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ABSTRACT 
 
In this study, we present a framework for addressing the limited-stop service design problem over 
a corridor. Using a bi-level optimization approach, we introduce a method of designing these 
services while considering bus capacity, transfers, and two behavioral models for passengers: 
deterministic and stochastic. The algorithms were tested on nine scenarios with up to 80 stops. 
Working with deterministic passenger assignment, our model solved the problem in a small fraction 
of the time required by a benchmark algorithm. We finally show that although it makes the problem 
much harder, working with stochastic assignment leads to more realistic and robust solutions. 
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1. INTRODUCTION 

As demand and modal share of trips on public transport keeps rising throughout the world, the need 
for fast and reliable public transport systems with high quality standards for its users becomes more 
important. Bus Rapid Transit (BRT), which can be defined as a "high-quality, customer-orientated 
transit that delivers fast, comfortable and cost-effective urban mobility" ( , 
is a mass transportation alternative which has gained attention and popularity particularly during 
the last decade. Besides the emblematic cases of Curitiba and Bogotá, there are currently more than 
200 cities around the world which have adopted BRT systems on their main arteries. Furthermore, 
new BRT corridors keep popping up in every corner of the world every day: nearly one third of 
these cities launched their BRT systems after the year 2010 (www.brtdata.org). 
 
A key element in BRT allowing to provide fast rides while making an efficient use of a bus fleet, 
is the correct utilization of limited-stop services (services that skip a set of stops in the corridor). 
Thus, counting on a reliable tool for designing efficient limited-stop services is of special 
importance in the light of the rise of BRT systems. During the last decade, many authors have 
proposed different methodologies for the design of limited-stop services (see Sun et al, 2008; Leiva 
et al, 2010; Chiraphadhanakul and Barnhart, 2013, Larrain et al, 2015 and Chen et al, 2015). 
Different models and methodologies work under a wide range of assumptions, however, there is 
one particular assumption that all of these authors seem to share: the deterministic nature of 
passenger assignment. 
 
Deterministic passenger assignment is a very convenient assumption which simplifies the 
formulation of the problem. In absence of capacity limitations (such as the bus capacity), it allows 
to formulate a mathematical programming problems that determines the optimal frequencies of a 
set of services while assigning passengers to the minimum cost route. However, this type of 

passenger will always take his/her shortest path, meaning that a slightly worse option will not carry 
any passengers at all. This triggers stability problems with the optimal solutions of the model. 
 
To deal with this instability in the assignment caused by small changes in frequency, we propose 
using a stochastic assignment. However, this poses some new challenges. Since there is no longer 
a natural way to solve the network design problem simultaneously, we separate the problem and 
solve it using the methodology suggested by Larrain (2013). We propose a framework for the 
limited-stop service design problem (LSDP) over a corridor where the problem is divided into the 
limited-stop service generation problem (LSGP), and the capacitated frequency optimization and 
passenger assignment problem (CFOAP). 
 

2. SOLUTION FRAMEWORK FOR THE LIMITED-STOP SERVICE DESIGN 
PROBLEM 

 
The CFOAP can be presented in a generic way as the problem of minimizing a social cost function, 
subject to three groups of constraints: structural constraints, capacity constraints, and passenger 
behavior constraints. The input for this problem is a set of services previously defined by solving 



the LSGP or alternatively by an expert, an origin-destination (O-D) trip matrix, and some other key 
parameters. 
 
In this framework, structural constraints encompass all the constraints that make the frequencies of 
a solution feasible: non-negativity and frequency conservation. The role of capacity constraints is 
to ensure that bus capacity (and possibly other types of capacity limitations) is not exceeded by the 
solution. The last group, passenger behavior constraints, guarantees that passengers are assigned 
to routes that are consistent to a selected behavioral model, and not just the routes that minimize 
social costs. In the deterministic case where passengers travel through their minimum cost option, 
behavioral constraints can be dropped only when i) there are no capacity constraints (or no capacity 
is binding) and ii) the user cost function in the total cost being minimized coincides with the cost 
individuals minimize to reach their destinations. 
 
The solution of the CFOAP can tackled by first solving the uncapacitated version of the problem 
(FOAP) and then applying some heuristic approach to find a solution where capacity constraints 
are not violated, and where passenger behavior constraints are also met. Two greedy heuristics for 
capacity, which rely on solving the FOAP iteratively setting lower bounds to the frequencies, are 
proposed in Leiva et al (2010) and Larrain (2013). In this work we solve the FOAP using a bi-level 
formulation that makes it possible to model passenger assignment as a stochastic process. The 
problem is divided into a frequency optimization stage (FOP) where passenger assignment is fixed, 
and a passenger assignment problem (PAP) where frequencies are fixed. This separation of the 
problem in two levels makes it possible to test different behavioral models for passengers. 
 
In this context the FOP consists on minimizing a social cost function subject only to structural 
constraints. This is a non-linear problem, but it is not hard to solve for instances inspired in real 
sized corridors. The PAP, on the other hand, can be formulated as deterministic or stochastic. In 
this work, we consider that in the presence of parallel services passengers will choose a set of 
attractive services (which is a subset of the services connecting a given O-D pair) to perform their 
journey. It was proven by Chriqui and Robillard (1975) that if a service A belongs to the set of 
attractive services for a desired trip, a service B which connects the same O-D pair with a lower 
travel time will also belong to the set of attractive services, regardless of its frequency. In simple 
words: if you are willing to take service A, but a faster service B shows up first, you will take it no 
matter how infrequent this service is. 
 
To solve the deterministic PAP, first we compute for each O-D pair the expected travel time 
associated to every possible set of attractive services. Then, we find the set of attractive services 
that minimizes this value using the methodology proposed by Larrain (2013), and build an auxiliary 
network where every O-D pair is connected by an arc with travel time equal to this value plus a 
transfer cost. Finally, trips are assigned to their minimal route over this network, and passengers 
are split among the attractive services on every arc in proportion to the frequency of the services. 
 
The stochastic PAP, in turn, is solved by including randomness in two steps of the algorithm just 
described. First, for a given O-D pair, passengers will choose one of the reasonable sets of attractive 
lines following a multinomial logit model. The cost of an arc in the auxiliary network will be 
represented by the expected maximum utility of the pair. Then, we assume that passen
choice over this network can be also modeled as a multinomial logit. This last step of the 



assignment process can be perf , which does not rely on route 
enumeration (Dial, 1971). The assigned trip over the network are finally translated into bus loads. 

3. METHODOLOGY 

In this section, we explain our CFOAP solution framework. This problem seeks to determine cost-
minimizing frequencies for a given set of services on a bidirectional corridor, subject to bus 
capacity constraints and where users choose their most convenient routes. To solve this problem, 
we take a solution that omits capacity (FOAP), and then we iteratively adjust this solution to 
account for this constraint. The FOAP solution, meanwhile, is reached by decomposing the 
problem into two parts: passenger assignment in a corridor with a given set of services and 
frequencies (PAP), and the optimization of frequencies, given a specific pattern of passenger 
assignment throughout the network (FOP). In Section 3.1, we describe the FOAP and our proposed 
solution algorithm. Within this section, we formally present both the deterministic and stochastic 
versions of the two subproblems (FOP and PAP) and explain the proposed solution algorithms for 
each case. In Section 3.2, we explain how to obtain a feasible solution for the CFOAP using an 
iterated FOAP solution. 
 
 
3.1 The frequency optimization and assignment problem 
 
The dynamics underlying the FOAP, in its general version, can be understood as a Stackelberg 
game, where the leader (in our case the planner) defines the frequencies of all available services, 
and followers (i.e., system users) choose which services to use. Thus, to solve the FOAP, we divide 
the problem into two parts: first, the problem that a planner solves, which we have called the FOP, 
and second, the problem faced by users, which we have called the PAP.  
 

 
Fig. 1. CFOAP solution algorithm diagram. 

The structure of the FOAP and its subproblems suggest the adoption of a bi-level solution scheme, 
in which the FOP and PAP are solved alternately, forming a feedback loop. This proposed solution 
is illustrated in Figure 1, inside the box corresponding to the FOAP. Given a set of services, the 
FOP optimizes frequencies, assuming that passenger assignment is known. In this context, 



assignment is understood as the sequence of trip legs followed by each passenger of the given O-
D matrix. The PAP meanwhile, receives frequencies from the FOP and closes the cycle by using 
these frequencies to determine the passenger assignment. This cycle continues until the 
convergence of frequencies is reached. As mentioned above, it is possible to model a passenger's 
route choice process (i.e., the process of assigning passengers to different services) in different 
ways. In this paper, we study two types of passenger assignment: deterministic and stochastic. 
These types of assignments affect the models of both FOAP subproblems and are detailed in the 
sections that follow. 
 
 
3.1.1 The passenger assignment problem 
 
Predicting how users choose their routes to reach their destinations, given a set of services and 
frequencies, can be approached in many ways. Passenger assignment models can be classified as 
either deterministic or stochastic. In models of the first type, we assume perfect knowledge of users' 
perceived utility, and therefore, we assume that it is possible to deterministically predict a user's 
choice. In stochastic models we acknowledge limited and imperfect information, and hence the 
selection process is modeled probabilistically. That is, instead of predicting which alternative every 
user will choose, we calculate the probability that a user might choose a given alternative.  
 
The decision process of a passenger can be modeled in several ways. This means that its 
stochasticity can be also incorporated in various ways. In this study, we assume that the decision-
making process of a passenger follows two stages: 
 

 Service selection. This stage determines which services will be utilized by different 
passengers taking a direct trip in a given route section. In this context, a route section is 
any combination of origin and destination nodes that is connected by an existing service. 
Suppose a rider travels on a given route section. To make this trip, there is a set of 
services that the rider could use, each with its own associated travel time and frequency. 
Which services should the rider be willing to take when they arrive? In the presence of 
limited-stop services, the answer to this question is not easy, as the rider might avoid 
boarding some slower services to wait for a faster one to come.  

 Route selection. All trips on any given O-D pair will be structured as a sequence of trips 
over route sections. Given the expected travel costs of the possible route sections 
obtained from solving the previous stage, passengers choose a route that minimizes their 
expected total costs. 

In what follows, we will propose a formulation and solution method for each of these two stages, 
both for the deterministic case and the stochastic case. 
 

3.1.1.1 Service selection stage 

Given a route section , let  be the set of services that allows a direct trip (i.e., with no 
transfers) between the origin and destination of . For each service , travel time is  and 
frequency is . Travel time can be computed using the length of the route section, the operating 
speed of buses, and the stop configuration of the service. There are two outcomes of the service 



selection stage: the expected travel cost for route section , , and the probability  that 
any user traveling over  uses the service . We will detail two approaches to estimate these 
values deterministically and stochastically. 
 
Deterministic case: Let be the expected travel cost for the route section  by considering the 
set of services . The value of the expected travel cost can be estimated using the following 
equation: 

(1) 

The first term of this equation corresponds to the expected travel time, modeled as the weighted 
average of the travel time of the alternative options with respect to their frequencies, multiplied by 
the value of travel time . The second term refers to the expected waiting time for the value of 
waiting time . Here, we assume the expected wait times to be proportional to the inverse of the 
total frequency for services in . The proportionality factor, , takes the value of 1 when bus 
arrivals follow a Poisson process. 

In the study by Chriqui and Robillard (1975), an efficient method for determining the set of lines 
that minimizes  is proposed. This method is based on the observation that if a rider is willing 
to use a service, this rider should also be willing to take any faster service, if it arrives at the bus 
stop earlier. The output of Chriqui and Robillard's algorithm for each route section  is a set of 
attractive services, , and the value of the expected travel cost associated, . 
Probabilities  are calculated by assigning trips proportionally to the frequency of each 
service (i.e  when , and  for . 
 
Stochastic case: In the stochastic version of the service selection problem, there is uncertainty in 

same trip. This implies that instead of predicting with certainty which subset of services will 
minimize these costs, we will estimate the probability that a subset is the most attractive. 
 

Suppose there is a set of possible sets of attractive services, . Associated with 

each alternative   from this set there is a utility , which corresponds to the expected cost of 
selecting it as the set of services. This utility can be modeled as , consisting of a 
deterministic element , which can be measured by the planner, and a random component , which 
represents the uncertain part of the utility. We model the deterministic part as , which 

corresponds to the expected travel cost of using subset , calculated using (1). Assuming that 
errors  are random i.i.d. variables that follow a Gumbel distribution, the probability  of 
users choosing an alternative  can be estimated using a multinomial logit model: 
 

(2) 



In this equation,  is the scale parameter of the logit model, and is inversely proportional to the 
standard deviation of . To ensure that variables  are in effect independent, the set  must be 
constructed in a way that ensures the independence of the options. One way of doing this is to 
define  as a partition of , the set of services connecting . In the model by De Cea and 
Fernandez (1993), passenger assignment in the presence of congestion is modeled by grouping 
services into subsets that satisfy the requirement of independence of options. These sets of services, 
which we implement in our model, are built using the following procedure: 

1. Define a counter  and an auxiliary set of services . 
2. Build  by applying the Chriqui and Robillard algorithm on the set of services . 
3. Remove the new subset from , i.e., do , and update the counter . 
4. Repeat steps 2 and 3 until there are no more remaining services. 

By applying this algorithm, we construct the set  for every route section . The cost associated 
with the route section  should be calculated based on the expected maximum utility of the route 
section, which is given by the following equation: 
 

(3) 

The probability of use for a service  (given that the elements of are disjointed) will 
correspond to the probability of choosing the set ,  (which can be computed using (2)) 
times the ratio of the corresponding frequencies:  . 

 

3.1.1.2 Route selection stage 

 
For a directed network over the set of nodes  of a public transport corridor, let  be the set of 
O-D pairs from that corridor. For each route section , the expected travel cost for each route 
section, , and the demand for each O-D pair, , are known. The route selection problem 
seeks to predict what route sections and transfers are made by users for each O-D pair . The 
outcome of this stage is , the flow over route section . 
 
Since bus capacities are relaxed, the problem of route selection can be solved separately for each 
O-D pair , with origin and destination nodes denoted as  and . We build an auxiliary graph 
containing an arc for each route section , with . In other 
words, the auxiliary graph contains all the route sections that could be used as trip segments for 
the pair  without changing the direction of the trip. In this auxiliary graph, the cost of a route 
section  is  if  originates in , and  in any other case. In the latter equation, 

 corresponds to a fixed cost incurred for each transfer.  
 
Deterministic case: To model the route choice deterministically, it is sufficient to find the shortest 
paths for each O-
finds a shortest path tree to all the remaining nodes, once from every node. This process can be 



made more efficient by using an efficient version of the shortest path algorithm that takes advantage 
of the acyclic structure of the auxiliary graphs. 
 
From the results of the shortest path algorithm, it is possible to obtain the resulting flow over section 
, . Let  be the flow of users that use route section  when making a trip on O-D pair . This 

value can be easily obtained: it takes on the value of  when  belongs to the optimum route of 
 and 0 if it does not. With this, corresponds to  

 
Passenger flow associated with each line  and route section  can simply be calculated as the 
flow  times the probability (computed as in the deterministic case) that line  is used for section 
 using the equation .  

Stochastic case: We can model stochastic route choices assuming that users make these choices 
according to a random utility logit model similar to the one used for the selection of services, but 
with a scale parameter -D pair  
without requiring the enumeration of routes. This saves a great deal of computational effort and 
allows for a direct calculation of . Flows  and  are obtained in the same way as in the 
deterministic. 
 
 
3.1.2 Frequency optimization problem  
 
This problem estimates, for a given passenger assignment, the frequencies that minimize system 
costs. Additionally, since the model will be embedded into the algorithms addressing bus capacity 
(as described in the following section), we add lower bound constraints on the frequencies to the 
model. This problem can be expressed as follows: 

(4) 

 (5) 

   (6) 

The objective function of this problem corresponds to an approximation of the social costs for a 
known passenger assignment, which is estimated as the sum of two components. The first term 
corresponds to operator costs, which are obtained by assuming that each service ) has an 
operational cost proportional to its frequency. The second term corresponds to the total travel costs 
in the route section . The term  corresponds to the expected travel cost of segment  when 
the frequencies are , and it can be computed using both stochastic and deterministic assignments. 
It should be noted that even though transfers are included in the FOAP, transfers are a constant in 
this subproblem (as passenger assignment is known) and are therefore left out of the objective 
function. 



The set of constraints (5) imposes the conservation of bus frequency at bus stops. Sets  and  
contain services that begin and end their journey in a bus stop . The second set of constraints 
(6) ensures that the frequency of service is greater than a certain given lower bound. This constraint 
is used in the capacity adjustment algorithms that solve the CFOAP. 
 
In the objective function, the term  must be consistent with the type of passenger 
assignment assumed. As this term is a function of the frequency of the system, it is necessary to 
incorporate its definition as a constraint to the models (4) (6). Specifically, if the assignment is 
deterministic, the formulation of  is determined using equation (1) and set  obtained as a 
result of the assignment. If however, the assignment criterion is stochastic,  must be computed 
using equation (3). 
 
 
3.2 Addressing bus capacity 
 
Our algorithm for solving the version of the problem considering bus capacity constraints (CFOAP) 
consists of an iterative procedure based on the solution of its uncapacitated version (FOAP). An 
outline of the algorithm is shown in Figure 1. In each iteration, after reaching convergence on the 
FOAP, it determines whether the current solution exceeds the maximum bus capacity somewhere. 
For each unidirectional line segment  of the corridor (a line segment is defined as a pair of 
consecutive stops on the corridor), the load profile is calculated as  (where  takes 

value 1 if the route section  passes through line segment ), and then the maximum load for each 
service is obtained with the equation  . 

 
The capacity deficit of a service can be obtained from its maximum load, frequency, and bus 
capacity  as . A solution for the CFOAP is feasible in terms of capacity if 

 for every service . If the solution at any iteration is not feasible, the algorithm adds a 
minimum frequency constraint associated to a service in deficit. The criteria by which this service 
is chosen lead to different capacity algorithms. 

Larrain (2013) proposes a greedy algorithm consisting in simply picking the service  with the 
largest deficit, and fixing it by imposing on the next iteration the following lower bound (6) on its 
frequency, as follows: . This greedy approach yields a single solution that is not 
guaranteed to be optimal. One way of improving this approach is to add randomness in the selection 
of the service to be selected. This type of algorithm, known as greedy randomized adaptive search 
procedure (GRASP), explores the domain of the problem in the search of better solutions. In our 
implementation, the probability of choosing a bus service was proportional to the deficit (only for 
services with ). Naturally, this strategy relies on executing the algorithm several times to 
beat the greedy solution; therefore, it is much more time consuming than its counterpart. 



4. COMPUTATIONAL EXPERIMENTS 

In this section we describe the computational experiments we performed to test our algorithm. We 
start by describing in Section 4.1 the scenarios we constructed using data from Santiago, Chile and 
Bogota, Colombia. The results of these experiments are detailed in Section 4.2. 
 
 
4.1 Corridors and scenarios 
 
To test and compare the CFOAP solution algorithms, we have created nine scenarios based on 
three real transit corridors. The first corridor is on Av. Pajaritos in Santiago, Chile. The second one 
is on Av. Grecia, also in Santiago, Chile. The third corridor is on Av. Caracas, the corridor with 
the highest frequency and demand of the Transmilenio system in Bogota, Colombia. 
 
To compare the performance of the different versions of our algorithm in different-sized problems, 
the original O-D matrices for the three corridors were adapted to fit 20, 40, and 80 total bus stops 
(counting both directions) while keeping the length of each of the three corridors constant. The 
nine scenarios we used to test our algorithms and their main attributes are summarized in Table 1. 

Table 1. Descriptions of experimental scenarios. 

Scenario P20 P40 P80 G20 G40 G80 C20 C40 C80 

Corridor name Pajaritos Pajaritos Pajaritos Grecia Grecia Grecia Caracas Caracas Caracas 

Number of stops 20 40 80 20 40 80 20 40 80 

Number of O-D pairs 90 380 1,560 90 380 1,560 90 380 1,560 

Corridor length* (Km) 8 8 8 10 10 10 30 30 30 

Operational speed (Km/h) 22 22 22 25 25 25 26 26 26 

Total trips (pax/h) 20,546 20,527 20,529 37,728 37,719 37,810 43,562 43,564 43,551 

Maximum load (pax/h) 14,119 14,163 14,372 13,392 13,223 13,335 19,179 19,082 19,004 
Number of services 11 27 56 26 31 31 17 22 41 

*per direction.

 
The name of each scenario is a combination of the initial of the corridor name and the number of 
total stops, which are their defining attributes. It is important to note that the maximum load for 
Av. Caracas is close to 19,000 pax/h, far from the 48,000 pax/h reported in Global BRT Data (BRT 
Centre of Excellence, 2017).  
 
The last row in Table 1 indicates the number of a priori services considered for the solution to the 
CFOAP. These services come from a solution of the LSGP (the service generation problem) 
obtained by using the algorithms reported by Larrain (2013) and Larrain et al. (2015). Table 2 
presents the parameters used in the passenger assignment and optimization for each corridor. 
 

Table 2. Parameters for the experiments. 

Parameter Pajaritos Grecia Caracas 

Value of in-vehicle travel time ($/min),  0.15 0.15 0.08 

Value of waiting time ($/min),  0.15 0.15 0.05 

Transfer cost ($),  0.60 0.60 0.15 

Scale parameter  0.00176 0.00176 0.00340 

Scale parameter  0.00224 0.00224 0.00440 



Service regularity parameter,  1 1 1 

Dwell time (min),  1 1 1 

Operating costs - distance ($/bus-km),  0.75 0.75 0.75 

Operating costs - time ($/bus-h),  7.52 7.52 7.52 
Bus capacity (pax/bus),  80 72 120 

The values of parameters , , and  were obtained from the study by Batarce et al. (2015), 
which calibrated them for public transit route choice models for both Santiago and Bogota. In this 
study these parameters depended on a comfort measure, calculated as bus passengers per square 
meter, which in our case we assumed to be of 5 6  and 5  in Santiago and Bogota. 
As we could not find values for the scale parameters  and  calibrated for scenarios comparable 
to ours, they were obtained by setting a reasonable deviation for the error. More precisely,  was 
calibrated to ensure that given two services to choose from with a difference of 5 min in travel 
time, 70% of passengers would opt for the fastest service and 30% for the other. Parameter  was 
calibrated to ensure that given a difference of 10 min in travel time between two routes, 90% of 
passengers would opt for the fastest route and 10% for the other route. 
 
 
4.2 Experimental results 
 
This section presents the results of the experiments carried out for each scenario. The experiment 
shows how the algorithms work in both the stochastic and deterministic versions. 
The bi-level solution algorithms were coded using the Visual Studio C# language. The FOP sub-
problems within these algorithms were solved in AMPL, as was the model associated with 
algorithm A0. All algorithms were run on a personal computer with the following processor: Intel 
Core i7-4510, CPU @ 2.00 GHz, 2.6 GHz with 8.00 G 0 RAM. The tolerance for convergence was 
set at  for the algorithms. 
 
4.2.1 Performance of the algorithms 
 
The scenarios defined above were optimized using the different types of algorithms described in 
this paper. These algorithms are summarized in Table 3. We use the A0 algorithm as a benchmark 
in this experiment. It solves the FOAP directly as an optimization problem without separating it 
into subproblems and applies a greedy heuristic for capacity adjustment. This algorithm and the 
optimization model behind it are explained in detail in the study by Larrain (2013). As this 
algorithm relies heavily on the capacity of a nonlinear solver, solutions for the case allowing 
transfers were not very reliable; therefore, we report the solution of the case with no transfers. 
 

Table 3. Algorithms. 



 
The other six algorithms use the bi-level algorithm described in Section 3 for the solution of the 
scenarios. These algorithms are named using three letters, denoting the nature of the assignment 
model (deterministic or stochastic), the type of capacity algorithm (lowercase g for greedy, 
uppercase for GRASP), and if transfers were allowed in the solution (transfers or no transfers). In 
this experiment, the deterministic and stochastic versions of the algorithm were tested in 
combination with two different capacity heuristics. As the benchmark algorithm A0 does not allow 
for transfers, we examine a version that excludes transfers for the deterministic case. 
 
To compare the performance of the algorithms, we use the corrected total cost of the solutions (as 
defined by Larrain and Muñoz (2016)), which can be calculated as: 

The first two terms of equation (7) are the operator costs and the expected travel costs (considering 
in-vehicle travel times and waiting times), which are the same as in equation (4). The third term 
corresponds to the transfer costs, which are computed as the difference between the number of trip 
legs and demand for trips in the system times the unit cost . The last term is a fixed cost term 
corresponding to the fixed travel time portion that every passenger will bear independent of the 
solution of this problem. Since it constitutes a high proportion of the total costs, we subtract it to 
highlight the part of the cost where limited stop services can make a difference. This fixed term is 
the minimum in-vehicle travel time costs for each O-D pair, which are computed assuming that 
every passenger uses a direct non-stop express service with a travel time , which can be estimated 
from the distance of the O-D pair , the operating speed of the buses, and the dwell time . 

Note that in equation (7), the value of the expected cost of traveling in each route section , , 
must be calculated in accordance with the appropriate assignment model, whether it be 
deterministic or stochastic. Table 4 presents the results for the different algorithms. As a reference, 
we present for each scenario the  of the optimal solution associated to using a single all-stop 
service in each direction. This solution can be obtained using either the A0 algorithm or using 
Mohring's square root formula (Mohring, 1972). For each algorithm, the corrected percentage 
savings ( with respect to the all-stop  is shown. 
 

 CTC ($/h) Corrected percentage savings (CPS) 

Scenario All-stop A0 D / g / N D / G / N D / g / T D / G / T S / g / T S / G / T 

P20 16,920 48.5% 48.5% 48.5% 48.5% 48.5% 65.6% 65.6% 

P40 33,847 56.2% 56.5% 56.5% 56.5% 56.5% 48.8% 48.8% 

P80 68,353 63.7% 63.8% 63.8% 63.8% 63.8% 48.2% ** 

G20 18,070 22.2% 22.2% 22.2% 22.2% 22.2% 48.7% 50.0% 

G40 36,589 31.3% 31.2% 31.2% 31.3% 31.3% 27.6% 27.6% 

G80 73,873 35.7% 35.6% 35.6% 38.0% 38.0% 22.8% ** 

C20 22,142 13.2% 17.8% 17.8% 14.7% 18.3% 0.0%* 0.0%* 



C40 36,540 30.2% 31.3% 31.6% 34.4% 34.5% 1.6% 2.6% 

C80 172,995 79.4% 79.3% 79.6% 81.4% 81.4% 71.0% ** 

              *The algorithm was not able to improve the all-stop solution.
              **The algorithm was not implemented because runtimes were too high. 

Looking at the results from the deterministic cases, it can be observed that the savings increase as 
the corridors grow in number of stops. This result is consistent with what was observed by Larrain 
and Muñoz (2016), because as the number of stops increases, so does the amount of travel time 
limited-stop services can save. The D / g / N algorithm, yields results that are very close to the A0 
algorithm. This result validates the bi-level approach, which despite not providing any guarantees 
of global optimality, obtains good solutions and even surpasses the benchmark algorithm in two 
instances (C20 and C40). 
 
Comparing the greedy and GRASP solutions for the deterministic algorithms (i.e., D / g / N versus 
D / G / N and D / g / T to D / G / T), no major differences can be detected. This means that in 
general, the simple greedy algorithm is a decent approach for dealing with capacity. However, an 
exception occurs when comparing D / g / T to D / G / T in scenario C20, where GRASP gains an 
additional 3.6% in savings. This suggests that further improvement to the capacity heuristics is still 
worth looking into, possibly by performing a local search around the FOAP solutions.  
 
Looking at the best deterministic solutions for algorithms with and without transfers (D / G / N and 
D / G / T), some scenarios (G80, C20, C40, and C80) show that additional savings (up to 2.9% in 
the best case) can be obtained when optimizing with transfers. Also, transfers appear to play a more 
relevant role in the design as the corridor demand grows. As for the stochastic algorithms listed in 
Table 4, the solutions present some unexpected trends, for example, in the way savings decrease 
with corridor size in Pajaritos but increase in Caracas. This is probably a symptom of the algorithm 
converging to suboptimal solutions. However, this algorithm still manages to find savings with 
respect to A0 in most cases. 
 
Table 6 presents the runtimes of the seven modeled algorithms, measured in seconds. These results 
also show that the deterministic greedy algorithms (D / g / N and D / g / T) are considerably faster 
than algorithm A0 for medium and long corridors. This means that for the longest corridors, the 
proposed algorithms provide a similar output to A0 but in just a fraction of the time. For instance, 
in the toughest scenario, C80, D / g / T finds a slightly better solution than A0 in only 8% of the 
time. It is worth noting that including transfers in the deterministic assignment does not increase 
the runtime. On the contrary, is also clear that stochastic assignment algorithms require 
considerably more time to run than deterministic algorithms. 
 

Scenario A0 D / g / N 
D / G / 

N* 
D / g / T D / G / T* S / g / T S / G / T* 

P20 1 3 59 (10) 4 88 (10) 9 189 (10) 

P40 32 11 232 (10) 11 378 (10) 161 973 (5) 

P80 984 48 
1,318 
(10) 

8 197 (10) 1,912 ** 

G20 3 28 222 (10) 9 267 (10) 127 1005 (10) 

G40 31 4 86 (10) 3 79 (10) 40 349 (5) 

G80 169 28 411 (10) 9 235 (10) 9,289 ** 

C20 17 10 128 (10) 3 135 (10) 10 135 (10) 



C40 219 59 
2,127 
(10) 

22 191 (10) 298 1573 (5) 

C80 1,382 149 
4,427 
(10) 

110 1364 (10) 17,241 ** 

              *For the GRASP scenarios, the number of iterations is given in parenthesis.
              **Algorithm not implemented because runtimes were too high. 

4. CONCLUSIONS 

In this study, we have formally presented the LSDP for a corridor, and proposed a solution 
framework. The solution procedure involves splitting the LSDP into two subproblems: a service 
generation problem (LSGP) for which we have previously proposed some solution algorithms in 
previous studies, and the capacitated frequency optimization and assignment problem (CFOAP). 
In this paper, we have focused on studying and developing an efficient solution method for the 
CFOAP, which is key to the LSDP solution. 
 
One of the main accomplishments of this study was to improve the existing solution algorithms for 
the CFOAP, significantly reducing the solution times in the deterministic assignment case. This 
improvement is due to separating the FOAP (i.e., the uncapacitated version of the CFOAP) into 
two subproblems, and solving it using a bi-level approach. The implementation of GRASP 
heuristics for the capacity algorithm showed not only a significant improvement on the solution to 
the problem, but also revealed some room for future improvement. We believe that a local search 
algorithm would be a reasonable way to further improve the current capacity algorithms for the 
problem. 
 
The new solution approach opens the possibility of addressing larger problems with a greater 
number of services to optimize, and to do so in significantly less time. For the scenario inspired in 
the Caracas Av. corridor in Bogota, our new algorithm reduced the runtime from 18 to 2 min. This 
opens the door for the development of new, more ambitious algorithms aimed at improving the 
LSDP solution and eventually extending this algorithm to the design of limited-stop services on 
networks of corridors, which is one of the most significant limitation of existing approaches for 
this design problem. 
 
Another important contribution of this study is that it presents the first attempt at allowing for 
stochastic passenger assignment without limiting the structure or number of services. This 
extension results in more realistic and robust design solutions. Nevertheless, the solution algorithm 
we report does not work very efficiently on the stochastic case: this poses the challenge of finding 
a better solution algorithm tailored for the stochastic setting that would allow improvement on the 
robustness of the solution to the LSDP. 
 
The improvements on the CFOAP algorithm also enable the optimization of scenarios in which 
users transfer between services. The experiment we report in this paper shows that allowing 
transfers in the solution leads to better designs, meaning that neglecting transfers can lead to 
suboptimal solutions to the problem and underestimating the benefits of limited stop services.  
 
Future research should expand this study by incorporating the capacity limitations of bus stops to 
accommodate multiple buses, which has been ignored here for the sake of simplicity. This 
limitation is crucial to consider since they often become the bottleneck of the entire system as 
demand grows. The methods we introduced in this paper, possibly combined with some local 



search procedures, may open the way for a solution to this important variant of the LSDP. In the 
context of BRT systems facing a growing demand and increasingly challenging scenarios, well-
designed limited-stop services are key to delivering the promise of a metro-like level of service. 
The models and solution algorithms presented in this paper contribute to the understanding of these 
complex systems.  

ACKNOWLEDGMENTS 

The authors wish to thank FONDECYT for its funding, project 11,140,443. This study was also 
supported by the BRT Center funded by the Volvo Research and Educational Foundations (VREF) 
and the Center for Sustainable Urban Development (CEDEUS), Conicyt / Fondap / 15110020. 
 

REFERENCES 

Batarce, M., Muñoz, J. C., Ortúzar, J. D. D., Raveau, S., Mojica, C., & Ríos Flores, R. A., 2015. 
Evaluation of Passenger Comfort in Bus Rapid Transit Systems. Inter-American Development 
Bank. 
 
BRT Global BRTData
modified: August 4, 2016. Available at: http://www.brtdata.org 
 
Chen, X., Hellinga, B., Chang, C. y Fu, L., 2012. Optimization of Headways for Bus Rapid Transit 
System with Stop-Skipping Control. Transportation Research Board Annual Meeting 2012 
Paper #12-1999. 
 

Limited- Public Transport, 5(1-2), 53-78. 
 

Transportation Science, 9, 115-121. 

Transportation science, 27(2), 133-147. 
 
Dial, R. B., 1971. A probabilistic multipath traffic assignment model which obviates path 
enumeration. Transportation research, 5(2), 83-111. 
 

 PhD dissertation, Pontificia 
Universidad Católica de Chile. 
 

Transportation Research Part E, 79, 201  212. 
 

-
Transportmetrica A: Transport Science, 12(9), 811-831. 
 

-Stop for an Urban 
Transportation Research B, 44(10), 1186-1201. 


