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ABSTRACT

We report photometric properties of the dwarf galaxy population in
the Centaurus A group, along with 51 new dwarf candidates based on
the optical u'¢’r'i'z’ imaging of 22 deg? centered on the nearby giant
elliptical galaxy NGC 5128 as part of The Survey of Centaurus A’s
Baryonic Structures (SCABS) program. Morphological analysis of the
new candidates shows surface brightness profiles are well represented
by a single component Sérsic models with an average Sérsic index of
(n) = 0.8540.05. The candidates present luminosities of —12 < My <
—7 mag, corresponding to stellar masses of 7.5 2 log M. /Mg 2 4.5,
which extend the size-luminosity relation toward fainter luminosities
and smaller sizes for known dwarf galaxies outside the Local Group
(LG), and are consistent with properties of nearby dwarf spheroidal
galaxies. I will discuss the stellar population properties of the newly
discovered galaxy sample and compare their properties to other dwarf
galaxy samples in the nearby Universe.
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INTRODUCTION

1.1 A+4COLD DARK MATTER

A Universe dominated by dark energy and Cold Dark Matter, with a
small component of baryons (Planck Collaboration et al. [52]) is con-
sistent with observations on large scales, from the horizon (~ 15.000
Mpc) to the typical spacing between galaxies (~ 1 Mpc), and its evo-
lution with time. The ACDM cosmological model is also successful
at explaining the basic properties of galaxies that form within dark
matter halos, hydrodynamical simulations of galaxy formation are
capable of reproducing a large variety of galaxy luminosities, sizes,
colours, morphologies and evolutionary stages, providing a powerful
tool for galaxy formation theories (Vogelsberger et al. [62], Schaye et al.

[54]).

However, when the first N-body simulations resolved the internal
structure of CDM halos on small scales, length scales smaller than
~ 1 Mpc and mass scales smaller than ~ 10! M, the ACDM model
presented tensions with observations, some of these challenges are:

1. Missing Satellites

High-resolution cosmological simulations of Milky Way sized
dark matter halos in the ACDM paradigm have demonstrated
that dark matter clumps exist at all resolved masses, with no
break in the subhalo mass function down to the numerical con-
vergence limit (e.g., Springel et al. [57]). While thousands of
subhalos are expected, only ~ 60 satellite galaxies are known to
orbit within the virial radius of the Milky Way.

The observed stellar mass function of field galaxies and satellite
galaxies in the Local Group is much flatter at low masses than
the predicted dark matter halo mass functions: dn/dM, o M3E
with ag >~ —1.5, compared to ay,, ~ —2 for dark matter (Moore
et al. [40], Jenkins et al. [23]).

Either ACDM predictions are not reliable, or there are many
dwarfs galaxies not yet discovered. One solution to this problem
is to expect that galaxy formation become increasingly inefficient
as the halo mass drops, making it impossible for the smallest
dark matter halos to form stars. Another solution is take into
account various baryonic effects, like the impact of reionization
which results in predictions that are in rather good agreement
with observations (Bullock, Kravtsov, and Weinberg [11]).
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2. Cusp/Core

The central regions of dark-matter dominated galaxies tend to
be both less dense and less cuspy than predicted for standard
ACDM halos.

Numerical simulations that include only dark matter predict that
dark matter halos should have density profiles that rise steeply
towards the centers of galaxies, being described as p o r7, with
v ~ —1 (e.g., Moore et al. [39], Navarro et al. [47]). This profile is
in contrast with many low-mass dark-matter-dominated galaxies
with well-measured rotation curves which prefer dark matter
halos with constant-density cores (y ~ 0 — 0.5, e.g. McGaugh,
Rubin, and de Blok [37]).

A related issue, referred to as "central density problem", where
ACDM model predicts excessively high dark matter densities in
the central parts of halos (Alam, Bullock, and Weinberg [1]).

3. Too-Big-To-Fail

A solution to the missing satellites problem within ACDM is to
assign the known Milky Way satellites to the largest dark mat-
ter subhalos, and attribute the lack of observed galaxies in the
remaining smaller subhalos to galaxy formation physics. Boylan-
Kolchin, Bullock, and Kaplinghat [9] suggest that the inferred
central masses of Milky Way satellites should be consistent with
the central masses of the most massive ACDM simulations of
Milky Way-mass halos. Contrary to this prediction, subhalos
with masses comparable to Milky Way satellites are not among
the most massive satellites predicted by ACDM, the most mas-
sive satellites would be "too big to fail" to form galaxies if the
lower-mass satellites are capable of doing so.

4. Satellite Planes

Satellite galaxies appear to align on a polar great circle around
the Milky Way (e.g. Kunkel and Demers [31], Lynden-Bell [33]).
Kroupa, Theis, and Boily [30] argued the anisotropic distribution
of Milky Way satellites is inconsistent with them being drawn
from a cosmological sub-structure population, therefore cannot
be related to dark-matter dominated satellites. 3D motions of
MW satellites suggest there is a preferred orbital pole aligned
perpendicular to the observed planar plane (Pawlowski and
Kroupa [50]). Orbital poles and MW spatial configuration are
highly unusual for a randomly drawn sample of ACDM subhalos
(Pawlowski et al. [51]).
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1.2 DWARF GALAXIES

The least luminous known galaxies have historically been those clos-
est to the Milky Way, in 1999 the Local Group contained 36 known
members, of which 11 are Milky Way satellites (van den Bergh [66]).
A combination of theoretical results, simulations showing the discrep-
ancy between the predicted number of dark matter halos orbiting the
Milky Way and the 11 observed by that time, and the arrival of digital
sky surveys have initiated a renaissance in the search and discovery
rate of low-luminosity dwarf galaxies throughout the local universe at
distances S 50 Mpc.

During the last decade the number of dwarf galaxies in the Local
Group (LG) has risen to include dozens (e.g. Belokurov et al. [4],
McConnachie [36], Bechtol et al. [2], Mufioz et al. [42], Munoz et al.
[43]), and rich systems of dwarfs have been discovered beyond the
Local Group, around nearby giant galaxies like M81, M101, NGC 2784,
Mo6, and others (Chiboucas, Karachentsev, and Tully [12], Merritt,
van Dokkum, and Abraham [38], Javanmardi et al. [22], Bennet et al.
[5], Henkel et al. [21], Miiller et al. [46], Miiller, Jerjen, and Binggeli
[45]), and galaxy clusters like Fornax and Virgo (Mufioz et al. [41],
Sanchez-Janssen et al. [53], Eigenthaler et al. [18], Ordenes-Bricefio
et al. [48]).

Therefore, identifying and studying these faintest dwarf galaxies
in the local universe are useful to constrain the ACDM model and
address, for example, the missing satellite problem. A way to quan-
tify this problem is by comparing the faint-end slope of the galaxy
luminosity — described by a Schechter (1976) function of the form
¢(Mp)dM o 10°4M:=M)(a+1) g\ — observed, with the faint-end slope
a ~ —2, predicted by ACDM for the mass spectrum of the cosmologi-
cal dark matter halos (Moore et al. [40], Jenkins et al. [23]).

1.2.1  Classification and Distribution

Adopting the dwarf galaxy naming convention, the term "dwarf"
refers to galaxies with M, < 10°M., and we can subdivide dwarfs
into three mass classes: Bright Dwarfs (M. ~ 10’~?M), Classical
Dwarfs (M, =~ 10°~7My,), and Ultra-faint Dwarfs (M, ~ 10>7>M.,).

Another common classification for dwarf galaxies is between dwarf
elliptical (dE) which are elliptical in shape, contain few or no gas with
no evidence of recent star formation, dwarf spheroidals (dSph) which
exist at the faint end of the dwarf elliptical scale, are more ellipsoid in
shape with smaller diameters, and dwarf irregulars (dIrrs), for those



1.2 DWARF GALAXIES

with gas and dust, and ongoing star formation. Note that most dSph
galaxies are satellites of larger systems, and the vast majority of field
dwarfs are dIrr.
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THE DATA

2.1 OBSERVATIONS

Observations from the Survey of Centaurus A’s Baryonic Structures
(SCABS) were used for this work. SCABS is a wide-field, multi-band
imaging campaign (Taylor et al. [58]) mapping the central volume
of the Centaurus A galaxy group in the five optical ’, ¢/, 7/, ', and
7' filters. The data were taken during the nights of 4-5 April 2014
(CNTAC ID: 2014A-0610; PI: Matthew Taylor), and 25-27 August 2014
(CNTAC ID: 2014B-0609; PI: Roberto Mufioz) using the Dark Energy
Camera (DECam; Flaugher et al. [19]) mounted on the 4-meter Blanco
telescope at the Cerro Tololo Inter-American Observatory (CTIO) in
Chile.

SCABS uses the large field-of-view of DECam (3 deg? per pointing)
to image NGC 5128 out to its approximate virial radius of ~ 300
kpc, shown in Figure 2.1 (Taylor et al. [58]) as the red-dashed ellipse,
covering ~ 72 deg? of the sky around NGC 5128. For each pointing
a five-point dithering strategy was used to cover the DECam chip gaps.

During the 2014A-0610 program images with 5 x 240 = 1200s,
5x20 = 100s, 5 x 12 = 60s, 5 x 20 = 100s exposures, and 5 x 40 =
200s, for u’, ¢/, ', i’, and 7’ filters, respectively. These exposure times
were selected in order to reach S/N ~ 5 apparent point-source depths
of m, ~ 24.1 mag, Mgr > 22.7 mag, my ~ 22.5 mag, my ~ 22.1 mag,
and my ~ 21.7 mag, able to reach the globular cluster luminosity
function turn-over magnitude at the distance of 3.8 Mpc.

2.2 DATA REDUCTION

Image preprocessing was carried out by the DECam community
pipeline (CP; Valdes, Gruendl, and DES Project [61]) to remove in-
strumental signatures (e.g. bias subtraction, flat-fielding, cross-talk
correction). From the CP calibrated frames, the ASTROMATIC1 soft-
ware suite (Source Extractor, hereafter SE; SCAMP; SWARP; PSFEXx;
Bertin and Arnouts [7]; Bertin et al. [8]; Bertin [6]) was used to register
frames to a common coordinate system and account for pixel scale
distortions across the DECam field of view using the 2MASS astro-
metric reference star catalogue (Skrutskie et al. [56]), and calibrate
the photometry to the SDSS system using frames of the LSE 44 SDSS
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Figure 2.1: The spatial coverage of the SCABS observations. The position of

NGC 5128 is shown by the green star, while the surrounding cloud
of black dots indicates the population of radial velocity confirmed
GCs. Orange triangles denote the positions of the previously
known dwarf galaxy population within the SCABS footprint, and
the position of the galactic GC w-Centauri is indicated by the
dark blue circle, which falls within the overall SCABS footprint.
Different tiles are indicated by the numbers shown, with Tile1
centred on NGC 5128 itself (Fig. 1, Taylor et al. [58])

southern standard star field taken at varying airmass during the ob-
serving nights.

In the following sections an analysis of the dwarf galaxy population
on Tiles 1-7 is performed, as shown in Figure 2.1.
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DWARF DETECTION

3.1 CONFIRMED DWARFS AND KNOWN CANDIDATES IN OUR
FIELD OF VIEW OF CENTAURUS A

Several dwarfs are already studied and confirmed around Centau-
rus A. There are 5 confirmed dwarfs on the Updated Nearby Galaxy
Catalog (Karachentsev, Makarov, and Kaisina [25]), of which 1 was
originally presented in Lauberts and Valentijn [32] using the ESO/Up-
psala Survey of the ESO(B) Atlas, 3 in Karachentseva and Karachentsev
[26] and 1 in Karachentseva and Karachentsev [27] using the POSS-II
and ESO/SERC films.

Name of the galaxy, absolute B-band magnitude of galaxies cor-
rected for Galactic and internal extinction, major linear diameter (kpc)
and apparent axial ratio measured at the Holmberg isophote, and the
ellipticity calculated from the latter are shown in Table 3.1.

ID D A26 € (up) Mp
(Mmrc) (xrc) (MAG ARCSEC?) (MAG)
KK189 4.21 0.84 0.33 25.1 —10.9
KK1g97 3.87 215 0.22 25.1 —12.9
[KK2000]55 3.94 1.09 0.12 26.4 —10.1
KK203 3.60 058 0.01 24.6 —10.5
ESO324-24 373 393 028 23.8 ~155

Table 3.1: Photometric and Structural Parameters of Karachentsev dwarfs
(Karachentsev, Makarov, and Kaisina [25]).
A26 is the major linear diameter in kpc, e =1—0b/a

11 more dwarfs were discovered as part of the Panoramic Imaging
Survey of Centaurus and Sculptor (PISCeS; Crnojevi¢ et al. [15], Crno-
jevié et al. [16], Crnojevic et al. [17]) using Megacam at the Magellan
Clay 6.5m telescope, producing stacked images with a total exposure
time of 5 x 300s for the r’-band and 6 x 300s for the ¢’-band reaching
a 50% point source completeness limit of r ~ 25.75 mag and g ~ 26.75
mag. To quantify the structure and luminosities of the dwarf sample,
Crnojevié et al. work with RGB stars: dwarf centers are determined
via an iterative process, computing the average of stellar positions
within circles of decreasing radius; Position angle and ellipticity are
measured using the method of moments for the RGB spatial distri-



3.1 CONFIRMED DWARFS AND KNOWN CANDIDATES IN OUR FIELD OF VIEW OF CENTAURUS A

1D D Teff € Hv,0 My
(MPC) (xpC) (MAG ARCSEC 2) (MAG)
Dw1 3.63 1.40+0.04 0.194+0.01 28.8+0.1 —-109+03
Dw2 3.60 0.36£0.08 < 0.67 281 +05 —84+0.6
Dw3 461 2924020 0.29+0.19 26.7 £ 0.1 —13.0£04
Dwy 391 0.35%£0.10 < 0.30 254+0.7 —-9.8+1.1
Dwsg 342  0.22+0.04 < 0.61 26.9+0.7 —724+1.0
Dw6 3.61 0.30£0.01 < 0.56 259+0.1 —9.0+04
Dw7y 338 036+0.09 0.28+0.14 26.7+0.9 —-86+13
Dw8 347 0584+0.05 0.26+0.22 26.6 +04 —9.74+0.5
Dwg 381 0424+0.03 0.134+0.12 26.6 +0.3 —9.14+04
Dwio 327 0.24+0.06 < 0.27 26.6 +0.9 —78+12
Dwi1 352 034+0.04 0274+0.21 25.8+04 —944+0.6

Table 3.2: Photometric and Structural Parameters of Crnojevi¢ et al. con-
firmed dwarfs. DW11 was first discovered in Taylor et al. [60] by
the name T18-dw1318-4256.

bution; radial density profiles are calculated by counting the number
of RGB stars in elliptical /circular radii and trace their radial profile.
Sérsic/exponential models are fit via least squares minimization to
the composite surface brightness profiles and obtain values for the
effective radius and the central surface brightness, and luminosities
are calculated by integrating the best-fit Sérsic/exponential profiles.
Results from Crnojevi¢ et al. are presented in Table 3.2.

In Crnojevié et al. [17] two of our dwarf candidates are confirmed
as background galaxies. HST imaging confirmed the lack of resolved
populations in these targets, excluding the possibility of them being
low-mass satellites of Cen A.

There are also 8 known candidates from Miiller, Jerjen, and Binggeli
[44] on our field of view. Using the wide-field Dark Energy Survey
camera at the 4-m Blanco Telescope at CTIO, with exposures times
of 3 x 40s in ¢’ and r’-bands on the first observing run, and for the
second run exposure times between 2 x 120 and 2 x 210s for r’-band,
and between 2 x 100 and 2 x 170s for g’-band, for those relative short
exposure times it is not possible to resolve galaxies at the distance
of Centaurus A. To find the center of the galaxy a circle was fitted at
the outer isophotes, a circular aperture was used for the photometry
and Sérsic profiles were fitted to the surface brightness profiles. In
this work absolute magnitudes were calculated assuming the mean
distance of the Centaurus group (4.5 Mpc); their results are presented
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ID M, n Heffr Teffor
(MAG) (MAG ARCSEC™2) (ARCSEC)

dwi1318-44 —7.88 1.134+0.72 26.13 4.8
dwi1323-40 —11.19 1.64+0.23 25.27 15.2
dw1323-40b —10.69 1.35+0.19 26.06 17.1
dwi1323-40c —10.20 248 +1.21 26.90 20.2
dwi329-45 —9.66 1.84+0.27 25.86 9.9
dwi1336-44 —9.74 2.45+0.20 25.34 8.07
dwi1337-41 —9.59 2.04+0.51 27.29 18.3
dwi337-44 —9.65 1.02+0.27 26.06 10.3

Table 3.3: Photometric and Structural Parameters of Miiller, Jerjen, and
Binggeli [44] dwarf candidates. Values are extracted from Table2
of the paper, absolute magnitudes

in Table 3.3.

In a preliminary study of SCABS’s data in Taylor et al. [60], pho-
tometric properties of 16 dwarfs galaxies, 15 of which were newly
identified, in the Western halo of Centaurus A are presented using
the same methods as this work. All of them were found at projected
distances of ~ 100 — 225 kpc from their giant host, with luminosities
—10.82 < My /mag < —7.42 and effective radius 75 < reff/PC < 300,
using a distance modulus of 27.88 mag (3.8 Mpc Harris, Rejkuba, and
Harris [20]).

3.2 DETECTION METHOD

To detect dwarf galaxy candidates a full-color RGB image was con-
structed from the u’g’z’ frames to take advantage of the best compro-
mise for detection between the total flux captured in each passband,
and preserving color information. This filter combination samples
the full optical spectral energy distribution (SED), is sensitive to old,
metal-poor stellar population expected of primordial dwarf galaxies,
as well as young stellar populations from more recent star-formation
due to the inclusion of the u’-band, as will become evident further
below when we will discuss the stellar population properties of the
identified sources.

We visually inspected these frames looking for low surface bright-
ness (LSB) galaxies. This method allow us to easily identify faint,
extended sources displaying smooth morphologies and flat surface

11



3.2 DETECTION METHOD

‘Previously Khown, Dwarfs and Candldates
(Karachentsev+2013; Muller+2015@017a CmojeV|c+2014 2016,2019)
i Potential D<50 Mpc Background Hosts
j (Tur|y+2013)
_40° A Previous Candldates in SCABS
(Taylor+2018)
* CenA dwarfs (this work)

a0 T
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-44°
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Figure 3.1: Spatial distribution of known and new dwarf galaxy/candidates
on Centaurus A. Superposed on an archival DSS image is printed
the footprint of the observations, orange circles indicate previ-
ously known dwarfs/candidates, while blue squares show pos-
sible background hosts. Purple stars indicate the position of the
new dwarf candidates on the survey and lighter triangles those
detected on a previous study of the northwest halo data.

brightness profiles, typical of low luminosity dwarf galaxies.

A by-eye classification done independently by five different persons
(KXR, THP, MAT, YO, LW) was chosen above an automated algo-
rithm because this methods, for example SExtractor, can only analyze
one frame-passband at a time and often fails to detect extended LSB
sources due to contamination by foreground stars, or can identify
noise from image stacking as a candidate.

However, the disadvantage of visual inspection is the potential in-
troduction of human bias and prevents us from quantifying a selection
function to verify sample completeness. To decrease the human bias
five different people inspected the RGB images individually, and each
produced a catalog for each of the 7 different tiles.

12



3.2 DETECTION METHOD

3.2.1  Quality Flags

To determine which detections were reliable a flag system was chosen.
We define flag A for candidates found by all five members of the
search team, flag B those with four detections, and so on, until flag E
being unreliable sources only detected by one of the members.

After the RGB by-eye inspection based on overall morphology, size
and color, five independent detection lists for each tile are available,
and a matching process is performed. A pair of coordinates (x,y) of a
list is compared with every detection from all other lists, looking for
distances S 150 pix (S 0.73 kpc) between the sources, we count the
number of times each candidate is detected and then the coordinate is
erased from the arrays. This process is repeated until all coordinates
are compared.

We discovered 13 flag A candidates, 16 flag B, 36 flag C, 117 flag
D, and 312 flag E, including new candidates and confirmed dwarf-
s/known candidates in the field. Dwarfs displayed in Table 3.1 are
classified as flag A detections. However, we failed to recover some
faint old known dwarfs, such as Dw1-10 shown in Table 3.2, and
dwarfs in Table 3.3, except for dw1323-40 which is a flag B detection.
Nevertheless, many of these galaxies were fitted using GALFIT, those
too faint to fit are presented in Section A.2.1.

During this work only candidates flag A, B and C are considered, of
which there are 51 new dwarf galaxy candidates, shown in Figure 3.1
as dark purple stars.

13



SURFACE BRIGHTNESS PROFILE MODELING

4.1 INTRODUCTION

A luminosity profile describes how the intensity (or surface bright-
ness) I(r) (or yu(r)) of a galaxy varies with distance r from its center.
The surface brightness of a galaxy is the amount of light per square
arcsecond on the sky at a particular point in the image.

If we consider a small patch of side D in a galaxy that we view from
a distance d, so that it subtend an angle « on the sky, and considering
that in astronomy lengths are usually measured using the small angle
formula (& (jy ragiansy = D/d), we can write I(r) as

F L/(d4nd®) L
s =

I =7 D2/ 4nD? (4.1)

where F is the measured flux (F = L/4md?) and L the combined
luminosity of all the stars in that region.

4.1.1  Sérsic Luminosity Profile
The Sérsic profile or the Sérsic’s R'/" model is one of the most fre-

quently used profiles to study galaxy morphology, expressed as an
intensity profile,

I(r):Ieexp{—bn[<r:>1/n_1]} (4-2)

where 7, is the effective radius of the galaxy, the radius at which half
of the total light of the system is emitted, and . is the intensity at this
radius.

In magnitudes Equation 4.2 translates to

2.5b, 1/n
u(r) = pe + In(10) [ (:e) — 1] (4-3)

where i, is the effective surface brightness.

14



4.1 INTRODUCTION 15

Parameter b, is chosen to ensure that r, contains half the light

/ 2nrI(r)dr =2 - /e 2mtrl(r)dr (4-4)
r=0 r=0

which implies

['(2n) = 2v(2n,b,) (4.5)

where TI'(a) is the gamma function and 7(g,x) is the incomplete
gamma function. Unfortunately this equation cannot be solved analyt-
ically for b,. In this work we have adopted the asymptotic expansion
of Ciotti and Bertin [14] to O(n~°) for n > 0.36

1 4 46 131 2194697

by ~ 21— = -
n T 3 105 T 2551502 T 114817513 | 306907177501

+0(n™°)
(4.6)

For n < 0.36 this solution diverges and instead we use a polynomial
expression (fourth order) accurate to one part in 10° obtained by
MacArthur, Courteau, and Holtzman [35]

b, = 0.01945 — 0.8902n + 10.951n> — 19.67n° + 13.43n* (4.7)

The parameter n is defined as the Sérsic index, and is usually re-
ferred to as a concentration parameter. When # is large, the profile has
a steep inner slope and a highly extended outer wing, while when n
is small the profile has a shallow inner slope and a steep truncation at
large radius, as presented in Figure 4.1.

The de Vaucouleurs profile is defined with a Sérsic index of n = 4
and is used to describe a number of galaxy bulges, while an expo-
nential profile (n = 1) is used to fit a classical galaxy disk. Due to the
freedom of the Sérsic profile given by the concentration parameter 7,
this model is a common favourite when fitting observed luminosity
profiles of galaxy samples.
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4.2 GALFIT

4.2 GALFIT

GALFIT is a tool for extracting information about galaxies, stars,
globular clusters, and other astronomical objects by using parametric
functions to model objects as they appear in two-dimensional digital
images. In the simplest case, it allows one to fit an ellipsoidal model,
and more complicated objects with curved, irregular, ringed shapes,
or have spiral arms. It is possible to mix these features within a single
component model, or add them to other components for a more com-
plex morphology.

For the functions to be useful, they generally have to have free
parameters which one can adjust in order to model the desired object.
If successful, the resulting features, such as luminosity, size, profile
central concentration, axis ratio and position angle, are summarized
and can be compared against other objects, for instance to study pa-
rameter scaling relations.

GALFIT is a least-square fitting algorithm of the non-linear type,
and uses a Levenberg-Marquardt algorithm to find the optimum solu-
tion to a fit. The Levenberg-Marquardt is an iterative procedure and
needs an initial guess to start the minimization. In the case with only
one minimum an uninformed initial guess will work fine, otherwise,
in the case of multiple minima, the algorithm will converge to the
global minimum only if the initial guess is close to the final solution.

The goodness of fit is determined by calculating x* and computing
how to adjust the parameters for the next step. If the x> decreases
significantly, GALFIT will keep going, and when the solution no
longer improves, it will stop the iteration process. The reduced x? (x2)
is used as the indicator of goodness:

2 (Faata(%,Y) = faode (,Y))?
V NDOF leyz o(x,y)? (4.8)

where Npor is the number of degrees of freedom (number of pixel -
number of free parameters), nx and ny are the number of pixels on
the x and y axis. The input data, fi.,(x,y), is the observed image.
The model image, finoder (X, ), is computed by GALFIT as it tries to
find the best match to the data, and o (x,y) is the sigma or weight
image (one standard deviation of counts at each pixel) which can be
internally calculated by GALFIT using Poisson statistics of the data.
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4.3 DWARF MODELING

4.3 DWARF MODELING

Previous to modeling, cut-outs for all the 51 new candidates and con-
firmed dwarfs/known candidates in Cen A were created in u/¢'r'i'z’
frames. Segmentation maps using SExtractor were constructed to cre-
ate bad-pixel masks for each dwarf, resulting in dwarf-only images to

tit. PSFEx software is used to obtain PSF images of the field.

For a first iteration, five different initial guesses for Sérsic model
parameters (integrated magnitude, effective radius, Sérsic index, along
with axis ratio and position angle) were chosen. GALFIT produced a
model for each initial guess for every frame (1'¢’r'i’z’) of each dwarf.
By comparison between the different models of each dwarf, we obtain
a qualitative estimate of the robustness of a fit.

In the best scenario, all models converge to the same solution, but
in most cases, only a couple solutions converge, and if higher con-
tamination of other objects or the diffuse/faint nature of the dwarf is
more significant, GALFIT is unable to fit the galaxy, and none of the
solutions converge. Galaxy, model, and residual images are inspected
to assess the reliability of the fits. In most cases when the same solu-
tion is reached more than once visual inspection shows the fits to be
reliable.

For a second iteration, we first consider those galaxies for which the
models converge to a solution in at least one filter. For most dwarfs
a reliable solution was reached in at least two or three filters, usu-
ally with the u'-band being the fainter and therefore the harder for
GALFIT to fit. In these cases, we fix the shape of the dwarf to obtain
an estimate of the luminosity of the missing passbands. If GALFIT
does not converge to a solution on the first iteration, SExtractor is used
to get a first estimate of the galaxy luminosity.

Once an initial luminosity guess is obtained, all parameters are set
free for GALFIT to try to converge to a solution. If it diverges, the
luminosity is fixed to reduce the number of free parameters available
for the next model, stabilizing the fit and resulting in more robust
estimates of the remaining parameters. The resulting parameters are
fixed to allow GALFIT to recalculate luminosity freely. On the final
step, luminosity is again fixed, and the other parameters are set free
for one more step of optimization. Improvements to the mask images
are made for better solutions.

Galaxy, model, and residual images are compared to check the relia-
bility of the fits, leaving little to no galaxy’s light on the residual image.

18



4.3 DWARF MODELING

In the case of nucleated dwarfs, GALFIT is unable to fit the nu-
clei properly due to its small size with only one Sérsic component.
Therefore we mask the nuclei and fit a single Sérsic model to the
diffuse spheroid. If the nuclei is not masked correctly, GALFIT will
attempt to fit it partially, resulting in a higher concentration parameter
n, with regions of over- and under-subtraction in the residual image,
clearly indicating that the nuclei have to be treated separately from
the spheroid components. We present one nucleated dwarf galaxy in
the sample (SCABS133523-412043).

In Appendix A figures show u’'g’t'i’z’ frames modeling process for
every dwarf, presenting galaxy, model, and residual images.

19



RESULTS

51 new dwarf galaxy candidates in Centaurus A were modeled in
u'g'r'i'z" frames with GALFIT software using a single Sérsic compo-
nent, along with other confirmed dwarfs/known candidates in the
field of the survey. Integrated magnitude (m), effective radius (r,),

Sérsic index (n), ellipticity (€), and position angle (PA) are obtained.

Foreground extinction towards Centaurus A group is taken into
account by utilizing average extinction coefficients (A, ~ 0.423 mag,
Ag ~0.332 mag, Ay ~ 0.229 mag, Ay ~ 0.171 mag, and A, ~ 0.127
mag) calculated from several bright galaxies in the observed region,
based on the re-calibrated extinction maps of Schlafly and Finkbeiner
[55], in a field with extinction variance of ¢,» ~ 0.008, Oy =~ 0.005,
0w =~ 0.002, 0y ~ 0.001, and ¢y ~ 0.001. During this work we adopt a
distance modulus of 27.88 (3.8 Mpc, Harris, Rejkuba, and Harris [20]),

corresponding to a spatial scale of 18.42 pc arcsec™ .

5.1 STRUCTURAL PARAMETERS

The upper panels in Figure 5.1 compare structural parameters of the
entire galaxy sample, and lower panels show the distribution of struc-
tural parameters in different bands. Shown results are available in
Table B.2.

If we assume the galaxies to be homologous in all passbands, a
unity line would be expected when comparing different passbands,
and the observed scatter would arise only from statistical uncertainties
of the measurement. Although, color gradients also play a role in the
scatter, having u'-band more sensitive to recent SF, while NIR colors
have a stronger sensitivity to metallicity.

R? values were computed to compare different bands. In general, i’
vs. u’-band scatter is systematically bigger compared to other bands,
in part due to the shallower u’-band images, and color gradients. R?
values also show tighter correlations for r. and PA, being these param-
eters the best to constrain galaxy models. On the other hand, n and
€ present a greater scatter, that could be due to star/gas distribution
within the galaxy.
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Figure 5.1: Structural parameter derived from GALFIT in the v/, ¢/, v/, 7/,
and 7’ filters. Upper panels: Comparison of effective radius (r),
Sérsic index (n), ellipticity (€), and position angle (PA) i’-band
values with four other bands. Corresponding R? values for fitted
unity line are shown on upper left corner of each figure. Lower
panels: structural parameter distribution in all passbands. Smooth
curve shows Epanechnikov-kernel probability density estimates
for the entire sample, and vertical lines indicate the mean (light)
and median (dark) of the overall distribution of entire sample.
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5.2 STELLAR MASSES

Lower panels show distributions of r,, 1, €, and PA of every pass-
band. The histogram number of bins for each data set were chosen
using Knuth’s rule (Knuth [29]), non-parametric Epanechnikov-kernel
probability density estimates (KDEs) are shown as solid lines for each
parameter-filter combination, and vertical lines show the mean (dark)
and median (light) of the data.

Well-defined peaks can be seen for r, and n distributions. The ef-
fective radius 7, is distributed between 0.05 < r./kpc < 1.18, with
similar average values (r.),, = 0.17 £0.03 kpc, (r.)y = 0.17 +0.03
kpe, (re)y = 0.16 £0.02 kpc, (re)y = 0.15+0.02 kpc, and (re)» =
0.14 4 0.02 kpc. Distribution functions show that most of our sample
is concentrated near average values, with 96% of the dwarf sample
exhibiting 7, < 0.5kpc. Such compact fluffly objects could belong to a
giant host galaxy cluster in the background.

Morphological analysis of the new candidates shows surface bright-
ness profiles are well represented by a single component Sérsic model
with an average Sérsic index of (1), = 0.78 +0.04, (n) ¢ = 0.80 +0.04,
(n)y =0.95=£0.05, (n)y = 0.87 +£0.04, and (1), = 0.86 £ 0.05, similar
to exponential profiles.

Ellipticity and position angle are more broadly distributed in all dif-
ferent passbands. 94% of our dwarf candidate sample present € < 0.55
with a similar (€) in every filter. However, we note there may be an
observational bias in 7 and €, due to the search of spheroidal diffuse
objects. PA distribution show a lack of horizontal align objects, only
17% of the candidates show 60 < PA < 120.

5.2 STELLAR MASSES

To study scaling relations and compare properties of our dwarf sample
with other astronomical objects, stellar masses were calculated using
the prescription from Bell et al. [3] using color-derived mass-to-light
ratios.

log(M./L)s = ay + (by X color) (5.1)

where (M, /L) is in solar units, and coefficient a)y and b, are available
for ¢'t'i’z’ bands (Bell et al. [3], Table 7).

We derived galaxy luminosity for ¢'+'i’z’ bands

L =10"04M=Mo)p (52)
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5.3 SCALING RELATIONS
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Figure 5.2: Size-Luminosity diagram displaying present dwarf galaxy can-
didates in Centaurus A, compared to other nearby dwarfs and
other stellar systems (see legend). Dotted lines present iso-surface
brightness, y, (mag arcsec2). Empty dashed stars show this work
galaxy sample shifted to a distance of 50 Mpc.

using absolute solar magnitudes (M) measured by Willmer [63].
We use measured and de-reddened (u' — ¢')o, (u/ —1")o, (' —1')o,
(u' =20, (&' =70, (§' —1")0, (§' =)o, (' —i')o, and (r' — 2')o galaxy
colors, yielding up to 36 estimates of M. for each galaxy, we adopt
the average of individual estimates as the measured M., and its error
as one standard deviation of the sample. The galaxy sample has an
average stellar mass of log (M) = 6.38 & 0.07, spanning in the range
4.8 Slog My /Mo S7.7.

5.3 SCALING RELATIONS

Figure 5.2 shows the effective radius (r,, in parsec) as a function of
My, and in Figure 5.3 as a function of stellar mass (M, in solar units)
for the new SCABS dwarf candidates. We compare our data (dark
purple stars) to confirmed dwarfs and known candidates in the Cen-
taurus A/M83 complex, as well as other dwarfs from the literature and
other low-mass stellar systems (UDGs, UCDs, and GCs). Iso-surface
brightness (i, mag arcsec2) lines, and iso-stellar mass surface density
(Xeffm. Mo pc~2) lines are shown, respectively.
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5.4 COLOR-MAGNITUDE RELATIONS

My values were converted from g’ and r’-band photometry using
Jester et al. [24] transformation

V =g¢—0.58(¢g—r)—0.01 (5.3)

For literature values My is converted from ¢’ and 7’-band photome-
try where possible, although when a single band is available we simply
show Mg or M, due to their similar central wavelength (Ay = 0.55
pm, Ay = 0.52 ym, A,y = 0.67 pm).

The size-luminosity relation of the new dwarf candidates shows a
similar slope as other nearby dwarfs on the literature, although they
show a bias towards brighter uy, still sharing parameter space with
other dwarf candidates on Centaurus A. However, the more compact
and fainter dwarf is in a region almost without analogs.

Relatively high uy ~ 22 mag arcsec 2 and Yeff M, ™ 10> M pc 2
may indicate that, rather than being members of the Centaurus A
group, these candidates may be members of a giant galaxy in the back-
ground. To check this possibility, we queried NED for any background
source classified as a galaxy falling within 30" of a dwarf candidate.
This projected radius corresponds to a physical distance of ~ 200 kpc
from a giant host located at a distance of 25 Mpc, so the diffuse nature
of the dwarf galaxy can be easily spotted.

A potential background host for at least some of the dwarf galaxy
candidates, is an interacting galaxy pair, NGC 5090 and NGC 5091,
located near the center of the Centaurus A group at a distance of ~ 50
Mpc. Assuming this new distance, sizes and luminosities were re-
calculated and plotted as empty dashed stars in Figure 5.2, Figure 5.3,
and Figure 5.4.

In Figure 5.2 the fainter dwarf candidates fall in the same region as
the brighter dwarf galaxies in the Fornax cluster, while the brighter
ones fall in a region without dwarf analogs. The same behavior is seen
in the size-mass relation, Figure 5.3, most SCABS galaxy candidates
are biased to higher densities lines compared to dwarfs from literature,
and when comparing their properties at 50 Mpc, the brightest galaxies
fall in locus almost devoid of analogs, along with some candidates
more massive and more extended than UDGs, with values far from
any known dwarf.

5.4 COLOR-MAGNITUDE RELATIONS

While color-magnitude diagrams (CMD) relation of stars is well re-
lated to stellar evolution theory, the optical spectra of galaxies are
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Figure 5.3: Size-Mass diagram displaying present dwarf galaxy candidates in
Centaurus A, compared to other nearby dwarfs and other stellar
systems (see legend). Dotted lines present iso-stellar mass surface
density, Y orf, a1, (Mo pc—2). Empty dashed stars show this work
galaxy sample shifted to a distance of 50 Mpc.

dominated by the integrated light from various generations of stellar
populations. A copious amount of previous research has shown that
there is a correlation of galaxy luminosity with star formation history
(SFH), stellar initial mass function (IMF), chemical evolution, and/or
dust attenuation. The CM relation is associated with a mass-metallicity
relation since a more massive galaxy has a deeper potential well, and
metals produced throughout their star-formation history are more
easily retained (e.g. Ma et al. [34]).

Left panels of Figure 5.4 show (u' —1i")o, (' — ¢')o, and (§' —1')o
vs. Mg CMDs of our dwarf galaxy sample, and compare them with
dwarf galaxies in the Fornax cluster (Mufoz et al. [41]; Eigenthaler
et al. [18]). We also plot nuclear star clusters (NSCs) corresponding
to nucleated dwarf galaxies in the Fornax sample (Ordenes-Bricefio
et al. [49]), and compact stellar systems (CSSs) including ultra-compact
dwarf galaxies (UCDs) and globular clusters (GCs) also confirmed in
the Fornax cluster (Wittmann et al. [64]). A large sample of GCs from
NGC 5128 (Taylor et al. [59]) are shown.

Dashed lines show the iso- M, based on Bell et al. [3] color-M /L

prescription for the different color combinations, using ¢’ luminosities.

Most dwarfs are concentrated on stellar masses ~ 10® M, reaching
down to ~ 10° Mg, with lower values presented in (1’ — g’) colors.
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5.5 STELLAR POPULATION PROPERTIES

In all three plots our measurements lay on the faint end of Fornax
dwarfs red sequence, presenting similar average colors in (g’ — i)
CMD, while for (' —i')p and (4’ — ¢')o CMDs we present redder
colors. The new NGC 5128 dwarf candidates present an offset of
d(u' —i")o ~ 0.3 mag and 6(u’ — ¢')o ~ 0.4 mag. It appears our galaxy
sample is more consistent with properties of NSCs and CSSs systems,
despite their more extended and diffuse morphologies. Our targets
might also be related to faint fuzzies, which are metal-rich apparently-
old star clusters with unusually large radius (Chies-Santos, A. L. et al.

[13]).

Luminosities calculated at a putative distance of 50 Mpc are similar
to the brightest dwarfs in the Fornax galaxy cluster, presenting great
color spread compared to Fornax dwarf’s red sequence, especially in
(¢’ —i') CMD, where much redder colors are encountered without
dwarf analogs. If we consider a significant number of these candidates
to belong to background host like NGC 5090 or NGC 5091, which are
significantly less massive than Fornax cluster, it would imply a very
shallow slope for its faint-end galaxy luminosity function.

It is not possible to exclude these background galaxies to host
many of these dwarf candidates, even though they would be hosting
a population of bright galaxies only found so-far in galaxy cluster
environments, suggesting most of them are indeed members of the
Centaurus A group. Spectroscopic observations are needed to check
group membership for all dwarf candidates.

5.5 STELLAR POPULATION PROPERTIES

Color-Magnitude diagrams (CMDs) are used to infer the mass assem-
bly and star formation histories of galaxies (e.g., Zhang et al. [65]), and
it is possible to constrain luminosity-weighted ages, metallicities, and
stellar masses using multi-passband CMDs for large galaxy samples.

Scatter around the red sequence in CMD is related to different stel-
lar populations in the sample, i.e., spread in ages and metallicities,
and from photometric uncertainties. On right panels of Figure 5.4 we
show histograms with its corresponding Epanechnikov-KDEs for our
galaxy sample, along with other stellar systems (see legend). Symmet-
ric distributions are observed around the peaks, with average colors
(' —1i")) =205, ((u' —¢')) =129, and ((¢' —i")) = 0.7, with stan-
dard deviations of 0.41, 0.27, and 0.27, respectively. (1’ — i’) present
the greater scatter, suggesting color gradients on the sample.

When comparing color averages with other stellar systems in the
plot, we note our Cen A candidates present similar values to compact
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Figure 5.4: Color-magnitude diagrams and simple stellar populations model
predictions for stellar populations of the SCABS galaxy sample.
Left panels: (u' — i)y, (u' — ¢')o, and (¢’ —i')¢ vs. ¢ CMDs. Dark
stars show values for SCABS sample, compared to other stellar
objects (see legend). Dashed lines show iso- M. estimated from
Bell et al. [3]. Right panels: Color distribution of SCABS galaxy
sample, compared to other stellar systems. Overplotted SSP model
prediction from Bruzual and Charlot [10] for metallicities in range
0.0001 < Z < 0.02, along with vertical lines for ages 1, 5, 10, and
14 Gyr.

stellar systems (CCSs).

Ages of the galaxy sample are constrained by comparing broad-
band colors with predictions of simple stellar population (SSP) models
of Bruzual and Charlot [10]. SSP model predictions for metallicities in
the range 0.0001 < Z < 0.05 as a function of age are displayed next to
the sample color distribution.

The mass-metallicity relation from Kirby et al. [28] can be used to
estimate metallicity of the galaxy sample,

([Fe/H]) = —1.69 + 0.30 log (M. /10° M) (5.4)

which is roughly continuous from the least massive system at
« = 103> M, to the most massive giant ellipticals at M, = 10>M,.



5.5 STELLAR POPULATION PROPERTIES

Our most massive galaxy with 10”71 M, corresponds to a metallicity
of [Fe/H] ~ —1.18, and a Z ~ 0.001.

For low metallicities Z < 0.004 we can expect ages of at least 10
Gyr for the average dwarf of our sample, as shown in the right pannel
of (¢ —1")o CMD in Figure 5.4. If we assume a uniformly old galaxy
sample, a large spread in metallicities is expected, as shown in the
plot. This phenomenon could be explained by different star formation
histories along with the galaxy group, produced by their environ-
ment, or galaxy mergers. It is also important to take into account the
age-metallicity degeneracy. Future spectroscopic observations would
help constraining stellar population properties of the low mass galaxy
sample.
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SUMMARY AND FUTURE WORK

We report the discovery of 51 new dwarf galaxy candidates based on
the optical u’g’r’i’z’ imaging of 22 deg? centered on the nearby giant
elliptical galaxy NGC 5128 as part of The Survey of Centaurus A’s
Baryonic Structures (SCABS), using the Dark Energy Camara (DE-
Cam) mounted on the 4-meter Blanco telescope at the Cerro Tololo

Inter-American Observatory (CTIO) in Chile.

Dwarf galaxy candidates were identified by visual inspection of
deep RGB image stacks performed by several people, and only candi-
dates detected three or more times were considered for the study.

To summarize the main results:

e Morphological analysis of the dwarf galaxy population shows
that surface brightness profiles are well represented with a single
component Sérsic model with an average Sérsic index of (n) =
0.85 £ 0.05.

e Structural parameters show average sizes of (r.) = 0.18 £ 0.02
kpc and round shapes with (¢) ~ 0.25. We note a preference
towards vertical alignments, where only 17% of the candidates
show 60 < PA < 120.

e Stellar masses were calculated using color-derived mass-to-light
ratios, obtaining an average stellar mass of log (M.,) = 6.38 +
0.07, spanning the range 4.8 < log M, /Mg S 7.7

e Scaling relations, 7, vs. My and log M. show that our dwarf
galaxy sample present similar slope to other dwarf galaxies
in the literature. Although presenting relatively high uy ~ 22
mag arcsec > and Yeff M, ™ 102 M pc~2. To guard against the
possibility of being members of a background host, values were
re-calculated considering a distance of 50 Mpc away. New values
show similar luminosities to the brighter dwarfs in the Fornax
cluster, while others seem more extended than UDGs, without
dwarf analogs.

e If a great number of dwarf galaxy candidates actually belong
to background galaxies NGC 5090 or NGC 5091, which are
significantly less massive than Fornax cluster, it will imply a
very shallow slope for its faint-end galaxy luminosity function.
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SUMMARY AND FUTURE WORK

e The identified galaxy sample is more consistent with properties
of NSCs and CSSs systems, rather than Fornax cluster dwarfs,
despite their more extended and diffuse morphologies.

e The most massive galaxy of the sample has 10”7 M, correspond-
ing to a metallicity [Fe/H| ~ —1.18, and to Z ~ 0.001.

e Bruzual and Charlot SSP models for low metallicities (Z <
0.004) in (¢’ — i") CMDs predict average ages of at least 10 Gyr.
Assuming old ages, a large spread in metallicities is expected,
probably due to different star formation histories.

For future work, an inspection of the outer ring from observations
made in the Survey of Centaurus A’s Baryonic Structures (SCABS),
with the corresponding characterization of dwarf candidates discov-
ered on these tiles. This will lead to a complete census of the dwarf
galaxy population from the entire Centaurus A Galaxy Group.

Spectroscopic observations are needed to check group membership
for all dwarf candidates, and to break the age-metallicity degeneracy.

Confirmed membership would result in an interesting sample of
dwarf galaxies with high . and }_,¢f v, with similar properties to
CSSs for deeper in-depth follow-up studies.

31



Part IV

APPENDIX



DWARF MODELING

Dwarf galaxy surface-brightness modeling with GALFIT. Each set of
images shows the modeling process for each dwarf in Centaurus A,
presenting the dwarf galaxy (top pannels), the corresponding 2D Sér-
sic model (middle pannels), and the residual image, i.e. galaxy-model
(lower pannels) for every passband (u/g’r'i'z’ from left to right). Only
the spheroid component is modeled for nucleated dwarfs so that the

nuclear star cluster is visible in the residual images.

Section A.1 shows 51 new dwarf galaxy candidates presented in
this work, while Section A.2 shows all confirmed and known dwarf
galaxies in Centaurus A, including those dwarfs unable to fit with the
GALFIT software.

A.1 NEW DWARF CANDIDATES IN CEN A

Dwarf galaxy surface-brightness modeling of the 51 new dwarf galax-
ies presented in this work.

SCABS131200-422827 SCABS131230-420328

SCABS131359-415806
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SCABS133538-422358

Figure A.1: New dwarf candidates’ surface-brightness modeling with
GALFIT. Each set of figures correspond to a single dwarf galaxy
candidate modeling. The process shows the dwarf galaxy (top
pannels), the corresponding 2D Sérsic model (middle pannels),
and the residual image, i.e. galaxy-model (lower pannels). Dwarf-
model-residual images are shown in /, ¢, ¥/, i, and 2z’ frames
(left to right). Only the spheroid component of SCABS133523-
412043 is modeled, its nuclear star cluster is visible in the residual
image.
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A.2 CONFIRMED DWARFS AND KNOWN CANDIDATES

Dwarf galaxy surface-brightness modeling of confirmed and known
candidates in Centaurus A, presented in Karachentsev, Makarov, and
Kaisina [25], Crnojevié et al. [15], Crnojevi¢ et al. [16], Crnojevi¢ et al.
[17], Miiller, Jerjen, and Binggeli [44], and Taylor et al. [60].
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dwl337-41

Figure A.2: Confirmed and known dwarf candidates’ surface-brightness
modeling with GALFIT. Each set of figures correspond to a
single dwarf galaxy candidate modeling. The process shows
the dwarf galaxy (top pannels), the corresponding 2D Sérsic
model (middle pannels), and the residual image, i.e. galaxy-
model (lower pannels). Dwarf-model-residual images are shown
inu, g, 7, i, and 2’ frames (left to right).
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A.2.1  Fainter Dwarfs in the Sample

Due to their faint nature, GALFIT was unable to fit CenA-MM-Dw2,
CenA-MM-Dw3, CenA-MM-Dws, CenA-MM-Dw7, CenA-MM-Dwo,
CenA-MM-Dwi1o, and dw1323-40c, listed in Table 3.2 and Table 3.3.
The following figures show these dwarf galaxies in the u’, ¢/, ', i, and
z' frames (from left to right). Given the depth of our observations we
are unable to detect these dwarf galaxies.

CenA-MM-Dw5 dw1323-40c
e

CenA-MM-Dw10 CenA-MM-Dw7

CenA-MM-Dw?2 CenA-MM-Dw3

CenA-MM-Dw9

Figure A.3: Confirmed and known dwarf candidates” surface-brightness not
modeled with GALFIT. Each set of figures correspond to a single
dwarf galaxy in #/, ¢/, 7/, i, and 2’ frames (left to right). Given the
depth of our observations we are unable to detect these dwarf
galaxies.



STRUCTURAL PARAMETERS OF THE DWARF
GALAXY SAMPLE

Photometric and structural parameters are listed in Table B.1 and
Table B.2, distinguishing if it is a new or known dwarf.

Photometric results are listed in Table B.1, including galaxy coordi-
nates, all available galaxy surface brightness (i, mag arcsec?) derived
with GALFIT, absolute V-band magnitudes, and estimated total stel-
lar masses (M, in Mg).

Structural parameters in all available filters are listed in Table B.2,
we present effective radius (., in kpc), Sérsic index (n), ellipticity (e),
and position angle (PA), along with the total effective radius of the
galaxy.
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