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Abstract

We study gender differences in levels of school value-added and their role in explaining

the math gender gap in Chile. Using rich and representative panel data on students’ test

scores, we fit two-way (student and school) fixed effect models for each gender. We interpret

school fixed effects as a value-added measure. We find that schools on average do not play

a role in the determination of the math gender gap. However, there is heterogeneity in this

effect with private schools helping to close this gap by 38.6%. In studying the mechanisms, we

rule out the possibility that this average result for private schools is driven by girls being over-

represented in high value-added schools. The effect found is explained by a gender-specific

effect: at a given private school, more value-added is obtained by girls relative to boys. Finally,

we find that the presence of a higher share of female teachers and attending a private school

correlates with higher returns to girls’ value-added, and that average teachers’ expectations

regarding students’ future outcomes play a more favorable role for boys.
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1 Introduction

A substantial gender gap found in the results of mathematical tests has been thoroughly

documented in the literature. This difference is present in developed (Mead, 2006), low,

and middle income (Bharadwaj et al., 2016) countries. The magnitude of this difference

is estimated to be valued at roughly 0.2 standard deviations, it is present across every

stratum of society, and starts to appear in early years of schooling and then broadens

with age (Fryer and Levitt, 2010). The importance of this math gender gap lies in the fact

that math test scores are consistently found to be a strong predictor of wage levels (Paglin

and Rufolo, 1990; Altonji and Blank, 1999; Murnane et al., 2000, 1995; Weinberger, 1999,

2001) and career choices (see Altonji et al. (2012) for a review). These results imply that the

math gender gap may play a significant role in the determination of the well-documented

wage gender gap in the labor market.

In this paper, we examine whether schools secure different value-added levels for stu-

dents depending on gender. We achieve this by estimating two-way fixed effects models

with student and school effects using the framework developed by Abowd, Kramarz and

Margolis (1999) (hereafter, AKM) and using student-level Chilean data on test scores and

school characteristics. Following Card et al. (2016), we obtain for each school one fixed ef-

fect for girls and another for boys. We interpret school effects as value-added measures as

in similar frameworks (Angrist et al., 2017; Bharadwaj et al., 2016; Abdulkadiroglu et al.,

2017). There are two main advantages of using an AKM-style model. First, it allows for

one to estimate school fixed effects while controlling for student fixed effects. This lim-

its the emergence of selection biases resulting from time-invariant student characteristics.

Second, we can test whether matching effects at school or test score shocks correlate with

school mobility, and therefore also infuse selection bias into our estimates. This is done

by adapting exercises developed by Card et al. (2013) and Card et al. (2016) to the edu-

cational context. We find no evidence of patterns showing that student mobility affects

our estimates. Controlling for student characteristics and testing for mobility shocks and

matching effects is important because the mentioned forms of selection bias often affect

school value-added estimates (Angrist et al., 2017).
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The Chilean case is useful for understanding the math gender gap for two main rea-

sons. First, Chile shares gender differences present in other parts of the world in the

school and labor markets. Women in Chile are severely under-represented in STEM1

fields. They also exhibit the lowest levels of participation in the labor force and lower

mean and median salaries when compared to the rest of the region and other OECD

countries. (OECD, 2017). The gap found in math scores has been estimated at roughly

0.17-0.19 across several cohorts (MINEDUC, 2013; Paredes, 2014; Bharadwaj et al., 2016).

As in other countries, it appears in the early stages of schooling around 4th grade and

widens with age (Bharadwaj et al., 2016). These facts render the Chilean case informative

regarding the math gender gap.

The second key feature of the Chilean case concerns rich and representative individual

test score data developed by the Ministry of Education of Chile (MINEDUC, 2013). The

advantage of using this dataset is threefold. First, as students are evaluated across several

periods, we are able to build a panel and therefore use the AKM model to simultaneously

estimate school and student fixed effects, which is crucial for our purposes. Second, stu-

dent mobility levels in Chile are high (Larroulet, 2011), and in our particular dataset, 73%

of students have changed between institutions within the sample. School fixed effects are

only identified for the schools that belong to the largest connected set, which is the subset

of schools connected by student mobility (i.e., have received or “sent” students to/from

schools within the sample). Given the high student mobility in our dataset, we can com-

pute value-added measures for almost all institutions included in the sample. Finally, the

dataset offers rich information on schools and teachers that allow for us to test for hetero-

geneity in value-added differential impacts of the gender gap and to explore mechanisms

that may explain a differential value-added secured by students depending on gender.

Our first set of results shows that schools on average do not have a significant impact

on the math gender gap. We compute the average contribution of schools to the gen-

der gap measured from the difference between school value-added results for boys and

girls. The result of this exercise show that the mean value-added differential is valued at

almost zero, confirming that, on average, schools are not helping to close or enlarge the

1STEM: Science, Technology, Engineering and Mathematics fields.
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gender gap. This result is consistent with previous evidence showing that the gender gap

observed within schools is not different from the overall average gender gap Bharadwaj

et al. (2016); Carrell et al. (2010). However, we do find substantial heterogeneity in this

effect. While effects observed are almost negligible for public and voucher schools, we

find that in private schools, girls obtain on average 0.07 standard deviations more value-

added than boys. This means that with respect to the overall gap observed in the sample,

private schools are closing the gap by 38,6%.

To investigate the potential mechanisms shaping these results, we apply two exercises.

First, motivated by evidence on the effect that gender sorting at school could have on gen-

der sorting for college enrollment in the US (Long and Conger, 2013a,b), we replicate Card

et al. (2016) Oaxaca-style decomposition to separate the mean value-added differential

into “sorting” and “gender-specific” channels. The sorting channel corresponds to aver-

age gender disparities that arise when female students are less likely to be enrolled at high

value-added schools. The gender-specific channel arises when female students obtain, in

expectation, more value-added than males, in a given school. For the sorting channel,

we find negligible effects for the overall school sample and when restricting our focus to

voucher, public and private schools. This means that gender sorting across schools does

not contribute to the average gender gap observed in test scores. While small for pub-

lic and voucher schools, we find that for the private sector, the gender-specific channel

explains almost all of the value-added differential (favorable to girls) found across these

schools. This result could help explain existing evidence showing that high-performing

girls in the US (in math) come from a limited number of elite schools (Ellison and Swan-

son, 2010). Elite schools could be helping high-performing girls develop their skills by

delivering more value-added that compensates for other differences. This explanation

opposes to their average performance being explained only by an over-representation of

girls in elite schools.

A second exercise for finding mechanisms through which value-added impacts the

gender gap involves regressing value-added measures for each gender over a set of school

characteristics. We find that the average share of female math teachers correlates with

stronger value-added outcomes for girls. This result is consistent with previous results
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showing that gender-matching in the classroom favors girls’ performance in math (Dee,

2007; Carrell et al., 2010; Paredes, 2014; Bharadwaj et al., 2016). We also find that the av-

erage expectations of math teachers regarding boys’ future educational outcomes tend to

favor boys. These results are similar to those found in the literature on the role of teachers’

expectations. In particular, other gaps between racial/demographic groups (Ferguson,

2003; Figlio, 2005; Gershenson et al., 2016a) relate to the self-fulfilled views of teachers

regarding their students. Finally, even when controlling for teacher and school character-

istics, private schools deliver more value-added to female students than to male students.

Our paper makes three main contributions. First, we use panel data to address the

school contributions to the gender gap. This allows for us to control for time-invariant

student characteristics as opposed to many articles that study the gender gap that use

cross-sectional data and that control only for observable characteristics. To the best of our

knowledge, this is the first paper that uses an AKM-style model to calculate school value-

added while controlling for a student fixed effect. Second, we test for heterogeneity in the

impact of gender-specific school value-added on the gap. We find that different schools

(private schools) effectively deliver more value-added to female students. Finally, we

use a comprehensive set of variables and different exercises to find the mechanisms that

shape our results. These exercises show that private schools systematically deliver more

value-added to girls than to boys, as the “gender-specific” effect is substantial across these

schools. This means that our result showing that private schools help close the gap on

average is not driven by an over-representation of females in schools with higher value-

added characteristics. Additionally, we study the effects of several school characteristics

on the gender gap (in value-added) other than those present in the literature such as

teachers’ expectations and the religious orientations of schools.

The rest of the paper proceeds as follows. Section 2 describes the econometric model

used to estimate gender-specific value-added measures and empirical exercises used to

assess the contributions of schools to the math gender gap. Section 3 describes the data

used. Section 4 presents our primary results and an analysis of the mechanisms that shape

them. Section 5 concludes.
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2 Methods

To estimate the gender-specific value-added of each school, we fit the following additively

separable and gender-specific education production function:

yit = αi + ψ
G(i)
J(i,t) + X′itβ

G(i) + η
G(i)
iJ(i,t) + ξ

G(i)
J(i,t)t + εit

= αi + ψ
G(i)
J(i,t) + X′itβ

G(i) + rit

(1)

where yit is the test score obtained by student i in year t. G(i) ∈ {M, F} denotes the

gender of student i. We also denote j = J(i, t) as the school at which student i is en-

rolled in period t. The term αi denotes time-invariant characteristics of student i that are

fully portable between schools; elements such as a student’s family background, socio-

economic status, and natural abilities are measured by this term. Xit denotes time-variant

covariates that are portable between schools for student i. ψ
G(i)
j are gender-specific school

fixed effects. As in Card et al. (2016) study of the wage gender gap, which is based on the

AKM method, we estimate gender-specific equations to obtain effects for girls and boys

for each school.

The error rit is composed of three terms. Term ηij represents a time-invariant score

“premium” for student i at school j relative to the score obtained by αi + ψj. This com-

ponent can arise from matching-related score gains (i.e., a school employs some practices

that improve the test scores of a particular kind of student). Term ξ jt denotes time-varying

factors that raise or lower the average school impact on scores for all students. Finally, εit

accounts for other unobservable factors.

The critical concern in this paper is to correctly identify school-specific effects ψ
G(i)
j .

This term captures the gain or loss in scores that is common for all students of gender

G(i) enrolled at school j. We will also explore if expectations of gains/losses for students

vary across different types of schools. As in similar models, we interpret school effects

as value-added measures (Angrist et al., 2017). Conventional value-added models can be

biased due to their selection of student characteristics and other factors (Angrist et al.,

2017). We argue below that our estimates are not biased for two reasons. First, our data

and framework allow for us to control for time-invariant student characteristics αi to limit

selection biases relating to student characteristics. On the other hand, we show that tem-

6



porary shocks affect test scores and school matching effects by applying the same tools of

the AKM framework used in the labor literature. This ensures that selection bias related

to students sorting themselves into certain schools (due to matching premiums at schools

or other temporary mobility shocks) does not affect our estimates.

Note that we need school mobility to identify a unique solution to the OLS estimation

of (1). This is true because when there were no mobility in a sample, school identifiers

are perfectly collinear with student identifiers. This in turn means that we can only esti-

mate (ψF
j , ψM

j ) for schools that have “received” or “sent” students of the sample, on the

observed period. This subset of schools linked by student mobility is called the “largest

connected set” of schools. As we indicate below in our data section, the largest connected

set represents almost the entire sample of schools and students tested in 2007, 2011 and

2013, so the restriction to the largest connected set is unlikely to affect our results.

2.1 Identification and exogenous mobility

To identify parameters of our model included in Equation (1), the following orthogonality

condition must hold:

E[rit|αi, ψ
G(i)
j , Xit] = 0

This condition is called the “exogenous mobility” assumption. Intuitively, the con-

dition rules out any correlation between school identifiers, student identifiers and time-

variant characteristics being correlated with rit. We will assume that school identifiers

and characteristics of xit are independent of rit. Therefore, to identify school value-added

measures ψ
G(i)
j , we need school identifiers to be independent of (ηij, ξ jt, εit). This means

that matching effects ηij, temporary school shocks ξ jt and other shocks to test scores εit

do not predict school mobility.

Card et al. (2013) and Card et al. (2016) develop two ways to test for sorting based

on school matching effects ηij, which we apply to the context of this study. First, we ex-

amine the test score trajectories of students who change schools. If families are choosing

schools based on a matching premium in test scores, we should observe to find that gains

in scores obtained by students who move from one school to another should be higher in
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magnitude than losses observed for students who move in the opposite direction. Within

a given limit, these matching effects should offset any losses in scores resulting from dif-

ferences in school value-added measures and should lead to score gains for all students

who change schools, as families change schools in pursuit of “matching gains.” By con-

trast, under exogenous mobility, score gains resulting from moving to one school to an-

other should be equal in magnitude to score losses associated with moving in the opposite

direction. We find this “symmetrical” pattern in the data.

A second way to test whether match effects correlate with school mobility involves

examining the fit of a fully saturated model that includes dummies for each school-effect

match. If match effects are important in predicting test scores, then we should expect

this model to explain more or the variance in scores than the additively separable model

described in (1). Specifically, the root mean square error (RMSE) of our model should be

higher than that of the match-effects model, and the adjusted R2 of the model should be

smaller. We do not find such improvements in fit by using the match-effects model.

Another threat to validity concerns the presence of a potential connection between a

school-wide shock ξ jt and mobility. For example, when a school experiences a massive

exit of valuable teachers or starts to apply policies that affect test scores negatively, par-

ents could choose to change schools. If this is true, we should find students who change

schools to experience a drop in test scores just before moving and also unusual gains in

test scores for these students, thus breaking the symmetry in gains and losses of movers.

We find no such patterns in the data.

The final mobility pattern that may bias our estimations derives from the possibility

that mobility could be correlated with a transitory test score shock εit. Parents or schools

could make decisions based on the actual performance of students. If grades are corre-

lated with test scores, it could be that students who are performing poorly should move

to the “worst” (lower test scores) schools, while students who are performing well should

transfer to better schools. Therefore, we should observe a drop in scores before a move

and an increase in scores for students who move to “better” schools. We do not find sys-

tematic evidence for these trends except for a particular group of students who move to

similar schools regarding test scores. However, if individual shocks or matching effects
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shape the mobility of such students, then we should find that students who stay at the

same school in the observed period follow a different test score trajectory than school

movers. We find that “stayers” exhibit the same pattern of test scores as students who

move to similar schools.

If elements of rit do not shape school mobility, then what drives it? Note that under the

exogenous mobility assumption, the expected test score of a student conditional on him or

her being enrolled in a particular school and on his or her characteristics is αi + ψj + x′itβ.

Parents may be selecting schools merely from average test scores obtained at schools or

depending on different costs of schooling or concerns related to socio-economic status

(Gallego and Hernando, 2009). This type of sorting/selection does not affect our estima-

tion of school effects, as we control for household (and other time-invariant) characteris-

tics of the time-invariant student component αi.

2.2 Decomposing inequality in test scores by gender

To analyze the distribution of the estimated school effects, we divide variance in test

scores to separate and quantify the share of variance in test scores explained by student

and school effects and we return to time-variant characteristics. We run this analysis for

girls and boys to determine if such contributions depend on gender. This decomposition

is possible because of a variance of test scores modeled by (1), and under the exogenous

mobility assumption, it is:

Var(yit) = Var(αi) + Var(ψG(i)
j ) + Var(x′itβ

G(i))+

2[Cov(αi, ψ
G(i)
j ) + Cov(ψG(i)

j , x′itβ
G(i)) + Cov(αi, x′itβ

G(i))] + Var(rit)
(2)

2.3 The impact of value-added differentials

We now turn our attention to our main concern to study contributions of schools to the

gender gap. We accomplish this by computing the impact that differences in
(

ψF
J(i,t), ψM

J(i,t)

)
for each school on the gender gap. To illustrate the exercise, let male be shorthand for

G(i) = M, and let f emale be shorthand for G(i) = F. Using this notation and the model
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given in (1), we have the following expression:

E[yit|male]−E[yit| f emale] = (E[αi|male]−E[αi| f emale]) + (E[ψM
j |male]−E[ψF

j | f emale])

+(E[x′itβ
M|male]−E[x′itβ

F| f emale])
(3)

Note that the gender gap can be explained by the contributions of between-gender differ-

ences in students’ characteristics, by a value-added differential (the “school component”

of the gender gap), and by gender differences in the return to time-variant characteris-

tics. Such decomposition allows for us to quantify the contributions of between-gender

differences observed in schools on the gender gap.

As we obtain the complete distribution of
(

ψF
J(i,t), ψM

J(i,t)

)
, we can use the decom-

position given in (3) to check for heterogeneities in the contributions of E[ψj|male] −

E[ψj| f emale] to the gender gap. This is achieved by further conditioning (1) based on

time-invariant school characteristics. We do so to determine if the average impact of the

value-added differential changes when a school is public, voucher or private in format. In

addition, obtaining the full distribution allows for us to apply several exercises to address

mechanisms shaping the results as we show below.

2.4 Decomposing the contribution of the between-gender differential

to the gender gap

Through a simple framework, we can divide the average value-added differential de-

picted in Equation (3) into two effects: an average sorting effect and an average “gender-

specific effect.” The sorting effect is interpreted as the share of the differential explained

by an under/over representation of female students in schools with stronger value-added

characteristics2. This effect may be relevant when sorting at the school choice level causes

girls to end up in the worst (or better) schools on average. This may also serve as a channel

through which gender sorting affects gender sorting in college, as some existing evidence

shows (Long and Conger, 2013b,a). The “learning effect” is the residual or the average

2This means, for example, that when we observe that girls obtain more value-added than boys in some

schools, this could be explained by girls being over-represented in schools with strong value-added features

relative to males.
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difference in school effects observed across the distribution of males or females. This ef-

fect is interesting because it reveals an average “inclination” of schools to deliver more (or

less) value-added to males than to females. Via Oaxaca (1973) style decomposition and

following Card et al. (2013), we present the following expressions:

E[ψM
J(i,t)|male]−E[ψF

J(i,t)| f emale] = E[ψM
J(i,t) − ψF

J(i,t)|male]

+E[ψF
J(i,t)|male]−E[ψF

J(i,t)| f emale]
(4)

E[ψM
J(i,t)|male]−E[ψF

J(i,t)| f emale] = E[ψM
J(i,t) − ψF

J(i,t)| f emale]

+E[ψM
J(i,t)|male]−E[ψM

J(i,t)| f emale]
(5)

The first terms shown on the right-hand side of Equation (4) is the “learning” effect: the

average difference in value-added that female students obtain relative to males across

the distribution of male students. The second term is the sorting effect, which is ob-

tained from the difference in the value-added of females observed across the distribution

of male students versus the distribution of female students. In the alternative decompo-

sition shown in Equation (5), the learning effect is computed by from the distribution of

female students. The sorting effect is calculated using male students’ value-added scores

and by comparing them across the distribution of male and female students.

These decompositions are useful in determining whether different channels explain

the importance of between-gender differential contributions to the gender gap. A strongly

positive (negative) sorting effect denotes that females are under(over)-represented in schools

with high value-added outcomes for women. A large positive (negative) learning effect

implies that females are receiving fewer (more) value-added resources from schools than

males.

2.5 Gender-specific returns to school characteristics in value-added

We finally investigate whether school characteristics have different returns depending on

gender in terms of school value-added. To this end, we regress by OLS the estimated

value-added for a vector of school characteristics zi:

ψ̂F
j = zjδ

F + ωj (6)
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ψ̂M
j = zjδ

M + φj (7)

From these regressions, we can relate school characteristics to an estimated school value-

added measure that is controlled for time-invariant student characteristics, school/student

trends and matching effects to avoid confounding factors shaping estimated returns. All

regressions are weighted by school size (students-year) and include municipality dum-

mies, and errors ωjandφj are clustered at the municipality level.

Note that we are estimating an equation for female value-added and another for male

value-added. In using this approach, we determine whether the same school character-

istic yields a different return to value-added depending on gender. To further illustrate

related differences, we run the following regression:

ψ̂M
j − ψ̂F

j = zj × γ + eit

which corresponds to the same regression as that shown above for school characteristics

but with a different value-added measure (i.e., ψM
j − ψF

j ) used as the dependent variable.

It is straightforward to show that γ = δM − δF. This regression allows for one to easily

compute differences in returns for each characteristic in zj and to also determine if these

differences are statistically significant.

3 Data

To conduct the analysis described in the above section, we use data from the System for

Measuring the Quality of Education (SIMCE) test obtained from Agency for Education

Quality datasets, which are available upon request (MINEDUC, 2013). The SIMCE test

was standardized in 1999 to follow up on school performance and is based on the item

response theory (IRT) methodology used for the PISA test. As the SIMCE is applied every

year to several students, we can use its yearly datasets to build a representative panel,

from which we observe 108,555 female students and 105,415 male students who belong

to approximately 6900 mixed-gender schools and who were tested in 2007, 2011 and 2013

or in the 4th, 8th and 10th grades.
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Besides using representative data on individual test scores, our dataset also includes

individual identifiers, unique school identifiers and the genders of students. By using

unique school identifiers, we use school information such as types of dependence (i.e.,

if they are private or public) in our heterogeneity analysis. These and other school and

teacher characteristics are measured in surveys applied to teachers and parents of stu-

dents who had participated in the SIMCE test. We use this information to explore the

mechanisms that may explain our results.

Figure 1 shows the mean scores of female and male students with different school

grades included in our sample. We also include in the graph confidence intervals used

for the mean score at the 95% level. A consistent and significant difference is observed

between the girls’ and boys’ scores that persists through the observed period. Figure 2

shows the share of girls achieving each percentile of standardized SIMCE scores. The

fraction of females drops substantially at higher SIMCE percentiles. In 10th grade, the

declining pattern is even more pronounced. These patterns are typical of other student

cohorts for Chile (Bharadwaj et al., 2016) and for other countries (Mead, 2006; Fryer and

Levitt, 2010).

Table 1 shows some basic descriptive statistics for our panel. In Column (1), we report

sample mean test scores, standard deviations, the number of observations, and the num-

ber of students and schools included in the sample for males and females. Our “overall

sample” (the one summarized in Column (1) of Table 1) consists of students enrolled in

mixed-gender schools who appear at least two times in the SIMCE score database. We

observe a (cross-sectional) gender gap of 8.35 points from the SIMCE test results that

corresponds to 0.17 of a standard deviation3. As noted by AKM and above, the school

effects in a two-way fixed effects model such as (1) are only identified within a connected

set of schools linked by student mobility. We use the algorithm developed in Correia’s

(2016) work to obtain this subset of schools and show the same descriptive statistics in

Column (2). This subset, known as the largest connected set of schools, corresponds for

both males and females to 99.9% of the students and to 99.7% of the schools in the orig-

inal samples. Additionally, sample means and standard deviations do not considerably

3We standardized the results to the observed mean and standard deviation for each year
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change between samples. Our restriction to the largest connected set does not impor-

tantly affect our data because high school mobility is observed in our sample. In total,

34% of the students observed in 2007 changed schools between 4th and 8th grade, and

73% of the students observed in 2013 changed schools between 8th and 10th grade4 This

pattern of mobility for 8th grade and the overall high level of mobility observed have

been documented for Chile (Larroulet, 2011).

As we use specific fixed effects for males and females estimated for each school simul-

taneously in the analysis depicted in the previous section, for consistency and following

Card et al. (2016), we also use the “dual connected set” of schools. The dual connected

set of schools includes schools belonging to the largest connected set for both male and

female students. We can see from Column (3) of Table 1 that the dual connected set repre-

sents 95,3% of students and 94,9% of schools for the female sample and 97,3% of students

and 95,6% of schools for the male sample. As is found for the largest connected set of both

males and females, sample means and standard deviations of scores of the dual connected

set do not largely deviate from overall sample statistics.

4 Results

In this section we show the estimation results of our model in Equation (1). Columns

(1) and (2) of Table 2 summarize parameter estimates and the fit of the model for female

and male students for the largest connected set of each gender. The model includes a

student fixed effect and a gender-specific school fixed effect, and elements of x′itβ are time

dummies. Due to the dimensionality problems that estimating student and school fixed

effects pose, we use the numerical method developed by Correia (2016) to make our OLS

estimates.

4The mobility level of our sample is higher than the mobility level of firms examined in other AKM

studies. For example, Abowd et al. (1999) find a mobility level of 27,3% in their sample, and Alvarez et al.

(2018) observe mobility levels of 25% to 40% in their sample, reflecting the largest connected set corre-

sponding to 98% of their full sample. Therefore, is not surprising that our largest connected set represents

the whole sample almost entirely.
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We first show standard deviations and the number of observations for the largest con-

nected set of female and male students. We then show the number of effects estimated

for students and schools, the root mean squared error (RMSE) and adjusted R2 statis-

tics of the model, standard deviations for (xit β̂), the estimated school and student effects

(α̂i, ˆψM
j , ψ̂F

j ) and the correlation between the estimated student and school fixed effects

by gender. Note that we obtain a high adjusted R2 statistic, showing that we have cap-

tured much of the variance in test scores with our AKM model of student, school and

time effects for both female and male students. For both genders, the standard devi-

ations of student effects are more than twice the standard deviations of school effects,

implying that inequality/variance in test scores for both genders is mostly attributed to

student characteristics. The correlation found between student and school effects is pos-

itive for both genders, indicating that male and female students with a strong individual

component that impacts their test scores are disproportionately represented in schools

that impact students’ scores more. This is equivalent to saying that positive associative

matching occurs between higher value-added schools and students with better skills or a

social background that enables them to achieve better scores.

The central panel of Table 2 shows fit statistics for a generalized model that includes a

dummy for every student-school match. The model relaxes the additive structure of (1),

and if match effects are important in predicting test scores, we expect to find a substantial

improvement in fit by estimating it. The RMSE of the match effects model is 1,9% lower,

and the adjusted R2 is just 1% higher than that of the AKM model for female students.

For male students, the RMSE of the match effects model is 1% lower, and the adjusted R2

is less than 1% higher than that of the AKM model. With this exercise, we confirm that

our value-added measures are consistent and not confounded with matching effects.

We now analyze the distribution of the obtained estimates. As shown in Section 2.2,

we can use the obtained distribution of (ψ̂F
j , ψ̂M

j ) for simple variance decomposition and

to study what explains the variance in test scores observed for both female and male

students. The last panel of Table 2 shows the main components of (fitted) variance de-

composition illustrated in Equation (2). For both female and male students, individual

effects on scores account for approximately 67,5% of overall test score variations and for
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9,6% of school effects. These similarities are also evident when we graph the distributions

of school effects as shown by (weighted by gender) kernel density estimates presented in

Appendix Figure A1. For the other components of test score variance, we find that for

female students, the correlation between school and individual effects accounts for 3,4%

of the variance in scores, that returns to time trends and associated correlations account

for just 2.3%, and that the share of residuals accounts for approximately 15% of the score

variance. For male students, the correlation between school and individual effects ac-

counts for 2,9% of the variance, returns to time trends and associated correlations account

for 2.9%, and the share of residuals accounts for 15,5% of the total variance.

These results indicate that heterogeneity or inequality in test scores is mainly driven

by heterogeneity in students’ characteristics. Regarding the gender gap, we do not find

differences between the share of variance explained by school effects in female scores and

the share of variance explained by school effects in male scores. Therefore, we find no

evidence that schools make, in aggregate, female scores more unequal relative to those

of male students. This finding serves as a preview of our next set of results, which show

that schools do not seem to have a significant impact on test scores overall.

4.1 Value-added differentials and the math gender gap

We next use the estimated school effects to obtain a between-gender differential ψ̂M
j −

ψ̂F
j for every school. Recalling the framework of Equation (3), this term of expectation

represents the average contribution of a school to the math gender gap. As noted above,

we use the dual connected sample for this part of the analysis, as we are considering

both female and male school effects simultaneously. We can only estimate (ψF
j , ψM

j ) from

OLS for a school or group of schools and interpret means of the estimate effects better, and

thus, we normalize them with respect to schools belonging to the lowest decile of average

test scores. The top row of Table 3 shows terms involved in the school effects component

of the average gender gap, which is the sample analog of E[ψM
j |male]−E[ψF

j | f emale].

Column (1) of Table 3 shows that the gender gap of the dual connected set is valued at

roughly 0.17 standard deviations, which is similar to the gap observed for the overall sam-
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ple. Columns (2) and (3) show mean normalized estimated school value-added/school

effects for female and male students. Column (4) shows the difference observed between

the two, which is the contribution of between-gender differences observed in schools

to the math gender gap. We find that the average differential is almost negligible with

schools making a negative contribution to the gap of less than 0.01 standard deviations.

This result is consistent with previous evidence showing that estimations of the gender

gap do not change when estimating the gender gap for schools with respect to the sim-

ple average gender gap5 (Bharadwaj et al., 2016; Carrell et al., 2010). Our approach is

advantageous in that we estimate gender-specific school effects while at the same time

controlling for a student fixed effect. Therefore, we can directly determine if schools im-

pact students’ test scores differently depending on gender. We confirm these previous

results by showing that schools on average and while controlling for time-invariant stu-

dent characteristics do not impact the test scores of girls and boys differently because of

gender.

We now focus on the impact of different kinds of schools on the gender gap. By condi-

tioning the average gender gap only to private, voucher and public schools, we can check

for heterogeneity in the impact of the between-gender differential produced at schools.

Private, voucher and public schools characterize schools of the Chilean system, and they

differ mostly in terms of resources and management characteristics. The last three rows

of Table 3 show the same decomposition based on Equation (3) but while separating the

sample and calculating terms according to the type of school considered. Note that we

find a sizeable average value-added result for private schools for both genders and higher

value-added results for voucher schools relative to those of public schools. The magni-

tudes found are consistent with the literature that addresses differences in types of schools

found in Chile6. We find evidence of heterogeneity in the impact of the between-gender

differential. We find that for public and voucher schools, the gender gap is similar to that

5Bharadwaj et al. (2016) and Carrell et al. (2010) estimations of the cross-sectional gap do not change

when controlling/adjusting for school fixed effects
6See Paredes and Drago (2011) for a review of voucher school correlations with test scores and Mizala

and Romaguera (2000a) for evidence of the large correlation between private schools and test scores
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observed for the full sample, and the impact of the between-gender differential on the

gap decreases in magnitude relative to that of the full sample. Specifically, we find that

for public schools, the contribution of the between-gender differential favors females by

less than 0.01 standard deviations. For voucher schools, the effect is favorable for males

but also within less than 0.01 standard deviations. For private schools, we find that the

gap is 38,6% smaller than that of the full sample, and we find that the between-gender dif-

ferential is mostly favorable to female students, providing 0.07 standard deviations more

in value-added. In the following sections, we investigate mechanisms that may shape

this heterogeneity and whether school characteristics yield different returns depending

on gender.

4.2 Mechanisms: Decomposition of the between-gender differential

To address the mechanisms of the above findings, we now turn to the results of our

Oaxaca-style decomposition of the between-gender differential into sorting and “gender-

specific value-added” effects by showing the fitted version of Equations (4) and (5). For

the US, there is evidence of gender sorting across schools and within school types (Long

and Conger, 2013b,a) that explains gender differences in college enrollment levels. We

test whether a similar mechanism of gender sorting across schools/among school types

translates into differences in overall value-added obtained by females relative to males.

The part of the value-added differential that is attributable to a sorting channel is calcu-

lated by taking the difference of male value-added weighted by shares of female versus

male students or the difference between female value-added weighting by shares of fe-

male versus male students. Table 4, Columns (2) and (3) show that the overall sorting

effect is small: when using female effects to estimate sorting, we find that it explains a

reduction in the gap of less than 0.01 standard deviations. When using male effects, this

corresponds to a reduction in the gap of 0.01 standard deviations. The obtained result

indicates that potential gender sorting at schools is not translating into better or worse

value-added outcomes obtained by girls. This is consistent with existing evidence for

the US showing that even if non-random gender sorting does occur in schools, parents
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value school attributes similarly in relation to their sons and daughters (Long and Conger,

2013b).

The gender-specific value-added effect is the average difference found between value-

added results that girls receive relative to those of males at all schools. This is computed

by taking the average differential across the distribution of girls/boys. Columns (4) and

(5) of Table 4 show the “gender-specific value-added” effect, and we find that the overall

impact of this effect is also small. We find that the difference in ψ̂M
j − ψ̂F

j across the distri-

bution of (weighted) females contributes positively to the gap within less than 0.01 stan-

dard deviations. However, when observed across the distribution of males, it helps close

the gap by a similar magnitude. As sorting and learning effects observed are small, we

find that compensation does not explain the small impact of the school between-gender

differential observed between the two effects.

From the same heterogeneity exercise as that described above, when we restrict our

analysis to private, voucher and public schools, we can check for heterogeneity in sorting

and gender-specific effects as well. The lower panel of Table 4 shows the same decom-

position of the between-gender differential but while restricting the sample to the school

of the indicated type using the estimated school effects. Public schools seem to reduce

the gap on average but by a small magnitude (-0.01 standard deviations), while voucher

schools expand the gap on average but also by a small magnitude (0.01 SDs). In terms

of sorting effects, we find the same pattern as that of the overall analysis. Rather, when

observing female effects, we find a small effect of less than 0.01 standard deviations in

magnitude, while when observing male effects, we find that sorting effects close a small

portion of the gap by roughly 0.01 standard deviations. When observing the learning ef-

fects of public and voucher schools, in all cases, they are positive but small in magnitude

(less than 0.01 standard deviations).

The results for private schools show that sorting effects are again small at approxi-

mately 0.01 standard deviations when considering male effects and of less than 0.01 stan-

dard deviations when considering female effects. However, the gender-specific effect is

substantial with a magnitude of 0.06 standard deviations found when considering the

female distribution and of 0.05 standard deviations when considering the male distribu-
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tion. This result means that the reduction in the gender gap caused by private schools is

mainly due to girls obtaining more value-added than boys enrolled at these schools (i.e.,

ψ̂M
j − ψ̂F

j is negative and significant as expected for a given private school conditional on

either gender). This result is useful for understanding the previous results on the math

gender gap of elite schools. Ellison and Swanson (2010) finds that high-performing girls

come from a small set of elite schools. This fact could be the result of simple sorting in

school choice: girls being over-represented in high value-added schools. What we find

for the elite schools of our sample (private ones7) is the opposite result; girls are achiev-

ing more value-added than boys. This means that private schools could be helping girls

develop their skills while in school. In the following section, we further our analysis by

correlating school and average teacher characteristics to potentially identify factors that

shape gender-driven differences in school value-added.

4.3 Mechanisms: Gender-specific returns to school characteristics

As a final exercise to address mechanisms that shape the impact of gender-specific value-

added on the math gender gap, we correlate the estimated value-added results with

school characteristics. We in turn determine whether characteristics of schools yield dif-

ferent returns to value-added depending on gender. Using unique school identifiers in-

cluded in our database, we can obtain teacher and school characteristics and then use

them as an independent variable in the simple regressions depicted in Equations (6) and

(7). The advantage of the teachers’ survey lies in the fact that we can identify teachers

who have actually interacted in classrooms with the students of our sample for the ob-

served period. Table 5 shows the weighted (by school size8) OLS results of the estimation.

The estimated coefficients shown in Table 5 are given in standard deviations, as this is the

7Private schools are considered elite schools, as they are much more expensive than voucher schools

(with co-payment), and they represent less than 10% off enrollment in the several cohorts (Mizala and

Romaguera, 2000b,a)
8We weight by school size to precisely estimate and test the statistical significance of the difference in

returns as shown in Column (3) of Table 5. Appendix Table A1 shows the results derived when we weight

the regressions by the quantity of girls and boys in each regression accordingly, noting that they are not

qualitatively different from the results shown in Table 5.
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measure of school value-added. Regressions include municipality fixed effects, and the

error is clustered at the municipality level. Column (1) shows the regression applied when

the dependent variable is female value-added, and Column (2) shows the regression con-

ducted on male value-added.

Column (3) shows our regression of the differential applied on the same set of charac-

teristics, therefore obtaining δ̂F − δ̂M. This allows for us to easily calculate the difference

in returns to value-added for girls relative to boys on school/teacher characteristics. It

also allows for us to conduct a formal test of the statistical significance of the mentioned

difference (t-test of the regression). A negative coefficient shown in Column (3) of Table 5

denotes that the characteristics favor female students over males, and vice-versa.

We find that the share of female teachers in a school correlates with a higher value-

added for female students consistent with the previous literature for Chile (Paredes, 2014;

Bharadwaj et al., 2016) and other countries (Carrell et al., 2010; Dee, 2007), showing pos-

itive effects of gender-matching for female students. The difference in estimated re-

turns found is not statistically significant, but we find that the effect on each gender’s

value-added is strong. Additionally, teachers’ average levels of education have an im-

portant effect school value-added as the literature finds (Clotfelter et al., 2010), but no

large/significant differences are found in estimated returns for male and female students.

We also control for the share of teachers who would leave a school if offered similar con-

ditions, and we find no difference in the return to this teacher’s satisfaction measure in

value-added: the effect is negative and similar in magnitude for both genders.

The impact of teachers’ expectations regarding their students has been studied in the

literature (Gershenson et al., 2016b) in addition to its long-term effects on math scores

(Hinnant et al., 2009). In particular, it has been shown that expectations have different

effects depending on racial characteristics involved (Figlio, 2005; Ferguson, 2003) due to

biases or self-fulfilled prophecies related to student characteristics (Hinnant et al., 2009;

Gershenson et al., 2016a). We find that average expectations impact school value-added

differently depending on gender. The share of teachers with low expectations (those who

believe that the majority of their students will complete only high school) has a negative

impact on value-added but with a higher magnitude for female students. Additionally,
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high expectations (the share of teachers who believe that their students will complete

graduate studies) have a positive impact but are much more important for male value-

added than for female value-added. This difference in returns is also statistically signifi-

cant.

We control for the religious orientations of schools by using a dummy to indicate

whether a school is Catholic to see if there is a differential return to this characteristic

depending on gender. This effect of religious orientation could be attributed to the cul-

tural particularities of such schools (e.g., second-generation immigrants present a larger

gender gap due to cultural restrictions and traits (Nollenberger et al., 2016)). We find no

statistically significant differences in the returns of Catholic schools depending on gender

when controlling for all other characteristics.

Finally, we add dummies that indicate whether a school is a private or voucher school,

and public schools are omitted. Even when controlling for religious orientations, char-

acteristics, expectations of teachers and municipality fixed effects, we find that private

schools yield a (statistically) significant difference in value-added that favors female stu-

dents. Private schools could be hiring better teachers in the sense that they could be ad-

dressing certain difficulties that girls may face when taking standardized tests such as the

SIMCE test studied here. In Niederle and Vesterlund (2010), it is noted that girls respond

differently to competitive environments. Additionally, on average, girls make worse self-

assessments than boys regarding their math abilities, and this correlates with their poorer

test scores (Bharadwaj et al., 2016). Private schools could be providing a better environ-

ment for girls to perform better on the test. This could be the case because private schools,

due to having access to more resources and better using them, may pay more for better

teachers and for more qualified principals who are aware of the differences described

above. In this way, private schools may be changing poorer self-assessments from girls

or girls’ responses to competitive environments. Further evidence is needed to address

these alternative explanations and their relative importance, but we offer these explana-

tions as cultural/religious orientations, the average gender matching of math teachers,

teachers’ expectations regarding students and school conditions for teachers do not seem

to fully explain the impact of private schools on the gender gap.
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4.4 Validity of the Exogenous Mobility Assumption

We now analyze the validity of the exogenous mobility assumption. To this end, we adapt

an indirect test used in Card et al. (2013) and Card et al. (2016) to our educational focus.

For this analysis, we first select male and female students who changed schools between

8th and 10th grade. We then compute the mean classmate test scores of every student

that changed schools for each year and assign each the quartile of his or her mean class-

mate test scores for each year. In Figures 3 and 4, we plot the mean test scores measured

before and after female and male students changed schools for the first (lowest) quartile

of classmate scores and for the fourth (higher) quartile. The figures show that male and

female students who move from schools with low classmate scores to schools with high

classmate scores experience substantial average gains in their scores. The opposite oc-

curs for students who move in the opposite direction. As noted above, this symmetry

provides suggestive evidence showing that mobility is not correlated with matching pre-

miums ηij. Additionally, note that no important downward trends in scores are observed

prior to a move, suggesting that mobility is not associated with adverse temporary shocks

in schools. Symmetry found in score changes after a move also shows that positive score

shocks are not a source of incentive to move. This means that we find no evidence of a

correlation between mobility and the temporary school component of scores ξ jt.

In Figure 5, we plot the average test scores of students who did not change schools in

the sample period and who belong to schools of the fourth and first quartiles of average

classmate scores. We note that they follow the same patterns of school movers who stay

enrolled at schools of the same quartile. This indicates that even if trends are present,

they are not correlated with mobility. If this were true, we should expect to find a differ-

ent pattern for students who remain at the same school in the observed period. Rather,

if matching effects ηij shaped the mobility of students who remain at schools of the high-

est quartile, then “stayers” should present more horizontal movement in scores. If an

upward trend incentivizes parents to have their children change schools, indicating the

presence of a correlation between mobility and the εit of these students, we should again

find more modest changes in the scores of those who do not change schools. However,
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what we observe in Figure 5 is that students who do not change schools follow the same

patterns as those who do. The same occurs for students who move between schools with

the lowest quartiles of classmate scores. They follow the same pattern of scores as those

remaining at schools of the lowest quartile as shown in Figure 5. If only students who

perform poorly were moving to the worst schools, we would expect to find those not

changing schools to show no change in scores.

Appendix Tables A2 (females) and A3 (males) show the mean test scores of all mobil-

ity groups constructed from the 4 quartiles of mean classmate test scores. We find that

patterns reflecting symmetry and trends not correlated with mobility also appear when

observed the other mobility groups (those who change schools originating from schools

of the 2nd and 3rd quartiles of mean classmate scores). The tables also show that for any

mobility group, at least 1000 students move between different kinds of schools, ensuring

the consistency of the estimated fixed effect for schools of different quantiles.

We note in Figures 3 and 4 and also in Appendix Tables A2 and A3 that the levels and

quantities of students of different mobility groups are different. This is likely the case due

to a relation between mobility and socio-economic or socio-demographic characteristics,

which are contained in αi (e.g., not being able to pay a school fee, which is positively

correlated with test scores on average Mizala and Romaguera (2000b,a), or transportation

costs related to moving to a better school (Gallego and Hernando, 2009)). Parents may

also be sorting themselves in schools based on other socio-economic factors. For exam-

ple, parents of a higher income group may value test scores more (Gallego and Hernando,

2009). Again, these household characteristics are contained in the time invariant compo-

nent of scores αi. As we control for student effects αi, these sorting sources do not bias

our results.

5 Concluding Remarks

In this paper, we study the contribution of schools to the math gender gap. From rich and

representative micro-level Chilean data on test scores, we estimate a two-way fixed effects

model (school and student) following the econometric framework developed by (Abowd
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et al., 1999). The AKM approach is advantageous in that it allows for us to estimate value-

added results while controlling for time-invariant student characteristics. It also allows

for us to test for different types of transitory shocks on school mobility that could bias our

estimates. We use the estimates to explore the impact of schools on the math gender gap

and mechanisms that shape these effects.

We find that on average, gender differences in value-added do not explain a substan-

tial portion of the gender gap. However, this effect is found to be heterogeneous. Rather,

private schools present a between-gender differential in value-added favoring women,

explaining a substantial reduction observed in the gender gap. Public and voucher schools,

in contrast, have a much smaller impact on the gap.

We then analyze the mechanisms that explain the above results. First, following the

work of Card et al. (2016), we conduct a Oaxaca-style decomposition to separate the dif-

ferential into sorting and gender-specific channels. We find that sorting effects are small

across school types, suggesting that female students are not under- or over-represented at

high-performing schools. In private schools, the gender-specific effect dominates. Rather,

girls on average obtain more value-added than boys at these schools. We find that the

share of female teachers yields a higher return for female students. We also find that av-

erage teacher expectations, whether positive or negative, favor male students. Finally,

when controlling for several school and teacher characteristics, private schools correlate

with higher value-added results for female students than for males.

Our results contribute new insights to the literature on the math gender gap. First,

we find that controlling for student characteristics and ruling out biases resulting from

mobility and schools’ contributions to the gender gap seem to be negligible. Second, we

find that this effect is heterogeneous with private schools significantly helping to close the

gap by 38,6%. Second, we rule out the possibility that a pure sorting channel explains the

reduction in the gender gap that private schools cause. It is a gender-specific effect that

is behind the results found for private schools, which seems to be helping girls develop

their skills. Third, we analyze several mechanisms that shape our results both within and

beyond the scope of existing literature. That is, we find the differential returns of several

school and teacher characteristics to value-added depending on gender.
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Figure 1: Mean Test Scores of Male and Female Students
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Notes: Mean standardized SIMCE score obtained by female and male students in the sample
while attending school in different grades. 95% Confidence intervals are also shown.
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Figure 2: Math Gender Gap on SIMCE Percentiles
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Notes: Every point shows the share of females present in each percentile of the SIMCE distri-
bution.
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Figure 3: Mean Test Scores of Female School Changers
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Notes: Mean test scores of female students who changed schools between 8th and 10th grade in the sample period. Each
school is classified into quartiles based on the mean test scores of classmates in 8th and 10th grade. See the text for
additional information.
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Figure 4: Mean Test Scores of Male Students Changing Schools
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Note: Mean test scores of male students who changed schools between 8th and 10th grade in the sample period. Each
school is classified into quartiles based on the mean test scores of classmates in 8th and 10th grade. See the text for
additional information.

Figure 5: Mean Test Scores of Female and Male Students Not Changing Schools in the 1st
and 4th Quartiles

(a) Female stayers
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(b) Male stayers
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Panel (a) shows the mean test scores of female students who did not change schools in the sample period. Panel (b)
shows the same means but for male students only. Each school is classified into quartiles based on the mean test scores
of schools for every year. We only show test score means for students who stayed at schools belonging to the first and
fourth quartiles. See the text for additional information.
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Table 1: Descriptive Statistics for Different Samples by Gender

Overall Sample Largest Connected Set Dual Connected Set
(1) (2) (3)

Female Math Test Scores
Sample Mean Score 258.61 258.60 256.98
Std. Dev. 55.55 55.55 55.31
Student-Year Observations 282,568 282,455 253,642
Number of students 108,555 108,496 103,415
Number of schools 6,954 6,936 6,596

Male Math Test Scores
Sample Mean Score 266.96 266.96 265.30
Std. Dev. 56.07 56.06 55.58
Student-Year Observations 271,065 270,993 255,043
Number of students 105,415 105,377 102,612
Number of schools 6,867 6,848 6,596

Raw Gender Gap 8.35 8.34 8.32
Standardized Gender Gap 0.17 0.17 0.17
Column (1) shows summary statistics for the sample of female and male students enrolled at mixed gender
schools tested in 2007, 2009 and 2013. Columns (2) and (3) show the same statistics for the largest connected
set and dual connected set (see the text for definitions) for the sake of comparison.
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Table 2: Summary of AKM Estimations by Gender

All Females All Males
(1) (2)

Std Dev of Test Scores 1.11 1.12
Student-Year Obs 282455 270993

Summary of Parameter Estimates
Number of Student Effects 108496 105377
Number of School Effects 6936 6848
RMSE of Estimation 0.56 0.58
Adjusted R2 0.75 0.74
Std Dev of Student Effects 0.91 0.92
Std Dev of School Effects 0.34 0.35
Std Dev of Xb 0.17 0.19
Corr of Student-School Effs 0.13 0.11

Match Effects Model
RMSE of Estimation 0.55 0.57
Adjusted R2 0.76 0.74

Inequality Decomposition
Share of variance due to:
Student Effs 67.47 67.43
School Effs 9.56 9.60
Corr of School-Student Effs 3.41 2.90
Share of Xb 2.27 2.87
Share of Residuals 14.88 15.51
The table shows a summary of AKM estimations, match effects mod-
els and variance decompositions of test scores. Estimated models in-
clude student fixed effects, school fixed effects and time dummies.
Match effects models include a dummy for each student-school match
and time dummies. Samples only include observations made of the
largest connected set.
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Table 3: Contributions of Between-gender Differentials in School Effects to the Math Gen-
der Gap

Test Score
Gender Gap

Mean
Female

value-added

Mean Male
value-added

Contribu-
tions of

Schools to
the Gap

(1) (2) (3) (4)
All Schools 0.17 0.19 0.18 -0.01

(-3.16%)
By Type of School:
Public 0.18 0.12 0.12 -0.00

(-1.90%)

Voucher 0.17 0.19 0.19 0.00
(1.91%)

Private 0.11 0.54 0.47 -0.07
(-38.55%)

The sample includes female and male students of the dual connected set of schools (see Table
1, Column 3). Column (1) shows the difference in the mean test scores of males and females
estimated across all students of the subset of schools indicated by row name. Estimated school
effects derive from the models described in Table 2 and are normalized with respect to schools
of the lower decile of test scores. Column (4) shows contributions of the between-gender differ-
ential in school effects to the gap, showing in parentheses the ratio of corresponding entry over
the average gender gap for all schools (0.17 SDs).
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Table 4: Sorting and “Learning” Effects in Between-gender Differentials of School value-
added

Sorting Effect “Gender-specific” Effect
Contribu-

tions of
Schools to
the Gap

Using
Female
Effects

Using Male
Effects

Female
Distribu-

tion

Male Dis-
tribution

(1) (2) (3) (4) (5)
All Schools -0.01 -0.00 -0.01 0.00 -0.00

By Type of School:
Public -0.00 -0.00 -0.01 0.00 0.00

Voucher 0.00 0.00 -0.01 0.00 0.00

Private -0.07 -0.01 -0.00 -0.06 -0.05
A decomposition of the between-gender differential of school effects estimates as described in the text (see
Section 2.4) is shown. Column (1) shows the between-gender differential. Columns (2) and (3) show the
sorting effect of the differential, and Columns (4) and (5) show the gender-specific value-added effect of the
differential.
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Table 5: Correlation between School Characteristics and School value-added

(1) (2) (3)
Female
value-
added

Male
value-
added

Differ-
ence

Share of:
Female Math Teachers 0.057∗∗∗ 0.046∗∗∗ -0.010

(0.017) (0.015) (0.011)

Teachers with Graduate Studies 0.093∗∗∗ 0.095∗∗∗ 0.002
(0.017) (0.015) (0.009)

Teachers who disagree with School conditions -0.050∗∗∗ -0.063∗∗∗ -0.013
(0.019) (0.018) (0.014)

Teachers who expect Students to complete only High School -0.148∗∗∗ -0.086∗∗ 0.063∗∗

(0.036) (0.036) (0.027)

Teachers who expect Students to complete Graduate Studies 0.142∗ 0.219∗∗∗ 0.078
(0.073) (0.078) (0.053)

Other School Characteristics:
School is Private 0.359∗∗∗ 0.314∗∗∗ -0.045∗

(0.032) (0.025) (0.027)

School is Subsidized/Voucher 0.080∗∗∗ 0.097∗∗∗ 0.017∗

(0.018) (0.015) (0.010)

School is Catholic 0.084∗∗∗ 0.086∗∗∗ 0.002
(0.017) (0.014) (0.011)

N 5798 5798 5798
R2 0.218 0.220 0.179

Estimated parameters derived from regressions of gender-specific value-added with school characteristics
used as explanatory variables are shown. Column (3) shows the difference between male and female value-
added as the dependent variable. Regressions are weighted by school size and include municipality fixed
effects. Standard errors clustered at the municipality level are shown in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix

Figure A1: Kernel Density Estimate of Male and Female value-added
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Table A1: Correlation between School Characteristics and School value-added - Gender
Weighted

(1) (2)
Female
value-
added

Male
value-
added

Female Math Teachers 0.037∗∗∗ 0.024∗

(0.014) (0.014)

Teachers with Graduate Studies 0.058∗∗∗ 0.077∗∗∗

(0.014) (0.013)

Teachers who disagree with School conditions -0.053∗∗∗ -0.064∗∗∗

(0.016) (0.016)

Teachers who expect Students to complete only High School -0.096∗∗∗ -0.051
(0.028) (0.032)

Teachers who expect Students to complete Graduate Studies 0.148∗∗ 0.229∗∗∗

(0.068) (0.069)

School is Private 0.342∗∗∗ 0.282∗∗∗

(0.030) (0.023)

School is Voucher 0.063∗∗∗ 0.076∗∗∗

(0.014) (0.013)

School is Catholic 0.058∗∗∗ 0.070∗∗∗

(0.014) (0.012)
N 5798 5798
R2 0.234 0.225

Estimated parameters from (weighted by gender) regressions of gender-specific value-added
with school characteristics as explanatory variables are shown. Column (3) shows results derived
for the difference between male and female value-added as a dependent variable. Regressions
include municipality fixed effects. Standard errors clustered at the municipality level are shown
in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A2: Number and Scores of Females Changing and Not Changing Schools of Differ-
ent Groups

Group N Score in 4th Score in 8th Score in 10th
(1) (2) (3) (4)

1 stayers 4882 -0.499 -0.385 -0.577
1 to 1 7508 -0.581 -0.483 -0.836
1 to 2 8109 -0.295 -0.229 -0.290
1 to 3 3332 -0.002 0.059 0.411
1 to 4 1359 0.458 0.404 1.259
2 stayers 12046 -0.090 -0.002 0.054
2 to 1 7451 -0.459 -0.320 -0.707
2 to 2 10712 -0.198 -0.097 -0.178
2 to 3 5259 0.171 0.211 0.517
2 to 4 2583 0.498 0.554 1.313
3 stayers 25183 0.335 0.430 0.711
3 to 1 5566 -0.338 -0.148 -0.556
3 to 2 9245 -0.067 0.076 -0.059
3 to 3 6674 0.249 0.403 0.625
3 to 4 3892 0.667 0.823 1.447
4 stayers 35155 0.826 1.022 1.467
4 to 1 2326 -0.081 0.155 -0.377
4 to 2 4192 0.134 0.333 0.133
4 to 3 4174 0.429 0.661 0.811
4 to 4 4338 0.887 1.140 1.623
The table shows the average test scores (columns 2 to 4) and numbers (col-
umn 1) of female students moving from/to schools representing different
quartiles of average classmate scores.
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Table A3: Number and Scores of Males Changing and Not Changing Schools of Different
Groups

Group N Score in 4th Score in 8th Score in 10th
(1) (2) (3) (4)

1 stayers 4744 -0.361 -0.218 -0.392
1 to 1 7202 -0.462 -0.306 -0.613
1 to 2 7276 -0.166 -0.067 -0.078
1 to 3 4219 0.184 0.200 0.703
1 to 4 1003 0.466 0.567 1.424
2 stayers 11451 0.071 0.193 0.233
2 to 1 6723 -0.297 -0.106 -0.468
2 to 2 9059 -0.005 0.083 0.064
2 to 3 6222 0.308 0.394 0.790
2 to 4 1843 0.707 0.774 1.580
3 stayers 22942 0.501 0.621 0.908
3 to 1 5280 -0.154 0.032 -0.352
3 to 2 7848 0.069 0.248 0.128
3 to 3 7146 0.369 0.536 0.819
3 to 4 3247 0.774 0.957 1.614
4 stayers 34037 0.993 1.195 1.688
4 to 1 2233 0.001 0.233 -0.292
4 to 2 3761 0.305 0.502 0.302
4 to 3 4487 0.605 0.809 0.964
4 to 4 3605 1.057 1.309 1.807
The table shows the average test scores (columns 2 to 4) and numbers (col-
umn 1) of female students moving from/to schools representing different
quartiles of average classmate scores.
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