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PREFACE

This thesis document presents the works performed by José Manuel Larrain De An-
draca during his Master of Science in Engineering. The main work (”Scale-invariant Deep
Learning approach for QSM reconstruction: SI-QSM”) of this thesis was submitted to the

journal NeuroImage in April 2022 (Query NIMG-22-804) and waiting for approval.
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ABSTRACT

Quantitative susceptibility mapping (QSM) is an MRI-based technique that allows the
quantification of the magnetic susceptibility of tissues. This technique has emerge as a
potential biomarker for several brain diseases. QSM reconstruction process involves solv-
ing an ill-posed inverse problem. Iterative approaches might solve that problem, but at
the expense of tedious and time-consuming heuristic schemes to set weighting parameters.
Deep learning approaches have emerged as alternative solutions. Despite of their relative
success, these approaches still present some problems when there is a mismatch in spatial

scale between the training datasets and the reconstructed susceptibility maps.

We propose an alternative deep learning QSM approach that incorporates novel train-
ing and architecture features. Our training datasets are based on analytical models and our
loss function balances L1-norm, L2-norm and a total variation regularization. Our U-net-
based architecture combines residual layers and different types of kernels with different

sizes.

We trained our network at one particular spatial scale and we tested it with in silico and
real data of different spatial scales. We compared our performance against state of the art
iterative and deep learning QSM techniques. Our network can be trained at one particular
spatial scale and obtain accurate QSM reconstructions at different scales, without produc-
ing blurred structures, biased susceptibilities and with good control over noise, streaking or
similar artifacts. Furthermore, our algorithm outperformed standard deep learning alterna-
tive and produced QSM reconstructions of similar quality as those obtained by state of the
art iterative solvers, but it is substantially faster and it does not use any heuristic for tuning

weighting parameters.

Keywords: Magnetic Resonance Imaging, Artificial Intelligence, Dipole inversion,

Inverse problems, Quantitative susceptibility mapping.

X



RESUMEN

Mapas cuantitativos de susceptibilidad (QSM) es una técnica basada en resonancia
magnética que permite cuantificar la susceptibilidad magnética de los tejidos. Esta técnica
ha surgido como un biomarcador potencial para varias enfermedades neuroldgicas. El pro-
ceso de reconstruccion QSM implica la resolucion de un problema inverso mal comportado.
Actualmente las soluciones iterativas resuelven el problema utilizando heuristicas dificiles
de implementar y con alto tiempo de computo. Métodos aplicando inteligencia artificial
han surgido como soluciones alternativas. Pese a su éxito, estos métodos siguen presen-
tando problemas cuando hay un desajuste en la escala espacial entre los conjuntos de datos

de entrenamiento y los mapas de susceptibilidad a reconstruir.

En este trabajo se propone la alternativa de inteligencia artificial SI-QSM, que incor-
pora en su algoritmo el estado del arte de entrenamiento y arquitectura. Los datos de
entrenamiento se basan en el modelo analitico y la funcién de pérdida equilibra la norma
L1, la norma L2 y una regularizacién de variacion total. La arquitectura estd basada en

U-net con capas residuales y kernels con diferentes tamafos.

SI-QSM fue entrenado a una escala espacial y probado con simulaciones y datos in-
vivo de diferentes escalas espaciales. Se compard las reconstrucciones de SI-QSM con
los estados del arte iterativos e inteligencia artificial. Concluyendo que SI-QSM puede in-
ferir QSM precisas a diferentes escalas, sin producir estructuras borrosas, susceptibilidades
sesgadas y con un buen control del ruido o artefactos. Ademds, SI-QSM supero las otras
alternativas de inteligencia artificial y produjo reconstrucciones de calidad similar a las
obtenidas por los soluciones iterativas, pero es sustancialmente mas rapido y sin necesidad

de utilizar ninguna heuristica para ajustar los pardmetros.

Palabras Claves: Imdgenes resonancia magnética, Inteligencia artificial, Inversion

dipolo, Problema inverso, Mapas de susceptibilidad magnética.
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1. INTRODUCTION

Quantitative susceptibility mapping (QSM) is a Magnetic Resonance Imaging (MRI)-
based technique used to determine the magnetic susceptibility of tissues, given the phase of
a complex-valued gradient recalled echo (GRE) acquisition (Wang & Liu, 2015; E. M. Haacke
et al., 2015). The magnetic susceptibility can be defined as the ratio between the magne-
tization of an element and the applied magnetic field (E. M. Haacke et al., 2015; Duyn et
al., 2007) and is directly related to the tissue chemical composition. Diamagnetic tissues
create a magnetization field that opposes the main magnetic field, whereas paramagnetic
tissues present a magnetization in the same direction as the main magnetic field. This
enables QSM to differentiate between, for example, (diamagnetic) calcium and (param-
agnetic) iron depositions (E. M. Haacke et al., 2015). This technique has been used to
study the brain, including physiological processes (e.g., oxygenation (M. Haacke, Tang,
Neelavalli, & Cheng, 2010)), pathological events (e.g., microbleeds (T. Liu et al., 2012)),
and neurodegenerative diseases (e.g., Alzheimer’s (Acosta-Cabronero et al., 2013), Parkin-
son’s (Acosta-Cabronero et al., 2017; Langkammer et al., 2016), Multiple Sclerosis (Zhang
et al., 2016)).

QSM images are typically obtained after solving 3 consecutive stages: unwrapping,
background field removal and dipole inversion. The continuous total magnetization field
is proportional to the phase of the acquired GRE signal. Due to the periodic nature of this
phase signal, the resulting measurements have 27-jumps which are eliminated by phase
unwrapping methods (Robinson et al., 2017). The background field removal stage aims at
eliminating the magnetic field contributions produced by objects outside the regions of in-
terest (ROI) and field inhomogeneities (Schweser, Robinson, de Rochefort, Li, & Bredies,
2017). Finally, the dipole inversion stage estimates the magnetic susceptibility of the exam-
ined tissues from the local field map obtained in the previous stage by solving an ill-posed

inverse problem.



Since typical tissue susceptibilities are small (in the order of parts-per-million, or
ppm), it can be assumed that a tissue is made of a distribution of independent susceptibility
sources that do not interact with each other. This way, the local field map can be modeled
as the convolution between a magnetic dipole kernel and the susceptibility distribution. In
QSM, this model is known as the source-to-field or forward problem. Estimating the sus-
ceptibility distribution is, in essence, a deconvolution (or inverse) problem. These kinds
of problems are commonly solved in the frequency domain, since spatial convolutions are
simple voxel-wise multiplications of the Fourier transform of the arguments. However, the
Fourier transform of the dipole kernel has zero-valued coefficients along a double conical
surface (known as the magic cone). Therefore, the deconvolution cannot be solved by di-
rect division in the frequency domain (Salomir, Senneville, & Moonen, 2003; J. Marques

& Bowtell, 2005).

Approaches based on truncated divisions (Shmueli et al., 2009; Wharton & Bowtell,
2010) (i.e., replacing zeros by a small constant before the direct division) tend to amplify
noise effects, generating streaking artifacts, i.e., high intensity lines in the same orientation
as that of the surface of the magic cone. To deal with artifacts related to noise and errors
propagated from previous stages, most of the current QSM reconstruction algorithms are
based on iterative methods (Bilgic, Chatnuntawech, Langkammer, & Setsompop, 2015;
Wharton, Schifer, & Bowtell, 2010; T. Liu, Liu, et al., 2011). Such approaches formulate
the reconstruction as the minimization of a functional, consisting typically of a data consis-
tency term and a regularization term. The first term enforces the proposed solution and the
measured local phase to be consistent with the forward problem, given a known noise distri-
bution. The second term enforces prior knowledge regarding the solution (e.g., smoothness
or sparsity in some domain). These two terms are balanced by a Lagrangian weight. Find-
ing the right weight is not straightforward. This is normally done using some heuristic

(e.g., L-curve (Hansen, 1992), or regional analysis in the Fourier domain (Milovic et al.,



2021)) that involves solving the optimization problem several times, each one with a dif-

ferent weight. Therefore, these iterative algorithms tend to be tedious and time-consuming.

Alternative data-driven QSM reconstruction methods have recently appeared using
deep learning-based techniques (Yoon et al., 2018; Bollmann et al., 2019; Jung, Bollmann,
& Lee, 2020; Gao et al., 2021). Most of these methods use convolutional neural networks
(CNN), usually based on U-net-like architectures (Ronneberger, Fischer, & Brox, 2015).
This kind of architecture facilitates reconstructing volumes that preserve morphological
similarities. Generative adversarial networks (GAN)(Goodfellow et al., 2014) and other
alternative architectures have been also implemented (Chen, Jakary, Avadiappan, Hess, &

Lupo, 2020; Feng et al., 2021), being less popular than U-net-based solutions.

Compared with iterative methods, CNN-based reconstructions are faster and they do
not need any heuristic to fine tune weighting parameters. However, CNN-based methods
still present some challenges. Current reconstructions methods tend to be over-smoothed
and their accuracy is deteriorated. CNN-methods tend to produce underestimated suscep-
tibilities when the training data set and the actual reconstructed data significantly differ in
their susceptibility ranges (Yoon et al., 2018; Oh, Bae, Ahn, Park, & Ye, 2020). Another
important problem arises when the training data set and the actual reconstructed data differ
in spatial scale or resolution (Chen et al., 2020; Oh et al., 2020), as reconstruction accu-
racy is greatly reduced. A standard approach to avoid such problem is to have the same
spatial resolution in both, the training data (full-size images or sliding patches) and the
actual reconstructions. However, this approach constrains significantly the applicability of
the methods or alternatively, force to have a series of training data sets of different spatial

resolutions.

In this work, we present a scale-invariant Deep Learning approach for QSM recon-

struction (SI-QSM). Our network architecture combines residual layers, filters of different



sizes and training data based on analytic models to effectively reduce the problems gen-
erated by a scale mismatch between training and reconstructed data. Therefore, train-
ing at one particular spatial scale could be used to reconstruct accurately QSM maps
from GRE data obtained at different scales. The source code of SI-QSM is available at

https://github.com/jnlarrain/ReconstrucNetwork



2. METHODS

2.0.1. Network Architecture

Our proposed network architecture (Figure 2.1) is based on a 3D fully-convolutional
residual U-net, with 1x1x1 convolutional layers used to reduce dimensions. To reduce the
number of training weights and computational resources, we used a parallel layer paradigm
with filters of different sizes as those introduced in the Inception Net architecture (Szegedy
et al., 2014). As inputs, our model uses the local field map and a binary mask of the ROI,

which are concatenated in two channels.

Due to the down-sampling and up-sampling steps, our network architecture allows
reconstructing any image whose size is a factor of 16. For images of other sizes, this re-
quirement needs to be fulfilled by zero-padding the data in a preprocessing step. Given
that the local magnetization fields are typically masked and should decay quickly to zero

outside the ROI, zero-padding acts as a reasonable boundary condition.
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FIGURE 2.1. SI-QSM architecture.

The architecture has two input channels, the phase and a binary mask of the ROI. They
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are concatenated at the entrance of the encoder. The encoding layers include different par-
allel filters(Szegedy et al., 2014) and residual layers. The decoding part includes transposed

convolutions and residual layers. To achieve faster reconstructions and let the network to




learn how to down-sample and up-sample the data, the max pooling and up-sample opera-
tions of the network were changed to stride 2 in the convolutional layers and the transpose

convolutional layers.

In the convolutional layers we replaced the kernels of size 5 (proposed in the Inception
Net architecture (Szegedy et al., 2014)), by dilated kernels of size 3. This way, the network
can learn different features in the same layer and use less resources. All convolutions are
initialized with the TensorFlow random seed 1024. We selected Leaky Relu as the acti-
vation function to be able to propagate the localization of scaled values of negative input

voxels.

Using residual layers, a parallel layer paradigm and kernels of different sizes allow us
to better propagate morphological patterns, to get different layer contexts and therefore, to

get a nearly scale-invariant network for QSM reconstruction.

2.0.2. Data generation

Bollmann et al. (Bollmann et al., 2019) showed that a CNN-based QSM reconstruc-
tion network can be trained using a susceptibility distribution made of a collection of simple
geometric structures (i.e., spheres and parallelepipeds) as ground truth, and computing the
acquired magnetization via a discrete convolution with the dipole kernel. This strategy has

been also replicated in subsequent studies (Li et al., 2021).

Instead of using discrete convolutions, we propose to use analytic solutions, since they
produce more accurate susceptibility interfaces than numeric simulations (Salomir et al.,
2003), and therefore reduce blurring or other scale-related problems. Analytic expressions
for the magnetization of spheres and infinite cylinders of constant susceptibilities () are

well-known (Salomir et al., 2003; Cheng, Hsieh, Neelavalli, & Haacke, 2009; Brown,
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Cheng, Haacke, Thompson, & Venkatesan, 1999). The magnetization produced by a sphere

is given by:

2 3 —Xou 222 —g2—y? :
BO(l - §X0ut)(r 3J>:Xi<xo;t)((121y21221§5/2 )7 outside the SthI‘G

Bsphere(l,7 n Z) —
0, inside the sphere
2.1)
where B(z, x, z) is the magnetic induction at a given Cartesian coordinate (x, ¥, 2), Xout 1S

the susceptibility outside the object, B is the main magnetic field and 7 is the sphere radius.

For the infinite cylinder (of radius 7), we exploit the symmetry of the problem by using

tilted cylindrical coordinates and ignoring the polar angle:

, — By axeut)™ ¢ (94)5in2(6),  outside the cylinder
Bevtinder (p gy = &0 2o (2.2)

—B, (xfgout) (3cos?(0) — 1), inside the cylinder

where p is the perpendicular distance from a point to the central axis of the cylinder, v is
the azimuth angle, and @ is the angle between the cylinder’s axis and the main field direc-

tion (z).

Being our analytical forward model a linear operator, we can add multiple spheres and
cylinders to build complex geometric figures (Milovic, Acosta-Cabronero, et al., 2018). For
the training process, the susceptibility maps were used as output, whereas the magnetization
field maps were used as input (Figure 2.2). We considered as random values: the number of
spheres, the number of cylinders, the constant susceptibility inside each sphere or cylinder,
the radius of each sphere or cylinder, the location of each sphere or cylinder and the cylinder
orientation. For each example of the training dataset, we limited to 0.01 ppm the absolute

value of the susceptibility of each sphere and each cylinders, we set to O the value of X,u¢,



and the maximum number of cylinders and spheres was set to 32 and 128, respectively.
The field of view (FOV) of the training data was 48x48x48 voxels. As an augmentation
step, we added Gaussian noise to the magnetization, with zero mean and standard deviation

between 1 x 107 and 1 x 1073 (constant for each data example).

2.0.3. Model training

The training was done with an Nvidia Titan RTX GPU, using Tensorflow Estimators,
batch size 12, ADAM optimizer (Kingma & Ba, 2014), learning rate 1.5 x 104, default

beta parameters and the following loss function:

Loss = Sy —of P+ 53—yl + 2319y .3
where y and y' are the reference and the prediction of the network, respectively, N is the
number of image voxelsand o = 1, 5 = 1 x 10~ and v = 1 are the weights applied to each
term in the loss function. This loss was designed to follow the optimization structure behind
a successful iterative approach such as (Lambert, Tejos, Langkammer, & Milovic, 2022),

which combines the L2-norm, L.1-norm and total variation in its optimizing functionals.

4
o.
. i"

(a) Training susceptibility output in ppm (b) Training field map input in ppm

FIGURE 2.2. Generated training data with inputs and expected outputs.

The model was trained for 12 hours considering 5 epochs with 65.536 examples in the

dataset. The model loss converged after 1 hour of training and the subsequent time window

9



was used to fine tune the model. After training, the model was optimized to half mixed

precision inference.

2.0.4. Experiments

We compared our proposed method against iterative and alternative CNN-based ap-
proaches (DeepQSM (Bollmann et al., 2019) and QSMnet+ (Jung, Yoon, et al., 2020)).
We used default weights or the pre-trained network provided by the authors. Specifically,
the authors of QSMnet+ trained their network with 64x64x64-voxel patches obtained from
COSMOS images (T. Liu, Spincemaille, De Rochefort, Kressler, & Wang, 2009) with a
voxel size of 1 x 1 x Imm?®, with overlaps of 66% (Yoon et al., 2018). The authors of

DeepQSM trained their network using 48x48x48-voxel synthetic images.

2.0.4.1. Scale invariance

To test the ability of our network to reconstruct susceptibility maps at different spa-
tial scales, we used a piece-wise constant susceptibility phantom (Wisnieff et al., 2013;
Milovic, Bilgic, Zhao, Acosta-Cabronero, & Tejos, 2018). This phantom was recon-
structed at four different scales. First, we zero-padded it from the original size 256x256x98
to 256x256x256 voxels. We downsampled this image to 128x128x128, 96x96x96, and
64x64x64 voxels. We forward simulated the magnetization by convolving with the dipole
kernel. We added Gaussian noise with signal-to-noise ratio (SNR) = 100 to the simulate
the final field maps. We measured the Root Mean Squared Error (RMSE) of each recon-

struction and compared performances with DeepQSM and QSMnet+.

2.0.4.2. QSM Reconstruction Challenge data

The 2019 QSM Reconstruction Challenge (RC2) used a 7T MP2RAGEME (Caan et
al., 2019) acquisition to build two in silico datasets (Sim1 and Sim2) (J. P. Marques et al.,
2021). Each dataset includes a simulated multi-echo GRE acquisition, from which the local
field map was estimated using a nonlinear fit (T. Liu et al., 2013). We also used the supplied
field map, obtained from averaging phase differences (Bilgic et al., 2021). Both datasets
have a FOV of 164x205x205 voxels, but each of them has a different contrast between grey

10



and white matter structures. Sim?2 also includes a strong calcification. For the challenge,
submitted reconstructions were analyzed using the global RMSE and local RMSE at dif-
ferent ROIs, along with metrics focused on the accuracy of the reconstructed susceptibility
at the calcification and its surrounding tissues. We measured the performance of SI-QSM
using the script provided by the challenge and compared our metric scores with those ob-
tained by submitted approaches using Deep Learning algorithms (Bilgic et al., 2021). We
also compared our approach with metric scores obtained by a Total Variation-regularized
iterative solver (FANSI) (Milovic, Bilgic, et al., 2018), which was the top-scoring RMSE
submitted approach for Stage 2, and a non-regularized early-stopped nonlinear iterative
solver (NDI) (Polak et al., 2020). In this experiment we compared our method with QSM-
net (Yoon et al., 2018), instead of QSMnet+, since the RC2 did not report results for the

latter algorithm.

2.0.4.3. In vivo data

We reconstructed an in vivo data set of a healthy volunteer, acquired with a Turbo GRE
sequence in a 3T Philips Ingenia scanner, with the following acquisition parameters: voxel
size 0.59x0.59x1 mm, 5 echoes, TR/TE = 44/7.2 ms, echo spacing 6.2 ms, bandwidth of
550.5 Hz, FOV 352x352x160 voxels and a flip angle of 17 degrees. We performed a Lapla-
cian phase unwrapping (Schofield & Zhu, 2003). Background field removal was performed
by a two-step approach (Milovic et al., 2019; Acosta-Cabronero et al., 2018) using LBV
(Zhou, Liu, Spincemaille, & Wang, 2014) and VSHARP (Ozbay et al., 2017). We applied

a bilinear interpolation to get a dataset with isotropic resolution.

We reconstructed a second in vivo acquisition (same scanner, acquisition parameters
and interpolation) of a volunteer with a calcification. For this example, we applied SEGUE
(Karsa & Shmueli, 2019) for phase unwrapping and PDF (T. Liu, Khalidov, et al., 2011) for
background field removal. Background field residuals were removed using the harmonic

phase estimation obtained with the Weak-harmonic QSM method (WH-TV) (Milovic et

11



al., 2019).

For both reconstructions we compared our proposed method with four state-of-the-art

algorithms: FANSI, NDI, QSMnet+ and DeepQSM.

The acquisitions were performed after an informed consent was signed by the volun-

teers and under the approval of the Institutional Ethics Committee.

12



3. RESULTS

3.0.1. Scale invariance

As shown in Table 3.1, for small scales, SI-QSM and QSMnet+ obtained similar RMSE
scores, outperforming DeepQSM. Whereas QSMnet+ maintained its performance for large
scales, our approach reduced the reconstructed errors. Errors produced by DeepQSM were
dominated by susceptibility overestimations (Figure 3.1), although in some regions there
were also some underestimated susceptibilities (e.g., close to the corpus callosum). Less
significant, but also visible, were some streaking artifacts (shown at the difference maps at
Figure 3.1). Errors produced by QSMnet+ also showed an oscillatory pattern with under-
estimated and overestimated areas, although less severe than that in DeepQSM. Whereas at
small scales reconstructions tended to be blurred, at large scales smoothing problems dis-
appeared, but some streaking artifacts became visible. SI-QSM also showed some blurring
at small scales, which tended to disappear at larger scales, but without creating oscilla-
tory patterns or significant streaking artifacts, and constantly reducing the magnitude of the

CITOrS.

TABLE 3.1. RMSE results for the CNN-based QSM reconstruction method in ppm.

FOV Scale
643 963 1283 2563
DeepQSM | 3.27 x1072 [ 3.03 x 1073 | 2.94 x1073 | 3.14 x 1073
QSMnet+ | 2.39 x1073 | 2.10 x 1073 2.22 x 1073 | 2.22 x 1073
SI-QSM | 2.42 x1072 [ 221 x 1073 [ 2.02 x 1073 | 1.74 x 1073

13




64x64x64 96x96x96 128x128x128 256x256x256

- 0.100
Ground Truth
- 0.075
QSMnet
- 0.050
DeepQSM
- 0.025
ESI-QSM L 0.000
Map of difference - —0.025
ESI-QSM
Map of difference - —0.050
DeepQSM
- —0.075
Map of difference
QSMnet
- —0.100

FIGURE 3.1. Comparison of CNN-based QSM reconstructions at different FOV

scales. All susceptibility values are in ppm.

3.0.2. QSM Reconstruction Challenge data

Figure 3.2 shows the reconstructions for the Sim2 RC2 dataset and Figure 3.3 shows
the respective differences with the ground truth. Note that we are including the openly
available FANSI, DeepQSM and QSMnet reconstructions submitted to the Stage 2 of the
challenge (Bilgic et al., 2021). The NDI reconstruction was performed by running 200
gradient-descent iterations, and with a Tikhonov weight of 1 x 107%. Evaluation metrics

are shown in Table 3.2.

14



Ground Truth FANSI NDI

QSMNet

DeepQSM

0.10

0.05

0.00

—0.05

-0.10

FIGURE 3.2. QSM reconstructions (in ppm) obtained by different methods using
the RC2 data.

FANSI NDI QSMNet

DeepQSM

SI-QSM

0.10

0.05

0.00

—0.05

-0.10

FIGURE 3.3. Difference maps between the ground truth and the compared recon-

struction approaches. All results are in ppm.
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TABLE 3.2. Metric scores obtained by different reconstruction methods using the

RC2 data.

FANSI | NDI | DeepQSM | QSMnet | SI-QSM
nrmse 28.85 | 51.15 58.28 63.18 49.13
nrmse_detrend 30.16 | 54.73 71.77 82.006 | 51.89
nrmse_detrend_Tissue | 36.92 | 59.32 90.37 107.64 | 59.35
nrmse_detrend_Blood | 62.92 | 71.46 | 132.41 153.83 | 68.43
nrmse_detrend_ DGM | 19.92 | 42.22 32.93 39.42 28.07
DeviationFrom 0.014 | 0.204 0.159 0.062 0.087

LinearSlope
CalcStreak 0.013 | 0.096 0.093 0.10 0.075
DeviationFrom 575 | 27.24 36.46 45.51 21.28

CalcMoment

In terms of structural details, FANSI seems to have the best performance, followed
by SI-QSM. QSMnet, DeepQSM and NDI generated blurred susceptibility maps, which
fail to reconstruct accurately small structures such as the straight sinus (Figure 3.2). This
becomes more evident in the difference maps (Figure 3.3). Both, NDI and our solution
produced similar results for medium and large-scale features, however our method showed
a better management of high-frequency noise. All methods had problems to reconstruct
accurately the calcification, since all of them producing a larger lesion, with an incorrect
susceptibility value. A similar behaviour can be observed analyzing the quantitative metrics
(Table 3.2). SI-QSM outperformed DeepQSM, QSMnet and NDI, being the second best
after FANSI.

3.0.3. In vivo data

QSM reconstructions of in vivo data from the healthy volunteer are shown in Figure
3.4 and QSM reconstructions of the subject with a strong calcification are shown in Figure

3.5. QSMnet+ and DeepQSM produced reconstructions with low contrast and also some
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attenuation is visible in deep brain structures. DeepQSM also produced blurred recon-
structions. Contrast is substantially increased in FANSI, NDI and SI-QSM reconstructions.
These methods also showed good definition of small structures, although NDI produced
some streaking artifacts and noisy results. These streaking artifacts are more evident when
emanating from high-contrast features, as for the calcifications. All compared methods
seem to be sensitive to background field residuals, as shown in Figure 3.4. Finally, each

method produced a slightly different result for the calcification (Figures 3.5 and 3.6).

FANSI NDI SMnet+
- —— 0.2

DeepQSM SI-QSM

0.1

0.0

-0.1

-0.2

FIGURE 3.4. QSM reconstructions (in ppm) of a healthy volunteer.
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FANSI NDI QSMnet+ DeepQSM SI-QSM

0.2

0.1

0.0

-0.1

-0.2

FIGURE 3.6. QSM reconstructions (in ppm) of a subject with a calcification. Mag-

nified view of a ROI around the calcification.
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4. DISCUSSION

Traditional Deep Leaning-based QSM approaches show accurate reconstructions for
structures with similar sizes as those included in the training process. However, reconstruc-
tion quality gets worse for structures of other sizes. This might be observed for QSMnet+,
which gave attenuated results for very large deep brain structures. Such structures are larger
than the training patches. Although DeepQSM has a different training strategy, the results
show a similar pattern. The algorithm failed to reconstruct structures that are larger than
those included in the training set. Both algorithms also failed to reconstruct small struc-
tures with large susceptibility values (e.g., straight sinus). Our SI-QSM was able to keep a
good reconstruction performance across different scales. In fact, for large FOV scales, all

metrics tended to improve and errors are characterized by high-frequency components only.

This behaviour may be explained by the use of training data based on an analytical
model, the incorporation of residual layers and different types of kernels and the use of a
loss function that balance L1-norm, L2-norm and a total variation regularization. Further
investigations need to be done to determine how each of these factors affect the QSM re-
constructions. This might be done for example with layer analysis, pruning or changing

the training dataset and changing the loss function.

Visually, our reconstructions are similar to those achieved by NDI. In essence, NDI
uses the iterations as an implicit regularization and the Tikhonov weight acts only as a
means to stabilize those iterations (Polak et al., 2020). This seems to be an effective strat-
egy to reduce noise and streaking artifacts. Similarly, our network was very effective in
learning the underlying physical inverse problem, without producing noise amplification or

streaking artifacts.

SI-QSM performed well on the in silico datasets presented at the 2019 QSM Recon-
struction Challenge, outperforming DeepQSM and QSMnet. If we would consider the
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entire list of submitted deep learning-based approaches, SI-QSM would obtain the second
place in the RMSE category. We expect that the computed metrics might be improved
by fine-tuning our model to the susceptibility distribution of the RC2 data. However, this
might not guarantee a good overall performance and might produce over-fitting. This is

also something that requires a further analysis.

In its current form, our model requires local field maps with isotropic resolution. Re-
constructing anisotropic datasets leads to ghosting and other artifacts. This might be ex-
plained by the fact that our network was trained only with isotropic voxels. To deal with
this limitation we used bilineal interpolations to achieve isotropic in vivo data. As a fu-
ture work, we might study whether including datasets with anisotropic resolutions into the

training process would capture the underlying physics involved in this inverse problem.

Reconstructing accurately structures with abrupt susceptibility changes (e.g., large
veins and calcifications) seems to be a big challenge for all QSM approaches, iterative
and deep learning-based. The reconstructed susceptibility values of those structures, and
sometimes those of the surrounding structures, seems to be biased. Including such struc-
tures into the training datasets might improve these results, but this is something that needs

to be further investigated.

Reconstruction algorithms present significant differences in terms of speed. Whereas
ES-QSM took typically 15 to 30 seconds to reconstruct in vivo datasets, NDI took between
1 to 3 minutes. This difference is even larger for FANSI, which took 15 to 20 minutes.
These times do not consider that iterative methods need fine-tuning weighting parameters,
therefore the reported time must be multiplied by the number of attempts needed for setting

those parameters.
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Recent developments have shown that a single network could be trained to perform
simultaneously both, the background field removal and the dipole inversion steps (J. Liu &

Koch, 2019). We are also considering this as a future area of research.
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5. CONCLUSIONS

Although deep learning-based approaches have significantly contributed to the state of
the art in QSM, they still produce significant errors when there is a mismatch in spatial

scale between the training dataset and the reconstructed susceptibility maps.

We here proposed SI-QSM, a deep learning-based algorithm for QSM reconstruction.
We innovated in both, training and architectures aspects. For training, we proposed the use
of an analytical model to create our training data set and also a loss function that integrates
L1-norm, L2-norm and a total variation regularization. In terms of architecture, our U-net-
based structure combines residual layers, different types of kernels with different sizes. The
resulting network was able to overcome successfully those scale-related problems. Indeed,
training at a particular spatial scale allowed accurate reconstructions of susceptibility maps
of different scales, without producing blurred structures, biased susceptibilities and with

good control over noise, streaking or similar artifacts.
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