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ESCUELA DE INGENIERÍA
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To my advisor Álvaro Soto who welcomed me into his research group when I was

just starting to learn about artificial intelligence. Without his invaluable guidance and

mentorship I would never have been able to write this thesis.

To the IALab group members for their help, teaching and support in all areas. I would

particularly like to thank my office mates Felipe del Rı́o and Vladimir Araujo who col-

laborated with the experimentation, writing and publication of some of the intermediate

results presented here.

To my friends Francisco Rencoret and Raimundo Manterola who helped with the proof

reading of this document in addition to providing stimulating discussions.

Finally, I want to thank my family for their support, encouragement and blind faith in

my work.

iv

DocuSign Envelope ID: E8D7154F-38B9-4580-B6D6-B175CA018F1C



TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

LIST OF TABLES viii

ABSTRACT ix

RESUMEN x

1. INTRODUCTION 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Redundancy in Fine-Tuned Models . . . . . . . . . . . . . . . . . . . . . 3

1.3. Redundancy from variable difficulty tasks . . . . . . . . . . . . . . . . . 4

1.4. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. BACKGROUND INFORMATION 8

2.1. Adaptive Computation Time Algorithm . . . . . . . . . . . . . . . . . . 8

2.2. Threshold Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4. MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. RELATED WORK 15

3.1. Dynamic Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2. Adaptive Computation Time for RNNs . . . . . . . . . . . . . . . . . . . 18

4. PROPOSED METHOD 21

4.1. Gating Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2. Penalizing complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3. Reducing computation time . . . . . . . . . . . . . . . . . . . . . . . . 24

5. EXPERIMENTS 28
v

DocuSign Envelope ID: E8D7154F-38B9-4580-B6D6-B175CA018F1C



5.1. Dynamic Early-Stopping Transformers . . . . . . . . . . . . . . . . . . 28

5.1.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.3. Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2. Adaptive Computation for Recurrent Visual Reasoning . . . . . . . . . . 35

5.2.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.3. Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6. CONCLUSIONS AND FUTURE WORK 44

REFERENCES 45

APPENDIX 54

A. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B. Average Computation per Question Type . . . . . . . . . . . . . . . . . . 56

B.1. CLEVR Question Families . . . . . . . . . . . . . . . . . . . . . . . 56

B.2. GQA Question Types . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vi

DocuSign Envelope ID: E8D7154F-38B9-4580-B6D6-B175CA018F1C



LIST OF FIGURES

1.1 CLEVR dataset samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Transformer diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 DACT diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 DACT-BERT diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 GLUE task results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Attention entropies in dynamic Transformers. . . . . . . . . . . . . . . . . . 33

5.4 Layer frequencies used by dynamic Transformers. . . . . . . . . . . . . . . 34

5.5 Integrated Gradients attributions. . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 CLEVR results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.7 Model complexities per question family in CLEVR. . . . . . . . . . . . . . 39

5.8 Model complexities per question type in GQA. . . . . . . . . . . . . . . . . 41

5.9 Attention map comparison for static and dynamic MACs. . . . . . . . . . . . 42

5.10 Attention maps, intermediate answers, and halting probabilities for DACT. . . 43

B.1 Model complexities per question family in CLEVR with template. . . . . . . 58

B.2 Model complexities per question type in GQA with type identifier. . . . . . . 59

vii

DocuSign Envelope ID: E8D7154F-38B9-4580-B6D6-B175CA018F1C



LIST OF TABLES

5.1 GQA dataset results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii

DocuSign Envelope ID: E8D7154F-38B9-4580-B6D6-B175CA018F1C



ABSTRACT

Despite the substantial improvements in results brought about by neural network mod-

els, their extensive application has been limited by their high computational cost due to

redundancies. Furthermore, this thesis postulates that these inefficiencies cannot be com-

pletely solved with static methods, since some redundancies are intrinsic to the problem

being solved and, therefore, are data-dependent. Although dynamic architectures that

adapt to the input have been proposed in response to this problem, they all share the lim-

itation that they are not fully differentiable. Responding to this common limitation this

work proposes the first implementation of a dynamic computation algorithm that is fully

differentiable: a differentiable dynamic early exiting algorithm we call DACT.

We validated the advantages of our approach both in terms of results and interpretabil-

ity using two of the most common use cases and find that: i) DACT can lead to significant

performance gains when replacing existing dynamic approaches, and ii) DACT can help

eliminate intrinsic redundancies when used to augment static models. Indeed, in the do-

main of NLP we find that our approach is better at reducing the number of Transformer

blocks used by BERT models without loss in performance on a suite of tasks. Similarly,

we show a significant reduction in the number of recurrent steps needed when applied to

the MAC architecture, surpassing the results of both existing adaptive algorithms and com-

parable static ones while improving model transparency. Furthermore, our model shows

remarkable stability, responding predictably to changes in hyper-parameters while trading

off precision and complexity sensibly.

Keywords: Deep Learning, Dynamic Architectures, Early Exiting, Efficient Transform-

ers, Model Interpretability.
ix

DocuSign Envelope ID: E8D7154F-38B9-4580-B6D6-B175CA018F1C



RESUMEN

A pesar de las mejoras sustanciales en los resultados que aportan los modelos de redes

neuronales, su aplicación generalizada se ha visto limitada por su elevado coste com-

putacional debido a redundancias presentes en este tipo de arquitecturas. Más aún, esta

tesis postula que dichas ineficiencias no pueden resolverse completamente con métodos

estáticos, debido a que algunas redundancias son intrı́nsecas al problema que se resuelve

y, por lo tanto, son dependientes de los datos. Aunque en respuesta a este problema se

han propuesto arquitecturas dinámicas que se adaptan a la entrada, todas ellas comparten

la limitación de que no son totalmente diferenciables. Ante esta limitación común, nue-

stro trabajo propone la primera implementación de un algoritmo de tiempo de cómputo

dinámico que es totalmente diferenciable: un algoritmo dinámico diferenciable de early

exiting que llamamos DACT.

Validamos las ventajas de nuestro enfoque, tanto en términos de resultados como de

interpretabilidad, utilizando dos de los casos de uso más comunes, y descubrimos que el

DACT puede conllevar: i) importantes ganancias de rendimiento cuando sustituye a los

enfoques dinámicos existentes, o ii) eliminar las redundancias intrı́nsecas cuando se uti-

liza para complementar modelos estáticos. De hecho, en el dominio del procesamiento

de lenguaje descubrimos que nuestro enfoque es mejor para reducir el número de bloques

Transformer utilizados por los modelos BERT sin pérdida de desempeño en una serie de

tareas. Del mismo modo, mostramos una reducción significativa en el número de pasos

recurrentes necesarios cuando se aplica a la arquitectura MAC, superando los resultados

tanto de los algoritmos adaptativos existentes como de aquellos estáticos comparables, a la

vez que se mejora la transparencia del modelo. Además, nuestro modelo muestra una no-

table estabilidad, respondiendo de forma predecible a los cambios de los hiperparámetros,

a la vez que equilibra la precisión y la complejidad de forma razonable.

x
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Palabras Claves: Aprendizaje Profundo, Arquitecturas Dinámicas, Transformers Efi-

cientes, Modelos Interpretables.
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1. INTRODUCTION

1.1. Motivation

In the past few years, Deep Learning (DL) techniques have achieved state-of-the-art

performance in most, if not all, computer vision (Krizhevsky, Sutskever, & Hinton, 2012;

Redmon, Divvala, Girshick, & Farhadi, 2016; He, Gkioxari, Dollár, & Girshick, 2017;

D. Hudson & Manning, 2018) and natural language processing (Devlin, Chang, Lee, &

Toutanova, 2019) tasks. Unfortunately, the benefits of using a powerful model are gen-

erally also accompanied by a highly demanding computational load. Indeed, research

done under the banner of increasing performance metrics such as accuracy have led to

computationally inefficient models that are intensive both during training and inference.

Among others, some immediate consequences are longer model training times and limited

applicability to mobile devices (S. Han, Mao, & Dally, 2015).

The use of increasingly demanding models also has major implications in terms of

the environmental impact of AI technologies, a problem that is gaining considerable at-

tention. As an example, recent research provide an estimation of the carbon footprint of

several NLP models, concluding that current AI models are becoming environmentally

unfriendly (Strubell, Ganesh, & McCallum, 2019). Similarly, other works argue about the

relevance of including computational efficiency as an evaluation criterion for research and

applications related to artificial intelligence (Schwartz, Dodge, Smith, & Etzioni, 2019).

In spite of this increasing need, research to improve computational efficiency of DL mod-

els is still limited.

An argument can also be made that reducing computation can lead to improved model

transparency. As an example, recent work has proved that interpretability decreases with

the number of layers in a model (Barceló, Monet, Pérez, & Subercaseaux, 2020). Sim-

ilarly this work will show how reducing computation can boost the usefulness of tradi-

tional interpretability techniques such as analyzing attention (Y. Wang, Huang, Zhu, &

1
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Zhao, 2016; Lee, Shin, & Kim, 2017; Ghaeini, Fern, & Tadepalli, 2018) and allowing for

gradient based techniques such as Integrated Gradients (Sundararajan, Taly, & Yan, 2017).

This thesis argues that as models grow, internal computational redundancies multiply

as well. We distinguish two sources for redundancies: model redundancies and intrinsic

data-dependent ones. In the first category we include computational redundancies present

in the model weights and structure such as repeated operations, inefficient implementa-

tions, unused connections, etc. The second kind of redundancies considers those that arise

from the data itself. For example, convolutional networks for visual recognition waste a lot

of computation processing sectors of the image in which the object is clearly not present

(e.g. the sky). Although ultimately both redundancies are model redundancies (because it

is the model that does the unnecessary processing), the second group encompasses those

redundancies that are data-dependent.

Research in this area has primarily focused on adapting the massive models to more ef-

ficient static ones through elaborate data augmentations, model compression, or by using

efficient approximations of intensive operations. The success of this kind of approaches

lies in the fact that, while high parameter-counts help training (Zhang, Bengio, Hardt,

Recht, & Vinyals, 2016; Belkin, Hsu, Ma, & Mandal, 2019; Kaplan et al., 2020), models

that are similarly performant can be achieved with significantly less computation (S. Han

et al., 2015; Sanh, Debut, Chaumond, & Wolf, 2020; Frankle & Carbin, 2018; H. Zhou,

Lan, Liu, & Yosinski, 2019). Indeed, recent works have been successful in training per-

formant small models using a process called distillation, through which small efficient

models can be effectively trained by taking advantage of big inefficient models, extracting

knowledge from them and using it to teach a student model.

Regardless of how successful static approaches have been in alleviating models com-

putational redundancies, this work proposes that they are not capable of reducing intrinsic

redundancies. Therefore this thesis focuses on an alternative approach which instead is

concerned with creating dynamic architectures capable of adapting their computational

2
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graphs depending on the input. Both research directions, efficient static models and dy-

namic models, are compatible and can be combined to take advantage of the benefits

offered by each, and we look forward to future research that combines both approaches.

In particular, this work focuses on modifying sequential reasoning neural networks (which

most of them are) to make them dynamic by adding early stopping capabilities.

Of course, not all models benefit equally from every computation reduction technique,

there are models and situations which are better suited for dynamic computation to reduce

complexity. We present two distinct cases where that happens in this thesis. First, we ar-

gue that the tasks with which NLP Transformer models are pre-trained are more complex

than the task they are later adapted and used for, resulting in some of the computation be-

coming redundant after fine-tuning model weights. Second, we also argue that some tasks

exist where there is a significant variance in complexity between the different instances,

therefore creating an opportunity for reducing computation for easy inputs and reserving

the maximum computation for more complex ones.

1.2. Redundancy in Fine-Tuned Models

Recent works have analyzed the parameter redundancy and over-parametrization present

in state-of-the-art models that make efficient static alternatives possible. Indeed, parame-

ter counts can be reduced by upwards of 90% without compromising accuracy in several

applications (LeCun, Denker, & Solla, 1990; S. Han et al., 2015; Frankle & Carbin, 2018;

H. Zhou et al., 2019). This is especially valid for the massive Transformer (Vaswani et al.,

2017) based models used in NLP such as BERT (Devlin et al., 2019) and RoBERTa (Y. Liu

et al., 2019) which have gained popularity mainly due to their success in adapting to a wide

variety of NLP tasks (Rogers, Kovaleva, & Rumshisky, 2020), although recently they have

seen applicability to image (Dosovitskiy et al., 2020; Li, Yatskar, Yin, Hsieh, & Chang,

2019) and video understanding (Caron et al., 2021). The training of increasingly param-

eter heavy Transformers have led to significant computational redundancies (Kovaleva,

Romanov, Rogers, & Rumshisky, 2019; Rogers et al., 2020) even for the pre-training task.

3
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Consequently, recent works have explored strategies to develop more parameter-efficient

static versions of BERT based models (Sanh et al., 2020; Jiao et al., 2019).

More interesting for the purposes of this thesis is the exacerbation of existing redun-

dancies when adapting huge Transformer models like BERT to simpler tasks by fine-

tuning. The usual pipeline consists of fine-tuning BERT by adapting and retraining its

classification head to meet the requirements of a specific NLP task. However, the task

BERT was trained to solve requires so much more than we normally need for everyday

text analytics that common sense indicates that some of the internal processing done by

the model is no longer necessary for the simple task. For example, it makes sense that

attention heads that track named entities may not be needed for sentiment analysis.

Furthermore, because Transformers are multi-layered and build up increasingly ad-

vanced representations as the depth increases through composition, it makes sense that

some of the final layers are unnecessary for simpler tasks. Indeed, exploratory work in-

vestigating where specific knowledge is generated in BERT shows that the last layers

encode features specific to the pre-training task (Kovaleva et al., 2019), which provides a

compelling argument for early stopping as we can reduce computation by removing layers

that are no longer needed. In point of fact, recently several techniques have been success-

ful in proposing adaptive extensions to BERT to control how many Transformers blocks

are used (Xin, Tang, Lee, Yu, & Lin, 2020; W. Liu et al., 2020; W. Zhou et al., 2020).

1.3. Redundancy from variable difficulty tasks

Some tasks contain questions that vary greatly in complexity. We argue that if the

complexity needed to answer varies, then it makes intuitive sense that model complexity

should vary accordingly. The ability to adaptively allocate more resources to difficult

tasks is one that all humans possess and is evident in the increased requirements needed

for complex mathematics compared to simple everyday tasks. Despite this, most state of

4

DocuSign Envelope ID: E8D7154F-38B9-4580-B6D6-B175CA018F1C



the art models use fixed processing pipelines that do not adapt the architecture depending

on the data.

Figure 1.1. Examples of questions in the CLEVR (Johnson et al., 2016)
dataset that show a significant variation in the number of reasoning steps
that are needed to answer them correctly.

This is the case of new Visual Question Answering (VQA) scenarios that have been

proposed to support research in the area of visual reasoning, such as the CLEVR and GQA

datasets (Johnson et al., 2016; D. A. Hudson & Manning, 2019a). These datasets pose

challenging natural language questions about images whose solution requires the use of

perceptual abilities, such as recognizing objects or attributes, identifying spatial relations,

or implementing high-level capabilities like counting. As an example, Figure 1.1 shows

two instances from the CLEVR dataset (Johnson et al., 2016). In this case, each visual

question entails a different level of complexity to discover the correct answer. Specifically,

while the first question involves just the identification of a specific attribute from a specific

object, the second question requires the identification and comparative analysis of several

attributes from several objects. Furthermore, this disparity is exacerbated in real world

datasets such as Visual Genome (Krishna et al., 2017), as the open-ended nature of the

questions and images could lead to some seemingly similar questions actually requiring

different processes to solve.

5
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Modular architectures (Hu, Andreas, Rohrbach, Darrell, & Saenko, 2017; Johnson et

al., 2017) are an effective way to solve complex multi-step reasoning problems and work

by using a policy (sometimes presented explicitly as a Policy Network or Controller) to

decompose the problem into smaller steps. Component steps are then tackled individually

by either specialized or general purpose processing modules, which are combined to gen-

erate the final output. When the complexity and number of modules used is conditioned

on the inputs models can adapt the processing pipeline to match the difficulty of each

instance. However, this adaptive behavior requires additional supervision or elaborate

reinforcement learning training schemes in order to train the policy.

On the other hand, semi-modular fully differentiable alternatives that repeat a single

general purpose module (D. A. Hudson & Manning, 2019b; D. Hudson & Manning, 2018)

are advantaged in that they can be trained end to end, but lose the capability to adapt to

different inputs. Indeed, the number of times the module is repeated is fixed as a hyper-

parameter that is later manually adjusted. We argue that in manually tuning it’s value with

the objective of maximizing accuracy results in models calibrated for the most complex

cases, overestimating the computational load needed to solve easier ones. This results in

suboptimal behavior, over-processing in simple cases and possibly under-processing in the

more complex ones.

1.4. Contributions

The main contribution of this work is the proposal of a new dynamic approach to adap-

tive computation via early stopping based on a novel attention-based formulation. As key

insight, this mechanism addresses the main common limitation of previous approaches,

namely their non-differentiability. This persistent issue arises because varying the archi-

tecture requires the use of piecewise functions. To overcome this problem we use a soft

approximation of the gating mechanism during training, and only adapt during inference.

In addition, we derive criteria for stopping computation that allow us to give theoretically

6
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backed guarantees about the correctness of the response. The result is a fully differen-

tiable model that can be trained using gradient descent whose computation can be reduced

by mathematically determining when an interruption of the processing pipeline does not

harm its final performance.

We validate the performance of our approach by substituting our mechanisms instead

of those used for early-stopping in existing dynamic Transformer models (Xin et al., 2020;

W. Zhou et al., 2020). Furthermore, motivated by the evident advantages that such a mech-

anism might provide to modern module networks, we propose a new fully-differentiable

adaptive visual reasoning model. Both experiments, in natural language processing and

visual reasoning, demonstrate a significant improvement in computational efficiency while

also improving interpretability.

It is important to note here that some of the intermediate results obtained in the process

of writing this thesis have been published (Eyzaguirre & Soto, 2020) or are in the process

of being published.

7
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2. BACKGROUND INFORMATION

This section introduces relevant algorithms and models that will be used in this thesis.

2.1. Adaptive Computation Time Algorithm

Adaptive Computation Time or ACT (Graves, 2016) is an algorithm that allows recur-

rent neural networks to learn how many steps are needed to process a specific input. This

is achieved by adding an additional sigmoidal output called the halting value after each

step which will determine the probability of continuing to process the current input for

another step. The resulting model allows for the propagation of gradients with respect to

the weights that determine the halting, which enables the network to learn a halting policy.

The main challenge with adaptive computation is constructing a combination function

from the halting values such that after some stepN the output of the module wont change,

making it unnecessary to keep computing. In the case of ACT, the authors propose com-

bining sequential hidden states from RNNs by computing their weighted average where

the weighting is defined by a piece-wise probability function pn.

pn =

R(n) if n ≥ N

hn otherwise
(2.1)

where R(n) is the remainder of the amount to reach one:

R(n) = 1−
n−1∑
i=1

pi (2.2)

It follows from the definition that for this to describe a valid probability distribution

(0 ≤ pi ≤ 1 and
∑∞

i=1 pi = 1) then N must be chosen such that the remainder is positive.

In particular, the ACT algorithm sets the value of N to the last step before the remainder

8

DocuSign Envelope ID: E8D7154F-38B9-4580-B6D6-B175CA018F1C



becomes negative.

N = min{n′ :
n′∑
n=1

hn ≥ 1} (2.3)

Consequently, N marks the last significant (non-zero probability) step as for every step

n ≥ N the remainder R(n) (and therefore the probability pn) will be zero (as pn =

R(n) = 1− 1).

The probability distribution described is then used to calculate the mean field updates

for the hidden states of recurrent neural networks by computing the weighted average of

the hidden state of every step sn.

s =
∞∑
n=1

pnsn (2.4)

In practice only the firstN steps have to be computed to obtain s as the rest of the steps

are multiplied by zero, allowing for dynamic reductions in computation. A pseudo-code

implementation is shown in Algorithm 1, in which a recurrent cell is allowed to iterate

infinitely until the condition that
∑n′

n=1 hn ≥ 1 − ε is reached, terminating the loop. The

slack term ε is introduced to allow the network to exit after a single iteration and is set to a

small value (e.g. 1× 10−3 in our experiments). An efficient PyTorch (Paszke et al., 2017)

implementation that can run on accelerators and is batch processable was implemented for

this thesis and has been made available online 1.

Finally, to encourage reduced computation, a proxy of total computation ρ = N + R

can be added to the loss to serve as a regularizer against high amounts of computation.

L̂ = L(x, y) + ρ (2.5)

Although the formulation isn’t fully differentiable due to the use of piece-wise functions

in Equations 2.1 and 2.3, gradients are still propagated through the residual. Indeed, min-

imizing the residual provides gradients equivalent to maximizing the halting values prior

to the last step, therefore incentivizing reduced computation.

1https://github.com/ceyzaguirre4/adaptive computation

9
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Algorithm 1 ACT
Input: S recurrent cell
Input: x input
Input: ε slack

1: sn ← ~0
2: s← ~0
3: R← 1
4: while True do
5: # Run recurrent cell S for the nth time
6: sn ← S(sn, x)
7: hn ← GetHalt(sn)
8:
9: # Calculate probability pn and update the remainder

10: if R− hn ≥ ε then
11: R← R− hn
12: pn ← hn
13: else
14: pn ← R
15: R← 0
16: end if
17:
18: # Combine the nth hidden state with previous ones
19: s← s+ pn · sn
20:
21: # Stop computation if answer cannot change
22: if R = 0 then
23: break loop
24: end if
25: end while
Output: Combined hidden states s

2.2. Threshold Early Stopping

A different approach to allowing the neural network to learn how many recurrent steps

are needed (as is the case in ACT (Graves, 2016)) is to first train a computationally ex-

pensive model, and later add shortcuts. The shortcuts typically take the form of classifiers

which are added at lower depths between modules in the architecture to obtain an output

without needing to execute deeper layers. The theory that backs early stopping techniques

is that intermediate representations learnt by the computationally expensive model may

10

DocuSign Envelope ID: E8D7154F-38B9-4580-B6D6-B175CA018F1C



contain sufficient information to answer some of the “easier” inputs. The challenge is

identifying when the output of the intermediate classifier is good enough.

Deciding which of the N classifiers to trust requires using a metric that indicates the

confidence that each classifier has in the accuracy of its prediction. Then, an external

hyper-parameter (normally found through trial and error) is used as a confidence threshold.

Namely, if the confidence after running classifier n is high enough, then halt computation

and avoid running subsequent layers and classifiers. Algorithm 2 illustrates how this kind

of model generally works, iteratively running deeper and deeper layers until the threshold

criteria is met, which indicates that the model is confident enough in its prediction that

running further layers isn’t necessary.

Algorithm 2 ConfidenceThresholdEarlyStopping
Input: M model with N = max steps modules, each followed by a classifier
Input: confidence threshold threshold

1: for step n = 1, 2, . . .max steps do
2: # Get output after running nth module and classifier
3: yn ← GetOutputModule(M,n)
4:
5: # Get confidence from output
6: hn ← GetConfidence(yn)
7:
8: # Stop computation if confidence is high.
9: if hn ≥ threshold then

10: break loop
11: end if
12: end for
Output: Approximate final answer yn

Because the halting decision is non differentiable no gradients are propagated to the

confidence function, making it impossible for it to be learnt jointly. Consequently, most

confidence functions are based on fortuitous heuristics such as the magnitude of the prob-

ability assigned to the top class in the output vector, the entropy of said vector (Xin et al.,

2020; W. Liu et al., 2020), or the number of times intermediate classifiers have agreed on

an output class (Sun, Cheng, Gan, & Liu, 2019).
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2.3. Transformers

Transformers encoders such as BERT (Devlin et al., 2019), RoBERTa (Y. Liu et

al., 2019), GPT (Radford et al., 2019), etc. are models composed by stacking multiple

Transformer blocks sequentially, such that the output of one block feeds the following

one (see Figure 2.1). Each block acts as a sequence-to-sequence model, receiving a

XN×d1 = {xd1i |Ni=1} tensor containing N embedding vectors xi, each of dimension d1,

and outputting an N × d2 tensor containing the transformed values of each of the input

vectors.

Figure 2.1. Transformer Encoder models consist of several stacked blocks,
the number of which depends on the model and use-case. When used
for natural language processing an additional embedding layer is typically
prepended to facilitate processing. The output probabilities are obtained by
passing one or more sequence elements through a classifier. A two layer
multi-class class classifier is shown in the diagram.

Each Transformer block is composed of the same two operations. First, a self-attention

layer is used such that each one of the N input vectors is transformed into a pondered sum

of projections of all the other vectors called value vectors vi = Wd2×d1
V xi.

x′i =
N∑
j=1

vj · αi,j (2.6)

The weights αi,j are obtained by comparing projected views of each query vector qi =

Wd3×d1
Q xi with every key vector ki = Wd3×d1

K xi to obtain the unnormalized alignment

scores βi,j , and then normalizing with a Softmax function to obtain the attention weights:

βi,j =
qi · kj√
d3

(2.7)
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αi,j =
eβi,j∑N
k=1 e

βi,k
(2.8)

Every output of the self attention layer is then fed into the same two layer neural

network called the point-wise feed-forward layer. Importantly, residual connections and

layer normalization are added after both the self-attention layer, and the point-wise feed-

forward layer to aid convergence.

2.4. MAC

The MAC architecture (D. Hudson & Manning, 2018) is a recurrent architecture de-

signed for iterative reasoning tasks that require an external knowledge base. The input

query sequence is translated into a series of distributed reasoning operations by attending

(Bahdanau, Cho, & Bengio, 2015) different parts of the query. Each reasoning operation

represents a control signal for an iteration of the MAC cell and informs the other modules

in the architecture. First, the control vector is used to soft-select a specific entry in the

knowledge-base through another attentional mechanism. Then, a working memory vec-

tor, analogous to hidden states in recurrent models, is updated using a function of both

the control signal and the knowledge-base entry. The models that results from stacking

multiple cells consume the external knowledge-base iteratively and selectively in a series

of discrete reasoning steps.

One particular use-case for such a model is answering questions about images (Goyal,

Khot, Summers-Stay, Batra, & Parikh, 2017), as the input question can be transformed

into a sequence of control signals, and the image can be decomposed into a set of re-

gions. Indeed, MAC achieved state of the art results in the challenging visual reasoning

dataset CLEVR (Johnson et al., 2016) while being more transparent compared to previous

approaches thanks to the easily interpretable attention maps.

Replicating the results from the original MAC paper (D. Hudson & Manning, 2018) is

non trivial as several hyper-parameters must be tuned and some modules must be modified.
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As an additional contribution the PyTorch (Paszke et al., 2017) code developed for MAC

during the completion of this thesis was made public online 2.

2https://github.com/ceyzaguirre4/mac-network-pytorch
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3. RELATED WORK

Chapter 1 highlights the need for suitable mechanisms to control computational com-

plexity in DL models for several use-cases, including improving interpretability, effi-

ciency, and reducing the environmental impact of models. However, in spite of this in-

creasing need, research to make DL models more dynamic is still limited.

Out of the taxonomy of dynamic deep neural networks proposed by prior work (Y. Han

et al., 2021), this investigation focusses on instance-wise dynamism, i.e. when the pro-

cessing pipelines are data-dependent, adapting the computational graph to the content of

each specific input. This is different from neural networks that result in varying amounts

of computation due to the format of the input such as multi-resolution convolutional net-

works, language models that accept variable length inputs, or graph networks. An example

of a dynamic model is a convolutional neural network which increases the number of lay-

ers used for difficult images compared to the those used for simpler ones. Importantly,

the input dependance requires control modules that decide which parts are executed, and

these must be conditioned on the input. Furthermore, instance-wise approaches are easily

adapted into global ones by simply using a fixed prior and removing the conditioning on

the input.

The desired behavior of adapting the architecture to specific inputs is often obtained

through one of three mechanisms (Y. Han et al., 2021):

• A proxy of model confidence can be used within a user defined (fixed) pol-

icy that decides when to skip sections of the architecture typically by exiting

early (Huang et al., 2017; Teerapittayanon, McDanel, & Kung, 2016; Xin et al.,

2020; Park et al., 2015; W. Zhou et al., 2020). Confidence scores are generally

taken directly from the output probabilities, or calculated as a function of those.

Models that skip intermediate sections take advantage of skip connections (He,

Zhang, Ren, & Sun, 2015) and avoid processing residual blocks when the resid-

ual is estimated to be of small magnitude (and therefore thought irrelevant to the
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output). On the other hand, early exiting models are those that take advantage

of intermediate classifiers that can guess the final output “early”, ie. without

completely running the inference pipeline (see Section 2.2).

• Another model (called the Policy Network) conditioned on the input decides the

topology of the architecture in a typically two stage process by combining multi-

ple specialized modules (Wu et al., 2018; Andreas, Rohrbach, Darrell, & Klein,

2016; Johnson et al., 2017). In the case of specialized modules, the generation

of the sequences required costly supervision or elaborate reinforcement learning

training schemes. Some module networks mentioned in Section 1.3 belong in

this class of adaptive models as the number and complexity of modules used is

sometimes conditioned on the input question.

• Gating mechanisms built into the architecture allow the model to control the flow

of information by opening or restricting sections of the computational graph.

Despite their generality and applicability, these models are limited by their lack

of differentiability and require reinforcement training (Lin, Rao, Lu, & Zhou,

2017; X. Wang, Yu, Dou, Darrell, & Gonzalez, 2018) or approximating the gra-

dients (Bejnordi, Blankevoort, & Welling, 2020; Veit & Belongie, 2018; Verelst

& Tuytelaars, 2020; Xie, Zhang, Zhu, Huang, & Lin, 2020; Voita, Talbot, Moi-

seev, Sennrich, & Titov, 2019).

This work proposes a novel gating mechanism that is fully-differentiable (and there-

fore can be trained straightforwardly by gradient descent during training), while still en-

abling the model to exit early during inference using a confidence-based policy. We test

our approach in two distinct paradigms. First against early-exiting Transformer models

that use policies based on model confidence, where we find it outperforms state-of-the-art

techniques in lower computation regimes. Second, we apply both ACT and DACT al-

gorithms to a complex recurrent model to show the advantages our differentiable version

offers in terms of computation and interpretability.
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3.1. Dynamic Transformers

The recent rise in popularity of Transformer-based language models like BERT (Devlin

et al., 2019), led to a renewed interest in improving the efficiency of this kind of deep mod-

els. Most research in this area focuses on static approaches: training more compact static

models by weight tying to reduce parameters (Lan et al., 2020; Bai, Kolter, & Koltun,

2019; Dehghani, Gouws, Vinyals, Uszkoreit, & Kaiser, 2019), or using distillation to

train student models with extracted knowledge from larger pre-trained teachers (Sun et

al., 2019; Jiao et al., 2020; Sanh et al., 2020). However, some investigations instead fo-

cus on dynamic approaches. Typically, these use the previously trained model as a base,

but allow it to dynamically adapt to different computational paths for each input instance

during inference.

Recently, a series of algorithms have been proposed to reduce computation in Trans-

former language models based on early exiting (Kaya, Hong, & Dumitras, 2019). Models

such as DeeBERT (Xin et al., 2020), FastBert (W. Liu et al., 2020), and PABEE (W. Zhou

et al., 2020) introduce intermediate classifiers after each Transformer block. These classi-

fiers are then trained independently from the rest of the model (not end-to-end). After both

training stages, a “halting criterion” is used to dynamically determine the number of blocks

needed to perform a specific prediction. Instead of using a brittle confidence approach

(Guo, Pleiss, Sun, & Weinberger, 2017) to determine when to stop, recent approaches rely

on computing the Shannon’s entropy of the output probabilities (Xin et al., 2020; W. Liu

et al., 2020) or counting the number of times intermediate classifiers have agreed on an

output class (W. Zhou et al., 2020). As is the case with most confidence threshold based

early-exit approaches, a common limitation is that they are non-differentiable and use a

fixed metric which is not adapted for the purpose.

Notably, the fact that our formulation is end-to-end differentiable allows us to fine-

tune the weights of the underlying backbone (i.e. the Transformer blocks and embedding

layers) using a joint optimization process that trains the intermediate classifiers. This
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stands in contrast to all existing methods for dynamic Transformers, where training is

done in two stages first pre-training the backbone (and not the intermediate classifiers)

and later freezing the backbone and only modifying the weights of the classifiers.

Furthermore, we highlight that both DeeBERT and FastBERT can be expressed and

trained with our model. For DeeBERT this can be achieved by hamstringing DACT and

training it in three stages. The first two stages consist of the same training regime as

DeeBERT, first training only the transformer blocks and the final classification layer, and

subsequently freezing the transformer blocks and training the intermediate classifiers in-

dependently. An appropriate confidence function to force the model to adapt based on

entropy is a simple logistic regression that receives the output entropy and consists only

of a bias to encode the entropy threshold, and a single weight to scale the layer response.

Training at this point will yield different learnt entropy thresholds for each layer (which is

positive) but, in order to fully represent DeeBERT, we need to further handicap the model

by tying the biases in all the confidence functions. FastBERT can be obtained similarly

by simply replacing the second training stage with the distillation process described by

(W. Liu et al., 2020).

In consequence, DACT-BERT can be seen as a generalization of existing dynamic

Transformer architectures, allowing us to train these in an end-to-end fashion while elim-

inating the need for manual tuning of the entropy hyperparameter. In this sense, in our

experiments, we note that the training of only the confidence functions results in a opti-

mization problem that produces highly stable solutions, suggesting that SGD is able to

find suitable optimum entropy thresholds 1.

3.2. Adaptive Computation Time for RNNs

In the context of recurrent networks, Graves introduces Adaptive Computation Time

or ACT (Graves, 2016), an algorithm for dynamic early-stopping in Recurrent Neural

1for a small enough learning rate.
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Networks (RNN). The key idea behind ACT is to add a sigmoidal halting unit to an RNN

that, at each inference step, determines if the RNN should stop or continue its processing.

These activation values are then used to construct the model’s final output as a weighted

sum of the hidden states of all previous recurrent steps. This is achieved through a series

of non-differentiable piece-wise operations mainly used to enforce a hard limit so that no

subsequent iteration changes the model output. As we show in this work, this results in

noisy gradients that do not handle properly the information about the number of processing

steps being used.

Despite its limitations, ACT has been applied to multiple tasks beyond the synthetic

cases reported in the original work (Graves, 2016). It has been used to improve results

on the LAMBADA language modeling dataset using a Universal Transformer architecture

(Dehghani, Gouws, Vinyals, Uszkoreit, & Kaiser, 2018), achieving state-of-the-art perfor-

mance. Also, on the challenging task of character level language modeling, it has been

used to dynamically increase the attention span of a Transformer model, achieving state-

of-the-art performance on the text8 and enwiki8 datasets (Mahoney, 2011). Furthermore,

on the natural language reasoning corpus SNLI dataset, it has been reported to boost per-

formance and interpretability (Neumann, Stenetorp, & Riedel, 2016). In terms of visual

recognition, ACT has been used to dynamically choose the number of executed layers

for different pre-defined regions in an input image, improving performance in terms of

computational efficiency and model interpretability (Figurnov et al., 2016).

While similar in function, our approach to adaptive computation has substantial dif-

ferences with respect to ACT. ACT achieves halting by forcing that the weights used to

combine each step’s output into the final answer sum exactly one. To attain this behavior a

non-differentiable piecewise function is used, namely: if the sum of the confidence scores

is more than one, then change the last weight so that the sum is exactly one. In contrast,

our approach maintains the full gradient by using a smooth gating-function for training,

and only halting during inference. Furthermore, instead of averaging hidden states from

recurrent networks, we calculate compound probabilities using the output distributions
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of each intermediate classifier, which carries the additional advantage of eliminating the

assumption that the hidden states are approximately linear.
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4. PROPOSED METHOD

In this section we present our method to implement a dynamic early-stopping algo-

rithm that, similar to previous works in adaptive computation for RNNs (Graves, 2016)

utilizes a halting-neuron that the model can use to cut computation early. The novelty of

our method lies mainly in the fact that, to the best of our knowledge, it remains the only

fully-differentiable dynamic computation approach. The main intuition for understanding

how our algorithm works for early exiting is that we use a novel soft gating approach such

that at any point the model can decide to limit the contribution of future steps by using

halting values. As we will show later our gating allows us to compute upper and lower

bounds for the probabilities of each output class, something we leverage to derive a crite-

rion to stop early during inference. Then, during inference, we can use the halting values

to determine when it makes sense to stop early. Section 4.1 describes the differentiable

approach used to approximate a binary gating mechanism, and Sections 4.2 and 4.3 shows

how the proposed gating can be exploited to reduce computation during inference.

4.1. Gating Mechanism

Different from ACT (Graves, 2016), our formulation is not specific to RNNs but rather

it can be applied to any classification model or ensemble M that can be decomposed as a

sequence of modules or submodels mn, n ∈ [1, . . . , N ]. For example, recurrent networks

are composed by iterative steps, CNNs by residual blocks, and ensembles by component

models. This is because, as this section will show, we combine the output probabilities

of intermediate classifiers (which can be added after modules of most types of neural

networks) instead of combining hidden states from recurrent networks (as in Graves’ case).

Each module must be structured such that it has the outputs shown in Figure 4.1. That

is, each submodel mn should produce its own prediction yn about the output using the

input X as well as any relevant information from a previous one mr , r < n. Additionally,
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Figure 4.1. The accumulated output an is built by linearly combining an−1
with the output of the nth model (following Equation 4.2). Each step can
limit the contribution of future steps by maintaining or reducing the value
of the scalar pn−1 used for the linear combination (illustrated with a dotted
line). Any hn valued roughly zero will force pn to this value, effectively
disallowing the outputs of future models from altering the current accumu-
lated output, and effectively imposing that this an become the final output
Y .

each submodel mn should also produce a sigmoidal halting value hn ∈ [0, 1] that repre-

sents how uncertain is mn about the correctness of its output yn. We set the initial halting

value h0 = 1 to represent maximal uncertainty before seeing the input. The use of scalar

halting values hn is the main mechanism to achieve dynamic early-stopping. The key idea

is that each module mn can restrict subsequent ones (ms where s > n) from altering the

final answer given by the ensemble. With this goal in mind, let define:

pn =
n∏
i=1

hi = hnpn−1 (4.1)

The value of pn can be interpreted as the probability that any subsequent submodel

ms, s > n might change the value of the final answer of the ensemble. Consequently, we

define the initial value p0 = 1.

According to the previous formulation, hn represents the uncertainty of submodel mn,

while pn represents the uncertainty of the full ensemble considering the first n models.

From Eq. 4.1 it is easy to see that the values of pn are monotonically decreasing with
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respect to index n. Also, notice that a small value of hn forces the future values of pn to

be close to 0.

We still need to describe how to combine all intermediate outputs yn (n ∈ [1, . . . , N ])

to form aN . We achieve this by defining auxiliary accumulator variables an which contain

the ensemble’s answer up to step n. By using Eq. 4.1, we can construct an in such a

manner that for some step n with a low associated pn then an ≈ aN :

an =


−→
0 if n = 0

ynpn−1 + an−1 (1− pn−1) otherwise
(4.2)

It follows from this definition that aN can always be rewritten as a weighted sum of

intermediate outputs yn. Additionally, the sum of the weights is always equal to 1, thus

describing a valid probability distribution over the intermediate outputs yn. Both proofs

are included in Appendix A.

Therefore, by describing what is effectively a pair-wise linear interpolation, we obtain

a method for implicitly attending the outputs of each model in the ensemble, including

succeeding ones. In this manner, what we propose is essentially a mixture of experts type

ensemble (Jacobs, Jordan, Nowlan, & Hinton, 1991) where we remove the controller and

replace the gating model for the implicit distribution described above. As a main result,

by adding probabilities instead of hidden values as in ACT, we remove the assumption of

ACT that the hidden states of the underlying RNN are approximately linear.

4.2. Penalizing complexity

Following the principle of Ockham’s razor, we wish to reduce complexity when it is

not needed by choosing simpler models in lieu of more complex ones when both provide

similar results. To achieve this, we define a proxy of total computation ponder cost ρ as:

ρ =
N∑
n=1

pn (4.3)
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By adding the ponder cost to the loss function L we encourage the network to mini-

mize the contribution of more complex models. This is used in the next Section (4.3) to

reduce computation.

L̂(x,y) = L(x,y) + τρ(x) (4.4)

where τ is the time penalty, a hyper-parameter used to moderate the trade-off between

complexity and error.

Alternatively, different regularizers that bias the model towards reduced computation

can be used. For example, we found that adding the L1 norm of the halting values to the

loss instead of the ponder cost further binarizes the values of pn.

4.3. Reducing computation time

The previous formulation allows us to train a model incorporating the DACT method-

ology. In brief, we modified the training process of the model to allow simpler models

to cap the maximum impact of all subsequent ones (gating in Equations 4.1 and 4.2), and

encourage the model to use this functionality as soon as possible (Equations 4.3 and 4.4).

In this section we derive equations for calculating upper and lower bounds for the proba-

bilities of each of the classes in the output vector after every module. Consecutively, we

show how to obtain a halting criteria that provides theoretical guarantees of correctness

for both multi-class and binary classification. As a consequence DACT based models are

able to halt to save computation without affecting the outcome.

The choice of the criteria for halting (and therefore reducing computation) depends

greatly on the task and how close of an approximation is required. In this work our goal is

to achieve the same top-1 accuracy with and without using DACT, i.e. ensure that halting

does not change which class has the highest probability. This is equivalent to establishing

a halting criterion that identifies step n such that the class with highest probability in an

will remain the same after running the rest of the modules. Algorithm 3 shows how the

criteria is used. During training the forward pass is identical to that described in Section
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4.1, iteratively improving the final output an by running additional modules. Then during

inference the model can cut computation once it can be determined that the remaining steps

cannot change the final answer. Notably, and in contrast with Algorithm 1 (ACT) and

Algorithm 2 (threshold early stopping), no non-differentiable functions are used during

training.

Algorithm 3 DifferentiableAdaptiveComputationTime
Input: M model with N = max steps modules
Input: x input
Input: is training ∈ {True,False}

1: pn ← 1
2: an ← ~0
3: for step n = 1, 2, . . . N do
4: # Get output and confidence after running nth module
5: yn ← GetOutputModule(M,n)
6: hn ← GetHaltModule(M,n)
7:
8: # Combine the nth output with the previous answer.
9: an ← (yn ∗ pn) + (an ∗ (1− pn))

10:
11: # Compute the halting probability for future steps
12: pn ← pn ∗ hn
13:
14: # Stop computation during inference if answer cannot change
15: if is training = False and not AnswerCanChange(yn, pn, n,N) then
16: break loop
17: end if
18: end for
Output: Approximate final answer an

We approach the problem of identifying the step such that top class cannot change by

studying the stability of the final answer. First, we know that yn (the intermediate output of

the nth classification model) is restricted to 0 ≤ yn ≤ 1 as a result of using either Softmax

or Sigmoid functions. Since the maximum change of the accumulated answer an in the

remaining N − n iterations is limited by pn, we can calculate the maximum difference

between the predicted probabilities for the topmost class and the runner-up. Consequently,

we can achieve reduced computation by halting once this difference is insurmountable.
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Without loss of generality consider the case where, for some step n, the class with the

highest probability in the accumulated answer an corresponds to class c∗ with probability

Pr(c∗, n), and the runner-up (second best) class is cru with probability Pr(cru, n). The

minimum value for the probability of the class c∗ after the remaining steps is obtained

when all the future steps assign a minimum probability (0) to this class. We can use this

result to obtain a lower bound to the probability:

Pr(c∗, N) ≥ Pr(c∗, n)
N−1∏
i=n

(1− pi) (4.5)

Leveraging that pn ≥ pn′ (for any n′ greater than n) in conjunction with Eq. 4.2, we

can establish that the minimum value for the class at c∗ after anotherN−n steps is always:

Pr(c∗, N) ≥ Pr(c∗, n)(1− pn)N−n (4.6)

Likewise, the maximum value that the probability for the runner-up class cru can take

after all unused steps (Pr(cru, N)) is achieved when the maximum probability (1) has been

assigned to this class at every remaining step. Replacing this value into Eq. 4.2 yields an

upper bound to the value that the probability for the class cru can take:

Pr(cru, N) ≤ Pr(cru, n)
N−1∏
i=n

(1− pi) +
N−1∑
i=n

pi

N−1∏
j=i+1

(1− pj) (4.7)

Then, since 0 ≤ pn ≤ 1 and pn ≥ pn′ (∀n′ ≥ n), we obtain that the maximum value

for the class cru is:

Pr(cru, N) ≤ Pr(cru, n) + pn(N − n) (4.8)

We say that the difference between the top class and the runner up is insurmountable

once we prove that Pr(c∗, N) ≥ Pr(cru, N), and thus we can cut computation since the

remaining steps cannot change the final answer of the model. Mathematically, this means
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the halting condition is achieved when:

Pr(c∗, n)(1− pn)N−n ≥ Pr(cru, n) + pn(N − n) (4.9)

which is the criterion used in this work to stop processing.

A similar procedure can be followed to derive a criterion for binary classification prob-

lems where the answer is determined by rounding a scalar sigmoidal output yn, which

results in the following halting condition:0.5 ≥ yn(1− pn)N−n + pn(N − n) if yn ≤ 0.5

0.5 ≤ yn(1− pn)N−n otherwise
(4.10)
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5. EXPERIMENTS

We evaluate the performance of our approach with two different model paradigms and

in different domains. First in Section 5.1 we use DACT gating to enable BERT Trans-

former models to early exit and compare the results to existing dynamic algorithms that

use policies based on confidence thresholding. Later in Section 5.2 we apply DACT to a

complex static recurrent visual reasoning model to reduce computation and increase trans-

parency. We also include results from the existing non-differentiable ACT algorithm as

proof of its limitations.

5.1. Dynamic Early-Stopping Transformers

5.1.1. Experimental Setup

Figure 5.1. DACT-BERT adds an additional classification layer after each
Transformer block, along with a sigmoidal confidence function. DACT-
BERT combines the Transformer hidden state and the outputs and confi-
dences of all earlier layers into an accumulated answer an. Later, during
inference, the model is halted once an ≈ aN .

As shown in Figure 5.1, DACT-BERT introduces additional linear layers after each

module, similar to those used in previous works such as the off-ramps in (Xin et al., 2020)
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or the student classifiers in the work of (W. Liu et al., 2020). As in both these cases,

we define the discrete unit of computation to be a single BERT Transformer block, i.e.

our gating mechanism will trade precision for additional complexity in discrete units of

full additional Transformer blocks. In addition to the output vector yn with the predicted

class probabilities, each n-th DACT module computes an accompanying scalar confidence

score (or halting value) hn. Following BERT (Devlin et al., 2019), both, yn and hn, are

estimated by using the classification token ([CLS]) that is included in BERT as part of the

output representation of each layer.

As described in Section 4 during training we combine the output vectors (Equation 4.2)

using a function of the halting values (Equation 4.1) to obtain the final predicted probabil-

ities. The intermediate results an, which resemble a weighted average of all previous in-

termediate outputs yn, encode the models best guess after unrolling n Transformer layers.

Then, during inference, the confidence scores can be used to effectively reduce computa-

tion by avoiding running all the layers using the appropriate halting criterion (Equations

4.9 and 4.10).

The regularizer used to bias the model towards reduced computation is the sum of

the halting values instead of Equation 4.3 as we find empirically that this helps training

convergence and further binarizes the halting probabilities while still encouraging reduced

computation.

L̂(x,y) = L(x,y) + τ
n∑
i=1

hi (5.1)

The training of the module follows a two step process. First the underlying Trans-

former model must be tuned to the relevant task. This ensures a good starting point onto

which the DACT module can then be adapted to and speeds up convergence. This is

followed by a second fine-tuning phase where both the DACT module as well as the un-

derlying Transformer are jointly trained for the relevant task. Importantly, thanks to the

fully-differentiable nature of DACT, our approach adapts the Transformer layers as well as
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the intermediate classifiers, potentially generating new representations in the Transformer

which are useful for the new lower computation scenario.

We test our method using both BERT and RoBERTa backbones, evaluating both mod-

els on six different tasks from the GLUE benchmark (A. Wang et al., 2018) (MNLI,

MRPC, RTE, SST-2, QNLI and QQP). We chose DeeBERT (Xin et al., 2020) and PaBEE

as our dynamic baselines, also using both BERT and RoBERTa backbones for better com-

parison. We do not include results for FastBERT since both DeeBERT and FastBERT use

the same entropy-threshold halting criterion. In fact, the main difference between them is

the use of distillation in FastBERT, which can also be used with our proposed model, but

this escapes the scope of our research as it is more aligned with static models.

Our model was developed using PyTorch (Paszke et al., 2017) on top of the public im-

plementations of DeeBERT and PaBEE, as well as the HuggingFace Transformers library

(Wolf et al., 2019) 1. Each experiment uses a single 11GB NVIDIA graphics accelerator,

which allows for training on the complete batch using 32-bit precision and without the

need for gradient accumulation or checkpointing.

5.1.2. Results

To compare the trade-off that exists between computational efficiency and the corre-

sponding performance obtained, we compute efficiency-performance diagrams. Efficiency

was measured as the percentage of Transformer layers used out of the total number of lay-

ers executed without an efficiency mechanism, which is equivalent to the total number

of layers in the corresponding static baseline (e.g. 12 in the case of BERT). The specific

metrics for performance are those suggested in the GLUE paper (A. Wang et al., 2018) for

each task.

In our experiments, we fine-tune the backbone model for the GLUE tasks using the

default values of the hyper-parameters. For the second stage we vary the value of τ in

1The code for DACT-BERT will be released upon publication.
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Equation 5.1 to compute our computation-performance diagrams, selecting from a set of

fixed values: τ ∈ {5× 10−5, 5× 10−4, 5× 10−3, 5× 10−2, 5× 10−1}. On DeeBERT, to

create the computation-performance diagrams, the entropy threshold was varied continu-

ously, usually in increments of 5× 10−2. In the case of PaBEE we fluctuate the patience

value between 1 and 12, effectively trying out the full range. The results for the unmod-

ified static backbones are also included as a reference, as are the results obtained by the

half-depth DistilBERT pre-trained model.

The area under the curve (AUC) in the Performance vs. Efficiency plot shown in

Figure 5.2 shows our approach improves the trade-off between precision and computation.

As was to be expected, all models perform similarly when saving little computation as

they replicate the results achieved by the non-adaptive BERT backbone that performs a

similar number of steps. On the other hand, when using limited amounts of computation

our model outperforms the alternatives in almost every task (with a single exception).

We attribute this advantage in trading off computation and performance to the combined

effect of fine-tuning the backbone weights for reduced computation, and using a more

robust adaptive mechanism. Indeed, it makes intuitive sense that, as we move away from

the 12 step regime for which the underlying static model was trained, more modification

of the weights is required. Recall that of all the Dynamic Transformer algorithms only

DACT-BERT can modify the Transformer weights because of its full-differentiability.

Importantly, because our model learns to regulate itself, it shows a remarkable stability

in the amount of computation saved, as the same values of ponder penalties give rise

to similar efficiency outputs. By contrast, DeeBERT proves to be extremely sensitive

to the chosen value for the entropy hyper-parameter, exhibiting important fluctuations in

both computation and performance indicators for small changes in its value (see RTE in

Figure 5.2). This is even more true for the case of PaBEE, since the limited granularity

to control the amount of computation through hyper-parameter changes often does not

allow to reduce the computation to less than 50%. Compared to DeeBERT, our approach’s
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Figure 5.2. Performance vs efficiency trade-offs for BERT-base and
RoBERTa-base models using DACT-BERT (blue), DeeBERT (red) and
PaBEE (green). DACT-BERT and DeeBERT experiments were repeated
three times for each hyper-parameter. Individual runs are shown with col-
ored dots, and the average along with its confidence interval is shown using
a band. In all figures the x-axis shows the average number of layers the
model chose to unroll as the fraction of those used by the respective static
backbone (shown with a black diamond). DistilBERT’s relative perfor-
mance is shown at the 50% computation mark using a black star.
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robustness advantage seems to come from training the efficiency mechanism instead of

relying on a somewhat arbitrary heuristic for its control.

(a) MRPC (b) QNLI

(c) RTE

Figure 5.3. Attention entropy distribution per layer in the backbone for
DACT-BERT (blue) and DeeBERT (red) for three different GLUE tasks.
Each point represent the entropy for one attention head in each layer and
the line shows the mean entropy for all the attentions in a given layer.

Additional advantages of our model can be observed in Figure 5.3 which shows the

average entropy of each head’s attention distribution for DACT-BERT and DeeBERT, fol-

lowing the analysis suggested by the BERTology paper (Rogers et al., 2020). First, it can

be easily seen that our approach uses less layers (exact frequencies are shown in Fig. 5.4).

That is, even when using on average the same number of layers (as is the case in 5.3a),

DACT-BERT completely disregards the outputs from the last blocks, enabling us to prune

whole layers without changing the model accuracy for reduced model size. On the one

hand, we explain this difference by noting that the entropy will remain high throughout
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Figure 5.4. Layer Frequencies used by Dynamic Transformers.

the whole model for the case of difficult questions as it will be uncertain about the an-

swer. On the other hand, any layer in DACT-BERT is capable of quitting computation if it

believes future layers cannot answer with more certainty than its own (regardless of how

certain the model actually is). Figures 5.3c and 5.4 support this hypothesis, showing that

difficult tasks in which the model performs worse such as RTE final layers are used more

frequently by the entropy based model (DeeBERT).

5.1.3. Interpretability

Our model is more transparent than both static BERT and confidence-threshold dy-

namic versions in two different ways. First, we increase interpretability by reducing the

number of layers and therefore parameters that contribute to an answer. We hypothesize

that this will lead to a more transparent model, as previous works (Barceló et al., 2020)

proved that interpretability decreases with the number of layers. While this makes intuitive

sense and has some backing in recent BERT interpretability works (Rogers et al., 2020;

Kovaleva et al., 2019), there is a need to further validate or refute this hypothesis which

we leave this to future work and specialists in the field. We do however provide code for

calculating the attributions that the input tokens have over the final prediction using the

Integrated Gradients technique (Sundararajan et al., 2017) for our model, DeeBERT, and

static baselines2.
2This code will be published along with the main model code following publication.
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A second source of interpretability provided by DACT-BERT comes from adding a

fully differentiable module which manages the number of steps to be taken. Because of

this, there is now an additional source of insight that can be explored to understand the

inner workings of the model. Namely, attribution techniques can be used to understand

which layers and neurons are important for the halting prediction, which gives us further

insight on what is the model looking at in order to make the prediction decision. Figure

5.5 illustrates this idea by showing an example of each layer’s halting value, with the

corresponding attributions of each token to its value. This type of analysis is novel to our

work, as the closest analogue in DeeBERT would consist of calculating the attributions of

the entropy (which appeared to be meaningless in our experiments), and no parallel exists

for PaBEE as the calculation of its patience halting criterion is not differentiable.

5.2. Adaptive Computation for Recurrent Visual Reasoning

5.2.1. Experimental Setup

The MAC network (D. Hudson & Manning, 2018) is a state-of-the-art recurrent archi-

tecture that decomposes problems into reasoning steps that, when applied to the CLEVR

dataset (Johnson et al., 2016), sets state-of-the-art performance with 98.9% accuracy 3. In

the context of VQA, the full network receives as an input question Q and image I and

iterates for a fixed number of times (usually 12) where each step first attends the question,

then the image, and finally, it updates an internal memory representation. An important

consideration here is that the static model includes a soft gating mechanism, but in the

original formulation it cannot be used to reduce computation. We use DACT to enhance

the model with the ability to iterate a variable number of times. As Chapter 4 states, this

requires each recurrent step should produce its own prediction yn about the correct answer

toQ in addition to modifying the gate to return sigmoidal output hn ∈ [0, 1] that represents

how uncertain each step about the correctness of its output yn.

3Our PyTorch (Paszke et al., 2017) reimplementation achieves 98.6%.
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Figure 5.5. Halting (top) and output (bottom) attribution to each input to-
ken for one sample from the MRPC task. The tokens attributions towards
the halting value are computed for every halting neuron, after each trans-
former block. For both, the color intensity shows the degree on how much
each token contributes to the final output. Green is used for tokens that have
positive attribution to the output, while red means on tokens with negative
attribution to the halt or output.

We again train our DACT-MAC in two stages to help convergence and speed up train-

ing, and replicate this training regime for both of the baselines. First we pre-train a variant

of MAC on CLEVR without using any gating or self-attention for ten epochs (with all

hyper-parameters set to their defaults), and then reset all optimizers and train three main

variants starting from the saved weights. As our first baseline, we add the soft gate to

the static MAC and train more, slightly improving the results. Second, we also implement
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and train several versions that use the ACT algorithm (Graves, 2016) with different ponder

costs. Finally, we do the same with DACT, loading the pre-trained weights and adding the

necessary gating algorithm before training again. All variants are trained for another addi-

tional 30 epochs, saving the weights with the highest associated accuracy on the validation

set. It is noteworthy that all models have the same number of weights since we reuse the

gating mechanism already present in MAC for both dynamic variants.

5.2.2. Results

Figure 5.6. Scatterplot showing the relationships between computation
(measured in average steps, horizontal), and precision (measured in accu-
racy, vertical)for each model, where every experiment was repeated three
times. The results obtained with DACT are shown in color, with individual
runs represented as small circles while the averages for each penalty are
shown as larger ones. The averaged results for ACT are shown as gray Xes.
No color is used as the value for the ponder cost did not impact the number
of steps. The diamonds show the average accuracy obtained by MAC at
different network lengths, while the dotted line represents the accuracy of
the best performing 12 step MAC.
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As one of the main goals of adaptive computation is to maximize performance at lower

computational cost, we evaluate each model’s accuracy with respect to the average num-

ber of steps taken to reach the best score. As illustrated in Figure 5.6, models resulting

from the application of DACT to MAC substantially outperform non-adaptive versions of

MAC with similar computation cost in the CLEVR dataset 4. Additionally, in our experi-

ments, DACT trained with a ponder cost of λ = 1× 10−3 repeatedly obtains an accuracy

comparable to the best achieved by any MAC and, on average, surpasses all tested alter-

natives. This apparent contradiction (obtaining better results with less computation) can

be explained by considering that DACT-augmented-MACs have the same representational

capacity as regular MACs, but can choose to reduce computation when needed.

The same results also show that, when provided with sufficient resources, MAC in-

creases its performance reducing the gap with respect to DACT versions. This tendency,

however, does not hold beyond 12 iterations, as shown also in the original MAC paper

(D. Hudson & Manning, 2018). We train a 15 step MAC with gating using the same train-

ing scheme, and the results are worse than those from its 12 step counterpart, revealing

the inadequacy of the original gating mechanism. In contrast, DACT-enabled-MACs with

the maximum amount of steps set to 15 can be fine-tuned from existing 12 step models

to obtain the best results of any model tested at 98.72% accuracy. In addition to improv-

ing performance, these results prove that using our algorithm on MACs makes them more

robust to increments in the value of the maximum number of steps.

On the other hand, models trained with the existing algorithm (ACT) are unsuccessful

in surpassing the accuracy of computationally equivalent MACs. In particular, DACT re-

sponds as expected to variations in the ponder cost, adapting its computation accordingly,

however, ACT proves to be insensitive to the ponder cost. As an example, a variant of ACT

without ponder cost (λ = 0.0) performs 3.2 steps on average and obtains an accuracy of

95.8%. Furthermore, repeating the same experiment with identical hyper-parameters may

4Lower computation MAC variants are trained by fixing the number of steps to the closest integer.
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result in the model converging to dramatically different computation-to-performance equi-

libriums.

Figure 5.7. Questions in CLEVR are synthetically generated following
templates, for example, by replacing <C> and <M> with a color and ma-
terial in the template “How many <C> <M> things are there?”. Accord-
ingly, adding adaptability to the model does not increase performance but
rather, similar complexity to solve. The figure shows the average amount of
computation used by three models for each question family, sorted by the
average number of steps used by the respective model. The first image (a)
illustrates how ACT fails to learn how to answer the most straightforward
questions in less than three steps, or the hardest in more than five 5. Below
it, b) shows the results for a variant of DACT that averages approximately
the same number of steps but uses more of the available spectrum, signif-
icantly improving model performance. The last image shows a variant of
DACT, which uses 50% more reasoning steps on average and thus achieves
even better performance.

We also evaluate how well the model adapts to variations in question complexity, since

the rationale behind adapting the number of steps is to enable the models to allocate more

computation to complex questions. As expected, DACT iterates fewer times for easy ques-

tions and more times when the input question is complex, improving model performance at

no additional computational cost compared to static MACs that use a comparable amount

of computation. In Figure 5.7, questions are clustered by family type which translates to

5This ACT variant was cherry-picked as it achieved the highest accuracy while also doing the maximum
amount of steps observed for ACT.
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groups that require similar step sequences to solve and therefore are of similar complex-

ity (the figure is further explained in Appendix B, where we include examples for each

family). This figure shows a remarkable correlation between computation and question

complexity, despite not including any type of supervision about these factors. We take this

to mean that the model learns to recognize types of questions and allocates computation

accordingly.

Finally, in order to evaluate the generality of the suggested approach to real data, we

evaluate the combined DACT-MAC architecture on the more diverse images and ques-

tions present in the GQA dataset (D. A. Hudson & Manning, 2019a). We start by again

pre-training a non-gated MAC (4 steps, 5 epochs) and then fine-tuning ACT, DACT and

gated MAC variants for another 15 epochs. The results shown in Table 5.1 show that

DACT is effective in reducing the number of steps needed while maintaining most of

the performance of the architecture that always iterates the maximum number of times

(four steps). However, we found in our experiments that for GQA the chosen architecture

(MAC) doesn’t benefit from iterating more than two steps, and even then the advantage

gained over its non recurrent single-step version is marginal. Accordingly, adding adapt-

ability to the model does not increase accuracy but rather results in a small but measurable

reduction in performance.

Regardless of the above, the experimental results highlight the advantages of our al-

gorithm with respect to ACT, showing once again that DACT obtains better results for the

same number of steps. Additionally, while our method continues to adapt computation in

a coherent manner to the time penalties, ACT remains mostly irresponsive to the values

these take. Furthermore, the high correlations between computation and question type are

also present for the GQA dataset as 5.8 shows, revealing once more that DACT learnt to

meaningfully adapt complexity without supervision.
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Method Ponder Cost Steps Accuracy

MAC+Gate

NA 2 77.51
NA 3 77.52
NA 4 77.52
NA 5 77.36

ACT

1× 10−2 1.99 77.17
1× 10−3 2.26 77.04
1× 10−4 2.31 77.21

0 2.15 77.20

DACT

5× 10−2 1.63 77.23
1× 10−2 2.77 77.26
5× 10−3 3.05 77.35
1× 10−3 3.69 77.31

Table 5.1. Our proposed method (DACT) achieved better accuracy than
existing adaptive algorithms on the GQA test-dev set, while also adapt-
ing computation coherently to the values taken by the ponder cost hyper-
parameter. However, the task did not benefit from increased computa-
tion, so all adaptive models incur in a small metric loss compared to non-
adaptive variants.

Figure 5.8. The figure shows the the distribution of the number of steps
used by DACT for each one of the 105 different question types in the GQA
dataset. In order from top (a) to bottom (c) we show how decreasing the
time penalty (5× 10−2, 1× 10−2, 5× 10−3 for a,b, c respectively) results
in increased total computation.

5.2.3. Interpretability

As in previous works (Johnson et al., 2017; D. Hudson & Manning, 2018), we also

analyze the attention maps provided by the model. In particular, we examine both the

linguistic and visual attentions generated at each step. As previous works, we also raise

the question of whether our proposed architecture can improve interpretability. Figure 5.9
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Figure 5.9. Linguistic and visual attention maps for both the standard
MAC architecture (left) and our DACT enabled variant trained with τ =
5× 10−3 (right). Besides the obvious and substantial reduction in the num-
ber of steps used to answer, our model also contributes to the overall in-
terpretability of the inference. This is achieved by adding a proxy of the
number of steps taken to the loss function, effectively coercing the model
into only using fewer (and therefore more likely to be semantically strong)
steps. The question attentions above show that the last two steps are similar
for both models, but that only one of the other ten steps used by MAC was
necessary.

shows examples of the attention maps generated by the 12 step MAC. Since the MAC

architecture only considers the last state in memory for the final classification, the final

controls tend to be significant. Indeed, our test indicates that the last few execution steps

generate similar attention maps to those produced by our adaptive variant. However, as

Figure 5.7 shows, very few queries need all 12 steps of computation, so most of the steps

execute either repetitions of other operations, or are just padding (e.g. attending punctua-

tion).

The above stands in contrast to our DACT enabled variant, which in practice provides a

free lunch by maintaining the performance while increasing interpretability without (in the

case of MAC) adding additional parameters. We achieve this by adding the differentiable

approximation to the number of steps taken, the ponder cost (Eq. 4.3), to the loss function.

Consequently, since the model is coerced into only using significant steps, we find that

those taken are more likely to be semantically meaningful. Simply stated, our approach
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improves the transparency of the model by eliminating steps (and therefore attention maps)

that do not contribute to the final answer.

Figure 5.10. Attention maps, intermediate answers, and halting probabili-
ties captured from DACT for the image and question shown. Three steps
were needed to arrive at the answer. The first two steps output wrong an-
swers with high uncertainty (pn ≈ 1). The last step, however, has identified
the relevant object and can thus answer correctly and with confidence.

In addition, the formation of the final output of the model from the sub-outputs enables

us to check what the model would answer at each timestep. When analyzed in conjunction

with the halting probabilities both yield valuable insights on the internal representation of

the model. For instance, in Figure 5.10, the first step has minimal information from the

question and image and consequently is very uncertain of the given answer. However, this

limited information is enough for the model to identify that the question involves the color

of some object, and therefore the answer is the color of the only object it has seen. We

expect the increased transparency of the model will assist future studies on explainability

and the detection of biases in datasets.
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6. CONCLUSIONS AND FUTURE WORK

This thesis suggests that the redundant computation problem that exists in most deep

learning models cannot be completely solved using static methods. In particular, we argue

that certain intrinsic computational redundancies require the architecture to adapt to the

input. Responding to a common limitation of existing methods for dynamic computation,

this work proposes the first implementation of a dynamic computation algorithm that is

fully differentiable.

We prove the benefits of using a differentiable approach in two distinct situations.

First, we find that DACT outperforms state-of-the-art methods that use hand-crafted poli-

cies based on early stopping heuristics, providing a increasingly significant advantage

w.r.t. existing approaches as the difference in computation with the base model grow. We

also show that existing adaptive computation algorithms for RNNs do not function as

expected when used along with complex visual reasoning models, while our algorithm of-

fers significant improvements and decreased computation. In both of these scenarios our

model responds predictably to changes in the hyper-parameter that controls computation

and it finds an appropriate tradeoff between precision and complexity.

We show that our differentiable approach can lead to significant performance gains

when replacing existing dynamic approaches, or eliminate intrinsic redundancies when

used to augment static models. However, an important limitation of the method presented

here is that it is only applicable to early exiting classification problems. We hope this work

serves as a catalyst to motivate more research in dynamic architecture models, specifically

proposing new differentiable approaches.

Finally, we hope to see more dynamic models that reduce computation time. In partic-

ular, we hope to see dynamic and static complexity reduction techniques being combined

and applied in both research and production environments leading to more environmen-

tally scalable and interpretable models.
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A. PROOFS

In this section we prove that our method for building the final answer Y can be inter-

preted as attending the intermediate outputs yn, with attention weights that follow a valid

probability distribution. We include two proofs by induction to show that, for any n, the

accumulated answer an can be expressed as a weighted sum of all intermediate outputs up

to the nth step, and that these weights always add up to one.

Proposition. Every accumulated answer an can be expressed as a weighted sum of all

intermediate outputs up to the nth step.

PROOF. Assume αi exists for each yi such that every an−1 = yn−1αn−1 + · · ·+ y0α0.

This is trivial to prove for n = 1 as p0 = 1 makes a1 = y1p0+a0(1−p0) become a1 = y1.

an = ynpn−1 + an−1(1− pn−1)

= ynpn−1 + (αn−1yn−1 + · · ·+ α0y0)(1− pn−1)

= ynpn−1 +
n−1∑
i=0

yi(αi(1− pn−1)) �

Proposition. Every accumulated answer an can be expressed as a weighted sum of all

intermediate outputs up to the nth step, and the sum of the weights is equal to one.

PROOF. The base case is again trivial to prove since p0 = 1 when n = 1. Using the

proof above we define βi to be the weights used to express an as a weighed sum of yi

∀i ∈ [1, n].

βi =

pn−1 if i = n

αi(1− pn−1) otherwise
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Assume αi exists for each yi such that every an−1 = αn−1yn−1+· · ·+α0y0 and
∑n−1

i=0 αi =

1.

n∑
i=0

βi = pn−1 +
n−1∑
i=0

αi(1− pn−1)

= pn−1 +
n−1∑
i=0

αi − pn−1
n−1∑
i=0

αi

= pn−1 + 1− pn−1

= 1 �

B. AVERAGE COMPUTATION PER QUESTION TYPE

B.1. CLEVR Question Families

For any given synthetic image in the CLEVR dataset (Johnson et al., 2016), a series

of queries are generated by chaining a sequence of modular operations such as count,

filter, compare, etc. These functional programs can then be expressed in natural language

in multiple ways, for instance translating count(filtercolor(red, scene())) into “How

many <C> <M> things are there?”, a translation which is accomplished by instantiating

the text templates specific to each program following (Johnson et al., 2016) by replacing

<Z>, <C>, <M>, and <S> with the size, color, material and/or shape of objects present

in the image. As a result, questions with the same functional program can be clustered

together into question families that share a similar complexity. Figure B.1 includes a text

template for each of the question families present in CLEVR, sorted by the average number

of steps used for validation questions belonging to the specific family. Note that families

with fewer supporting objects are more likely to be answered in less steps, and finding the

number of objects that possess a pair of qualities ([both]) is regarded as generally easier

than finding those that possess [either].
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B.2. GQA Question Types

In the case of the GQA dataset (D. A. Hudson & Manning, 2019a) natural language

questions are generated for each image using the image-scene graph pairs present in Visual

Genome (Krishna et al., 2016). Questions that are generated such that the functional

program needed to answer them are similar are said to belong to the same question family.

Figure B.2 shows the average number of steps used for each family in ascending order

(less computation first).
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Figure B.1. Average number of steps used by DACT-MAC (λ = 5× 10−3)
for each of the question families present in CLEVR, along with one tem-
plate for each family to typify the whole group.
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Figure B.2. Average number of steps used by DACT-MAC (λ = 5× 10−3)
for each of the question types in GQA, along with the type identifier.
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