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return to yourself, to who you are, here and now  

and when you get there, you will discover yourself, 
 like a lotus flower in full bloom, 

 even in a muddy pond, beautiful and strong.”  
― Masaru Emoto, Secret Life of Water 
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ABSTRACT 
 

 

Pichia pastoris is recognized as a biotechnological workhorse for recombinant protein 

expression. Based on past achievements and novel developments, systems biotechnology 

of P. pastoris has significantly progressed over the last two decades.  

In this doctoral thesis, a systematic analysis of operational conditions in conjunction 

with the development of computational toolboxes and optimal mechanical bioreactor 

configurations were developed as a roadmap to enhance the production of recombinant 

proteins through bioprocess engineering and metabolic modeling approaches. Although we 

used a P. pastoris strain expressing constitutively the sweet protein thaumatin, as case 

study, the developments achieved in this work are also applicable for the expression of 

other recombinant proteins of interest. 

First, we present an integrated framework for revealing the metabolic effects of two 

operational parameters – specific growth rate and dissolved oxygen concentration - in 

glucose-limited continuous cultures. More specifically, we employed a rational 

experimental design to calculate the significant statistical effects from multiple chemostat 

data, which was later contextualized using a curated genome-scale metabolic model. Our 
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results revealed a negative effect of the oxygenation on the specific product formation rate, 

and a positive effect on the biomass yield. Notably, we identified a novel synergistic effect 

of both parameters on the specific product formation rate. Finally, model predictions 

indicated an opposite relationship between the oxygenation level and growth-associated 

ATP requirement, suggesting higher metabolic growth costs under low oxygenation. 

  We then assembled a robust dynamic genome-scale metabolic model for glucose-

limited, aerobic cultures of Pichia pastoris. The model was employed to analyze the 

metabolic flux distribution of a fed-batch culture and to unravel genetic and process 

engineering strategies to improve the production of the recombinant Human Serum 

Albumin (HSA). Simulations of single knock-outs indicated that carbon deviations towards 

cysteine and tryptophan formation could improve 63 fold HSA production. Moreover, the 

model suggested that implementation of a decreasing specific growth rate during the feed 

phase of a fed-batch culture results in a 25% increase of the volumetric productivity of the 

protein.  

 Finally, optimization of Oxygen Transfer Rate (OTR) in 1-L reactors was carried 

out. For this purpose, we first formulated an automatic algorithm able to achieve reliable 

kLa estimations under different hydrodynamic conditions. Then, we presented a road map 

to optimize oxygen transfer rate in 1-L bioreactor, using different impeller-sparger 

configurations. The relative importance of aeration and agitation under several 

configurations and hydrodynamic conditions was assessed. Finally, we proposed a decision 

tree for the selection of the best configuration to improve oxygen transfer rates in 

bioreactors, according to viscosity and the range of operational parameters. 

 Overall, this thesis attempted to analyze and understand metabolic effects using 

rational design of experiments and metabolic modeling. Moreover, this systematic analysis 

in conjunction with the optimization of the oxygen transfer rate in bioreactors will allow to 

improve recombinant protein production in Pichia pastoris. 
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PAULINA MACARENA TORRES PLAZA 

 

RESUMEN  

 

Pichia pastoris es reconocida como un workhorse biotecnológico para la expresión de 

proteínas recombinantes. Basándose en sus logros pasados y novedosos desarrollos, la 

biotecnología de sistemas de P. pastoris ha progresado significativamente en las últimas 

dos décadas. 

En esta tesis doctoral, el análisis sistemático de las condiciones operativas en 

conjunto con el desarrollo de herramientas computacionales y la selección de 

configuraciones mecánicas óptimas de bioreactores se llevaron a cabo como una hoja de 

ruta para mejorar la producción de proteínas recombinantes a través de la ingeniería de 

bioprocesos y el modelamiento metabólico. A pesar de que nosotros utilizamos una cepa 

de P. pastoris que expresaba constitutivamente la proteína endulzante taumatina, como 

caso de estudio, los desarrollos logrados también son aplicables para la expresión de otras 

proteínas recombinantes de interés. 

Primero, presentamos un marco integrado para revelar los efectos metabólicos de 

dos parámetros operacionales – la tasa específica de crecimiento y la concentración de 
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oxígeno disuelto - en cultivos continuos limitados en glucosa. Más específicamente, 

empleamos un diseño experimental racional para calcular los efectos estadísticos 

significativos de los datos de múltiples quimiostatos, que luego fueron  contextualizados 

utilizando un modelo metabólico a escala del genoma manualmente curado. Nuestros 

resultados revelaron un efecto negativo de la oxigenación en la tasa especifica de 

producción del producto y un efecto positivo en el rendimiento de la biomasa. En 

particular, identificamos un efecto sinérgico de ambos parámetros en la tasa específica de 

producción del producto. Finalmente, las predicciones del modelo indicaron una relación 

opuesta entre el nivel de oxigenación y el requerimiento de ATP asociado al crecimiento, 

sugiriendo un mayor gasto metabólico de crecimiento a bajo nivel de oxigenación. 

  En segundo lugar, construimos un modelo metabólico a escala genómica dinámico 

para cultivos aeróbicos de Pichia pastoris limitados en glucosa. El modelo se empleó para 

analizar la distribución del flujo metabólicos de un cultivo alimentado por lotes y para 

diseñar estrategias genéticas y de ingeniería de procesos para mejorar la producción de 

albúmina sérica humana recombinante. Simulaciones de knock-outs individuales indicaron 

que la desviación del carbono hacia la formación de cisteína y triptófano podría mejorar en 

63 veces la producción de HSA. Además, el modelo sugirió que la implementación de una 

tasa de crecimiento específica decreciente durante la fase de alimentación de un cultivo 

alimentado por lotes produce un aumento del 25% de la productividad volumétrica de la 

proteína. 

Finalmente, se llevó a cabo una optimización de la tasa de transferencia de oxígeno 

en reactores de 1 L. Para este propósito, primero discutimos la formulación de un 

algoritmo automático para la estimación de kLa bajo diferentes condiciones 

hidrodinámicas. Luego, presentamos una hoja de ruta para optimizar la tasa de 

transferencia de oxígeno en bioreactor de 1-L, utilizando diferentes configuraciones de 

aspas-difusor. La importancia relativa de la aireación y agitación bajo las diferentes 

configuraciones y condiciones hidrodinámicas fueron llevadas a cabo. Finalmente, 

propusimos un árbol de decisión para la selección de la mejor configuración con el fin de 

mejorar la transferencia de oxígeno en bioreactores según el rango de los parámetros 

operacionales y la viscosidad. 
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En general, esta tesis es un intento exitoso de analizar y comprender los efectos 

metabólicos utilizando un diseño racional de experimentos y modelos metabólicos. 

Además, este análisis sistemático en cooperación con una optimización de la transferencia 

de oxígeno en bioreactores permitirá mejorar la producción de proteínas recombinantes en 

Pichia pastoris. 
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1. INTRODUCTION 

1.1 Recombinant protein 

Proteins are synthesized as part of their natural metabolism by all living forms. They are 

essential components and have a role in virtually every cellular process, e.g., some 

proteins, such as enzymes, serve as biocatalyst, others have structure function, or play a 

significant role in cell signaling, immune responses, and cell adhesion (Bill, 2014; Demain 

& Vaishnav, 2009). Their multiple-functionalities are used in biopharmaceutical industries, 

enzyme industries, and agricultural industries, specially in the fields of medicine, 

diagnostics, food, nutrition, detergents, textiles, leather, paper, pulp, polymers and plastics 

(BCC Research, 2018; Demain & Vaishnav, 2009; Jozala et al., 2016; Sanchez-Garcia et 

al., 2016).  

While some proteins can be isolated from native source, in some cases, protein 

extraction can be difficult and expensive since stability problems and low productivities 

(Bill, 2014). Moreover, other proteins are not in the nature, such as antibody fragments 

(Ma, Drake, & Christou, 2003). Nowadays, most proteins are commercially produced with 

the aid of genetic and protein engineering using recombinant DNA (rDNA) technology, 

which was developed in the early 70’s (Adrio & Demain, 2010; Demain & Vaishnav, 

2011). rDNA technologies allow the production of a wide range of peptides, proteins and 

metabolites from naturally non-producing cells (Porro et al., 2011). Since human insulin 

was the first heterologous compound produced in a laboratory in 1977, rDNA technology 

has become one of the most important technologies developed in the 20th century (Lagassé 

et al., 2017; Ma et al., 2003; Porro et al., 2011; Sanchez-Garcia et al., 2016).  

Recombinant Protein Production (RPP), employed in the industry to solve source 

availability problems, is considered a bio-safe and green process, and confers the ability to 

modify amino acid sequences and therefore protein function, to improve product features 

to a desired function (Sanchez-Garcia et al., 2016). The wide range of applications and the 

increasing demand of recombinant proteins are leading to an important growth of its 

market. Actually, RPP is considered a multibillion-dollar business nowadays (BCC 

Research, 2018; Oliveira & Domingues, 2018; Walsh, 2014), reaching $50 billion market 
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sales in 2016 only for biopharmaceutical industries (Jozala et al., 2016). Moreover, BCC 

Research estimates that global industrial enzymes market should reach $7.0 billion by 

2023 with an annual growth rate of 4.9% for the period 2018-2023 (BCC Research, 2018).  

1.2 Cell factories for recombinant protein production 

Considering that more than 30 percent of the global sales of the bioindustry corresponds to 

the manufacture of recombinant proteins, there is a strong pressure to find cost-effective 

alternatives to participate in new synthesis systems (Corchero et al., 2013; Jozala et al., 

2016; Lagassé et al., 2017; Sanchez-Garcia et al., 2016). In this context, the selection of 

the most appropriate Microbial Cell Factory (MCF) as a biological platform for expression, 

is crucial to be able to compete in an increasingly competitive market (Houdebine, 2009; 

Lagassé et al., 2017; Sanchez-Garcia et al., 2016; Vermasvuori, 2009).  

 In recent years, different microorganisms (such as yeast, filamentous fungi, 

bacteria, insect cells and mammalian cells) have been employed to produce foreign 

proteins of interest. The selection of the best MCF depends not only on reaching a high 

concentration of the product of interest in the shortest time possible, but it is also 

fundamental that the expressed recombinant protein retains its functionality (Cha et al., 

2005; Ma et al., 2003). For proteins, its biological activity is linked to various aspects, 

such as its physicochemical properties, levels of expression, post-translational 

modifications, folding and secretion. This makes the choice of the most appropriate system 

not trivial (Table 1-1). 

 Despite the diversity of MCF used for the biosynthesis of pharmaceutical products and 

recombinant proteins, E. coli continues to be the most employed, since it allows fast and 

economical production (Bill, 2014; Vermasvuori, 2009). Nevertheless, this bacteria is 

preferred for producing simple proteins (Bill, 2014; Carter, 2011), since it is not capable to 

naturally achieve post-translational modifications, such as proper glycosylation, adequate 

folding, and disulfide bridge formation (Ferrer-Miralles et al., 2009). In addition, E. coli 

generates inclusion bodies, which significantly increases the purification costs of the 

protein (Vermasvuori, 2009). 
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 Table 1- 1 Comparison of recombinant expression systems by Cha et al., 2005 

  E. coli Yeast Insects Mammalian 

Growth rate ++ + - - 

Expression yield (based on 
dry weight) + (1-5%) + (>1%) ++ (30%) - (<1%) 

Productivity ++ + + - 

Media cost -- - + ++ 

Culture techniques ++ + - -- 

Production cost -- - + ++ 

Protein folding -- + ++ ++ 

Simple glycosylation No Yes Yes Yes 

Complex glycosylation No No Yes Yes 

Secretion - ++ ++ ++ 

Functionality of expressed 
eukaryotic protein - + ++ ++ 
Availability of genetic 
systems  ++ + - - 

Pyrogenic problem Possible No No No 

On the other hand, although insect cells or mammalian cells are the best option for the 

expression of functional complex proteins, the difficulty to cultivate them, their slow 

growth rate, sophisticated nutritional requirements as well as high sensitivity to mechanical 

stresses and environmental variations limit their use to high value-added specialties (Bill, 

2014; Cha et al., 2005; Houdebine, 2009; Porro et al., 2011; Vermasvuori, 2009). 

 Yeasts combine eukaryotic ability to achieve post-translational modifications with the 

bacterial capacity to grow at high cell densities (Cha et al., 2005; Houdebine, 2009; Porro 

et al., 2011). Similarly, yeasts present yields of recombinant proteins that are higher than 

mammalian cells in several cases (Corchero et al., 2013; Idiris et al, 2010; Porro et al., 

2011) and are easier to scale at industrial level. Saccharomyces cerevisiae is the yeast 

species most widely used to express recombinant proteins. Nonetheless, there are other 

species, less conventional, that have certain advantages for the production of extracellular 

proteins, such as the methylotrophic yeast Pichia pastoris (Cereghino et al., 2002; 

Corchero et al., 2013). 
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1.3 Pichia pastoris, an emerging microbial cell factory 

Within non-conventional MCFs, the methylotrophic yeast Pichia pastoris is currently one 

of the most effective and versatile MCF for RPP (Peña et al., 2018; Porro et al., 2011; 

Prielhofer et al., 2018; Theron et al., 2018). P. pastoris was developed as a host system for 

the first time in 1985 and since then, researchers have been increasingly recognizing its 

capacity and advantages for RPP (Bill, 2014; Peña et al., 2018; Porro et al., 2011). 

Actually, P. pastoris applications have steadily increased from 1995 to 2013, in contrast to 

all other host cells. Moreover, its increase was coupled with the decline in the usage of E. 

coli (Table 1- 2). Indeed, P. pastoris can be easily manipulated at the genetic level 

(Balamurugan et al., 2007; Cereghino et al., 2002) and expresses foreign proteins, 

intracellular and extracellular, at high levels (Balamurugan et al., 2007; Cereghino et al., 

2002; Jordà et al., 2012). Unlike E. coli, P. pastoris naturally performs post-translational 

modifications, such as glycosylations, disulfide bonds formation and proteolytic processing 

(Charoenrat et al., 2005; Cregg et al., 2000; Lopes et al., 2013), which are essential for 

most eukaryotic protein functionality (Ciofalo et al., 2006; Corchero et al., 2013; Masuda 

et al., 2010). Moreover, it possesses secretion pathways more similar to higher eukaryotic 

cells (Corchero et al., 2013; Delic et al., 2012); and secretes a lower number of native 

proteins, which makes downstream processing easier (Delic et al., 2013; Mattanovich et 

al., 2009). In contrast to S. cerevisiae, P. pastoris exhibits a Crabtree-negative phenotype, 

showing a reduced synthesis of undesirable products, like ethanol, in glucose-limited 

conditions (Çalık et al., 2015; Mattanovich et al., 2009). Finally, P. pastoris can be 

efficiently cultivated up to high cell densities, using fed-batch cultivation strategies (Daly 

& Hearn, 2005), achieving high titers and productivities. 
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Table 1- 2 Recombinant gene expression in the most commonly used cells until 2013. 
Taken from (Bill, 2014) 

Year All host cells E.coli S. cervisiae P. pastoris Insects cells 
Mammalian 

cell-line 

1980 0 0 0 0 0 0 

1985 0 0 0 0 0 0 

1990 12 75%(9;4E) 8%(1) 0 17%(2) 0 

1995 37 70%(26;17E) 5%(2) 5%(2) 5%(2) 8%(3) 

2000 50 70%(35;17E) 0 4%(2) 12%(6) 12%(6) 

2005 121 85%(103;53E) 0 5%(6) 6%(7) 2%(2) 

2010 172 76%(131;67E) 0 9%(15) 5%(6) 5%(9) 

2013 128 73%(94;54E) 2%(2) 11%(14) 4%(5) 4%(5) 

 

As a consequence, P. pastoris has been widely used for the expression of recombinant 

proteins, reaching titers of several grams per liter in several cases (Cereghino & Cregg, 

2000; Čiplys et al., 2015; Hasslacher et al., 1997; Heyland et al., 2010; Yan Wang et al., 

2001). Most remarkably, and as proof of its technical feasibility and adequacy, two 

recombinant proteins produced in this cell factory have already been approved by the Food 

and Drug Administration of the United States, FDA, for medical purposes (Ciofalo et al., 

2006; Thompson, 2010). 

As a methylotrophic yeast, P. pastoris is able to grow on methanol as the sole 

carbon and energy source. Its methanol metabolism was utilized to develop an efficient 

protein production system, using the extraordinarily high and methanol-inducible alcohol 

oxidase promoter (PAOX1) (Zahrl et al., 2017). AOX1 promoter is one of the most 

common strategies of the heterologous expression in this yeast since it has proven valuable 

for a growing list of therapeutic proteins and industrial enzymes (Weinacker et al. 2013; 

Spadiut et al. 2014). Nevertheless, the oxidation of methanol adds technological challenges 

for industrial scale production, such as a high oxygen consumption, high heat production 

and the additional demand for safety precautions when working with this flammable 

substrate (Mattanovich et al., 2014). To circumvent these disadvantages, variants of AOX1 

promoter or other strong promoters which allow either constitutive or inducible gene 

expression are highly recommended (Çalık et al., 2015; Porro et al., 2005). Production 

processes utilizing P. pastoris favorably apply carbon source‐dependent promoters, such as 

glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP) or, more recently, the high‐
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affinity glucose transporter gene GTH1 (pGTH1) (Çalık et al., 2015; Cereghino & Cregg, 

2000; Prielhofer et al., 2013). pGAP offers an alternative to pAOX1 when the toxicity of 

methanol is of concern, like in the food industry (Yang & Zhang, 2018). It is featured by a 

high-level constitutive expression and is more suitable for continuous cultivation due to 

simpler process control (Garcia-Ortega, et al., 2017; Looser et al., 2015; Mattanovich et 

al., 2014). Actually, the GAP promoter has been perceived as an efficient alternative 

production strategy with similar performance comparing with pAOX1 (Garcia-Ortega, et 

al., 2017; Looser et al., 2015; Mattanovich et al., 2014). Moreover, several alternative 

fermentation strategies have been extensively studied for this expression system (Garcia-

Ortega et al, 2015; Heyland et al, 2011; Looser et al., 2015; Peña et al., 2018;  Yang & 

Zhang, 2018). 

Besides strong promoters, the high efficiency of protein production by P. pastoris 

is attributed to an efficient secretory pathway (Zahrl et al., 2017). Evidence shows that the 

secretion pathway of P. pastoris is more similar to higher eukaryotes than that of S. 

cerevisiae (Papanikou & Glick, 2009). Organelle structure and proliferation are different 

(Figure 1-1), and the regulation pattern of Unfolded Protein Response – UPR - shows 

significant differences between these two yeast species, favoring P. pastoris in response to 

one of the main limitations in RPP (Graf et al., 2008). 

 

Figure 1-1 Diagram of transitional ER and Golgi organization in two budding yeasts; 
Pichia pastoris and Saccharomyces cerevisiae (taken from Papanikou & Glick, 2009).  
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Based on past achievements and novel developments, systems biotechnology of P. pastoris 

has seen significant progress over the last two decades (Figure 1-2) (Theron et al., 2018; 

Yang & Zhang, 2018; Zahrl et al., 2017). Furthermore, driven by the advances in omics 

technologies, the understanding of P. pastoris as a host for protein production has 

significantly improved, although further systems biology studies are necessary (Theron et 

al., 2018; Yang & Zhang, 2018; Zahrl et al., 2017). 

  

 

Figure 1-2 Hallmarks of systems biology development in Pichia pastoris. Genomics 
(gray), transcriptomics (dark green), proteomics (brown), metabolomics (yellow), 
fluxomics (blue), genome-scale metabolic model and model-based engineering (red), and 
combined omics studies (light green) (taken from Zahrl et al., 2017). 

1.4 Optimization of recombinant protein production in P. pastoris.  

Despite its growing acceptance and successful applications, recombinant protein 

production in P. pastoris can be undermined by several cellular processes, where protein 

folding and secretion are the most recurrent bottlenecks (Delic et al., 2013; Delic et al., 

2014; Gasser et al., 2013). In fact, different genetic and physiological factors determine the 

productivity of recombinant systems. The most well-known limitations are codon usage of 

the recombinant protein (Wang et al., 2015), promoter selection (Prielhofer et al., 2013), 

carbon and oxygen availability in the culture (Baumann et al., 2008; Heyland et al., 2011) 

and fed-batch operational parameters (Maurer et al., 2006), seriously hampering protein 

yield, productivity and the economic feasibility of the process. In response to these, 
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strategies are divided into strain engineering and process engineering wise (summarized in 

Figure 1-3). In fact, several strategies have been proposed in recent years to optimize the 

production of recombinant proteins in P. pastoris (Arruda et al., 2016; Aw & Polizzi, 

2016; Çalık et al., 2015; Garcia-Ortega et al., 2015; Looser et al., 2015; Nocon et al., 

2016; Puxbaum et al, 2015; Tomàs-Gamisans et al, 2016; Vogl et al., 2016). 

 

Figure 1-3 General strategies for enhanced production of recombinant proteins in P. 
pastoris. (taken from Yang & Zhang, 2018).  

Within process engineering optimization, three cultivation methods can be considered for 

the production of heterologous proteins in yeasts, i.e. batch, fed-batch and continuous 

cultivation. Nevertheless, fed-batch and continuous processes are most commonly used for 

manufacturing and optimizing a targeted recombinant protein production (Hensing et al, 

1995).  

During fed-batch cultivations, nutrients are continuously fed to a culture, resulting 

in a continuous volume increase, with biomass and products being retained in the reactor. 

This cultivation ends by volume, oxygen or heat transfer limitation (Hensing et al., 1995; 
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Potvin et al., 2012; Saitua et al., 2017) (Figure 1-4 a). On the other hand, continuous 

cultivation is an open thermodynamic system that requires feeding and extraction pumps to 

be permanently activated, maintaining constant volume (Figure 1-4 b). When steady state 

is reached, the specific growth rate of the cells equal the dilution rate (Garcia-Ortega, 

2016). During both cultivations, the growth rate can be manipulated by controlled addition 

of feed, allowing to minimize byproduct formation, oxygen uptake and heat generation, 

which can be adapted to the limitations set by the reactor specifications (Hensing et al., 

1995).  

Industrially, P. pastoris is commonly grown in fed-batch cultures in order to 

maximize the titer and volumetric productivity of a desired compound, often a recombinant 

protein (Looser et al., 2015; Riesenberg & Guthke, 1999). Nevertheless, it is essential to 

previously characterize and optimize operational parameters in continuous culture, to set 

conditions which maximizes the synthesis of the target product and to limit the formation 

of inhibitory compounds (Villadsen, Nielsen, & Lidén, 2011). In fact, operational 

parameters can introduce a significant variability that influence the production and 

secretion rate of recombinant proteins (Gasser et al., 2007, 2008; Love et al., 2012). It is 

well known that temperature, pH, osmolality, growth rate and dissolved oxygen can affect 

not only the metabolic pathways, but also the specific productivity of a target recombinant 

protein (Baumann et al., 2008; Charoenrat et al., 2005; Resina et al., 2007). In the 

literature, several relationships between production and growth rate have been reported 

(reviewed by Looser et al., 2015), as well as how they affect the biomass titer in the culture 

(Adelantado et al., 2017; Baumann et al., 2008; Garcia-Ortega et al., 2017). Therefore, it is 

important to generate a systematic analysis of these two factors. 
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 a) 

 

b) 

Figure 1-4 General cultivation scheme of a) fed-batch culture and b) continuous culture. 

1.5   Genome Scale Metabolic Model 

During cultivation, the cells adapt constantly to the changing extracellular environment and 

to the limited mass transfer conditions observed at high densities (Landi et al, 2015; 

Vargas et al., 2011). Therefore, it is critical to understand how the cell metabolism copes 

with nutritional and environmental stresses exerted by process conditions to improve 

bioreactor performance (Graf et al., 2009). This is a complex task, however, since the 

characterization and fine-tuning of strain’s features and process variables often require 

significant amounts of time and money (Çalık et al., 2015). Therefore, it is desirable to 
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have several platforms to integrate different levels of information from continuous and 

dynamic cultivations of P. pastoris that can be used to elaborate rational hypotheses to 

increase process productivity. 

Systems biology offers a quantitative and comprehensive approach to address this 

task (Kitano, 2002). In particular, Metabolic Flux Analysis (MFA) is an advantageous tool 

to determine the pathways of the global cellular metabolic process from a reductionist 

approach (Stephanopoulos, 1998). Metabolic pathway fluxes are obtained from the rates of 

substratum consumption and product formation, which is very useful when making 

comparisons under different experimental conditions (Varela et al, 2003). One type of 

MFA based on genomic scale, i.e. where a high number of reactions and cellular 

metabolites are used, allows to know the metabolic capacities of a cell, analyzing the 

connectivity of the metabolites or predicting genotypic-phenotypic relationships (Patil et 

al., 2005). Genomic-Scale Metabolic Models (GSMs) have been used in P. pastoris to 

optimize yeast with in silico modifications (Chung et al., 2010), to identify essential 

reactions of the yeast cells and to modulate the production of heterologous proteins, 

including the flow variation of amino acids (Caspeta et al, 2012; Sohn et al., 2010) and the 

enhanced recombinant protein production (Nocon et al., 2014), validating these 

frameworks as strain engineering tools for this particular yeast. In fact, in the last years 

GSMs have become one of the most useful and widely employed tools in systems biology 

to understand cellular behavior under different environmental conditions, to map over 

omics data, and to define a metabolic engineering targets (Sohn et al. 2012; Nocon et al., 

2014; Saitua et al., 2017).  

To the best of our knowledge, six GSMs have been reported so far for P. pastoris 

(Caspeta et al., 2012; Irani et al., 2016; Sohn et al., 2010; Tomàs-Gamisans et al., 2017; 

Ye et al., 2017), which have been developed to drive strain optimization process with a 

special emphasis on recombinant protein production. Nevertheless, the validation of these 

GSMs is usually performed using extracellular flux predictions in steady-state, without 

analysis of the intracellular flux distributions (Sánchez & Nielsen, 2015). Intracellular flux 

distributions are essential to understand cell metabolism and, therefore, it is highly 

recommended to manually curate (Pereira et al , 2016; Saitua et al., 2017) and to include  

thermodynamic restrictions (Saa & Nielsen, 2016) to the resulting GSM. 
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Once a robust GSM is developed, it allows to gain knowledge of the yeast's steady-state 

metabolism and to make accurate predictions for the overexpression of high-value 

metabolites in mutant strains (Oberhardt et al., 2009) though, the kinetics and physiology 

of yeast cells can be better understood in a dynamic setting (Sánchez et al, 2014). In 

particular, dynamic Flux Balance Analysis at Genome-Scale (GS-dFBA) (Höffner et al, 

2013; Mahadevan et al, 2002; Varma & Palsson, 1994) is a modeling framework that 

allows to simulate the metabolism during non-stationary (batch or fed-batch) cultivation, 

using GSM coupled with dynamic mass balances from the extracellular environment of the 

bioreactor. We recently constructed a robust, dynamic GSM of glucose-limited aerobic 

cultivations of P. pastoris, which, if properly trained, can be used to predict bioreactor 

dynamics (Saitua et al 2017). Moreover, the model could also be employed to obtain 

realistic flux distributions through-out dynamic cultivations and to determine metabolic 

and process engineering strategies to improve the production. 

Finally, GSM and GS-dFBA allow understanding and quantifying the metabolic 

burden caused by this production in steady state as well as dynamic culture systems. 

Moreover, they allow to simulate different environmental conditions, to map over omics 

data, and to define metabolic engineering targets in different carbon sources and feeding 

strategies. Also, they could be used to study perturbations such as oxygen limitation, which 

is a critical problem in industrial P. pastoris cultivations (Porro et al., 2005).  

1.5 Optimization of Oxygen Transfer Rate in bioreactors. 

Fed-batch cultivation is commonly used for microbial growth in order to reach high-cell 

density cultures. The main limitations of this system are volume, oxygen and heat transfer. 

In the case of P. pastoris, oxygen limitation is a critical operation variable in industrial 

cultivations (Porro et al., 2005), independent of the carbon source used (Looser et al., 

2015).  

Oxygen is an essential substrate in aerobic bioprocesses, since it allows the 

oxidation of the carbon source, increasing the energy efficiency of the microorganism 

(Felix Garcia-Ochoa & Gomez, 2009; Sonnleitner, 2016; Yong Wang et al., 2009). This 

substrate is commonly supplied from the gas phase, where it is transferred to the liquid 
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and, once dissolved, it is consumed by the cells. Nevertheless, in high density cultures, 

oxygen solubility is low and oxygen demand increase over time since biomass does 

(Garcia-Ochoa et al, 2010). Once Oxygen Uptake Rate (OUR) is higher than the Oxygen 

Transfer Rate (OTR), dissolved oxygen decrease fast and begin to be limiting. Oxygen 

limitation in microbial cultures promotes the formation of inhibitory by-products, which 

prevent reaching the maximum permissible biomass (Adelantado et al., 2017; Baumann et 

al., 2010; Enfors, 2011; Garcia-Ortega et al., 2017; Villadsen & Patil, 2007). As a 

consequence, the bioreactor type and its mechanical design, together with an adequate 

control of dissolved oxygen in cell cultures is crucial to guarantee a maximum OTR, to 

achieve high cell densities and volumetric productivities. 

OTR is typically described as the product of a volumetric mass transfer coefficient, 

���, and the average concentration gradient based on the two-film theory of Whitman 

(Whitman, 1924) (Equation 1-1). 

��

��
= ��� ·(�∗ − �)                                                        (1 − 1) 

Where, C* is the oxygen equilibrium concentration and C is the dissolved oxygen 

concentration in the liquid phase of the bioreactor. 

OTR mainly depends on the ��� coefficient in a specific saturation condition 

(Equation 1-1) and for this reason, ���, is a crucial factor to characterize the oxygen 

transfer capabilities of gas-liquid bioreactors (Garcia-Ochoa & Gomez, 2009; Labík et al., 

2017; Suresh et al, 2009). Actually, its measurement and/or prediction is used to design, 

operate and scale stirred tank bioreactors (Linek et al, 1993; Suresh et al., 2009). 

��� is strongly influenced by the hydrodynamic conditions in the bioreactors, 

which are affected by operational conditions – such as agitation and airflow rate –, 

geometrical configurations – such as type of impeller or sparger–  and physical properties. 

– such viscosity (Garcia-Ochoa & Gomez, 2009; Merchuk et al., 1990). Moreover, for 

Newtonian fluids in a conventional bioreactor, where the stirring has a strong influence on 

oxygen transfer, ��� can be correlated to the impeller speed (N), specific gas flow rate (∅), 

and dynamic viscosity () (Buffo et al., 2016), as follows:  
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���  =  � ·�� ·∅� ·��                                                   (1 − 2) 

Where b represents all other parameters not incorporated in the equation – such as 

geometric parameters. 

Different strategies to increase OTR have been used (Felix Garcia-Ochoa & 

Gomez, 2009; Maclennan & Pirt, 1966; Siegell & Gaden, 1962). Some researchers have 

modified the bioreactor configuration; impellers, sparger and geometrical dimension in 

order to increase ��� (Arjunwadkar et al., 1998; Buffo et al., 2016; Vitae & Vitae, 2011; 

Yang et al., 2012); others have focused on increasing saturation oxygen concentrations 

(Equation 1-1),  increasing partial pressure or enriching gaseous phase with pure oxygen 

(Flickinger & Perlman, 1977; Nielsen, Villadsen, & Lidén, 2002; Yamada et al, 1978) or 

pressuring the bioreactor (Onken & Liefke, 1989; Yang & Wang, 1992). Nevertheless, 

when strategies using maximum capable saturation oxygen concentration still limit 

biomass formation, it is necessary to focus on ��� optimization. Buffo et al., (2016) 

demonstrated that the combination of two types of impellers; Rushton and Ear-Elephant, 

provided considerable differences in oxygen transfer (Figure 1-5). Moreover, some 

configurations were less harmful to microbial cells, have more efficiency and less shear 

rate, demonstrating the potential of this research. Otherwise, simulation from Gelves  

(2013), demonstrated rotating-sparger could increase up to 6-fold the oxygen transfer in 

large-scale bioreactors and improved air homogenization in the bioreactor. Nevertheless, 

both techniques have not been simultaneously evaluated, so far.  
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Figure 1-5 Dual-impeller configuration (Figure taken from Buffo et al., 2016) 

1.6 Case of study: Thaumatin a sweetness protein  

As a case study, we analyzed the metabolic behavior of a recombinant strain producing the 

sweet-tasting low-calorie protein thaumatin (van der Wel & Loeve, 1972). Thaumatin is a 

sweet protein (22 kDa), rich in cysteine (has 8 disulfide bounds), which is collected from 

the fruit of African bush Thaumatococcus danielli (van der Wel & Loeve, 1972). 

Thaumatin, as well as other sweet proteins, have became relevant as a sweet complement 

to improve the organoleptic and functional properties of natural sweeteners (Behrens, 

Meyerhof, Hellfritsch, & Hofmann, 2011). In total, five sweet proteins have been 

described: thaumatin, monellin, mabinlin, brazzein and miraculin (Wintjens et al, 2011) 

and their main properties are summarized in Table 1-3. 
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Table 1- 3 Properties of different sweet proteins 
 

Thaumatin Monellin Mabinli

n 

Brazzein  Miraculin  

Origin Thaumatococcu

s danielli 

(Africa) 

Pioscorephyllu

m cumminisii 

(Africa) 

Capparis 

masaikai 

(China) 

Pentadiplandr

a brazzeana 

(Africa) 

Richadell

a dilcifica 

(Africa) 

Sweetness 

factor 

(weight) 

1.600 3000 400 500 -- 

Types I,II,a,b,c 2 chains I,II,II,IV -- -- 

M. W. [kDa] 22 10,7 12,4 6,4 50 

Amino acids 207 45/50 33/72 54 191 

Disulphide 

bounds 

8 -- 4 4 4 

P. I. 12 9,3 11,3 5,4 7,7 

Threshold 

[nM] 

48 270 11,3 5,4 -- 

Stability Resistant Dissociation  Resistant Resistant Resistant 

*Data taken from the following papers: (Assadi-Porter et al., 2010; Caldwell et al., 1998; de Vos et al., 1985; 
Guan et al., 2000; Igeta, et al., 1991; Ito et al., 2007; Kaneko & Kitabatake, 1999; Kaneko & Kitabatake, 
2001; Kim et al., 1989; Ming & Hellekant, 1994; Monellin et al., 1973; NIRASAWA et al., 1994; Theerasilp 
& Kurihara, 1988; van der Wel, et al., 1984; Henrik van der Wel & Loeve, 1972; Wintjens et al., 2011) 

 

During the last years, non-caloric sweeteners, artificial and natural, have shown a sustained 

increase in the market (IANSA, 2018; ISO, 2012; ODEPA, 2014), in order to reduce sugar 

consumption (FAO, 2018; ODEPA, 2014). Nevertheless, global sugar consumption per 

capita is still elevated (OMS, 2018). That is why, a countless of governmental and 

international organizations have alerted about an excessive consumption of high-sugar 

contented food, which have a high caloric content and down – or null- nutritional 

contribution (MINSAL, 2010, 2017b, WHO, 2013, 2015). Massive consumption of these 

foods has caused a considerable increase in the incidence of Non-Communicable Diseases 

(NCDs), like obesity, diabetes and cardiovascular diseases among others (MINSAL, 

2017a; Morenga et al., 2014). NCDs are the main causes of premature death worldwide, 



 

 

17 

adjudicating a 68 percent of death in 2012 (WHO, 2015). Chile is within the countries with 

more overweight, with an incidence of 74 percent, as registered in 2016-2017 (MINSAL, 

2017). 

 In response to this kind of illnesses, World Health Organization (WHO) strongly 

recommends the reduction of free-sugar consumption to less than 10 per cent of total daily 

calorie intake, i.e. 25 grams per day for an average-weight person (WHO, 2015). 

Nonetheless, current statistics indicate that the world average consumption is 56 grams per 

day in 2013 (FAO, 2018). The same year, Chile reached a consumption per capita of 123 

grams per day, one of the highest in the world (FAO, 2018). 

 The most consumed artificial sweeteners are saccharine, aspartame, cyclamate and 

acesulfame K (ISO, 2012; Kant, 2005). However, consumers are prioritizing natural 

alternatives, since multiple adverse effects of artificial sweeteners have been reported, like 

mental disorders, heart failure and brain tumors (Behrens et al., 2011; Kant, 2005; 

Temussi, 2006). Moreover, Suez et al. (2014) demonstrated than saccharine consumption 

could cause insulin resistance due to an alteration of intestinal microbiota (Suez et al., 

2014). 

 Among the most well known natural sweeteners are the glycosylated steviols, produced 

by the plant Stevia rebaudiana (IANSA, 2014); and mogrosides from the Lu Han Guo fruit 

(Dubois & Prakash, 2012). Unfortunately, both sweeteners show some disadvantages: in 

the case of Stevia, sweetness often brings with a sensation of bitterness and licorice; and in 

the case of mogrosides, they have a low solubility in water (Dubois & Prakash, 2012). 

Therefore, to improve the organoleptic and functional properties of natural sweeteners, the 

use of sweet proteins have become relevant as a complement (Behrens et al., 2011). Within 

sweet proteins, thaumatin is a perfect candidate to be employed together with other 

sweeteners, projected in a growing market. Since this protein not only has low calorie 

content, but is also functional and stable over a wide temperature range (until 80°C) and 

pH (2-10) (Kaneko & Kitabatake, 2001). Moreover, it has a triple functionality: 

 A high sweetness potency, 3,000 fold that of sucrose in molar basis (Stoger, 2012; van 

der Wel & Loeve, 1972);  

 A masking capacity for taste sensations, such as the bitterness of Stevia (Auger, 2013);  
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 A flavor-enhancing capacity (Auger, 2013; I Faus, 2000), such as salty flavor. 

Consequently, its high functional range makes thaumatin unique and its stability to 

extreme conditions allows its wide use in the food industry, including heat-processed 

foods. 

 Thaumatin is naturally found at very low concentrations - circa of 400 g/g - in the 

fruits of Thaumatococcus danielli (van der Wel & Loeve, 1972), which hampers its 

industrial commercialization. In fact, in 2013 the extraction of one gram of thaumatin 

requires the use of at least one ton of fruits, resulting in a high extraction cost and a sales 

price of US$ 6,000 /kg of thaumatin (Auger, 2013). This high sale price opens 

opportunities to the heterologous synthesis of thaumatin with the aim of increasing its 

concentration and productivity, as well as ensuring a sustainable, environmentally friendly 

and economically feasible biosynthesis. The recombinant production of this sweet protein 

has been widely studied in different organisms, although high productions have not been 

reached so far (Table 1- 4). For example, functional thaumatin has been produced in the 

yeast Pichia pastoris, with final titers of 100 mg/L after 160 hour cultivation (Masuda et 

al, 2010); and in Aspergillus awamori, reaching 150 mg/L in 120 hour cultivation 

(Moralejo et al., 2000). The main reason of its low productivity is associated with its eight 

disulfide bounds in most of the studies (Daniell et al., 2000; Edens et al., 1984; Faus et al., 

1996; Illingworth et al., 1989; Masuda et al., 2016; Masuda et al., 2010; Moralejo et al., 

2000; Moralejo et al., 2001). Moreover, efficient production has not yet been achieved, 

given that it is estimated that YSP = 74 mg of thaumatin per gram of glucose could be 

achieved, which would allow reaching up to 18 g/L in 80 h of culture (Supplementary 

material S1-1). However, a systematic analysis is necessary to better understand the effect 

in the microorganism of the recombinant production in this protein. 

. 
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Table 1- 4 Summary of recombinant production of thaumatin in different organisms. 

Organism Promoter Titer Sweetness Reference 

Microorganism 

E. coli lac / tac Very low No (Edens et al., 1982; 

Faus et al., 1996) 

lac 40 mg/L Yes with 

refolding 

process 

(Daniell et al., 2000) 

B. subtilis -amilase 1 mg/L n. d. (Iilingworth et al., 

1988) 

S. lividans -

galactosidase 

0.2 mg/L n.d. (Illingworth et al., 

1989) 

S. 

cerevisiae 

GAPDH/PGK low No ( Edens et al., 1984; 

Lee et al., 1988) 

PGK 140 mg/L Yes with 

refolding 

process 

(Weickmann, 1994) 

K. lactis GAPDH low No (Edens & van der Wel, 

1985) 

A. awamori gdhA 

 

150 mg/L Yes (Moralejo et al., 2000; 

Moralejo et al,1999;  

Moralejo et al., 2001) 

P. pastoris AOX1 100 mg/L Yes (Masuda et al., 2004; 

Masuda et al,2010) 

Plants 

potato CaMV35S 0.2-2 

mg/Kg 

Yes (Witty, 1990) 



 

 

20 

pear CaMV35S Very low n.d. (Lebedev et al., 2002) 

tomato CaMV35S Very low Yes (Bartoszewski et al., 

2003; Firsov et al., 

2012) 

cucumber CaMV35S Very low Yes (Szwacka et al., 2002; 

Zawirska-Wojtasiak et 

al., 2009) 

raspberry CaMV35S Very low n.d. (Schestibratov & 

Dolgov, 2005) 

apple CaMV 35S Very low Yes (Dolgov et al., 2004) 

barley Hordein-D 2 mg/g Yes (Stahl et al., 2009) 
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1.7 Hypothesis and Objectives 

The hypothesis of this thesis is that the systematic characterization of Pichia pastoris in 

conjunction with the development of computational tools will allow to find genetic targets, 

optimum operation parameters, and optimum mechanic bioreactor configurations in order 

to enhance the production of recombinant proteins in the yeast Pichia pastoris.   

General Objective 

The general objective of this thesis is to build, characterize, and analyze recombinant P. 

pastoris strains in different environmental conditions using improved computational tools. 

These exhaustive characterizations together with the optimization of oxygen transfer rate 

could be used to improve recombinant protein production in P. pastoris. 

The specific objectives are: 

1. To construct recombinant P. pastoris strains producing thaumatin.   

2. To characterize and analyze thaumatin producing P. pastoris in different 

environmental conditions. 

3. To develop computational tools to analyze P. pastoris strain in different 

fermentation processes. 

4.  To optimize oxygen transfer rate in 1-L bioreactor to improve high density 

culture.
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1.8 Approach of this thesis 

In this work, the central theme is to develop computational tools and to analyze different 

type of strategies to enhance the production of recombinant protein production in the yeast 

Pichia pastoris  

 Chapter 1 discusses the importance of developing a systematic analysis of two main 

operational variables: specific growth rate and dissolved oxygen. Moreover, we 

formulated a Flux-Distribution-Improved GSM of Pichia pastoris to understand the 

individual and synergistic effects of two main operational parameters. 

 Chapter 2 deals with the formulation of a dynamic Genome Scale Metabolic Model of 

Pichia pastoris that yields realistic metabolic flux distributions throughout dynamic 

cultivations. The model was calibrated with experimental data and used to propose 

genetic and process engineering strategies to improve the performance of a P. pastoris 

strain of interest. 

 Chapter 3 discusses the formulation of an automatic algorithm, to reliably estimate 

k�a under different hydrodynamic conditions. The latter allows to design high 

throughput k�a assessment systems to optimize oxygen delivery in bioreactors. The 

algorithm proved to be robust and highly efficient. 

 Chapter 4 presents a road map to optimize oxygen transfer rate in 1L bioreactor, using 

different impeller-sparger configurations. First, we characterized all configurations in 

different hydrodynamics conditions to analysis level curves and parameter 

sensitivities. Then, we proposed a general decision tree for the selection of the best 

configuration in order to improve oxygen transfer in bioreactors according operational 

parameters’ domain. 
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2. CHAPTER I: SYSTEMIC METABOLIC EFFECTS OF SPECIFIC 

GROWTH RATE AND OXYGENATION LEVEL IN GLUCOSE-

LIMITED CONTINUOUS CULTURE OF RECOMBINANT PICHIA 

PASTORIS. 
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Bellaterra (Cerdanyola del Vallès), Barcelona, Spain  

3Environmental Research and Innovation, Luxembourg Institute of Science and 
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Paper in revision in Microbial Cell Factories. 
 

2.1 INTRODUCTION 

The methylotrophic yeast Pichia pastoris (syn. Komagataella phaffii) is a popular cell 

factory for heterologous protein production due to its convenient physiology and the 

availability of genetic tools for its manipulation (Gasser and Mattanovich 2018; Peña et al. 

2018; Theron et al. 2018). Amongst its features, P. pastoris displays a Crabtree-negative 

growth phenotype leading to reduced synthesis of by-products under aerobic conditions 

(Çalık et al. 2015). In addition, the availability of strong promoters for heterologous 

expression added to its natural capacity to perform post-translational modifications has 

made this yeast the platform of choice for producing a range of recombinant proteins up to 

grams per liter titers (Ciplys et al. 2015; Hasslacher et al. 1997; Heyland et al. 2010; Wang 

et al. 2001). Despite these achievements, efficient heterologous protein production in P. 

pastoris remains challenging as poorly-tuned protein overexpression can affect relevant 

cellular processes, such as protein folding and secretion (Delic et al. 2014; Gasser et al. 

2007; Love et al. 2012). Moreover, codon usage level (Hu et al. 2013; Xiang et al. 2016), 

promoter selection (Prielhofer et al. 2013) as well as culture medium composition 

(Heyland et al. 2011) and operational conditions (Maurer et al. 2006) may also play major 
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roles on process performance. In particular, the operational conditions have gained 

increasing attention as they are known to introduce substantial variability in the process, 

significantly affecting the recombinant protein secretion (Looser et al. 2015). 

 High recombinant protein expression in P. pastoris relies on the use of strong 

promoters, like pAOX1 (promoter from alcohol oxidase I) and pGAP (promoter from 

glyceraldehyde-3-phosphate dehydrogenase). While pAOX1 offers strong inducible 

expression with methanol – thereby enabling uncoupling growth from production –, pGAP 

provides comparable constitutive expression (Peña et al. 2018). P. pastoris cultures incur 

in high oxygen consumption and heat production during methanol oxidation, and hence, its 

use is ill-advised for large-scale protein production (Mattanovich et al. 2014). Once a 

suitable expression system has been chosen, the next step is to optimize culture conditions 

to achieve the target productivity. Factors such as temperature, pH, osmolality, specific 

growth rate () and dissolved oxygen (DO) are critical for the efficient operation of the 

culture, and they have been individually assessed on their influence on protein production 

and culture performance (Baumann et al. 2008; Charoenrat et al. 2005; Dragosits et al. 

2009; Dragosits et al. 2010; Garcia-Ortega et al. 2017; Heyland et al. 2010; Maurer et al. 

2006). Although there have been studies reviewing the relationships between protein 

production and growth (refer to Looser et al. (2015) for a comprehensive review), and how 

DO impacts the yeast’s physiology (Adelantado et al. 2017; Baumann et al. 2008; Garcia-

Ortega et al. 2017), current studies fail to evaluate both the individual and combined effects 

of these operational parameters on the metabolic performance of P. pastoris. Notably, such 

evaluation is not trivial as both, appropriate experimental design and modelling approach, 

are required to interpret the experimental results.  

In this work, we present an integrated framework for dissecting the metabolic 

effects of key operational parameters – here μ and DO – during recombinant protein 

production by P. pastoris under glucose-limited conditions in continuous cultures. As a 

case study, we analyzed the metabolic behavior of a recombinant strain producing the 

sweet-tasting low-calorie protein thaumatin. This protein has 207 amino acid residues and 

8 disulfide bonds (Illingworth et al. 1989), which are critical for its sweet taste (Masuda et 

al. 2016) and are considered the main reason behind the low titers achieved so far 

(Moralejo et al. 2001) (~ 100 mg L-1 in high-density cell cultures (Masuda et al. 2010)). 
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Folding of recombinant proteins with many disulfide bounds is both difficult and costly 

and demands high endoplasmic reticulum (ER) folding capacity to avoid triggering 

unfolded protein response (UPR) and ER associated degradation (ERAD) pathways 

(Gasser et al. 2007; Puxbaum et al. 2015). Thus, understanding the effects of μ and DO 

that have a strong impact on metabolism is critical for optimizing heterologous protein 

production in P. pastoris. To capture the individual and combined effects of  and DO on 

the metabolic performance of this strain, we implemented a fractional experimental design 

to determine the statistically significant effects with a reduced dataset, and later integrated 

these with a tailored Genome-Scale Metabolic Model (GSMM) to interpret and further 

analyze the metabolic and energetic consequences. Briefly, GSMMs describe the set of 

biochemical reactions that represent the entire metabolic potential of an organism, and as 

such, are excellent tools to understand the physiological state of the cell under different 

environmental conditions (Price et al. 2004). Our results revealed opposite operational 

regions for efficient growth and protein production, as well as a tighter energetic constraint 

on P. pastoris growth under glucose-limited, low DO continuous culture conditions. 

2.2 MATERIALS AND METHODS 

2.2.1 Plasmid construction and strain transformation 

The thaumatin gene – including its natural pre-region secretion signal – was synthesized by 

Genscript (Piscataway, NJ, USA) and was codon-optimized for expression in P. pastoris. 

The commercial recombinant vectors pGAPZB (Invitrogen, Carlsbad, CA, USA) were 

employed for the construction of the transformation plasmids using Gibson assembly 

(Gibson et al. 2009), and later used to integrate the thaumatin gene into the yeast´s genome 

under the constitutive GAP promoter. Amplification of DNA fragments for Gibson 

assembly was carried out in 35 PCR cycles using Phusion High-Fidelity DNA Polymerase 

(ThermoFisher, Waltham, MA, USA). All PCR products were treated with DpnI restriction 

enzyme to remove original vector residues and later were purified by gel extraction, using 

the Qiaquick Gel Extraction kit (Qiagen, Hilden, Germany). Finally, a 10-μL reaction mix 

was used to transform chemically competent E. coli TOP 10 cells. These cells were grown 

at 37 °C in low salt-LB medium, containing 25 μg mL−1 zeocin for selection of clones 

transformed with pGAPZB-TAU vector. 
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P. pastoris wild-type strain GS115 (Invitrogen, Carlsbad, CA, USA) was used as a 

host strain throughout this study, which was transformed using an in-house-built vector to 

revert its histidine auxotrophy (see Supplementary Material S2-1). AvrII was employed to 

linearize the transformation vector, which was introduced by electroporation into the 

competent the cells as described by Gasser et al. (2006). Both plasmids and 

transformations were verified by DNA sequencing (Macrogen Inc., Seoul, Korea). 

2.2.2 Cell cultivation 

Continuous cultures were started from pre-inocula grown overnight at 30 °C and 150 rpm 

in 200-mL shake flasks, containing YPG medium with 100 μg mL−1 zeocin. Prior to the 

inoculation of the bioreactors, each inoculum was centrifuged at 5,000 rpm for 5 min and 

resuspended in fresh culture medium without trace elements. Chemostat cultures were 

performed in 2-L benchtop Biostat B bioreactors (Sartorius AG, Göttingen, Germany) 

using 1 L of working volume. 

P. pastoris was grown in glucose-limited chemostats under the culture conditions 

described by Adelantado et al. (2017) with only minor differences (see Supplementary 

Material S2-2). For DO control, a mixture of air, pure nitrogen and pure oxygen was used. 

Each gas was independently controlled using three mass flow meters (Bronkhorst High-

Tech, Ruurlo, Netherlands) until the desired DO levels were reached (see below). The pH, 

agitation, and temperature were set respectively to 5.0, 700 rpm, and 25 °C in all 

conditions. Samples were taken after four and five residence times when the culture 

reached steady state. 

2.2.3 Experimental design 

Experimental design is a statistical tool that is used to systematically examine the effects of 

two or more factors that shape a determined response function. Among the different 

possible designs, Doehlert designs display higher efficiency and flexibility as they allow 

fitting more complex response models with less data and without requiring extreme points 

(Doehlert 1970; Hanrahan and Lu 2006). 

In this study, a Doehlert matrix (Doehlert 1970) was constructed to evaluate the 

individual and combined effects of μ and DO on the macroscopic growth and production 
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parameters of the thaumatin-producing P. pastoris strain. The experimental domain was 

defined over 0.05-0.15 h-1 for μ with five dilution rate levels; 0.05, 0.075, 0.1, 0.125 and 

0.15 h-1 and over 0-60% DO saturation with three oxygenation levels; low (4%, L 

condition), medium (30%, M condition) and excess (56%, E condition) (Figure 2-1A) 

(Additional studies at 108% DO saturation are in Supplementary material S2-4). The latter 

DO levels correspond to approximately 10.4 (L), 77.7 (M) and 145.1 μM (E) DO 

concentrations assuming a Henry’s constant of 957.7 atm M-1 at 25 °C for a fermentation 

broth (Saa et al. 2012). This design samples seven experimental conditions in total: six 

external conditions performed in duplicate and in random order, and a central point 

performed in triplicate. Finally, a second-degree polynomial (Equation 2-1) was fitted to 

determine the response of the dependent variable as a function of the different factors, i.e., 

μ and DO. 

2 2
0 1 1 2 2 11 1 12 1 2 22 2Z b b X b X b X b X X b X         (2-1) 

In Equation 2-1, Z denotes the predicted response, X1 and X2 represent the independent 

variables, b0 is the mean value of the response, b1 and b2 are linear (main) effects, b11 and 

b22 represent squared effects, and b12 describes an interaction term (combined effect). 

Statistical calculations and significant tests (ANOVA) were performed using 

STATGRAPHICS Plus 5.1 (Statpoint Technologies, Inc., VA, USA). 

2.2.4 Extracellular metabolite and biomass quantification  

Extracellular glucose, arabitol and ethanol were analyzed by HPLC. Samples of 2 mL each 

were taken and centrifuged at 10,000 rpm and 4 ºC for 5 min. The supernatant was 

collected and filtered using 0.45 μm-pore nitrocellulose filters (Merck Millipore, 

Carrigtwohill, Ireland). HPLC analysis was performed in duplicate in a HP 1050 liquid 

chromatography system (Dionex Corporation, Sunnyvale, USA) as described by Tomàs-

Gamisans et al. (2016). Extracellular thaumatin was quantified in triplicate using 

Thaumatin ELISA Kit (CellTrend, Luckenwalde, Germany), according to manufacturer 

instructions. Finally, Dry Cell Weight (DCW) was quantified in triplicate, following the 

method of Jordà et al. (2012). 
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Figure 2-1 Overview of the experimental design and GSMM curation workflow employed 
in this study. A) Doehlert fractional experimental design for evaluating the metabolic 
impact of the specific growth rate (μ) and dissolved oxygen (DO) level on the metabolic 
performance of P. pastoris. This design considers 1 central point and 6 extreme points over 
3 DO levels (4%, 30% and 56% oxygen saturation), and 5 μ levels (0.05, 0.075, 0.1, 0.125 
and 0.15 h-1). B) Manual GSMM curation workflow for flux simulations. The latest P. 
pastoris GSMM (iMT1026 v3.0) was sequentially tailored for accurately describing 
metabolic fluxes under glucose-limited conditions using reported experimental data and 
flux feasibility criteria. 

2.2.5 Contextualization of the genome-scale metabolic model 

Several GSMMs have been made available for modelling P. pastoris metabolism under 

different conditions and optimizing heterologous protein production (Caspeta et al. 2012; 

Irani et al. 2016; Sohn et al. 2010; Tomas-Gamisans et al. 2018; Ye et al. 2017). Typically, 

these models are validated by comparing experimental and predicted specific growth and 

exchange rates, obtained using Flux Balance Analysis (FBA) (Orth et al. 2010). However, 

this is often insufficient to validate GSMMs, as identical FBA predictions may be 

underpinned by completely different intracellular flux distributions. As such, consideration 

of available intracellular flux data (e.g., measured by 13C fluxomics), is an important (often 

neglected) curation step for accurately capturing the metabolic mechanisms behind the 

simulated phenotype. An excellent example of the above was recently presented by Pereira 

et al. (2016). 

In order to obtain accurate metabolic predictions underpinned by realistic flux 

distributions, we set up a sequential curation workflow starting from the latest and most 

curated P. pastoris GSMM – the iMT1026 v3.0 (Tomas-Gamisans et al. 2018) –, where 
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intracellular reactions were incrementally constrained – both activities and directionalities 

– in accordance with fluxomics, proteomics and transcriptomics data under appropriate 

experimental conditions (Clasquin et al. 2011; Gasser et al. 2007; Rußmayer et al. 2015; 

Zhang et al. 2017), and thermodynamically feasible directionalities derived from the 

loopless flux condition imposition (Saa and Nielsen 2016) (Figure 2-1B). In this way, the 

tailored metabolic model generated realistic intracellular fluxes and predicted accurately 

observed specific growth and exchange rates. Additional details about the 

contextualization workflow can be found in Supplementary Material S2-3. 

2.2.6 Estimation of energetic requirements for growth 

GSMMs have cellular ATP requirement divided into Growth-Associated Maintenance 

Energy (GAME) and Non-Growth-Associated Maintenance Energy (NGAME). The 

former represents the (milli)moles of ATP required for growing 1 gram of biomass (YX,ATP) 

– represented by the corresponding stoichiometric coefficient in the biomass equation –; 

whereas the latter (NGAME) describes the ATP consumption (mATP) required for cellular 

maintenance (Pirt 1982). These parameters together quantify the requirement of total ATP 

per gram of cell dry weight and per hour (qATP) for growing under a defined condition and 

follow the relation shown below. 

ATP X,ATP ATPq Y m  
   

 (2-2) 

So far, the energetic impact of the oxygenation on P. pastoris metabolism has not 

been fully determined, as reported experimental designs are inadequate to properly assess 

its effects, e.g., chemostat data has only been reported at extreme DO conditions and at a 

single μ of 0.1 h-1 (Adelantado et al. 2017; Baumann et al. 2008; Garcia-Ortega et al. 

2017). In contrast, the proposed experimental design enables examination of the energetic 

parameters that best fit the experimental data (growth and production rates at different DO 

and μ conditions), shedding light on the energetic impact of the DO level. To determine the 

latter, the qATP of the contextualized GSMM was maximized in all the experimental 

conditions using the loopless FBA (ll-FBA) algorithm (Saa and Nielsen 2016) – i.e., a flux 

estimator that avoids thermodynamically infeasible loops. For this task, the mATP reaction 

was chosen as the objective, the GAME was set to zero, and the growth and exchange rates 

were fixed to the observed values. Once qATP was computed, the GAME was fitted to the 
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different DO conditions, using Eq. (2) after setting NGAME to the most recent measured 

value (Rebnegger et al. 2016). At this point, two models were hypothesized and fitted: one 

where YX,ATP was the same for all DO conditions; and another, where YX,ATP was fitted to 

each DO condition. Finally, the Akaike’s Information Criterion for low number of data 

points (AICc) was applied to compare the goodness-of-fit of each model (Hurvich and Tsai 

1989). The model with the smallest AICc was considered the best choice. 

2.3 RESULTS 

2.3.1 Effects of the specific growth rate and oxygenation level on the 

metabolic performance of P. pastoris under glucose-limited conditions.  

Growth and metabolic production parameters of the recombinant P. pastoris strain were 

measured in seven chemostats, under different μ and oxygenation conditions. In each case, 

biomass and thaumatin yields (YS,X and YS,P , respectively), specific thaumatin and carbon 

dioxide production rates (qP and qCO2, respectively), and specific glucose and oxygen 

consumption rates (qS and qO2, respectively) were estimated (Table 2-1). In all conditions, 

ethanol and arabitol were not detected, pointing to a purely respiratory metabolism which 

was later confirmed with measured RQ values (Supplementary Material S2-5). 

Oxygenation exerted the greatest impact on both, YS,X and qP, whereas μ had the 

main effect on YS,P. In the case of YS,X, there were notable differences between different 

oxygenation levels at a given μ (e.g., L and E conditions showed a 14% relative difference 

for μ = 0.075 h-1), but not vice versa (< 4.7% relative difference for a fixed oxygenation 

level and different μ). Overall, YS,X varied from 0.507 to 0.589 gDCW g-1, attaining the 

lowest yield at μ = 0.075 h-1 in the L condition. Statistical analysis showed that DO had the 

main positive and significant effect (p-value<0.001, Supplementary Material S2-6), 

although the interactive and quadratic terms displayed also significant (both negative) 

influences (respectively p-value<0.01 and p-value<0.05, refer to Supplementary Material 

S2-6 for details). The YS,X regression explained a substantial part of the variability in the 

data (R2 = 0.948) and, more importantly, it suggested high oxygenation and low μ as the 

most likely conditions for efficient growth (Figure 2-2A). 

 In the case of the thaumatin production parameters qP and YS,P, they showed 

different behaviors. While YS,P was almost unaffected by DO and displayed a negative 
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correlation with μ (e.g., varying from 0.129 to 0.399 mg thaumatin g-1 in the high and low 

μ conditions, respectively), qP was largely influenced by DO (negatively); and to a lesser 

extent by μ (positively) (Table 2-1 and Figure 2-2B). In this case, the regression analysis 

explained a lower fraction of the data variability (R2 = 0.68) and indicated a significant 

negative effect of DO (p-value<0.05, Supplementary Material S2-6) with a positive 

interaction term (p-value<0.05, Supplementary Material S2-6). Here, the magnitude of 

both individual and combined effects was quite similar (see Supplementary Material S2-6). 

In the case of the YS,P, significant individual (negative) and quadratic (positive) effects of μ 

were suggested by the regression analysis (in both cases p-value<0.001, and  R2 = 0.959, 

see Supplementary Material S2-6). Altogether, regions of both, low μ and oxygenation, 

favor thaumatin production and yield (Figure 2-2B-C).   

 

Table 2- 1 Metabolic performance parameters of recombinant P. pastoris in glucose-
limited chemostats under different μ and DO conditionsa 

Conditionb 
μ 

(h-1) 

qS  

(mmol 

gDCW
-1 h-1) 

qCO2 

(mmol 

gDCW
-1 h-1) 

qO2 

(mmol 

gDCW
-1 h-1) 

qP 

(mg 

gDCW
-1 h-1) 

YS,X 

(gDCW g-1) 

YS,P 

(mg g-1) 

1 (L) 0.072±0.003 0.787±0.038 1.838±0.101 1.842±0.097 0.047±0.005 0.507±0.002 0.267±0.042 

2 (L) 0.119±0.006 1.247±0.031 2.766±0.017 2.791±0.317 0.036±0.003 0.531±0.011 0.159±0.016 

3 (M) 0.048±0.002 0.480±0.029 1.028±0.051 1.052±0.068 0.034±0.001 0.551±0.008 0.399±0.019 

4 (M) 0.101±0.001 0.989±0.009 1.980±0.016 1.973±0.076 0.033±0.001 0.566±0.002 0.186±0.001 

5 (M) 0.150±0.002 1.495±0.021 3.016±0.052 2.955±0.099 0.035±0.001 0.566±0.002 0.129±0.002 

6 (E) 0.072±0.001 0.682±0.007 1.213±0.004 1.300±0.005 0.031±0.001 0.589±0.004 0.256±0.007 

7 (E) 0.120±0.001 1.143±0.014 2.182±0.147 2.309±0.129 0.032±0.001 0.583±0.004 0.175±0.009 

aResults represent the average and the standard error of two or three independent experiments in the case of extreme 

points and the central point, respectively. In each case, the carbon balance closed satisfactorily and reconciled no less 

than 94.7% of the consumed carbon source (see Supplementary Material S2-5). 

bThe experimental conditions are abbreviated L for low oxygenation (4% dissolved oxygen saturation), M for normal 

oxygenation (30% dissolved oxygen saturation), and E for excess oxygenation (56% dissolved oxygen saturation). 
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Figure 2-2 Response surfaces of P. pastoris macroscopic culture parameters under 
different DO and μ conditions. The fitted response surfaces were for the (encoded) biomass 
yield (A), specific thaumatin production rate (B) and thaumatin yield (C) are, respectively: 

2
S,X

ˆ ˆˆ ˆ0.565 0.036 0.02 0.017Y DO DO          (R2 = 0.948), 

P
ˆ ˆˆ0.033 0.004 0.008q DO DO       (R2 = 0.68), and  2

S,P
ˆ ˆ0.186 0.127 0.08Y        

(R2 = 0.959), where ˆ ˆ0.05 0.05 ( 1) , [ 1,1]         and 

ˆ ˆ4 30 ( 0.8666) , [ 0.8666,0.8666]DO DO DO      . Further details about the variable 

encoding, statistical effects and fitting can be found in Supplementary Material S 2-6. 
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2.3.2 GSMM curation and GAME evaluation under aerobic, glucose-limited 

conditions 

The prediction power of iMT1026 v3.0 was improved through a sequential manual 

curation workflow. iMT1026 v3.0 supports growth on glycerol and methanol through the 

addition of accessory and degradation pathways in different compartments (e.g., 

peroxisome) (Tomas-Gamisans et al. 2018). The resulting model, however, consistently 

overestimated the maximum specific growth rate under aerobiosis with glucose as the sole 

carbon source, due to unrealistic flux rerouting through the peroxisome and unlikely 

activation of some redox reactions (Supplementary Material S2-7). Imposing appropriate 

reaction constraints, based on experimental and thermodynamic information, largely 

solved this issue. 

Inclusion of transcriptomic and proteomic data under appropriate experimental 

conditions (Clasquin et al. 2011; Gasser et al. 2007; Rußmayer et al. 2015; Zhang et al. 

2017), and directionalities based on reaction thermodynamics, reduced the number of 

reversible reactions by 25 and blocked 3 initially active reactions (Figure 2-3A). 

Furthermore, subsequent thermodynamic feasibility analysis, based on imposition of the 

loopless flux condition, yielded irreversible 215 reactions previously deemed reversible 

(Figure 2-3A). Altogether, these measures disabled the infeasible cycles responsible for the 

flux prediction inaccuracies. Finally, adjustment of the NGAME to 0.55 mmol ATP gDCW
-1 

h-1 (assuming a yield of 32 mol of ATP per mol of glucose (Tomàs-Gamisans et al. 2016), 

and using the recent experimental maintenance value of 3.1 mg glucose gDCW
-1 measured in 

glucose-limited retentostats (Rebnegger et al. 2016)), increased the prediction fidelity of 

iMT1026 v3.0 by ca. 86% for the observed μ – from approx. 7.0% average relative error to 

4.2% (Figure 2-3B). Moreover, the agreement between predicted and measured 

intracellular flux data improved greatly – explained flux variability increased from 78.3% 

to 97.2% in the cytosol (Figure 2-3C) and from 7.6% to 86.7% in the mitochondria (Figure 

2-3D). We note that iMT1026 v3.0 uses a biomass macromolecular composition with 

ashes, although correction by the estimated ashes content yielded almost identical results 

(Supplementary Material S2-7). The final list with constraints employed can be found in 

Supplementary Material S2-7.    
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Figure 2-3 Evaluation of curated P. pastoris GSMM for metabolic flux prediction under 
glucose-limited conditions. A) Step-by-step curation process of the P. pastoris iMT1026 
v3.0 GSMM for describing growth under glucose-limited conditions. B) Evaluation of 
maximum specific growth rate predictive performance of the initial versus curated GSMM. 
C) Comparison of the predicted intracellular flux through cytoplasmatic reactions of the 
initial (slope = 0.911, R2 = 0.783) and curated GSMM (slope = 1.047, R2 = 0.972) against 
experimental data under appropriate growth conditions. D) Comparison of the predicted 
intracellular flux through mitochondrial reactions of the initial (slope = 0.112, R2 = 0.076) 
and curated GSMM (slope = 0.721, R2 = 0.867) against experimental data under the same 
conditions used in C). For more information about the employed experimental conditions 
refer to Methods. 

 
 
 The tailored iMT1026 v3.0 was employed to evaluate the energetic effects of the 

DO level on the P. pastoris GAME. To this end, the GAME parameter was refitted to the 

experimental data of this study and allowed to vary depending on the DO level (refer to 

Estimation of energetic requirements for growth for details). Our results showed that the 

model with a variable GAME as a function of the DO level explains a higher amount of the 

data variability (94.9% compared to 87.1%), and has a stronger statistical support, 

compared to the alternative (Figure 2-4A). Notably, this model displayed a decreasing 

GAME with DO level, starting from 95 mmol ATP gDCW
-1 for the L condition, and 

descending to 75 and 66 mmol ATP gDCW
-1 for the M and E conditions, respectively 

(Figure 2-4B). These results indicate a decreasing growth cost with increasing DO level.   
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Figure 2-4 Evaluation of the DO influence on the growth-associated maintenance energy 
(GAME) requirement of P. pastoris under glucose-limited conditions. A) Comparison of 
the specific growth rate predictions of the model with a fixed GAME for all DO conditions 
(slope = 0.752, R2 = 0.871) and the model with a variable GAME for each DO condition 
(slope = 0.844, R2 = 0.949) against the experimental growth data of this study. The model 
with a variable GAME for each DO condition has stronger statistical support as shown by 
the lower AICc value (-158.9 versus -146.8). B) Fitted GAME values for different DO 
conditions.    

2.3.3 Simulation of intracellular fluxes under extreme DO levels 

As the DO level had the greatest effect on the metabolic parameters of P. pastoris, the 

intracellular flux distributions under extreme DO conditions were simulated at a fixed μ 

level (μ = 0.075 h-1). The relative glycolytic flux increased by approximately 15% in the L 

condition, although no substantial carbon redistributions were predicted as observed by the 

almost identical glycolysis, PPP and biosynthetic relative fluxes (Figure 2-5A). Notably, 

both the TCA cycle and ATP transport relative fluxes increased as expected by the 

increased qCO2 and qO2 (Figure 2-5A and Table 2-1). Although there is also an important 
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difference between the pyruvate export between both conditions, there is no compensation 

by other by-products, i.e., ethanol (Figure 2-5A). Surprisingly, analysis of the feasible flux 

ranges revealed slightly tighter metabolic constraints under the L condition, despite the 

increased energetic growth cost (i.e., higher YX,ATP), which is consistent with the overall 

increased glucose uptake (Figure 2-5B). 

 

 

Figure 2-5 Flux distribution analysis of P. pastoris metabolism under extreme DO 
conditions. A) Predicted metabolic flux distributions under extreme DO conditions (4% 
and 56% oxygen saturation) at μ = 0.075 h-1. Parsimonious FBA (Lewis et al. 2010) was 
employed to obtain a representative flux distribution under each condition. B) Feasible flux 
ranges for main central carbon reactions of P. pastoris under extreme oxygenation 
conditions. Flux ranges were calculated using loopless FVA (Saa and Nielsen 2016) as 
described in the Methods section. 
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2.4 DISCUSSION 

2.4.1 Oxygenation exerts an individual negative effect and a synergistic 

positive effect with the specific growth rate on thaumatin production 

The specific thaumatin production rate was influenced negatively by the DO level, and 

positively by μ through the interaction with DO (Figure 2-2). The latter effect is consistent 

with previous reports of a positive correlation between μ and protein secretion rates at 

fixed medium DO level, although the estimated effect was not so strong as previously 

reported (Buchetics et al. 2011; Maurer et al. 2006). Recent studies have shown that 

specific protein production in P. pastoris also depends more on the nature of the produced 

protein and the oxidative conditions than on μ (Gasser et al. 2006; Liu et al. 2013; 

Uchiyama and Shioya 1999). Indeed, despite having constitutive protein expression, non-

growth-associated protein production patterns may arise due to global stress responses, 

high protein turnover and limitations in endoplasmic reticulum processing, among others 

(Liu et al. 2013). The latter points to protein expression, processing and/or secretion as 

likely – and increasingly more recognized – bottlenecks (Looser et al. 2015). 

 The calculated individual DO effect on protein production agrees well with 

previous studies using the PGAP-based expression system, reporting higher protein 

secretion under hypoxic conditions at μ = 0.1 h-1 (Adelantado et al., 2017; Baumann et al., 

2008; Garcia-Ortega, Valero, & Montesinos-Seguí, 2017). Likely causes of the latter 

considered stronger transcriptional induction of glycolysis, modification of membrane 

composition, and upregulation of Unfolded Protein Response (UPR) genes (Adelantado et 

al. 2017; Baumann et al. 2010). The first cause is particularly supported by our data and 

flux simulations as the absolute glycolytic fluxes were higher under the L condition at a 

fixed μ of 0.075 h-1 (Table 2-1 and Figure 2-5A). In fact, increased transcriptional levels of 

glycolytic genes under low DO levels have been suggested as a plausible cause for higher 

protein production under the (glycolytic) GAP promoter (Baumann et al. 2010). 

Importantly, our analysis revealed that the DO negative effect can be potentially 

counteracted at high μ, yielding a more complex picture of the optimal protein production 

frontier (see below). 
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2.4.2 Optimal growth and thaumatin production lie in opposite operational 

regions 

Identification of the response surface of the macroscopic growth (i.e., YS,X) and production 

(i.e., qP) parameters enables determination of the optimal operational regions for achieving 

efficient growth and increased productivity, respectively. While maximum qP is predicted 

to be at either low or high DO and μ, optimal YS,X is strictly confined to the high DO and 

low μ region (Figure 2-6). The former case is somewhat different from what has been 

reported (Hensing et al. 1995), specifically in the case of high μ (> 0.2 h-1) and DO (> 

40%). A closer analysis of the statistical effects of μ and DO revealed, however, that μ 

only has an important positive influence at very high DO conditions, and not vice versa 

(Figure 2-2B). Reported metabolic studies are typically performed at low-medium 

oxygenation (< 30%), which may explain why this synergistic effect has gone unnoticed 

for other proteins. We note, however, that further experimentation is required to validate 

this particular region for optimal thaumatin production. In the case of YS,X, our results 

indicated a positive correlation with DO that is consistent with the available data at 

constant μ (Adelantado et al. 2017; Baumann et al. 2008; Garcia-Ortega et al. 2017). 

Overall, our model indicates that optimal growth and protein production lie in opposite 

operational regions, recapitulating the known natural trade-off between these metabolic 

tasks (Buchetics et al. 2011).  

2.4.3 Predictive GSMM reveals higher energetic growth requirements of P. 

pastoris at lower DO levels 

The introduction of proper constrains to GSMMs based on experimental data and 

feasibility criteria is critical to achieve reliable flux predictions under the simulated 

conditions. Here, we have employed a rigorous step-by-step curation process where the 

predictive capabilities of the GSMM were evaluated and improved (Figure 2-3), which 

later enabled us to evaluate the energetic impact of DO on P. pastoris growth. Adjustment 

of the GAME for different DO improved significantly the growth predictions of the 

GSMM (Figure 2-4A), revealing an important energetic effect of this variable on P. 

pastoris metabolism. Notably, the fitted GAME values showed excellent agreement with 

available data (e.g., the predicted GAME under the M condition was 75 mmol ATP gDCW
-1, 



 

 

39 

similar to the reported values of 70.5 and 72 mmol ATP gDCW
-1 under comparable DO 

conditions (Caspeta et al. 2012; Tomàs-Gamisans et al. 2016), which prompted us to 

analyze the DO impact on the metabolism of P. pastoris. Our results showed a linear 

GAME decrease of 0.56 mmol ATP gDCW
-1 per 1% increase in DO (Figure 2-4B), which 

describes an important increase in the growth efficiency at high DO levels (up to approx. 

16% YS,X decrease between L and E, Table 2-1). Our results also indicate that the extra 

metabolic capacity is not transferred to thaumatin production (Table 2-1) or associated to a 

substantial carbon redistribution (Figure 2-5A), which suggests DO plays a more complex 

regulatory role likely related to changes in cell composition and/or transcriptional 

regulation (Baumann et al. 2010; Gasser et al. 2007). More notably, our results assert that 

the DO level is a key operational variable for optimizing protein production in P. pastoris. 

 

 

Figure 2-6 Phase plot of optimal P. pastoris growth and thaumatin production as a function 
the specific growth rate and dissolved oxygen. The optimal conditions for efficient growth 
(dashed line) and increased thaumatin production (continuous line) are shown in thick 
black lines, whereas suboptimal conditions are represented with thin lines using the same 
symbols as before. As shown in the figure, optimal growth conditions lie opposite to 
optimal production conditions.   
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3.1 INTRODUCTION 

Recombinant protein production is a multibillion-dollar business, mainly comprised by 

therapeutic agents (i.e. recombinant biologic drugs) and industrial enzymes (BCC 

Research, 2014; Markets and Markets, 2015; Walsh, 2014). These compounds are 

commonly synthesized in Escherichia coli, Saccharomyces cerevisiae and Chinese 

Hamster Ovary cells (CHO) (Ferrer-Miralles et al., 2009; Maccani et al., 2014; Overton, 

2014; Walsh, 2014); however, there is strong pressure to find cost-effective alternatives to 

overcome technical and economic disadvantages of the aforementioned cell factories, 

especially in downstream processing (Corchero et al., 2013). 

Among the unconventional cell factories used for recombinant protein production, 

the methylotrophic yeast Pichia pastoris (syn. Komagataella phaffii) has received special 

attention thanks to its convenient physiology and easy handling (Daly & Hearn, 2005). 

There are strong promoters for this cell factory which are commercially available and that 

allow for the controlled expression of heterologous proteins (Daly & Hearn, 2005). Unlike 

E. coli, P. pastoris naturally performs post-translational modifications (Cereghino & 

Cregg, 2000; Ferrer-Miralles et al., 2009), which are essential for most eukaryotic protein 

functionality (Ciofalo et al., 2006; Corchero et al., 2013; Masuda et al., 2010). In contrast 

to S. cerevisiae, P. pastoris exhibits a Crabtree-negative phenotype, showing a reduced 

synthesis of undesirable products, like ethanol, in glucose-limited conditions (Çalık et al., 

2015; Mattanovich et al., 2009). It also shows a lower basal secretion of proteins when 
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compared to other yeasts, which makes downstream processing easier (Delic et al., 2013; 

Mattanovich et al., 2009). Finally, P. pastoris can be efficiently cultivated up to high cell 

densities using fed-batch technology (Daly & Hearn, 2005), achieving high titers and 

productivities. For these desirable features, P. pastoris has been widely used for the 

expression of recombinant proteins, reaching grams per liter concentrations in several 

cases (Cereghino & Cregg, 2000; Čiplys et al., 2015; Hasslacher et al., 1997; Heyland et 

al., 2010; Wang et al., 2001). Most remarkably, and as proof of its technical feasibility and 

adequacy, two recombinant proteins produced in this cell factory have already been 

approved by the FDA for medical purposes (Ciofalo et al., 2006; Thompson, 2010).  

Despite its growing acceptance and actual successful applications, recombinant 

protein production in P. pastoris can be undermined by several cellular processes, where 

protein folding and secretion are the most recurrent bottlenecks (Delic et al., 2013, 2014; 

Gasser et al., 2013). In addition, limitations may also be caused by the codon usage of the 

recombinant protein (Wang et al., 2015), promoter selection (Prielhofer et al., 2013), 

carbon and oxygen availability in the culture (Baumann et al., 2008; Heyland et al., 2011) 

and fed-batch operational parameters (Maurer et al., 2006), seriously hampering protein 

yield, productivity and the economic feasibility of the process. 

Industrially, P. pastoris is commonly grown in fed-batch cultures in order to 

maximize the titer and volumetric productivity of a desired compound, often a recombinant 

protein (Looser et al., 2015; Riesenberg & Guthke, 1999). This is achieved by adding a 

culture medium in such a way that the microorganism grows at a desired specific growth 

rate, which is chosen to maximize the synthesis of the target product and to limit the 

formation of inhibitory compounds (Villadsen et al., 2011). During this and other 

cultivation systems, the cells adapt constantly to the changing extracellular environment 

and to the limited mass transfer conditions observed at high densities (Landi et al., 2015; 

Vargas et al., 2011). Therefore, it is critical to understand how the cell metabolism 

interacts with the nutritional and environmental stresses exerted by process conditions to 

improve bioreactor performance (Graf et al., 2009). This is a complex task, however, since 

the strain’s characteristics and process variables often require significant amounts of time 

and money for characterization and fine-tuning (Çalık et al., 2015). Therefore, it is 

desirable to have a platform to integrate different levels of information from dynamic 
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cultivations of P. pastoris that can be used to elaborate rational hypotheses to increase 

process productivity. 

Systems biology offers a quantitative and comprehensive approach to address this 

task (Kitano, 2002). In particular, Genome-Scale dynamic Flux Balance Analysis (GS-

dFBA) (Höffner et al., 2013; Mahadevan et al., 2002; Varma & Palsson, 1994) is a 

modeling framework that allows the simulation of metabolism during non-stationary 

(batch or fed-batch) cultures. GS-dFBA models couple the dynamic mass balances of the 

extracellular environment of the bioreactor with comprehensive mathematical 

representations of cellular metabolism called Genome Scale Metabolic Models (GSMs). 

These structures represent the cell’s entire metabolism as a set of underdetermined 

constrained mass-balances (Palsson, 2015; Thiele & Palsson, 2010; Vargas et al., 2011). 

GSMs have been employed to understand cellular behavior under different environmental 

conditions, to map over omics data, and to define a metabolic engineering targets 

(Asadollahi et al., 2009; Park et al, 2007). There are currently five published GSMs of P. 

pastoris (Caspeta et al., 2012; Chung et al., 2010; Irani et al., 2016; Sohn et al., 2010; 

Tomàs-Gamisans et al., 2016) which have been developed to help the strain optimization 

process with a special emphasis on recombinant protein production. Moreover, one of 

these models has been successfully employed to improve recombinant protein production 

in P. pastoris (Nocon et al., 2014), validating these frameworks as strain engineering tools 

for tis particular yeast.  

GS-dFBA models usually contain several parameters, whose values can be obtained 

by regression of experimental data. These parameters are used as inputs to obtain flux 

distributions throughout cultivations, so their values need to be reliable. To ensure this, 

pre- and post-regression diagnostics have been employed to determine if a certain 

parameter is supported by the observed data or not (Jaqaman & Danuser, 2006; Sánchez et 

al., 2014). These analyses consist in verifying the model’s capacity to explain the behavior 

of a system (goodness-of-fit) and the presence of the following parametric limitations: (i) 

low or no impact on the state variables (sensitivity), (ii) strong correlations with other 

parameters of the model (identifiability) and (iii) lack of statistical significance 

(significance). A model is considered robust if it has the capacity to explain different 

conditions, while containing only sensitive, identifiable and significant parameters. 
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Here, we present a robust dynamic genome-scale metabolic model of P. pastoris in 

glucose-limited, aerobic batch and fed-batch cultivations. To assemble the dynamic 

modeling framework, we started by selecting one of the available genome-scale metabolic 

models (Chung et al., 2010) and manually curated it to yield realistic flux distributions. 

Then, we included it in a set of mass balances representing the main compounds present in 

culture supernatant. Once assembled, the model was calibrated using experimental data 

from eight batch and three fed-batch cultivations. Next, we employed pre/post regression 

diagnostics to determine sensitivity, significance and identifiability problems in the model. 

In order to avoid the aforementioned statistical limitations, problematic parameters were 

fixed (i.e. removed from the adjustable parameter set) based on the pre/post regression 

diagnostics, yielding reduced and potentially robust model structures. Potentially robust 

model structures consisted in the original model formulation with less adjustable 

parameters. After evaluating these reduced models for each type of cultivation, we chose 

the one that presented fewer parametric limitations after being re-calibrated with the 

available data. These reduced models yielded no (or just a few) significance, sensitivity or 

identifiability problems when calibrating new data and they could predict bioreactor 

dynamics in conditions like the ones used for their determination. Finally, we carried out 

simulations to assess the potential of the model to study P. pastoris metabolism under 

industrially relevant conditions, and to select molecular and process engineering strategies 

to improve recombinant protein production. 

3.2 METHODS 

3.2.1 Model construction 

The structure of the model was based on an existing dFBA framework developed by 

Sanchez et al for S. cerevisiae (Sánchez et al., 2014), which divides the fermentation time 

into short integration periods where a metabolic steady state could be assumed 

(Mahadevan et al., 2002; Stephanopoulos et al., 1998). The model considers the evolution 

of seven state variables throughout batch and fed-batch glucose-limited aerobic 

cultivations: culture volume as well as the concentrations of glucose, biomass, ethanol, 

arabitol, citrate and pyruvate. It consists of three linked blocks that are solved iteratively; 

(i) the kinetic block, (ii) the metabolic block and (iii) the dynamic block  (Figure 3-1). 
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First, the initial conditions of the system enter into the kinetic block to determine the 

specific consumption and production rates of the species involved in the analysis according 

to kinetic expressions. These rates are included as constraints to the corresponding 

exchange reactions of the metabolic model. The constrained model is then passed to the 

metabolic block of the framework, where the flux distribution inside the cell is determined. 

This procedure includes the calculation of the specific growth rate, which is passed along 

with the other exchange rates to the dynamic block as consumption and production terms 

in the mass balances. Here, the concentration of the state variables is updated and then 

incorporated into the kinetic block for the calculation of instantaneous exchange rates. This 

cycle iterates throughout the cultivation yielding the culture profile and instantaneous flux 

distributions that can be saved for further analysis. The latest version of model can be 

found online at:  

https://github.com/fjsaitua/RY-dFBA/tree/master/main%20P_pastoris%20dFBA. 

 

 

Figure 3-1 - Iterative structure of the model. V refers to culture volume [L], FIN is the 
feeding policy used in fed-batch cultures, X, S and P are biomass, limiting substrate and 
Product concentration in [g/L] respectively. 
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3.2.1.1 Kinetic block 

The kinetic block sets the uptake and production rates for all the compounds in the model. 

First, the glucose uptake rate (��) is determined using Michaelis-Menten kinetics (Postma, 

et al., 1989). 

�� =
��,��� ∙�

�� + �
 

(3-1) 

Here, G is the glucose concentration in the medium [g/L], ��,��� is the maximum glucose 

uptake rate [mmol/gDCW·h-1] and �� is the uptake half activity constant of this substrate 

[g/L]. Once determined, − ��  [mmol/gDCW·h-1] is included as the lower bound of the 

corresponding exchange reaction in the model since substrate consumption is represented 

with a negative flux through this reaction.  

Then, the lower bounds of the exchange reactions (��) associated with the 

remaining k compounds (���) are fixed. We considered ethanol, pyruvate, arabitol and 

citrate dynamics, besides glucose consumption and biomass formation. 

��� =  ���
         � = 1 … 4 (3-2) 

These parameters are redefined during the fed-batch phase; therefore, they have two values 

during this type of cultivation. 

Finally, the kinetic block fixes the non-growth associated maintenance ATP (mATP, a 

flux through the cytosolic ATP hydrolysis reaction in the model), which accounts for the 

energy drain caused by cellular processes not related with the generation of new cell 

material, such as osmoregulation, shifts in metabolic pathways, cell motility, etc. 

3.2.1.2 Metabolic block 

The metabolic block receives a constrained GSM from the kinetic block and solves an 

optimization problem to determine specific growth rate and the flux distribution in the cell. 

The GSM consists of a set of m metabolites and n reactions grouped in a Stoichiometric 

Matrix, S (m x n), that represents the cell’s entire metabolism. If accumulation of 

metabolites is neglected, a mass balance can be stated according to equation (3-3): 
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� ∙� = 0 

�.�. 

�� < � < �� 

(3-3) 

Where � is a vector of metabolic fluxes in [mmol/gDCW·h], and �� and �� are the lower and 

upper bounds for each component of the flux vector. 

The metabolic block solves a bi-objective Quadratic Programming (QP) problem between 

maximization of growth rate and minimization of the total absolute sum of fluxes 

(Holzhütter, 2004), subjected to the constraints imposed by the stoichiometric matrix 

mentioned above (Feng et al., 2012): 

 

 

 

 

��� � ∙� ��
�

�

���

− (1 − �) ∙� 

�.�. 

 

       � ∙� = 0 

       ��� ≤ �� ≤ ���        �= 1 … � 

(3-4) 

 

 

In this formulation, α, the suboptimal growth coefficient, is an adjustable parameter from 

the model used to modulate the importance of the two – biologically relevant – competing 

objectives (Sánchez et al., 2014; Schuetz et al., 2007; Schuetz et al., 2012). In our analysis, 

“optimal growth” occurs when the objective function of the cell is biomass maximization 

(α = 0). However, when α > 0, the calculated growth rate is lower than the theoretical 

maximum derived from biomass maximization, at the same glucose uptake rate. In this 

sense α is considered as a “suboptimal growth coefficient”; it is worthy to note that we do 

not refer to the optimality of the flux distribution vector, which is actually optimal, given 

the convexity of the problem in the metabolic block (Equation 3-4 -  See Supplementary 

material S 3-1).  

The minimization of total fluxes adds a quadratic term to the objective function, 

which has the practical benefit of eliminating Type III pathways  et al., 2002) from the flux 

distribution, which arise from the multiplicity of solutions of a LP problem. These 
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pathways appear as high fluxes (often taking the value of the upper bound of a particular 

flux) through closed cycles of reactions. This misleads pathway analysis because despite 

the mass balance around each participating metabolite is satisfied, the fluxes are 

thermodynamically infeasible (Price et al., 2002).  The use of Quadratic Programing makes 

pathway analysis easier since these large cycling fluxes undermine the minimization of the 

total fluxes term in the objective function (Equation 3-4), so they will be forced to a 

minimum by the optimization software and the flux distribution will be “cleaned” from 

these unrealistic fluxes. This is especially significant in large networks because these 

cycles are more recurrent. 

In this study, we employed a curated version of the iPP668 model developed by 

Chung and collaborators (Chung et al., 2010), called iFS670 (Supplementary material S 3-

2 and S3-7). In this updated version, we incorporated the arabitol biosynthesis pathway and 

the stoichiometric reactions for the production of three recombinant proteins (FAB 

fragment, Human Serum Albumin and Thaumatin). The arabitol synthesis pathway was 

included because it was a major compound in the culture supernatant of our experiments. 

Moreover, the reversibility of cytosolic reactions involving redox cofactors and 

mitochondrial symporters was checked according to Pereira et al. (Pereira et al., 2016) in 

order to obtain a more realistic flux distribution through the central metabolism. This was 

done because the initial flux distributions obtained with the un-modified iFS670 model 

presented the exact same problems as the iMM904 model of Saccharomyces cerevisiae on 

Pereira’s work, suggesting that the central metabolism structure of the iPP668 model was 

based upon the aforementioned S. cerevisiae model. These problems were caused by: (i) 

the lack of a flux through the oxidative branch of the Pentose Phosphate Pathway; (ii) the 

presence of a flux of a cytosolic NAPDH dependent isocitrate dehydrogenase (which was 

the responsible of producing cytosolic NADPH); (iii) an unrealistic flux through 

mitochondrial symporters; and (iv) almost no mitochondrial formation of α-ketoglutarate. 

These model limitations are inconsistent with previous P. pastoris fluxomic studies in 

glucose-limited aerobic conditions (Baumann et al., 2010; Dragosits et al., 2009; Heyland 

et al., 2011). 

FBA problems were solved using the Constraint-Based Reconstruction and Analysis 

(COBRA) toolbox (Becker et al., 2007; Hyduke et al., 2011), which employs the 
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programming library libSBML (Bornstein et al., 2008) and the SBML toolbox (Keating et 

al., 2006). Finally, we used Gurobi 6.0.2 as an optimization solver. 

3.2.1.3 Dynamic block 

The dynamic block consists of a set of ordinary differential equations (ODEs) that account 

for the volume change of the culture and the mass balances of biomass and the species 

considered by the model:  

��

��
= �(�) − �� (3-5) 

�(� ·�)

��
= � ∙(� ·�) − �� ∙� (3-6) 

�(� ·�)

��
= �(�) ∙�� − �� ∙�� � ∙(� ·�)  − �� ∙�  (3-7) 

�(� ·��)

��
= ���

·�� ��
∙(� ·�) − �� ∙�� (3-8) 

Where � is volume [L], � is time [h], �(�) is the feed function for the fed-batch phase in 

[L/h].  �� is a constant sampling rate [L/h] determined from each cultivation to emulate 

the remaining volume of the culture considering sampling, since this value is used for the 

calculation of the feeding profile during the feed phase. During the batch phase of the fed-

batch cultures, we collected between 15 and 20% of the reactor volume in samples. For 

batch cultivations, �(�) was eliminated from the mass balances. � is the biomass 

concentration [g/L], µ is the specific growth rate [h-1] (obtained from equation 3-4), G is 

the extracellular concentration glucose [g/L], GF is the feed’s glucose concentration [g/L], 

PK is the k-th extracellular product concentration in [g/L], ���
 is the corresponding 

production rate [mmol/gDCW·h] and MW accounts for the corresponding molecular weight 

[g/mmol]. 

The set of equations was solved in Matlab 2013a (Mathworks, USA) using the solvers 

ode113 and ode15s for batch and fed-batch cultures respectively. 
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3.2.1.4 Model parameters 

The lower, upper and initial values of the parameters of the model used in all the 

calibrations are presented Table 3 - 1. The lower and upper bounds of ��,���, Ks, and mATP 

were chosen according to literature (Chung et al., 2010; van Urk et al., 1989; Villadsen et 

al., 2011) while the rest of the bounds were selected to ensure that the algorithm had 

enough search space. To do this, the upper bounds of the rest of the parameters were set at 

higher values than the observed experimental rates, also taking into account reported 

values (Baumann et al., 2010; Dragosits et al., 2009; Heyland et al., 2011). In addition, 

initial estimated parameter values were chosen to attain a feasible simulation. 

Table 3 - 1- Parameters of the model.  

Symbol Name Units LB 
Initial 

value 
UB 

��,���  Maximum glucose uptake rate ���� ����ℎ⁄  0 2.5 10 

��  Half saturation constant for glucose uptake � �⁄  0 10-4 10-3 

�����,� Ethanol minimum secretion rate (batch) ���� ����ℎ⁄  0 0.5 3 

����,� Pyruvate minimum secretion rate (batch) ���� ����ℎ⁄  0 0.1 2 

�����,� Arabitol minimum secretion rate (batch) ���� ����ℎ⁄  0 0.2 2 

����,� Citrate minimum consumption rate (batch) ���� ����ℎ⁄  0 0 2 

�����,�� 
Ethanol minimum consumption rate (fed-

batch) 
���� ����ℎ⁄  0 0 2 

����,�� 
Pyruvate minimum consumption rate (fed-

batch) 
���� ����ℎ⁄  0 0 2 

�����,�� 
Arabitol minimum consumption rate (fed-

batch) 
���� ����ℎ⁄  0 0 2 

����,�� 
Citrate minimum consumption rate (fed-

batch) 
���� ����ℎ⁄  0 0 2 

�� Sub-optimal growth coefficient (batch) [− ] 0 0 10-3 

��� Sub-optimal growth coefficient (fed-batch) [− ] 0 0 10-3 

���� Non-growth associated ATP ���� ����ℎ⁄  0 2 10 

����  
Time when secondary metabolite 

consumption starts in fed-batch cultures 
ℎ 20 25 32 
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3.2.2 Model Calibration with experimental data 

3.2.2.1 Strains  

Four P. pastoris strains were employed in this study: a parental GS115 strain (Invitrogen) 

and three recombinant strains constructed according to the instructions of the 

manufacturers harboring respectively one, five and eight copies of the gene encoding for 

the sweet protein thaumatin. Even though the strains were transformed, thaumatin was not 

detected at concentrations higher than 100 µg/L in the cultivations. Therefore, due to its 

small contribution to the overall mass balance, thaumatin production was left out of the 

analysis and none of the parameters of the model were associated with it. Nevertheless, a 

mass balance for a recombinant protein can be easily added to the framework. 

3.2.2.2 Experiments 

The batch model was calibrated with aerobic glucose limited cultivations of the four strains 

available; each cultivation was performed twice. On the other hand, the fed-batch model 

was calibrated with data from three cultures of the strain with one copy the recombinant 

gene, under the same environmental conditions of the batch cultivations. 

3.2.2.3 Cultivation Conditions 

Each batch or fed-batch culture started from a 2 [mL] cryotube of the corresponding strain 

kept at -80 °C. A pre-culture was grown overnight at 30 °C in shake flasks with 50 [mL] of 

the inoculum medium. After reaching 1 OD600, the whole broth was added to 450 [mL] of 

fresh medium to reach an initial volume of 500 [mL] in 1L bioreactors. Culture conditions 

were kept at 30 °C and pH = 6.0. Dissolved Oxygen was maintained above 40% saturation 

during all the cultivation period. Aerobiosis was achieved by a triple split-range control 

action, including agitation (200–800 [RPM]), air flow (0.25–1.0 [L/min]) and pure oxygen 

flow (0–1.0 [L/min]) (Cárcamo et al., 2014). pH was controlled using phosphoric acid 20% 

[v/v] and sodium hydroxide 20% [v/v]. The temperature was controlled with a mixture of 

hot and cold water, using the glass jacket of the reactors. Lastly, foam was controlled 

manually using silicone antifoam 10% [v/v]. Glucose starvation was detected when a 

sudden decrease of the CO2 composition in the off-gas occurred, and it was confirmed each 
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time using Benedict's reagent. For fed-batch experiments, the feed F(t) was designed to 

track a variable growth rate for a predefined time. This feed can be calculated from the 

reactor's glucose and biomass mass balances, as detailed in the literature (Villadsen & 

Patil, 2007): 

�(�) =
����(�)

�� ∙���
∙���� ∙exp �� ����(�)��

�

��

� 
(3-9) 

with GF the glucose feed concentration [g/L], YSX the experimental glucose-biomass yield 

[gDCW/g] calculated using the genome-scale model, ti the time at which the feed started for 

a given cultivation [h], Vi and Xi the volume [L] and biomass [g/L] values at ti, 

respectively, and μSET(t) is the time-dependent user-defined growth rate at which the fed-

batch culture is grown. The latter was defined as follows: 

����(�) = (���� − ����) ∙�� �� + ���� (3-10) 

Where μMAX = 0.1 [1/h], μMIN = 0.07 [1/h] and C = 0.07 [1/h]. Therefore, μSET(t) decays 

exponentially from 0.1 to 0.07 [1/h], which has been found to increase (in contrast to 

constant growth rates in the feed phase) the final biomass concentration in fed-batch 

cultivations of E. coli and S. cerevisiae performed in our laboratory (Cárcamo, 2013). 

3.2.2.4 Culture media 

The culture media employed in these studies were based on Tolner et al. (Tolner et al. , 

2006). Inoculum: Glucose 10 [g/L], (NH4)2SO4 1.8 [g/L], MgSO4·7H2O 2.3 [g/L], K2SO4 

2.9 [g/L], trace elements solution 0.8 [ml/L], histidine 0.08 [g/L], sodium 

hexametaphosphate 5 [g/L] and biotin 0.32 [mg/L]. Batch cultures: Glucose 50 [g/L], 

(NH4)2SO4 9 [g/L], MgSO4·7H2O 11.7 [g/L], K2SO4 14.7 [g/L], trace elements solution 4 

[ml/L], histidine 0.4 [g/L], sodium hexametaphosphate 25.1 [g/L] and biotin 1.6 [mg/L] 

and sodium hydroxide NaOH 1 [g/L]. Feeding medium: Glucose 500 [g/L], MgSO4·7H2O 

9 [g/L], trace solution 12.5 [g/L], histidine 4 [g/L] and biotin 0.1 [g/L]. Sodium hydroxide 

was added to all the media until a pH of 6 was reached. 
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3.2.2.5 Analytical procedures 

3.2.2.5.1 Sampling and biomass determination 

Samples of ~6 mL were periodically collected (every 2-3 hours) from all fermentations. 

Biomass was measured by optical density (OD) at 600 nm using an UV-160 UV-visible 

spectrophotometer (Shimadzu, Japan). Biomass concentration was determined using the 

linear relationship: 1 OD600 = 0.72 [g/L] using the methodology from (Marx, Mecklenbr, 

Gasser, Sauer, & Mattanovich, 2009). Then, samples were centrifuged at 10.000 rpm for 3 

min and the supernatant stored at -80°C for further analysis. 

3.2.2.5.2 Extracellular metabolite concentration analyses 

Glucose, ethanol, arabitol, citrate and pyruvate extracellular concentrations were quantified 

in duplicate by High-Performance Liquid Chromatography (HPLC), as detailed in Sánchez 

et al. (Sánchez et al., 2014), with the exception of the working temperature of the Anion-

Exchange Column (Bio-Rad, USA), which was lowered from 55°C to 35°C for better 

resolution.  

3.2.2.6 Objective Function  

For model calibration, we minimized the sum of square errors between the experimental 

data and the simulation output by searching the parameter space, with the enhanced scatter 

search algorithm (eSS) (Egea & Balsa-Canto, 2009), which has been successfully used to 

solve complex bioprocess optimization problems (Balsa-Canto et al., 2007; Sacher et al., 

2011; Sriram et al., 2012). The objective function J used in the minimization was 

normalized by the maximum corresponding measured variable to give all data a similar 

weight: 

� = min
�

� � �
���

��� − ���
���

max
�

����
��� �

�

�
�

���

�

���

  

(3-11) 

With θ representing the parameter space, m the number of measured variables, n the 

number of measurements per variable, Xij
mod the dFBA output of variable i and 
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measurement j, Xij
exp the corresponding experimental value and max

�
����

��� � the maximum 

value measured for variable i. 

3.2.3 Pre/Post regression analysis 

Once the initial calibration of the model was completed, statistical tests were performed in 

order to determine if the initial model formulation had sensitivity, identifiability or 

significance problems (Jaqaman & Danuser, 2006). 

Sensitivity corresponds to the impact that model parameters have on the state 

variables or process output. The relative sensitivity of parameter k on the state variable i 

(gik) was calculated according to the following formula 

���(�, ��) =
��

��(�)
∙

���(�)

���
 

(3-12) 

Where Xi(t) is the ith state variable in time t and θk is the kth parameter. With all gik values, 

we formed a sensitivity matrix g(t) for each experimental time, in which the kth column 

denotes the sensitivity of the kth parameter on the state variables. These matrices were 

averaged to obtain a single normalized score of the sensitivity of parameter k on the state 

variable i during the cultivation. Furthermore, if the score of each variable was under 0.01 

for a given parameter, this parameter was considered insensitive and a candidate to be 

fixed (or left out of the adjustable parameter set) in the reparametrization stage. 

Identifiability refers to the possibility of unambiguously determining the parameter 

values by fitting a model to experimental data. If parameter identifiability is not properly 

assessed, misleading parameter values can be obtained after model calibration. To 

calculate identifiability, we determined the correlation between the columns of the 

sensitivity matrix using the corrcoef function from Matlab, which yielded a correlation 

coefficient matrix (C). A pair of parameters j and k was considered to be correlated 

(therefore not-identifiable) if the absolute value of the number at the (j, k) position in the 

correlation coefficient matrix was higher than 0.95 (������≥ 0.95�). 

To determine parameter significance, we started by calculating the Fisher 

Information Matrix (FIM) (Petersen et al., 2001) 



 

 

54 

���= � ��
�����

�

���

 
(3-13) 

Here, gj is the sensitivity matrix for measurement j, n is the number of samples, and Qj is a 

weighting matrix given by the inverse of the measurement error covariance matrix 

assuming white and uncorrelated noise. Hence, the variances for each estimated parameter 

were calculated as in (Landaw & DiStefano 3rd, 1984; Petersen et al., 2001) 

��
� = �����

� � (14) 

which was used to determine the confidence interval (CI) with 5% significance for the kth 

parameter as follows: 

��� = ���� ± 1.96��� (15) 

Here, ��� is the estimated value of the corresponding parameter. Finally, coefficients of 

confidence (CC) were calculated as follows: 

��� =
Δ(���)

���

=
2 ∙1.96�

���

 
(3-16) 

Δ(CIk) is the CI's length. A parameter was not significant if the confidence interval 

contained zero, i.e. if the absolute value of the CC was equal or larger than 2. 

3.2.4 Reparametrization 

A reparametrization procedure called HIPPO (Sánchez et al., 2014) (Heuristic Iterative 

Procedure for Parameter Optimization, http://www.systemsbiology.cl/tools/) was applied 

to overcome parametric statistical limitations in the model.  

First, HIPPO performed sensitivity and identifiability tests on the initial calibration 

results for each dataset. Then, model parameters were fixed one by one until the non-fixed 

subset presented none of the statistical limitations. Finally, significance was determined for 

the remaining parameter set, also called the reduced model structure. If all the remaining 

parameters were significantly different from zero, the resulting structure is considered to 

be an a priori robust candidate for cross calibration with the available data. 
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3.2.5 Cross Calibration of robust structure candidates derived from the 

reparametrization stage using the available datasets. 

After reparametrization of the model derived from each dataset, a potentially robust 

structure was generated. This structure was recalibrated with the rest of the datasets to 

assess its robustness. It is worthy to note that the parameters left out of the calibration were 

either fixed according to values reported in literature, assumed to be zero or fixed at the 

mean value achieved in the calibrations. This was done to avoid assuming a minimum 

production of compounds in batch cultivations and to ensure model convergence for 

parameters that had no reported values in literature (Table 3 - 2). For example, fixing feed 

phase consumption rates at zero does not allow consumption of batch by-products and 

yielded poor fed-batch fittings (data not shown). 

Table 3 - 2 Values at which problematic parameters were fixed in the cross-calibration 
stage.  

Parameter Fixation Value Units Reference 

��,���  6 ���� ����ℎ⁄  (van Urk et al., 1989) 

��  0.0027 � �⁄  (van Urk et al., 1989) 

�����,� 0 ���� ����ℎ⁄  - 

����,� 0 ���� ����ℎ⁄  - 

�����,� 0 ���� ����ℎ⁄  - 

����,� 0 ���� ����ℎ⁄  - 

�����,�� 1.21 ���� ����ℎ⁄  * 

����,�� 0.14 ���� ����ℎ⁄  * 

�����,�� 0.15 ���� ����ℎ⁄  * 

����,�� 0.008 ���� ����ℎ⁄  * 

�� 0 [− ] (Morales et al., 2014) 

��� 0 [− ] (Morales et al., 2014) 

���� 2.18 ���� ����ℎ⁄  (Chung et al., 2010) 

���� 22 ℎ * 

Parameters marked with ‘-‘ in the reference column indicate that no a priori value was assumed for that particular 

parameter, which is the case for the batch minimum secretion rates. ‘*’ means that the value of a particular parameter was 

fixed at the mean value achieved in the calibrations, because no information about them could be found in the literature. 
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The reduced modeling structures were evaluated according to four parameters: 

I. Relative difference between calibration objective functions (JDIFF):  

����� =
1

�
∙�

��,������� − ��,��������

��,��������

�

���

 
(3-17) 

Where n corresponds to the number of cultures of each type, ��,�������� is the 

calibration objective function (Equation 3-11) achieved for dataset i using the 

original model structure and ��,������� is the calibration objective function achieved 

in dataset i using a reduced, a priori robust, modeling structure. 

II. Percentage of Significance issues; refers to the number of times a parameter is 

found to be non-significant out of the total of significance determinations 

performed for a structure. For instance, if a model structure had 6 parameters and 8 

datasets were used to calibrate it, a total of 48 significance determinations were 

performed for that particular model.  

III. Percentage of Sensitivity issues; refers to the number of times one of the 

estimated parameters shows low or no impact over state variables (average relative 

sensitivity ≤ 0.01) out of the total sensitivity determinations performed. 

IV. Percentage of Identifiability issues; corresponds to the number of times a pair of 

parameters presents a strong correlation (≥ 0.95), out of the total parameter pairs of 

a modeling structure. If p is the number of parameters of the model and n is the 

number of datasets used for its calibration, the total of parameter pairs for which 

identifiability was determined is: 

����� �����=
� ∙(� − 1)

2
∙� 

(3-18) 

Finally, the modeling structure that presented the lowest JDIFF and fewest statistical 

limitations was used as a robust structure candidate for the corresponding type of culture. 
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3.2.6 Robustness check of the chosen modeling structure 

Once a candidate for a robust structure was determined for the batch and fed-batch 

configurations, we tested its robustness (absence of parametric problems) by calibrating it 

with new experimental data. For the batch model, we employed fermentation data from P. 

pastoris GS115 strain grown with 40 [g/L] of glucose as carbon source at T° = 25°C and 

pH = 6. The robustness of the fed-batch model was assessed with a glucose-limited 

cultivation consisting of a 60 [g/L] glucose batch phase and an exponential feed using 500 

[g/L] of glucose. The medium was added in the feeding phase in order to achieve an 

exponentially decreasing growth rate from 0.1 to 0.07 [1/h]. 

3.2.7 Model validation 

Finally, the predicting capability of the model was evaluated for conditions similar to the 

ones used in the initial calibrations (training set). 

The robust batch model was first calibrated with the two cultivations of the strain 

harboring one copy of the thaumatin gene, obtaining a characteristic parameter set for that 

strain. Then, these parameters were used to predict the course of a different batch 

cultivation performed in the same conditions (30°C and pH 6). 

This procedure was also applied for the fed-batch model. Here, the bioreactor dynamics 

was simulated using the parameters obtained in the best calibration within the training 

dataset (the one in which the calibration objective function was minimal compared to the 

rest of the calibrations) using the robust modeling structure obtained previously. This 

prediction was compared with experimental data of different fed-batch cultivation. 

3.2.8 Goodness of fit 

For both the robustness check and validation datasets, the goodness of fit was determined 

by two scores: the mean normalized error (MNE) and the Anderson-Darling test (Stephens, 

1974). The MNE quantifies the difference between model simulations and experimental 

data; the closer the difference is to zero, the better the fit. In addition, the sign of MNE 

shows whether the model over (+) or underestimates (-) the observed data (equation 3-19). 
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(3-19) 

with n the number of time points measured for variable i. 

The Anderson-Darling test was used to verify if the residuals between simulations and 

experimental data ����
��� − ���

���� were normally distributed. If they were, the differences 

between them can be attributed to measurement noise and not to model inadequacy. The 

failure of this test by one of the model’s state variables (p-value < 0.05) indicates that a 

different mathematical relation than the one used in the model may underlie its dynamics. 

Therefore, the results of this test may be used to confirm or update the kinetic expressions 

associated with the consumption and production of compounds. 

3.2.9 Simulation 

3.2.9.1 Analysis of the metabolic flux distribution during key stages of a dynamic 

cultivation 

After the calibration of the fed-batch model with the dataset used for checking its 

robustness, we evaluated the central metabolic flux distributions at three different stages of 

the cultivation: exponential growth during the batch phase (~20 hours), ethanol and 

arabitol consumption during glucose starvation phase (~27.5 hours) and controlled growth 

during the feeding phase (~45 hours). 

3.2.9.2 Discovery of beneficial knock-out targets for the overproduction of 

recombinant Human Serum Albumin (HSA) 

To show the potential applications of the model, gene targets for the overproduction of the 

recombinant Human Serum Albumin (HSA) were determined by simulating the growth 

and protein secretion of single knock-out strains of P. pastoris in batch cultivations. To do 

this, we included in the Metabolic Block a second quadratic programing problem 

consisting in the Minimization of Metabolic Adjustment (MOMA) algorithm (Segrè et 

al.,2002), which states that, after a genetic perturbation, the cell will attempt to redistribute 

its metabolic fluxes as similar as possible to the parental strain. Mathematically, equation 
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3-4 of the metabolic block is employed in order to obtain the parental flux distribution �� 

at a given instant. 
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       ���,� ≤ ��,� ≤ ���,�        �= 1 … � 

(3-20 ) 

 

 

Then, the k reactions associated with gene j are blocked: 

���,� = ���,� = 0        � = 1 … �   (3-21 ) 

Finally, the MOMA algorithm was applied using the flux distribution of the parental strain 

�� to calculate the knockout distribution ���  as the Euclidean distance between them, 

considering that the actual model has the corresponding deletion. 

MOMA: 

��� ��� − ��� ,��
�
 

�.�. 

� ∙��� ,� = 0 

��� ≤ ��,�� ,� ≤ ���        �= 1 … � 

(3-22) 

The hypothetical parental strain was characterized using the parameters obtained above 

plus the growth rate dependent specific HSA productivity (qP) of P. pastoris strain 

SMD1168H grown on glucose, as reported by Rebnegger et al. (Rebnegger et al., 2014), 

(Figure 3-2). In each iteration of the model, the minimum HSA production was fixed 

according to this relationship, which was fitted with a third degree polynomial. Other 

kinetic expressions could be employed to represent the qP vs μ relationship, depending on 

the strain and protein being produced (Maurer et al., 2006). 
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Figure 3-2 - Relation between Human Serum Albumin specific production rate (qP) and 
growth rate (μ) in glucose limited chemostats, taken from Rebnegger et al. (Rebnegger et 
al., 2014). This relation was included to simulate the specific protein productivity for a 
given growth rate, allowing the assessment of the impact of different feeding profiles on 
process productivity. 

We simulated one batch cultivation for each gene in the model and compared their final 

protein and biomass concentrations with those of the parental strain. The candidates that 

reached a higher HSA concentration than the parental strain were manually analyzed and 

some of them were proposed as candidates to improve HSA production. It is important to 

mention that we used a set of parameters derived in this study to characterize the growth 

kinetics of the HSA producing strain used in the simulations. Therefore, the predictions 

derived from this work should be assessed carefully and considered only as an example of 

the applicability of our modeling framework. 

3.2.9.3 Evaluation of different feeding policies in silico to improve recombinant 

protein production considering specific information about the strain and 

process setup 

Simulations were run using the parameters obtained in the calibration used for intracellular 

flux analysis and adding the qP vs μ relation for HSA biosynthesis in the mass balances. 

The process limitations (based on our setup) were a maximum reactor volume of 1 L, and a 

maximum oxygen transfer rate of 10.9 [g/L·h]. If any of these limits were violated by 
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either the feeding rate of medium or the oxygen uptake rate (extracted from the model), the 

integration stopped. 

We assessed 13 exponential feeding policies. Five of them maintained a constant 

growth rate during the feeding phase and the rest considered a decreasing growth rate 

throughout the culture (Supplementary material S 3-3). After the simulation, we ranked the 

strategies according to the volumetric productivity of recombinant HSA and chose the best 

one as a cultivation strategy that could potentially improve bioreactor performance. 

3.3 RESULTS AND DISCUSSION 

The batch and fed-batch models were developed in four steps: (i) determination of initial 

parametric problems, (ii) reparametrization and cross calibration, (iii) robustness 

evaluation and (iv) validation of predictive potential under the studied conditions. 

Once the models were developed, three applications were proposed to improve 

recombinant |protein production using Human Serum Albumin as a case study. 

3.3.1 Initial Parametric Problems 

3.3.1.1 Batch model 

The initial structure of the batch model comprised eight parameters (Table 3 - 3). The 

model was able to successfully accommodate different cellular dynamics from eight 

glucose-limited aerobic cultivations. In these calibrations, several statistical parametric 

limitations were found (Supplementary material S 3-4). mATP was the parameter that 

presented the strongest correlation with other parameters, such as maximum specific 

glucose uptake rate (��,���), ethanol and arabitol specific secretion rates 

(�����,� ��� �����,�), and with the sub-optimal growth coefficient (��). This might result 

from the fact that a change in mATP directly impacts the ATP-producing pathways in the 

metabolic model, affecting the biomass and product yields, which are also influenced by 

other parameters of the model. In addition, the glucose uptake saturation constant KG was 

the only parameter with frequent sensitivity and significance problems, making it a 

potential candidate to be left out of the adjustable parameter set. 
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3.3.1.2 Fed batch model 

Data from three aerobic, glucose-limited fed-batch cultivations was successfully calibrated 

with the initial model of fourteen parameters. As in the batch model, several statistical 

parametric limitations arose (Supplementary material S 3-4). The most frequent correlation 

(in two out of the three calibrations) was between ��,��� and the �����,� during the batch 

phase. Also, �����,� and �����,�� showed 5 and 6 strong correlations with other 

parameters of the model, respectively.  

Finally, the citrate minimum secretion rate during the fed-batch phase and the 

suboptimal growth during the feeding phase (���) were the parameters that presented more 

sensitivity and significance limitations.  

3.3.2 Reparametrization and Cross Calibration 

After model calibration and the subsequent determination of the parametric problems for 

each dataset, the non-relevant parameters were fixed (left out of the adjustable set) using 

HIPPO (Sánchez et al., 2014) to achieve robust modeling structures. 

3.3.2.1 Batch model 

The reduced batch models derived from the initial calibrations (Table 3 - 3) were 

recalibrated with the available data (eight batch cultivations) to determine if they could 

reproduce P. pastoris behavior appropriately. The persistence of parametric problems in 

the reduced models was compared to the original model. 
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Table 3 - 3 - Potential Robust Structures Tested in the Cross-Calibration Stage for the 
batch model. 

Structure Parameters included 

Original ��,���, �� �����,�, ����,�, �����,�, ����,�, ���� ��� �� 

1 ��,���, �����,�, ����,�, �����,�, ����,� ��� �� 

2 ��,���, ����,� ��� �� 

3 ��, �����,�, ����,�, �����,� ��� ����,� 

4 �����,� ��� ����,� 

5 ��,���, ����,�, �����,� 

6 ��,���, �����,�, ����,�, �����,�, ����,� 

7 ��,���, ��, �����,�, ����,�, ����,� 

8 ��, ����,�, �����,�, �� ��� ���� 

Each one of these structures was derived using HIPPO after model calibration using each dataset 

 

Structures 1 and 6 were the only parameter sets whose fitting capabilities were similar to 

the original eight parameters model (Table 3 - 4), showing the importance of including the 

specific uptake and production rates of the compounds considered in the model. On the 

contrary, ���� and �� were left out of these structures because of the frequent 

identifiability and sensitivity-associated problems. 

Structure 6 lacks the sub-optimal growth parameter ��, which forces the solution of 

a linear programming (LP) problem of specific growth rate maximization in the metabolic 

block. This is because this parameter was assumed to be zero if it was left out of the 

adjustable parameter set (Table 3 - 2), which eliminates the total flux minimization term 

from the objective function. This structure showed a significant increase in significance 

and sensitivity compared to the original model; however, identifiability was a major 

problem (Table 3 - 4). Probably, the multiple solutions associated with an underdetermined 

LP problem may hamper the possibility to unambiguously infer parameter values from the 

data.  
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Therefore, due to the recurrent identifiability issues found in Structure 6, it was 

preferable to apply Structure 1 to fit a different dataset to check its robustness in aerobic, 

glucose-limited batch cultures of P. pastoris. 

Table 3 - 4 – Batch Cross Calibration summary 

Structure N° parameters JDIFF Significance 

Issues 

Sensitivity 

Issues 

Identifiability 

Issues 

Original 8 0 23.6 16.7 17.4 

1 6 -0.10 22.9 18.8 15.0 

2 3 2.77 29.1 8 25 

3 5 0.18 90.0 23 68 

4 2 0.56 62.5 13 0 

5 3 4.10 29.2 0 54 

6 5 0.18 0 2.5 61.3 

7 5 2.93 18.8 20.8 60.0 

8 5 2.82 22.5 25.0 33.8 

Structures that reduced de frequency of parametric problems with respect to the original model are highlighted. 

 

3.3.2.2 Fed-batch model 

In the fed-batch model, three potentially robust model structures were found after its 

calibration with three datasets (Table 3 - 5). 

Table 3 - 5 – Potential robust structures for a fed-batch model 

Structure Parameters included 

Original 
��,���,  ��, �����,�, ����,�, �����,�, ����,�, 

�����,��, ����,��, �����,��, ����,��, ��, ���, ����, ����� 

1 ��,���,  ��, ����,�, ����,�, �����,��, ����,��, �����,��, ����,��, ��, ����, ����� 

2  ��, �����,�, ����,�, �����,�, ����,�, �����,��, ����,��, ��, ���� 

3 ��,���,  ��, ����,�, �����,�, ����,�, ����,�� ��, ���, ����, ����� 
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All the candidate structures considered the following parameters:  ��, ����,�, ����,�, ��, 

����,�� and ����. Contrary to the batch model,  ��  plays an important role in this 

cultivation system. This parameter, which usually lies in the micromolar range (Boles & 

Hollenberg, 1997), can directly modulate substrate uptake under glucose-limited 

conditions. Therefore, when glucose concentration is close to zero (like in the feeding 

phase), slight variations in the value of  �� can change glucose uptake significantly, which 

has a direct impact in the specific growth rate. Also, ���� appears to have a relevant role 

since it might act as an energy sink when the glucose from the batch phase is depleted. 

Here, secondary product consumption occurs with a slower or null biomass formation prior 

to the addition of glucose (Figure 3 in Supplementary material S 3-4). This indicates that 

the substrates were consumed to maintain basic cellular functions to survive, instead of 

being used for cell division. 

The three reduced structures improved the initial fittings (lower JDIFF) and reduced 

the frequency of fitting problems observed in the initial model of 14 parameters (Table 3 - 

6). Among these, Structure 3 performed the best in the cross-calibration in terms of fitting 

capability compared to the original model. On average, this structure improved in initial 

calibrations by 25%. It is worthy to note that, even though Structure 3 did not include the 

minimum production rate of ethanol during the batch phase, it could adequately reproduce 

the profiles of this compound by adjusting the objective function and the maintenance 

ATP. Finally, we chose to apply Structure 3 to fit new fed-batch data to check its 

robustness for modeling glucose-limited aerobic fed-batch cultivations of P. pastoris. 

 

Table 3 - 6 - Summary of the Cross Calibration of the fed-batch datasets.  

Structure 
N° 

parameters 
JDIFF 

Significance 

Issues (%) 

Sensitivity 

Issues (%) 

Identifiability 

Issues (%) 

Original 16 0 33 18.8 3.9 

1 11 -2% 27.2 2.6 1.8 

2 9 -15% 25.1 7.4 0.9 

3 10 -25% 26.7 3.7 0.9 

Structures that reduced de frequency of parametric problems with respect to the original model are highlighted. 
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3.3.3 Robustness Check 

3.3.3.1 Batch model 

On this new dataset, Structure 1 showed a good fit to the data and did not yield 

identifiability nor significance problems. However, ��,��� had no impact on the state 

variables. Therefore, after the initial calibration (data not shown), we fixed this parameter 

at 6 [mmol/gDCWh] (van Urk et al., 1989). Figure 3-3 illustrates the model fit and Table 3 - 

7 presents the parameter values with their 95% confidence intervals achieved in the second 

calibration, which also had no identifiability, significance or sensitivity limitations. This 

calibration also yielded mean normalized errors close to zero and normally distributed 

residuals for all the state variables except for glucose (Supplementary material S 3-5). 

Despite the sensitivity problem associated with ��,��� for this particular dataset, 

we included this parameter in the proposed robust modeling structure. This is because for 

some calibrations, e.g. the batch cultivations of strains harboring 8 copies of the thaumatin 

gene, the state variables were very sensitive to this parameter (average sensitivity > 0.7, 

recall that the sensitivity threshold is 0.01); hence, it should be included to achieve a close 

fit to the data. Therefore, if this parameter is found insensitive in future calibrations, it 

could be easily fixed at reported values.  

We achieved a robust modeling structure for glucose-limited, aerobic batch 

cultivations of Pichia pastoris, composed of six parameters that estimate specific 

consumption and production rates of all the species involved in the mass balances. The 

modeling structure also allows us to determine the specific growth rate by solving a bi-

objective optimization problem, which reduces the identifiability issues arising between 

parameters (comparison between candidate batch model robust structures 1 and 6). 
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Figure 3-3 – Robustness check of Structure 1 as modeling framework for aerobic, glucose-
limited batch cultures of Pichia pastoris. The figure shows the capacity of the reduced 
model structure to be calibrated with new data despite having fewer parameters than the 
original model structure (6 instead of 8 parameters). Points with whiskers represent 
experimental data and continuous lines correspond to the model approximation 

Table 3 - 7 - Parameter values achieved in the validation of the batch model structure.  

 

Values of the parameters are presented together with their 95% confidence intervals. In this calibration, ��,��� was fixed 

at a known value to avoid sensitivity issues. Finally, the calibration yielded no parametric problems. 

Parameter Value Units 

��,��� 6 mmol/gDCW·h 

�����,� 1.47 ± 0.07 mmol/gDCW·h 

����,� 0.13 ± 0.05 mmol/gDCW·h 

�����,� 0.14 ± 0.06 mmol/gDCW·h 

����,� 0.09 ± 0.04 mmol/gDCW·h 

�� 4.1 ± 0.9 ·10-4 [-] 
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3.3.3.2 Fed-batch model 

Structure 3 shows a good fit to new experimental fed-batch data (Figure 3-4) and did not 

yield identifiability or significance problems (Table 3 - 8 and Supplementary material S 3-

5). The profile of some of the state variables still depends on the fixed values assigned. For 

example, arabitol was consumed at a slower rate than the profile observed in the 

experiment because the parameter representing this consumption (�����,��) was fixed as 

the mean of the training datasets (not included in the adjustable parameter set). Thus, the 

model assumed a faster consumption rate than observed in the cultivations. Also, pyruvate 

was found at such low concentrations that the parameters associated to its production 

(����,� ��� ����,��) were ignored in this analysis. 

Table 3 - 8 - Parameter values achieved in the calibration to check the robustness of the 
fed-batch model. The confidence interval on the time where the consumption of secondary 
metabolites started TCONS, could not be determined due to the stiffness of the solution 
caused by a sudden consumption of arabitol and ethanol. 
Parameter Value Units 

���� 2.09 ± 0.46 mmol/gDCW·h 

�� 5.55·10-2 ± 0.0000004·10-2 g/L 

����,� 0 mmol/gDCW·h 

�����,� 0.42 ± 0.17 mmol/gDCW·h 

����,� 0.04 ± 0.00 mmol/gDCW·h 

����,�� 0 mmol/gDCW·h 

�� 2.6·10-4 ± 0.4·10-4 [-] 

���  2.455·10-5 ± 0.003·10-5 [-] 

���� 7.0 ± 1.4 mmol/gDCW·h 

����� 25.73 H 

 

The chosen model structure showed a strong fitting capacity and a limited occurrence of 

parametric identifiability, sensitivity and significance problems. Therefore, we selected it 

as the most robust model structure for fed-batch cultivations of P. pastoris. 
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Figure 3-4 – Robustness check of Structure 3 as a modeling framework of aerobic glucose-
limited fed-batch cultures of Pichia pastoris. The figure shows the capacity of the reduced 
model structure to be calibrated with new data, despite having fewer parameters than the 
original model structure (10 instead of 14 parameters). Points with whiskers represent 
experimental data and continuous lines correspond to the model approximation. 
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3.3.4 Model Validation 

3.3.4.1 Batch model 

The parameters found for the strain harboring one copy of the thaumatin gene were used to 

predict the dynamics of a different batch cultivation using the same strain (Figure 3-5). 

Biomass and glucose profiles were correctly predicted by the model (MNEs close to zero 

and p-values of the Anderson-Darling test > 0.05, see Supplementary material S 3-6). 

Ethanol, pyruvate, citrate and arabitol dynamics also showed an overall concordance with 

the data, however the simulated profiles overestimated their final concentrations (see 

associated MNEs in Supplementary material S 3-7). These differences occurred probably 

because in the training datasets the initial concentration of glucose was higher than the one 

used in the validation experiment (~60 g/L vs. ~40 g/L), which might have increased the 

formation of secondary products (Cheng et al., 2014). Therefore, future versions of the 

model may consider more elaborate kinetic expressions for the secretion of secondary 

products in order to accurately predict their formation in different circumstances. 

         

Figure 3-5 - Batch model preliminary validation. This figure shows how well the model 
predicts the course of a batch cultivation. To do this, we used the derived robust model 
structure to determine the characteristic parameters of a recombinant strain. Then, we 
simulated a batch culture (continuous line) and compared it with the experimental data 
(filled circles). 
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3.3.4.2 Fed-batch model 

The prediction of biomass, glucose, ethanol and arabitol concentrations during the culture 

agreed with experimental data, whereas pyruvate and citrate dynamics were inaccurate 

(Figure 3-6). Specifically, the simulation predicted that pyruvate was generated during the 

batch phase but experimental data did not show pyruvate production. In the experimental 

culture we saw that there was no generation of citrate in the feed phase, contrary to what 

the simulated predicted. These differences arose because in the culture from where the 

parameters were derived (Fed-batch culture 1, see Supplementary material S 3-4), pyruvate 

formation occurred in the batch phase and citrate was formed during the feed phase; 

therefore, the model assumed that these compounds were generated in the respective phase 

of the culture. Nevertheless, for the major compounds found in the culture, the model had a 

low mean normalized error. 

 

Figure 3-6 - Fed-batch model validation. This figure shows how well the model predicts 
the course of a fed-batch cultivation. To do this, we used the derived robust model 
structure to determine the characteristic parameters of a recombinant strain. Then, we 
simulated a fed-batch culture (continuous line) and compared it with the experimental data 
(filled circles). 
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3.3.5 Potential applications of the model 

3.3.5.1 Analysis of the metabolic flux distribution at different stages of a dynamic 

cultivation.  

Once we confirmed the robustness of the fed-batch model, we analyzed the redistribution 

of central carbon metabolic fluxes at three different stages of the cultivation (Figure 3-7), 

i.e. exponential growth during the batch phase (~20 h, μ = 0.12 h-1); co–consumption of 

arabitol and ethanol during the glucose starvation phase (~27.5 h, μ = 0.02 h-1); and 

controlled exponential growth during the feeding phase (~45 h, μ = 0.06 h-1) (Figure 3-7). 

During exponential growth in the batch phase, the carbon reaching the glucose-6-

phosphate node is split between carbohydrate production (11%), glycolysis (63%) and the 

oxidative branch of the PPP (24%). Furthermore, the latter is the main source of cytosolic 

NADPH. Cytosolic ATP is formed by the activity of the ATP synthase and substrate-level 

phosphorylation (glycolysis and synthesis of arabitol and ethanol) (data not shown). In the 

iPP618 model, which is the basis of the iFS670, cytosolic NADPH was produced by a 

NADP dependent isocitrate dehydrogenase, and no flux appeared through the oxidative 

branch of the PPP. Using the proposals from Pereira et al. (Pereira et al., 2016), the flux 

through this pathway was restored and overall agreement in directionality to fluxomic 

studies performed in similar conditions was achieved (Supplementary material S 3-2). 

During the starvation phase, ethanol and arabitol are co-consumed with limited 

formation of biomass (µ=0.02 h-1).  As indicated by the negative fluxes, both compounds 

are directed towards the TCA cycle in order to synthesize the necessary reducing 

equivalents to fuel oxidative phosphorylation. The ATP formed in this pathway - ~ 7 

mmol/gDCWh -, is mostly employed for maintenance. Even though this mATP is high 

compared to other reported values for P. pastoris (2.2 – 5 mmol/gDCWh) (Chung et al., 

2010), it is required to account for the fast consumption of both secondary metabolites 

under  limited cellular growth. The use of a recombinant strain for model calibration, 

which might have higher maintenance requirements, could further explain this result. 

Finally, during controlled growth at the feed phase, neither ethanol nor arabitol are 

produced. All the carbon is directed towards biomass formation and the energy necessary 

for its synthesis and maintenance. This result agrees with previous fluxomic studies carried 
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out in aerobic, glucose-limited chemostats (Baumann et al., 2010; Dragosits et al., 2009), 

where significant carbon fluxes through the oxidative and non-oxidative branches of the 

PPP were found, without arabitol formation. Furthermore, the model shows significant 

oxaloacetate transport from the cytosol to the mitochondria, which was also observed in 

the cited studies. The most distinguishable feature of this phase is the high activity of the 

TCA cycle, which almost doubles the flux through this pathway reported under glucose 

limited conditions in chemostats (Baumann et al., 2010; Dragosits et al., 2009; Heyland et 

al., 2011). This higher activity in the TCA is probably associated with the need to cope 

with maintenance and growth-associated energy requirements under stressful conditions, 

such as high cell density, especially when no significant substrate level phosphorylation 

besides glycolysis occurs. 

This analysis could have been performed using the genome-scale model in static 

conditions by deriving instantaneous exchange rates from contiguous samples and 

determining the flux distributions by specific growth rate maximization. Nevertheless, the 

inspection of flux distributions after model calibration has the advantage of considering the 

overall behavior of the cells during the cultivations. This provides more experimental 

support for the determination of parameters such as ����, ��, that cannot be directly 

estimated but that have a strong impact on the model output. 
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Figure 3-7 – Metabolic flux distribution in the Central metabolism for three different 
stages of the cultivation. Carbon uptake is detailed in the box of the upper left corner in 
mmol/gDCWh and the fluxes are presented relative to this uptake. In each box between 
metabolites there are three numbers; which correspond, from top to bottom, to the relative 
flux during batch, starvation and feeding phases. Depending on the time analyzed, the cell 
consumes Glucose (G), Citrate (C), Arabitol (A) or Ethanol (E). The biomass flux 
corresponds to the specific growth rate of the cell in h-1 and the negative fluxes refer to a 
change in the reaction directionality. Nomenclature: G6P = Glucose 6 Phosphate, Ru5P = 
Ribulose 5 Phosphate, ABT = Arabitol, PPP = Non-oxidative phase of the Pentose 
Phosphate Pathway, F6P = Fructose 6 Phosphate, G3P = Glyceraldehyde 3 Phosphate, 
DHAP = Dihydroxyacetone Phosphate, Pyr = Pyruvate, OAA = Oxaloacetate, Acald = 
Acetaldehyde, EtOH = Ethanol, AcCoA = Acetyl Coenzyme A, Cit = Citrate, Icit = 
Isocitrate, αkg = Alpha-keto glutarate, Mal = Malate and L- glut = Glutamate. 
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3.3.5.2 Discovery of single knock-outs to improve recombinant Human Serum 

Albumin production using Minimization of Metabolic Adjustment 

(MOMA) as the objective function to simulate mutant behavior.  

We performed 670 (number of genes in the model) batch simulations of single knock-out 

strains to discover beneficial deletions for the production of recombinant Human Serum 

Albumin (HSA), a 66 kDa protein with 16 disulfide bridges, that comprises about one half 

of the total blood serum protein (Verney, 1926).  

The two main clusters (Figure 3-8) show the relation between the final HSA and 

the final biomass concentration of the 130 mutations that improved HSA production (>30 

mg/L at the end of the batch). The first cluster consists of strains that privilege HSA 

production over biomass formation; whereas the second one presents a trade-off between 

both. 

We decided to leave Cluster I out of the analysis because of the impaired growth 

observed in the simulations, mainly due to the deletion of reactions associated to lipid 

biosynthesis. However, candidates from Cluster II (32 in total) were manually analyzed to 

identify the cause of HSA overproduction (Supplementary material S 3-7). 

A relative increase in the formation of cysteine and tryptophan was found for most 

of the candidates for Cluster II when compared to the parental strain, a trend that was not 

observed for the rest of the amino acids (Figure 3-9). These energetically costly residues 

(Raiford et al., 2008) are formed from serine. Therefore, re-routing carbon through this 

pathway could be beneficial to improve HSA production. 
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Figure 3-8 - Final HSA vs. final biomass concentrations of simulated batch cultivations of 
single knock-out-strains. Blue dots correspond to the output of strains that improved the 
initial final HSA concentration (30 mg/L). Candidates out of Cluster II were manually 
analyzed. The red circle indicates the performance of the parental strain and the black 
arrow points to the methylene tetrahydrofolate dehydrogenase knock-out strain.  

After manually analyzing the candidates, we found that one possible strategy could be the 

deletion of the cytosolic NAD-dependent methylene tetrahydrofolate dehydrogenase 

(Figure 3-10). When compared to the parental strain, the knock-out results in a 6.3 fold 

improvement of the final concentration of the recombinant protein with a 5.8-fold increase 

in protein volumetric productivity (arrow in Figure 3-8). This deletion eliminates the 

transformation of serine to 5-10 methylene tetrahydrofolate; hence, serine can be re-routed 

to two cysteine reactions. This gene is non-essential in S. cerevisiae (West et al., 1996) 

and, to the best of our knowledge, its essentiality has not been determined in P. pastoris. 

Therefore, it constitutes an interesting knock-out candidate to improve recombinant HSA 

production. 
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Figure 3-9 – Turnover of key amino acids in knock-out strains relative to the parental 
strain. Each box summarizes how the production of each amino acid changed in the 32 
knock out strains of Cluster II relative to the production in the parental strain (Red Line). 
Black dots correspond to the sample median, the extreme of the boxes to the 25th and 75th 
percentiles, the whiskers extend to the most extreme data points and circles mark outliers.  

 

Figure 3-10 Rationale behind the knockout of the Methylene tetrahydrofolate (THF) 
dehydrogenase. By deleting this enzyme, the flux from Serine to 5-10-Methylene THF is 
blocked and redirected towards cysteine formation, whose availability increases the 
productivity of HSA.  
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3.3.5.3 Bioprocess optimization for HSA overproduction. 

Here, we evaluated 13 feeding strategies of a fed-batch cultivation to improve the 

production of recombinant HSA. After the simulations, we selected a strategy that 

considered a slow decrease in the growth rate from µ=0.14 h-1 to µ=0.08 h-1 during the 

feeding phase (Table 3 - 9). The selected policy allows a 25% increase in volumetric 

productivity and reaches almost the same final HSA concentration as the constant growth 

rate strategy that reached the highest concentration (µ=0.06 h-1).  

Table 3 - 9 - Feeding policies evaluated to improve the production of Serum Albumin in a 

particular bioreactor setup.  

Strategy μMAX Rate μMIN qP 

[mg/g·h] 

XFINAL 

[g/L] 

PFINAL [mg/L] Limitation  

1 0.14 - - 2.85 164.8 138 Oxygen 

2 0.12 - - 2.59 187.8 135 Oxygen 

3 0.1 - - 2.32 195.3 130 Volume 

4 0.08 - - 2.29 191.3 138 Volume 

5 0.06 - - 2.28 184.7 154 Volume 

Best 0.14 0.1 0.08 2.83 197.5 150 Volume 

This table shows the process indicators for the constant feeding Strategies (1-5) plus the best decreasing growth rate 

strategy. μMAX is the maximum growth rate in the feeding police. MIN is the minimum growth rate in the feeding police. 

Rate is the rate of decreasing of set growth rate in feeding police. qP is the protein productivity. XFINAL and PFINAL refer to 

the final concentration of biomass and serum albumin in the reactor when the simulation stops, which happened by either 

violating user-defined volume or Oxygen Transfer thresholds. 

The improvement in process productivity by modifying substrate addition during the feed 

phase is less efficient than the one attained by genetic modifications. However, other 

process variables such as reactor volume and oxygen transfer may be modified to further 

improve HSA production. 

3.4 CONCLUSIONS  

Current GSMs of P. pastoris have been employed to address cellular behavior in stationary 

conditions. They have been successfully used for predicting production and consumption 
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rates of different compounds and even achieving a 40% improvement of recombinant 

protein production by model-discovered knock-outs. However, little attention has been 

given to the actual metabolic flux distribution that these reconstructions yield and how they 

evolve in a dynamic environment. Resulting flux distributions are important for two 

reasons: (i) they help to understand the cellular response to the different stresses to which 

the cell is subjected to and (ii) they can serve as input for several algorithms whose aim is 

to find metabolic engineering targets to improve the production of a certain compound.  

In this work, we developed a robust dynamic GSM of glucose-limited aerobic cultivations 

of P. pastoris, linking and showing the impact that the model formulation process has over 

flux balance analysis. The assembled platform can fit several datasets with minimum 

significance, sensitivity and identifiability problems in its parameters. Moreover, if 

properly trained, it can be used to predict bioreactor dynamics. The model could also be 

employed to obtain realistic flux distributions throughout dynamic cultivations and to 

determine metabolic and process engineering strategies to improve the production of a 

target compound.  

To broaden its applications to other relevant conditions for P. pastoris, the model 

could be calibrated with data from cultures with different carbon sources and feeding 

strategies, such as glycerol batch phase followed by a methanol induction phase. Also, the 

model could be used to study perturbations such as oxygen limitation, which is a common 

problem in industrial P. pastoris cultivations (Porro et al., 2005). Moreover, it would be 

desirable to calibrate the model with data from a strain capable of producing high 

concentrations of a recombinant protein to understand and quantify the metabolic burden 

caused by this production.  

Finally, it is expected that the incorporation of more curated metabolic reconstructions 

(Tomàs-Gamisans et al., 2016), gas mass balances and the knowledge derived from testing 

the hypotheses proposed using the model would improve its accuracy and broaden its 

applicability. 
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4.1 INTRODUCTION 

Oxygen is an essential substrate in aerobic bioprocesses. It is considered one of the main 

limiting factors to reach high-density cell cultures (Garcia-Ochoa & Gomez, 2009; 

Sonnleitner, 2016; Wang et al., 2009). Given its low solubility in high density cultures, and 

the varying demand in batch and fed-batch cultures, an increasing oxygen transfer rate 

(OTR) over time is required (Garcia-Ochoa et al., 2010). OTR is typically described as the 

product of a volumetric mass transfer coefficient, ���, and the average concentration 

gradient based on the two-film theory of Whitman (Whitman, 1924) (Equation 4-1). 

��

��
= ��� ·(�∗ − �)                                                        (4 − 1) 

Where, C* is the oxygen equilibrium concentration and C is the dissolved oxygen 

concentration in the liquid phase of the bioreactor. 

OTR mainly depends on the ��� coefficient in a specific saturation condition 

(Equation 4-1). This coefficient is fundamental to measure and characterize the oxygen 
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transfer capabilities of gas-liquid bioreactors (Linek et al., 1993). Although different 

mechanistic models have emerged for prediction of ��� (Buffo et al., 2016; Garcia-Ochoa 

et al., 2010; Kapic & Heindel, 2006; Moucha, Linek, & Prokopová, 2003; Yawalkar, 

Heesink, Versteeg, & Vishwas, 2002), they are not robust enough to yield an accurate 

quantitative determination of ��� (Villadsen et al., 2011). 

Physical methods for ��� estimation are based on dissolved oxygen (DO) 

concentration changes with time (Garcia-Ochoa & Gomez, 2009; Villadsen et al., 2011), 

where the dynamic gassing-in and gassing-out procedures are still the most commonly 

used (Cerri et al., 2016; Garcia-Ochoa & Gomez, 2010; Sonnleitner, 2016). However, 

these approaches could become inaccurate if the delay of the measuring system is 

neglected (Badino et al. 2000; Garcia-Ochoa & Gomez, 2009; Gourich et al., 2008; 

Merchuk et al., 1990). The latter can be mainly attributed to the response time, ��, of the 

electrode’s probe, whose dynamic response can be approximated by the following first 

order equation (Cerri et al., 2016; Garcia-Ochoa & Gomez, 2009; Gourich et al., 2008; 

Tribe et al., 1995): 

���

��
= �� ·(� − ��)                                                        (4 − 2) 

Where, ��  is the measured DO concentration, � is the real DO concentration, and �� is the 

sensitivity of the electrode, which is the inverse value of ��,  i.e. �� = 1/�� . 

The delay of the probe can be neglected only if the sensitivity of the electrode, ��, 

is at least ten fold higher than ��� values, i.e. the ratio ��/��� > 10 (Garcia-Ochoa & 

Gomez, 2009; Gourich et al., 2008; Merchuk et al., 1990). For ��/��� ratios lower than 

10, a second-order dynamic model should be considered for an accurate estimation of ��� 

(Equations 4-1 and 4-2) (Merchuk et al., 1990). In this range, the estimation of ��� is 

considered accurate when the ��/��� ratio is higher than 2 (Cerri et al., 2016). However, 

the quantification of the associated error for ��� estimation has not been formally studied 

yet. The characteristic �� of commercial, fast oxygen electrochemical sensors ranges 

between 5 and 90 s. However, �� depends also on the fluid dynamics in the reactor and the 

condition of the sensor (Badino et al., 2000; Cerri et al., 2016; Gourich et al., 2008). 
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Therefore, an accurate estimation of ��� requires to verify the ��/��� ratio in all the 

conditions of interest. 

A new second-order method was recently proposed by Cerri et al. (2016) to 

overcome the effect of probe delay on ��� estimations. This method enables the 

simultaneous determination of ��� and �� using the traditional gassing-out method, 

without any additional assays. Nevertheless, this new methodology requires the manual 

selection of a time range to estimate ��� values (Cerri et al., 2016). Manual selection and 

analysis are cumbersome and time consuming, and reproducible results are difficult to 

attain. 

In this work, we developed an automated algorithm to estimate ��� and �� values 

considering a second-order dynamic process. Moreover, the impact of the ��/��� ratio on 

the estimation of ��� and �� is also discussed and it was proposed the values of ��/��� 

ratio to obtain reliable dynamic curves for accurate estimation of ���. 

4.2 MATERIAL AND METHODS 

4.2.1 Bioreactor configuration. 

The fermenters employed in this study were in-house built 1 L bioreactors with 0.6 L of 

operational volume, equipped with a condenser, a simple diffuser, a stirrer and two 

Rushton turbines. Agitation was driven by brushless VEXTAs DC motors, AXH Series 

(Oriental Motor, Japan). Each bioreactor consists of a double-jacketed cylindrical vessel 

with an internal diameter of 9 cm. The vessel was equipped with four equally spaced 

vertical baffles of width 0.9 cm and thickness 1 mm. Both impellers were separated by 3 

cm and the lower impeller was at 3 cm from de bottom of the vessel (Figure 4-1). The 2 

m pores diameter diffuser was located below the lower. For monitoring and control, a 

SIMATIC PCS7 distributed control system (Siemens, Germany) was used. DO 

concentration and temperature were measured with fast response probes Oxymax COS22D 

(< 60 s) (Endress Hauser, Switzerland). Air and N2 additions were measured and controlled 

with mass flow meters (FMA-A2407, Omega Engineering, USA). 
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Figure 4-1 Scheme of the conventional bioreactor 

4.2.2 Fluids 

Three liquid mixtures were employed: distilled water (W: µ = 0.87 mPa.s) and two 

glycerol solutions: GS1, 30 % glycerol (v/v) with µ = 3.23 m·Pa s; and GS2, 50 % glycerol 

(v/v), with µ = 6.60 mPa s. The gas phase contained compressed air and 99.9 % nitrogen 

(Indura, Santiago, Chile). Dynamic viscosities of the solutions were determined from 

rheograms obtained at 25ºC, using a digital concentric-cylinder rheometer (DVIII Ultra, 

Brookfield Engineering Laboratories, MA, USA). 

4.2.3 Methods for estimation of kLa considering system delay 

Experimental absorption curves were generated by the gassing-out method (Garcia-Ochoa 

& Gomez, 2009; Linek et al., 1987). The DO concentration in the fluid was measured 

continuously after a step change in the inlet gas. The oxygen sensor was installed in the 

bioreactor at the same height of the bottom impeller and close to the vessel wall (1 cm). 

The sensor was calibrated and then it was stabilized for 4 hours under air saturation 

conditions. Desorption was carried out by bubbling pure nitrogen and absorption by 

bubbling air; in both cases gas flow rate and the agitation were kept constant. In total, 15 

conditions were tested varying gas flow rate (0.5 to 2 VVM), agitation (200 to 1000 rpm), 

and viscosity (W, GS1, GS2). 
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The system delay was quantified by the method of Cerri et al, 2016. This method 

considers that the measured DO concentration evolves in parallel to the real DO 

concentration in a specific time range (Figure 4-2 a-b). In this time range, both the 

measured DO concentration and the real DO concentration yield the same value of the 

estimated k�a (Figure 4-2 c), using a first order equation (Equation 4-1). 

                                  

Figure 4-2 Comparison between measured oxygen concentration (solid line) and real 
oxygen concentration (dashed line) using simulated curves of ��� of 2.78·10-2 s-1 and �� of 
12.95·10-2 s-1 (Equations 4-1 and 4-2). The time range at which ��� can be estimated using 
a first–order equation is over 40 s. a) Dynamic absorption of oxygen concentration. b) – 
ln(C*-C) versus time graph to estimate ��� using first order equation. c) Instantaneous 
���. 

4.2.4 Modeling 

The algorithm was coded in MATLAB 2016a (MATLAB, 2016) and implemented in a 

Windows 7 PC with an Intel® Core™ i5-6600K processor. The average computational 

time required for estimating ��� and �� in a typical absorption curve was approximately 

0.4 s. The identification of the ��� constant zone was carried out by the heuristic search 

algorithm fminsearchbnd, which is a variation of fminsearch of the MATLAB optimization 

toolbox. The fitting procedures were carried out by least squares minimization and the 

significance of the regression (p = 0.01) was assessed by applying the Fisher Test (Seber et 

al., 2012) to the quotient between regression and residual variances; 99% Confidence 

Intervals (CIs) were inferred, following a t-student distribution. 
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Eight representative curves of different conditions were selected for pre- and post-

regression analyses. Post regression analysis was carried out to assess the fitting 

performance and robustness (Jaqaman & Danuser, 2006). The algorithm parameters were 

tuned by trial and error to optimize the automatic selection of the ��� constant zones and 

the quality of the fitting. The tuning parameters of the algorithm were subjected to a 

sensitivity analysis considering  +/- 50% variation of the selected value. 

To verify the usefulness of the proposed procedure, the manual and the automated 

methods were applied to estimate the ��� of 80 absorption experiments obtained under 

different conditions of agitation, aeration and viscosity. 

4.2.5 Simulation and ��/��� ratio 

To quantify the errors associated with the ��/��� ratio, 640 curves were simulated with 

different ��� values (0.278 ·10-2 to 33.3 ·10-2 s-1) and ��/��� ratios (0.25 to 25). The large 

amount of different combinations of ��� and �� values represent the high variability of 

physical and geometrical conditions of bioreactors. In order to emulate real conditions, all 

absorption curves were simulated considering white Gaussian noise of real measurements 

(Equation 4-3). 

���(�) = ��(�) +  ��(�)                                                              (4 − 3) 

Where ���(�) is a simulated DO concentration, ��(�) is a zero mean random value, where 

the expected value of ��
�(�) is the mean variance of the sensor, and ��(�) is the 

deterministic simulated DO concentration, which is estimated using a system of ordinary 

differential equations (Equations 4-1 and 4-2). 

Only curves with ��values ranging from 0.556 ·10-2 to 27.8·10-2 s-1 were 

considered, since these values were within an operating range of a real sensor. The 

accuracy of the model was evaluated by the absolute percentage of the error (Equation 4-

4). 

����� =
|���������� − �����|

�����
∙100                                             (4 − 4) 

Where, � is the variable, which can be either ��� or ��. 
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4.3 RESULTS AND DISCUSSION 

For ��� estimations using a second-order dynamic model, three different zones could be 

identified in an absorption curve (Figure 4-3): 

 A first zone, at the beginning of the �� curve, where the delay of the system 

considerably affects the measured oxygen concentration.  

  A second zone, in the middle of the curve, where �� can be represented as a first 

order kinetics, i.e. the system delay does not affect the dynamic of the curve. Here, 

��� can be directly estimated from the �� curve, since the slope of the natural 

logarithm of the difference between �∗ and �� is equivalent to the slope of the 

natural logarithm of the difference between �∗ and � (Equation 4-5). 

dln(C∗ − �)

dt
=

dln(C∗ − ��)

dt
= − ���                                 (4 − 5) 

 Finally, the last part of the curve, where �� is close to the dissolved oxygen 

saturation concentration (�∗). Here, the OTR is close to zero (Equation 4-1), 

implicating that in this zone the estimation of ��� could have parametric 

sensitivity problems and �� dynamics could be more sensitive to the sensor noise 

than to the real ��� value. 

Although these zones are not clearly delimited, the second one can be easily identified by 

following four consecutive steps: data smoothing; selection of a zone with high oxygen 

transfer rate; identification within this zone of the area where instantaneous ��� is 

constant; and estimation of ��� and ��. These different steps are described in detail below.  
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Figure 4-3 Identification of the three main zones of an experimental absorption curve. The 
absorption curve was obtained with water at 500 rpm and 0.75 VVM. Zone I is where the 
delay of the system considerably affects the measured oxygen concentration. Zone II is 
where measured dissolved oxygen concentration can be represented as a first order 
kinetics. Zone III is where measured dissolved oxygen concentration is close to the 
dissolved oxygen saturation concentration. 

4.3.1 Smoothing data: Simple Moving Average Filtering 

The smoothing process of raw data is carried out to reduce the impact of white noise and to 

identify more easily the curve trends (Hamilton, 1994). We employed a simple moving 

average filter to smooth the data of measured oxygen concentration (��), considering � 

data points, where � is a tuning parameter of the automated algorithm (Equation 4-6).  

��(�) =
∑ ��(�)

���� �/�
���� �/�

�
                                                       (4 − 6) 

4.3.2 First Filter: selection of data with high oxygen transfer rate 

High instantaneous OTR values (���(�)) were employed to identify the second zone. 

OTR(t) were estimated using the second-order approximation of the �� derivative 

(Equation 4-7). 

���(�) =
���(�)

��
=

��(� + 1) − ��(� − 1)

(� + 1) − (� − 1)
                      (4 − 7) 

This first filter allows to reduce the search space, selecting the data that have ���(�) 

values higher than a threshold (Figure 4-4). This threshold is a tuning parameter of the 

algorithm, which is defined by a percentage of the maximum ���(�). Selection of the 

boundaries of this reduced search space is more difficult when a large number of outliers 
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exceed the OTR threshold. These outliers result from a high variability in the OTR(t) 

curve, and to identify them, we analyzed a predefined neighborhood, denoted as: 

 [� − � ·������, � + � ·������ ]                                                       (4 − 8) 

Where � is the time, ������ is the total experimental time of the curve and � is the 

percentage of the total experimental time; an additional tuning parameter of the algorithm. 

An OTR (t) value is considered an outlier if the data in its close neighborhood is lower than 

the OTR threshold.  

 

Figure 4-4 Representation of the first filter. The instantaneous oxygen transfer rates of an 
experimental absorption curve is represented by solid circles. The absorption curve was 
obtained with water at 500 rpm and 0.75 VVM. Instantaneous oxygen transfer rates were 
estimated using Equation 4-7 and the threshold instantaneous oxygen transfer rate was 
estimated as 20% of maximum instantaneous oxygen transfer rate (solid line). 

4.3.3 Search algorithm: selection of the zone where instantaneous kLa is 

constant 

After reducing the search space, instantaneous ��� (���(�)) can be estimated using 

Equation 4-9 to identify the second zone. 

���(�) =
���(�)

(�∗ − ��(�))
                                                             (4 − 9) 

In this zone, instantaneous inference of ��� using measured dissolved oxygen 

concentrations has a constant value (Figure 4-2). Thus, in this zone, we consider that: 1) 

the variation of ���(�) can be neglected, 2) this zone does not have a high variability, and 
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3) this zone includes as many data points as possible. Applying linear regression to the 

target region, these features can be mathematically expressed as: 

1. The slope (�) of this part of the curve must be near zero, i.e. minimize the square 

of the slope. 

2. The quality of the fitting (��) must be the best possible, i.e. maximize R2. 

3. The number of data (�) must be as much as possible, i.e. maximize �.  

This zone can be denoted as [��(��− � ); ��(��+ �)], where �� is the central point and 

N = (2� + 1) is the size. An objective function was implemented to find this zone, 

considering the features mentioned above. Given that it is a multiobjective optimization, 

we chose the desirability approach (Costa et al., 2011), considering higher weights for 

features 1 and 2 (Equation 4-10). It is worthy to mention that it is necessary to normalize 

the number of data, �, considering the minimum (����) and maximum number (����) of 

data.  

 

�(��, �) =

⎩
⎪⎪
⎨

⎪⎪
⎧

                     1                                                 � < ����

                   �
(��)

�
� − ����

���� − ����
� ∙(��)�

�

�
�

     ���� < � < ���� 

                     1                                                 � > ����

          (4 − 10) 

�.�.                                                                       

0 < ��< ������ 

0 < � <
������

2
 

Using this search algorithm, the zone with the minimum value of the objective function 

was chosen as the second zone (Figure 4-5). The optimization of this algorithm was carried 

out using three initial points within the reduced search zone, taken at the beginning, mid 

and final part of the curve. 
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Figure 4-5 Representation of the search algorithm. Instantaneous ��� of an experimental 
absorption curve is represented in solid circle. The absorption curve was obtained with 
water at 500 rpm and 0.75 VVM. Instantaneous ��� was estimated using Equation 4-9. 
The selected zone, where instantaneous ��� is constant, is represented in solid line. 

4.3.4 ��� and �� estimation using the chosen range 

Once the search algorithm selects the second zone, ��� is estimated by linear regression 

between − ln(�∗ − ��) and time, employing the analytic integration of Eq. 4-1 (Figure 

4-6). �� is then estimated (Figure 4-7) for  the same interval, since the derivative of �� is 

equal to the derivative of � (Equation 4-11), 

��(�) =
���

1 − �
�∗ − �(�)

�∗ − ��(�)
�

                                             (4 − 11) 

Where C is the real value of oxygen concentration, which could be estimated by: 

�(�) = ��∗ − ��(�0)� ·����·(�� ��)                                   (4 − 12) 
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Figure 4-6 Estimation of ��� in the second zone. The natural logarithm of the difference 
between �∗ and � of an experimental absorption curve is illustrated in solid circle. The 
absorption curve was obtained with water at 500 rpm and 0.75 VVM. The selected zone to 
estimate ���  is highlighted (solid line). 

 

 

Figure 4-7 Estimation of �� in the second zone. �� of an experimental absorption curve is 
represented by solid circles. The absorption curve was obtained with water at 500 rpm and 
0.75 VVM. �� was estimated using Equation 4-11. The selected zone to estimate �� is 
highlighted (solid line). 

4.3.5 Tuning algorithm parameters  

Different fluids (W, GS1 and GS2) and ��� values (1.1·10-2 to 7.7 ·10-2 s-1) were 

considered to tune the algorithm (Figure 4-8). Parameter showed low sensitivity and was 

fixed at 2%. The other parameters, i.e. �, OTR threshold, ���� and ����, were 

manually fixed by trial and error until the difference between manual and automatic 

selection was minimized (Table 4- 1). 
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Table 4- 1 Sensitivity of the tuning parameters of the automated method. 

  

Parameters kLa estimate variation (%) 

Notation Value Variation Minimum Mean Maximum 
S

m
oo

th
in

g
 

 4 

2 -9.79 -1.02 +6.05 

6 -2.83 -0.10 +1.80 

1º
 F

il
te

r 

OTR 

threshold 0.2·OTRmax 

0.1·OTRmax -0.53 +5.74 +20.37 

0.3·OTRmax -3.44 -0.88 +1.09 

S
ea

rc
h

 a
lg

o
ri

th
m

 

Nmin 0.3·Ntotal 

0.15·Ntotal -1.16 +2.82 +12.86 

0.45·Ntotal -3.95 +0.40 +6.88 

Nmax 0.7·Ntotal 

0.35·Ntotal -5.36 -0.91 +2.84 

Ntotal +0.01 +0.04 +0.07 
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Figure 4-8 Instantaneous ��� curves of experimental absorption curves at different 
operational conditions in water solution. Solid circles represent instantaneous ���. In solid 
lines, the zone selected by the algorithm is highlighted. The manual selection is highlighted 
in a box. The different experimental absorption curves were carried out as follows: a) 200 
rpm and 0.3 VVM, corresponding to a ��� of 1.129 ·10-2 s-1 (CI: 1.126-1.132·10-2 s-1). b) 
200 rpm and 1.2 VVM, i.e. ��� = 2.330 ·10-2 s-1 (CI: 2.317-2.343·10-2 s-1). c) 500 rpm and 
0.75 VVM, ��� = 5.855 ·10-2 s-1 (CI: 5.753-5.957·10-2 s-1). d) 800 rpm and 1.2 VVM, ��� 
= 7.686 ·10-2 s-1 (CI: 7.538-7.833·10-2 s-1).  

4.3.6 Sensitivity analysis using different curves 

Our analyses indicate that the tuning parameters were insensitive. Variation on ��� 

estimates ranged between -1.02% and +5.74% in average, although the parameters varied 

by 50 % (Table 4- 1). Nevertheless, each parameter was analyzed separately: 



 

 

94 

 Parameter ∝  is involved in data smoothing and is more important for very noisy 

experimental curves (e.g. Figure 4-8 c), since it is difficult to identify curve trends 

in these curves. When the degree of smoothing is decreased, the algorithm could 

not distinguish the boundary between the first and the second zone, resulting in an 

underestimation of the ��� value. 

 The OTR threshold, involved in the first filter, allows reducing the search space. 

This parameter is crucial for curves with low k� values (e.g. glycerol curve in 

Figure 4-9). However, a trade-off is recommended, since increasing this parameter 

excessively reduces the search space, which could lead to the identification of an 

erroneous zone. 

 The parameter ����, which is involved in the search algorithm, avoids the 

selection of local minima. Notwithstanding, it is important to emphasize that it 

should not be higher than 30 %, since it might include other zones, affecting the 

fitting. 

 Finally, the parameter ����, which is involved in the search algorithm, is used to 

normalize the number of data in the objective function. This parameter has a low 

sensitivity. However, values higher than 70 % of the total number of data are 

recommended since if the algorithm selects a too small data set, the selected zone 

will not be representative.  
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Figure 4-9 Instantaneous ��� curves of experimental absorption curves at different 
operational conditions in glycerol solutions. Instantaneous ��� are represented with solid 
circles. The zone selected by the algorithm is shown in solid lines. The manual selection is 
highlighted in a box. The different experimental absorption curves were a) GS2 solution at 
500 rpm and 0.75 VVM, ��� = 1.969 ·10-2 s-1 (CI: 1.959-1.979·10-2 s-1). b) GS2 solution at 
800 rpm and 1.2 VVM, ��� =2.069 ·10-2 s-1 (CI: 2.048-2.090·10-2 s-1). c) GS1 solution at 
500 rpm and 0.75 VVM, ��� = 3.517 ·10-2 s-1  (CI: 3.505-3.528·10-2 s-1). d) GS1 solution 
at 1000 rpm and 0.75 VVM, ��� =5.598 ·10-2 s-1 (CI: 5.539-5.656·10-2 s-1). 

 

4.3.7 Validation 

The automatic procedure was compared to manual selection in 80 new experiments 

performed at 25°C, with different conditions of agitation, aeration and viscosity (Figure 

4-10). The average difference between the estimated value of both methods was 5.0% ± 
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3.4% (Min: 0.1% and Max: 14.2%). Manual selection was less reproducible since the users 

tend to choose different calculation data points (Zone 2 above). In turn, the automatic 

algorithm ensures a consistent selection of the calculation data points. Additionally, the 

automatic algorithm takes a fraction of the time required by the manual procedure to 

estimate the ��� values.  

 

Figure 4-10 Comparison of manual and automatic strategies of 80 absorption experimental 
curves. The experimental data is represented by solid circle and the equation x=y is 
represented in solid line. 

4.3.8 Simulation and ��/��� ratio 

Once the model was validated, the impact of the ��/��� ratio on the ��� estimation, as 

well as the algorithm´s efficiency were evaluated using 640 simulated absorption curves 

(Figure 4-11). The ��� estimation error decreases to around 1% for ��/��� ratios higher 

than 2.5 (Figure 4-11). This ratio must be higher than 2 to ensure errors lower than 10 % 

(Cerri et al., 2016). For ��/��� ratios lower than 2, the error of ��� estimation increases 

exponentially and the algorithm tends to under estimated the real value of ��� (Data not 

show). Verification of the ��/��� ratios is crucial to analyze and design bioreactor since 

the ��� estimation would be limited by the system and would be under estimated. 

Actually, although most absorption curves fall in the accuracy zone of validation curves 

(Vertical line Figure 4-11), 2 out of 80 estimated k�a were not considered accurate and 
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they should be repeated using faster sensor. In turn, accurate k� estimations require k�/k�a 

ratios higher than 4 (Figure 4-11). 

 

Figure 4-11 Effect of the ��/��� ratio on the estimations of ��� and ��. The average error 
of ��� estimation is represented by solid lines and the average error of �� estimation is 
represented by dashed lines. The ��/��� ratio of 80 absorption experimental curves, which 
were used to validate the algorithm, are represented by vertical lines. 

4.4 CONCLUSIONS 

A second-order automated method for data treatment is presented here to estimate reliably 

��� and �� values in conventional bioreactors operating in a wide range of hydrodynamic 

conditions. The algorithm achieves accurate estimations of ��� for ��/��� ratios larger 

than 2, while accurate estimations of �� require ��/��� ratios higher than 4. Care must be 

taken when ��/��� ratios are smaller than 2, since ��� estimation errors increase 

exponentially. The proposed method can analyze hundreds of curves in few seconds, 

consequently it can be used to design a high throughput ��� estimation system to optimize 

oxygen delivery in highly demanding bioreactors. 



 

 

98 

5. CHAPTER IV: OPTIMIZATION OF OXYGEN TRANSFER IN 

LABORATORY STIRRED TANK BIOREACTOR 

Paulina Torres1, Diego de la Vega1, Marcel Otavio Cerri2, J. Ricardo Pérez-

Correa1 and Eduardo Agosin1. 

1 Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia 

Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile 

2 Department of Bioprocesses and Biotechnology, Faculty of Pharmaceutical Sciences, 

Univ Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, SP, Brazil, CEP 14801-902. 
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5.1 INTRODUCTION 

Oxygen is an essential substrate for aerobic bioprocesses.  It allows the complete oxidation 

of the carbon source, maximizing the energy efficiency of the microorganism (Garcia-

Ochoa & Gomez, 2009; Sonnleitner, 2016; Wang et al., 2009). Oxygen is commonly 

supplied from the gas phase, where it is transferred to the liquid and, once dissolved, it is 

consumed by the cells. Nevertheless, oxygen solubility is low and oxygen demand 

increases over time in high cell density cultures (Garcia-Ochoa et al, 2010). Oxygen 

limitation in microbial cultures promotes the formation of inhibitory by-products, which 

prevents reaching the maximum permissible biomass (Adelantado et al., 2017; Baumann et 

al., 2010; Enfors, 2011; Garcia-Ortega et al., 2017; Villadsen & Patil, 2007). In fact, the 

oxygen transfer rate (OTR) is considered one of the main limiting factors in cultures of 

different microorganisms, e.g. Escherichia coli (Henes & Sonnleitner, 2007), Pichia 

pastoris (Henes & Sonnleitner, 2007; Looser et al., 2015), and filamentous 

microorganisms, to name a few (Garcia-Ochoa et al., 2010). As a consequence, the 

bioreactor type and its mechanical design, together with an adequate control of dissolved 

oxygen in cell cultures is crucial to achieve high cell densities and volumetric 

productivities (Garcia-Ochoa et al., 2010; Yoshida, 2017). 
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OTR is typically described as the product of a volumetric mass transfer coefficient, kLa, 

and the concentration gradient, based on the two-film theory of Whitman (Whitman, 1924) 

(Equation 5-1). 

 

��� =
���

��
= ��� ·(��

∗ − ��)                                                       (5 − 1) 

Where, ��* is the oxygen equilibrium concentration and �� is the actual dissolved oxygen 

concentration in the liquid phase of the bioreactor. 

OTR mainly depends on the kLa coefficient at a specific oxygen saturation 

condition (Equation 5-1) and for this reason, it is a crucial factor to characterize the oxygen 

transfer capability of gas-liquid bioreactors (Garcia-Ochoa & Gomez, 2009; Labík et al., 

2017; Suresh et al., 2009). Actually, its measurement and/or prediction is used to design, 

operate and scale stirred tank bioreactors (Linek et al., 1993; Suresh et al., 2009). 

Different strategies to increase OTR have been used (Garcia-Ochoa & Gomez, 

2009; Maclennan & Pirt, 1966; Siegell & Gaden, 1962). Some researchers have modified 

the bioreactor configuration - impellers, sparger and geometrical dimensions - in order to 

increase kLa (Arjunwadkar et al., 1998; Buffo et al., 2016; Vitae, 2011; Yang et al., 2012); 

others have focused on increasing saturation oxygen concentrations (Equation 5-1) by 

increasing oxygen partial pressure, either enriching the gaseous phase with pure oxygen 

(Flickinger & Perlman, 1977; Nielsen et al., 2002; Yamada et al., 1978) or pressurizing the 

bioreactor (Onken & Liefke, 1989; Yang & Wang, 1992). However, when strategies using 

maximum capable saturation oxygen concentration are not sufficient to reach the desired 

biomass concentration, it is necessary to focus on ��� optimization. For this purpose, 

several impeller configurations have been evaluated. For example, Buffo et al., 2016 

demonstrated that the combination of two types of impellers, i.e. Rushton (RT) and Ear-

Elephant (EE), provided several benefits to OTR with respect to RT alone. In fact, EE 

generates a differential axial/radial flow – contrary to only radial flow for RT –, which 

results in a circular path that increases gas hold-up and enhance bubble fragmentation, 

resulting in higher mass transfer area. On the other hand, Gelves, 2013 demonstrated that 

the Triple Spin Diffuser (TSD) could increase up to 6-fold the OTR in a pilot stirred tank 
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bioreactor (0,18 m3 working volume) thanks to the  axial/radial forces generated, which 

improves air homogenization throughout the whole volume and allows to reduce poor 

mixed lower regions of the bioreactor. Nevertheless, the combinations of both tools, 

impeller and sparger configurations, have not been simultaneously evaluated, so far.  

In this work, we have optimized the oxygen transfer rate in 1-L bioreactors, using 

different impeller-sparger configurations and compared them with conventional ones. 

Finally, we proposed a decision tree to select the best configurations under different culture 

conditions to maximize the oxygen transfer rate in bioreactors. 

5.2 MATERIAL AND METHODS 

5.2.1 Bioreactor configuration. 

In-house built 1-L bioreactors with 0.6 L of operational volume, equipped with a 

condenser, two types of diffusers, a stirrer, and interchangeable dual-impeller 

configurations were employed throughout this work. Agitation was driven by brushless 

VEXTAs DC motors, AXH Series (Oriental Motor, Japan). For monitoring and control, a 

SIMATIC PCS7 distributed control system (Siemens, Germany) was used. DO 

concentration and temperature were measured with fast response probes Oxymax COS22D 

(< 60 s) (Endress+Hauser, Switzerland). Air and N2 additions were measured and 

controlled with mass flowmeters (FMA-A2407, Omega Engineering, USA). 

Each bioreactor consists of a double-jacketed cylindrical vessel with an internal 

diameter of 9 cm and a height of 20 cm. The vessel was equipped with four equally spaced 

vertical baffles of 0.9 cm width and 1 mm thickness. Two diffuser configurations (4.5 m) 

were evaluated; a classic Simple Diffuser (SD) and a Triple Spin Diffuser (TSD). Both 

were located below the lowest impeller. In total, three types of impeller were tested: two 

three-blade Elephant Ear impellers (EE) operated in Down-Pumping mode (EEDP) and 

Up-Pumping mode (EEUP), respectively; and a Rushton Turbine (RT). With these three 

impellers, four different dual-impeller combinations were tested for both diffusers (Buffo 

et al; 2016): RT-RT, RT-EEDP, EEDP-RT and EEDP-EEUP. The diameter of all 

impellers was 3 cm and the latter were separated by 3 cm, with the lowest impeller situated 

3 cm above the bottom of the vessel. 
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5.2.2 Fluids 

Three liquid mixtures were employed to simulate the effect of the increasing biomass 

during the cultivation time course: distilled water (W: µ = 0.87 mPa·s) and two glycerol 

solutions: GS1, 30 % glycerol (v/v) with µ = 3.23 mPa·s; and GS2, 50 % glycerol (v/v), 

with µ = 6.60 mPa·s. Compressed air and 99.9 % nitrogen (Indura, Santiago, Chile) were 

used to determine kLa. Dynamic viscosities of the solutions were determined from 

rheograms obtained at 25ºC, using a digital, concentric-cylinder rheometer (DVIII Ultra, 

Brookfield Engineering Laboratories, MA, USA). 

5.2.3 Experimental Design  

In total, eight different dual impeller-diffuser configurations were tested, with gas flow 

rate, agitation and viscosity, as operational variables. To assess the effect of gas flow rate 

and agitation, a 22 full factorial design with a central point was carried out, following the 

methodology described in Montgomery & Runger, 2003. The experimental range of 

operational parameters was as follows: agitation, between 200 to 800 rpm, with three 

different levels (200, 500 and 800 rpm); and aeration between 0.5 to 2.0 VVM, also with 

three levels (0.5, 1.25 and 2.0 VVM) (Table 5-1). To assess the effect of the viscosity, 

three liquid mixtures were prepared: W, GS1 and GS2, as previously described. These 

three mixtures were selected as they mimic the viscosity of a fed-batch culture of Pichia 

pastoris from 0 to 170 OD, approximately. All the experimental combinations are 

summarized in Figure 5-1. 

  

Table 5- 1 Original values and corresponding coded values of the experimental design. 

Independent variables 
Coded and natural values 

-1 0 +1 
Agitation 
(RPM) 

X1 200 500 800 

Aeration 
(VVM) 

X2 0.5 1.25 2.0 
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This design required a total of fifteen experiments, which were carried out in triplicate, 

with a random order, and the central point was performed in quintuplicate. To estimate the 

response of the dependent variable, a second-degree polynomial (Equation 5-2) was 

estimated, using the software STATGRAPHICS Plus 5.1 (Statpoint Technologies, Inc., 

VA, USA). 

� =  ��  + �� ·��  + �� ·��  + ��� ·�� ·��                   (5 − 2) 

where Y is the predicted response;  X1 and X2 are independent variables;  b0 is the mean 

value of the response;  b1 and b2 are linear effects;  and b12 is an interaction term.  

5.2.4 Methods for estimation of kLa considering system delay 

Experimental absorption curves were generated by the gassing-out method (Garcia-Ochoa 

& Gomez, 2009; Linek et al., 1987). The DO concentration in the fluid was measured 

continuously, after a step change in the inlet gas. The oxygen sensor was installed in the 

bioreactor at the same height of the bottom impeller and close to the vessel wall (1 cm). 

The sensor was calibrated and then stabilized for 4 hours under air saturation conditions. 

Desorption was carried out by bubbling pure nitrogen, and absorption by bubbling air; in 

both cases, the gas flow rate and the agitation were kept constant. Estimation of kLa 

considering system delay was quantified using an automated algorithm, described by 

Torres et al., 2016. 
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a) 

                        

b)  

 

c) 

 

Figure 5-1 Summary of evaluated mechanical conditions - Difusser a) and impeller b), 
which were compared in different hydrodynamic conditions based on experimental design 
c). 

5.2.5 Sensitivity analysis and decision tree. 

In order to quantify the relative impact of agitation and aeration on the different dual-

impeller-diffuser configurations, a sensitivity analysis was carried out in the central point 

of the experimental design, i.e. 500 rpm and 1.25 VVM. The relative sensitivity was 

estimated for agitation and aeration in the three fluids, with Equation 5-3: 
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��(���) =
��

���
∙

����

���
                                                                 (5 − 3) 

Where, �� is the relative sensitivity and �� is the normalized value of agitation or aeration.  

Once all information was collected, a decision tree was constructed to select the best 

configuration, based on the viscosity and operational parameters’ range. Since viscosity 

was the more influential parameter, it was the first criterion to consider. The second 

criterion dealt with the range of operational parameters (aeration and agitation). The third 

criterion was related with which of the operational parameters was limiting.  

In the case that none of the operational parameters was limiting, the best configuration 

was the one achieving the highest kLa. If one or both parameters were limiting, the decision 

to select the best configuration considers the central point kLa value and the sensitivity 

analysis. 

5.3 RESULTS AND DISCUSSIONS 

All tested configurations showed reasonable values for the oxygen transfer coefficient 

(kLa) in a stirred tank reactor, ranging from 0.004 s-1 to 0.085 s-1 (Buffo et al., 2016; 

Bustamante et al, 2013; Cárcamo et al., 2014; Moucha et al, 2012) (Figure 5-2). Our 

results confirmed previous reports (Buffo et al., 2016; Garcia-Ochoa & Gomez, 2009; 

Gelves, 2013) on the critical influence of hydrodynamics and mechanical conditions on kLa 

(Figure 5-2). 
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Figure 5-2. Impact of viscosity on the kLa reached at 800 RPM and 2 VVM according to 
the impeller-sparger configurations –TSD (a) and SD (b)-. Three increasing viscosities 
were evaluated: 0.87 cP (water, black), 3.23 cP  (GS1, dark gray) and 6.60 cP (GS2, light 
gray).       

, was the best configurations in relation with viscosity of the culture medium. 

5.3.1 Effect of diffusers on kLa. 

All these experiments were conducted with an RT-RT impeller configuration. Triple Spin 

Diffuser (TSD) increased kLa up to 8-fold in 1-L bioreactor, depending on the operational 

conditions and viscosity (Figure 5-3). TSD was particularly advantageous compared to a 

Simple Diffuser (SD) for slow agitation and high viscosity systems, suggesting that 

axial/radial flow could counteract the fluid resistance to gas dispersion and 

homogenization. Nevertheless, kLa increased less than 2 fold in a 1-L bioreactor with TSD 

at high agitation and aeration rates. Under these conditions, the axial force is 

counterbalanced by the corresponding radial force, reducing the differences of both 

diffusers (Figure 5-3). Poorly mixed regions were significantly reduced with TSD in the 

1L bioreactor, as suggested by preliminary results of E. coli fermentations, where the 

formation of secondary products, such as acetate or ethanol, were reduced by 68% (data 

not shown). 
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Figure 5-3 Impact of TSD sparger configuration using RT-RT impeller on experimental 
kLa values reached within the experimental range of operational parameters. Three 
increasing viscosities were evaluated: 0.87 cP (water, black), 3.23 cP (GS1, dark gray) and 
6.60 cP (GS2, light gray). 

 

5.3.2  Effect of impellers on kLa. 

The impact of impellers on kLa was strongly dependent on the viscosity and operational 

parameters’ range when a Simple Diffuser (SD) sparger was employed (Figure 5-4 a). 

Conventional impeller configuration (RT-RT) was the most efficient for average viscosity 

cultures (Figure 4a). For high viscosity cultures, we confirmed the data from Buffo et al, 

2016, about the advantage of RT-EEDP configuration on kLa. However, we could not 

reproduce the positive impact of EEDP-EEUP reported in the same study for high agitation 

(800 rpm) and aeration levels (2VVM). We found the highest kLa for 500 rpm and 1.25 

VVM operation, the central point of our experimental design (Figure 2). Nevertheless, 

EEDP-EEUP configuration might be optimal for a system operating with different 
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operational parameters than ours, e.g. agitation up to 1000 rpm and aeration lower than 

1.25 VVM (Buffo et al., 2016; Bustamante et al., 2013; Zhu et al., 2009). 

On the other hand, when a TSD sparger was employed with RT-RT, kLa was 40% higher 

than any other impeller configurations (Figure 4b). This could be attributed to the 

axial/radial flow resulting from TSD, since the circular path increased, decreasing the 

benefits of an EE impeller, like bubble fragmentation. 

 

          
a) 

 
b) 

 
  
  

Figure 5-4 Impact of impeller configurations with Simple Diffuser (SD) a) and Triple Spin 
Diffuser (TSD) on the highest kLa value values reached at 800 RPM and 2 VVM. 
Differences (in %) were determined with RT-RT impeller in both cases. Three increasing 
viscosities were evaluated: 0.87 cP (water, black), 3.23 cP (GS1, dark gray) and 6.60 cP 
(GS2, light gray).  
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5.3.3 Effect of operational parameters on kLa. 

The role of agitation and aeration on kLa of the different dual-impeller-diffuser 

configurations was assessed (see Supplementary material S5-1 for experimental design), 

and their relative importance was quantified by sensitivity analysis  (Figure 5-5). Agitation 

was the most sensitive parameter affecting kLa for almost all impeller combinations and 

viscosities. However, if agitation is much higher than aeration, or vice versa, kLa 

enhancing strategies should consider only one of them. For example, under high viscosity 

conditions, TSD RT-RT will enhance OTR only with higher agitation; or in low viscosity 

cultures, TSD EEDP-RT will enhance OTR only with higher aeration (Figure 5-5). Since 

TSD is more sensitive to aeration than SD, it is more appropriate for cultures where 

agitation is limiting, like large-scale reactors. 

 

 

Figure 5-5 Sensitivity analysis for agitation and aeration in 500 rpm and 1.25 VVM. Three 
increasing viscosities were evaluated: 0.87 cP (water, black), 3.23 cP (GS1, dark gray) and 
6.60 cP (GS2, light gray). a) Agitation sensitivity for all impeller configurations using 
Triple Spin Diffuser (TSD) b) Agitation sensitivity for all impeller configurations using 
Simple Diffuser (SD) c) Aeration sensitivity for all impeller configurations using TSD d) 
Aeration sensitivity for all impeller configurations using SD. 
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5.4 OUTLOOK  

Oxygen transfer rate has been widely studied to improve high cell density cultures in 

bioreactors (Abbas et al, 2007; Abbott et al., 2013; Buffo et al., 2016; Garcia-Ochoa & 

Gomez, 2009). In this work, we showed that the optimal mechanical configuration, i.e. the 

best impeller-sparger combination to achieve the highest kLa, was strongly dependent on 

the viscosity and operational parameters’ range. 

Culture viscosity was the most influential parameter in the selection of the best 

possible configuration (Figure 5-2). Our results showed that TSD is more advantageous 

when high viscosities are reached by the culture medium; for low viscosities, however, 

some SD configurations have a similar performance (Figure 5-2). A decision tree is 

proposed for the selection of the optimal configuration, based on viscosity and operational 

parameters (Figure 5-6).  

 

 
Figure 5-6 Decision tree to select best configuration based on viscosity and operational 
parameter (OP) range of agitation and aeration. OP range similar : 200 to 800 RPM and 0.5 
to 2 VVM. 
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6. CONCLUSIONS AND FUTURE PERSPECTIVES 

The results and knowledge obtained in this thesis can be used as a roadmap to 

improve recombinant protein production in Pichia pastoris through bioprocess engineering 

and metabolic modeling. Although we used a P. pastoris strain expressing constitutively 

thaumatin, a sweet protein, as a model, the developments achieved in this thesis are also 

applicable for the expression of other recombinant proteins of interest. 

First, we developed an integrated framework for dissecting the metabolic effects of 

key operational parameters – μ and DO – in a recombinant thaumatin-producing P. 

pastoris strain. For this purpose, we implemented an experimental design to calculate the 

statistically significant effects from multiple chemostat data, which was later 

contextualized using a curated genome-scale metabolic model. Our results revealed a 

negative effect of the oxygenation on the specific product formation rate, and a positive 

effect on the biomass yield. Notably, we identified a novel synergistic effect of both 

parameters on the specific product formation rate. Finally, model predictions indicated an 

opposite relationship between the oxygenation level and growth-associated ATP 

requirement, suggesting tighter metabolic constraints under low oxygenation. However, 

our results also indicated that the extra metabolic capacity was not directly transferred to 

thaumatin production or associated to substantial a carbon redistribution, which suggests 

DO plays a more complex regulatory role likely related to changes in cell composition 

and/or transcriptional regulation (Gasser et al. 2007).  

Furthermore, we discussed the importance of carefully analyzing the underlying 

intracellular flux distributions, which is essential to properly understand the metabolic 

mechanisms behind a determined phenotype. Nonetheless, this manually-curated version 

should be expanded to improve metabolic predictability of P. pastoris in other different 

carbon sources, like glycerol and methanol. In addition, future versions will need to take 

into account other processes, e.g. protein folding, secretion effi ciencies and glycosylations. 

Second, we assembled a robust dynamic genome-scale metabolic model for 

glucose-limited, aerobic cultivations of P. pastoris to simulated dynamic conditions – 

batch and fed-batch systems. The assembled platform can fit several datasets with 

minimum significance, sensitivity and identifiability problems in its parameters. Moreover, 
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if properly trained, it can be used to predict bioreactor dynamics and to determine 

metabolic and process engineering strategies to improve the production of a target 

compound.  

Two limitations of our approach are worthy to mention. First, the model does not 

consider the calibration of gaseous mass balances of CO2 and O2. It predicts their specific 

production - and consumption – rates, using the genome-scale model instead. Despite the 

good predicting capability of the model for these compounds, it is desirable to include 

them in future versions of the platform, since CO2 formation can adjust the flux through 

reactions that use or produce this compound and dissolved oxygen concentration has a 

strong impact on process performance, as demonstrated in the first part of this thesis. 

Moreover, in order to broaden its applications in other conditions relevant for P. pastoris, 

the model could be calibrated with other carbon sources and feeding strategies such as 

glycerol batch phase followed by methanol induction during the feed phase.  

Finally, an optimization of Oxygen Transfer Rate (OTR) in 1-L reactors was 

carried out to improve high-density cultures in bioreactors. For this OTR’s optimization, 

we firstly discussed the formulation of an automatic algorithm to estimate ���. Then, once 

the algorithm was validated, we presented a road map to optimize oxygen transfer rate in 

1-L bioreactor using different impeller-sparger configurations. First, we characterized all 

configurations in different hydrodynamics conditions, and analyzed the relative importance 

of operational parameters. Our results showed that the optimal mechanical configuration, 

i.e. the best impeller-sparger combination to achieve the highest kLa, was strongly 

dependent on the viscosity and operational parameters’ range. In fact, culture viscosity was 

the most influential parameter in the selection of the best possible configuration, where 

TSD was more advantageous. Then, a decision tree is proposed for the selection of the 

optimal configuration, based on viscosity and operational parameters. Nevertheless, it is a 

first approach in 1-L bioreactors and it is recommended to increase operational parameters’ 

range, and analyze higher viscosities and Non-Newtonians fluids. Moreover, in order to 

broaden its applications in other reactors, this characterization could be carried out in other 

bioreactors, changing the geometry and scale.  

 Overall, this thesis attempts to analyze and understand metabolic effects using 

rational design of experiments and metabolic modeling. It provides consensus genome-
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scale metabolic models for glucose-limited media in dynamic and continuous culture 

conditions of Pichia pastoris. Furthermore, we presented an automatic algorithm to 

estimated kLa values and a road map to optimize kLa in bioreactor. Finally, this systematic 

analysis in cooperation with an optimization of oxygen transfer in bioreactor could be used 

to improved recombinant protein production in Pichia pastoris. 
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8. SUPPLEMENTARY MATERIAL 

S 1-1 Estimation of thaumatin production in P. Pastoris 

We carried out an estimation of thaumatin production (���.�� ��.�� ��.��;�� =

36,17  (� − ���) ⁄ ��) in P. pastoris (���.�� ��.�����.���;�� = 25,94  (� −

���) ⁄ ��)(Jordà et al., 2012) in aerobic conditions. For this, we used following 

assumptions: 

- A constitutive promoter is used, so protein production is parallel to biomass 

generation. Thaumatin yield and biomass yield as a whole can not be higher than 

the production of maximum thaumatin and maximum biomass; i.e. when it is a 

single product. 

- CO2 production in base of glucose consumption, can be lower or equal to 4 (��� ���) ⁄

(������  )(0,67 (� − ��� ���) ⁄ (� − ������)). This value corresponds to the amount 

of CO2 produced, if glucose is only consumed via glycolysis, TCA and oxidative 

phosphorylation. 

- All yield have to be higher or equal to zero. 

Given this, the first thing that we estimated would be the maximum yields of biomass 

and thaumatin, that is, as unique products. For this, an elemental balance of C, H, N 

and O was used and, additionally, the use of redox potential. 

1. Maximum biomass yield (��
��). 

���� + ��� ∙��� + ��� ∙�� → ��� ∙���.����.�����.��� + ��� ∙��� + ��� ∙��� 

��� = 0,015  
� − ��� ���

� − ��� ����  

��� = 0,53
 � − ��� ��

� − ��� ����  

��
�� = 0,46  � − ��� �������

� − ��� ����  

��� = 0,58 
� − ��� ���

� − ��� ����  

��� = 0,62 
� − ��� ���

� − ��� ����  
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2. Maximum thaumatin yield (��
��) 

���� + ��� ∙��� + ��� ∙�� → ��� ∙���.����.����.�� + ��� ∙��� + ��� ∙��� 

��� = 0,44 
� − ��� ���

� − ��� ����  

��� = 0,59
 � − ��� ��

� − ��� ����  

��
�� = 0,70 � − ��� ���������

� − ��� ����  

��� = 0,30
� − ��� ���

� − ��� ����  

��� = 0,99 
� − ��� ���

� − ��� ����  

After this, the following restrictions are assumed for the case of yield estimation for 

thaumatin and biomass as a whole: 

General equation: 

���� + ��� ∙��� + ��� ∙��

→ ��� ∙���.����.�����.��� + ��� ∙���.����.����.�� + ��� ∙��� + ���

∙��� 

- Restrictions: 

��� ≤ 0,70 � − ��� ���������
� − ��� ����  

��� ≤ 0,46  � − ��� �������
� − ��� ����  

��� ≤ 0,67
� − ��� ���

� − ��� ����  

Then if it is assumed that the carbon flow towards the biomass is not affected (worse 

situation for the production of protein), the following results are obtained: 

��� = 0,12 
� − ��� ���

� − ��� ����  

 ��� = 0,49
 � − ��� ��

� − ��� ����  
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��� = 0,46  � − ��� �������
� − ��� ����  

��� = 0,09 � − ��� ���������
� − ��� ����  

��� = 0,46
� − ��� ���

� − ��� ����  

��� = 0,71 
� − ��� ���

� − ��� ����  

From this we can extract that thaumatin yield by glucose will be: 

��� = 0,09 � − ��� ���������
� − ��� ���� = 74

�����������
�����

�  

and biomass yield: 

��� = 0,46  � − ��� �������
� − ��� ���� = 0,53

���������
�����

�  

If this is coupled to a dynamic model coupled with assumptions based on 

experimentation already carried out: 

- It is assumed that the growth rate may be affected, which means that 

���� = 0,2  1 ⁄ ℎ 

- It is assumed a fed batch culture, with decreasing μ between 0.1 to 0.05 1/h. 

- It is assumed a batch culture, with 20 g/L of glucose. 

- 80 hours of simulation are considered, given the useful volume of reactors and 

biomass reached by the microorganism. 

The simulation was carried out in Matlab software, which yields a productivity 

225
mg���

L ·h� , which corresponds to 250 times more than what Masuda et al. 

(Masuda et al., 2010) and 180 times more than what Moralejo et al.( Moralejo et al., 

2000), which corresponds to a very low efficiency. 
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S 2-1. Plasmids construction and Pichia pastoris transformation 

Plasmid construction 

We constructed two plasmids using the commercial recombinant vectors pGAPZB 

(Invitrogen, Carlsbad, CA, USA): one for integrating the thaumatin gene (pGAPZB-TAU) 

and the other to revert the auxotrophy of the strain P. pastoris GS115 (PGAPZB-HIS4) 

(Invitrogen, Carlsbad, CA, USA). 

PCR amplification of the his4 fragment was performed using genomic DNA from 

strain P. pastoris X-33 (Invitrogen, Carlsbad, CA, USA). The genomic DNA was extracted 

using Wizard Genomic DNA purification kit according to the manufacturer’s instructions 

(Promega, Madison, WI, USA). PCR amplification of the DNA fragments was performed 

by Gibson assembly in 35 PCR cycles using Phusion High-Fidelity DNA Polymerase 

(ThermoFisher, Waltham, MA, USA). All PCR products were treated with DpnI enzyme 

to eliminate original vector residues and purified by gel extraction using the Qiaquick Gel 

Extraction kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. The 

purified genes fragments and vectors were mixed based on their molar ratios in a final 

volume of 5 μL containing 100 ng of total DNA. This DNA mix was added to 15 μL of 

1.33X master mix (5X isothermal mix buffer, T5 exonuclease 1 U μL-1, Phusion DNA 

polymerase 2U/μL, Taq DNA ligase 40 U μL-1 and milli-Q purified water) and the reaction 

mixture was incubated at 50 °C for 1 h. Finally, 10 μL of the reaction mix were used 

directly to transform chemically competent E. coli TOP 10 cells. The cells were grown at 

37 °C in low salt-LB medium containing 25 μg mL−1 zeocin for selection of clones 

transformed with both vectors.  

Transformation of P. pastoris  

P. pastoris GS115 wild type strain was used as host. Transformation was performed in two 

steps. The first transformation was performed using the vector pGAPZB-TAU and the 

AvrII restriction enzyme to linearize and introduce the latter vector into the cells by 

electroporation (Gasser et al. 2006). In this case, zeocin (100 μg mL−1) was used for the 

selection of positively transformed clones. Once positive clones were obtained, the second 
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transformation was carried out using the empty vector PGAPZB-HIS4. In this case, the 

XbaI restriction enzyme was used to linearize the vector. Zeocin-supplemented YNB 

plates (100 μg mL−1 zeocin) were employed for the selection of positively transformed 

clones. All transformations were verified by genomic sequencing (Macrogen Inc., Seoul, 

Korea).  
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S 2-2. Bioreactor and culture medium.  

The strain was cultivated in glucose‐limited chemostat cultures at different dilution rates 

and dissolved oxygen. Overall, seven different experimental conditions were evaluated 

following a Doehrlet experimental design. Continuous cultures were performed at a 

working volume of 1 L in 2-L benchtop bioreactors (Sartorius AG, Göttingen, Germany) 

using peristaltic pumps (Ismatec, IDEX Health & Science, Germany) to control the feeding 

and at 1.2 bar total pressure. Once the batch phase was concluded, the continuous phase 

was initiated at the appropriate specific growth rate and dissolved oxygen (DO) level. DO 

was maintained using a mixture of three gases; air, pure nitrogen and pure oxygen 

depending on the DO set point. In all experimental conditions, the stirring rate was set to 

700 rpm, aeration to 1 VVM (1 L min-1), and the temperature and pH were respectively 

kept at 25 °C and 5.0. Off‐gases were cooled in a condenser at 4 °C and desiccated in two 

silica gel columns. CO2 and O2 abundances were analyzed through BCP‐CO2 and BCP‐O2 

Sensors (BlueSens gas sensor GmbH, Herten, Germany). Each dilution rate was kept for at 

least five residence times. 

Batch medium was composed of (per liter): 39.9 g glycerol, 1.8 g citric acid, 12.6 g 

(NH4)2HPO4, 0.022 g CaCl2·H2O, 0.9 g KCl, 0.5 g MgSO4·7H2O, 2 mL biotin (0.2 g L−1), 

4 mL PTM1 trace salts stock solution. Chemostat medium composition was composed of 

(per liter): 50 g glucose, 0.9 g citric acid, 3.45 g (NH4)2HPO4, 0.01 g CaCl2·H2O, 1.7 g 

KCl, 0.65 g MgSO4·7H2O, 1 mL biotin (0.2 g L−1), 1.6 mL PTM1 trace salts stock 

solution, and 0.2 mL of antifoam Glanapon 2000 (Bussetti & Co GmbH, Vienna, Austria). 

HCl 25% was used to reach pH 5.0. 
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S 2-3. GSMM tailoring for describing aerobic growth on glucose 

The iMT1026 v3.0 genome-scale metabolic reconstruction from Tomàs-Gamisans et al. 

(2017) was employed to describe the metabolism Pichia pastoris. In order to accurately 

represent the central carbon metabolism behavior of this yeast, we systematically adapted 

the reconstruction to represent and capture known metabolic features. This process was 

composed of two main steps: 1) Blocking and modification of reaction directionalities 

based on published data (e.g., transcriptomics, proteomics, thermodynamics, etc.), and 2) 

Modification of reaction directionalities based on topological considerations, i.e., removal 

of thermodynamically infeasible internal loops (Saa & Nielsen, 2016). The details of each 

step are detailed below. 

The first step leveraged the abundant experimental omics data available for this 

yeast under glucose-limited conditions (Clasquin et al., 2011; Gasser et al., 2007; 

Krivoruchko et al., 2014; Rußmayer et al., 2015; Zhang et al., 2017). Application of this 

data greatly constrained the genome-scale metabolic model (see Table 8-1 for the applied 

constraints), significantly impacting the flux distribution predictions (see supplementary 

material 2-6 for main impacts). The second step involved the modification of reaction 

directionalities based on flux simulations imposing the loopless flux condition. To this 

task, the Fast-SNP algorithm (Saa & Nielsen, 2016) was used using experimental training 

data (i.e., fluxomic constraints) under glucose-limited conditions. Briefly, three flux 

scenarios were simulated: 1) aerobic growth in glucose with qS values between 0.025 to 

0.275 mmol gDWC
-1 h-1 and conventional exchange directions, 2) 11 aerobic growth 

conditions on glucose without secondary product formation (i.e., arabitol and ethanol) 

(Adelantado et al., 2017; Baumann et al., 2011; Carnicer et al., 2009, 2012; Garcia-Ortega, 

Valero, & Montesinos-Seguí, 2017), and 3) 15 aerobic growth conditions on glucose with 

formation of secondary products (Adelantado et al., 2017; Baumann et al., 2011; Carnicer 

et al., 2009, 2012; Garcia-Ortega et al., 2017) (Table 8-2). Reactions that had the same 

directionality across all the conditions were set to irreversible. The definitive list with the 

constraints on the GSMM is shown in Table 8-3. 
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Flux simulations  

Simulations were performed using the Constraint-Based Reconstruction and Analysis 

(COBRA) toolbox (Schellenberger et al., 2011) in MATLAB 2013 (Mathworks, Natick, 

MA, USA). Flux predictions were performed using parsimonious Flux Balance Analysis 

(pFBA). Topological modification of the reaction directionalities was performed using the 

Fast-SNP algorithm (Saa & Nielsen, 2016). Finally, Gurobi 2016 was employed for the 

required linear and mixed-integer linear optimizations. 

Table 8- 1 Summary of reaction modifications based on experimental and literature data. 

Reaction ID Stoichiometric equation Gene Comment Action 

Exchange reactions 

Ex_glyc gly =>  Not supplied in the 
medium 

Blocked 

Ex_etoh etoh =>  Not supplied in the 
medium 

Blocked 

Ex_abt abt =>  Not detected in the 
medium 

Blocked 

Ex_fab fab =>  Protein not 
expressed 

Blocked 

Ex_pyr pyr =>  Present in the 
medium 

Open 

Ex_cit cit =>  Present in the 
medium 

Open 

Cytoplasm 

GLUK glc + atp => h + adp + g6p PAS_chr4_0624 Duplicated reaction Blocked 

MDH mal + nad + h <=> nadh + oaa PAS_chr4_0815 

Part of the 
glyoxylate cycle 
(not needed for 
glucose growth) 
(Rußmayer et al., 
2015b) 

Reversibility 
constrained 

FBA3 s17bp <=> dhap+e4p 
PAS_chr1-
1_0072 

Used in the 
direction S17BP in 
ribogenesis 
(Clasquin et al., 
2011; Rußmayer et 
al., 2015b) 

Reversibility 
constrained 
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SULR 
3 h2o + h2s + 3 nadp <=> 5 h + 
3 nadph + so3  

(PAS_chr4_0369 
or 
PAS_chr3_1084) 

Thermodynamically 
favorable in the 
reverse direction 
(dG=103 KJ/mol)  

Reversibility 
constrained 

MMSAD3 
nad + coa + msa => co2 + nadh 
+ accoa 

 

Not considered for 
lipid synthesis 
(Krivoruchko et al., 
2014) 

Blocked 

Mitochondrion 

MDHm mal + nad + h <=> nadh + oaa 
PAS_chr2-
1_0238 

Part of the 
glyoxylate cycle 
(not needed for 
glucose growth) 
(Rußmayer et al., 
2015b)  

Reversibility 
constrained 

ME1m nad + mal => pyr + co2 + nadh PAS_chr3_0181 
Inactive during 
glucose growth 
(Zhang et al., 2017) 

Blocked 

ME2m 
nadp + mal => pyr + co2 + 
nadph 

PAS_chr3_0181 
Inactive during 
glucose growth 
(Zhang et al., 2017) 

Blocked 

Peroxisome 

AOD meoh + o2 => h2o2 + fald 
(PAS_chr4_0821 
or 
PAS_chr4_0152) 

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

DAS fald + xu5p => g3p + dha 
(PAS_chr3_0832 
or 
PAS_chr3_0834) 

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked  

DHAKx atp + dha => h + adp + dhap PAS_chr3_0841  

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 
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FBAx fdp => g3p + dhap 

(PAS_chr1-
1_0072 or 
PAS_chr1-
1_0319) 

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

FBPx h2o + fdp => pi + f6p PAS_chr3_0868  

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

SHBPH h2o + s17bp => pi + s7p 
PAS_chr2-
2_0177  

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

CATp 2 h2o2 => o2 + h2o 
PAS_chr2-
2_0131 

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

FALDH2 nad + hmgth => ndh + sfglutth PAS_chr3_1028  

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

SFGTH 
h2o + sfglutth => h + gthrd + 
for 

PAS_chr3_0867 

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

FDH nad + h + for => co2 + nadh PAS_chr3_0932  

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

CSp 
h2o + accoa + oaa => coa + h + 
cit 

PAS_chr1-
1_0475  

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 



 

 

141 

ICLx icit => glx + succ 
PAS_chr1-
4_0338  

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

MDHp nad + mal => oaa + h + nad PAS_chr4_0815  

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

ASPTAp ak + asp <=> oaa + glu PAS_chr4_0974 

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

TKT1x xu5p + r5p => g3p + s7p 

(PAS_chr1-
4_0150 or 
PAS_chr3_0834 
or 
PAS_chr3_0832) 

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

CATp 2 h2o2 => o2 + h2o 
PAS_chr2-
2_0131 

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 

RPIx r5p => ru5p PAS_chr4_0212  

Absent in 
peroxisomal 
fraction during 
glucose growth 
(Rußmayer et al., 
2015b) 

Blocked 
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Table 8- 2 Constraints used to simulate the different scenarios for the modification of 
reaction directionalities. 

Conditions 
Flux 

bounds 

Exchanges 
References 

Glucose Arabitol Ethanol CO2 O2 Biomass 

S
ce

n
ar

io
 1

 

1 
LB -0.025 0 0 0 -1000 0   

UB -0.025 0 0 1000 0 1000 

 

2 
LB -0.05 0 0 0 -1000 0 

 

UB -0.05 0 0 1000 0 1000 

 

3 
LB -0.075 0 0 0 -1000 0 

 

UB -0.075 0 0 1000 0 1000 

 

4 
LB -0.1 0 0 0 -1000 0 

 

UB -0.1 0 0 1000 0 1000 

 

5 
LB -0.125 0 0 0 -1000 0 

 

UB -0.125 0 0 1000 0 1000 

 

6 
LB -0.15 0 0 0 -1000 0 

 

UB -0.15 0 0 1000 0 1000 

 

7 
LB -0.175 0 0 0 -1000 0 

 

UB -0.175 0 0 1000 0 1000 

 

8 
LB -0.2 0 0 0 -1000 0 

 

UB -0.2 0 0 1000 0 1000 

 

9 
LB -0.225 0 0 0 -1000 0 

 

UB -0.225 0 0 1000 0 1000 

 

10 
LB -0.25 0 0 0 -1000 0 

 

UB -0.25 0 0 1000 0 1000 

 

11 
LB -0.275 0 0 0 -1000 0 

 

UB -0.275 0 0 1000 0 1000   

S
ce

n
ar

io
 2

 

12 
LB -0.97 0 0 2.73 -2.84 0.1 

(Carnicer et al., 2012) 
UB -0.97 0 0 3.01 -2.57 0.1 

13 
LB -1.04 0 0 2.29 -2.47 0.095 

(Tomàs-Gamisans et al. 2016) 
UB -0.96 0 0 2.55 -2.23 0.105 

14 
LB -1.05 0 0 2.38 -2.58 0.095 

(Tomàs-Gamisans et al. 2016) 
UB -0.97 0 0 2.66 -2.3 0.105 

15 
LB -1.55 0 0 3.02 -2.87 0.16 

(Solà et al., 2004) 
UB -1.55 0 0 3.34 -2.59 0.16 

16 
LB -0.94 0 0 2.3 -2.26 0.1 

(Baumann et al., 2010) 
UB -0.94 0 0 2.38 -2.2 0.1 

17 
LB -1.04 0 0 2.18 -2.29 0.1 

(Carnicer et al., 2009) 
UB -0.94 0 0 2.56 -1.95 0.1 

18 
LB -0.957 0 0 1.99 -2.05 0.1 

(Adelantado et al., 2017) 
UB -0.957 0 0 2.01 -2.03 0.1 

19 
LB -1.11 0 0 2.52 -2.3 0.1 

(Adelantado et al., 2017) 
UB -1.11 0 0 2.62 -2.2 0.1 
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20 
LB -1.2 0 0 2.22 -2.81 0.1 

(Garcia-Ortega, et al., 2017) 
UB -1.2 0 0 2.46 -2.55 0.1 

21 
LB -1.2 0 0 2.06 -2.98 0.1 

(Garcia-Ortega, et al., 2017) 
UB -1.2 0 0 2.29 -2.7 0.1 

22 
LB -1.2 0 0 2.04 -2.97 0.1 

(Garcia-Ortega, et al., 2017) 
UB -1.2 0 0 2.26 -2.69 0.1 

S
ce

n
ar

io
 3

 

23 
LB -1.31 0.02 0.069 2.41 -2.42 0.1 

(Baumann et al., 2010) 
UB -1.31 0.033 0.099 2.73 -2.1 0.1 

24 
LB -1.34 0.11 0.27 2.43 -2.67 0.095 

(Tomàs-Gamisans et al. 2016) 
UB -1.22 0.15 0.35 2.67 -2.43 0.105 

25 
LB -1.82 0.31 0.72 2.93 -2.15 0.095 

(Tomàs-Gamisans et al. 2016) 
UB -1.62 0.35 0.96 3.49 -1.87 0.105 

26 
LB -1.43 0.17 0.35 2.54 -2.15 0.095 

(Tomàs-Gamisans et al. 2016) 
UB -1.31 0.21 0.47 2.82 -1.83 0.105 

27 
LB -1.64 0.18 0.71 2.7 -2.07 0.095 

(Tomàs-Gamisans et al. 2016) 
UB -1.48 0.26 0.95 3.18 -1.55 0.105 

28 
LB -1.69 0.13 1.1 5.3 -4.35 0.1 

(Baumann et al., 2010) 
UB -1.69 0.167 1.22 5.94 -3.93 0.1 

29 
LB -1.4 0.2 0.31 1.93 -1.65 0.1 

(Baumann et al., 2010) 
UB -1.26 0.22 0.35 2.13 -1.49 0.1 

30 
LB -1.83 0.4 0.95 1.57 -0.64 0.1 

(Baumann et al., 2010) 
UB -1.65 0.44 1.05 1.73 -0.44 0.1 

31 
LB -1.32 0.035 0.38 2.55 -1.94 0.1 

(Adelantado et al., 2017) 
UB -1.32 0.061 0.49 2.65 -1.84 0.1 

32 
LB -1.98 0.45 1.164 5.5 -3.81 0.1 

(Adelantado et al., 2017) 
UB -1.98 0.47 1.198 5.7 -3.67 0.1 

33 
LB -1.28 0.0095 0.0665 2.06 -3.08 0.1 

(Garcia-Ortega. et al.. 2017) 
UB -1.28 0.0105 0.0735 2.28 -2.78 0.1 

34 
LB -1.6 0.026 0.665 2.49 -2.99 0.1 

(Garcia-Ortega. et al.. 2017) 
UB -1.6 0.028 0.735 2.75 -2.71 0.1 

35 
LB -2 0.038 1.33 3.06 -2.84 0.1 

(Garcia-Ortega. et al.. 2017) 
UB -2 0.042 1.47 3.38 -2.57 0.1 

36 
LB -2.4 0.05 1.995 3.53 -2.89 0.1 

(Garcia-Ortega, et al., 2017) 
UB -2.4 0.056 2.205 3.91 -2.61 0.1 

37 
LB -3.5 0.252 3.325 4.42 -2.81 0.1 

(Garcia-Ortega, et al., 2017) 
UB -3.5 0.278 3.675 4.88 -2.55 0.1 

  



 

 

144 

Table 8- 3 Final restriction of manual-
curated GSM 

Reaction ID lb ub 

Ex_glyc 0 0 
Ex_fab 0 0 
Ex_rol 0 0 
BIOMASS_glyc 0 0 
Ex_pyr 0 1000 
Ex_cit -1000 1000 
BIOMASS 0 1000 
Ex_thau 0 1000 
thaut 0 1000 
pThau 0 1000 
thauAA 0 1000 
thauRNA 0 1000 
thauDNA 0 1000 
GLUK 0 0 
MDHm 0 1000 
MDH 0 1000 
SULR -1000 0 
AOD 0 0 
DAS 0 0 
DHAKx 0 0 
FBAx 0 0 
FBPx 0 0 
SHBPH 0 0 
RPIx 0 0 
CATp 0 0 
FALDH2 0 0 
SFGTH 0 0 
FDH 0 0 
TKT1x 0 0 
CSp 0 0 
ICLx 0 0 
MDHp 0 0 
ASPTAp 0 0 
ME1m 0 0 
ME2m 0 0 
PFK_3 -1000 0 
Ex_pyr 0 1000 
MMSAD3 0 0 

Ex_h2o 0 1000 
H2Ot -1000 0 
O2t 0 1000 
GLCter -1000 0 
M4MPDOLter 0 1000 
M7MASNBterg 0 1000 
HCO3DH -1000 0 
FAcoaRavge 0 1000 
HXDCEALR 0 1000 
OGLYCOStg 0 1000 
CHITINtg 0 1000 
MANNANtg -1000 0 
FARCOAtm 0 1000 
FACOAtm -1000 0 
CLPNtm 0 1000 
NADHter 0 1000 
NADter -1000 0 
NADPHter 0 1000 
NADPter -1000 0 
12DGRter -1000 0 

PAter 0 1000 
DOLter -1000 0 
34HPPt2p 0 1000 
3C4MOPtm 0 1000 
4ABUTNtm 0 1000 
4ABUTtm -1000 0 
4H2OGLTtm -1000 0 
4H2OGLTtp -1000 0 
4HPRO_LTtm 0 1000 
ACtp 0 1000 
AKGtp -1000 0 
CBPtn -1000 0 
CITtap -1000 0 
CITtcp 0 1000 
CYSTtp 0 1000 
E4HGLUtm -1000 0 
E4HGLUtp 0 1000 
E4Ptm 0 1000 
GLNt2n 0 1000 
GLUt2n -1000 0 
GLXtp 0 1000 
HCYSt2p -1000 0 
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MANNANter -1000 0 
PAN4Ptm -1000 0 
PAPtm -1000 0 
PHCHGS 0 1000 
PIt2n -1000 0 
PNP -1000 0 
PTD1INOtn_SC 0 1000 
PYRt2p -1000 0 
SHSL4r -1000 0 
MPK -1000 0 
TYRt2m -1000 0 
ASPt5n -1000 0 
PI4Ptn -1000 0 
2DDA7Ptm -1000 0 
4HGLSDm 0 1000 
ADK1 0 1000 
ADK3m 0 1000 
AKGDam 0 1000 
ALATA_Lm -1000 0 
ASNt2r -1000 0 

ASPt2n -1000 0 
ASPt2r 0 1000 
CITtbm -1000 0 
ERGSTter 0 1000 
ERGTETROLter 0 1000 
FBA2 -1000 0 
FBA3 -1000 0 
GCC2am 0 1000 
GCC2cm 0 1000 
GK2 0 1000 
GLCt1 0 1000 
HCO3E 0 1000 
HCO3Em 0 1000 
HICITDm 0 1000 
HMGCOASm -1000 0 
ILETAm -1000 0 
NDPK9 0 1000 
O2ter 0 1000 
OXAGm 0 1000 
PANTtm -1000 0 
PAtm_PP 0 1000 
PDX5PO 0 1000 

PUNP7 0 1000 
SQ23EPXter 0 1000 
SQLter 0 1000 
DASYNm_PP 0 1000 
THIORDXm 0 1000 
AACOAT 0 1000 
ACONTx 0 1000 
ALCD19 0 1000 
COAtp -1000 0 
FRDO -1000 0 
FTCD 0 1000 
GluForTx -1000 0 
HACD9m 0 1000 
HIBDm 0 1000 
MGCHrm 0 1000 
MI14PP 0 1000 
MI4PP 0 1000 
MICITDm -1000 0 
MTRK 0 1000 
NP1 -1000 0 

PPItx 0 1000 
PROAKGOX1r 0 1000 
SBTPD 0 1000 
TRPS3r 0 1000 
ASNtm -1000 0 
GLCISO 0 1000 
DHORDm 0 1000 
OLIGOPK 0 1000 
FOLR2m 0 1000 
GGLUCTC 0 1000 
ALLTNISOR -1000 0 
OHCUREIMDZLNC
AR 

0 1000 

OGLYCOS 0 1000 
G15LACH 0 1000 
PIt2er 0 1000 
ATPter 0 1000 
ADPter -1000 0 

ATPter_H 0 1000 
H2Stm -1000 0 
OROTtm -1000 0 
CYStm -1000 0 
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ACSERtm 0 1000 
ACACtm 0 1000 
DHORtm 0 1000 
CITtp -1000 0 
AKGMALtp 0 1000 
DHAtv 0 1000 
GTPGDPtv -1000 0 
CO2tg -1000 0 
DHFtm 0 1000 
NH4tp -1000 0 
PEtg_SC -1000 0 
PROtm 0 1000 
PStg_SC 0 1000 
PStv_PP 0 1000 
PEtv_PP -1000 0 
CDPDGPm_PP 0 1000 
2DHPtm 0 1000 
3C3HMPtm -1000 0 
3MOBtm -1000 0 
5AOPtm -1000 0 

AATA 0 1000 
ACALDtm -1000 0 
ACCOACr 0 1000 
ACGAM6PS 0 1000 
ACGAMPM 0 1000 
ACOATA 0 1000 
ACONT 0 1000 
ACONTm 0 1000 
ADSL1r 0 1000 
ADSL2r 0 1000 
AHCYStm -1000 0 
AICART 0 1000 
AIRCr 0 1000 
ALCD2x 0 1000 
ALLTAHr 0 1000 
ALLTNr 0 1000 
AMETtm 0 1000 
AP4AHr 0 1000 
ARGSL 0 1000 
ARGSSr 0 1000 
CO2t -1000 0 
CO2tm -1000 0 

CO2tv -1000 0 
CSNATm 0 1000 
CSNATp 0 1000 
DADK -1000 0 
DHORTS -1000 0 
DTMPK 0 1000 
DURIPP -1000 0 
ETHAPT_PP 0 1000 
ETOHtm -1000 0 
G5SADr 0 1000 
GALU 0 1000 
GCCam 0 1000 
GCCcm 0 1000 
GLCtv -1000 0 
H2Ot -1000 0 
H2Otp 0 1000 
HACNHm 0 1000 
HMGCOAR -1000 0 
HMGCOAS -1000 0 
HMGCOAtm -1000 0 

GLYCLTDy -1000 0 
IMPC -1000 0 
IPDDI 0 1000 
IPPMIa -1000 0 
IPPMIb -1000 0 
LEUTA -1000 0 
MAN6PI -1000 0 
MCITDm 0 1000 
MCOATA 0 1000 
MTRI 0 1000 
NDPK1 0 1000 
NDPK2 0 1000 
NDPK4 0 1000 
NH4t 0 1000 
NH4tm -1000 0 
NNAMr 0 1000 
O2t 0 1000 
O2tm 0 1000 
ORPT -1000 0 
PGMT -1000 0 
PMANM -1000 0 
PRAGSr 0 1000 
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PRASCS 0 1000 
PRPPS 0 1000 
PUNP4 0 1000 
PUNP6 0 1000 
SACCD1 0 1000 
SACCD2 0 1000 
TREt2v 0 1000 
UDPACGLP 0 1000 
UGLYCHr 0 1000 
UMPK 0 1000 
UREASE 0 1000 
DASYN_PP 0 1000 
PEtm_PP -1000 0 
Ex_h2o 0 1000 
Ex_o2 -1000 0 
Ex_co2 0 1000 
RBK_D -1000 0 
Htr 0 1000 
PIt2m 0 1000 
H2Otm -1000 0 

RPI -1000 0 
ETOHt -1000 0 
ETOHtm -1000 0 
FBA 0 1000 
GAPD 0 1000 
PFK 0 1000 
PGK -1000 0 
Ex_etoh 0 1000 
D_ABTt 0 1000 
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S 2-4. Raw P. pastoris chemostat data under different μ and DO of 108% measured in this study 

 

Table 8- 4 Raw P. pastoris chemostat data under different μ and DO of 108% measured in this study 

Condition 
 (h-1) DOsat YS,X (gDCW g-1) qS (mmol gDCW

-1
 h-1) qCO2 (mmol gDCW

-1
 h-1) qO2 (mmol gDCW

-1
 h-1) RQ (-) 

Meana S.E.b (%) Meana S.E.b Meana S.E.b Meana S.E.b Meana S.E.b Meana S.E.b 

8.1 7.14 E-02 - 108 5.72 E-01 1.11 E-02 6.94 E-01 5.38 E-05 1.37 E+00 6.24 E-05 1.15 E+00 2.03 E-04 1.18 E+00 1.35 E-01 

8.2 7.44 E-02 - 108 5.40 E-01 9.77 E-03 7.64 E-01 1.34 E-05 1.52 E+00 2.13 E-05 1.51 E+00 1.99 E-05 1.00 E+00 7.47 E-03 

8c 7.29 E-02 1.46 E-03 108 5.56 E-01 3.71 E-03 7.29 E-01 3.51 E-02 1.44 E+00 7.67 E-02 1.33 E+00 1.79 E-01 1.09 E+00 8.97 E-02 

9.1 1.19 E-01 - 108 5.57 E-01 1.11 E-02 1.19 E+00 1.82 E-04 1.99 E+00 2.93 E-04 2.13 E+00 3.14 E-04 9.34 E-01 2.68 E-03 

9.2 1.26 E-01 - 108 5.64 E-01 9.77 E-03 1.24 E+00 1.66 E-04 2.42 E+00 3.20 E-04 2.26 E+00 2.99 E-04 1.07 E+00 5.71 E-03 

9c 1.22 E-01 2.63 E-03 108 5.60 E-01 3.71 E-03 1.21 E+00 2.79 E-02 2.20 E+00 2.18 E-01 2.19 E+00 6.82 E-02 1.00 E+00 6.83 E-02 
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S 2-5. Raw P. pastoris chemostat data under different μ and DO conditions measured in this study 

Table 8- 5 Raw P. pastoris chemostat data under different μ and DO conditions measured in this study 

Condition 
 (h-1) DOsat YS,X (gDCW g-1) qS (mmol gDCW

-1
 h-1) qCO2 (mmol gDCW

-1
 h-1) qO2 (mmol gDCW

-1
 h-1) RQ (-) 

Meana S.E.b (%) Meana S.E.b Meana S.E.b Meana S.E.b Meana S.E.b Meana S.E.b 

1.1 6.86 E-02 - 4 5.09 E-01 9.71 E-03 7.49 E-01 2.25 E-05 1.74 E+00 5.70 E-05 1.74 E+00 9.12 E-05 9.95 E-01 3.31 E-02 

1.2 7.50 E-02 - 4 5.05 E-01 9.22 E-03 8.25 E-01 4.09 E-05 1.94 E+00 4.86 E-05 1.94 E+00 4.86 E-05 1.01 E+00 5.88 E-03 

1c 7.18 E-02 3.16 E-03 4 5.07 E-01 1.87 E-03 7.87 E-01 3.76 E-02 1.84 E+00 1.01 E-01 1.84 E+00 9.70 E-02 1.00 E+00 5.50 E-03 

2.1 1.14 E-01 - 4 5.19 E-01 1.02 E-02 1.22 E+00 4.20 E-05 2.78 E+00 9.32 E-05 2.80 E+00 9.28 E-05 9.94 E-01 4.10 E-03 

2.2 1.25 E-01 - 4 5.42 E-01 1.28 E-02 1.28 E+00 4.04 E-05 2.75 E+00 5.10 E-05 2.78 E+00 4.91 E-05 9.88 E-01 4.56 E-03 

2c 1.19 E-01 5.51 E-03 4 5.31 E-01 1.13 E-02 1.25 E+00 3.10 E-02 2.77 E+00 1.68 E-02 2.79 E+00 3.17 E-01 9.91 E-01 2.97 E-03 

3.1 4.54 E-02 - 30 5.59 E-01 1.15 E-02 4.50 E-01 1.63 E-05 9.78 E-01 7.33 E-05 9.84 E-01 6.38 E-05 9.93 E-01 6.00 E-02 

3.2 4.98 E-02 - 30 5.43 E-01 8.70 E-03 5.09 E-01 3.45 E-05 1.08 E+00 2.59 E-05 1.12 E+00 2.67 E-05 9.64 E-01 8.28 E-03 

3c 4.76 E-02 2.24 E-03 30 5.51 E-01 7.88 E-03 4.80 E-01 2.94 E-02 1.03 E+00 5.06 E-02 1.05 E+00 6.77 E-02 9.78 E-01 1.48 E-02 

4.1 9.92 E-02 - 30 5.65 E-01 1.04 E-02 9.75 E-01 2.77 E-05 1.97 E+00 4.98 E-05 2.03 E+00 5.13 E-05 9.72 E-01 2.29 E-16 

4.2 1.02 E-01 - 30 5.64 E-01 1.46 E-02 1.00 E+00 6.00 E-05 1.95 E+00 9.50 E-05 1.84 E+00 3.52 E-04 1.06 E+00 1.39 E-01 

4.3 9.99 E-02 - 30 5.69 E-01 1.20 E-02 9.75 E-01 3.43 E-05 2.01 E+00 6.38 E-05 2.10 E+00 6.66 E-05 9.56 E-01 3.97 E-03 

4c 1.01 E-01 8.20 E-04 30 5.66 E-01 1.58 E-03 9.89 E-01 9.43 E-03 1.98 E+00 1.61 E-02 1.97 E+00 7.64 E-02 1.01 E+00 3.22 E-02 

5.1 1.53 E-01 - 30 5.57 E-01 8.04 E-03 1.53 E+00 3.22 E-05 3.12 E+00 6.07 E-05 3.13 E+00 6.08 E-05 9.98 E-01 2.29 E-16 

5.2 1.52 E-01 - 30 5.61 E-01 4.41 E-03 1.51 E+00 6.44 E-05 2.99 E+00 3.18 E-05 2.96 E+00 3.58 E-05 1.01 E+00 3.89 E-03 

5.3 1.45 E-01 - 30 5.55 E-01 1.78 E-02 1.45 E+00 7.00 E-05 2.94 E+00 2.21 E-04 2.78 E+00 2.01 E-04 1.06 E+00 5.76 E-02 

5c 1.50 E-01 2.44 E-03 30 5.58 E-01 1.77 E-03 1.50 E+00 2.10 E-02 3.02 E+00 5.24 E-02 2.96 E+00 9.90 E-02 1.02 E+00 1.85 E-02 

6.1 7.19 E-02 - 56 5.89 E-01 1.11 E-02 6.78 E-01 5.58 E-05 1.22 E+00 3.39 E-05 1.29 E+00 3.30 E-05 9.40 E-01 7.52 E-03 

6.2 7.17 E-02 - 56 5.90 E-01 1.76 E-02 6.75 E-01 2.58 E-05 1.21 E+00 3.72 E-05 1.30 E+00 3.99 E-05 9.27 E-01 3.54 E-03 

6.3 7.18 E-02 - 56 5.79 E-01 8.74 E-03 6.89 E-01 4.42 E-05 1.28 E+00 3.66 E-05 1.29 E+00 5.05 E-05 9.98 E-01 2.43 E-02 

6c 7.18 E-02 6.62 E-05 56 5.89 E-01 4.12 E-03 6.82 E-01 6.79 E-03 1.21 E+00 4.19 E-03 1.30 E+00 4.59 E-03 9.63 E-01 3.53 E-02 

7.1 1.22 E-01 - 56 5.79 E-01 3.61 E-03 1.17 E+00 5.60 E-05 2.33 E+00 2.50 E-05 2.44 E+00 2.18 E-05 9.55 E-01 4.64 E-03 

7.2 1.19 E-01 - 56 5.87 E-01 2.08 E-02 1.13 E+00 7.55 E-05 2.04 E+00 9.02 E-05 2.18 E+00 9.78 E-05 9.34 E-01 5.00 E-03 

7.3 1.19 E-01 - 56 5.69 E-01 8.47 E-03 1.16 E+00 3.02 E-05 2.27 E+00 6.46 E-05 2.40 E+00 5.46 E-05 9.46 E-01 1.16 E-02 

7c 1.20 E-01 1.04 E-03 56 5.83 E-01 3.94 E-03 1.14 E+00 1.41 E-02 2.18 E+00 1.47 E-01 2.31 E+00 1.29 E-01 9.40 E-01 6.31 E-03 

a,b Measured mean and standard error calculated for 3 technical replicates. 

c Mean and standard error calculated for 2 or 3 biological replicates. 
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Table 8- 5 Raw P. pastoris chemostat data under different μ and DO conditions measured in this study (continuation) 

Condition 
Carbon Balance (-) Electronic balance (-) CX (gDCW) YS,P (mg g-1) qP (mg gDCW

-1·h-1) 

Meana S.E.b Meana S.E.b Meana S.E.b Meana S.E.b Meana S.E.b 

1.1 9.46 E-01 1.07 E-02 9.59 E-01 1.09 E-02 2.52 E+01 4.82 E-01 3.09 E-01 1.91 E-02 4.16 E-02 2.70 E-03 

1.2 9.48 E-01 1.02 E-02 9.57 E-01 1.04 E-02 2.50 E+01 4.57 E-01 2.25 E-01 3.66 E-03 5.25 E-02 1.35 E-06 

1c 9.47 E-01 7.60 E-04 9.58 E-01 1.42 E-03 2.51 E+01 9.34 E-02 2.67 E-01 4.16 E-02 4.70 E-02 5.41 E-03 

2.1 9.54 E-01 1.13 E-02 9.67 E-01 1.15 E-02 2.58 E+01 5.07 E-01 1.75 E-01 1.36 E-02 3.82 E-02 3.12 E-03 

2.2 9.56 E-01 1.41 E-02 9.72 E-01 1.43 E-02 2.69 E+01 6.33 E-01 1.43 E-01 4.24 E-03 3.29 E-02 1.08 E-03 

2c 9.55 E-01 1.04 E-03 9.70 E-01 2.31 E-03 2.63 E+01 5.62 E-01 1.59 E-01 1.58 E-02 3.56 E-02 2.66 E-03 

3.1 9.78 E-01 1.27 E-02 9.92 E-01 1.29 E-02 2.83 E+01 5.81 E-01 4.18 E-01 1.17 E-02 3.39 E-02 1.18 E-03 

3.2 9.52 E-01 9.58 E-03 9.77 E-01 9.77 E-03 2.70 E+01 4.31 E-01 3.81 E-01 5.56 E-03 3.49 E-02 7.65 E-04 

3c 9.65 E-01 1.30 E-02 9.85 E-01 7.76 E-03 2.76 E+01 6.71 E-01 3.99 E-01 1.87 E-02 3.44 E-02 5.03 E-04 

4.1 9.58 E-01 1.15 E-02 9.81 E-01 1.17 E-02 2.80 E+01 5.18 E-01 1.83 E-01 7.75 E-03 3.22 E-02 1.49 E-03 

4.2 9.46 E-01 1.61 E-02 9.40 E-01 1.64 E-02 2.76 E+01 7.15 E-01 1.87 E-01 4.94 E-03 3.38 E-02 1.09 E-03 

4.3 9.70 E-01 1.32 E-02 9.98 E-01 1.35 E-02 2.85 E+01 5.99 E-01 1.85 E-01 4.60 E-03 3.25 E-02 1.11 E-03 

4c 9.58 E-01 7.00 E-03 9.69 E-01 1.73 E-02 2.81 E+01 2.44 E-01 1.86 E-01 1.19 E-03 3.32 E-02 5.13 E-04 

5.1 9.54 E-01 8.85 E-03 9.68 E-01 9.03 E-03 2.76 E+01 3.99 E-01 1.34 E-01 3.19 E-03 3.67 E-02 1.02 E-03 

5.2 9.48 E-01 4.86 E-03 9.57 E-01 4.96 E-03 2.82 E+01 2.22 E-01 1.25 E-01 5.28 E-03 3.39 E-02 1.46 E-03 

5.3 9.48 E-01 1.96 E-02 9.42 E-01 2.00 E-02 2.78 E+01 8.91 E-01 1.29 E-01 3.68 E-03 3.38 E-02 1.52 E-03 

5c 9.50 E-01 2.07 E-03 9.56 E-01 7.45 E-03 2.79 E+01 1.61 E-01 1.29 E-01 2.47 E-03 3.48 E-02 9.56 E-04 

6.1 9.48 E-01 1.22 E-02 9.80 E-01 1.25 E-02 2.95 E+01 5.56 E-01 - - - - 

6.2 9.48 E-01 1.94 E-02 9.84 E-01 1.98 E-02 2.93 E+01 8.75 E-01 2.49 E-01 1.75 E-02 3.03 E-02 2.22 E-03 

6.3 9.49 E-01 9.63 E-03 9.62 E-01 9.82 E-03 2.91 E+01 4.40 E-01 2.63 E-01 6.40 E-03 3.26 E-02 9.53 E-04 

6c 9.48 E-01 3.87 E-04 9.73 E-01 1.11 E-02 2.92 E+01 6.01 E-02 2.56 E-01 6.85 E-03 3.14 E-02 1.15 E-03 

7.1 9.69 E-01 3.98 E-03 9.97 E-01 4.06 E-03 2.89 E+01 1.81 E-01 1.85 E-01 1.20 E-02 3.89 E-02 2.53 E-03 

7.2 9.46 E-01 2.30 E-02 9.81 E-01 2.34 E-02 2.95 E+01 1.05 E+00 1.66 E-01 1.12 E-02 3.37 E-02 2.52 E-03 

7.3 9.53 E-01 9.33 E-03 9.84 E-01 9.52 E-03 2.85 E+01 4.24 E-01 2.61 E-01 4.02 E-03 3.10 E-02 1.50 E-03 

7c 9.50 E-01 3.29 E-03 9.82 E-01 1.69 E-03 2.90 E+01 5.01 E-01 1.75 E-01 9.49 E-03 3.23 E-02 1.36 E-03 

a,b Measured mean and standard error calculated for 3 technical replicates. 

c Mean and standard error calculated for 2 or 3 biological replicates. 
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S 2-6. Regression analysis and Effects’ estimation with statics values for second- degree equation 

Table 8- 6 Regression analysis and Effects’ estimation with statics values for second- degree equation 

  Coefficient Yxs[gDCW/g] 
qs 

[mmol/gDCW·h] 
qCO2 

[mmol/gDCW·h] 
qO2 

[mmol/gDCW·h] qtau [mg/gDCW·h] YSP[mg/g] 

    value p-value value p-value value p-value value p-value value p-value value p-value 
Response 

means b0 0.565   0.984   1.983   1.993   0.033   0.186   

 b1 
0.005 0.1311 

0.492 0 0.975 0 0.963 0 -0.001 0.5509 -0.127 0 

pO2 b2 0.036 0 -0.062 0 -0.348 0 -0.292 0 -0.004 0.0256 -0.004 0.625 

� b11 -0.010 0.0753 0.015 0.1513 0.060 0.2717 0.022 0.7724 0.002 0.5222 0.080 0.0004 

·pO2 b12 -0.020 0.0071 0.004 0.713 0.032 0.5938 0.070 0.4176 0.008 0.0205 0.011 0.52 

pO22 b22 -0.017 0.0153 0.032 0.0143 0.149 0.0265 0.207 0.0298 0.005 0.125 0.006 0.7349 

R2   94.8   93.8   94.4   94.2   68.3   95.9   

Effects               

    value DS value DS value DS value DS value DS value DS 

Average   0.565 0.005 0.984 0.008 1.983 0.043 1.994 0.061 0.033 0.002 0.186 0.0127 

   0.009 0.006 0.985 0.011 1.950 0.056 1.926 0.081 -0.002 0.003 -0.254 0.0164 

pO2   
0.072 0.006 

-0.124 0.011 
-0.696 0.060 -0.583 0.085 -0.008 0.003 -0.008 0.0164 

�   -0.021 0.010 0.030 0.019 0.121 0.104 0.044 0.148 0.003 0.005 0.160 0.0324 

·pO2   -0.039 0.012 0.008 0.022 0.064 0.116 0.140 0.165 0.016 0.006 0.022 0.0324 

pO22   -0.034 0.012 0.063 0.021 0.298 0.115 0.414 0.164 0.010 0.006 0.011 0.0324 
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S 2-7. Principal effects of the manual curation of GSMM. 

 
Figure 8-1  Principal effects of the manual curation of GSMM. In black, it is highlight the 

effects of manual curation and it is highlight the main effects of SNP algorithm in red 
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S 2-8. Effect of ashes in the prediction of intracellular fluxes. 

 

  

  

 

Figure 8-2. Evaluation of the tailored P. pastoris GSMM for metabolic flux prediction 
under glucose-limited conditions correcting by the estimated ashes content. A) Comparison 
of the predicted intracellular flux through cytoplasmic reactions of the GSMM considering 
(slope = 1.033, R2 = 0.970) against experimental data under appropriate growth conditions. 
B) Comparison of the predicted intracellular flux through mitochondrial reactions of the 
GSMM (slope = 0.787, R2 = 0.853) against experimental data under the same conditions 
used in A). For more information about the employed experimental conditions refer to 
Supplementary material S2-8. 

 
 
 
 
 
 
 
 
 
 
 

A) Prediction of intracellular fluxes (cytoplasm) B) Prediction of intracellular fluxes (mitochondria) 
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S 2-9. Macromolecular composition of P. pastoris GS115. 

Table 8- 7. Macromolecular composition of P. pastoris GS115 

Component Experimental composition (g gDCW
-1)a Estimated composition without ashes (g/gDCW

-1)b 

Proteins 0.3700 0.3983 

Carbohydrates 0.3690 0.3972 

Lipids 0.0620 0.0667 

RNA 0.0660 0.0710 

DNA 0.0013 0.0014 

a Data taken from Carnicer et al (2009) 

b Assuming 7.1% ashes content based on Carnicer (2012) 
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S 3-1. Demonstration of the convexity of the solution space of the QP problem in 

the metabolic block 

A convex optimization problem is one of the form: 

���                  ��(�) 

������� ��      ��(�) ≤ ��     �= 1, … , � 

 

Where the functions ��, … , ��: �� → � are convex, i.e., satisfy: 

    ��(�� + ��) ≤ ���(�) + ���(�) 

For all x, y ∈ �� and all �, � ∈ � with � + � = 1, � ≥ 0, � ≥ 0. 

Now, for the problem solved in the metabolic block we have: 

���                  ��(�):   � ∙∑ �� − (1 − �) ∙� 

������� ��      �(�):   � ∙� = �      

Here, � is an Rn flux distribution vector (also solution to the system), α is the suboptimal 

growth coefficient, μ is the specific growth rate of the cell (also a component of �), S is the 

stoichiometric matrix (m metabolites x n reactions) and b is the overall balance for each of 

the m metabolites of the network. 

A) Demonstration of the convexity of ��(�):   � ∙∑ �� − (1 − �) ∙� 

In order to determine the convexity of the problem, we have to demonstrate that: 

��(� ∙�� + � ∙��) ≤ � ∙��(��) + � ∙��(��) 

� ∙∑ (� ∙�� + � ∙��)� − (1 − �) ∙�� ∙���
+ � ∙���

������������������������������������
�

≤ � ∙��(��) + � ∙��(��)���������������
��

 

Here, ��, ��  ∈  �� are any flux distribution vectors, � + � = 1, � ≥ 0, � ≥ 1 . Now 

Expanding the expression above: 

� ∙∑ (�� ∙��
� + 2 ∙� ∙� ∙�� ∙�� + �� ∙��

�) − (1 − �) ∙�� ∙���
+ � ∙���

�

≤ � ∙�� ∙∑ ��
� − (1 − �) ∙���

������������������
��(��)

+ � ∙�� ∙∑ ��
� − (1 − �) ∙���

������������������
��(��)

 

Which can be rearranged to: 

� ∙∑ (�� ∙��
� + 2 ∙� ∙� ∙�� ∙�� + �� ∙��

�) − (1 − �) ∙�� ∙���
+ � ∙���

�

≤ � ∙(� ∙∑ ��
� + � ∙∑ ��

� ) − (1 − �) ∙�� ∙���
+ � ∙���

� 

Eliminating equal terms 
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� ∙∑ (�� ∙��
� + 2 ∙� ∙� ∙�� ∙�� + �� ∙��

�) ≤  � ∙(� ∙∑ ��
� + � ∙∑ ��

� ) 

In our problem, � ≥ 0. If α = 0, i.e. the metabolic block solves a LP problem, the 

inequality above is 0 ≤ 0, which is true, and therefore the problem is convex. If � > 0, it 

can be eliminated from the expression above: 

�� ∙∑ ��
� + 2 ∙� ∙� ∙∑ �� ∙�� + �� ∙∑ ��

� ≤  � ∙∑ ��
� + � ∙∑ ��

�  

Now, � = 1 − � 

�� ∙∑ ��
� + 2 ∙� ∙(1 − �) ∙∑ �� ∙�� + (1 − �)� ∙∑ ��

� ≤  � ∙∑ ��
� + (1 − �) ∙∑ ��

� 

Rearranging the terms: 

− � ∙(1 − �) ∙∑ ��
� + 2 ∙� ∙(1 − �) ∙∑ �� ∙�� − � ∙(1 − �) ∙∑ ��

� ≤ 0 

Which can be reduced to: 

� ∙(1 − �) ∙∑ (�� − ��)� ≥ 0 

According to the problem specifications, � ≥ 0 and � + � = 1, which constrains � ∈

[0,1]. Also the term ∑ (�� − ��)� is always positive or zero (if �� = �� = 0�⃗ ). Therefore, 

the inequality from above is always equal or larger than zero for the domain of the 

problem, confirming that the objective function is convex. 

B) Demonstration of the convexity of �(�):   � ∙� = � 

To demonstrate that the problem is convex, the restrictions for the optimization should be 

convex as well. Therefore, imitating the previous procedure: 

�(� ∙�� + � ∙��) ≤ � ∙�(��) + � ∙�(��) 

� ∙(� ∙�� + � ∙��) ≤ � ∙� ∙�� + � ∙� ∙�� 

� ∙� ∙�� + � ∙� ∙�� ≤ � ∙� ∙�� + � ∙� ∙�� 

0 ≤ 0 

The last statement is true; therefore, the restrictions are also convex. 

Finally, since the bi-objective function in the metabolic block and its restrictions are 

convex, the solution space of the problem is also convex. This ensures the optimality of the 

obtained flux distribution. 



 

 

157 

S 3-2. Construction and evaluation of the iFS670 model 

The iFS670 model modified the iPP668 model from Chung et al., 2010 in three aspects: 

1. Contains stoichiometric equations for the production of recombinant Thaumatin, 

Human Serum Albumin (HSA) and FAB fragment. 

2. Includes an NAD-dependent arabitol biosynthesis pathway 

3. Reversibility from mitochondrial symporters and cytosolic reactions involving 

NAD/NADP was updated according to the suggestions from Pereira, Nielsen, & 

Rocha, 2016. 

At the end of this Supplementary material we compare the performance of the iFS670 with 

two other models from Pichia pastoris. 

 
1. Stoichiometric reactions for the production of three recombinant proteins 
Thaumatin, HSA and FAB synthesis pathways were also included in the model according 

to the DNA, RNA and amino acid requirements employed in the iLC915 model (Caspeta et 

al., 2012) to form the primary structure of the protein:  

 

0.997 ∙������ + 0.0029 ∙������� + 0.000028∙������� → ������� [�] 

 

( 23 ) 

 

�� �� ∙���

��

�

� + � ∙���[�]+ � ∙���[�]→ ������ 

 

( 24 ) 

 

�� �� ∙����

�

�

� + � ∙���[�]+ � ∙���[�]→ ������� 

 

( 25 ) 

 

�� �� ∙�����

�

�

� + � ∙���[�]+ � ∙���[�]→ ������� 
( 26 ) 

 

Coefficients for the different components of the proteins are detailed in Table 8-8, Table 8-

9 and Table 8-10. Codon usage was taken from (Schutter et al., 2009) and was used as 
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input for the calculation of RNA and DNA sequences online 

(http://www.bioinformatics.org/sms2/rev_trans.html). 

Table 8- 8 Amino acid requirements to form 1 gram of thaumatin, HSA and FAB fragment 
in the iPP669 model. The coefficients here reported were used in equation 2, a cost of 4,3 
mole of ATP was assumed per mole of amino acid assembles in the protein. All 
coefficients have mmol/gram of protein units. 

Substrate Thaumatin HSA Fab Fragment 

L-Alanine 0.721 0.909 0.559 

L-Arginine 0.541 0.390 0.430 

L-Asparagine 0.451 0.245 0.215 

L-Aspartate 0.541 0.519 0.387 

L-Cysteine 0.721 0.505 0.215 

L-Glutamate 0.271 0.895 0.473 

L-Glutamine 0.180 0.289 0.559 

Glycine 1.082 0.188 0.602 

L-Histidine 0.000 0.231 0.172 

L-Isoleucine 0.361 0.130 0.215 

L-Leucine 0.406 0.923 0.774 

L-Lysine 0.496 0.866 0.387 

L-Methionine 0.045 0.101 0.043 

L-Phenylalanine 0.496 0.505 0.387 

L-Proline 0.541 0.346 0.516 

L-Serine 0.631 0.404 1.376 

L-Threonine 0.902 0.418 0.731 

L-Tryptophan 0.135 0.029 0.086 

L-Tyrosine 0.361 0.274 0.387 

L-Valine 0.451 0.620 0.645 

ATP (γ) 40.1 37.8 39.4 
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Table 8- 9 RNA requirements for the production of 1 gram of Thaumatin, HSA and Fab 
fragment codifying RNA. A cost of 2,4 mol of ATP per gram of RNA was assumed. 

Substrate Thaumatin HSA Fab Fragment 

AMP 0.73 0.86 0.74 

UMP 1.14 1.09 1.18 

GMP 0.73 0.72 0.58 

CMP 0.48 0.40 0.57 

ATP (δ) 7.38 7.38 7.38 

 
Table 8- 10 DNA requirement for the formation of 1 gram of codifying DNA for 
Thaumatin, HSA and Fab Fragment. A cost of 3,4 mol ATP per gram of DNA produced 
was assumed. 

Substrate Thaumatin HSA Fab Fragment 

dAMP 1.14 0.86 1.18 

dTMP 0.73 1.09 0.74 

dGMP 0.48 0.72 0.57 

dCMP 0.73 0.40 0.58 

ATP(θ) 10.45 10.45 10.45 

 
 
2. Arabitol Biosynthesis Pathway 
In total, we added four reactions associated to this pathway (Cheng et al., 2014). First, 

Ribulose-5P is converted into D-Ribose by a kinase with the formation of ATP. Then, D-

ribose is converted into D-arabitol by a dehydrogenase with the formation of NAD+ from 

NADH. After D-arabitol is synthesized, it is transported to the extracellular medium and 

then “consumed” by an exchange reaction (Figure 8-3). 
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Figure 8-3 – D-Arabitol synthesis pathway from D-Ribulose-5-phosphate in Pichia 

pastoris.  

 
3. Model manual curation 
 
Initially, the main problem of the model is that it did not carry flux through the oxidative 

part of the Pentose Phosphate Pathway (PPP), the main source of the reducing cofactor 

NADPH. Instead, this cofactor was synthesized by a cytosolic NADP-dependent isocitrate 

dehydrogenase, which was also the main source of α-ketoglutarate in the cytosol (data not 

shown). Fluxomic studies in aerobic glucose-limited conditions in P. pastoris (Baumann et 

al., 2010; Dragosits et al., 2009; Heyland et al., 2010), have shown that about 40% of the 

carbon that reaches glucose 6 phosphate is carried through the oxidative branch of the PPP, 

which is also thermodynamically favorable (Nelson & Cox, 2008). Moreover, α-

ketoglutarate is considered to be produced in the mitochondria and then exported to the 

cytosol for nitrogen fixation and anabolic reactions. 

These inconsistencies have been recently addressed for several genome scale metabolic 

models of Saccharomyces cerevisiae (Pereira et al., 2016). Therefore, we performed the 

following changes to our reconstruction according to the indication of the authors: 

i. We enabled the transport of α-ketoglutarate from the mitochondria to the cytosol 

using transporters present in P. pastoris (Rußmayer et al., 2015; Tomàs-Gamisans 

et al., 2016).  

ii. The flux through three symporters that passively carried protons against the 

electrochemical gradient in the mitochondria was blocked in the direction of export 

to the cytosol. 
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iii. Based on the assumption postulated by Satrustegui et al (Satrustegui, Bautista, & 

Machado, 1983) for Saccharomyces cerevisiae, we considered that the 

NAD+/NADH and NADPH/NADP+ ratios in aerobic glucose-limited conditions are 

high enough to block the flux towards the formation of NAD+ and NADPH. 

Therefore, we blocked 30 cytosolic reactions in the direction of either NAD+ or 

NADPH formation. The only reactions left to produce cytosolic NADPH were the 

ones from the PPP and the acetate-forming acetaldehyde dehydrogenase, whose 

presence has been experimentally determined in aerobic glucose-limited 

cultivations of P. pastoris (Heyland et al., 2011). 

Applying these modifications resulted in a spontaneous flux through the PPP, a 

mitochondrial formation of α-ketoglutarate with its subsequent secretion to the cytosol and 

an overall concordance in the direction of the fluxes with respect to experimental data. 

This makes the model a reasonable approximation of Pichia pastoris central carbon 

metabolism. 

When the flux distribution derived from the fed-batch robustness check dataset was 

compared with the fluxomic data obtained by Heyland et al (Heyland et al., 2010) 

(equivalent conditions), the average error in the prediction of 23 fluxes of the central 

metabolism dropped three times with respect to the predictions made by the not curated 

model - from 128% to 39% for the exponential batch phase and from 160% to 63% for the 

controlled feed phase (Figure 8-4).This drop was mainly caused by the change in the 

direction (from negative to positive flux) of the non-oxidative part of the PPP, the 

spontaneous flux through the oxidative branch of this pathway and the reduction in the 

predicted influx of oxaloacetate to the cell. The overall agreement in directionality can be 

seen in Figure 8-4 by the elimination of negative predicted fluxes in the curated model. 
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Figure 8-4 - Predicted versus experimental fluxes of the central metabolism. The flux 
distributions determined by Heyland et al (Heyland et al., 2010) during an aerobic glucose 
limited fermentation were compared to the output of the model in equivalent stages of a 
cultivation (exponential and controlled growth phases) during the experiment used for 
checking fed-batch model robustness. Values are presented as normalized to carbon uptake 
and the black line represents the unit. 

 

 

 

 

 
  

4. Model Performance 
 
Usability and similarity to experimental chemostat data were used as criteria to select the 

most appropriate genome-scale model for building the dynamic framework. In terms of 

usability, we verified that the models had an adequate annotation, i.e. balanced equations, 

intuitive metabolite and reaction names, compartmentalization, functional gene-reaction 

associations and adequate representation of the central metabolism, among others. We then 

evaluated model similarity to experimental data from two chemostats (Table 8-11) using 

the normalized square differences between experimental and simulated rates (Equation 5):  

 

�� = �
1

��
∙�

�������,�
− �����,�

�
�

�����,�

��

���
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( 27 ) 

-50

0

50

100

150

200

0 50 100 150 200

P
re

d
ic

te
d

 f
lu

x

Experimental flux

Batch Phase

-50

0

50

100

150

200

0 50 100 150 200

P
re

d
ic

te
d

 F
lu

x

Experimental flux

Feed phase

Initial

Curated



 

 

163 

 

Here, F is the overall fitting relative error of model i, nJ corresponds to the number of 

predicted rates determined in each dataset (12 in dataset 1 and 30 in dataset 2). Also, �����
 

corresponds to the vector of experimental rates of condition k in dataset j and �����,�
 is the 

model’s estimation of the experimental rates of condition k in dataset j.  

For each prediction, we first constrained each model with nJ-1 experimental rates. 

Then, Flux Balance Analysis (FBA) (Orth, Thiele, & Palsson, 2010) was performed using 

biomass maximization as objective function to predict  the remaining one. 

It is worthy to note that whenever a model yielded an infeasible solution (due to carbon 

imbalance) or erroneously predicted the production of a compound under certain 

experimental condition, an error of 100% was assumed for that particular rate.  

The model that gave best predictions compared to experimental data was chosen as 

the basis for the dynamic model. We tested the iFS670 model against three genome-scale 

metabolic models of Pichia pastoris that were available at the beginning of this study: the 

iPP668(Chung et al., 2010), the iLC915 (Caspeta et al., 2012) and the PpaMBEL1254 

(Sohn et al., 2010)  

 

Table 8- 11  Chemostat data used for model selection 

Set Type of data Rates Conditions Reference 

1 Glycerol- and/or methanol-limited chemostats 5 4 (Solà et 

al., 2007) 

2 Glucose-limited chemostats at different oxygen 

levels 

7 6 (Carnicer 

et al., 

2009) 

 

The main components and the relevant usability features of published GSMs of Pichia 

pastoris are detailed in Table 8-12. The PpaMBEL1254 model was discarded due to the 

lack of intuitive reaction and metabolite names in the online version, as well as the absence 

of gene-protein relations (at least in the online version), hampering the analysis of knock-



 

 

164 

out strains. All the models share the same structure of the central metabolism, which 

carries most of the flux entering the cell. 

 

Table 8- 12 Main components and usability features of available genome-scale metabolic 
models of Pichia pastoris 

 iPP668 iFS670 PpaMBEL1254 iLC915 

Number of genes 669 670 540 915 

Reactions 1354 1383 1254 1426 

Metabolites 1177 1195 1058 1302 

Compartments 8 8 8 6 

Platform used for analysis Cobra Cobra Cobra Raven 

Intuitive nomenclature for 

reactions and metabolites 

Yes Yes No No 

Capable of performing Single 

Gene deletions 

Yes Yes No Yes 

Capable of automatically 

checking mass balance 

No No No Yes 

 

After the determination of the average relative error between model predictions and 

experimental data (Carnicer et al., 2009; Solà et al., 2007) (Table 8-13), we selected the 

iFS670 model since it has a desirable structure and better reproduces experimental data 

from P. pastoris chemostats. It is worth mentioning that the inclusion of the arabitol 

biosynthesis pathway into Chung’s (iPP668) model – resulting in the iFS670 model - 

greatly improved the predictions of specific growth rate, Oxygen Uptake Rate (OUR) and 

Carbon Dioxide Evolution Rate (CER) in hypoxic glucose-limited chemostats (Figure 8-5 

and Figure 8-6).Specifically, the deviation of carbon towards arabitol reduced the predicted 

growth rate in those conditions when compared to the iPP668 model, resulting in a 

reduction of the difference with the corresponding experimental value. 
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Table 8- 13  Average error of model predictions using two datasets from carbon-limited 
chemostats. In glycerol- and/or methanol (MetOH) – limited chemostats, the models were 
employed to predict specific growth rate µ, Oxygen Uptake Rate (OUR) and carbon 
dioxide evolution rate (CER) in four different conditions, which gives a total of 12 
predictions. In the glucose limited chemostats, the models were used to estimate µ, OUR, 
CER, ethanol secretion rate and arabitol secretion rate in six conditions, which gives a total 
of 30 model predictions. Experimental data was taken from (Carnicer et al., 2009; Solà et 
al., 2007) 

Carbon Source iLC915 iFS670 iPP669 Number of 

predictions 

Glycerol/MetOH  78% 37% 38% 12 

Glucose 85% 36% 52% 30 

Overall Error 

(F)  

83% 36% 48% 42 

 

  

Figure 8-5 - Experimental and model-predicted specific growth rates using glucose as the 
only carbon source at different oxygen levels for a P. pastoris wild type strain. Data taken 
from (Carnicer et al., 2009)   
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Figure 8-6 – Prediction of Gas exchange and secondary metabolite production by the tested 
models. The percentage in the x axis correspond to oxygen fraction in the gas inlet of the 
bioreactor used to perform the study (21%  normoxic, 11%  oxygen limited, 8%  
hypoxic). Data taken from   
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S 3-3 Evaluation of feeding policies 

 

We tested 13 different feeding strategies, which yielded a constant or decreasing growth 

rate (Figure 8-7).The details of the strategies are presented in Table 8-14. 

 

 

Figure 8-7 – Constant (left) versus decreasing (right) growth rates during fed-batch culture. 
Here, tFEED corresponds to the time when the feed of the culture starts after batch 
cultivation. μMAX, Rate and μMIN refer to the parameters used to describe the decreasing 
growth rate profile of each culture. We evaluated two values for each one of these 
parameters, which yielded eight dynamic feeding strategies (6-13 in Table 8-14) 

 

Table 8- 14 Feeding strategies evaluated and productivity indicators. The first five 
strategies attempt to make the culture grow at a constant growth rate while the rest produce 
a decreasing growth rate profile. 

Strategy μSET.MAX [h-1] Rate μSET.MIN [h-1] 
qP 

[mg/gDCWh] 
XFINAL 
[g/L] 

PFINAL 
[mg/L] 

Limitation 

1 0.14 - - 2.85 164.8 138 Oxygen 
2 0.12 - - 2.59 187.8 135 Oxygen 
3 0.1 - - 2.32 195.3 130 Volume 
4 0.08 - - 2.29 191.3 138 Volume 
5 0.06 - - 2.28 184.7 154 Volume 
6 0.14 0.07 0.08 2.13 193.1 121.6 Volume 
7 0.14 0.07 0.04 1.33 176.6 92.3 Volume 
8 0.14 0.01 0.08 2.83 197.5 150.0 Volume 
9 0.14 0.01 0.04 2.34 195.1 128.0 Volume 
10 0.1 0.07 0.08 1.88 191.0 111.6 Volume 
11 0.1 0.07 0.04 0.89 172.8 66.9 Volume 
12 0.1 0.01 0.08 1.41 193.7 81.3 Volume 
13 0.1 0.01 0.04 2.30 188.8 140.5 Volume 
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S3-4 Initial Calibrations and parametric limitations 

Batch model 
The model was used to calibrate data from eight aerobic, glucose-limited batch 

cultivations. The parameter values achieved in the calibrations is presented in Table 8-15, 

while the time of calibration and objective function value of the calibration are presented 

in Table 8-16. Datasets correspond to the following strains: 

 Datasets 1 and 2: parental GS115 strain 

 Datasets 3 and 4: recombinant strain harboring one copy of the thaumatin gene 

 Datasets 5 and 6: recombinant strain harboring five copies of the thaumatin gene 

 Datasets 7 and 8: recombinant strain harboring eight copies of the thaumatin gene 

 

Table 8- 15 Parameter values achieved in the calibration of data from eight batch 
cultivations using the initial batch model structure. 

 Dataset 

1 2 3 4 5 6 7 8 

���� 7.75 3.34 7.95 2.74 3.07 6.67 1.51 1.27 

�� 9.80E-04 9.60E-05 7e -4 3.00E-04 1.00E-05 1.5 e-4 1.00E-05 1.03E-05 

�����,� 1.98 1.78 1.76 1.48 0.89 2.97 0.03 0.02 

����,� 0.21 0.18 0.25 0.19 0.12 0.2 0.01 0.003 

�����,� 0.54 0.32 0.5 0.51 0.4 0.48 0.16 0.09 

����,� 0.06 0.04 0.08 1.1 0 0.05 0.03 0.05 

�� 4.05E-04 2.90E-04 4.20E-04 2.30E-04 1.45E-06 3.0E-04 7.19E-06 7.17E-05 

���� 0.52 0.68 0.001 4.09 9.99 4.61 3.29 1.32 
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Table 8- 16 General features of initial batch model calibration. 

Dataset N Min. squares difference Time of calibration [h] 
1 8 0.26 1.92 
2 8 1.55 5.29 
3 8 0.47 3.46 
4 8 0.88 4.40 
5 6 1.69 4.11 
6 9 7.27 4.41 
7 12 1.17 4.32 
8 13 3.30 4.30 

 

We also provide two examples of how the model fitted two of these cultivations. 

 

Figure 8-8 - Batch model calibration of GS115 culture 1 
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Figure 8-9 - Batch model calibration of GS115 culture 8 

The recurrence of significance, sensitivity and identifiability issues found amongst the 

initial batch model calibrations is presented in Table 8-17 and Table 18. 

 

Table 8- 17 Percentage (o Frequency) of calibrations (8 in total) where a parameter 
presented sensitivity or significance issues. Parameters with recurrent problems are 
highlighted. 

 ���� �� �����,� ����,� �����,� ����,� �� ���� 

Sensitivity 0 38 0 0 0 13 25 13 

Significance 25 50 0 13 0 25 25 25 
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Table 8- 18 Percentage of calibrations (8 in total) where pairs of parameters show 
identifiability issues (correlation ≥ 0.95). Parameters with recurrent identifiability issues 
are highlighted. 

 ���� �� �����,� ����,� �����,� ����,� �� ���� 

���� -        

�� 13 -       

�����,� 50 0 -      

����,� 25 0 38 -     

�����,� 25 0 25 13 -    

����,� 13 0 0 13 0 -   

�� 25 25 0 0 0 13 -  

���� 63 25 38 25 38 13 50 - 

 
Fed-batch model 
 
Table 8-19 indicates the parameter values achieved for the three fed-batch cultivations 

used in the initial calibration of the fed-batch model. Figure 8-10, Figure-11 and Figure 8-

12, show the model fits to the experimental data. 
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Table 8- 19 Parameter Values of the Initial calibrations performed with the complete fed-
batch model (14 parameters) 

Parameter Dataset 1 Dataset 2 Dataset 3 Mean Units 

��,��� 2.74 3.29 2.59 2.94 ���� ����ℎ⁄  

�� 0.05 0.03 0.07 0.05 � �⁄  

�����.� 1.95 2.18 0.98 1.58 ���� ����ℎ⁄  

����.� 0.18 0.18 0.13 0.15 ���� ����ℎ⁄  

�����.� 0.5 0.24 0.11 0.18 ���� ����ℎ⁄  

����.� 0.12 0.11 0.22 0.16 ���� ����ℎ⁄  

�����.�� 1.13 1.20 1.22 1.21 ���� ����ℎ⁄  

����.�� 0.10 0.02 0.26 0.14 ���� ����ℎ⁄  

�����.�� 0.07 0.13 0.17 0.15 ���� ����ℎ⁄  

����.�� 0.005 0.00 0.01 0.008 ���� ����ℎ⁄  

�� 3.03E-04 4.26E-05 1.49E-04 9.6E-05 [− ] 

��� 1.28E-04 2.22E-14 1.44E-04 7.2E-05 [− ] 

���� 4.38 9.00 8.13 8.6 ���� ����ℎ⁄  

���� 23 22.02 22.94 22.5 ℎ 

 

Table 8- 20 General features of initial batch model calibration. 

Dataset N Min. squares difference Time of calibration [h] 

1 22 3.84 29.05 

2 21 4.35 30.75 

3 22 4.17 29.21 
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Figure 8-10 - Calibration of fed-batch dataset 1 using the original model structure 

 

 

Figure 8-11 - Calibration of fed-batch dataset 2 using the original model structure 
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Figure 8-12 - Calibration of fed-batch dataset 3 using the original model structure 

 

The recurrence of significance, sensitivity and identifiability issues found amongst the 

initial fed-batch model calibrations is presented in Table 8-21 and Table 8-22. 

 

Table 8- 21 Percentage of times a parameter of the model presented sensitivity or 
significance problems out of a total of three model calibrations. Parameters with sensitivity 
or significance issues are highlighted. 
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Table 8- 22 Frequency (in %) with which a pair of parameters presented identifiability 
issues in the initial modeling structure of fed-batch cultures of Pichia pastoris (3 datasets). 
Parameters with recurrent identifiability issues are highlighted. 
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0 0 33 0 0          

�����,�� 
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�����,�� 
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����,�� 
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���� 0 0 0 0 0 0 0 0 0 0 0 0   
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S 3-5 Absence of parametric problems in the Robustness Check Datasets and 

Goodness of Fit 

Batch Model 
Table 8-23 and Table 8-24 show that the calibration of the Robustness Check dataset 

yielded no identifiability, sensitivity (correlation > 0.95 between parameters) and 

sensitivity issues. Figure 8-13 shows the results of the goodness of fit analysis for this 

dataset 

 Table 8- 23 Correlation Matrix of the robust parameter set used to calibrate the batch 
validation dataset. Each cell contains the correlation between the two corresponding 
parameters. 

 �����,� ����,� �����,� ����,� �� 

�����,� 1 -0.45 0.43 0.78 -0.86 

����,� -0.45 1 -0.17 -0.56 0.50 

�����,� 0.43 -0.17 1 0.38 -0.43 

����,� 0.78 -0.56 0.38 1 -0.88 

�� -0.86 0.50 -0.43 -0.88 1 

 

Table 8- 24 Sensitivity Matrix of the robust Parameter set used to calibrate the batch 
validation dataset. Each cell contains the average sensitivity of a particular parameter over 
the state variables. 

 Volume Biomass Glucose Ethanol Pyruvate Arabitol Citrate 

�����,� 0 0.15 0.12 0.91 0.14 0.14 0.04 

����,� 0 0.02 0.00 0.02 0.95 0.02 0.00 

�����,� 0 0.03 0.01 0.02 0.02 0.97 0.00 

����,� 0 0.03 0.00 0.02 0.03 0.03 0.45 

�� 0 2.62 1.09 1.80 1.93 2.00 0.73 
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Figure 8-13 - Goodness of fit of the batch model to the Robustness Check dataset. This 
figure shows the model fit to experimental data along with the mean normalized error and 
the p-value of the Anderson-Darling test associated to each variable. 

 
 
Fed-Batch Model 
Table 8-25 and Table 8-26 indicate that the calibration using Structure 3 of new fed-batch 

data yielded no parametric problems. Figure 8-14 shows the results of the goodness of fit 

analysis for this dataset.
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Table 8- 25 Correlation Matrix of the calibration of the fed-batch validation dataset. Recall 
that we left the parameters associated to Pyruvate dynamics out of the analysis since it was 
not produced during the cultivation 

 ���� �� ����,� �����,� ����,� ����,�� �� ��� ���� ����� 

���� 1 0.15 - -0.47 0.45 - -0.92 0.14 -0.85 0.04 

�� 0.15 1 - -0.85 0.62 - -0.20 0.68 0.24 -0.32 

����,� - - - - - - - - - - 

�����,� -0.47 -0.85 - 1 -0.66 - 0.44 -0.70 0.07 0.55 

����.� 0.45 0.62 - -0.66 1 - -0.51 0.60 -0.20 -0.10 

����.�� - - - - - - - - - - 

�� -0.92 -0.20 - 0.44 -0.51 - 1 -0.18 0.88 -0.08 

��� 0.14 0.68 - -0.70 0.60 - -0.18 1 0.21 -0.42 

���� -0.85 0.24 - 0.07 -0.20 - 0.88 0.21 1 -0.25 

����� 0.04 -0.32 - 0.55 -0.10 - -0.08 -0.42 -0.25 1 

 
Table 8- 26 Sensitivity Matrix of the calibration of the fed-batch validation dataset. All of 
the included parameters have a significant impact in at least one of the state variables. 

 Volume Biomass Glucose Ethanol Pyruvate Arabitol Citrate 

���� 0.00 0.65 0.93 4.32 3.67 1.57 0.61 

�� 0.00 0.22 0.00 0.01 1.24 0.02 0.00 

����,� - - - - - - - 

�����,� 0.00 0.10 0.09 0.69 2.74 0.91 0.22 

����,� 0.00 0.03 0.00 0.09 0.96 0.04 0.62 

����,�� - - - - - - - 

�� 0.00 1.03 0.88 5.82 6.27 2.91 1.24 

��� 0.00 0.03 0.00 0.01 0.00 0.02 0.00 

���� 0.00 0.79 0.65 3.24 3.66 2.13 0.95 

����� 0.00 0.26 0.00 0.22 3.66 3.06 0.88 
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Figure 8-14 - Goodness of fit of the batch model to the Robustness Check dataset. This 
figure shows the model fit to experimental data along with the mean normalized error and 
the p-value of the Anderson-Darling test associated to each variable. 
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S 3-6: Goodness of Fit analysis of the Validation datasets 

Figure 8-15 and Figure 8-16 present the mean normalized error and the p-value of the 

Anderson-Darling test for each state variable in the validation cultures for the batch and 

fed-batch models, respectively. 

Batch model 

 

Figure 8-15 - Goodness of fit analysis of the batch model prediction of the Validation 
dataset. 
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Fed-batch model 

 

Figure 8-16 - Goodness of fit analysis of the fed-batch model prediction of the Validation 
dataset. 
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S 3-7 – Knockout Candidates derived using MOMA 

Table 8- 27 Knockout candidates for HSA overproduction 

 
Deleted Gene 

Final Biomass 
[g/L] 

Final HSA 
[g/L] 

Reaction(s) Name(s) 

1 PAS_chr2-2_0094 11.81 0.91 Chitin synthase 

2 PAS_chr1-4_0194 11.41 0.84 Putrescine and Spermidine transport 

3 PAS_chr4_0836 11.41 0.84 Putrescine and Spermidine transport 

4 RPPA11109 10.74 0.63 ribulose 5-phosphate 3-epimerase 

5 RPPA11110 10.74 0.63 ribulose 5-phosphate 3-epimerase 

6 PAS_chr2-2_0330 10.20 0.62 Phosphoryl ceramide syntase 

7 PAS_chr2-2_0044 8.59 0.30 
CDP-Diacylglycerol synthetase, yeast-
specific 

8 PAS_chr4_0210 8.84 0.29 ADP/ATP transporter, mitochondrial 

9 PAS_chr4_0212 8.84 0.29 ribose-5-phosphate isomerase 

10 PAS_chr3_0604 14.05 0.23 Deoxyribokinase and ribokinase 

11 PAS_chr4_0408 15.33 0.22 phosphoethanolamine cytidyltransferase 

12 PAS_chr1-1_0418 16.02 0.21 Acetate transporter 

13 PAS_chr1-3_0220 15.88 0.19 
Methylenetetrahydrofolate 
dehydrogenase NAD 

14 PAS_chr1-4_0487 14.85 0.17 Succinate Dehydrogenase 

15 PAS_chr2-2_0278 14.85 0.17 Peptide alpha-N-acetyltransferase 

16 PAS_chr3_1110 14.85 0.17 Tyrosyl-tRNA synthetase, mitochondrial 

17 PAS_chr4_0733 14.85 0.17 Succinate Dehydrogenase 

18 PAS_chr3_0646 14.04 0.14 Phospholipase D, yeast-specific 

19 PAS_chr3_0471 15.44 0.12 
aspartate-semialdehyde dehydrogenase, 
irreversible 

20 PAS_chr2-1_0657 13.40 0.12 phosphoglycerate dehydrogenase 

21 PAS_chr4_0284 13.40 0.12 ribonucleoside-diphosphate reductase 

22 PAS_chr4_0877 16.73 0.05 
malate, succinate and fumarate transport, 
mitochondrial 

23 PAS_chr3_0176 16.53 0.05 
N-acteylglutamate synthase and 
ornithine transacetylase , mitochondrial 

24 PAS_chr1-1_0050 9.78 0.05 Pyruvate dehydrogenase 

25 PAS_chr1-4_0254 9.78 0.05 Ppyruvate dehydrogenase 

26 PAS_chr1-4_0593 9.78 0.05 
Pyruvate dehydrogenase, 
tetrahydrofolate aminomethyltransferase 

27 PAS_chr2-2_0288 9.78 0.05 Arginase 

28 PAS_chr3_0649 16.26 0.03 
Thiamine transport in via proton 
symport 

29 PAS_chr2-2_0127 17.10 0.03 Cytochrome c peroxidase, mitochondrial 

30 PAS_chr1-4_0659 17.10 0.03 
Hydrogen peroxide reductase 
thioredoxin, peroxisomal 

31 PAS_chr2-1_0547 16.70 0.03 3',5'-bisphosphate nucleotidase 

32 PAS_chr3_0462 17.14 0.03 Alanyl-tRNA synthetase 
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Table 8- 28 Reactions and pathways associated to the deletion candidates 

 Deleted Gene Reactions Pathway 

1 PAS_chr2-2_0094 udpacgam[c]  => h[c] + udp[c] + chitin[c]  Glutamate metabolism 

2 PAS_chr1-4_0194 
h[c] + ptrc[e]  => h[e] + ptrc[c]  

h[c] + spmd[e]  => h[e] + spmd[c] h[c] + sprm[e]  
=> h[e] + sprm[c]  

Transport, Extracellular 

3 PAS_chr4_0836 
h[c] + ptrc[e]  => h[e] + ptrc[c]  

h[c] + spmd[e]  => h[e] + spmd[c] h[c] + sprm[e]  
=> h[e] + sprm[c]  

Transport, Extracellular 

4 RPPA11109 ru5p-D[c]  <=> xu5p-D[c]  Pentose Phosphate Pathway 

5 RPPA11110 ru5p-D[c]  <=> xu5p-D[c]  Pentose Phosphate Pathway 

6 PAS_chr2-2_0330 
ptd1ino_PP[c] + cer1_24[c]  => 12dgr_PP[c] + 

ipc124_PP[c]  
Sphingolipid Metabolism 

7 PAS_chr2-2_0044 

h[c] + pa_PP[c] + ctp[c]  <=> ppi[c] + 
cdpdag_PP[c]  

h[m] + ctp[m] + pa_PP[m]  <=> ppi[m] + 
cdpdag_PP[m]  

Phospholipid Biosynthesis 

8 PAS_chr4_0210 h[c] + adp[c] + atp[m]  => h[m] + atp[c] + adp[m]  Transport, Mitochondrial 

9 PAS_chr4_0212 r5p[c]  <=> ru5p-D[c]  Pentose Phosphate Pathway 

10 PAS_chr3_0604 atp[c] + rib-D[c]  => h[c] + adp[c] + r5p[c]  Pentose Phosphate Pathway 

11 PAS_chr4_0408 h[c] + ctp[c] + ethamp[c]  => ppi[c] + cdpea[c]  Phospholipid Biosynthesis 

12 PAS_chr1-1_0418 ac[e]  <=> ac[c]  Transport, Extracellular 

13 PAS_chr1-3_0220 nad[c] + mlthf[c]  => nadh[c] + methf[c]  Folate Metabolism 

14 PAS_chr1-4_0487 
fad[m] + succ[m]  <=> fadh2[m] + fum[m]  
q6[m] + succ[m]  <=> q6h2[m] + fum[m]  
q6[m] + fadh2[m]  <=> q6h2[m] + fad[m]  

Citric Acid 
Cycle/Oxydative 
Phosphorilation 

15 PAS_chr2-2_0278 
accoa[c] + pepd[c]  => h[c] + coa[c] + apep[c]  Other Amino Acid 

Metabolism 

16 PAS_chr3_1110 
atp[m] + tyr-L[m] + trnatyr[m]  => amp[m] + 

ppi[m] + tyrtrna[m]  
tRNA charging 

17 PAS_chr4_0733 
fad[m] + succ[m]  <=> fadh2[m] + fum[m]  
q6[m] + succ[m]  <=> q6h2[m] + fum[m]  
q6[m] + fadh2[m]  <=> q6h2[m] + fad[m]  

Citric Acid 
Cycle/Oxydative 
Phosphorilation 

18 PAS_chr3_0646 h2o[c] + pc_PP[c]  => h[c] + pa_PP[c] + chol[c]  Phospholipid Metabolism 

19 PAS_chr3_0471 
h[c] + nadph[c] + 4pasp[c]  => pi[c] + nadp[c] + 

aspsa[c]  
Alanine and Aspartate 
Metabolism 

20 PAS_chr2-1_0657 
nad[c] + 3pg[c]  => h[c] + nadh[c] + 3php[c]  Glycine and Serine 

Metabolism 

21 PAS_chr4_0284 
19 Reactions Nucleotide Salvage 

Pathway 

22 PAS_chr4_0877 pi[m] + mal-L[c]  <=> pi[c] + mal-L[m]  Transport, Mitochondrial 

23 PAS_chr3_0176 
accoa[m] + glu-L[m]  => h[m] + coa[m] + 

acglu[m]  
glu-L[m] + acorn[m]  => acglu[m] + orn[m]  

Arginine and Proline 
Metabolism 

24 PAS_chr1-1_0050 
nad[m] + coa[m] + pyr[m]  => nadh[m] + co2[m] 

+ accoa[m]  
Glycolysis/Gluconeogenesis 

25 PAS_chr1-4_0254 nad[m] + coa[m] + pyr[m]  => nadh[m] + co2[m] Glycolysis/Gluconeogenesis 
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+ accoa[m]  

26 PAS_chr1-4_0593 udpacgam[c]  => h[c] + udp[c] + chitin[c]  Glycolysis/Gluconeogenesis 

27 PAS_chr2-2_0288 
h[c] + ptrc[e]  => h[e] + ptrc[c]  

h[c] + spmd[e]  => h[e] + spmd[c] h[c] + sprm[e]  
=> h[e] + sprm[c]  

Arginine and Proline 
Metabolism 

28 PAS_chr3_0649 
h[c] + ptrc[e]  => h[e] + ptrc[c]  

h[c] + spmd[e]  => h[e] + spmd[c] h[c] + sprm[e]  
=> h[e] + sprm[c]  

Transport, Extracellular 

29 PAS_chr2-2_0127 ru5p-D[c]  <=> xu5p-D[c]  Oxidative Phosphorylation 

30 PAS_chr1-4_0659 ru5p-D[c]  <=> xu5p-D[c]  Other 

31 PAS_chr2-1_0547 
ptd1ino_PP[c] + cer1_24[c]  => 12dgr_PP[c] + 

ipc124_PP[c]  
Cysteine Metabolism 

32 PAS_chr3_0462 

h[c] + pa_PP[c] + ctp[c]  <=> ppi[c] + 
cdpdag_PP[c]  

h[m] + ctp[m] + pa_PP[m]  <=> ppi[m] + 
cdpdag_PP[m]  

tRNA charging 
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S 5-1 – Regression analysis of all mechanical combinations using experimental design 

 

Table 8- 29 Regression analysis of all mechanic combinantions using experimental design 

Coefficient 

TSD RT-RT TSD RT-EEDP TSD EEDP-RT TSD EEDP-EEUP 

W GS1 GS2 W GS1 GS2 W GS1 GS2 W GS1 GS2 
Response 

means b0 5.59E-2 4.67E-2 1.97E-2 6.00E-2 2.75E-2 1.58E-2 4.27E-2 2.93E-2 1.91E-2 5.05E-2 3.07E-2 1.92E-2 

RPM b1 2.03E-2*** 
7.78E-
3*** 

6.32E-
3*** 

1.81E-
2*** 1.43E-2*** 9.77E-3*** 4.16E-3ns 6.95E-3** 

5.75E-
3*** 

1.52E-
2** 1.89E-3ns 

5.74E-
3*** 

VVM b2 1.26E-2** 7.00E-3** 6.17E-4ns 1.53E-2** 5.54E-3*** 3.03E-3*** 1.43E-2** 
1.05E-
2*** 

3.24E-
3*** 

1.71E-
2** 

1.01E-
2*** 3.79E-3** 

RPM·VVM b12 3.65E-3ns 2.8E-4ns 4.17E-4ns 3.63E-3ns 4.96E-4ns 
-1.93E-

3*** 3.08E-4ns -5.17E-5ns -8.53E-4* 5.52E-3ns 2.56E-3ns 8.15E-4ns 

R2   87.9 84.4 97.8 85.0 99.3 99.2 68.1 87.4 97.7 82.2 87.0 88.3 

                            

                            

Coefficient 

SD RT-RT SD RT-EEDP SD EEDP-RT SD EEDP-EEUP 

W GS1 GS2 W GS1 GS2 W GS1 GS2 W GS1 GS2 
Response 

means b0 4.47E-2 1.82E-2 1.25E-2 3.67E-2 1.71E-2 1.57E-2 5.46E-2 1.84E-2 1.10E-2 5.49E-2 2.11E-2 1.21E-2 

RPM b1 2.05E-2*** 
1.23E-
2*** 

5.43E-
3*** 

2.34E-
2*** 7.92E-3*** 4.86E-3*** 

2.30E-
2*** 

9.94E-
3*** 

3.01E-
3*** 

1.82E-
2** 5.94E-3** 1.29E-3ns 

VVM b2 9.4E-3** 
2.03E-
3*** 1.13E-3* 

7.57E-
3*** 3.05E-3* 2.53E-3** 1.07E-2* 2.22E-3* 1.28E-3ns 

1.65E-
2** 3.99E-3* 6.92E-4ns 

RPM·VVM b12 2.98E-3ns 3.58E-5ns -3.79E-4ns 
3.52E-
3*** 6.66E-4ns -3.78E-4ns 3.77E-3ns -1.41E-4ns -5.45E-4ns 6.71E-3ns 1.90E-3ns -6.58E-4ns 

R2   92.4 99.4 95.0 99.3 88.9 87.0 87.4 95.2 88.1 82.0 70.8 46.7 

*** Significant(p<0.001)                    

** Significant(p<0.01)                    

* Significant(p<0.05)                   

ns Not Significant                   

 


