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ABSTRACT

We present six years of new radial velocity data from the Anglo-Australian and Magellan Telescopes on the
HD 73526 2:1 resonant planetary system. We investigate both Keplerian and dynamical (interacting) fits to these
data, yielding four possible configurations for the system. The new data now show that both resonance angles
are librating, with amplitudes of 40o and 60o, respectively. We then perform long-term dynamical stability tests
to differentiate these solutions, which only differ significantly in the masses of the planets. We show that while
there is no clearly preferred system inclination, the dynamical fit with i = 90o provides the best combination of
goodness-of-fit and long-term dynamical stability.
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1. INTRODUCTION

The ever-growing population of known multiple-planet
systems has proven to be an exceedingly useful laboratory for
testing models of planetary system formation and dynamical
evolution. Of particular interest are the systems that are in or near
resonant configurations. A number of such systems have been
identified from radial velocity surveys, with some notable ex-
amples including GJ 876 (Marcy et al. 2001), HD 128311 (Vogt
et al. 2005), HD 82943 (Mayor et al. 2004), and HD 200964
(Johnson et al. 2011). Wright et al. (2011) noted that about
1/3 of well-characterized multi-planet systems were in such
low-order period commensurabilities. The Kepler mission has
revealed hundreds of candidate multiply transiting planetary
systems (Borucki et al. 2010; Batalha et al. 2013), some of
which are in or near low-order resonances (Lissauer et al. 2011;
Steffen et al. 2013). One emerging trend from the Kepler results
is that a significant number of such near-resonant planet pairs
are outside of the resonance (Fabrycky et al. 2012; Veras &
Ford 2012; Lee et al. 2013), with an excess population slightly
wide of the resonance and a deficit of planet pairs just inside the
resonance (Lithwick & Wu 2012).

Marti et al. (2013) recently showed that the 4:2:1 Laplace
resonance in the GJ 876 system (Rivera et al. 2010; Baluev
2011) acts to stabilize the three outer planets, constraining their
mutual inclinations to less than 20oand e3 � 0.05. Tan et al.

∗ This paper includes data gathered with the 6.5 meter Magellan Telescopes
located at Las Campanas Observatory, Chile.

(2013) applied a dynamical fitting approach to 10 yr of precise
Keck radial velocities of the HD 82943 2:1 resonant system (Lee
et al. 2006). They found a best fit at an inclination of 20 ± 4o

to the sky plane, which was dynamically stable despite the
high planetary masses implied by that inclination. Interestingly,
Herschel debris-disk observations reported by Kennedy et al.
(2013) show that the disk has a similar line-of-sight inclination
of 27 ± 4o. These examples show how planetary systems can
be characterized with multiple complementary approaches.

HD 73526 is one of 20 stars added to the Anglo-Australian
Planet Search (AAPS) in late 1999, based on high metal-
licity and the then-emerging planet–metallicity correlation
(Laughlin 2000; Valenti & Fischer 2005). The first planet,
HD 73526b (Tinney et al. 2003), was reported to have period
P = 190.5 ± 3.0 days, an eccentricity e = 0.34 ± 0.08, and a
minimum mass m sin i = 3.0 ± 0.3 MJup. Tinney et al. (2006)
reported a second planet with P = 376.9 ± 0.9 days, placing
it in the 2:1 resonance with the inner planet. The authors noted
that the 2:1 period commensurability appears to be common,
with four of the 18 then-known multiple systems moving on
such orbits. The HD 73526 planetary system was reported in a
2:1 mean-motion resonance (MMR), with θ1 librating around
0o and θ2 circulating (Tinney et al. 2006), where θ1 and θ2 are
the lowest order, eccentricity-type 2:1 MMR angles:

θ1 = λ1 − 2λ2 + �1, (1)

θ2 = λ1 − 2λ2 + �2. (2)
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Here, λ is the mean longitude, � is the longitude of periapse,
and the subscripts 1 and 2 represent the inner and outer planets,
respectively. This type of 2:1 MMR configuration is dynamically
interesting as it cannot be produced by smooth migration
capture alone (Beaugé et al. 2003; Ferraz-Mello et al. 2003;
Lee 2004; Beaugé et al. 2006; Michtchenko et al. 2008) and
alternative mechanisms have been suggested to produce such a
configuration.

The resonant property of the HD 73526 planets makes this an
interesting system in terms of its dynamical evolution. Subse-
quent work has focused on how planets get into the 2:1 resonance
in this and other exoplanetary systems. Sándor et al. (2007) pro-
posed that the HD 73526 system experienced both migration
and a sudden perturbation (planet–planet scattering or rapid
dissipation of the protoplanetary disk) that combined to drive
the system into the observed 2:1 resonance. Similarly, Zhang
et al. (2010) suggested that the HD 73526 and HD 128311 sys-
tems, both of which are in 2:1 librating-circulating resonances,
arrived in that configuration via a hybrid mechanism of scat-
tering and collisions with terrestrial planetesimals. Scattering
into low-order resonances was also implicated by Raymond
et al. (2008) as a likely formation mechanism, where scattering
events drive the two larger planets into a resonance while eject-
ing the smaller planet. In summary, there is general agreement
that the HD 73526 system did not arrive in the 2:1 resonance by
smooth migration alone.

The aim of this work is to provide an updated set of
parameters for the HD 73526 system, based on an additional
six years of AAPS observations, as well as new data from
Magellan (Section 2). In addition, we perform Keplerian and full
dynamical fits to the complete dataset (Section 3). In Section 4,
we present detailed dynamical stability maps of the system,
using both the parameters from the Keplerian and dynamical fits.
Finally, in Section 5, we offer conclusions on the architecture
of the system based on the combination of our orbit fitting and
dynamical stability analysis.

2. OBSERVATIONS

2.1. Anglo-Australian Telescope

AAPS Doppler measurements are made with the UCLES
echelle spectrograph (Diego et al. 1990). An iodine absorption
cell provides wavelength calibration from 5000 to 6200 Å. The
spectrograph point-spread function (PSF) and wavelength cali-
bration are derived from the iodine absorption lines embedded
in every pixel of the spectrum by the cell (Valenti et al. 1995;
Butler et al. 1996). The result is a precision Doppler velocity
estimate for each epoch, along with an internal uncertainty esti-
mate, which includes the effects of photon-counting uncertain-
ties, residual errors in the spectrograph PSF model, and variation
in the underlying spectrum between the iodine-free template
and the epoch spectra observed through the iodine cell. All ve-
locities are measured relative to the zero-point defined by the
template observation. A total of 36 Anglo-Australian Telescope
(AAT) observations have been obtained since 1999 February 2
(Table 1) and were used in the following analysis, representing
a data span of 4836 days. The exposure times range from 300 to
900 s, and the mean internal velocity uncertainty for these data
is 4.1 m s−1.

2.2. Magellan Telescope

Since HD 73526 is among the faintest AAPS targets (V =
9.0), we have obtained supplemental observations with the

Table 1
AAT/UCLES Radial Velocities for HD 73526

JD-2400000 Velocity Uncertainty
(m s−1) (m s−1)

51212.13020 7.91 5.40
51213.13145 0.32 5.37
51214.23895 5.52 6.54
51236.14647 15.70 6.62
51630.02802 3.91 5.12
51717.89996 −190.60 7.09
51920.14186 −77.28 6.45
51984.03780 10.04 4.87
52009.09759 12.38 4.21
52060.88441 −105.26 3.73
52091.84653 −223.76 6.76
52386.90032 −2.62 3.46
52387.89210 1.72 2.86
52420.92482 −66.78 3.28
52421.91992 −64.87 3.23
52422.86019 −66.65 3.34
52424.92369 −77.31 7.02
52454.85242 −151.57 3.44
52655.15194 −81.59 3.53
53008.13378 0.13 2.42
53045.13567 −95.56 3.20
53399.16253 −52.76 2.97
53482.87954 20.95 2.02
53483.88740 26.55 2.59
53485.96240 22.83 3.65
53488.93814 14.81 2.33
53506.88650 5.03 2.25
53508.91266 11.94 2.03
53515.89441 −4.01 2.89
53520.91025 −4.97 3.27
54041.18613 −14.76 7.28
54549.03413 −97.63 2.83
54899.03133 −7.35 4.24
55315.92532 −91.43 3.06
55997.03979 62.28 4.10
56048.94441 −57.19 4.16

Planet Finder Spectrograph (PFS; Crane et al. 2006, 2008,
2010) on the 6.5 m Magellan II (Clay) telescope. The PFS is a
high-resolution (R ∼ 80,000) echelle spectrograph optimized
for high-precision, radial velocity measurements (e.g., Albrecht
et al. 2011, 2012; Anglada-Escudé et al. 2012; Arriagada et al.
2013). The PFS also uses the iodine cell method, as described
above, to obtain precise radial velocities. The 20 measurements
of HD 73526 are given in Table 2. The data span 856 days and
have a mean internal uncertainty of 1.2 m s−1.

3. ORBIT FITTING

3.1. Non-interacting Keplerian Fit

New radial velocity observations of exoplanetary systems
can sometimes result in substantial modification of the best-fit
planetary orbits. For example, the two planets in the HD 155358
system were initially reported to be in orbital periods of 195
and 530 days (Cochran et al. 2007). A further five years of
observations revealed that the outer planet actually has an orbital
period of 391.9 days and is trapped in the 2:1 MMR (Robertson
et al. 2012a). In light of the possibility that the best-fit orbits
of the two planets may be significantly different than initially
presented in Tinney et al. (2006), we begin our orbit fitting
process with a wide-ranging search using a genetic algorithm.
This approach is often used when the orbital parameters of a
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Table 2
Magellan/PFS Radial Velocities for HD 73526

JD-2400000 Velocity Uncertainty
(m s−1) (m s−1)

55582.79672 14.7 1.2
55584.75698 20.6 1.2
55585.74045 22.1 1.2
55587.77487 28.3 1.0
55588.71850 28.4 0.9
55663.53102 −60.3 1.1
55668.54537 −73.8 0.8
55672.50855 −94.5 0.8
55953.76750 0.4 1.3
55955.71181 0.0 1.1
56282.77476 −135.9 1.5
56292.76731 −101.0 1.3
56345.67804 23.1 1.2
56355.63611 33.8 1.3
56357.65331 33.0 1.2
56358.70107 39.4 2.4
56428.46819 −99.9 1.2
56431.48616 −105.3 1.7
56434.49819 −110.7 1.1
56438.46472 −119.0 1.1

planet candidate are highly uncertain (e.g., Tinney et al. 2011;
Wittenmyer et al. 2012a; Horner et al. 2012b) or when data
are sparse (Wittenmyer et al. 2011). We allowed the genetic
algorithm to search a wide parameter space and it ran for 50,000
iterations, testing a total of about 107 possible configurations.
We then fit the two datasets simultaneously using GaussFit
(Jefferys et al. 1987), a generalized least-squares program used
here to solve a Keplerian radial velocity orbit model. The
GaussFit model has the ability to allow the offsets between
multiple datasets to be a free parameter. The parameters of
the best two-planet solution obtained by the genetic algorithm
were used as initial inputs to GaussFit and a jitter of 3.3 m s−1

was added in quadrature to the uncertainty of each observation
(following Tinney et al. 2006). The best-fit Keplerian solutions
are given in Table 3; planetary minimum masses m sin i are
derived using a stellar mass of 1.014 ± 0.046 M� (Takeda et al.
2007). This fit has a reduced χ2 of 1.63 and a total rms of
6.32 m s−1 (AAT–7.67 m s−1; PFS–2.75 m s−1).

3.2. Dynamical Fit

Because the two planets are massive enough and orbit close
enough to each other to be interacting, we also apply a full
dynamical model to these data. This model includes the effects
of planet–planet interactions and can be used to place constraints
on the system’s inclination to the sky plane, i, a quantity that
cannot be determined from Keplerian fitting alone. The system
inclination then sets the true masses of the planets. The technique
is described fully in Tan et al. (2013) for the HD 82943 two-
planet system. The Levenberg–Marquardt (Press et al. 1992)
method is adopted as our fitting method. Using the Keplerian

Table 4
Dynamical Fit Solutions

Parameter Planet b Planet c

K (m s−1) 85.4 ± 2.3 62.3 ± 1.8
Period (days) 189.65 ± 0.21 376.93 ± 0.69
Eccentricity 0.265 ± 0.021 0.198 ± 0.029
ω (deg) 198.3 ± 3.6 294.5 ± 11.3
Mean anomaly (deg) 105.0 ± 5.0 153.4 ± 9.0
a (AU) 0.65 ± 0.01 1.03 ± 0.02
i (deg) 90.0
Mass (MJup) 2.35 ± 0.12 2.19 ± 0.12
χ2

ν 1.70
rms (m s−1) 6.54
K (m s−1) 83.0 ± 2.1 61.5 ± 1.6
Period (days) 189.01 ± 0.27 379.32 ± 0.92
Eccentricity 0.292 ± 0.022 0.244 ± 0.026
ω (deg) 202.3 ± 3.2 285.3 ± 10.6
Mean anomaly (deg) 102.8 ± 3.9 163.2 ± 8.3
a (AU) 0.65 ± 0.01 1.03 ± 0.02
i (deg) 40.2
Mass (MJup) 3.50 ± 0.17 3.32 ± 0.17
χ2

ν 1.72
rms (m s−1) 6.59
K (m s−1) 81.4 ± 2.3 63.1 ± 1.6
Period (days) 189.43 ± 0.82 378.29 ± 2.81
Eccentricity 0.308 ± 0.020 0.293 ± 0.021
ω (deg) 205.7 ± 3.4 284.3 ± 9.9
Mean anomaly (deg) 99.5 ± 4.0 165.8 ± 6.8
a (AU) 0.649 ± 0.012 1.029 ± 0.021
i (deg) 20.8
Mass (MJup) 6.22 ± 0.33 6.10 ± 0.31
χ2

ν 1.80
rms (m s−1) 6.76

best fit as an initial guess, assuming coplanar edge-on orbits, the
Levenberg–Marquardt algorithm converges to a local minimum
with a χ2

ν of about 1.70 and an rms of about 6.54 m s−1. Based
on this local minimum, we conduct a parameter grid search (Lee
et al. 2006; Tan et al. 2013) to ensure a global search for the
best fit. This minimum is indeed a global dynamical best fit
assuming coplanar edge-on orbits; two other local minima with
slightly larger χ2

ν have been found. The coplanar edge-on best-fit
parameters are listed in Table 4, with their error bars determined
by the covariance matrix. This fit and its residuals are shown in
the left panel of Figure 1. The right panel of Figure 1 shows that
both resonance angles are librating, with amplitudes of ±40o

(θ1) and ±60o (θ2).
Assuming the planets are in coplanar orbits, we then allow

the inclination to the sky plane to vary along with other fitting
parameters. Figure 2 shows χ2 and rms as a function of sin i and
Figure 3 shows best-fit parameters as a function of sin i. The
χ2 curve is shallow in the range of sin i � 0.6, but then shows
a clear local minimum at sin i ∼ 0.36 (i = 20.◦8). Two further
local minima were found, at inclinations of i = 90.◦0 and 40.◦2.
The parameters of these three solutions are given in Table 4; the

Table 3
Keplerian Orbital Solutions

Planet Period T0 e ω K m sin i a
(days) (JD-2400000) (degrees) (m s−1) (MJup) (AU)

HD 73526 b 188.9 ± 0.1 52856 ± 2 0.29 ± 0.03 196 ± 5 82.7 ± 2.5 2.25 ± 0.12 0.65 ± 0.01
HD 73526 c 379.1 ± 0.5 53300 ± 10 0.28 ± 0.05 272 ± 10 65.1 ± 2.6 2.25 ± 0.13 1.03 ± 0.02

3
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Figure 1. Radial velocity curves and residuals from the coplanar edge-on dynamical fit in Table 4. Error bars include 3.3 m s−1 of stellar jitter added in quadrature.
The red points are AAT data while the blue points are PFS data. The right panel shows the dynamical evolution of this system. The semi-major axes remain essentially
constant, while the eccentricities show secular variations on timescales of centuries. The fit is in a 2:1 MMR with both θ1 and θ2 librating around 0o.

(A color version of this figure is available in the online journal.)

Figure 2. χ2 and rms as a function of sin i.

planetary masses scale accordingly as 1/sin i, resulting in more
massive planets for the low-inclination solutions.

The χ2 curve and fitting parameters (Figure 3) show discon-
tinuities along the sin i axis, especially those near sin i ∼ 0.43.
To understand these discontinuities, we explore grids in differ-
ent fixed sin i, to see the evolution of the parameter space along
different inclinations. Figure 4 shows K1–K2 grids for differ-
ent sin i. Initially, when the orbits are at sin i ∼ 0.43, there
is only one χ2 minimum (K1 ∼ 84). Then a new local mini-
mum (K1 ∼ 82) appears around sin i = 0.427, whose fitting
parameters are significantly different from the original mini-
mum (K1 ∼ 84). When sin i drops down to 0.425, the original
minimum vanishes and the new one becomes a single mini-
mum in parameter space. The appearance of the additional χ2

ν

minimum results in the big “jump” of fitting parameters at about
sin i = 0.43 (see Figure 3).

In summary, we have four possible configurations for this
system (one Keplerian fit and three dynamical fits). The four
solutions are not substantially different from one another, apart
from the sin i factor for the three solutions in Table 4, which
serves to increase the planetary masses relative to the Keplerian
scenario in which we have assumed the planets to be at their
minimum masses (m sin i). As a first-order check of dynamical
stability, the best-fit system configuration at each inclination
was integrated for 108 yr. For all fits so tested, at inclinations
of 26.◦7, 30.◦0, 33.◦4, 36.◦9, 40.◦0, and 90.◦0 (sin i = 0.45, 0.5,
0.55, 0.6, 0.64, and 1.0), the systems remained stable for 108 yr.
However, since dynamical stability is highly dependent on the
initial conditions, we expand on these tests in the next section
to obtain a more robust and complete picture of the stability of
the various configurations.

4. DYNAMICAL STABILITY TESTING

We have found four possible solutions for the HD 73526
system, which significantly differ in inclination (and hence
in planetary masses). It is therefore critical to perform dy-
namical stability tests on these configurations, as the solu-
tion with the absolute χ2 minimum may prove dynamically
unfeasible.

4.1. Long-term Stability

When analyzing any multiple-planet system, it is prudent to
investigate the long-term dynamical stability of the system. As
more multi-planet systems are discovered, the announcement
of planetary systems that turn out to be dynamically unfeasible
has become increasingly common. Detailed N-body simulations
can be used to test the veracity of planet claims. Sometimes, the
results of such tests have shown that some systems simply cannot
exist in their proposed configuration on astronomically relevant
timescales (e.g., Horner et al. 2011; Wittenmyer et al. 2012a;
Horner et al. 2012a; Wittenmyer et al. 2013). In other cases,
dynamical testing can place additional constraints on planetary

4
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Figure 3. Best-fit parameters as a function of sin i.

Figure 4. Evolution of χ2
ν contours in K1–K2 space as a function of sin i.

systems, particularly when the planets are in or near resonances
(e.g., Robertson et al. 2012a, 2012b; Wittenmyer et al. 2012b). In
this section, we examine the various solutions for the HD 73526
system, performing detailed dynamical tests of the planetary
system configurations as given in Tables 3 and 4. Given that
the four solutions are not substantially different from each other
in terms of goodness of fit, these dynamical stability tests can
serve to discern which scenario is most plausible; a solution that
is favored by the fitting process may prove to be unstable, and
hence unfeasible.

4.2. Procedure

As in our previous dynamical work (e.g., Marshall et al.
2010; Wittenmyer et al. 2012c; Horner et al. 2012b), we used
the Hybrid integrator within the N-body dynamics package
Mercury (Chambers 1999) to perform our integrations. We
held the initial orbit of the inner planet fixed at its best-fit
parameters, as given in Table 3, and then created 126,075 test
systems. In those test systems, the initial orbit of the outer planet
was varied systematically in semi-major axis a, eccentricity e,

5
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. Dynamical stability of the HD 73526 system as a function of the outer planet’s initial eccentricity and semi-major axis. The best-fit Keplerian parameters
(Table 3) are marked by the open box with 1σ crosshairs. Each colored square represents the mean lifetime of 75 unique M-ω combinations at that point in (e,a) for
the outer planet. Panel (a) is the coplanar case and panels (b)–(f) are the mutually inclined scenarios, for inclinations of 5o, 15o, 45o, 135o, and 180o, respectively.

(A color version of this figure is available in the online journal.)

periastron argument ω, and mean anomaly M, resulting in a 41 ×
41 × 15 × 5 grid of “clones” spaced evenly across the 3σ range
in those parameters. We assumed the planets were coplanar
with each other and, for the Keplerian case, we assigned masses
equivalent to their minimum mass, m sin i (Table 3). We then
followed the dynamical evolution of each test system for a period
of 100 Myr and recorded the times at which either of the planets
was removed from the system. Planets were removed if they
collided with one another, hit the central body, or reached a
barycentric distance of 10 AU.

We performed these dynamical simulations for the Keplerian
fit (i = 90o), the dynamical fit at i = 90o, and the lowest-
inclination dynamical fit: the configuration given in Table 4
at i = 20.◦8. For the last scenario, the planet masses were
scaled according to the derived system inclination i. Clearly, the

masses of the planets are a proxy for the expected dynamical
stability—systems containing more massive planets are likely
to be less stable. Hence, the three scenarios we have
tested, at i = 90o and i = 20.◦8, represent the extremes
of dynamical stability (or instability) for the HD 73526
system.

To explore the effects of mutual inclinations between the
planets, we performed five additional N-body simulations, for
scenarios in which the two planets were inclined with respect to
each other. These simulations were set up exactly as described
above, using the parameters of the Keplerian solution (Table 3),
except at a lower resolution due to computational limitations: a
21 × 21 × 5 × 5 grid in a, e, ω, and M. Five runs were performed,
at mutual inclinations of 5o, 15o, 45o, 135o, and 180o. The latter
two cases represent retrograde scenarios, which can sometimes

6
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Figure 6. Dynamical stability of the best-fit Keplerian solution for the HD 73526 system for a 15 × 5 grid of ω and M. The semi-major axis and eccentricity have
been fixed to their best-fit values. The colors and symbols have the same meaning as in Figure 5; this plot shows results from the 75 individual simulations that were
averaged in the center colored square of Figure 5. The best-fit solution lies squarely in the most stable region of this subset of simulations.

(A color version of this figure is available in the online journal.)

Figure 7. Left: stability of the HD 73526 system as a function of the outer planet’s initial eccentricity and semi-major axis. The colors and symbols have the same
meaning as in Figure 5. For this system, we used the i = 90o solution (Table 4). As compared with the Keplerian solution, this fit results in substantially enhanced
stability throughout the 1σ range. Right: same as Figure 6, but for the dynamical-fit i = 90o solution.

(A color version of this figure is available in the online journal.)

allow for a larger range of dynamically stable orbits (Eberle &
Cuntz 2010; Horner et al. 2011).

4.3. Results

The results of our dynamical stability simulations for the
Keplerian solution are shown in Figure 5. We show six pan-
els, for the coplanar and five mutually inclined scenarios as de-
scribed above. For the coplanar and 5◦ cases (panels (a) and (b)),
the best-fit set of parameters (shown by the open square with
1σ crosshairs) lies in a region of moderate stability, with mean
system survival times of ∼106 yr. The stability rapidly degrades
as the inclination between the planets becomes significant and
even for retrograde cases (panels (e) and (f)), the nominal best-
fit system destabilizes within 104 yr. From these simulations, we
can conclude that the HD 73526 planets are most likely coplanar
with each other. Panels (a) and (b) also show that the stability of
the system increases as the outer planet takes on lower eccentric-
ities. For e � 0.2, the mean survival times exceed 107 yr. This is

not a surprising result, as high eccentricities generally increase
the possibility of strong interactions or even orbit crossings al-
though systems in protected resonances may remain stable for
some values of M and ω. Indeed, the statistics of multi-planet
systems show that planets in multiple systems tend to have lower
eccentricities (Wright et al. 2009; Wittenmyer et al. 2009).

As shown in Figure 5, the Keplerian best-fit solution is stable
on Myr timescales. However, the colored squares in Figure 5
represent the mean survival times across the range of mean
anomalies and ω tested. As the best-fit solution for the HD 73526
system places the planets on resonant orbits, their stability will
naturally be highly sensitive to the values of these angles. Hence,
Figure 6 shows the outcomes of the 75 individual simulations
performed at the best-fit a and e spanning a 5 × 15 grid in M
and ω. We see that the nominal solution (where a and e are fixed
at the best-fit values) lies at the point of maximum stability.
While this is reassuringly consistent with our expectations of
enhanced stability within the resonance, we caution that each
colored square in Figure 6 represents only a single run and

7
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Figure 8. Same as Figure 7, but for the i = 20.◦8 solution (Table 4), resulting in higher masses for the planets. Hence, the system is much less stable than the
minimum-mass case explored in Figure 7, with mean survival times of the order of 1000 yr.

(A color version of this figure is available in the online journal.)

dynamical evolution is known to be a chaotic process (e.g.,
Horner et al. 2004a, 2004b).

The long-term stability results for the dynamical fit with
i = 90o are shown in Figure 7. It is immediately apparent
that this solution results in a higher degree of stability, with the
entire 1σ region exhibiting mean lifetimes exceeding 107 yr. The
right panel of Figure 7 shows the results from the 75 individual
runs in the central best-fit square, as in Figure 6. For this case,
when we examine the dependence on M and ω, we see that
the entire diagonal region (including the best fit) is stable for
108 yr. In contrast, Figure 8 shows the dynamical stability of
the i = 20.◦8 solution from Table 4. Although this fit is formally
almost as good as the Keplerian fit, the increased masses implied
by the inclination render the system unstable on short timescales
(1000 yr).

5. DISCUSSION AND CONCLUSIONS

We have fit the HD 73526 system using both kinematic
and dynamical techniques, yielding four possible solutions.
There are no compelling differences among the four models
in terms of their goodness-of-fit statistics or derived planetary
parameters. The only significant distinguishing characteristics
are the planet masses derived from the system inclinations in the
dynamical fits (Table 4). We thus turned to a detailed dynamical
stability mapping procedure in which we tested a broad range
of parameters about the best-fit solutions.

Our dynamical stability testing showed that the Keplerian
model yielded a system that was stable on Myr timescales,
with stability increasing for lower eccentricities (Figure 5).
The interacting dynamical fitting procedure gave three “best”
solutions, one of which was at a system inclination of 90o

(giving planet masses equal to the m sin i minimum masses used
in the Keplerian model). Our stability testing for the inclined
solution at i = 20.◦8 resulted in severe instabilities throughout
the allowed 3σ parameter space. The increased planetary masses
for the low-inclination solutions appear to destabilize the system
on astronomically short timescales (<1000 yr). This result leads
us to reject the i = 20.◦8 scenario. While the individual best-fit

solutions proved stable for i > 26.◦7 (as noted in Section 3.2),
it is clear that the region of long-term stability expands as
the system inclination increases. We thus adopt the i = 90o

dynamical fit for two primary reasons: first, the planets are
massive enough that they are certainly interacting with each
other, as evidenced by the 2:1 resonant configuration, and
second, this fit proved to be significantly more stable than the
Keplerian fit (Figure 5). We note in passing that if the system’s
inclination is indeed near 90o, there is the possibility that one or
both planets transit.

This work has shown how dynamical stability considerations
can serve to constrain the configuration of a planetary system
when the χ2 surface is such that a clear minimum is not evident
(e.g., Campanella 2011). We have combined two fitting methods
with the detailed dynamical simulations to present an updated
view of the interesting 2:1 resonant planetary system orbiting
HD 73526.

This research has made use of NASA’s Astrophysics Data
System (ADS) and the SIMBAD database, operated at CDS,
Strasbourg, France. This research has also made use of the Exo-
planet Orbit Database and the Exoplanet Data Explorer at exo-
planets.org (Wright et al. 2011). M.H.L. was supported in part by
the Hong Kong RGC grant HKU 7024/13P. D.M. acknowledges
funding from the BASAL CATA Center for Astrophysics and
Associated Technologies PFB-06, the The Milky Way Millen-
nium Nucleus from the Ministry for the Economy, Development,
and Tourism’s Programa Iniciativa Cientı́fica Milenio P07-021-
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