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TWO-POINT DISTORTION THEOREMS FOR HARMONIC
MAPPINGS

MARTIN CHUAQUI, PETER DUREN AND BRAD OSGOOD

Abstract. In earlier work, the authors have extended Nehari’s
well-known Schwarzian derivative criterion for univalence of an-
alytic functions to a univalence criterion for canonical lifts of

harmonic mappings to minimal surfaces. The present paper de-
velops some quantitative versions of that result in the form of

two-point distortion theorems. Along the way some distortion

theorems for curves in R
n are given, thereby recasting a recent

injectivity criterion of Chuaqui and Gevirtz in quantitative form.

1. Introduction

The classical Koebe distortion theorem gives sharp bounds on the derivative
of a normalized analytic univalent function. Another measure of distortion
is the distance |f(z1) − f(z2)| between the images of two arbitrary points
in the disk. Some years ago, Blatter [3] gave a sharp lower bound for this
distance in terms of the hyperbolic distance between z1 and z2. More recently,
Chuaqui and Pommerenke [10] found a sharp two-point distortion theorem for
functions whose Schwarzian derivative satisfies Nehari’s condition | Sf(z)| ≤
2(1 − |z|2)−2. Their result may be viewed as a quantitative form of Nehari’s
univalence criterion. The main purpose of the present paper is to carry out a
similar analysis for harmonic mappings, or rather for their canonical lifts to
minimal surfaces. Along the way, we obtain distortion theorems for curves in
R

n, thereby recasting an injectivity criterion of Chuaqui and Gevirtz [7] in
quantitative form.

An important tool throughout the paper is the classical Sturm comparison
theorem for solutions of linear differential equations of second order. A good
reference for this topic is the book of Birkhoff and Rota [2].
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The Schwarzian derivative of a locally univalent analytic function is defined
by

Sf = (f ′ ′/f ′)′ − 1
2
(f ′ ′/f ′)2.

It has the invariance property S(T ◦ f) = Sf for every Möbius transformation

T (z) =
az + b

cz + d
, ad − bc �= 0.

As a special case, S(T ) = 0 for every Möbius transformation. A function f
has Schwarzian Sf = 2ψ if and only if it has the form f = u1/u2 for some
pair of independent solutions w1 and w2 of the linear differential equation
w′ ′ + ψw = 0. As a consequence, if Sg = Sf , then g = T ◦ f for some Möbius
transformation T . In particular, Möbius transformations are the only func-
tions with Sf = 0.

In 1949, Nehari [14] showed that if f is analytic and locally univalent in
the unit disk D and its Schwarzian satisfies either | Sf(z)| ≤ 2(1 − |z|2)−2 or
| Sf(z)| ≤ π2/2 for all z ∈ D, then f is univalent in D. Pokornyi [16] then
stated, and Nehari proved, that the condition | Sf(z)| ≤ 4(1 − |z|2)−1 also
implies univalence. Nehari [15] unified all three criteria by proving that f
is univalent under the general hypothesis | Sf(z)| ≤ 2p(|z|), where p(x) is a
positive continuous even function defined on the interval (−1,1), with the
properties that (1 − x2)2p(x) is nonincreasing on the interval [0,1) and no
nontrivial solution u of the differential equation u′ ′ + pu = 0 has more than
one zero in (−1,1). The last condition can be replaced by the equivalent
requirement that some solution of the differential equation have no zeros in
(−1,1). We will refer to such functions p(x) as Nehari functions.

It is clear from the Sturm comparison theorem that if p(x) is a Nehari
function, then so is cp(x) for any constant c in the interval 0 < c < 1. A Nehari
function p(x) is said to be extremal if cp(x) is not a Nehari function for any
constant c > 1. It was shown in [8] that some constant multiple of each
Nehari function is an extremal Nehari function. We note that the functions
p(x) = (1 − x2)−2, p(x) = π2/4, and p(x) = 2(1 − x2)−1 are all extremal Nehari
functions. Nonvanishing solutions of their corresponding differential equations
are u =

√
1 − x2, u = cos(πx/2), and u = 1 − x2, respectively.

Ahlfors [1] introduced a notion of Schwarzian derivative for mappings of
a real interval into R

n, by formulating suitable analogues of the real and
imaginary parts of Sf for analytic functions f . A simple calculation shows
that

Re{ Sf } =
Re{f ′ ′ ′f ′ }

|f ′ |2 − 3
Re{f ′ ′f ′ }2

|f ′ |4 +
3
2

|f ′ ′ |2
|f ′ |2 .
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For mappings ϕ : (a, b) �→ R
n of class C3 with ϕ′(x) �= 0, Ahlfors defined the

analogous expression

(1) S1ϕ =
〈ϕ′, ϕ′ ′ ′ 〉

|ϕ′ |2 − 3
〈ϕ′, ϕ′ ′ 〉2

|ϕ′ |4 +
3
2

|ϕ′ ′ |2
|ϕ′ |2 ,

where 〈·, · 〉 denotes the Euclidean inner product and |x|2 = 〈x,x〉 for x ∈ Rn.
We will refer to S1ϕ as the Ahlfors Schwarzian of ϕ. As Ahlfors observed, it is
invariant under postcomposition with Möbius transformations; that is, under
every composition of rotations, magnifications, translations, and inversions in
R

n.
In recent work, Chuaqui and Gevirtz [7] used the Ahlfors Schwarzian to

give a criterion for injectivity of curves. They proved the following theorem.

Theorem A. Let p(x) be a continuous function such that the differential
equation u′ ′(x) + p(x)u(x) = 0 admits no nontrivial solution u(x) with more
than one zero in (−1,1). Let ϕ : (−1,1) �→ R

n be a curve of class C3 with
tangent vector ϕ′(x) �= 0. If S1ϕ(x) ≤ 2p(x), then ϕ is injective.

With the notation v = |ϕ′ |, Chuaqui and Gevirtz also showed that

(2) S1ϕ = (v′/v)′ − 1
2
(v′/v)2 +

1
2
v2k2 = Ss +

1
2
v2k2,

where s = s(x) is the arc length of the curve and k is its scalar curvature, the
magnitude of its curvature vector.

2. Distortion of curves in Rn

We now propose to give a sharpened form of Theorem A that expresses the
injectivity in quantitative form by a two-point distortion inequality. Closely
related, is an estimate for distortion in terms of the spherical derivative. Here
are our results.

Theorem 1. Let p(x) be a positive continuous even function defined on
the interval (−1,1), with the property that no nontrivial solution u of the dif-
ferential equation u′ ′ + pu = 0 has more than one zero in (−1,1). Let F (x)
be the solution to the differential equation SF = 2p determined by the condi-
tions F (0) = 0, F ′(0) = 1, and F ′ ′(0) = 0. Let ϕ : (−1,1) �→ Rn be a curve
of class C3, normalized by ϕ(0) = 0, |ϕ′(0)| = 1, and 〈ϕ′(0), ϕ′ ′(0)〉 = 0. If
S1ϕ(x) ≤ 2p(x), then:

(a) |ϕ′(x)| ≤ F ′(x), x ∈ (−1,1), and

(b)
|ϕ′(x)|

1 + |ϕ(x)|2 ≤ F ′(x)
1 + F (x)2

, x ∈ (−1,1).
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Theorem 2. Let p(x) and F (x) be as in Theorem 1. If ϕ : (−1,1) �→ R
n

is a curve of class C3 with the property S1ϕ(x) ≤ 2p(x), then

|ϕ(x1) − ϕ(x2)|
{|ϕ′(x1)| |ϕ′(x2)| }1/2

≥ |F (x1) − F (x2)|
{F ′(x1)F ′(x2)}1/2

, x1, x2 ∈ (−1,1).

The normalization required for the curve ϕ in Theorem 1 can be achieved
by postcomposing with a suitable Möbius transformation. Note that no such
normalization is required for the two-point distortion result of Theorem 2.
Observe also that in Theorems 1 and 2 it need not be assumed that p(x) is a
Nehari function. In particular, no assumption is made that (1 − x2)2p(x) is
nonincreasing, although this hypothesis will be essential in Theorem 3.

Before passing to the proofs, it will be helpful to recall some properties of
the function F (x), which plays the role of extremal solution in Theorem A and
in earlier work of Nehari. Since the function p(x) of Theorem A is even, so is
the solution u0 of the differential equation u′ ′ + pu = 0 with initial conditions
u0(0) = 1 and u′

0(0) = 0. Therefore, u0(x) �= 0 on (−1,1), because otherwise
it would have at least two zeros, contrary to hypothesis. Thus, the function

(3) F (x) =
∫ x

0

1/u0(t)2 dt, −1 < x < 1,

is well defined and satisfies the required initial conditions F (0) = 0, F ′(0) = 1,
and F ′ ′(0) = 0. It also has the properties F ′(x) > 0 and F (−x) = −F (x). A
calculation shows that u1 = u0F is an independent solution of u′ ′ + pu = 0,
and so F = u1/u0 has Schwarzian SF = 2p. Note also that S1F = SF , since
F is real-valued. In particular, S1F = 2p. Finally, it should be noted that F
is strictly increasing on (−1,1), because F ′(x) > 0.

For certain choices of p(x) the function F (x) can be calculated explicitly.
For instance, if p(x) = (1 − x2)−2, then u0(x) =

√
1 − x2 and so

F (x) =
∫ x

0

1
1 − t2

dt =
1
2

log
1 + x

1 − x
.

Similarly, for p(x) = π2/4 we have u0(x) = cos(πx/2), so that

F (x) =
∫ x

0

sec2(πt/2)dt =
2
π

tan(πx/2).

If p(x) = 2(1 − x2)−1, then u0(x) = 1 − x2 and

F (x) =
∫ x

0

1
(1 − t2)2

dt =
1
4

log
1 + x

1 − x
+

1
2

x

1 − x2
.

In such cases, the distortion bounds in Theorems 1 and 2 take more concrete
form. For example, if S1ϕ(x) ≤ π2/2, the inequality in Theorem 2 reduces to
the elegant form

|ϕ(x1) − ϕ(x2)|
{|ϕ′(x1)| |ϕ′(x2)| }1/2

≥ 2
π

sin
(

π

2
|x1 − x2|

)
.
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If S1ϕ(x) ≤ 2(1 − x2)−2, it says that

|ϕ(x1) − ϕ(x2)|
{|ϕ′(x1)| |ϕ′(x2)| }1/2

≥
√

(1 − x2
1)(1 − x2

2)d(x1, x2),

where d(x1, x2) is the hyperbolic distance between x1 and x2.

Proof of Theorem 1. Part (a) is in the paper by Chuaqui and Gevirtz [7]
but we include the proof here for the sake of completeness. It is known (and
easy to verify) that if g(x) is a real-valued function with g′(x) > 0, then the
function u(x) = g′(x)−1/2 satisfies the differential equation u′ ′ + 1

2 (Sg)u =
0. If we choose g(x) = s(x), the arc length function along the given curve
in R

n, then s′(x) = |ϕ′(x)| and u(x) = |ϕ′(x)| −1/2 satisfies u′ ′ + 1
2 (Ss)u = 0.

Moreover, the normalization of the curve ϕ implies that u(0) = 1 and u′(0) = 0.
But it follows from the relation (2) that Ss(x) ≤ S1ϕ(x), and by hypothesis
S1ϕ(x) ≤ 2p(x), so we see that 1

2 Ss(x) ≤ p(x). Thus, it follows from the Sturm
comparison theorem that u(x) ≥ u0(x), which gives the inequality (a).

To prove (b) we consider the inversion

Φ(x) =
ϕ(x)

|ϕ(x)|2 .

Because the Ahlfors Schwarzian is Möbius invariant, we see that S1Φ = S1ϕ.
On the other hand, we find as in the proof of Part (a) that the function
v(x) = |Φ′(x)| −1/2 satisfies v′ ′ + 1

2 (Ss)v = 0, where now s(x) denotes the arc
length function along the curve Φ, and

Ss(x) ≤ S1Φ(x) = S1ϕ(x) ≤ 2p(x).

A straightforward calculation shows that

|Φ′(x)| =
|ϕ′(x)|

|ϕ(x)|2 ,

so that v(x) = |ϕ(x)| |ϕ′(x)| −1/2 and the normalization of the curve ϕ implies
that v(0) = 0 and v has a right-hand derivative v′(0) = 1. On the other
hand, the function u1 = u0F is a solution of u′ ′ + pu = 0 with the same initial
conditions u1(0) = 0 and u′

1(0) = 1. Therefore, the Sturm comparison theorem
gives v(x) ≥ u1(x) for x > 0, or

(4)
|ϕ(x)|

|ϕ′(x)|1/2
≥ |F (x)|

F ′(x)1/2

for 0 ≤ x < 1. Since v has a left-hand derivative v′(0) = −1, a similar argument
shows that −v(x) ≥ u1(x) for x < 0, which implies that (4) holds also for
−1 < x ≤ 0. Now square both sides of (4) and add the inequality of Part (a)
in the form 1/|ϕ′(x)| ≥ 1/F ′(x) to obtain the desired result. �
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Proof of Theorem 2. The proof is similar to that of Theorem 1. Fixing any
x1 ∈ (−1,1), we now construct the inversion

Φ(x) =
ϕ(x) − ϕ(x1)

|ϕ(x) − ϕ(x1)|2

with respect to the point ϕ(x1). By Möbius invariance, S1Φ = S1ϕ. The
function v(x) = |Φ′(x)| −1/2 satisfies v′ ′ + 1

2 (Ss)v = 0, where s(x) denotes the
arc length function along the curve Φ, and

Ss(x) ≤ S1Φ(x) = S1ϕ(x) ≤ 2p(x).

A calculation gives

|Φ′(x)| =
|ϕ′(x)|

|ϕ(x) − ϕ(x1)|2 ,

so that v(x) = |ϕ(x) − ϕ(x1)| |ϕ′(x)| −1/2. Now v(x1) = 0 and a calculation
shows that v has right-hand derivative v′(x1) = |ϕ′(x1)|1/2. If U(x) is the
solution of the equation u′ ′ + pu = 0 with U(x1) = 0 and U ′(x1) = 1, the
Sturm comparison theorem gives the inequality |ϕ′(x1)| −1/2v(x) ≥ U(x) for
x > x1. To calculate the function U(x), first let

H(x) = − 1
F (x) − F (x1)

, so that H ′(x) =
F ′(x)

[F (x) − F (x1)]2
.

Note that SH = SF = 2p by the Möbius invariance of the Schwarzian. Thus,
by the general principle stated at the start of the proof of Theorem 1, the
function

w(x) = H ′(x)−1/2 =
F (x) − F (x1)

F ′(x)1/2

satisfies the equation w′ ′ + pw = 0 for x > x1. Also w(x1) = 0 and w′(x1) =
F ′(x1)1/2. This shows that U(x) = F ′(x1)−1/2w(x), so that the inequality
|ϕ′(x1)| −1/2v(x) ≥ U(x) takes to the form

|ϕ(x) − ϕ(x1)|
{|ϕ′(x1)| |ϕ′(x)| }1/2

≥ |F (x) − F (x1)|
{F ′(x1)F ′(x)}1/2

, x1 ≤ x < 1.

Now let x = x2 to obtain the inequality of Theorem 2. �

The bounds in Theorems 1 and 2 are sharp. Equality occurs in all cases
only when the curvature κ = 0, so that the curve ϕ is a straight line. Indeed,
the relation (2) gives the inequality Ss(x) ≤ S1Φ(x), with equality only when
κ = 0. More precisely, in Theorem 1 equality occurs in either (a) or (b) at
some point x0 if and only if the portion of the curve ϕ(x) between 0 and ϕ(x0)
is a straight line that is parametrized so that |ϕ′(x)| = F ′(x) for all x in the
interval between 0 and x0. In Theorem 2, equality occurs for a pair of points
x1 and x2 if and only if the curve is a straight line between the points ϕ(x1)
and ϕ(x1) that is parametrized so that |ϕ′(x)| = F ′(x) for all x in the interval
between x1 and x2.
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3. Distortion of harmonic lifts

With the help of Theorem 2, we can now derive a two-point distortion
inequality for the canonical lift of a harmonic mapping to a minimal surface.
A harmonic mapping is a complex-valued harmonic function f(z) = u(z) +
iv(z), for z = x + iy in the unit disk D of the complex plane. Such a mapping
has a canonical decomposition f = h+ g, where h and g are analytic in D and
g(0) = 0.

According to the Weierstrass–Enneper formulas, a harmonic mapping f =
h + g with |h′(z)| + |g′(z)| �= 0 lifts locally to a minimal surface described by
conformal parameters if and only if its dilatation ω = g′/h′ has the form ω = q2

for some meromorphic function q. The Cartesian coordinates (U,V,W ) of the
surface are then given by

U(z) = Re{f(z)}, V (z) = Im{f(z)}, W (z) = 2 Im
{∫ z

0

h′(ζ)q(ζ)dζ

}
.

We use the notation f̃(z) = (U(z), V (z),W (z)) for the lifted mapping from D

to the minimal surface. The first fundamental form of the surface is ds2 =
λ2|dz|2, where the conformal metric is λ = |h′ | + |g′ |. The Gauss curvature of
the surface at a point f̃(z) is

K = − 1
λ2

Δ(logλ),

where Δ is the Laplacian operator. Further information about harmonic
mappings and their relation to minimal surfaces can be found in the book
[12].

For a harmonic mapping f = h + g with λ(z) = |h′(z)| + |g′(z)| �= 0, whose
dilatation is the square of a meromorphic function, the Schwarzian derivative
is defined [4] by the formula

Sf = 2(σzz − σz
2), σ = logλ,

where

σz =
∂σ

∂z
=

1
2

(
∂σ

∂x
− i

∂σ

∂y

)
, z = x + iy.

If f is analytic, it is easily verified that Sf reduces to the classical Schwarzian.
In our paper [5], we found the following criterion for the lift of a harmonic

mapping to be univalent.

Theorem B. Let f = h + g be a harmonic mapping of the unit disk, with
λ(z) = |h′(z)| + |g′(z)| �= 0 and dilatation g′/h′ = q2 for some meromorphic
function q. Let f̃ denote the Weierstrass–Enneper lift of f to a minimal
surface with Gauss curvature K = K(f̃(z)) at the point f̃(z). Suppose that
the inequality

(5) | Sf(z)| + λ(z)2|K(f̃(z))| ≤ 2p(|z|), z ∈ D,
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holds for some Nehari function p. Then f̃ is univalent in D.

If f is analytic, its associated minimal surface is the complex plane itself,
with Gauss curvature K = 0, and the result reduces to Nehari’s theorem.

We can now sharpen Theorem B to express the univalence in quantitative
form. Under the same hypotheses, it turns out that the harmonic lift f̃
actually satisfies a two-point distortion condition. The inequality will involve
the function F determined by a Nehari function p as in the formula (3). In
order to state the result in most elegant form, it will be convenient to assume
that the given Nehari function is extremal, as defined in Section 1.

Theorem 3. Let f be a harmonic mapping of the unit disk that has the
properties specified in Theorem B, and let f̃ be its canonical lift to a mini-
mal surface. Suppose that the inequality (5) holds for some extremal Nehari
function p. Then f̃ satisfies the inequality

|f̃(z1) − f̃(z2)| ≥
{

λ(z1)λ(z2)
F ′(|z1|)F ′(|z2|)

}1/2

d(z1, z2), z1, z2 ∈ D,

where F (x) is defined by (3) and d(z1, z2) is the hyperbolic distance between
the points z1 and z2.

Proof. The proof will apply Theorem 2. The canonical lift f̃ onto a minimal
surface Σ defines a curve f̃ : (−1,1) → Σ ⊂ R

3. As shown in [5], the Ahlfors
Schwarzian of this curve satisfies the inequality

S1f̃(x) ≤ | Sf(x)| + λ(z)2|K(f̃(x))|.

Thus, the hypothesis (5) tells us that S1f̃(x) ≤ 2p(x), and so by Theorem 2
we have the inequality

(6)
|f̃(x1) − f̃(x2)|

{λ(x1)λ(x2)}1/2
≥ |F (x1) − F (x2)|

{F ′(x1)F ′(x2)}1/2
, x1, x2 ∈ (−1,1),

since |f̃ ′(x)| = λ(x). In order to extend the result to an arbitrary pair of
distinct points z1, z2 ∈ D, we adapt a device due to Nehari [15]. It is here that
the nonincreasing property of (1 − x2)2p(x) comes into play. Suppose first
that the hyperbolic geodesic γ passing through z1 and z2 lies in the upper
half-plane and is symmetric with respect to the imaginary axis. Denote by iρ
the midpoint of γ, so that ρ > 0. Then the Möbius transformation

T (z) =
iρ − z

1 + iρz

maps D onto itself and sends the segment (−1,1) onto γ, with T (x1) = z1

and T (x2) = z2 for some pair of points x1 and x2. The composite function
f1(z) = f(T (z)) is a harmonic mapping of the disk whose lift f̃1 = f̃ ◦ T again
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maps D onto the minimal surface Σ. Using the property of the Nehari function
p that (1 − x2)2p(x) is nonincreasing on [0,1), we see as in [5] that (5) implies

(7) | Sf1(x)| + λ1(x)2|K(f̃1(x))| ≤ 2p(x), −1 < x < 1,

where λ1 = |h′
1| + |g′

1| is the conformal factor associated with f1 = h1 + g1. It
follows as before that S1f̃1(x)) ≤ 2p(x), and so by Theorem 2 the inequality
(6) holds with f replaced by f1. In other words,

(8)
|f̃(z1) − f̃(z2)|

{λ(z1)λ(z2)}1/2
≥ { |T ′(x1)| |T ′(x2)| }1/2|F (x1) − F (x2)|

{F ′(x1)F ′(x2)}1/2
.

We now develop a lower estimate for the right-hand side of the inequality
(8) that depends explicitly on z1 and z2. As shown in [9], the function F
coming from an extremal Nehari function p has the property that (1 − x2)F ′(x)
is nondecreasing on the interval [0,1). Since F ′ is an even function with
F ′(0) = 1, this shows that (1 − x2)F ′(x) ≥ 1 on (−1,1), Therefore,

|F (x1) − F (x2)| =
∫ x2

x1

F ′(x)dx ≥
∫ x2

x1

1
1 − x2

dx = d(x1, x2).

In view of the Möbius invariance of the hyperbolic metric, it follows that
|F (x1) − F (x2)| ≥ d(z1, z2). On the other hand,

|T ′(x)|
1 − |T (x)|2 =

1
1 − x2

and a simple calculation shows that |T (x)| > |x|, so that

(1 − x2
j )F

′(xj) ≤ (1 − |zj |2)F ′(|zj |) = (1 − x2
j )|T ′(xj)|F ′(|zj |), j = 1,2.

Consequently,

(9)
{|T ′(x1)| |T ′(x2)| }1/2|F (x1) − F (x2)|

{F ′(x1)F ′(x2)}1/2
≥ d(z1, z2)

{F ′(|z1|)F ′(|z2|)}1/2
,

and the desired result follows in the special case where the geodesic γ is
symmetric with respect to the imaginary axis. The general result now follows
from the obvious fact that the right-hand side of (9) is invariant under rotation
of the disk. This proves Theorem 3. �

It should be observed that the inequality is sharp for the Nehari function
p(x) = (1 − x2)−2, since (1 − x2)F ′(x) is constant in this case. It may also
be remarked that the restriction to extremal Nehari functions is not essential.
If p is not extremal, then p1 = cp is an extremal Nehari function for some
constant c > 1, and the inequality (5) holds a fortiori with p replaced by p1.
However, the function F that occurs in the lower bound must be calculated
in terms of p1 rather than p.
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4. Distortion in the surface metric

Although Theorem 3 expresses the univalence of the harmonic lift f̃ in
quantitative form, its estimate of distortion does not lead to a covering the-
orem analogous to the classical Koebe one-quarter theorem (see for instance
[11]). For that purpose it is natural to replace the Euclidean metric by the
surface metric

ρ(w1,w2) =
∫

Γ

ds =
∫

γ

λ(z)|dz|,

where Γ is a geodesic joining the points w1 and w2 on the minimal surface
Σ = f̃(D) and γ = f̃ −1(Γ) is its preimage in the unit disk. (More precisely,
in case there is no such geodesic, ρ(w1,w2) is defined as the infimum of the
lengths of all curves joining the two points.)

Here another extremal function comes into play, a companion of the func-
tion F that enters into Theorem 3. Given a Nehari function p, let u1 be
the solution of the differential equation u′ ′ − pu = 0 with initial conditions
u1(0) = 1 and u′

1(0) = 0. Since p(x) > 0 and u1(0) > 0, the solution u1 is
convex and so u1(x) ≥ 1 in (−1,1). Define

G(x) =
∫ x

0

1/u1(t)2 dt.

Then, by the initial remark in the proof of Theorem 1, we see that SG = −2p.
It is also clear that G(0) = 0, G′(0) = 1, and G′ ′(0) = 0. With this notation,
we are now prepared to state the distortion theorem.

Theorem 4. Let f be a harmonic mapping of the unit disk that has the
properties specified in Theorem B. Let f̃ be its canonical lift to a minimal sur-
face Σ = f̃(D), with conformal metric λ and σ = logλ. Suppose in particular
that f satisfies the condition (5) for some Nehari function p. Suppose further
that p(x) is nondecreasing on the interval [0,1). Then for 0 < r < 1,

(10) min
|z|=r

ρ(f̃(z), f̃(0)) ≥ λ(0)G(r)
1 + |σz(0)|G(r)

.

In particular, the surface Σ contains a metric disk of radius

R =
λ(0)G(1)

1 + |σz(0)|G(1)

centered at f̃(0).

Before embarking on the proof, we will examine the particular case where
p(x) = (1 − x2)−2. Then (cf. [8]) it can be verified that

u1(x) =
1
2

√
1 − x2

{(
1 + x

1 − x

)√
2/2

+
(

1 − x

1 + x

)√
2/2}



TWO-POINT DISTORTION THEOREMS FOR HARMONIC MAPPINGS 1071

and

(11) G(x) =
1√
2

(1 + x)
√

2 − (1 − x)
√

2

(1 + x)
√

2 + (1 − x)
√

2
,

with G(1) = 1/
√

2. In the classical case where f(z) = z +a2z
2 + · · · is analytic

and satisfies | Sf(z)| ≤ 2(1 − |z|2)−2, the covering radius in Theorem 4 reduces
to

R =
1

|a2| +
√

2
.

But a result of Essén and Keogh [13] gives the coefficient bound |a2| ≤
√

2
in this case, so we conclude from Theorem 4 that the image f(D) contains
the disk |w| <

√
2/4. This estimate is sharp, as shown in [13], with extremal

function

G�(z) =
G(z)

1 +
√

2G(z)
=

√
2

4

[
1 −

(
1 − z

1 + z

)√
2]

= z −
√

2z2 + · · · ,

which has Schwarzian SG�(z) = −2(1 − z2)−2. It was shown in [8] that f(D)
contains the larger disk |w| < 1/2 if | Sf(z)| ≤ 2(1 − |z|2)−2 and a2 = 0.

To prepare for a proof of Theorem 4, we now state a lemma that expresses
the Ahlfors Schwarzian of the lift to Σ of a curve in the disk. It is a slight
generalization of a formula in [5], where the underlying curve was taken to
be the real interval (−1,1). The formula also plays a role in [6], where the
setting is different but the derivation is essentially the same.

Lemma. Let γ(t) be an arc length-parametrized curve in D with curvature
κ(t), and let ϕ(t) = f̃(γ(t)) be its lift to a curve Γ on the surface Σ = f̃(D). Let
ke(t) denote the normal component of the curvature vector of Γ with respect
to Σ, and let K(ϕ(t)) be the Gauss curvature of Σ at the point ϕ(t). Then

(S1ϕ)(t) = Re{(Sf)(γ(t))γ′(t)2}(12)

+
1
2
λ(γ(t))2[K(ϕ(t)) + ke(t)2] +

1
2
κ(t)2.

Proof of Theorem 4. For fixed r ∈ (0,1), let z0 be a point on the circle |z| =
r where the minimum distance ρ(f̃(z), f̃(0)) is attained. Then the geodesic
Γ that joins f̃(0) to f̃(z0) lies on the subsurface Σr = {f̃(z) : |z| ≤ r}. Let
γ = f̃ −1(Γ) be the preimage in Dr = {z ∈ D : |z| ≤ r}, and let L ≥ r denote the
arc length of γ. Let γ(t) be the parametrization of γ with respect to arc length,
with γ(0) = 0, and let ϕ(t) = f̃(γ(t)) be the corresponding parametrization
of Γ. Finally let

v(t) = λ(ϕ(t)) = |ϕ′(t)|, and let s(t) =
∫ t

0

v(τ)dτ
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denote the arc length along the curve Γ. According to the relation (2), the
Ahlfors Schwarzian of ϕ has the form

S1ϕ = Ss +
1
2
v2(k2

i + k2
e),

where ki and ke denote respectively the tangential and normal components
of curvature. Comparing this with the expression (12) for S1ϕ given in the
lemma, we conclude that

(13) (Ss)(t) = Re{(Sf)(γ(t))γ′(t)2} +
1
2
v(t))2|K(ϕ(t))| +

1
2
κ(t)2,

since the tangential curvature ki vanishes along a geodesic. But the univalence
criterion (5) implies that

Re{(Sf)(γ(t))γ′(t)2} ≥ −|(Sf)(γ(t))| ≥ v(t)2|K(ϕ(t))| − 2p(|γ(t)|).
Hence, it follows from (13) that

(Ss)(t) ≥ 3
2
v(t)2|K(ϕ(t))| − 2p(|γ(t)|) ≥ −2p(|γ(t)|).

Now observe that |γ(t)| ≤ t since t is the arc length of the curve from γ(0) =
0 to γ(t). Therefore, p(|γ(t)|) ≤ p(t) because of the hypothesis that p is
nondecreasing on the interval [0,1), and we have proved that

(14) (Ss)(t) ≥ −2p(t), 0 ≤ t ≤ L1 = min{1,L}.

This is the inequality we will need for application of the Sturm comparison
theorem.

For that purpose, first note that the function w = v−1/2 is the solution of

w′ ′ +
1
2
(Ss)w = 0, w(0) = λ(0)−1/2, w′(0) = − 1

2
v′(0)λ(0)−3/2,

with
w′(0) ≤ |w′(0)| ≤ |λz(0)|λ(0)−3/2.

Next, consider the solution u2(t) of the differential equation

u′ ′ − pu = 0 with u2(0) = λ(0)−1/2, u′
2(0) = |λz(0)|λ(0)−3/2.

Since −p(t) ≤ 1
2 (Ss)(t) by (14), and also u2(0) = w(0) and u′

2(0) ≥ w′(0), it
follows from the Sturm comparison theorem that

w(t) ≤ u2(t), 0 ≤ t ≤ L1.

Now let

H(x) =
∫ x

0

1/u2(t)2 dt,

and observe that SH = −2p = SG, so that H(x) = T (G(x)) for some Möbius
transformation T . In order to calculate T explicitly, note first that T (0) = 0
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since H(0) = G(0) = 0, so that T has the form T (x) = x/(ax + b) for some
real parameters a and b. Writing

[aG(x) + b]H(x) = G(x)

and differentiating, we find

aG′(x)H(x) + [aG(x) + b]H ′(x) = G′(x),

so that

b =
G′(0)
H ′(0)

=
u2(0)2

u1(0)2
=

1
λ(0)

.

Another differentiation produces the relation a = |λz(0)|λ(0)−2. This shows
that

(15) H(x) =
λ(0)2G(x)

|λz(0)|G(x) + λ(0)
=

λ(0)G(x)
1 + |σz(0)|G(x)

.

Consequently, for 0 ≤ t ≤ L1 we have∫ t

0

v(τ)dτ =
∫ t

0

w(τ)−2 dτ ≥
∫ t

0

u2(τ)−2 dτ = H(t).

Hence,

ρ(f̃(ζ), f̃(0)) =
∫

γ

λ(z)|dz| =
∫ L

0

v(τ)dτ

≥
∫ r

0

v(τ)dτ ≥ H(r).

In view of the formula (15), this gives the inequality (12) stated in Theorem 4.
�

The class of harmonic mappings considered in Theorem 4, satisfying in
particular the inequality (5), is invariant under precomposition f ◦ T with
Möbius self-mappings of the disk when p(x) = (1 − x2)−2. This property
yields an invariant formulation of Theorem 4, virtually as a corollary.

Corollary. Let f , f̃ , λ, and σ be as in Theorem 4, and suppose that
p(x) = (1 − x2)−2, so that

| Sf(z)| + λ(z)2|K(f̃(z))| ≤ 2
(1 − |z|2)2 , z ∈ D.

Then for each fixed α ∈ D and 0 < r < 1,

(16) min
| z−α
1−αz |=r

ρ(f̃(z), f̃(α)) ≥ (1 − |α|2)λ(α)G(r)
1 + |(1 − |α|2)σz(α) − α|G(r)

,

where G is defined by (11).
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Proof. Consider the harmonic mapping

f1(z) = f(T (z)), where T (z) =
z + α

1 + αz
.

Let f̃1(z) = f̃(T (z)) be its harmonic lift, and let

λ1(z) = λ(T (z))|T ′(z)| = λ(T (z))
1 − |α|2

|1 + αz|2

denote its conformal metric, with σ1 = logλ1. Then λ1(0) = (1 − |α|2)λ(α)
and

σ1z(z) = σz(T (z))T ′(z) − α

1 + αz
,

so that
σ1z(0) = (1 − |α|2)σz(α) − α.

The inequality (16) now follows from (10) and the fact that the circles |z| = r
and | z−α

1−αz | = r correspond under the mapping T . �
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