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Self similarity and sample length dependence of conductance in quasiperiodic
lateral magnetic superlattices
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We study the transport of electrons in a Fibonacci magnetic superlattice produced on a two-dimensional
electron gas modulated by parallel magnetic-field stripes arranged in a Fibonacci sequence. Both the transmis-
sion coefficient and conductance exhibit self similarity and the six-circle property. The presence of extended
states yields a finite conductivity at infinite length, that may be detected as an abrupt change in the conductance
as the Fermi energy is varied, much as a metal-insulator transition. This is a unique feature of transport in this
kind of structure, arising from its inherent two-dimensional nature.
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I. INTRODUCTION

The discovery of quasicrystals in 1984~Ref. 1! has at-
tracted a great amount of experimental and theoretical at
tion to quasiperiodic systems.2 It has been shown that a one
dimensional~1D! quasiperiodic array of electric barriers
characterized by its self-similar energy spectrum and crit
~neither extended nor localized! states. Recent advances
semiconductor and nanotechnologies have permitted the
alization of a uniform magnetic field at nanometer scales,
creating magnetic dots or depositing ferromagnetic or su
conducting material patterns on heterostructures.3 The en-
ergy spectrum and transport properties of a two-dimensio
electron gas~2DEG! modulated by a regular array of nano
cale magnetic-field inhomogeneities have been investig
both theoretically and experimentally.4

In this paper we discuss electron motion in a 2DEG s
ject to the field of a nearby quasiperiodic array of para
magnetic stripes. This case differs from electric or dielec
modulation in that 2DEG electron tunneling through ma
netic barriers is inherently a two-dimensional process.4 The
effective potential experienced by the electron is depend
on the wave vector perpendicular to the tunneling directi
As we show below, since for a quasiperiodic magnetic p
tern this potential is still quasiperiodic for any given tran
verse wave vector, both the transmission and conducta
display quasiperiodic properties. Our main finding, howev
is that the presence of extended states somewhere in
spectrum produces a residual conductivity at infinite leng
which is lost as the incident energy decreases, much in
manner of a metal-insulator transition.

II. FORMULATON

We consider a 2DEG under an inhomogeneous perp
dicular magnetic field produced by two types of magne
blocksP andQ arranged in a Fibonacci sequence@Fig. 1~a!#.
The magnetic field is assumed to be uniform along thy
direction and to vary along thex direction. Throughout this
work we use the Landau gaugeA5„0, A(x),0…. For mag-
netic blockP/Q of width LP/Q5dP/Q1 l P/Q , we assume for
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simplicity a magnetic profile B(x)5BP/Ql B@d(x)2d(x
2dP/Q)# @Fig. 1~b!#. Its corresponding vector potential ca
be chosen asA(x)5BP/Ql B@u(x)2u(x2dP/Q)# @Fig. 1~c!#,
wherel B5A\/eBP andu(x) is the Heaviside step function
By introducing in addition the cyclotron frequencyvc
5eBP /m* (m* is the effective mass of electrons!, all quan-
tities below are transformed into dimensionless units. F
GaAs and an estimatedBP50.1T, then l B581.3 nm, \vc
50.17 mev andl Bvc51.4 m/sec. Writing the wave function
in the formeiqyc(x) (q is the wave number associated wi
the spatial degree of freedom in the direction of the stripe!,

FIG. 1. The Fibonacci magnetic superlattice~a!, showing the
magnetic profileB(x) of building blocks P and Q ~b!, and the
correspondingy component of the vector potentialA(x)(c).
©2002 The American Physical Society07-1
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one obtains the following 1D Schro¨dinger equation govern
ing the motion of 2DEG electrons in the presence of
magnetic modulation:

S d2

dx2
2 f j~x!@ f j~x!12q# D c~x!52~q2/22E!c~x!. ~1!

Here f j (x) is an oscillating function arising from the F
bonacci sequenceSj constructed from the vector potentia
AP and AQ , and V(x,q)5 f j (x)@ f j (x)12q#/2 can be con-
sidered as an effectiveq-dependent potential for motio
along the tunneling direction. The dependence onq of the
io
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quantity V(x,q) implies that this problem is inherently tw
dimensional. Here and in what follows, we assumeBP

>BQ . Then, in the units chosen, the functionf j (x) is a
sequence of barriers of heightr 5BQ /BP<1. For a givenq,
electron tunneling through the magnetic structure will
equivalent to electron motion in a 1D Fibonacci electric p
tential with square barriers (q>2r /2), square barriers and
wells (21/2,q,2r /2), or square wells (q<21/2).

Matching wave functions at the edges of the magne
block Q yields the following transfer matrixMQ for an elec-
tron propagating through such block:
MQ5S @cos~kQdQ!2 imQ
1sin~kQdQ!#e2 ik0l Q 2 imQ

2sin~kQdQ!eik0l Q

imQ
2sin~kQdQ!e2 ik0l Q @cos~kQdQ!1 imQ

1sin~kQdQ!#eik0l QD , ~2!
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where kQ5A2E2q22r (r 12q), k05A2E2q2, and mQ
6

5 1
2 (kQ /k06k0 /kQ). The transfer matrixM P can be ob-

tained by the replacementsQ→P and r→1 in the above
Eq. ~2!.

A Fibonacci multilayer systemSj hasF j layers, whereF j
is a Fibonacci number satisfying the recursion relat
F j 115F j1F j 21( j >1), with F05F151. Then M j 11
5M jM j 21( j <1), with initial condition M05MQ ,M1
5M P , which yields a trace mapxj 1152xjxj 212xj 22 and a
constant of motionI 5xj 11

2 1xj
21xj 21

2 22xj 11xjxj 2121,2

wherexj5TrM j /2. The constant of motionI characterizes
the extent of quasiperiodicity of the Fibonacci system.

Now we consider a simple case, i.e.,r 51, dP5dQ5d,
which is likely to be the easiest to realize experimenta
Then one haskP5kQ5k and the constant of motion,

I 5$~k22k0
2!sin~kd!sin@k0~ l Q2 l P!#/2kk0%

2. ~3!

For the casel P5 l Q ,I 50, which corresponds to a purel
periodic magnetic superlattice. According to Eq.~3! I is also
dependent on the normal wave vectorq throughk0 andk. It
is in general positive definite for most incident energiesE if
l PÞ l Q . One thus expects the quasiperiodic self similarity
appear in the energy spectra, transmission and, possibly
conductance. In terms of the matrixM j the transmission co
efficient becomes

T~E,q!54/@Tr~M j
t M j !12#, ~4!

where the superscriptt denotes the transpose of a matrix. T
conductanceg is calculated from the Landauer-Bu¨ttiker
formula5 by averaging the electron flow over half the Fer
surface,

g5E
2p/2

p/2

T~E,A2Esinu!cosudu. ~5!

Hereu is the angle between the velocity of incidence and
tunneling axisx,E is the incident energy, and the condu
n

.

the

i

e

tance is expressed in units of the quantitye2m* v l y /\2,
wherev is the velocity of the incident electrons andl y the
width of the sample.

III. RESULTS AND DISCUSSION

We show in Fig. 2 typical transmission spectra for diffe
ent transverse wave numbers and Fibonacci seque
S9 , S12, and S15. The magnetic structure parameters a
chosen asr 51, dP5dQ51, l P51, l Q52. From the left to
right column,q is 20.7, 0.0, and 0.7, which correspond
the equivalent Fibonacci electric superlattices construc
from two square-well, two low square-barrier, and two hi
square-barrier blocks, respectively. From the top to bott
row the transmission spectra are forS9 ,S12, andS15. respec-
tively. As clearly shown in Fig. 2, the transmission spec
for S9 , S12, and S15 are self similar, i.e., the transmissio
peak clusters and the transmission gaps for different
bonacci sequences are arranged in a very similar way,

FIG. 2. Transmission spectra of Fibonacci magnetic super
tices S9 ,S12,S15 ~from top to bottom! for q520.7 ~left column!,
q50.0 ~middle column!, andq50.7 ~right column!. The magnetic
structure parameters arer 51, dP5dQ51, l P51, l Q52.
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SELF SIMILARITY AND SAMPLE LENGTH . . . PHYSICAL REVIEW B65 064207
gardless of the value of the transverse wave numberq. In
fact, the self similar transmission spectra are the refectio
the self similarity in the corresponding energy spectra~not
shown!.

Figure 3 illustrates the self-similarity of the transmissi
spectra more clearly. The first and second rows show t
regardless of the value ofq, the transmission bands are tr
branching hierarchically in a self similar way. It is the se
similarity between the whole and the local spectra. Also o
can readily observe the similarity between the transmiss
spectra ofS12 and S15 at quite different scales. The thir
column shows in more detail this scaling property atq50 as
the length is increased. We notice in these data that
evolving structure has a six-circle symmetry, arising from
propertyM j 165M j . In fact, the scale change of the incide
energyE between the spectra forS9 , S12, andS15 is given
by the scaling index of the renormalization-group transf
mation of the six-circle map@114(11I )2#1/212(11I ).2

The self similarities of the transmission spectra arise fr
the self similar energy spectra~not shown! of this special
structure. Close inspection of the data in the third colu
shows in addition that there are states with transmission
efficient equal to unity, that persist as the length is increa
~arrows in the figure!.6,7 These exotic extended states play
crucial role in the unusual length dependence of the cond
tance described below.

Numerical results for the conductance for structuresS9 ,
S12, andS15 are shown in Fig. 4. The first column shows t
development of further fine structure each time the Fibona
number increases, keeping the position of the main dip
each step roughly unchanged. Although according to Eq.~5!
the conductance is an average of transmission coeffici
over half the Fermi surface, self-similarity is still present,
made evident in the next two columns. In the center colu
we repeat the central panel of the first column in order
show how a change of scale produces a similar spectr
S12, while an increase in length (S15) gives more detailed
structure, also similar to the whole pattern. The column
the right illustrates the six-circle scaling property of the co
ductance.

FIG. 3. Transmission spectra of Fibonacci magnetic supe
tices S12,S15 for q520.7 ~left column!, q50.7 ~middle column!
and S9 ,S12,S15 for q50.0 ~right column!. The magnetic structure
parameters is the same as in Fig. 2.
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of

t,

e
n

e
e

-

n
o-
d

c-

ci
at

ts
s
n
o
in

n
-

Close inspection of Fig. 4 also shows that as the length
the sample increases, the conductance decreases. To fin
what governs this behavior we have calculated the cond
tance at incident energiesE50.125, 0.30, 0.45, and 0.60 fo
different sample lengthsl x , and plotted them in the uppe
(r 50.5) and bottom panels (r 51.0) of Fig. 5. We find that
in all cases the conductance dependence inl x is bounded
from below by a power-law decrease.8 In order to investigate
the possibility of a residual conductivity at infinite length, w

include in the figures a fit using the functiong5g0eb l x
2a

;g0(11b l x
2a). We notice that in the upper panels the r

sidual conductivityg0 rises abruptly by four orders of mag
nitude when increasing the energy from 0.30 to 0.45. Clo
study of this range shows that the rise occurs between 0
and 0.45. We interpret the change as the capturing of on
more conducting channels by the convolution~5!, arising
possibly from exotic extended states. The bottom pan
showing the special caser 51, permit a check of this ansatz
Since the conductance is a convolution over a range of w
numbersq, if at a particular value of this quantity an ex
tended state is present, it will contribute to transport at in

t- FIG. 4. Conductance of Fibonacci magnetic superlatti
S9 ,S12,S15. The magnetic structure parameters are the same a
Fig. 2, exceptBP5BQ52 for the right column, set to discern th
subtle structure.

FIG. 5. Length dependence of the conductance.BP52BQ ~up-
per panels! andBP5BQ ~bottom panels!, and the other parameter
are the same as in Fig. 2. The solid lines are an exponentia
described in the text.
7-3



e

er
h
e

a
at
on

en

e

e

th
s
s

oi
n
es
f

et
hi

on-
long
or
the
d-
y is
ded
uld

av-
ce.
pos-
in

ing
ple

ng

l

nd
an
nd
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nite length. As may be easily checked, whenr 51 the effec-
tive potential in Eq.~2! vanishes everywhere at wave numb
qc521/2, a state captured by the convolution~2! at energies
E.0.125. The bottom panels show that a drop by sev
orders of magnitude occurs when this energy is approac
from above, confirming that the loss of an extended stat
indeed reflected in a large change in the conductance.

This behavior is different from either the usual 1D~Ref.
8! or the 2D~Ref. 9! Fibonaci systems. We attribute it as
manifestation of the presence of exotic extended st
within the spectrum of a Fibonacci structure. Since the c
ductance is a convolution over a range of wave numbersq, if
at a particular value of this quantity an extended state
present, it will contribute to transport at infinite length. Wh
such conducting channels are present, one may writeg;g0
1gc , exhibiting the contributions from the critical and th
extended states. Sinceg0 has no dependence onl x and gc

}gal x
2a ,9 the conductanceg may be approximated by th

function g0eb l x
2a

, whereb}ga /g0. It can be expectedb.1
due to the predominant weight of the critical channels.

The self similarities and the length dependence of
transmission and conductance of a Fibonacci magnetic
perlattice reported above are robust with regard to change
the particular shape of the magnetic barriers, and the ch
of vector potential.10 This makes an experimental verificatio
of the properties found very plausible. As our results sugg
a 2DEG subject to the inhomogeneous magnetic field o
Fibonacci or other quasiperiodic sequence of magn
stripes deposited on a nearby parallel surface should ex
e

y
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self similarity and an unusual length dependence in the c
ductance perpendicular to the stripes. Extended states a
the direction perpendicular to the stripes may contribute
not to the bulk conductance depending on the energy of
incoming electrons. A possible experimental test of this fin
ing is to measure the conductance as the Fermi energ
varied by means of a gate voltage. The loss of exten
states within the energy range available for transport wo
reveal a drop akin to a metal-insulator transition.

IV. CONCLUSION

In summary, we have discussed the quasiperiodic beh
ior of electrons in a Fibonaci lateral magnetic superlatti
We have shown that its transmission and conductance
sess both the self similarity and six-circle properties found
other kinds of quasiperiodic systems. Moreover, interest
scaling properties of conductance with respect to the sam
size in the tunneling direction have been found, exhibiti
the presence of exotic extended states.
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