(h) = Var[Y (s+ h)− Y (s)]. (2.1)
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Figure 2.1. Semivariogram of three model distributions: neg exponential,
gaussian and spherical. Figure taking from [Query [2017], Figure 2] .

The semivariogram is defined as one half of the variogram. In Figure 2.1, it can be

seen that as the distance between points increases, the variogram remains roughly con-

stant. This is due to the assumption that the second moment is finite. A model must be

fitted to the observed data to recreate the dependence of the variogram on distance. The

dependency of the variogram changes mostly at low separation distances. If the variance

is finite, the correlogram and the variogram are related by

γh = σ2(1− k(h)), (2.2)

where σ2 is the variance and k(h) is the correlation at separation distance h.

When the correlogram is known, we consider the model

Y (s) = m(s) + u(s), (2.3)
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where m denotes the mean, which may vary spatially and u is the variation of Y about its

mean, with E[u] = 0.

The kriging predictors are unbiased in the sense that E[P (s0)] = E[Y (s0)], where P

is the predictor for Y at the site s0. This means that the expected value of the kriging

predictor P at a specific location s0 is equal to the expected value of the true value Y

at the same location s0. This important property of kriging means that, on average, the

predictions are expected to be accurate.

There are two categories of kriging methods: linear and nonlinear kriging. Linear

kriging assumes that the spatial dependence is linear, while nonlinear kriging methods al-

low complex spatial dependence structures. Linear kriging algorithms are simple kriging,

ordinary kriging, universal kriging, Bayesian kriging, and factorial kriging. Examples of

nonlinear kriging include lognormal kriging, multi-Gaussian kriging, disjunctive kriging,

indicator kriging, probability kriging, and rank kriging [Asa et al., 2012].

There are different assumptions between the type of kriging methods, for example:

(i) Simple kriging: m is assumed to be a known constant

(ii) Ordinary kriging: m is assumed to be an unknown constant

(iii) Universal kriging: m is unknown and varies spatially

The fitted variogram is used to calculate the kriging weights, which are then used to

interpolate or predict the value of the variable at an unsampled location.
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3. PHYSICS INFORMED NEURAL NETWORKS

A Physics-informed neural network (PINN) is an algorithm based on supervised ma-

chine learning that can intrusively combine data with physical information modeled as a

partial differential equation. In our case, the input of the PINN is the spatial location on

the earth and the output is the dust fluxes. During the training process, the PINN considers

the dataset and the partial differential equation and optimizes a nonlinear function that fits

both data and model. This optimization process requires specifying a loss function to find

optimal parameters for the neural network. Since the PINN uses automatic differentiation

to calculate the derivatives of the objective function we can include any partial differential

equation and boundary conditions in the loss function. Figure 3.1 shows a general schema

of the PINN design.

Figure 3.1. A general PINN training scheme where x1 and x2 are the input
variables, σ are the parameters of the neural network and u the objective
function. Automatic differentiation calculates de derivatives of the objec-
tive function and the data and model fits are combined in a loss function L.
The minimization process through backpropagation gives updated param-
eters σ⋆.

The objective of this thesis is to explore the advantages and disadvantages of a PINN

in global dust flux modeling. This methodology is particularly interesting because it com-

bines data analysis with physical principles to improve the accuracy of neural network

predictions. The input information consists of observation data and physical information,

such as partial differential equations (PDEs) and their respective conditions. Due to the
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inclusion of physics information, fewer data points are needed for neural network training.

The trained neural network can then be applied to new input data to obtain an approxima-

tion of the output variable.

In this next Chapter, I will explain how the PINN works and its advantages. Following

this, in Chapters 4 and 5, I will explore several academic examples of equations with

different variations to understand the characteristics that might explain the performance

of the predictions using PINN. Additionally, in Chapter 7, I will apply the PINN to a

simulated dataset for different velocities in the transport equation to study its performance.

Additionally, in Chapter 8, real data on dust fluxes in the Holocene and LGM period

are utilized. In this chapter, a mathematical model is built to provide additional informa-

tion to the limited observations available and compare the results with another approach,

namely the Kriging method.

By exploring these different examples, this thesis will provide insights into the use

of PINN and its applicability to different problems, particularly in the field of physical

modeling.

3.1. Loss Function

The objective of a PINN is to approximate a function u(x, t) which fits the partial

differential equation and the observed data. For this purpose, we define a combined loss

function as:

L = w1Ldata +w2 · Lmodel, (3.1)

where Ldata and Lmodel are the loss function corresponding to the data and model, respec-

tively, and w1 and w2 are the respective weights. The data loss function is given by

w1Ldata = w1||û(x̃, t;σ)− ũ(x̃, t)||, (3.2)

where ũ denotes the observations at the points x̃j for j = 1, . . . , Ndata with Ndata the

number of training items, and û denotes the PINN’s prediction. We use the standard L2
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norm for every loss function. The model loss function Lmodel is defined as:

w2 · Lmodel = w2,1LPDE + w2,2LBC + w2,3LIC, (3.3)

and consists of three parts, one for the PDE (LPDE), one for the boundary conditions (LBC),

and another one in case of the problem the initial conditions (LIC).

For example, 

∂u
∂t

= ∂2u
∂x2 + f(x, t), a < x < b, t > 0,

u(x, 0) = g(x),

u(a, t) = h1(t),

u(b, t) = h2(t),

(3.4)

with f(x, t) as a source term, g(x) as the initial condition, and h1(t), h2(t) as the boundary

conditions. In this case, the loss functions present for equation (3.4) are defined as:
LPDE =

∥∥∥∂û(x′
j ,t

′
j)

∂t
− ∂2û(x′

j ,t
′
j)

∂x2 − f(x′
j, t

′
j)
∥∥∥ ,

LIC = ||û(x̄j, 0)− g(x̄j)||,

LBC = ||û(a, t̄j)− h1(t̄j)||+ ||û(b, t̄j)− h2(t̄j)||,

(3.5)

where x′
j, t

′
j with j = 1 . . . , NPDE are the training set of the domain. Notice that this

amount of data for the training process depends just on the location where the PDE is

evaluated.

For the boundary conditions, we use t̄j with j = 1, . . . , NBC, where NBC is the number

of boundary training points. Similarly, we use x̄j with j = 1, . . . , NIC for the initial

conditions, where NIC is the number of initial condition training points. The amount of

data available for these loss functions depends on the specific information of the problem.

It is also important to note that we have as many loss functions as conditions we want

to include, in addition to the equation to be solved. Then, it is part of the analysis to find
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the value of the importance weights of each loss function that obtain the best result for the

problem.

When the problem does not include time, there is no initial condition and when the

problem domain does not have physical boundaries, there are no boundary conditions. In

those cases, the corresponding loss term is eliminated from the model loss.

3.1.1. Data Loss

Depending on the amount of information about the problem, there are different possi-

ble scenarios for the data loss term in the PINN, such as:

(i) Measured data is available, so the data loss is the difference between the predic-

tion and the observations.

(ii) PINNs can be used with the model loss only to solve PDEs.

(iii) For testing purposes, one can use a PDE with an exact solution and use this exact

solution of the PDE as data. To test the PINNs one can generate data of the exact

solution, and to test sensitivity one can add noise to the data.

3.2. Design of Neural Network

For the design of a neural network, a standard architecture must be taken into consid-

eration, where the components may vary depending on the nature of the problem to be

solved and the available data. The main components to consider are:

• Network architecture: The type of network, the number of input and output

neurons, and the number of hidden layers and neurons per hidden layer can be

chosen based on the nature of the problem and the available data.

• Loss function: there are use various loss functions, such as Mean Squared Error,

Mean Absolute Error, and Huber Loss, to optimize the neural network.
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• Batch Size: The number of samples used in each iteration of the optimization

algorithm can be adjusted.

• Number of epochs: The number of times the entire dataset is passed through the

network during training can be specified.

• Learning Rate: The step size used in the optimization algorithm can be adjusted

to improve the convergence rate of the network.

• Optimizer: Various optimization algorithms, such as Adam, SGD, and LBFGS,

can be used to train the network.

• Activation functions: Different activation functions, such as ReLU, Sigmoid,

and Tanh, can be used in the hidden layers of the network.

PINN is defined as a combination of a data loss function and a model loss function.

The data loss function measures the error between the predicted and observed data, while

the model loss function measures the error between the PINN prediction and the phys-

ical model represented by partial differential equations, boundary conditions, and initial

conditions. Depending on the information available in the problem, PINN combines data

analysis with physical principles to improve the accuracy of neural network predictions. In

the following chapters, PINN will be explored and applied to various academic examples

to understand its performance and applicability to different problems.
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4. COMPUTATIONAL BENCHMARK

PINNs, as explained in Chapter 3, and the Kriging method, as explained in Section 2,

are techniques that are useful in situations where data is scarce, incomplete, or noisy.

To evaluate the performance of these methods, we will conduct several benchmark

experiments. For PINNs, we will solve the diffusion equation in Section 4.1 and the

transport equation in Section 4.2. For Kriging, we will perform interpolation using some

observations from the analytical solution of those equations. This enables us to evaluate

the performance of both methods under varying conditions.

For the diffusion equation, we will compare the performance of PINNs and Kriging to

the known analytical solution in different benchmarks. In Section 4.1.3, we analyze the

results obtained with different quantities of information. Also in Section 4.1.4, we also

examine the training process with noisy data. Finally, in Section 4.2.1 we compare the

computational cost of each method.

With the transport equation, we will first study the consequences of the frequency of

waves in a small area in Section 4.2, and then the computational cost associated with

this in Section 4.2.1. We will also analyze the performance when a non-uniform grid of

points is available in Section 4.2.2, as well as the effect of the number of points in the loss

function in Section 4.2.3.

The library used to solve PINNs is called DeepXDE Lu et al. [2021], and it is an open-

source Python package that contains various useful methods, such as mesh creation for the

equation’s domain, network construction, and initial and boundary condition specification.

The library used for fitting Kriging models is called SciKit GStat, and it can be installed

directly from the Python Package or GitHub.

12



4.1. Diffusion Equation

Diffusion equations are an important type of parabolic equations that result from dif-

fusion phenomena found in nature. They serve as mathematical models for physical prob-

lems in diverse fields, such as filtration, biochemistry, phase transition, and dynamics of

biological groups [Li et al., 2001].

The problem to solve is
∂u
∂t

= ∂2u
∂x2 − e−t (1− π2) sin(πx), t ∈ (0, 1), x ∈ (−1, 1),

u(0, x) = sin(πx) + 2,

u(t,±1) = 2,

(4.1)

where the exact solution is

u(t, x) = e−t sin(πx) + 2. (4.2)
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Figure 4.1. Analytical solution of the diffusion equation problem (4.1).
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4.1.1. Diffusion Equation by PINNs

The network used to solve the problem has three hidden layers, each with 32 weights.

The Glorot uniform initializer was used, along with the tanh activation function and the

L-BFGS-B optimizer. It has been observed that changing the optimizer to Adam results

in worse performance on the loss function, but there is no significant difference in the

visualization of the prediction of the solution. This suggests that depending on the number

of training points and the nature of the problem, Adam or L-BFGS-B optimizer may have

different convergence characteristics.

As mentioned in Section 3.1.1, the loss function of the network in equation (3.1) can

incorporate information from both the equation being solved and observations of the so-

lution. The first question to analyze is how sensitive the network’s performance is to the

amount of model data versus observation data used. Table 4.1 shows the performance of

networks with different numbers of training data points. The aim is to keep the total num-

ber of training points constant, which is approximately 165 points, and vary the percentage

of data used for the PDE loss function versus the observed solution data.

The results show that the network with only PDE information has similar performance

to the network that includes both PDE information and observations of the solution. How-

ever, the network with only observed information performs worse on testing metrics, but

has a shorter training time than the networks that include PDE information. This is consis-

tent with the known weakness of neural networks, which require a large amount of data to

accurately approximate a solution. However, as the theory behind PINNs suggests, adding

additional physical information can lead to better results for a network that approximates

a function and its derivatives.
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Figure 4.2. PINN’s prediction for problem in equation 4.2.

4.1.2. Diffusion Equation by Kriging

To define the experimental variogram and make predictions, a function that takes dis-

tance as input and returns a semi-variance value must be defined. There are different

methods to define this function, but it must satisfy the principle of monotonically increas-

ing values that ultimately reach an upper limit. This principle means that the correlation

between the points depends on their distance from one another. It should be noted that,

as shown in Figure 4.3, the training data does not adhere to the principle of independence

at far distances. This is because we used boundary conditions where u = 2 at x = 1 and

x = −1, resulting in equal values at distances of around 2, corresponding to interactions

between boundary points.

It is important to note that in the case of interpolation performed on an equation with

time domain dependence, Kriging considers a Euclidean distance between time and dis-

tance to fit the model. Therefore, Kriging assumes that the future depends on the past and
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vice versa, and this correlation in time means that no causality is taken into account. The

interpolation of the analytical solution is shown in Figure 4.5.
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Figure 4.3. Variogram fitted with a Gaussian model for 165 points obtained
from the analytical solution in equation 4.2.
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Figure 4.5. Kriging interpolation for problem in equation 4.2.

Both Figures, 4.4 and 4.6, indicate that the variance and relative error increase in areas

where there are no training points. However, notice that in Figure 4.4 is very small, smaller

than 0.00016, so the interpolation should be very accurate.

4.1.3. Comparison Between Methods

As explained in Chapter 2, Kriging is an interpolation method that requires observed

data to fit the model. In contrast, PINNs require information from the equation being

solved, and observed data, and the amount of data used from both the equation and the

observations can vary. In this section, we will discuss the results of both models for

Equation (4.1) and explore the differences in PINN’s predictions trained with different

quantities of data.
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Figure 4.6. Relative error of the Kriging Method, expressed as a percent-
age. The colorbar indicates the magnitude of the error.
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Figure 4.7. Relative error of PINNs expressed as a percentage. The net-
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In Figures 4.6, 4.7, 4.8, and 4.9 the relative error is shown, which is defined as:

|xtrue − xprediction|
|xtrue|

× 100. (4.3)
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Table 4.1. Comparison between PINNs and Kriging to analytic solution.
Results were obtained using 2048 test points uniformly distributed. Time
measurements for PINNs include both training and prediction processes,
while for Kriging it includes model fitting.

Method Observed

Data

PDE

data with

BC and

IC

L2-norm Max-

norm

RMSE Training

Time

Kriging 165 0 0.1474 0.0119 0.0026 0.828

PINNs 0 165 0.0187 0.0015 0.0004 15.22 s

PINNs with Ob-

served Data

78 88 0.0134 0.0011 0.0002 14.39

Deep Learning 162 0 0.0886 0.0058 0.0019 9.83 s

Table 4.1 shows the error between the prediction of the network and the interpola-

tion performed by Kriging, using the analytical solution. For this testing, a grid of 2048

uniformly distributed points was used, and in all cases, favorable results were obtained.

First, can be observed that the network’s error does not decrease in areas close to the

training points. In contrast, in the interpolation carried out by Kriging, this is observable.

This may be due, as mentioned above, to the fact that the network is not using information

from the analytical solution, but rather from the equation and its initial and boundary

conditions for training.

In the case of the interpolation performed by Kriging, the relative error in Figure 4.6

and the variance in Figure 4.4 are symmetric around the line x = 0. This is because

Kriging uses the distance of the domain to perform the interpolation and calculate the

variance, and because the analytical solution is symmetric. Nevertheless, The symmetric

difference is not seen in the network’s prediction. The main reason for this is because the

network fits a nonlinear function through a minimization process with a global loss term.
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4.1.4. Training with Noisy Data

When considering real-world problems, it is important to analyze the sensitivity of

the model to noisy observation data. In this section, we conducted an experiment where

we added normally distributed noise and gradually increased the standard deviation of the

noise. We compare two models: one trained using only noisy information of the analytical

solution, and the other trained using both analytical and PDE information for the training.

Finally, we analyze the performance of the kriging method when it is fitted with noisy

data.
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Figure 4.10. Comparison of errors between PINN predictions trained with
varying levels of noise in the analytical solution and PDE information. For
the training process we used 88 and 78 points, for the data and PDE, re-
spectively. The error of the PINN is measured using 2000 data points. The
horizontal axis represents the standard deviation of the noise added to the
analytical solution data.

Figure 4.10 shows that the error trend increases as the standard deviation of the noise

increases. The increase is not linear and can even fluctuate as the error increases. These

peaks could be due to the network not having yet converged. However, up to 1.5 stan-

dard deviations, the network’s performance remains relatively constant, which can provide

some confidence when working with normally noisy data.
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Figure 4.11. Comparison of errors between PINN predictions trained with
varying levels of noise in the analytical solution. For the training process,
we used 162 and 1 point for the data and PDE, respectively. The error of the
PINN is measured using 2000 data points. The horizontal axis represents
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Figure 4.12. Comparison of errors between Kriging method fitted with
varying levels of noise in the analytical solution. For the Kriging fit, we
used 160 randomly sampled points from the analytical solution. The er-
ror of the Kriging interpolation is measured using 2000 data points. The
horizontal axis represents the standard deviation of the noise added to the
analytical solution data.
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Figures 4.11 and 4.12 show the same experiment performed using the PINN trained

only with data information and the Kriging method, respectively. In both cases, the error

increases at a lower standard deviation range (0.5-1) compared to the network that includes

PDE information. This could be because the PDE information acts as a regularizer for

the noisy information. Additionally, both cases exhibit a similar pattern of oscillations.

Finally, it is important to note that the error of the Kriging method, despite appearing to

converge quickly and fluctuate, has a higher value compared to the error of both PINN

predictions.

4.2. Transport Equation

In this section, we present the transport equation which describes how a scalar quantity

is transported. In this case, there are two variables: a spatial variable and a temporal

variable. The equation has three parameters, namely a, b, and c, which are real numbers

(∈ R). Here, a is the amplitude of the wave, b is an offset that serves as an average state,

and c corresponds to the velocity of the transportation.



∂u
∂t

+ c∂u
∂x

= 1, x ∈ (0, 2π), t ∈ (0, 1),

u(x, 0) = a sin(x) + b,

u(0, t) = t+ a sin(−ct) + b,

u(2π, t) = t+ a sin(2π − ct) + b,

(4.4)

where the exact solution is

u(x, t) = t+ a sin(x− ct) + b. (4.5)
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Figure 4.13. Solution transport equation for a = 1, b = 1, c = 1.
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Figure 4.14. Solution transport equation for a = 1.4, b = 2.2, c = 3.8.
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Figure 4.15. Solution transport equation for a = 2, b = 4, c = 8.

The solution of the equation for some parameters can be seen in Figures 4.13, 4.14,

and 4.15. The aim of this study is to investigate the performance of the PINN and Kriging

methods for solving the transport equation with different values of the parameters (a, b, c).
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Figure 4.16. L2 error of the different models with parameters of different
values (a, b, c).
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Figure 4.17. Max error of the different models with parameters of different
values (a, b, c).
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Figure 4.18. RMSE error of the different models with parameters of dif-
ferent values (a, b, c).

Figures 4.16, 4.17, and 4.18 represent the L2, Max, and RMSE errors for different

values of (a, b, c) obtained through various methods. The errors were measured for the

PINN trained with the analytical solution information, the PINN trained with PDE and

analytical solution information, the PINN just with the PDE information, and the Kriging

method.

The results demonstrate that the network trained with PDE information and PDE/analytical

solution information performed the most accurately for all parameters. However, the Krig-

ing method showed the largest variance in performance. For the L2 and RMSE metrics,

the performance of the Kriging method tended to increase with increasing values of the

parameters (c and a). This could be due to the fact that as the parameter values increase,

the analytical solution has faster transportation and less smooth fields, which can make it

more difficult for Kriging to interpolate effectively.
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4.2.1. Computational Cost for Transport Equation

To continue studying the performance of models in different contexts, it is important

to investigate both computation time and accuracy when different amounts of data are

available. In this section, we focus on the transport formulation in equation (4.4) with

parameters a = 1, b = 1, and c = 1.
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Figure 4.19. Execution time of various models as a function of the amount
of data used for training. The time in the vertical axis is in seconds.

Figure 4.19 shows the training and prediction time when different amounts of data are

available in the training process. As seen on the horizontal axis, in each training process,

the number of points used was around the double of before and, on the vertical axis, the

time has been measured in seconds.
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Figure 4.20. L2 error of the different models with different amounts of data
in the training process.

In Figure 4.20, we can see the L2 error when a different amount of data is available in

the training process.

In the case of neural networks, training times remain relatively constant, and the per-

formance obtained is consistent even as the amount of data increases, due to the use of a

fixed stopping criterion for the loss function during convergence. In contrast, for Kriging,

as the amount of data increases, the training time increases considerably, but so does its

accuracy. This is because, as explained in Section 2, the number of training points affects

the dimensions of the matrix that must be inverted in the Kriging method.

4.2.2. Non-Uniform Grid in the Training

So far, all experiments have utilized observations uniformly distributed throughout the

problem domain. However, it is crucial to examine how model performance varies when

this feature is absent, as it is unrealistic. Therefore, to investigate this phenomenon, we
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will consider the following transport equation with periodic boundary conditions,
∂u
∂t

+ 5∂u
∂x

= 0, x ∈ (0, 2π), t ∈ (0, 1),

u(x, 0) = sin(x) + 2,

u(0, t) = u(2π, t).

(4.6)

It is important to notice that in this case, in the equation (4.6) the information given

to the network is a periodic boundary condition. The exact solution to this problem corre-

sponds to

u(x, t) = sin(x− 5t) + 2. (4.7)
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Figure 4.21. Solution of the transport problem (4.6).
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Figure 4.22. Relative error between PINN trained with PDE information
and the analytical solution.
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Figure 4.24. Relative error between PINN trained with analytical solution
information and the analytical solution as a reference.
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Figure 4.25. Relative error Kriging interpolation and the analytical solu-
tion as a reference.
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Figure 4.26. Variance of the kriging interpolation.
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Figure 4.27. Kriging interpolation.

The solution of the transport equation is presented in Figure 4.21. The relative error

between the analytical solution and the predictions of the network trained with different

types of information is shown in three figures. Figure 4.22 shows the relative error be-

tween the analytical solution and the predictions of the network trained with the PDE

information. Figure 4.23 shows the relative error between the analytical solution and the

predictions of the network trained with both the PDE and data information. Finally, Fig-

ure 4.24 shows the relative error between the analytical solution and the predictions of the

network trained only with data information.

In terms of the Kriging method, the relative error of the Kriging interpolation is shown

in Figure 4.25, and the plot of the solution is shown in Figure 4.27. Finally, in Figure 4.26,

the variance of the Kriging interpolation is shown. As expected, the interpolation of the

Kriging method has a high value of variance in some positions where no close points are

being interpolated.
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Table 4.2. Comparison between the accuracy of PINNs and Kriging in ap-
proximating an analytic solution. The results were obtained using 6000 test
points distributed uniformly throughout the problem domain. The first and
second columns specify the number of points used for training.

Method Observed

Data

PDE

with BC

and IC

L2-norm Max-

norm

RMSE Training

Time

Kriging 165 0 50.6208 1.9294 0.2959 1.064 s

PINNs 0 165 0.1529 0.0042 0.0010 16.83 s

PINNs with ob-

served data

78 88 0.4256 0.0147 0.0029 8.3 s

Deep Learning 162 0 48.7239 3.1243 0.3425 3.735 s

Table 4.2 displays the performance of different methods. The L2 norm indicates that

the Kriging method has the largest error. The performance of the network trained with

PDE and PDE-data information is similar, except for the training time. It is worth not-

ing that the network with data information and the Kriging method were both used as

extrapolation methods.

In conclusion, the results of the study suggest that the network trained with both PDE

and data information provides the most accurate predictions of the transport equation.

The L2 norm values show that this network outperforms the other methods in approxi-

mating the analytic solution. However, Kriging interpolation can still provide reasonable

approximations of the solution in regions where there are no close points for interpolation.

Overall, the study highlights the potential of using PINN to improve the accuracy of nu-

merical solutions of partial differential equations, especially when there are regions with

few data points.
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4.2.3. Number of Points in Loss Function Analysis

As explained in Chapter 3, PINNs are composed of different loss functions depending

on the available information. To understand how the network works, this section trained

the network with varying numbers of points in the PDE, boundary, and initial conditions.

Table 4.3. Number of points in the training process.

Initial Conditions

Points

Boundary Conditions

Points

PDE Points

1° 40 40 1-30

2° 0-12 40 80

3° 40 0-12 80
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Figure 4.28. L2 error of the PINNs trained with different amount of points
in the PDE loss function.
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Figure 4.29. L2 error of the PINNs trained with different amounts of points
in the initial condition loss function.
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Figure 4.30. L2 error of the PINNs trained with different amounts of points
in the boundary condition loss function.

Table 4.3 summarizes the number of points used to train the network in Figures 4.28,

4.29, and 4.30, which correspond to changes in the number of training points for the PDE,

initial conditions, and boundary conditions, respectively. The error convergence in Figure

4.28 appears to be slower than in Figures 4.29 and 4.30. For this particular problem, which
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corresponds to the system (4.6), it seems that more than 30 points are required to achieve

convergence of the error. For the boundary and initial conditions, more than 10 points are

needed. Hence, the PINN works well even in cases where few data points are available.

The generation of training points for the PDE is unlimited because they are generated

from the equation that needs to be solved. In the case of the initial conditions, the points

can be considered as observed data because they correspond to the points of the solution

at t = 0.
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Figure 4.31. Prediction of the network trained with zero points in the initial
condition.
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Figure 4.32. Prediction of the network trained with 12 points in the initial
condition.

Figures 4.31 and 4.32 show that the network has the structure of the solution to some

extent due to the PDE information. When some observation points are provided, it starts

to learn the range of the function. Therefore, it is important to have sufficient points in the

initial conditions, not only in the interior domain.

Sections 4.1 and 4.2 have investigated the performance of PINN and Kriging in various

scenarios, such as non-uniform data information, computational cost as the amount of data

increases, training with noisy data observations, and more. It is essential to note that the

results presented here may vary depending on the hyperparameters of the network used

and the Kriging model fitted. Therefore, we need to be careful in making conclusions

based on one type of PDE only.
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5. CONVECTION AND DIFFUSION EQUATIONS

In Chapter 4, the performance of PINN and Kriging in solving the transport and diffu-

sion equations in 1D was studied through several benchmarks. In this chapter, we extend

our study to 2D PDE problems, to understand the importance and behavior through dif-

ferent parameters of the PINN. Section 5.1 considers the Diffusion equation in 2D to in-

vestigate the importance of smoothness in the initial condition, while Section 5.2 focuses

on the transport equation in 2D to compare the impact of periodic and Dirichlet boundary

conditions (Section 5.2.1). Furthermore, Section 5.2.2 examines the effect of normalizing

observed data during the training process.

5.1. Diffusion Equation in 2D: The Relevance of the Smoothness of the Initial Con-

dition

The diffusion equation is a fundamental partial differential equation that describes how

a quantity such as heat, mass, or concentration diffuses through a medium over time. In

this chapter, we will study the performance of PINNs in solving the diffusion equation in

2D, focusing on the impact of the smoothness of the initial condition on the accuracy of

the solutions.

To have an idea about the influence of the smoothness of the initial condition on the

performance of the network, the problem to be studied is

∂u
∂t

= D(∂
2u

∂x2 +
∂2u
∂y2

), x ∈ (−2, 2), y ∈ (−2, 2), t ≥ 0,

u(2, y, t) = e
−(4+y2)

4Dt
1√

4πDt
,

u(−2, y, t) = e
−(4+y2)

4Dt
1√

4πDt
,

u(x, 2, t) = e
−(x2+4)

4Dt
1√

4πDt
,

u(x,−2, t) = e
−(x2+4)

4Dt
1√

4πDt
,

u(x, y, 0) = δ(x, y),

(5.1)
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where the initial condition corresponds to the Dirac delta δ(.) and D corresponds to the

diffusion.

The exact solution is:

u(x, y, t) = e
−(x2+y2)

4Dt
1√
4πDt

, (5.2)

to avoid numerical issues when calculating the Dirac delta function on a mesh, we use the

analytical solution evaluated at t0 > 0 as the initial condition for the simulations. This

approach ensures that the initial condition is smooth and avoids any singularities that may

arise from the discretization of the Dirac delta function on the mesh, such that

u(x, y, t0) = e
−(x2+y2)

4Dt0
1√

4πDt0
. t0 > 0 (5.3)

44



x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

z

0.0

0.5

1.0

1.5

2.0

2.5

Solution in t=0.01

x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

z

0.0

0.5

1.0

1.5

2.0

2.5

Solution in t=0.02

x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

z

0.0

0.5

1.0

1.5

2.0

2.5

Solution in t=0.03

x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

z

0.0

0.5

1.0

1.5

2.0

2.5

Solution in t=0.04

x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

z

0.0

0.5

1.0

1.5

2.0

2.5

Solution in t=0.05

x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

z

0.0

0.5

1.0

1.5

2.0

2.5

Solution in t=0.06

x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

z

0.0

0.5

1.0

1.5

2.0

2.5

Solution in t=0.07

x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

z

0.0

0.5

1.0

1.5

2.0

2.5

Solution in t=0.08

x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

z

0.0

0.5

1.0

1.5

2.0

2.5

Solution in t=0.09

x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

z

0.0

0.5

1.0

1.5

2.0

2.5

Solution in t=0.1

Figure 5.1. Different analytical solutions at different time levels, which
will be used as initial conditions for the PINN.
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To train each network, a time span from the t0 to t0 + 2 is used. The performance

of the network is evaluated by measuring the L2 relative difference at three different time

points: t0, t0 + 1, and t0 + 2.
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Figure 5.2. The L2 relative difference of the PINN trained with the initial
conditions shown in Figures 5.1 and is represented in the horizontal-axis.
The performance of the network is evaluated by measuring the L2 relative
difference at three different time points: t0, t0 + 1, and t0 + 2, which are
represented by the blue circle, green square, and red triangle, respectively.
L2 relative difference is defined as the L2 norm of the difference between
the prediction and the analytical solution, divided in the L2 norm of the
analytical solution.

In Figure 5.2, the PINN approximates the function for the entire time interval, includ-

ing t0, and it measures the L2 relative difference at three different time points: t0, t0 + 1,

and t0+2. We observe that the PINN trained with the initial condition at t = 0.01 exhibits

the highest L2 relative difference at the initial time. This indicates that the smoothness of

the initial condition has a significant impact on the training process.

Moreover, it is worth noting that the L2 error at t0 + 2 remains relatively constant

across the different initial conditions. This may be because by time t0 + 2, the diffusion
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process has resulted in a nearly constant (i.e., averaged) solution, causing the solution to

approach zero.

5.2. Transport Equation Time-Dependent 2D

The transport equation time-dependent 2D describes the movement of a substance or

quantity through a medium. This equation is commonly used in various fields of science

and engineering to model physical processes such as heat flow, pollutant dispersion, and

wave propagation.

In this section, we will use the transport equation in 2D to study two subjects. In

Section 5.2.1, we will examine the relevance of using periodic boundary conditions or the

exact solution in the boundary conditions. Additionally, in Section 5.2.2, we will explore

the importance of normalizing the domain and the solution space.

5.2.1. Benchmarking Periodic Boundary Conditions

The objective of this section is to compare the performance of the PINN when using

periodic and exact solutions in boundary conditions at different times.

The problem to solve with the periodic boundary conditions is:


∂u
∂t

+ k ∂u
∂x

= 0, x ∈ (−2, 4), y ∈ (−2, 4), t ≥ 0

u(−2, y, t) = u(4, y, t),

u(x, y, 0) = e−(x−1)2−(y−1)2 ,

(5.4)

where k corresponds to the velocity in the transport and in this case is 2. The exact solution

is:
u(x, y, t) = u(mod(x− kt− 1, 6), y, 0),

= u0(mod(x− kt− 1, 6), y),

= e−(mod(x−kt−1,6))2−(y−1)2 .

(5.5)
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Figure 5.3. Initial condition of the equation (5.4) which corresponds to a
bivariate normal distribution.

It is worth to notice that the PDE studied requires one boundary condition in the x

direction and none in the y direction, since there is a first derivative in x and no derivative

in y. However, because we know the analytical solution, we can include observations on

the boundary of the domain in the PINN implementation. Although no boundary condi-

tions in y are strictly necessary, we specify the analytical solution at y = −2 and y = 4

in the PINN to prevent any potential issues with the neural network “leaking” at the y

boundaries. These additional constraints act as boundary conditions in the PINN and help

ensure accurate predictions near the y boundaries.

We compare the results obtained from the PINN trained with periodic boundary condi-

tions to the results obtained from the PINN trained with the exact solution at the borders,u(−2, y, t) = e−(mod(−2−kt−1,6))2−(y−1)2 ,

u(4, y, t) = e−(mod(4−kt−1,6))2−(y−1)2 .
(5.6)
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Figure 5.4. Representation of the exact solution in equation (5.5) at times
t = 0, t = 1 and t = 3.

The exact solution at t = 0, t = 1 and t = 3 are shown in Figure 5.4 it worth

mentioning that the range of the domain in the transport axis is 6, then since k = 2, the

initial condition is equivalent to the solution at t = 3.
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Figure 5.5. PINN prediction of the problem. On the left, PINN trained
with the analytical solution at the boundaries, on the right PINN trained
with periodic boundary conditions.

Figure 5.5 on the left shows the prediction of the network trained with the analytical

solution at the border, while the figure on the right displays the PINN trained with periodic

boundary conditions. It can be observed that in both cases, the solutions are visually

similar for the predictions at t = 0 and t = 1. However, at t = 3, some differences can be

appreciated between the two predictions.
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Figure 5.6. This figure shows the L2 relative difference norm between the
prediction of the PINN and the analytical solution for problem (5.5). The
horizontal axis represents the time when the error is measured, while the
vertical axis shows the L2 error. The blue squares represent the error of the
PINN trained with periodic boundary conditions, while the red line shows
the error of the PINN trained with the analytical solution.

Figure 5.6 compares the L2 relative error between the PINN’s predictions and the ex-

act solution for different times using two different boundary conditions. Both boundary

conditions yield similar performance, but the error obtained with periodic boundary con-

ditions is more stable over time. In this study, the PINN has been shown to be particularly

accurate for the transport equation with periodic boundary conditions and outperforms

alternative implementations in this benchmark, especially when information about the an-

alytical solution is not available. This situation can arise in both academic and real-world

problems.

5.2.2. Analysis of the Normalized Problem

To gain insight into whether the range of the domain and the value of the function affect

the network’s learning performance, a comparison is presented between two problems with

different domain ranges and function values.
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The first problem defined is:
∂u
∂t

+ k ∂u
∂x

= 0, x ∈ (−180, 180), y ∈ (−90, 90), t ≥ 0

u(−180, y, t) = u(180, y, t),

u(x, y, 0) = 90e
−(x)2−(y)2

5000 ,

(5.7)

where k = 2 and the exact solution is:

u(x, y, t) = u(mod(x− kt, 360), y, 0),

= u0(mod(x− kt, 360), y),

= 90e
−mod(x−kt)2−(y)2

5000 .

(5.8)

On the other hand, the normalized problem is:
∂u
∂t

+ k ∂u
∂x

= 0, x ∈ (−2, 2), y ∈ (−1, 1), t ≥ 0

u(−2, y, t) = u(2, y, t),

u(x, y, 0) = e
−(x)2−(y)2

0.5 ,

(5.9)

where k = 2 and the exact solution is:

u(x, y, t) = u(mod(x− kt, 4), y, 0),

= u0(mod(x− kt, 4), y),

= e
−mod(x−kt)2−(y)2

0.5 .

(5.10)

To ensure a fair comparison, we trained each neural network using the same hyperparam-

eters. Specifically, we used 32 neurons, 3 hidden layers, ReLU as the activation function,

Glorot uniform initializer, Adam optimizer, and a learning rate of 0.01. Additionally, we

included boundary conditions in the y axis as additional constraints during the training

process for both cases.
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Figure 5.7. The initial conditions for the two problems are shown in the
figure. On the left, the initial condition for problem (5.7) is displayed,
while on the right, the initial condition for the problem defined in equation
5.9 is shown.
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Figure 5.8. The comparison between the analytical solution and PINN pre-
diction for problem (5.7) is presented in the figure, at times t = 0, 90, 180.
The analytical solution is displayed on the left, while the PINN’s prediction
is shown on the right.
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Figure 5.9. The comparison between the analytical solution and PINN pre-
diction for problem (5.9) is presented in the figure, at times t = 0, 1, 2. The
analytical solution is displayed on the left, while the PINN’s prediction is
shown on the right.
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Figure 5.8 shows the prediction of the network trained to solve the problem (5.7) and

Figure 5.9 corresponds to the network trained to solve the problem (5.9). It is easy to

observe that the predictions given by the PINN trained in the normalized domain are more

accurate.
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Figure 5.10. This figure shows the L2 relative difference norm between the
prediction of the PINN and the analytical solution for problem (5.7) and
(5.9). The horizontal axis represents the time when the error is measured,
while the vertical axis shows the L2 error. The red lines show the error of
the PINN trained with the original domain, while the blue squares represent
the error of the PINN trained in the normalized domain.

Figure 5.10 clearly shows that the normalized domain performs much better than the

PINN trained in the original domain in predicting the transport process over different

periods. This can be attributed to problems such as vanishing gradients, where the gradient

values become very small when the domain range is too large, making it difficult for the

weights to update correctly. As a result, the PINN trained in the normalized domain is

more accurate in predicting the transport process.

56



6. DUST FLUXES DATASET

Last Glacial Maximum (LGM) refers to the period during the last glacial cycle when

ice masses reached their last maximum global extent, occurring approximately 26,000 to

19,000 years ago [Hughes et al., 2013]. The Holocene is the current interglacial period that

began approximately 11,700 years ago and has sustained modern human society’s growth

and development [Wanner et al., 2011].

Dust is important because it influences the climate system through its impact on ra-

diative forcing, chemical reactions with other atmospheric constituents, and acting as a

source of nutrients to biological systems. While the role of dust in the climate system

is not well understood in quantitative terms, changes in atmospheric dust loading have

the potential to have a significant impact on future climate changes. Therefore, the role

of dust in climate change has become a major focus of earth system modeling research.

Dust records can be obtained from ice cores, marine sediments, and terrestrial deposits,

which document changes in clay mineralogy, isotopes, grain size, and concentration of

terrigenous materials [Kohfeld and Harrison, 2001].

The simulations from Community Earth System Model (CESM) include the periods

of LGM and Holocene. Dust emissions were modeled using a representation of the major

components of the dust cycle [Albani et al., 2016]. These types of complex systems can

be performed in clusters or supercomputers.

From this part of the study, we used two datasets for dust records in Holocene and Last

Glacial Maximum (LGM) times. The observed data are the measurements and identified

by [Lambert et al., 2015] which include the DIRTMAP database, and simulated data by

[Albani et al., 2016]. The observed data consists of 397 and 317 measurements for the

Holocene and LGM, respectively. For the simulated data we used 55296 for both Holocene

and LGM.
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Dust Fluxes During Holocene

(a) (b)

(c) (d)

(e) (f)

Figure 6.1. Presentation of the dataset and the preprocessing for Holocene
time. (a) Dust fluxes measurements. (b) Simulated dust fluxes. (c) Dust
fluxes measurements with logarithmic transformation. (d) Simulated dust
fluxes with logarithmic transformation. (e) Dust fluxes measurements sam-
ples with logarithmic transformation and standard normalization. (f) Sim-
ulated dust fluxes with logarithmic transformation and standard normaliza-
tion.

The preprocessing of the dataset includes logarithmic transformation and standard nor-

malization. Figure 6.1 shows the observed (left) and simulated data (right) in the Holocene
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Histograms of Dust Fluxes During Holocene

(a) (b)

(c) (d)

(e) (f)

Figure 6.2. Distribution of the data analysis for Holocene time. (a) His-
togram of dust fluxes measurements. (b) Histogram of simulated dust
fluxes. (c) Histogram of dust fluxes measurements with logarithmic trans-
formation. (d) Histogram of simulated dust fluxes with logarithmic trans-
formation. (e) Histogram of dust fluxes measurements with logarithmic
transformation and standard normalization. (f) Histogram of simulated dust
fluxes with logarithmic transformation and standard normalization.
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Dust Fluxes During Last Glacial Maximum

(a) (b)

(c) (d)

(e) (f)

Figure 6.3. Presentation of the dataset and the preprocessing for LGM
time. (a) Dust fluxes measurements. (b) Simulated dust fluxes. (c) Dust
fluxes measurements with logarithmic transformation. (d) Simulated dust
fluxes with logarithmic transformation. (e) Dust fluxes measurements with
logarithmic transformation and standard normalization. (f) Dust fluxes
concentrations with logarithmic transformation and standard normaliza-
tion.

period, and Figure 6.2 presents the distribution of the respective data. A lognormal distri-

bution can be observed in Figures 6.2(a) and 6.2(b), with a standard deviation of 36 and 24
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Histograms of Dust Fluxes During Last Glacial Maximum

(a) (b)

(c) (d)

(e) (f)

Figure 6.4. Distribution of the data analysis for LGM time. (a) Histogram
of dust fluxes measurements. (b) Histogram of simulated dust fluxes. (c)
Histogram of dust fluxes measurements with logarithmic transformation.
(d) Histogram of simulated dust fluxes with logarithmic transformation. (e)
Histogram of dust fluxes measurements with logarithmic transformation
and standard normalization. (f) Histogram of simulated dust fluxes with
logarithmic transformation and standard normalization.
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for observed and simulated data, respectively. After applying the logarithmic transforma-

tion, a normal distribution is observed in Figures 6.2 (c) and (d). Finally, a standardized

normal distribution is shown in Figures 6.2 (e) and (f). The same preprocessing steps are

applied for the LGM data, which are presented in Figures 6.3 and 6.4.

Additionally, another essential information added in the models is the dominant wind

flows which are used for the construction of the models in Chapters 7 and 8.

90 75 60 45 30 15 0 15 30 45 60 75 90
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Figure 6.5. Wind values show the mean wind from east-west directions
depending on the latitude [Gelaro et al., 2017]. This indicates that the
prevailing wind direction tends to be easterly, with the highest wind speed
observed at latitude -50, and the strongest westerly wind speed recorded at
latitude 0.
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7. TRANSPORT IN SIMULATED DATA

To better understand the operation of PINNs, it is important to study their performance

under different parameters. In this chapter, we focus on the velocity of the transport and

its influence on predictions. To do this, we examine an initial scenario transported at

three different velocities. In Section 7.1, we explore the case of a constant velocity in one

direction. In Section 7.2, we consider two directions separated by the latitude 0◦, but with

the same velocity. Finally, in Section 7.3, we examine the case where the velocity is a

function of latitude.

Figure 7.1. Initial conditions. These are 5529 points which are the 10%
taken randomly from the Simulated data in LGM from Figure 6.3 (d). The
Dust fluxes are in log scale.
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The problem to be solved can be formulated as follows:

∂u
∂t

+ k ∂u
∂x

= 0, x ∈ (−2, 2), y ∈ (−1, 1), t ≥ 0

u(−2, y, t) = u(2, y, t),

u(x,−1, t) = usouth,

u(x, 1, t) = unorth,

u(x, y, 0) = Figure 7.1,

(7.1)

where parameter k is the velocity, the values unorth pole and usouth pole correspond to the mean

value of the initial conditions at the poles which is at latitude 90◦ and −90◦. The domain

was normalized and divided into 90◦ resulting in a longitude range from −2 to 2 and a

latitude range from −1 to 1, to improve the stability of the training process.

The neural network has 32 neurons and 5 layers, with a ReLU activation function

and a learning rate of 0.001. For testing, the 90% of the points excluded from the initial

conditions were used, which corresponds to an amount of 49,767 points.
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(a) (b)

(c) (d)

Figure 7.2. (a) Data at testing points (b) Transport in one direction at time
t = 0 (c) Transport as a function of latitude at time t = 0, (d) Transport as
a function of wind at time t = 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.3. (a) Transport in one direction, t = 1. (b) Transport in one
direction, t = 2. (c) Transport as a function of latitude, t = 1. (d) Transport
as a function of latitude, t = 2. (e) Transport as a function of wind, t = 1.
(f) Transport as a function of wind, t = 2.
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Table 7.1. Statistics of PINN predictions for the problem (7.1) under dif-
ferent transport conditions. The first column indicates the elapsed time of
the experiment. The statistics include the mean, sum, minimum, and max-
imum values of the prediction.

Mean Sum Minimum Maximum

Test data 0.08 4089.30 -1.93 3.83

Transport in One Direction

PINN t = 0 0.06 2754.75 -1.79 2.46

PINN t = 1 0.05 2483.86 -1.75 2.17

PINN t = 2 0.06 3230.83 -1.78 2.18

Transport as a Function of Latitude

PINN t = 0 0.10 4852.74 -1.76 2.12

PINN t = 0.5 0.09 4468.54 -1.74 2.07

PINN t = 1 0.08 3969.39 -1.74 1.98

PINN t = 2 0.07 3655.00 -1.75 1.92

Transport as a Function of Wind

PINN t = 0 0.08 3783.57 -1.75 2.42

PINN t = 0.5 0.08 3835.97 -1.75 2.40

PINN t = 1 0.08 3914.09 -1.74 2.34

PINN t = 2 0.08 3855.02 -1.80 2.20
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Table 7.2. The table shows the L2 difference norm and the L2 relative
difference norm between the PINN’s predictions under different transport
conditions and the testing points or the prediction at time 2.

Comparison L2 Difference Norm L2 Relative Difference

Norm

Transport in One Direction

PINN t = 0 and testing data 39.14 0.18

PINN t = 2 and testing data 70.79 0.34

PINN t = 0 and PINN t = 2 55.33 0.26

Transport as a Function of Latitude

PINN t = 0 and testing data 61.17 0.29

PINN t = 2 and testing data 90.39 0.43

PINN t = 0 and PINN t = 2 45.51 0.21

Transport as a Function of Wind

PINN t = 0 and testing data 59.45 0.28

7.1. Transport In One Direction

For the transport in one direction with velocity k = 2 in equation (7.1), this means that

in one unit of time, the transport is two units eastward. At t = 2, the deposition will be

transported by 4 units, which correspond to a full 360º rotation of the earth, and this aligns

with the initial condition.

As mentioned before, Figure 7.2 (a) represents 90% of the entire dataset, consisting

of the testing points. Figures 7.3 a) and 7.3 b) show the network’s predictions at times

t = 1 and t = 2, respectively. It can be observed that the range of the testing values

is approximately from -2 to 3.5. On the other hand, the range of the predicted values is

around -2 to 2.5. This could be due to the fact that the training data has a maximum of 2.5

and because the PINN regularizes outliers by searching for a smooth solution of the PDE.
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In Table 7.1, the mean, sum, minimum, and maximum values are calculated for the

testing location points and the PINN’s predictions at t = 0, 1, and 2. It can be observed

that the mean and sum of the predicted values are generally lower than those of the testing

points. However, the minimum and maximum values of the network’s predictions are

similar to each other and to those of the testing points.

Table 7.2 displays the L2 difference norm and L2 relative difference norm, which

measure the differences between the network’s predictions and the testing points. The

metrics are calculated for three cases: the prediction at t = 0 versus the testing points, the

prediction at t = 2 versus the testing points, and the prediction at t = 0 versus t = 2.

The L2 difference norm and L2 relative difference norm between PINN prediction and

testing points are higher in the PINN’s prediction at t = 2 than at t = 0. This could be due

to numerical errors, which are also observed comparing the similarity between the testing

points in Figure 7.2 a) with the predictions at t = 0 in Figures 7.2 b), c) and d) and the

predictions at t = 2 in Figures 7.3 b) d) f). Furthermore, this performance difference may

be because more information is available to the neural network at t = 0 due to the initial

conditions given. Finally, it is worth noting that the difference between the network’s

prediction at t = 0 and t = 2 is 55.33 which is more accurate compared to the network’s

prediction at t = 2 and the testing points which is 70.79.

7.2. Transport as a Function of Latitude

The second velocity studied is the transport as a function of latitude. This corresponds

to solving the problem (7.1) with the transport parameter given by the following equation:

k =

−2 if y ≥ 0

2 if y < 0
(7.2)

which means transport to the west in the northern hemisphere and to the east in the south-

ern hemisphere. Let’s focus on the sources of Argentina and Asia, due to the velocity
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vector as a function of latitude, we expect that after one unit of time, Argentina will have

been transported towards the east by 180◦, while Asia will have been transported towards

the west by the same amount, as shown in Figure 7.3 c). Finally, at time t = 2, all concen-

trations should have traveled 360◦, as can be observed in Figure 7.3 d).

Also, in Table 7.1 it can be noted that the difference between the prediction of the

network at times t = 0 and t = 2 is 45.51 in this case. In the case of the network’s

prediction with only one velocity direction, it is 55.33. Therefore, there is no negative

influence on network training in this case.

7.3. Transport as a Function of Wind

The final variation of the transport studied involves incorporating the velocity as the

wind function shown in Figure 6.5. This function has been normalized by its maximum

value, which occurs at a latitude of approximately −45◦ and corresponds to a maximum

velocity of 1.

Let’s take a look at the source of Argentina near the latitude of approximately −50◦

in Figure 7.2 a). At t = 1, this source should be transported 90◦ to the east, which can

be seen in Figure 7.3 e). Additionally, Figure 7.3 f) shows the transport of the initial

conditions at t = 2. It is important to note that in the cases of transport studied in Sections

7.1 and 7.2, the network’s prediction at t = 2 should replicate the initial condition due

to the constant transport of the concentration in different points. However, in this case,

the velocity changes with latitude, so at t = 2, the dust concentration can be in different

positions around the world.

Through the three different velocity scenarios explored in this chapter, PINN has

shown that is capable of providing accurate predictions over time, even when faced with

complex changes in wind speed and direction across latitudes. This makes PINN a promis-

ing tool for complex simulations that would otherwise be time-consuming.
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8. PHYSICS-INFORMED NEURAL NETWORK APPLIED TO GLOBAL DUST

FLOW
In this chapter, the mathematical modeling of global dust fluxes is explained, and this

information will be incorporated into the construction of the PINN. The PINN will be used

for predicting dust fluxes during the Holocene and LGM using observed data. The results

of the PINN prediction will be compared with Kriging interpolation. Additionally, the

validation of the PINN construction will be performed using simulated data for the same

periods.

8.1. PINN Design

8.1.1. Mathematical Modeling of Global Dust Fluxes

Given our focus on modeling dust during the Last Glacial Maximum and Holocene

periods, it is important to construct an appropriate model that can provide high-quality

information to the network and align with available data. The primary physical processes

governing dust fluxes are advection along the dominant wind direction and diffusion to-

wards surrounding regions. In our approach, we employ the advection-diffusion equation

as the core model:
∂U

∂t
+∇ · (vU)−∇ · (D∇U) = 0, (8.1)

where U(x, t) denotes the dust fluxes, v is the wind field, and D is the diffusion coefficient

[Fletcher, 2020]. Similar to the observed data we are considering the average dust fluxes

over climate periods. Hence, we use the steady-state advection-diffusion equation

∇ · (vu)−∇ · (D∇u) = 0 (8.2)

where u(x) denotes the time-averaged dust fluxes.

Let us write the advection-diffusion equation in spherical coordinates to model the

earth’s surface. For this purpose, let us denote the radius by r, the longitude by λ ∈
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[−π, π), and the latitude by θ ∈ [−π
2
,−π

2
]. The gradient and Laplacian in spherical coor-

dinates are given by

∇u =
î

r cos(θ)

∂u

∂λ
+

ĵ

r

∂u

∂θ
+ k̂

∂u

∂r
, (8.3)

∇2u =
1

r2 cos2(θ)

∂2u

∂λ2
+

1

r2
∂2u

∂θ2
+

∂2u

∂2r
− tan(θ)

r2
∂u

∂θ
+

2

r

∂u

∂r
, (8.4)

where (̂i, ĵ, k̂) are the unit vectors of the Euclidean system.

The dominant wind flows along the east-west directions depending on the latitude

[Gelaro et al., 2017]. Figure 6.5 shows the average wind in the Holocene and LGM. Using

the wind direction v =

v1
0

 we can write the advection-diffusion equation in spherical

coordinates as

(∇u) · v + (∇ · v)u−D∇ · (∇u) = 0, 1
cos(θ)

∂u
∂λ

∂u
∂θ

 ·

v1
0

+

∂λ
∂θ

 ·

v1
0

u−D

(
1

cos2(θ)

∂2u

∂λ2
+

∂2u

∂θ2
− tan(θ)

∂u

∂θ

)
= 0,

v1
cos(θ)

∂u

∂λ
−D

(
1

cos2(θ)

∂2u

∂λ2
+

∂2u

∂θ2
− tan(θ)

∂u

∂θ

)
= 0.

(8.5)

Here we took r constant because we consider Earth’s surface as a sphere.

In the direction of the longitude we have the periodic boundary conditionsu(−π, θ) = u(π, θ),

∂u(−π,θ)
∂λ

= ∂u(π,θ)
∂λ

,
(8.6)

for the latitude, we used fixed values in the poles asu(λ, −π
2
) = usouth,

u(λ, π
2
) = unorth,

(8.7)

where usouth and unorth are prescribed values at the south and north poles, respectively.
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8.1.2. Loss Function Design

The PDE loss function quantifies the fit of the PINN’s prediction regarding our model

PDE (8.5) as

LPDE =

∣∣∣∣∣∣∣∣ v1
cos(θ)

∂û(x)

∂λ
−D

(
1

cos2(θ)

∂2û(x)

∂λ2
+

∂2û(x)

∂θ2
− tan(θ)

∂û(x)

∂θ

)∣∣∣∣∣∣∣∣ (8.8)

where xj for j = 1 . . . , NPDE are the collocation points where the PDE will be evaluated

by the PINN. Finally, the loss function regarding the boundary conditions (8.6) and (8.7)

are given by

LBC = w2,2,1

∣∣∣∣û(−π, θ)− û(π, θ)
∣∣∣∣+ w2,2,2

∣∣∣∣∣∣∣∣ ∂∂λû(−π, θ)− ∂

∂λ
û(π, θ)

∣∣∣∣∣∣∣∣+
w2,2,3

∣∣∣∣∣∣û(λ,−π

2
+ ϵ

)
− usouth

∣∣∣∣∣∣+ w2,2,4

∣∣∣∣∣∣û(λ, π
2
− ϵ

)
− unorth

∣∣∣∣∣∣ (8.9)

θj and λj for j = 1 . . . , NBC are the collocation points for the boundary conditions. Here

we include the offset ϵ to avoid numerical issues due to singularities in the spherical co-

ordinate system. According to the application, the relative emphasis between the data and

the model can be adjusted by a weight w1 and w2. Also, the importance of the conditions

of the model loss function can be adjusted by choosing appropriate values for w2.

8.1.3. Neural Network Design

To enhance the stability of the training algorithm, we normalize the computational

domain to [−2, 2] for the longitude and [−1, 1] for the latitude. To avoid the pole singu-

larities, we choose ϵ = 0.1, so we consider latitudes between −81 to 81 degrees. None

of the observed data points are inside the excluded zone. Furthermore, we normalize all

observed data points as explained in section 6.

The neural network architecture used for all problems is a fully-connected neural net-

work with 5 hidden layers, each containing 32 neurons with a tanh activation function

and Glorot normal initializer. The optimizer used is Adam and the learning rate is set
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to 0.0001. The library used to solve the PINNs is DeepXDE [Lu et al., 2021], an open-

source Python package that provides important methods such as creating the mesh of the

equation’s domain, defining the neural network, initial and boundary conditions, and the

learning process.

8.1.4. Physical Parameters Design

The partial differential equation in the model loss term (8.8) is evaluated in colloca-

tion points that can be specified in arbitrary locations. We choose a regular grid with 5

degrees spacing between the points. This is fine enough to capture the dominant advection

and diffusion phenomena of the global dust deposition, and sufficiently coarse to avoid

overfitting. The boundary conditions are evaluated at 5 degrees resolution also.

The value of v1 is taken from the wind data presented in Figure 6.5 and normalized

by its maximum value. However, there is no measured data on the diffusion parameter

(D) available in the literature. Hence, we opted to use an inverse problem approach in the

PINN to infer this parameter from the observed data. We also estimated the values of unorth

and usouth using the same approach, because these values are necessary for the boundary

condition but no data points are available very close to the poles. More specifically, these

physical parameters are incorporated as unknown parameters in the neural network and

their values are approximated within the same training process of the dust deposition pre-

diction. This means that these physical parameters are optimized to best fit the data and

the model.

As part of the design of the PINN, we have to choose the weights of the separate

loss terms. This gives relative importance between the data and the model in the training

process. We choose a weight equal to one for the boundary condition at the north and

south pole. For the periodic boundary conditions, we used one-half each since they are in

the same location. Then, we used a weight equal to 10 for the data loss term to emphasize

the importance of closely fitting the observed dataset. Finally, there is no prior knowledge

to set the weight for the model loss term relative to the other weights. Instead of setting
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this parameter manually, we give the PINN the freedom to find an optimal value for it

during the training process. This is performed in conjunction with the optimization process

mentioned above for the physical parameters.

8.2. Kriging Method in Dust Fluxes

Kriging is a geostatistical interpolation technique that uses a weighted average of

nearby samples. The same kriging interpolation performed in [Lambert et al., 2015] for

the DIRTMAP database is also used here for comparing the PINN’s prediction. The ma-

jor advantage of using PINN instead of the kriging method is the direct incorporation of

physical information such as dominant wind directions. Also, the Earth’s spherical shape

is approximated using spherical coordinates in our PINN.

8.3. Results

As was mentioned in section 8.1.4, there are three values inferred by the PINN through

an inverse problem which are D, unorth and usouth. The values estimated by the PINN in

Holocene and LGM are in Table 8.1 which is to give the PINN the freedom to determine

the relative importance between the loss function of the observations and the loss function

of the PDE. On the other hand, as was explained in section 8.1.3, we used the same param-

eters for all the neural networks. To validate all the parameters of the neural network used

in the PINN Observed Data, we included the weight w2,1 found in the PINN observed data

in the PINN simulated data.

To summarize, for the PINN observed data, the weights [w2,1, w1, w2,2,1, w2,2,2, w2,2,3,

w2,2,4] of the loss functions are [w2,1, 10, 0.5, 10.5, 1, 1], and for the PINN simulated data,

they are [w⋆
2,1, 10, 0.5, 0.5, 1, 1], where w⋆

2,1 is the estimated value w2,1 for PINN observed

data.
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Table 8.1. PINN’s estimation for the inverse problem and mean pole values
for Holocene and Last Glacial Maximum. In the column “Simulated data”
the values North Pole and South Pole are the mean dust fluxes (in standard
deviations) for the 9 degrees closest to the North and south pole. In the
case of “Observed data” this mean was calculated with the points located
upper than 60 degrees for the North pole and lower than −63 degrees for
the South pole. The columns “PINN observed data” and “PINN simulated
data” show the estimation of the inverse problem for the variables unorth,
usouth, D and w2,1 which are North Pole, South Pole, Diffusion and PDE-
weight, respectively.

Holocene
Observed
Data

PINN
Observed
Data

Simulated
Data

PINN
Simulated
Data

North Pole -1.042 -0.6626 0.064 0.0232
South Pole -2.07 -2.2465 -1.70 -1.9852
Diffusion - 0.0412 - 0.0004
w2,1 - 0.0050 - 0.0050⋆

Last Glacial Maximum
North Pole -0.59 -0.6167 0.1267 0.0871
South Pole -3.45 -2.4051 -1.785 -1.9267
Diffusion - 0.0432 - 0.0007
w2,1 - 0.0097 - 0.0097⋆
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8.3.1. Comparison with Kriging

(a) (b)

Figure 8.1. Results of data observed in Holocene time. (a) PINN’s predic-
tion of the global dust deposition. (b) Scatterplot between the prediction of
the PINN and the observed data set.

(a) (b)

Figure 8.2. Holocene time. (a) Prediction by the PINN. (b) Interpolation
by Kriging.
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(a) (b)

Figure 8.3. (a) Histogram of the prediction by the PINN. (b) Histogram of
the interpolation by kriging

Figure 8.4. Scatterplot between the PINN’s prediction and Kriging’s inter-
polation.
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(a) (b)

Figure 8.5. Results of observed data in Last Glacial Maximum time. (a)
PINN’s prediction of the global dust deposition. (b) Scatterplot between
the prediction of the PINN and the observed data set.

(a) (b)

Figure 8.6. Last Glacial Maximum time. (a) Prediction by the PINN. (b)
Interpolation by Kriging.
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(a) (b)

Figure 8.7. (a) Histogram of the prediction by the PINN. (b) Histogram of
the interpolation by kriging.

Figure 8.8. b) Scatterplot between the PINN’s prediction and Kriging’s
interpolation.
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8.3.2. Comparison with Neural Networks

(a) (b)

Figure 8.9. Results of observed data in Holocene. (a) NN’s prediction of
global dust deposition. (b) Scatterplot between the prediction of the trained
network with the observed dataset.

(a) (b)

Figure 8.10. Results of observed data in Last Glacial Maximum. (a) NN’s
prediction of global dust deposition. (b) Scatterplot between the prediction
of the trained network with the observed dataset.
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8.3.3. Validation on Simulated Data from Global Earth Models

(a) (b)

Figure 8.11. Results of data simulated in Holocene time. (a) Difference
between the prediction of the PINN and the simulated data. (b) Scatterplot
between the prediction of the trained PINN and the simulated data.

(a) (b)

Figure 8.12. Results of data simulated in LGM time. (a) Difference be-
tween the prediction of the PINN and the simulated data. (b) Scatterplot
between the prediction of the trained PINN and the simulated data.
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8.4. Discussion

The hypothesis proposed in this study was that it is possible to include physical in-

formation consistent with global dust fluxes in a neural network to improve the accuracy

of predictions with the DIRTMAP database in the Last Glacial Maximum and Holocene

times, despite a limited and sparse dataset. Our results support this hypothesis, demon-

strating that incorporating physical information into a PINN model can indeed improve

the accuracy of climatological data. The following sections will discuss our findings in

detail.

It is important to highlight the versatility that neural networks provide for including

physical information. This characteristic is evident in the incorporation of wind influence

and the modeling of physical information in spherical coordinates. Furthermore, neural

networks allow for the inference of information related to the problem through the estima-

tion of parameters as an inverse problem. Additionally, it is worth noting that providing

physical information makes it possible to work with a small quantity of data. In this study,

we worked with 397 and 317 measurements for Holocene and LGM, respectively, which is

typically no sufficient data points when working with neural networks in real-world prob-

lems. This can be observed in Figures 8.9 and 8.10. The results show that there is a strong

relation between the observed data and the predictions of the NN in Figures 8.9 and 8.10

(b). However, there are no accurate predictions in locations where no data is available, see

Figures 8.9 and 8.10 (a).

Figure 6.5 shows the wind influence depending on latitude. The majority of the wind

flows in an easterly direction, with the maximum at latitude -50 and the second maximum

at latitude 45 degrees, approximately. Westerly winds are concentrated between latitudes

-15 and 15, with a slight influence at the south pole. Turning our attention to the predic-

tion for the Holocene time in Figure 8.1 (a), we can see high concentrations from Brazil

to Patagonia in the observed data at latitude -50 approximately. In Figure 8.2 (a), we can

see that peak deposition values are straight east from the terrestrial sources in Patagonia,
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as predicted by the PINN. However, in Figure 8.2 (b), we can see that the Kriging inter-

polation predicts the peak to be broader in both east and west directions, consistent with

the symmetric nature of kriging. Similar observations can be made for the LGM, where

the PINN prediction shows a peak to the south of Patagonia, as seen in Figure 8.6 (a),

while the Kriging interpolation predicts with prominence to the south direction, as shown

in Figure 8.6 (b).

Another notable difference between the PINN model and the Kriging method lies in the

coordinate system used for the modeling and distance interpretation. While the PINN uses

spherical coordinates and incorporates periodic boundary conditions, the Kriging method

utilizes a 2D projection and measures distances using the Euclidean metric. As a result, the

PINN model provides a more accurate interpretation of distances compared to the Kriging

method.

Furthermore, the PINN approach offers the flexibility to infer model parameters, such

as the values at the North Pole and the South Pole. Table 8.1 presents the estimation of

these values. The results indicate that, for both the Holocene and Last Glacial Maximum,

and for both observed and simulated data, the estimated values are consistent with the

mean values in the dataset for the respective poles.

Unfortunately, the performance of the PINN is highly dependent on the accuracy of

the physical information provided and the appropriate construction of the network itself.

This is because neural networks solve a non-convex problem, and the results are subject

to local minima, making it difficult to draw strong interpretations of specific areas of the

estimations. It is important, therefore, to carefully consider the limitations and potential

biases of the model when interpreting the results. However, despite these challenges, three

principal reasons provide consistency to the results.

The first reason supporting the consistency of the results is the relationship between

the predicted and observed data, as demonstrated in the scatterplots in Figure 8.1 (b) and

Figure 8.5 (b) for the Holocene and Last Glacial Maximum, respectively. Also in Figures
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8.1 (a) and 8.5 (a), the PINN’s predictions are seen to closely fit the observed data, while

also providing a smooth solution in areas where no data are available. This indicates that

the model is capable of accurately capturing the underlying patterns in the data.

The second reason for the consistency of the results is the comparison with Kriging

interpolation. It is important to note that the PINN’s predictions in Figures 8.1 (a), 8.2 (a),

8.5 (a), and 8.6 (a) extend to the poles, which were not included in the training domain. By

examining the scatterplots in Figures 8.4 and 8.8, we can see that the PINN’s predictions

are related to the Kriging interpolation for both time periods. However, the Kriging pre-

diction has a constant value due to extrapolation beyond the training domain of the PINN

and the fixed polar values in the Kriging interpolation.

Additionally, Figure 8.3 shows the histogram of the global prediction by PINN and

Kriging. We can see that the outcomes fit well to a log-normal distribution. Also, both

of the methods smooth out outliers in the dataset. However, the global mean of the PINN

and kriging are different. The observed data fit a log-normal distribution with µ = 0.4

and σ = 1.08 as can be seen in Figure 6.2 (c). The distribution of the PINN’s prediction

in Figure 8.3 (a) shows a µ = −0.08 and σ = 1.28, whereas the Kriging interpolation

fits µ = −0.53 and σ = 1.16 in Figure 8.3 (b). Hence, PINN’s mean prediction is closer

to the mean of the observed data. Again, in the case of LGM, the prediction conserves

the log-normal distribution. The LGM data in Figure 6.4 (c) fits a log-normal distribution

with µ = 1.43 and σ = 0.95. The PINN’s prediction in Figure 8.7 (a) gives a mean of

µ = 0.34 and σ = 1.10 while the Kriging’s histogram in Figure 8.7 (b) give µ = 0.27 and

σ = 0.99.

The final reason for the consistency of the results is the flexibility of the network. Since

network stability cannot be guaranteed, we let the PINN find the weight of the PDE model

w2,1 and then validated the neural network design using observed in the simulated data.

The relation between the PINN prediction and the simulated data can be seen in Figures

8.11 and 8.12. The predictions show good agreement in both, the difference plots and the

scatterplots.
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9. CONCLUSIONS

In this thesis, the main objective was to incorporate physical information on global dust

fluxes during the Holocene and Last Glacial Maximum periods into a neural network, to

improve estimations. We aimed to obtain more accurate estimates than statistical methods,

which are consistent with the underlying physical processes related to sparse and irregular

data.

In Chapter 2, we explained the theoretical basis of Kriging. In Chapter 3, we studied

the inner working of PINNs and how to incorporate physical information into a neural

network.

In Chapter 4, we evaluated and compared the performance of the Kriging and PINN

methods by analyzing the one-dimensional time-dependent diffusion equation and trans-

port equation under various conditions. We observed that both methods accurately esti-

mated the solution of the diffusion equation. When training with noisy data, PINN showed

the ability to smooth out the noise through the PDE information. In contrast, the error of

the Kriging method increased as the solution had faster transportation and irregular fields

in the transport equation. Lastly, in the training of non-uniform grids, we observed that

the PDE information played a crucial role in estimating the solution in regions with few

data points.

Chapter 5 extended the study to two-dimensional time-dependent PDE problems to

explore the construction of the PINN for different parameters. The results showed that

the PINN method performed better when estimating smooth solutions. For the transport

equation, the PINN was more accurate when periodicity was used as training informa-

tion instead of Dirichlet boundary conditions. Additionally, we observed that training the

PINN in the normalized domain improved its accuracy in predicting the transport process.
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In Chapter 6, we introduced two datasets for the Last Glacial Maximum and Holocene

periods, the Observed and Simulated datasets from measurements and global earth mod-

els, respectively. In Chapter 7, we demonstrated that the PINN method successfully in-

corporated three different velocities to simulate the transport of dust in the Last Glacial

Maximum dataset.

In Chapter 8, we described the physical model for global dust fluxes, the design of the

loss function, the neural network architecture, and the physical parameters. The results ob-

tained from the PINN prediction are excellent, demonstrating that the model successfully

incorporates physical information and yields accurate estimates.

One of the limitations of this approach is the design of the PINN itself. The design

requires many choices that influence the performance such as the PDE, boundary condi-

tions, number of neurons, activation functions, etc. However, there are no clear guidelines

on how to choose these design parameters. In practice, these are found by performing

different experiments and manually interpreting the performance.

The PINN has demonstrated to be a powerful alternative when working with limited,

sparse, and noisy data. By including physical information related to the underlying physi-

cal processes, the neural network searches for solutions that are consistent with the prob-

lem. Although this study focused solely on the prediction of global dust fluxes, future

research could explore the application of this approach to other climatological variables.

In conclusion, the study presents a promising approach to improve the accuracy of cli-

matological data predictions from few measurements that are irregularly distributed over

the Earth, and it provides a foundation for future research in climate modeling using neural

networks. The findings of the study can have significant implications for understanding

the Earth’s climate system and informing climate policy decisions.
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