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Self similarity and sample length dependence of conductance in quasiperiodic
lateral magnetic superlattices
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We study the transport of electrons in a Fibonacci magnetic superlattice produced on a two-dimensional
electron gas modulated by parallel magnetic-field stripes arranged in a Fibonacci sequence. Both the transmis-
sion coefficient and conductance exhibit self similarity and the six-circle property. The presence of extended
states yields a finite conductivity at infinite length, that may be detected as an abrupt change in the conductance
as the Fermi energy is varied, much as a metal-insulator transition. This is a unique feature of transport in this
kind of structure, arising from its inherent two-dimensional nature.
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I. INTRODUCTION simplicity a magnetic profile B(x) =Bp/qlg[ 5(x) — 6(x
—dp/q)] [Fig. 1(b)]. Its corresponding vector potential can
The discovery of quasicrystals in 198Ref. 1) has at- be chosen a#(x) =Bp,glg[ 8(X) — §(x—dp,q)] [Fig. 1(0)],
tracted a great amount of experimental and theoretical attewherelz= \A/eBp and 6(x) is the Heaviside step function.
tion to quasiperiodic systenfdt has been shown that a one- By introducing in addition the cyclotron frequency,
dimensional(1D) quasiperiodic array of electric barriers is =eB,/m* (m* is the effective mass of electronsll quan-
characterized by its self-similar energy spectrum and criticatities below are transformed into dimensionless units. For
(neither extended nor localizedtates. Recent advances in GaAs and an estimatelp=0.1T, thenlg=81.3 nm, i w,
semiconductor and nanotechnologies have permitted the re=0.17 mev andgw,=1.4 m/sec. Writing the wave function
alization of a uniform magnetic field at nanometer scales, byn the forme'@Yy(x) (q is the wave number associated with

creating magnetic dots or depositing ferromagnetic or supetthe spatial degree of freedom in the direction of the stiipes
conducting material patterns on heterostructdr@he en-

ergy spectrum and transport properties of a two-dimensional
electron gag2DEG) modulated by a regular array of nanos- P Q (a)

cale magnetic-field inhomogeneities have been investigated 7 ¥
both theoretically and experimentafly.
In this paper we discuss electron motion in a 2DEG sub- 4

ject to the field of a nearby quasiperiodic array of parallel e —— X
magnetic stripes. This case differs from electric or dielectric / 2DEG /
modulation in that 2DEG electron tunneling through mag-

netic barriers is inherently a two-dimensional proct3he
effective potential experienced by the electron is dependent ! (b)
on the wave vector perpendicular to the tunneling direction.
As we show below, since for a quasiperiodic magnetic pat- ‘

tern this potential is still quasiperiodic for any given trans-
verse wave vector, both the transmission and conductance
display quasiperiodic properties. Our main finding, however,
is that the presence of extended states somewhere in the
spectrum produces a residual conductivity at infinite length, 2
which is lost as the incident energy decreases, much in the (C)
manner of a metal-insulator transition.

B(x)/B,
=)

RN

IIl. FORMULATON

AR) /A,

We consider a 2DEG under an inhomogeneous perpen- d d
dicular magnetic field produced by two types of magnetic P Q
blocksP andQ arranged in a Fibonacci sequené&gy. 1(a)]. -1 ' ’ '
The magnetic field is assumed to be uniform along yhe
direction and to vary along the direction. Throughout this FIG. 1. The Fibonacci magnetic superlattie®, showing the
work we use the Landau gaude= (0, A(x),0). For mag-  magnetic profileB(x) of building blocksP and Q (b), and the
netic blockP/Q of width Lp/q=dp/q+1p/q, We assume for  correspondingy component of the vector potential(x)(c).
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one obtains the following 1D Schiinger equation govern- quantity V(x,q) implies that this problem is inherently two
ing the motion of 2DEG electrons in the presence of thedimensional. Here and in what follows, we assulBg
magnetic modulation: =Bqg. Then, in the units chosen, the functidn(x) is a

d2 sequence of barriers of height Bo/Bp<1. For a giverq,

— — Fi([f;(x)+2q] P(X)=2(q%/2—E)(x). (1)  electron tunneling through the magnetic structure will be

dx equivalent to electron motion in a 1D Fibonacci electric po-
Here f;(x) is an oscillating function arising from the Fi- tential with square barriersq& —r/2), square barriers and
bonacci sequencs; constructed from the vector potentials Wells (—1/2<q<—r/2), or square wellsq<—1/2).
Ap and Aq, andV(x,q)=f;(x)[f;(x)+2q]/2 can be con- Matching wave functions at the edges of the magnetic
sidered as an effectivg-dependent potential for motion block Q yields the following transfer matriM, for an elec-
along the tunneling direction. The dependenceqoof the  tron propagating through such block:

_ ([eodkqdo) —ipgsinkgdg)Je™o'e —i pgsin(kgdg)eo'e

Mo= _ . 5
Q ilLéSin(deQ)eflde [COS(deQ)-i-i,uSsin(deQ)]e'kO'Q ) )

where ko=2E—q?-r(r+2q), ko=+v2E—q? and u;, tance is expressed in units of the quanté§m*vl,/%?,
=3(Kg/ko=Ko/kg). The transfer matrixMp can be ob- wherev is the velocity of the incident electrons ahgthe
tained by the replacemen®—P andr—1 in the above Wwidth of the sample.

Eq. (2).
A Fibonacci multilayer syster§; hasF; layers, wherér
is a Fibonacci number satisfying the recursion relation Ill. RESULTS AND DISCUSSION

F]+1:FJ+F171(J>1), W|th FO:F]_:]. Then M]+1
=M;M;_y(j=1), with initial condition My=Mqg,M,
=Mp, which yields a trace mayp, ; 1 =2X;X;_1—Xj_p and a

We show in Fig. 2 typical transmission spectra for differ-
ent transverse wave numbers and Fibonacci sequences
) > L 5 Sy, Sp2, and S;5. The magnetic structure parameters are
constant of motionl =xj. , Xj+xj_,=2X;.1XXj 1= 1" chosen ag=1, dp=du=1, Ip=1, |o=2. From the left to
wherex;=TrM;/2. The constant of motioh characterizes  yignht column,q is —0.7, 0.0, and 0.7, which correspond to
the extent of quasiperiodicity of the Fibonacci system. the equivalent Fibonacci electric superlattices constructed
Now we consider a simple case, i.e51, dp=do=d,  from two square-well, two low square-barrier, and two high
which is likely to be the easiest to realize eXp_e”menta"y-square-barrier blocks, respectively. From the top to bottom
Then one hakp=ko=k and the constant of motion, row the transmission spectra are &y,S;,, andS;s. respec-
2 L2 . ) tively. As clearly shown in Fig. 2, the transmission spectra
I ={(k*—ko)sin(kd)sinlko(lg—1p)1/2kkoi*. () for ), S,,, and S5 are self similar, i.e., the transmission
peak clusters and the transmission gaps for different Fi-

For the casdp=Iq5,I =0, which corresponds to a purely . , .
bonacci sequences are arranged in a very similar way, re-

periodic magnetic superlattice. According to E8). | is also
dependent on the normal wave vectpthroughk, andk. It
is in general positive definite for most incident enerdiei$ 5 a=07 s, 4=0.0 5 a=07

Ip#1g. One thus expects the quasiperiodic self similarity to "
appear in the energy spectra, transmission and, possibly, the 0s
conductance. In terms of the matii&; the transmission co-

c
efficient becomes 2 a7 . 4200 ., u07
(2]
E
V@AM 2L “ 5 MWM ' M‘MMMM‘ ‘U[
where the superscriptenotes the transpose of a matrix. The = i, soam07 6 =00 5, 9=07
conductanceg is calculated from the Landauer-Biker
formul by averaging the electron flow over half the Fermi 0s
surface,
00 02 04 06 08 10 02 04 06 08 10 08 12 16 20 24
2 Incident energy
= T(E,\2Esin#)cos6dé. 5 . . . .
9 Jfﬁ/z ( ) ®) FIG. 2. Transmission spectra of Fibonacci magnetic superlat-

tices Sy, S1,,S;5 (from top to bottom for q=—0.7 (left column),
Here @ is the angle between the velocity of incidence and they=0.0 (middle column, andq=0.7 (right column. The magnetic
tunneling axisx,E is the incident energy, and the conduc- structure parameters are=1, dp=do=1, lp=1, 15=2.
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FIG. 3. Transmission spectra of Fibonacci magnetic superlat- FIG. 4. Conductance of Fibonacci magnetic superlattices
tices S15,S;5 for g=—0.7 (left column), q=0.7 (middle column S9,S12,Si5. The magnetic structure parameters are the same as in
andS,,S;,,S;5 for g=0.0 (right column). The magnetic structure Fig. 2, exceptBp=Bg=2 for the right column, set to discern the
parameters is the same as in Fig. 2. subtle structure.

Close inspection of Fig. 4 also shows that as the length of
dhe sample increases, the conductance decreases. To find out
what governs this behavior we have calculated the conduc-

tance at incident energi€s=0.125, 0.30, 0.45, and 0.60 for

Figure 3 illustrates the self-similarity of the transmission different sample lengthg,, and plotted them in the upper

spectra more clearly. The first and second rows show thaf! =9-5) and bottom panels €1.0) of Fig. 5. We find that
regardless of the value af, the transmission bands are tri- N @ll cases the conductance dependence,ifs bounded
branching hierarchically in a self similar way. It is the self ffom below by a power-law decreadén order to investigate
similarity between the whole and the local spectra. Also ondhe possibility of a residual conductivity at infinite Iengtpé we
can readily observe the similarity between the transmissioinclude in the figures a fit using the functia= goe”'x
spectra ofS;, and S;5 at quite different scales. The third ~go(1+8l, “). We notice that in the upper panels the re-
column shows in more detail this scaling propertyat0 as  sidual conductivityg, rises abruptly by four orders of mag-
the length is increased. We notice in these data that theitude when increasing the energy from 0.30 to 0.45. Closer
evolving structure has a six-circle symmetry, arising from thestudy of this range shows that the rise occurs between 0.43
propertyM;,¢=Mj. In fact, the scale change of the incident and 0.45. We interpret the change as the capturing of one or
energyE between the spectra f@y, S;», andS;5is given  more conducting channels by the convolutits), arising

by the scaling index of the renormalization-group transfor-possibly from exotic extended states. The bottom panels,
mation of the six-circle mag1+4(1+1)%]¥?+2(1+1).2 showing the special case=1, permit a check of this ansatz.
The self similarities of the transmission spectra arise fronSince the conductance is a convolution over a range of wave
the self similar energy specti@ot shown of this special numbersq, if at a particular value of this quantity an ex-
structure. Close inspection of the data in the third columntended state is present, it will contribute to transport at infi-
shows in addition that there are states with transmission co-

gardless of the value of the transverse wave nuntpdn
fact, the self similar transmission spectra are the refection
the self similarity in the corresponding energy spectrat
shown).

efficient equal to unity, that persist as the length is increased X oE8 | g00i 42007
(arrows in the figure®’ These exotic extended states play a R P13 % 4 plogs o § podse o % BeB.07
crucial role in the unusual length dependence of the conduc- 2 WU Naco0o1s| \o-o00ss |\ «-004
tance described below. “ 2 ) A1

Numerical results for the conductance for structusgs —~ L .
Si», andS;s are shown in Fig. 4. The first column shows the 2, oo M om0 Eoas i iy
development of further fine structure each time the Fibonacci £ 4 g-32E8 g, 0103 g,=0.098 g,=0.095
number increases, keeping the position of the main dips at " p-1438 9 | p-234 9 °
each step roughly unchanged. Although according to(&q. = 0002 ) =008
the conductance is an average of transmission coefficients 2 K
over half the Fermi surface, self-similarity is still present, as =1 b | 1t PR N
made evident in the next two columns. In the center column E0125 | E=030 E=045 2| E=060

. . 0 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40

we repeat the central panel of the first column in order to In(1)
show how a change of scale produces a similar spectra in *
Si2, while an increase in lengthS(s) gives more detailed FIG. 5. Length dependence of the conductarige= 2B (up-

structure, also similar to thg whole pattern. The column orper panelsandBp=By, (bottom panels and the other parameters
the right illustrates the six-circle scaling property of the con-are the same as in Fig. 2. The solid lines are an exponential fit
ductance. described in the text.
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nite length. As may be easily checked, whenl the effec- self similarity and an unusual length dependence in the con-
tive potential in Eq(2) vanishes everywhere at wave numberductance perpendicular to the stripes. Extended states along
g.= — 1/2, a state captured by the convoluti@ at energies the direction perpendicular to the stripes may contribute or
E>0.125. The bottom panels show that a drop by severahot to the bulk conductance depending on the energy of the
orders of magnitude occurs when this energy is approacheidcoming electrons. A possible experimental test of this find-
from above, confirming that the loss of an extended state ifg is to measure the conductance as the Fermi energy is
indeed reflected in a large change in the conductance. varied by means of a gate voltage. The loss of extended
This behavior is different from either the usual 1Ref.  states within the energy range available for transport would
8) or the 2D(Ref. 9 Fibonaci systems. We attribute it as a reveal a drop akin to a metal-insulator transition.
manifestation of the presence of exotic extended states
within the spectrum of a Fibonacci structure. Since the con- IV. CONCLUSION
ductance is a convolution over a range of wave numbgifs . o
at a particular value of this quantity an extended state is In summary, we ha\_/e dISC_USSGd the quaSI_perlod|c be_hav-
present, it will contribute to transport at infinite length. Wheni0r Of electrons in a Fibonaci lateral magnetic superlattice.
such conducting channels are present, one may \grite, We have shown thgt .|ts .transmls.smn and condL_Jctance pos-
+g., exhibiting the contributions from the critical and the S€SS bqth the self sn_”mla_rlty and six-circle properties found. in
extended states. Sinag has no dependence dp and g, other kinds of quasiperiodic systems. Moreover, interesting

ocgaI;“,g the conductancg may be approximated by the s_callr_1g propertles_of co_nduptance with respect to the '_s,e}mple
, 8 size in the tunneling direction have been found, exhibiting

functiongoe” , whereBg,/go. It can be expecteB>1 e presence of exotic extended states.

due to the predominant weight of the critical channels.

The self similarities and the length dependence of the
transmission and conductance of a Fibonacci magnetic su-
perlattice reported above are robust with regard to changes in This work was supported in part by a @dra Presidencial
the particular shape of the magnetic barriers, and the choicen Ciencias and FONDECYT 199042&hile), and NSF
of vector potentiat® This makes an experimental verification Grant No. 53112-0810 of Hunan Normal Universi@hing).
of the properties found very plausible. As our results suggesiVe are indebted to J. Bellissard for useful comments and
a 2DEG subject to the inhomogeneous magnetic field of auggestions relating to our results. Discussions with W. Yan
Fibonacci or other quasiperiodic sequence of magnetiand L. D. Zhang and communications with F. M. Peeters and
stripes deposited on a nearby parallel surface should exhibM. Buttiker are also acknowledged.
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