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ABSTRACT

Facial recognition has been shown to have different accuracy for different demographic

groups. When setting a threshold to achieve a specific False Match Rate (FMR) on a mixed

demographic impostor distribution, some demographic groups can experience a signifi-

cantly worse FMR. To mitigate this, some authors have proposed to use demographic-

specific thresholds. However, this can be impractical in an operational scenario, as it

would either require users to report their demographic group or the system to predict the

demographic group of each user. Both of these options can be deemed controversial since

the demographic group is a sensitive attribute. Further, this approach requires listing the

possible demographic groups, which can become controversial in itself. We show that

a similar mitigation effect can be achieved using non-sensitive predicted soft-biometric

attributes. These attributes are based on the appearance of the users (such as hairstyle,

accessories, and facial geometry) rather than how the users self-identify. Our experiments

use a set of 38 binary non-sensitive attributes from the MAADFace dataset. We report

results on the Balanced Faces in the Wild dataset, which has a balanced number of iden-

tities by race and gender. We compare clustering-based and decision-tree-based strategies

for selecting thresholds. We show that the proposed strategies can reduce differential out-

comes in intersectional groups twice as effectively as using gender-specific thresholds and,

in some cases, are also better than using race-specific thresholds.

Keywords: Facial Recognition, Fairness, Differential Outcomes, FMR.
ix



RESUMEN

Los algoritmos de reconocimiento facial han demostrado tener diferencias en los re-

sultados entre los distintos grupos demográficos. Incluso cuando se establece un umbral

global para obtener una tasa de falsas coincidencias (FMR) especı́fica para todo el sistema,

algunos grupos demográficos pueden obtener resultados significativamente peores que los

indicados. Para mitigar esto, algunos autores han propuesto utilizar umbrales especı́ficos

por grupos demográficos. Sin embargo, esto es poco práctico en un entorno operativo, ya

que requerirı́a que los usuarios informaran de su grupo demográfico o lo predijeran en el

sistema. Ambas opciones son controversiales, debido a que el dato del grupo demográfico

es sensible. Además, en el caso de utilizar umbrales basados en un grupo racial, requiere

enumerar exhaustivamente todas las razas posibles para el sistema. Demostramos que se

puede conseguir un efecto de mitigación similar utilizando atributos biométricos blandos

predecibles no sensibles. Se trata de atributos basados en la apariencia de los sujetos

que no dependen de cómo se identifican los usuarios (como el peinado, los accesorios y

la geometrı́a facial). Utilizamos 38 atributos binarios no demográficos del conjunto de

datos MAADFace. Presentamos los resultados en el conjunto de datos BFW, que tiene un

número equilibrado de identidades por raza y género. Comparamos las estrategias basadas

en la agrupación y en los árboles de decisión como formas de seleccionar estos umbrales.

Demostramos que estas estrategias pueden reducir los resultados diferenciales en los gru-

pos interseccionales con el doble de eficacia que el uso de umbrales especı́ficos de género

y, en algunos casos, también son mejores que el uso de umbrales especı́ficos de raza.

Palabras Claves: Reconocimiento Facial, Equidad, Resultados Diferenciales, Taza de

Falsos Positivos.
x
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1. INTRODUCTION

Recent studies have pointed to potential demographic biases in facial analysis (Buo-

lamwini & Gebru, 2018; Muthukumar et al., 2018; Ngan, Grother, & Ngan, 2015; Qiu,

Albiero, King, & Bowyer, 2021) and facial recognition (Albiero, KS, et al., 2020; Grother,

Ngan, & Hanaoka, 2019; Howard, Sirotin, & Vemury, 2019; Krishnapriya, Albiero, Van-

gara, King, & Bowyer, 2020; Qiu et al., 2021). In 2020, the Association for Computing

Machinery (ACM) called for a suspension of facial recognition technologies as they pro-

duce “(...) results demonstrating clear bias based on ethnic, racial, gender, and other hu-

man characteristics recognizable by computer systems” (Committee, 2020). The central

concern is typically that different demographic groups experience different false match

rates. In facial verification, a false match occurs when the similarity between images of

two different persons is strong enough that the two images are assumed to be of the same

person. False matches are of particular concern because they can lead to unnecessary en-

counters with law enforcement. There are multiple recent incidents of an incorrect lead

provided by face recognition not being competently investigated by law enforcement and

thereby resulting in a false arrest (Anderson, July 10, 2020; Li, December 29, 2020).

To control the number of false matches, typically a threshold is set on the similarity

value between two images, so that only pairs of images whose similarity exceeds that

threshold are declared a match. The threshold is set based on training data referred to

as an impostor distribution, which is the distribution of similarity values between pairs

of images of different persons. A typical threshold value is one that results in only 1 in

10,000 impostor image pairs being above threshold. Unfortunately, it has been pointed out

that setting a FMR on a mixed-demographic dataset does not ensure that all demographics

actually experience an equal FMR (Grother et al., 2019; Howard et al., 2019; Robinson et

al., 2020). The National Institute of Standards and Technology (NIST) showed in a recent

Face Recognition Vendor Test (FRVT) (Grother et al., 2019) that, for many algorithms,

the False Match Rate across demographic groups can vary by factors of 10 or 100.
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Figure 1.1. Scenarios when addressing demographic performance in facial
verification. The Within-Demographic Imposters (WDI) Scenario consists
on restricting comparisons to the same demographic group (in this work
race and gender). The Cross-Demographic Imposters (CDI) Scenario al-
lows imposter images to be from different groups.

To mitigate the problem of error rate varying across demographics, some authors have

suggested using demographic-specific thresholds, i.e., to set a different threshold for each

demographic group (Cavazos, Phillips, Castillo, & O’Toole, 2020; Krishnapriya, Vangara,

King, Albiero, & Bowyer, 2019; Robinson et al., 2020). This would ensure that each

demographic respects the Policy FMR. Nonetheless, there are still some problems and

unanswered questions concerning this approach. First, there is no consensus on how to

choose the imposter images for a given demographic. To select the optimal thresholds and

to evaluate the performance of the methods, one has to set one of two scenarios (see Fig.

1.1). On the one hand, the Within-Demographic Imposters (WDI) Scenario1 restricts com-

parisons to be between pairs of images of the same demographic group. This is a common

approach to measure demographic performances of the methods (Albiero, KS, et al., 2020;

Krishnapriya et al., 2020, 2019). However, this does not reflect any typical operational sce-

nario, as it is not a common practice to restrict comparisons based on demographics. As

noted in (Cavazos et al., 2020; Grother et al., 2019; Howard et al., 2019), using WDI leads

to overall higher impostor scores, because lower-similarity impostor pairs are not included

in the distribution. Therefore, a higher threshold is required to ensure demographic groups

1Also known as demographic yoking (Cavazos et al., 2020).



3

fall below the desired FMR. This may lead to selecting thresholds that, in practice, pro-

duce a FMR much lower than the one reported but at the cost of producing a much higher

FNMR. On the other hand, the Cross-Demographic Imposter (CDI) Scenario2 compares

probe images to enrolled images from all different demographic groups. This is the stan-

dard approach to compute global thresholds but it has been been less explored to measure

demographic performance. This means that a global threshold may be computed using

CDI, but an analysis of bias may be performed using WDI. When doing this, it is plausi-

ble that all demographic groups will fall above the Policy FMR, since using WDI tends to

produce higher similarity scores. This may lead to wrong conclusions on whether or not

certain demographics are observing the Policy FMR.

To select demographic thresholds, there is also the issue of how to assign the demo-

graphic label to an identity. Grother et al. (2019) pointed out that if one trusts the self-

reporting of the demographic group, then some malicious agent may try to impersonate

someone of a low-threshold group. To prevent that from happening, one might be enticed

to use a classifier of demographic groups. Still, in many cases, it may not be desirable to

try to predict someone’s demographic (Hamidi, Scheuerman, & Branham, 2018). There

has been an increased desire for privacy regarding facial analysis, and demographic data

is usually considered a sensitive attribute. Facial analysis such as gender classification

has also been seen to have high error rates in LGBTQ+, and non-binary individuals (Wu,

Protopapas, Yang, & Michalatos, 2020). Moreover, Qiu et al. (2021) found that false

classifications of gender correlate with a false rejection of a true matching.

There is also no consensus on how many demographic groups should be considered.

Most studies considered gender (Albiero, KS, et al., 2020), race (Krishnapriya et al.,

2020), and age (Michalski, Yiu, & Malec, 2018). However, it can be possible to de-

fine combinations of those demographic groups. Unfortunately, there is little literature

on whether choosing a threshold for one demographic group (e.g., gender) decreases or

increases the differential performance on another (e.g., race). If one wishes to go further,

2Also known as zero-effort imposters (Grother et al., 2019).
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Figure 1.2. To compute group-specific thresholds, we compare the strate-
gies of defining groups based on Demographic Attributes (orange), Non-
sensitive Soft-biometric Attributes (green), and Facial Embeddings (blue).
These groups will be defined based on the metadata (in the case of the de-
mographic attributes), clustering (for facial embeddings and soft-biometric
attributes), and using a decision tree (for soft-biometric attributes). During
the training phase, a threshold will be computed for each of the correspond-
ing groups, which will be later used to determine a match/non-match. All
methods will compute the similarity scores using the same facial embed-
dings.

it could be possible to select a threshold for each country or continent of origin, as some

studies have found differential performances when considering that variable (Bruveris, Gi-

etema, Mortazavian, & Mahadevan, 2020; Grother et al., 2019). All-in-all, there are still

some gaps in the possibility of using demographic-specific thresholds.

In our work, we analyze in depth the problem of how to choose the threshold in a

fair face verification context. We compare the strategy of selecting a global threshold and

demographic-specific thresholds with others that do not explicitly depend on demographic

data (Fig. 1.2). Since automatically predicting a demographic group may be undesirable,

we will test by (i) selecting a variable threshold based on the clustering of the facial em-

bedding features (ii) based on non-sensitive soft-biometric features (such as hairstyle or

accessories) by clustering a binary soft-biometric attribute vector, and (iii) by building a

strategy based on decision trees to select the most informative attributes.
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The main contributions of this paper turned into thesis are four-fold:

• To show the effect of using demographic-thresholds based on a single demo-

graphic (i.e., gender or race) and intersectional groups (i.e., race+gender) when

testing on intersectional groups

• To compare how different operational scenarios (WDI and CDI) affect the train-

ing of demographic thresholds and their reported effectiveness to mitigate dif-

ferential outcomes

• To explore automatic group-based thresholds that do not depend on sensitive

information (such as race and gender)

• To show that non-sensitive attributes can be an effective tool to mitigate differ-

ential outcomes across intersectional groups
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2. RELATED WORK

In this section, we review the state of the art in three fields: fairness in machine learn-

ing, fairness in facial recognition and studying the effects of soft-biometric attributes on

facial verification (FV).

2.1. Fairness in Machine Learning

There has been an increase in studies on bias in machine learning, such as hiring,

recommendations, and facial analysis (Mehrabi, Morstatter, Saxena, Lerman, & Galstyan,

2019). Facial recognition studies have focused on group fairness, which can be defined

as ‘treating similar groups similarly’ (Mehrabi et al., 2019). Other areas of study have

focused on individual fairness (‘treating similar individuals similarly’), but this involves

the non-trivial task of defining a similarity metric between individuals to measure fairness.

In terms of group fairness criteria, most definitions are properties of a sensitive attribute

A (e.g., gender), the target variable Y (e.g., whether a loan applicant will pay back), and

a classifier R (e.g., credit score) (Barocas, Hardt, & Narayanan, 2019). Most criteria then

fall into one of the following categories: independence (R ? A)1, separation (R ? A|Y )2

, and sufficiency (Y ? A|R).

Facial recognition focuses on equalizing error rates. This falls in the category of sep-

aration, as the goal is to make the scores independent of the demographic group given the

true label (match/non-match). Equalizing both false match and false non-match error rates

across groups is rarely achievable in practice, and so proposed solutions focus on the error

rate that is considered more important for the scenario. This is most often the false match

rate, since a false match tends to be more undesirable for the subjects.

In order to meet these criterion, one can make changes before, during or after the train-

ing process of an algorithm. These are classified, respectively, as follows: a) preprocessing

1A ? B means A is independent of B
2A ? B|C means A is independent of B given C
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(e.g., ensuring balanced datasets), b) in-processing (e.g., include bias regularization terms

in the training process), or c) post-processing (e.g., normalizing the scores or varying the

thresholds) (Mehrabi et al., 2019).

Both (Hardt, Price, & Srebro, 2016) and (Corbett-Davies, Pierson, Feller, Goel, &

Huq, 2017) present post-processing methods to achieve equal error rates in classification

problems by using demographic-specific thresholds. Unfortunately, these results are not

directly applicable to facial verification. These approaches assume that a single input has a

sensitive attribute (e.g., race) associated with it. In facial verification, both the enrolled and

probe images each have their own sensitive attribute. While this is not a problem in a WDI

Scenario, as both images are from the same group by design, it does pose a problem when

considering a CDI Scenario. If the two images are from different demographic groups,

it is unclear how one should select a threshold. One could argue that if both images are

from different demographic groups, then it should be assumed to be an imposter, but this

ignores the fact that some demographic attributes can change in time (e.g., age and gender)

and, if the group is being predicted using an algorithm, the mismatch could be due to a

classification error.

One can deal with the previous problems by only focusing on the enrolled image’s

attributes without considering the probe image’s demographic group. Then, as Hardt et

al. (2016) and Corbett-Davies et al. (2017) propose, we can use a different threshold to

perform decisions in each demographic group. To further this idea, our work proposes

the non-sensitive attributes to replace the use of demographic groups. In our work, the

clustering-based solutions only look at the group of the enrolled image. This mitigates the

effect of attributes that change over time, and, in the case of a classification error, it does

not immediately classify the pair as an imposter.
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2.2. Fairness in Facial Recognition

Most studies focused on mitigating biases in facial recognition can be classified as

preprocessing, such as training on balanced datasets (Albiero, KS, et al., 2020; Albiero,

Zhang, & Bowyer, 2020; Klare, Burge, Klontz, Bruegge, & Jain, 2012; Zhang & Deng,

2020), or in-processing, such as using adversarial networks (Gong, Liu, & Jain, 2020;

Morales, Fierrez, Vera-Rodriguez, & Tolosana, 2020), reinforcement learning (Wang &

Deng, 2020), or adding error rate penalties in the loss function (Xu et al., 2021). Nonethe-

less, there have also been a few studies on post-processing for bias mitigation (Terhörst,

Kolf, Damer, Kirchbuchner, & Kuijper, 2020; Terhörst, Tran, Damer, Kirchbuchner, &

Kuijper, 2020). While preprocessing and in-processing are the most common approaches,

they also require many resources to acquire facial data or computational resources in re-

training the networks. Furthermore, even if one dedicated time and resources to ensure

balanced datasets, Albiero, Zhang, and Bowyer (2020) showed that balanced training data

does not imply that algorithms achieve balanced error rates. Post-processing approaches

usually require fewer resources to develop. These methods usually rely on either normal-

izing the comparison scores, learning new similarity metrics, or varying the thresholds.

Bias in facial verification can be studied by analyzing genuine-imposter curves or an-

alyzing error rates after applying a threshold. It is essential to make the distinction on

which metrics are helpful for each case. Howard et al. (2019) introduced the terms dif-

ferential performance, referring to differences in genuine and imposter distributions, and

differential outcome, for differences in error rates given a decision threshold. Many stud-

ies have focused on the differential performance (Gong et al., 2020; Krishnapriya et al.,

2019; Serna et al., 2020; Sixta, Junior, Buch-Cardona, Vazquez, & Escalera, 2020; Wang,

Deng, Hu, Tao, & Huang, 2019). Consequently, the comparison of ROC Curves and AUC-

ROC became very popular metrics to use (Sixta et al., 2020). These studies tend to report

demographic ROC curves that only use same-group comparisons; therefore, they fall into

the WDI Scenario. As for differential outcomes, some studies have used differentials of

FNMR at a given FMR (Terhörst, Kolf, et al., 2020; Terhörst et al., 2020), while others
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have focused directly on differences in FMR (Cavazos et al., 2020; Grother et al., 2019;

Howard et al., 2019; Robinson et al., 2020; Xu et al., 2021).

When using a ROC curve (or AUC) to compare across demographic groups, some-

thing to consider is that different demographics typically achieve a particular FMR at dif-

ferent thresholds (Cavazos et al., 2020; Krishnapriya et al., 2019). This means that a ROC

analysis typically does not reflect a comparison that would be achieved in an operational

scenario.

This motivates the use of demographic-specific thresholds to mitigate biases (Cavazos

et al., 2020; Krishnapriya et al., 2020, 2019; Robinson et al., 2020). Krishnapriya et al.

(2019) shows that, even though African-American faces have better ROC curves than

Caucasian faces, they also have a worse FMR for any given threshold. They do their

analysis using WDI, comparing images with faces of the same demographic group. In

(Robinson et al., 2020), one of the few studies that explore differential performance and

differential outcomes using CDI, query images from any demographic group are allowed.

Cavazos et al. (2020) says that threshold setting and controlling imposters are scenario-

modeling factors relating to race bias that are under “control” of the user. They state

that “it is clear that a uniform threshold is not adequate or equitable when the underly-

ing sub-population distributions differ” and therefore using group-specific thresholds is

more adequate. Even though they mention the issue of variable thresholds and enforc-

ing imposter restrictions, they do not explore under which scenario these demographic

thresholds should be set.

Studies exploring the use of demographic-specific thresholds have suggested choosing

a threshold based on some demographic groups (e.g., gender) and report the results on the

same groups. There has been little study on how setting a threshold based on only one

demographic (e.g., gender) affects the intersectional subgroups (e.g., gender and race).

Grother, Ngan, and Hanaoka (2018) showed the impact on different demographics groups

of choosing a global threshold such that white males achieved a certain FMR, but they
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did not show how setting a threshold based on only one demographic group (e.g., male

or white) would impact the intersectional groups. They also reported only the results of

a global threshold strategy and did not use variable thresholds. In our work, we not only

compare the effect of controlling the imposters for the demographic thresholds but explore

how setting thresholds according to non-sensitive attributes affects these intersectional

groups.

2.3. Effects of Soft-Biometric Attributes on FV

Dantcheva, Elia, and Ross (2015) defines soft-biometrics as the “physical, behavioral,

or material accessories, which are associated with an individual, and which can be use-

ful for recognizing an individual”. These include, but are not limited to, demographic

attributes, hairstyle, face geometry, etc. While demographic attributes are the most com-

monly studied (Drozdowski, Rathgeb, Dantcheva, Damer, & Busch, 2020), there are also

studies on subject-specific attributes (e.g., hair style, expression and accessories) (Albiero

& Bowyer, 2020; Terhörst et al., 2021) and environmental (e.g., illumination and resolu-

tion) (Howard & Etter, 2013). Terhörst et al. (2021) made a comprehensive study of the

effect of 40 non-demographic attributes on differential outcomes. Their results found that

many non-demographic attributes strongly affect the recognition performance of facial

recognition models. They also show that, for ArcFace, the differential outcomes produced

by certain attributes can vary significantly for different decision thresholds.

To the best of our knowledge, our work presented here is the first work that uses soft-

biometric attributes to define group-specific thresholds to mitigate differential outcomes.

This is presented in contrast to the approach of using demographic-specific thresholds,

something that has been done both implicitly by equalizing AUC-ROC (Gong et al., 2020;

Krishnapriya et al., 2019; Serna et al., 2020; Sixta et al., 2020; Wang et al., 2019), and

explicitly (Cavazos et al., 2020; Krishnapriya et al., 2019; Robinson et al., 2020).
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3. THRESHOLD STRATEGIES IN FV

For a given input feature XP from a probe claiming to be of an enrolled identity I with

a template feature of XE , the null and alternative hypotheses of the verification problem

are (Jain, Ross, & Prabhakar, 2004):

• H0: Input XP does not come from the same person as XE

• H1: Input XP comes from the same person as XE

With this, the associated decisions are

• D0: person is not who they claim (non-match)

• D1: person is who they claim (match)

Where, given a threshold ⌧ and similarity score s, we choose D1 if s > ⌧ and D0 other-

wise.

This allows to define the error rates as follows

• FMR = P(D1|H0)

• FNMR = P(D0|H1)

Then, for a given similarity function s and global threshold ⌧global, the classical deci-

sion problem could be defined as

Dglobal thr. := s(XE, XP ) > ⌧global (3.1)

A variable threshold strategy would change this definition and consider the following

problem

Dvariable thr. := s(XE, XP ) > ⌧f(XE ,XP ) (3.2)

where ⌧f is a function that depends on the facial features (or other attributes).

The first strategy, which is the standard approach, uses a fixed threshold for the whole

dataset. The second strategy chooses a different threshold for each demographic group, as
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in (Cavazos et al., 2020; Krishnapriya et al., 2019; Robinson et al., 2020). We compare

these strategies with others that also use varying thresholds without using demographic

data. We use clustering-based strategies on facial embeddings and on soft-biometric fea-

tures, and use a decision tree-based strategy, which tries to maximize the information

gained on the false matches based on the soft-biometric features. The reader is referred

to Fig. 1.1 to see the differences between the WDI and CDI Scenario, Fig. 1.2 as general

overview of the five strategies and Fig. 4.1 as a guide for the features used in each strategy.

3.1. Fixed Global Threshold

The global threshold will be chosen as the one that ensures a given FMR in the training

set. While some authors suggest that this threshold should be set using WDI (Cavazos et

al., 2020; Grother et al., 2019), it is usually computed using CDI (O’Toole, Phillips, An,

& Dunlop, 2012). The Fixed Global Threshold strategy is the standard approach in facial

verification, so we will use it as a baseline to compare against.

3.2. Demographic Thresholds

The most direct way to ensure that every demographic group follows the Policy FMR

is to compute a different threshold for each demographic group. There is also a need to

define which demographic group must be used to set the thresholds. In this work, we will

compare the use of group-specific thresholds for a) gender (Male, Female), b) race (Asian,

Black, White, Indian), and c) combinations of race and gender.

A problem of this approach is which threshold should be used when comparing im-

posters from different demographic groups. In this work, we choose the threshold based

on the ground-truth demographic group of the enrolled image, without considering the

demographic group of the probe image.
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3.3. Embedding Clustering Thresholds

It has been shown that facial embeddings encode information about demographic

groups, even if they are not explicitly given that information in training (Das, Dantcheva,

& Bremond, 2018; Morales et al., 2020; Ozbulak, Aytar, & Ekenel, 2016). Terhörst,

Fährmann, Damer, Kirchbuchner, and Kuijper (2020) found that it was possible to ac-

curately predict 74 out of 113 soft-biometric attributes using facial embeddings. This

suggests that facial embeddings encode more information than just identity. As so, we

compare the use of demographics with directly clustering the feature embeddings.

In our work, training features will be clustered using K-Means1, and for each cluster,

we will choose a threshold such that the cluster achieves the probe FMR. To compute the

thresholds for each cluster we will follow an approach similar to that of the CDI Scenario,

in the sense that we will allow comparisons of images between clusters. This means that

the threshold will be selected by choosing all probe images in that cluster but allowing

query images from different clusters. Later, when testing, we will use the cluster of the

probe image to select the threshold.

3.4. Soft-Biometric Clustering Thresholds

Even if facial embeddings carry more information than just identity, it could be a better

alternative to cluster soft-biometric attributes directly. Terhörst et al. (2021) and Albiero

and Bowyer (2020) showed that many non-demographic soft-biometric attributes strongly

affect recognition performance. The MAADFace dataset includes 47 binary attributes, out

of which 7 correspond to demographic information. Since this work aims to implement

thresholds that do not depend on demographics, we will exclude these attributes from

the clustering. We also removed the ‘Attractive’ and ‘Chubby’ attributes, as they could

perpetuate standards of beauty associated with one culture. This means that each image

1Clustering was performed using the MiniBatchKMeans implementation of scikit-learn version 0.24.2 with
default parameters.
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in the training set will be associated with a feature vector of 38 binary (non-demographic)

soft-biometric attributes, such as ‘is bald’, ‘has a mustache’, and ‘is wearing makeup’. We

call these 38 attributes the non-sensitive soft-biometric attributes. All there attributes

were predicted using a Massive Attribute Classifier (MAC). They have an average reported

accuracy of 89.8% (Terhörst et al., 2019a) and the worst reported attributes have 68% of

accuracy (‘bags under eyes’ and ‘brown eyes’).

As with the facial embeddings, these features will be clustered using K-Means2. We

will use the threshold that achieves the policy FMR using the facial embeddings for verifi-

cation for each cluster. Training will be done allowing query images to belong to different

clusters and, when testing, we will choose the threshold based on the cluster of the probe

image.

3.5. Decision Tree-based Thresholds

While previous strategies focused on assigning individual images to a specific group,

facial verification consists of classifying pairs of images. As such, the similarity score

can be influenced by whether both, one, or neither of the images have a soft-biometric

attribute or belong to a certain group (Cavazos et al., 2020; Howard et al., 2019; Terhörst

et al., 2019a). To find attributes that might convey a lot of information on false matches,

we will use an information-based decision tree model as suggested by (Howard & Etter,

2013) and (Howard et al., 2019).

To measure the amount of information on false matches, we will use the Shannon

Entropy

E(Y ) = �
X

i

pi log2(pi) (3.3)

where Y := Dglobal|H0 is a random variable representing the probability of a false match

for a global threshold, and pi is the probability of a pair of images being either i 2

2Experiments were also performed reduction the dimensionality of the embeddings before doing K-Means
(Appendix B). In general, we did not see a major improvement on bias mitigation by reducing the dimen-
sionality.
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{false match, true no-match}. To quantify the effect of knowing an attribute in the false

matches, we will use the information gain of the error rate given the attribute

IG(Y,X) = E(Y )� E(Y |X) (3.4)

where E(Y |X) is the entropy of the false matches given that we know the variable X . In

our case, this variable is whether both, one, or neither of the images have a certain attribute

(e.g., X =(both are bald, only one has glasses, neither has black hair)). In the case where

one of the images presents the attribute (e.g., only one has glasses) it will be equivalent if

the probe or the query image is the one presenting that attribute.

This technique allows us to create a decision tree model, where each branch is based

on the attribute that gives the most information gain. At each leaf of the tree, we will

compute a threshold such that the pairs of images that fall on that leaf achieve the desired

FMR.
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4. EXPERIMENTAL METHODOLOGY

4.1. Datasets

Our work is based on the Balanced Faces in the Wild (BFW) (Robinson et al., 2020;

Robinson, Qin, Henon, Timoner, & Fu, 2021) and MAAD-Face (Terhörst et al., 2019a,

2019b; Terhörst, Kolf, Damer, Kirchbuchner, & Kuijper, 2020) datasets. Both are datasets

based on VGGFace2 (Cao, Shen, Xie, Parkhi, & Zisserman, 2018). BFW is a dataset

balanced across race (i.e., Asian, Black, Indian, and White) and gender (i.e., Female and

Male). It has an equal number of identities per subgroup (100 per subgroup) and faces per

identity (25 faces), for a total of 20K images of 800 subjects. BFW has five pre-defined,

person-disjoint folds for five-fold cross-validation to estimate the accuracy. MAAD-Face

is an extension of VGGFace2 with annotations from 47 soft-biometric attributes. From

them, we select the 38 non-sensitive soft-biometric attributes as explained in Section 3.4.

With 123.9M attribute annotations, MAAD-Face is currently the largest face annotation

dataset. The selected non-sensitive attributes were predicted using a Massive Attribute

Classifier (MAC) with a mean reported accuracy of 89.8% (Terhörst et al., 2019a).

Accuracy is reported as the average across 5-fold cross-validation. For each image,

475 imposters were selected from the same fold and all genuine pairs were used. We also

removed 3 images that contained bugs reported by the authors of BFW (wrong identity and

cartoon faces)1 and another 4 images that were not present in MAAD-Face2. In total, we

used 239,880 pairs of genuine faces and 9,497,625 imposter pairs separated into 5 folds.

In WDI Scenario we will restrict query images to be from the same race and gender of the

probe image. In CDI Scenario we will have no such restriction, so imposters can be of any

demographic group. In both cases we will sample the same amount of images, so we will

have the same amount of imposters.

1https://github.com/visionjo/facerec-bias-bfw/blob/master/data/README
.md#reported-bugs
2‘n009142/0501 01.jpg’, ‘n001555/0307 02.jpg’, ‘n009142/0501 01.jpg’, ‘n001555/0307 02.jpg’

https://github.com/visionjo/facerec-bias-bfw/blob/master/data/README.md#reported-bugs
https://github.com/visionjo/facerec-bias-bfw/blob/master/data/README.md#reported-bugs
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Figure 4.1. For training, the groups are created based on Demographic At-
tributes (D), Soft-biometric Attributes (A), and Face Embeddings (Y ). On
this work, the Demographic Attributes are based on the ground-truth labels
of BFW Robinson et al. (2020). We will use labels for race and gender.
We use 39 Soft-biometric Attributes come from MAAD-Face Terhörst et
al. (2019a) (e.g., ‘is bald’, ‘has a beard’), these attributes were predicted
using a Massive Attribute Classifier. The Facial Embeddings are 512-
dimensional vectors computed using ArcFace Deng et al. (2019).

4.2. Training process

The training process consisted of two steps: defining groups (Fig. 4.1) and computing

thresholds for each group (Fig. 4.2). For all methods, we computed the facial embeddings

using ArcFace (Resnet-101) (Deng et al., 2019), which provides a 512-dimensional vec-

tor for each facial image3. The Demographic Groups are created based on the metadata

provided on BFW. We will use all possible combinations of race and gender. For the Em-

bedding Clustering strategy, we will use K-Means to cluster the facial embeddings in the

training set given by ArcFace. We will also use K-Means to cluster the non-sensitive soft-

biometric attributes provided by MAAD-Face. To compute the thresholds, we will select

the 475 imposters for each image in the group and compute a threshold that achieves the

Policy FMR on the imposter distribution. The Policy FMR is usually set by policymakers

3We also present results using SphereFace (Liu et al., 2017) in Appendix A.
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Figure 4.2. Diagram showing information required to compute each
threshold in the training phase. All methods require a Policy FMR
(FMRp), the features of the enrolled images YE and the corresponding fea-
tures of the set of imposters for each enrolled image Yimp. When training
on a WDI Scenario, these imposters would be from the same demographic
group as the enrolled image. On the other hand, when training on a CDI
Scenario there is no restriction on the demographic group of the imposters.
Strategies (2), (3) and (4) receive the demographic group (DE), facial em-
bedding cluster (KE) and soft-demographic cluster (SE) respectively from
the enrolled image. The Decision Tree-based strategy receives comparisons
between the soft-biometric attributes of the enrolled and imposter images
(TE+Imp), and produces a threshold for each leaf of the tree.

who measure the risk of the system. We will use a Policy FMR of 10�3, as recommended

by the European Border Guard Agency Frontex (Frontex, 2015).

For the Decision Tree, we set the threshold according to the comparisons between

images rather than assigning groups to specific faces. Each threshold is set based on each

leaf that the pairs of images fall into. We will adjust the number of leaves by setting a high

number for the depth of the tree and then selecting the N most relevant leaves. This will

allow us only to select the most informative comparisons.

4.3. Evaluation Metrics

There is currently no consensus on which is the best metric to measure differential

outcomes in facial recognition. Nonetheless, most works try to focus on achieving equal

error rates across demographics. Given a set of groups G (e.g., race, gender), we will
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measure the differential outcome of each strategy using the Skewed Error Ratio (SER)

(Wang & Deng, 2020):

SER =
max{FMRg 8g 2 G}
min{FMRg 8g 2 G} (4.1)

This is a pessimistic metric, as it focuses on the worst-case scenario. We would also

like to measure the dispersion of the error rates. In facial verification, we often think of

errors in ratios (e.g., an FMR of 0.01 means falsely accepting in 1 every 100 people).

Therefore, the SER has a very intuitive explanation of how many times is the error in the

worst demographic compared to the best one. A high value means that method has a high

disparity in the error rates, while a value of 1 means that all groups have the same FMR.

Grother (2021) declared that the NIST would start reporting this metric on their FRVT on

a recent EAB event.

Robinson et al. (2020) reported the percentage error in order to measure the deviation

from the Policy FMR for the system (FMRp):

Percentage Errorg =
FMRg � FMRp

FMRp
(4.2)

We will use the Mean Absolute Percentage Error (MAPE) to quantify how much the

groups differ on average from the Policy FMR. Given a desired FMRp, the MAPE of

the error rates is:

MAPE =
100

|G|
X

g2G

����
FMRg � FMRp

FMRp

���� (4.3)

We will use the MAPE instead of the Mean Percentage Error (MPE) for two reasons.

First, we do not want the low error rate of one demographic group to cancel out the high

error rate of another. Second, a high deviation to a lower value of FMRs can be detrimental

to the system, as it almost always comes accompanied by an increase in FNMR. If this

metric is zero, then all demographic groups achieve the desired FMR.
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5. RESULTS

5.1. Importance of not mixing scenarios

It is important to select the thresholds and report group metrics using the same sce-

nario, and not to use CDI for one and WDI for the other. As seen in Fig. 5.1, if the

thresholds are trained using CDI and reported on WDI, then all demographic groups will

be above the Policy FMR. This happens because, as seen by several studies (Cavazos et

al., 2020; Grother et al., 2019; Howard et al., 2019), choosing similar subjects increases

the similarity of the imposters’ distribution. On the other hand, if one wishes to report

metrics using CDI (since this scenario is the most similar to an operational setting) but

chooses the demographic thresholds based on WDI (which is the most common approach)

then the results for all demographic groups fall almost an order of magnitude below the

Policy FMR. This happens because the thresholds were chosen with a distribution that had

harder examples than the ones that it is being tested on.

Figure 5.1. The problem with selecting thresholds and reporting metrics
for different scenarios. Left: If thresholds are selected for WDI and metrics
are reported for Scenario 2 (zero-effort imposters) then all groups are over
the Policy FMR for global and demographic-specific thresholds. Right: If
thresholds are selected for CDI and metrics are reported for WDI then all
groups fall bellow the Policy FMR by almost an order of magnitude for
global and demographic-specific thresholds.
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Figure 5.2. Distribution of FMR for race and gender groups calculated us-
ing WDI. Reported FMR is the average performance of the folds using
5-fold cross validation. Red line is the desired FMR for the system.

Figure 5.3. Distribution of FMR for race and gender groups calculated us-
ing CDI. Reported FMR is the average performance of the folds using 5-
fold cross validation. Red line is the desired FMR for the system.
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Table 5.1. Evaluation metrics training and reporting using WDI on the
BFW dataset.

WDI Scenario Differential Outcome Global Performance
SER MAPE Global FMR Global FNMR

Baseline
Global Thr. 11.70 51.48% 0.001003 0.188759
Demographic-groups Thresholds
Gender Thr. 6.11 46.91% 0.001024 0.188488
Race Thr. 4.03 40.79% 0.001025 0.186091
Race+Gender Thr. 1.14 7.88% 0.001079 0.184953
Non-sensitive Groups Thresholds
Embedding Clustering Thr. (K=32) 8.46 54.20% 0.001105 0.187873
Soft-Biometric Clustering Thr. (K=16) 2.81 32.60% 0.001034 0.186889
DecisionTree Thr. (Leafs=32) 13.07 92.53% 0.000075 0.381199

Table 5.2. Evaluation metrics training and reporting using CDI on the
BFW dataset.

CDI Scenario Differential Outcome Global Performance
SER MAPE Global FMR Global FNMR

Baseline
Global Thr. 4.94 36.10% 0.001002 0.154333
Demographic-groups Thresholds
Demographic Thr. (gender) 3.44 32.35% 0.001008 0.154078
Demographic Thr. (race) 2.18 24.27% 0.001007 0.153566
Demographic Thr. (race+gender) 1.04 1.31% 0.001013 0.153307
Non-sensitive Groups Thresholds
Embedding Clustering Thr. (K=32) 4.06 29.95% 0.000967 0.156431
Soft-Biometric Clustering Thr. (K=16) 2.65 21.20% 0.000949 0.155873
DecisionTree Thr. (Leafs=32) 1.48 12.30% 0.001016 0.164454

5.2. Mitigating Differential Outcomes

When training and testing the methods using WDI (Fig. 5.2) we see that, while the

strategy of clustering facial embeddings does not give a significant improvement, clus-

tering soft-demographic attributes reduces the gap between the error rates and gets them

closer to the desired FMR. As seen in Table A.1, these results are even better than using

thresholds based on gender or race by themselves. Using a global threshold, the worst

demographic group performs over 11 times worse than the best one. Compared to the

global threshold, all methods show an improvement on the mitigation of differential out-

comes, with the exception of the decision tree-based threshold. Using the non-sensitive
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soft-biometric clusters, this disparity is reduced to less than 3 times. Even if a difference

exists, the result is better than the 6⇥ and 4⇥ disparity produced by the gender and race

thresholds respectively. This means that differential outcomes on demographic groups can

be mitigated without explicitly using said demographics. Decision Tree-based strategies

lower the FMR, but it lowers it so much that it affects the FNMR metrics, making it an

undesirable result.

The CDI scenario is the one most commonly used currently in operational settings.

In this scenario, the disparity of the global threshold is lower than when using WDI (5⇥

vs. 11⇥). In this scenario all methods show at least a slight advantage over the global

threshold (Table A.2). The soft-biometric clusters reduce the disparity to almost half of

the global threshold. This strategy is still better than using a gender threshold, but in this

scenario, it is more comparable to a threshold based on race. After the threshold based

on race and gender, the best strategy is to use a Decision Tree-based threshold. We see

that the disparity is reduced considerably for different hyperparameters (see Fig. B.2).

Nonetheless, this is done at the expense of having the worst global FNMR.
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6. DISCUSSION

We saw that differential outcomes can be mitigated using groups that do not use the

demographic groups explicitly, sometimes even surpassing the thresholds based on demo-

graphic groups. In both the CDI and WDI scenarios, the non-sensitive approach proves

to be twice as effective at reducing differential outcomes in intersectional groups. The

decision tree-based approach could mitigate a lot of the bias in the CDI scenario but per-

formed poorly on the WDI scenario. The reason for this could be due to the decision tree

overfitting the data. This is supported by the fact that the literature presents WDI as more

similar between them, which could lead to correlations in the comparisons made by the

decision tree. However, the approach of clustering soft-biometric attributes was consistent

in reducing differential outcomes in both scenarios.

This could be a great advantage in operational settings, as it reduces demographic

disparities without using demographic data. To use a demographic threshold on an op-

erational setting one either has to ask for (and trust) a self-reported demographic group

or try to predict it. The latter is the most controversial, as some people could consider

it a privacy violation to detect a sensitive attribute through facial features. Predicting the

demographic category also forces the system developers to formalize race as a categorical

variable, which by itself can become controversial. Whether controversial or not, it can be

problematic as there is no clear consensus on how many races should be considered. For

example, on the one hand, the MAAD-Face dataset classifies each image in VGGFace2 as

White, Asian and/or Black. On the other hand, the BFW dataset uses, for the same dataset,

White, Asian, Indian or Black. One can then ask what would happen with other demo-

graphic groups, such as Hispanic or a mixture of them. This problem is not limited to these

two datasets. Khan and Fu (2021) notes that many datasets can have badly defined and in-

congruent definitions of races. The FRVT (Grother et al., 2019) offers analysis separating

images by country of origin, but getting to this level of granularity becomes impractical

when thinking on storing demographic thresholds. While it is important to measure the
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performance of algorithms according to demographic groups, using them explicitly on an

operational setting seems impractical.

To avoid the problems of using demographic thresholds explicitly, we show that dif-

ferential outcomes can be mitigated using non-sensitive soft-biometric data, which can

be predicted with fairly good accuracy (Terhörst, Fährmann, et al., 2020; Terhörst et al.,

2019a). This also shifts the focus of using labels relating to how the subjects identify them-

selves (like race or gender) to attributes related to the subject’s appearance (like hairstyle

or accessories). While some attributes may be correlated with demographic attributes, not

making this relation explicit means that there is no hard boundary between demograph-

ics (e.g., while men correlate with bald, the method does not reject the existence of bald

women). This means that attributes related to gender expression, for example, will be

taken into account when selecting the threshold without making assumptions on gender

identity.

The proposed approaches are also robust to errors in the classification of soft-biometric

attributes, since even if an attribute is wrongly predicted the image is not immediately

classified as genuine or imposter. The proposed methods use the predicted soft-biometric

information as a guideline on how high (or low) the threshold should be set for the compar-

ison. The results presented in this paper, for example, use the imperfect information of the

classifier. Future work could analyze the sensibility of these methods to noisy predictions.

The proposed method shows a path to mitigating observed differential outcomes for

demographic groups, “bias”, by defining variable thresholds without asking for or explic-

itly predicting demographic groups. This is a new approach for how to apply variable

thresholds. Furthermore, this method can be applied to any black-box facial recognition

system, requiring minimal training to achieve results that effectively mitigate bias.
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7. CONCLUSION

Our work showed the effects of using demographic-thresholds based on a single de-

mographic (i.e., gender or race) when testing intersectional groups. In our experiments we

saw that using a race-specific threshold is better at mitigating differential outcomes than a

gender-specific threshold.

We compared how different operational scenarios (WDI and CDI) may affect the

threshold selection process and the reporting of differential outcomes metrics. We also

highlated the importance of keeping these scenarios consistent.

We explored different techniques of group-based thresholds that do not depend on

sensitive information. We implemented clustering and decision tree-based strategies to

define group-specific thresholds. The proposed methods can be easily integrated with any

black-box model.

Finally, our work showed that non-sensitive soft-biometric attributes can be an effec-

tive tool to mitigate differential outcomes. Soft-biometric attributes have already been

shown to be easily predictable from facial images and to have an impact on facial verifica-

tion performance. Our work shows that these attributes can be as effective as demographic-

based threshold in mitigating differential outcomes. This moves the focus away from

identity-based attributes (i.e., gender and race), which are considered sensitive informa-

tion and more controversial to use.

Future work could focus on defining thresholds based on other soft-biometric at-

tributes, such as lighting and image quality. This may lead to systems that are more robust

to different conditions and appearances of the subjects. This approach could be imple-

mented, supervised, and modified during the deployment of facial recognition systems, as

it required minimal training and can be easily extended to many biometric algorithms.
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A. SPHEREFACE RESULTS

Figure A.1. Distribution of FMR for race and gender groups calculated us-
ing WDI. Facial embeddings computed using SphereFace. Reported FMR
is the average performance of the folds using 5-fold cross validation. Red
line is the desired FMR for the system.

Figure A.2. Distribution of FMR for race and gender groups calculated us-
ing CDI. Facial embeddings computed using SphereFace. Reported FMR
is the average performance of the folds using 5-fold cross validation. Red
line is the desired FMR for the system.
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Table A.1. Evaluation metrics training and reporting on the WDI Scenario.
Facial embeddings computed using SphereFace.

WDI Scenario Differential Outcome Global Performance
SER MAPE Global FMR Global FNMR

Baseline
Global Thr. 25.57 55.51% 0.001001 0.222274
Demographic-groups Thresholds
Gender Thr. 14.05 46.58% 0.001028 0.220569
Race Thr. 2.83 34.62% 0.001031 0.213937
Race+Gender Thr. 1.20 6.83% 0.001067 0.213704
Non-sensitive Groups Thresholds
Embedding Clustering Thr. (K=32) 7.58 52.55% 0.001199 0.213321
Soft-Biometric Clustering Thr. (K=16) 3.32 36.79% 0.001035 0.216991
DecisionTree Thr. (Leafs=32) 4.84 93.66% 0.000063 0.441907

Table A.2. Evaluation metrics training and reporting on the CDI Scenario.
Facial embeddings computed using SphereFace.

CDI Scenario Differential Outcome Global Performance
SER MAPE Global FMR Global FNMR

Baseline
Global Thr. 11.88 44.27% 0.001002 0.151529
Demographic-groups Thresholds
Demographic Thr. (gender) 5.69 35.73% 0.001007 0.150691
Demographic Thr. (race) 2.29 29.67% 0.001008 0.149332
Demographic Thr. (race+gender) 1.05 1.41% 0.001014 0.148903
Non-sensitive Groups Thresholds
Embedding Clustering Thr. (K=32) 5.04 33.50% 0.001054 0.149736
Soft-Biometric Clustering Thr. (K=16) 3.20 26.64% 0.000971 0.151875
DecisionTree Thr. (Leafs=32) 2.11 23.40% 0.001031 0.170985
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B. EFFECT DIMENSIONALITY REDUCTION ON K-MEANS PERFORMANCE

This section contains the results of the experiments applying a dimensionality reduc-

tion on the facial embeddings before performing the clustering using K-Means. The di-

mensionality reduction was performed using Principal Component Analysis (PCA). In

general, we did not see a major improvement on bias mitigation by reducing the dimen-

sionality.

B.1. CDI Scenario

Table B.1. Comparison of SER using PCA for dimensionality reduction
before K-Means. Training and testing performed using CDI Scenario

K=2 K=4 K=8 K=16 K=32 K=64

No PCA 4.95 5.00 4.74 4.46 4.06 4.38

PCA (dim=10) 4.90 4.94 4.76 4.94 5.24 3.97

PCA (dim=20) 4.96 4.85 5.04 4.72 4.51 4.53

PCA (dim=40) 4.94 4.88 4.79 4.83 4.52 4.32

PCA (dim=60) 4.92 4.93 4.74 4.51 4.54 4.38

PCA (dim=80) 4.99 4.94 4.80 4.43 4.82 4.12
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Table B.2. Comparison of MAPE using PCA for dimensionality reduction
before K-Means. Training and testing performed using CDI Scenario

K=2 K=4 K=8 K=16 K=32 K=64

No PCA 36.24% 35.90% 35.99% 35.28% 29.95% 31.07%

PCA (dim=10) 36.13% 36.31% 35.74% 34.59% 31.47% 50.11%

PCA (dim=20) 36.06% 35.53% 36.17% 34.79% 29.34% 43.45%

PCA (dim=40) 36.11% 35.92% 35.29% 35.51% 29.80% 28.70%

PCA (dim=60) 35.94% 35.81% 35.57% 35.32% 32.53% 29.81%

PCA (dim=80) 36.10% 35.85% 36.09% 36.12% 34.11% 30.30%

Figure B.1. Distribution of FMR for race and gender groups calculated
using CDI. Reported FMR is the average performance of the folds using
5-fold cross validation. Red line is the desired FMR for the system.
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B.2. WDI Scenario

Table B.3. Comparison of SER using PCA for dimensionality reduction
before K-Means. Training and testing performed using WDI Scenario

K=2 K=4 K=8 K=16 K=32 K=64

No PCA 12.02 11.53 12.13 10.63 8.46 9.65

PCA (dim=10) 11.69 11.99 11.67 12.09 11.39 10.96

PCA (dim=20) 11.83 11.91 12.02 11.49 11.35 10.56

PCA (dim=40) 12.04 11.96 11.89 11.18 10.57 9.41

PCA (dim=60) 11.60 11.98 10.90 11.81 10.75 9.25

PCA (dim=80) 11.98 11.66 11.76 9.54 9.93 9.51

Table B.4. Comparison of MAPE using PCA for dimensionality reduction
before K-Means. Training and testing performed using WDI Scenario

K=2 K=4 K=8 K=16 K=32 K=64

No PCA 51.56% 51.08% 53.24% 54.98% 54.20% 53.02%

PCA (dim=10) 50.79% 51.63% 52.41% 52.53% 52.90% 51.31%

PCA (dim=20) 51.19% 52.00% 52.22% 52.95% 52.24% 56.01%

PCA (dim=40) 51.29% 50.94% 53.64% 54.75% 56.41% 59.88%

PCA (dim=60) 51.30% 51.59% 50.90% 53.29% 54.36% 55.96%

PCA (dim=80) 51.76% 50.74% 52.46% 52.43% 53.44% 60.27%
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Figure B.2. Distribution of FMR for race and gender groups calculated
using WDI. Reported FMR is the average performance of the folds using
5-fold cross validation. Red line is the desired FMR for the system.
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