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Predictive models for the assessment of operative risk 
using patient risk factors have gained popularity in the 
medical community as an important tool for the adjust- 
ment of surgical outcome. The Bayes‘ theorem model is 
among the various models used to predict mortality 
among patients undergoing coronary artery bypass graft- 
ing procedures. Comparative studies of the various clas- 
sic statistical techniques, such as logistic regression, 
cluster of variables followed by a logistic regression, a 
subjectively created sickness score, classification trees 
model, and the Bayes’ theorem model, have shown that 
the Bayes’ model is among those with the highest pre- 
dictive power. In this study, the Bayes‘ theorem model is 
reformulated as a logistic equation and extended to 
include qualitative and quantitative risk factors. We 

redictive models for surgical outcomes, such as mor- P tality and postoperative complications, have been 
used to compute risk-adjusted rates and assess the quality 
of cardiac surgery care performed by hospital and indi- 
vidual surgeons [l, 21. In particular, the Continuous 
Improvement in Cardiac Surgery Study (CICSS) of the 
Department of Veterans Affairs (VA), since its inception 
in 1987, has developed predictive models and used risk- 
adjusted mortality rates to monitor quality of care among 
the 43 VA medical center programs performing cardiac 
operations nationwide. 

The classic logistic regression model is one of the most 
commonly used modeling alternatives for predicting di- 
chotomous outcomes, such as mortality and other surgical 
outcomes. More recently, biostatisticians and clinical re- 
searchers have proposed alternative methods to create 
predictive models. Included in this list are a Bayes’ 
theorem model [3, 41, an additive model [5], a model 
consisting in cluster analysis combined with clinical judg- 
ment followed by logistic regression [6, 71, classification 
and regression trees [7-91, a model consisting in principal 
components analysis to reduce the number of predictor 
followed by a logistic regression model [6, 71, a linear 
discriminant analysis [ 101, and a subjective sickness score 
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show that the resulting model, the Bayesian-logit model, 
is a mixture of logistic regression and linear discriminant 
analysis. This new model can be created easily without 
complex computer programs. Using 12,712 patients un- 
dergoing coronary artery bypass grafting procedures at 
the Department of Veterans Affairs Continuous Im- 
provement in Cardiac Surgery Study between April 1987 
and March 1990, the predictive power of the Bayesian- 
logit model is compared with the Bayes’ theorem model, 
logistic regression, and discriminant analysis. The abil- 
ity of the Bayesian-logit model to discriminate between 
operative deaths and operative survivors is comparable 
with that of logistic regression and discriminant analysis. 

(Ann Thoruc Surg 1994;57:1492-500) 

[7]. There has also been interest in comparing the predic- 
tive power of these alternative models. Harrell and col- 
leagues [6, 91, Cook and Goldman [8], and more recently 
Marshall and colleagues [ 71 have compared these different 
strategies to develop models for predicting adverse out- 
comes. The predictive power of a model can be measured 
using a general c-index [6],  which for binary outcomes are 
reduced to the area under the receiver operator character- 
istic (ROC) curve as described by Hanley and McNeil [ll]. 

The Society of Thoracic Surgeons National Cardiac 
Surgery Database has used the Bayes’ theorem model to 
predict mortality among patients undergoing coronary 
artery bypass procedures. In this study, we review the 
Bayes‘ theorem model to predict operative mortality in 
patients undergoing cardiac operations. We show that the 
model can be reformulated using the same logistic equa- 
tion used in the classic logistic regression model to pro- 
duce a new model, the Bayesian-logit model. In fact, 
these models only differ in the methodology used to 
estimate the regression coefficients, but not in the struc- 
tural relationship between the risk factors and the out- 
come. Also, the Bayesian-logit model produces coeffi- 
cients for covariates indicating the strength of their 
relationship with the outcome variable. This result, which 
is not available with the standard Bayes’ theorem model, 
should make the Bayesian-logit model more attractive to 
clinicians and increases the potential use and interpreta- 
tion of the model. We also show that the regression 
coefficients can be easily computed using marginal fre- 
quency tables, instead of the iterative procedures required 
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Table 1 .  Sample Size, Number of Events, and Percent 
Operative Mortality in the Learning and Test Samples and in 
the Total Population 

Percent 
Samvle Size Events Mortality 

Learning 6,317 285 4.51% 
Test 6,395 297 4.64% 
Total 12,712 582 4.58% 

in logistic regression analysis. The Bayesian-logit model is 
able to incorporate quantitative variables in the same form 
as used in linear or logistic regression models, thus 
avoiding the need for arbitrary cut points in continuous 
variables. The Bayesian-logit model is the mixture of a 
logistic regression model and a linear discriminant analy- 
sis, assuming conditional independence among the risk 
factors. 

Finally, the predictive powers of the logistic model, the 
Bayes’ theorem model, the new Bayesian-logit model, 
and the linear discriminant model are compared using 
12,712 patients undergoing coronary artery bypass proce- 
dures entered into CICSS between April 1987 and March 
1990. 

Material and Methods 
Data 
During the first 3 years (April 1987 through March 1990) of 
operation of CICSS [12], we received 15,444 data forms 
from 43 VA medical centers on patients undergoing 
cardiac operations. Of these, 12,712 underwent coronary 
artery bypass grafting (CABG) as the primary procedure, 
2,326 underwent valve procedures, and 406 underwent 
other procedures. The initial efforts at assessing predictive 
accuracy among these models were confined to the 12,712 
patients undergoing CABG, because of the larger popu- 
lation size and likelihood of greater homogeneity of the 
patient population. 

We divided this population randomly into a learning 
sample (used to create the predictive model) and a test 
sample (used to test the predictive model) of approxi- 
mately equal sizes using a pseudo-random number- 
generating function. The sample size and the number of 
deaths in the two samples were not forced to be equal to 
prevent the introduction of artificial correlation between 
the two samples. Nevertheless, the sample size, the 
number of events (deaths), and the percent operative 
mortality were very similar in the two samples as shown 
in Table 1. 

From this large data set, we selected 43 preoperative 
variables thought to be associated with operative mortal- 
ity. Of these, 10 variables with more than 20% of data 
missing were excluded. The remaining 33 variables and 
their percentage of missing data are shown in Table 2. 

The number of patients in the learning data set provides 
the power to detect an odds ratio of 1.2 in a logistic 
regression model with various predictor variables. This 

sample size was calculated using the method described by 
Hsieh [13], assuming a multiple correlation coefficient of 
Y = 0.5 among the predictor variables, with a statistical 
power of 90%, and a significance level of 5%. 

The Buyes‘ Model 
Edwards and associates [3,4] proposed the use of a model 
based on the Bayes’ theorem as a tool to predict outcome 
for patients undergoing cardiac operations. The model 
computes the probability of an operative death given a set 
of patient risk factors, X = {xl, x2, . . ., x,}, such as age 
and prior heart operation. Using Bayes’ theorem, the 
conditional probability of an operative death given a 
specific set of risk factors, P{deuthlX}, can be calculated as 

P{deutk I X }  

P{Xldeuth} x P{deuth} 
P{XlsuruiuuI} x P{suruivul} + P{Xldeuth} x P{deuth} 

- - 

(1) 

if we know the distribution of the risk factors X = { x l ,  x2, 
. . ., x,} in the two separated outcome groups, deaths and 
survivors, represented here by the probability terms 
P{Xldeuth} and P{Xlsuruivul}, respectively. In addition, we 
need information about the overall mortality rate in the 
entire population, P{deutk}, and the complementary prob- 
ability P{survivuZ} = 1 - P{deuth}. For example, among the 
patients undergoing CABG, 25.7% of the operative deaths 
had prior cardiac operations, whereas there were only 
8.9% among the survivors. If the overall operative mor- 
tality rate is 4.5%, the probability (after knowing the risk 
factors) of operative mortality for a patient with prior 
cardiac operation is 

P{deuthlprior cardiac operation} 

0.257 X 0.045 

0.089 X 0.955 + 0.257 X 0.045 
= 0.12, - - 

or in terms of proportion equal to 12%. 
Considering that X = {xl, x2, . . ., xrn} may include a 

large number of risk factors, the evaluation of the proba- 
bility P{Xldeuth} and the probability P{Xlsurviuul} involves 
a multivariate distribution and the correlation among 
these variables. For simplicity, one can assume that these 
risk factors are conditionally independent given the oper- 
ative outcome. The computational implication of this 
assumption is that now we can evaluate P{Xldeutk} as the 
product of marginal distributions (see Appendix l), that 
is, as 

P{Xldeuth} = P{xlldeutk} x P{x21deuth} 

x . . . x P{x,ldeuth}. 

Therefore, probabilities, such as P{x,ldeuth}, can be esti- 
mated by computing the marginal distribution of xi 
among the operative deaths in the same way that we did 
for prior cardiac operation. 
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Table 2.  Variable Names With Less Than 20% Missing Values in the Learning Sample Used to Assess the Predictive Models, 
Description of the Variables, and the Percentage of Missing Values in the Learning Sample 

Missing 
Variable Values 
Name Description (%) 

AGE 
ANGIOP 
BSA 
CHF 
CM 
COPD 
CR 
CURCAB 
CURDIG 
CURDIUR 
CURRBB 
CURRSMOK 
CVD 
cxs 
DIABETES 
ECGLVH 
EVERSMOK 
EXANG 
HTN 
IVNTG 
LAD 
NYHAFC 
OLDMI 
PRIORHS 
PRIORITY 
PROPIABP 
PULMR 
PVD 
RECMI 
RESTANG 
RESTSTD 
RCHS 
SEX 

a 1 = present, 0 = absent. 

Age (Y) 0.2 
Angioplasty 5 7  days of operation" 1.5 
Body surface area (m') 2.5 
Congestive heart failure" 2.3 
Cardiomegaly (x-ray)" 4.1 

Creatinine (mg/dL) 14.2 
Current calcium channel blocker usea 5.9 
Current digoxin usea 5.6 
Current diuretic usea 5.5 
Current beta blocker usea 5.9 
Current smokeP 5.3 
Cerebral vascular disease" 5.8 
Circumflex (% stenosis) 13.9 
Diabetes" 5.6 
ECG LVH" 7.7 
Ever smoker" 5.3 
Exertional angina" 5.6 
Hypertension" 5.6 
Intravenous nitroglycerine preoperativelya 5.6 

9.4 
New York Heart Association functional classification (1, 11, 111, 1V) 6.2 

4.9 
Prior heart operation 0.3 
Priority of operation (elective, urgent, emergent) 4.2 
Preoperative intraaortic balloon pump" 1.9 

Chronic obstructive pulmonary disease" 3.3 

Left anterior descending (% stenosis) 

Old myocardial infarction (>30 d)" 

Pulmonary rales" 5.9 
Peripheral vascular disease" 5.5 

Resting ST-segment depression" 7.3 

Sex (0 = male, 1 = female) 

Recent myocardial infarction (530 d)" 3.0 
Unstable angina" 6.4 

Right coronary artery (% stenosis) 11.4 
0.2 

According to the model used by Edwards and col- 
leagues [3, 41, the indicators xi  in the Bayes' model are 
chosen as dichotomous variables representing whether or 
not the risk factor is present; these expressions can be 
better visualized by creating a 2 x 2 frequency table (Table 
3). To evaluate the Bayes' model, the individual probabil- 
ities P{xi = lldeath} and P{xi = Itsurvival} are estimated by 
the observed ratios ai/(ai + bi) and ci /(ci  + di), respectively. 

Table 3. Baues' Model 2 X 2 Freguencv Table 

Risk Factor 

Outcome 
Present 
fx; = 1) 

Absent 
( x ;  = 0) 

Death 
Survival 

ai 
Ci 

bi 
4 

Reformulating the Bayes' Theorem Model 
Edwards and colleagues [3, 41 point out that model (1)  is 
a valuable clinical tool for predictive purposes, but with 
sufficient mathematical complexity to require a computer 
program to solve the equation. In this study, we propose 
to reformulate the Bayes' theorem model (1)  into a simpler 
and familiar form, that is, using a logistic equation. 
Without making any assumption, it is possible to formu- 
late the Bayes' theorem model as 

expb + P l X l  + &x2 + . ' . + P m X m }  
P{deathlX} = 

1 + exp{cr + Plxl + &x2 + . . . + prnxm}' (2) 

where exp{Pi}, as in the logistic regression model, is the 
odds ratio of operative mortality associated with the ith 
risk factor xi ,  and a is a constant depending on the overall 
prevalence of operative mortality (Appendix 1). The odds 
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ratio can be calculated from the 2 x 2 frequency table (see 
Table 3) as 

aj X dj 

b; X C; 
exp{p,} = -. 

Although the estimation of a is important for absolute risk 
assessment of operative mortality, it is not needed for the 
determination of the model's predictive power or for 
discrimination purposes. In the case of prior cardiac 
operation, the frequencies of the 2 x 2 contingence table 
are ui = 73, b; = 211, ci = 537, and d; = 5,479 and therefore, 
the estimated odds ratio for this risk factor is exp{&} = 
3.53. The estimated regression coefficient can be obtained 
by taking the natural logarithm of the odds ratio, that is, 
pi  = 1.26. 

Expression (2) shows that the Bayes' theorem model 
does not differ from a classic logistic regression model 
except in the approach used to estimate the regression 
coefficients. It is not difficult to show that the approach 
used in logistic regression to estimate the regression 
coefficients reduces to the approach used for the Bayes' 
model when the correlation between the risk factors is 
ignored. In the Bayes' theorem model, exp{p;} represents 
the unadjusted odds ratio associated with the ith risk 
factor, whereas in classic logistic regression, exp{pi} rep- 
resents the same odds ratio adjusted by the remaining 
factors in the model. More technically, in the logistic 
regression model the parameters are estimated using the 
maximum likelihood method from a multidimensional 
2" + table provided that the totals of the response 
variable in the 2" table are constant. In the Bayes' theorem 
model the regression coefficients are also estimated using 
the maximum likelihood method, but from the rn marginal 
tables generated by cross-tabulating the response variable 
with each of the rn risk factors. 

There are several advantages to writing the Bayes' 
theorem model as a logistic equation model. First, the 
form of the logistic equation .(2) is more familiar to 
clinicians, as logistic regression models are widely used in 
the clinical literature. Second, the regression coefficients, 
ps, have meaningful clinical interpretations as odds ra- 
tios, a familiar concept in medicine. Finally, the third 
advantage is that the coefficients of the model can be 
estimated from simple frequency tables. 

The Bayesian-Logit Model 
Thus far we have assumed that the set of risk factors, X = 
{ x l ,  x,, . . ., x"}, includes simple indicators of the pres- 
ence (xi  = 1) or absence (x i  = 0) of a particular baseline 
characteristic. In this context, quantitative variables such 
as age must be categorized using arbitrary intervals. In 
this case, each category of age will have an associated 
indicator variable representing whether or not the pa- 
tient's age falls into that particular category. For example, 
x1 = 1 if age is less than 60 years old and x1 = 0 if age is 
60 years or older. This transformation of quantitative or 
continuous variables to categorical variables creates a 
number of problems, including the arbitrary selection of 
the size of the intervals and the selection of breakpoints. 

These problems can be solved if we allow continuous 
variables to enter into the Bayes' theorem model in a 
fashion similar to other classic regression models such as 
linear or logistic regression analyses. However, before we 
include continuous variables into the model, we must 
assume an underlying probability distribution for these 
factors. Following classic statistical methods, we assume 
that the underlying distribution of these variables is 
normal. Departures from this assumption are not ex- 
pected to change significantly the results as the same 
results can be obtained without normality using more 
powerful and complex mathematical techniques. For prac- 
tical purposes we assume that deaths and survivors have 
different risk factor means but common variance. 

Consider pi l l  pi2, and u: as the population means and 
common variance of the continuous variable xi for the 
deaths and survivors, respectively. The regression coeffi- 
cient pi associated with this continuous variable is the 
difference between the two means divided by the pooled 
variance, that is, 

See Appendix 2 for more detail of the derivation of this 
result. If all indicators {xl, x2, . . ., x,} were continuous, 
model (2) would still have a logistic equation form, but the 
constant a would become a function of the means and the 
variances of the different risk factors. An estimate of pi  
can be obtained from the sample means and the common 
sample variance of the two groups. For example, we 
found that the average age of deaths in the learning 
sample was 63.8 years old and the average age among 
survivors in the same sample was 61.3 years old. The 
pooled variance was 62.6; therefore, the estimated regres- 
sion coefficient for age is 

63.8 - 61.3 
62.6 

p =  = 0.04. 

The Bayesian-logit model is a special case of a linear 
discriminant model when the risk factors are all continu- 
ous variables. In linear discriminant analysis the estimates 
of the model are obtained using maximum likelihood 
based on the multivariate normal distribution of the risk 
factors. The estimates are not only a function of the means 
and the variances, but also the correlation among all risk 
factors. The estimates of the regression coefficients in the 
Bayesian-logit model are obtained using maximum likeli- 
hood methods based on the univariate distribution of 
each individual risk factor, ignoring the correlation with 
the remaining risk factors. 

Developing the Predictive Model 
For model development purposes, the Bayes' theorem 
model and the Bayesian-logit model can use univariate 
screening to select the risk factors that will be incorpo- 
rated into the models. To select the risk factors in the 
Bayes' theorem model, a 2 test for a 2 x 2 frequency table 
can be used as it is assumed that all risk factors are 
categorical. The Bayesian-logit model can use the same 
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test for categorical risk factors, but the two sample t test 
for quantitative risk factors. 

Among the 33 predictor variables shown in Table 2 
competing to be included in the model, only those vari- 
ables with p < 0.01 were selected. There are many reasons 
to be conservative in selecting the risk factors in this 
application. First, the sample size is large enough to select 
clinically meaningful factors, and second, we expect that 
many of the selected risk factors contain duplicative 
information to predict operative mortality. Alternative 
methods, such as checking the correlation matrix of the 
risk factors, can reduce the number of variables in the 
model. 

The logistic regression and discriminant analysis model 
used to compare the Bayesian-logit model were devel- 
oped using stepwise procedures and including the 33 risk 
factors shown in Table 2. The predictive power of these 
models was assessed by using the c-index [6, 7, 91 in the 
learning and testing sample. 

Results 
The Bayes' Theorem Model 
Using the learning sample of 6,317 CABG procedures 
performed from April 1987 to September 1992, 19 risk 
factors were found to be significant at the level of p < 0.01 
using univariate screening. These significant risk factors 
are: congestive heart failure, current digoxin use, current 
diuretic use, preoperative use of intravenous nitroglycer- 
ine, resting ST-segment depression, preoperative in- 
traaortic balloon pump, recent myocardial infarction, pe- 
ripheral vascular disease, cerebral vascular disease, 
unstable angina, electrocardiographically determined left 
ventricular hypertrophy, cardiomegaly, old myocardial 
infarction, pulmonary rales, prior cardiac operation, 
chronic obstructive pulmonary disease, priority of opera- 
tion, New York Heart Association (NYHA) functional 
classification, and age. Age was categorized using the 
following intervals: younger than 50, 51 to 60, 61 to 70, 
and older than 70 years old. Indicator variables to repre- 
sent the different categories of NYHA functional classifi- 
cation (11, 111, and IV) and priority of operation (urgent 
and emergent) were also created. A total of 24 indicator 
variables were used to create the Bayes' theorem model by 
estimating the conditional probability of having the risk 
factor present given the outcome of the procedure as 
described by Edwards and colleagues [3, 41. 

The Bayesian-Logit Model 
The same 19 risk factors found to be significant using 
univariate screening and included in the Bayes' theorem 
model were included in the Bayesian-logit model. Sixteen 
of these selected risk factors were indicator variables, 
representing the presence or absence of a particular risk 
factor. However, three of these risk factors are ordinal 
variables: NYHA functional class, priority of operation, 
and age. By plotting mortality rates for the categories of 
each of these ordinal risk factors, we conclude that oper- 
ative mortality increases linearly when the ordinal cate- 
gories also increase. The results suggest that these three 

Table 4. Frequencies of the Presence or Absence of Risk 
Factors Among Deaths and Survivors, Respectively, and 
Unadjusted Odds Ratios for Each of the Categorical Risk 
Factors 

Deaths Survivors 
Present Absent Present Absent ,p - a x d  

RiskFactor a b C d b x c  

CHF 
CM 
COPD 
CURDIG 
CURDIUR 
CVD 
ECGLVH 
IVNTG 
OLDMI 
PRIORHS 
PROPIABP 
PULMR 
PVD 
RECMI 
RESTANG 
RESTSTD 

80 198 
71 204 
96 181 
53 212 
104 164 
62 207 
50 218 

103 167 
177 95 
73 211 
28 256 
50 222 
97 174 
80 199 

189 85 
81 188 

836 
797 

1551 
691 

1412 
787 
694 

1053 
3126 
537 
181 
367 

1294 
1037 
3207 
968 

5058 
4988 
4278 
5008 
4287 
4894 
4870 
4640 
2612 
5479 
5732 
5303 
4402 
4814 
2433 
4619 

2.44 
2.18 
1.46 
1.81 
1.93 
1.86 
1.61 
2.72 
1.56 
3.53 
3.46 
3.25 
1.90 
1.87 
1.69 
2.06 

See Table 2 for abbreviations. 

risk factors can be included as continuous variables in the 
Bayesian-logit model. By doing this, we reduce from 24 
the number of indicator variables in the Bayes' theorem 
model to 19 variables in the Bayesian-logit model. 

Table 4 shows the frequencies of the 2 x 2 contingency 
table (see Table 3) used to derive the regression coeffi- 
cients and the odds ratios for the indicator variables. 
Table 5 shows the mean and variance of the continuous 
variables used to derive the regression coefficients and the 
odds ratios. 

Logistic Regression Model 
In developing a logistic regression model to predict oper- 
ative mortality we included the 33 risk factors shown in 
Table 2 in a stepwise procedure without any clinical 
judgment or forcing variables into the model. Only seven 
risk factors were found to be significant at the level of p < 
0.01 as independent predictors of mortality using the 
learning sample. These risk factors are as follows: prior 
cardiac operation, priority of operation, pulmonary rales, 

Table 5 .  Mean of Risk Factors and Common Variables 
Among Deaths and Survivors, Respectively, and Unadjusted 
Odds Ratios for Each Quantitative Risk Factor 

Deaths Survivors Pooled P1- k! 
Mean Mean Variance ep = exp{ T} 

RiskFactor p, CLZ 02 

AGE 63.8 61.3 62.68 1.04 
NYHAFC 3.4 3.0 0.65 1.94 
PRIORITY 1.7 1.4 0.38 2.46 

See Table 2 for abbreviations. 
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Table 6 .  Regression Coefficients (p), Odds Ratios, and c-Indices of the Logistic Regression Model, Discriminant Analysis, and 
Bayesian-Logit Model Using the Same Risk Factors Found in the Stepwise Logistic Regression Procedure 

Logistic Regression Model Discriminant Analysis Bayesian-Logit Model 
Factor P Odds Ratio P Odds Ratio P Odds Ratio 

PRIORHS 
PRIORITY 
PULMR 
NYHAFC 
AGE 
PVD 
CVD 
c-Index 
Learning sample 
Testing sample 

1.142 3.13 
0.450 1.57 
0.723 2.06 
0.453 1.57 
0.034 1.03 
0.359 1.43 
0.210 1.23 

0.740 
0.710 

1.840 6.30 
0.602 1.83 
1.363 3.91 
0.379 1.46 
0.029 1.03 
0.418 1.52 
0.304 1.36 

0.724 
0.705 

1.261 3.53 
0.898 2.45 
1.180 3.25 
0.663 1.94 
0.040 1.04 
0.610 1.90 
0.622 1.86 

0.722 
0.702 

See Table 2 for abbreviations 

New York Heart Association functional class, age, periph- 
eral vascular disease, and cerebral vascular disease. 

The Predictive Power 
The c-index was calculated for the Bayes’ theorem model, 
the Bayesian-logit model, and the logistic regression 
model using the learning and the testing sample. It is well 
known that the learning sample consistently overesti- 
mates the c-index as the model is evaluated with the same 
data from which it was developed. The c-index for the 
Bayes’ theorem model, the Bayesian-logit model, and the 
logistic regression model were 0.713, 0.718, and 0.740 in 
the learning sample, respectively, and 0.695, 0.701, and 
0.710 in the testing sample, respectively. Although the 
c-index differences are statistically significant, for both 
clinical decision making and risk adjustment these c- 
indices seem to be very similar. 

The Discriminant Analysis Model 
Discriminant analysis is a similar modeling technique to 
logistic regression that allows the classification of individ- 
uals coming from two different groups or subpopulations, 
which in this context are survivors and deaths. The classic 
assumption in discriminant analysis is that the distribu- 
tion of the risk factors is normal; however, this assump- 
tion can be relaxed. The major difference with respect to 
logistic regression is in the focus of the problem. In 
discriminant analysis the outcome variables are the risk 
factors and the independent variable is the group. The 
estimate of the regression coefficients has a closed form 
solution and can be found using multiple linear regression 
programs. 

The Bayesian-Logif Versus the Classic Regression 
Models 
One of the features of this new Bayesian-logit model is its 
similarity to logistic regression and discriminant analysis 
in terms of both the model equation, and the regression 
coefficients and the odds ratios. Therefore, we developed 
a Bayesian-logit model and a discriminant analysis model 
with the same seven risk factors found to be significant in 

the stepwise logistic regression. The Bayesian-logit model 
has consistently higher odds ratios compared with logistic 
regression, and all except the odds ratios of two risk 
factors are higher compared with discriminant analysis 
(Table 6). These results are expected as the seven risk 
factors included in the model have pairwise positive 
correlations. These pairwise correlations adjust the values 
of regression coefficients in logistic regression and dis- 
criminant analysis. In the Bayesian-logit model these 
correlations are ignored and the regression coefficients are 
not adjusted for the presence of other risk factors. 

The predictive power of these three models is very 
similar, particularly for the testing sample (see Table 6). 
Note that the Bayesian-logit model has a better c-index 
with the seven risk factors found in the stepwise logistic 
regression than with the 19 risk factors found to be 
significant using univariate screening. This is the result of 
using redundant information, which can be avoided by 
including the set of risk factors with the highest predictive 
power base on univariate analysis. Theoretically, the 
number of risk factors that should be .included in the 
model can be determined by observing the c-index of the 
testing sample after sequentially adding a new variable. 

Table 7 shows the calibration of the Bayesian-logit 
model by illustrating the expected and observed mortality 
in the different deciles of risk groups. The calibration was 
done using both the learning and testing sample, showing 
no major discrepancies. This result shows that the model 
correctly estimates the risk of mortality in all risk groups 
except in the sicker group where the model tends to 
overestimate the true risk of the patient. This result is 
mainly because the regression coefficients of the Bayes- 
ian-logit model, as well as the Bayes‘ model, are not 
adjusted by the presence of other risk factors. 

Comment 
The Importance of Predictive Models in Risk 
Adjustment 
Unadjusted mortality rates have been used as a measure 
of quality of care to compare the performance of hospitals 
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Table 7. Expected Versus Observed Mortality for the 
Bavesian-Loait Model 

Learning Sample Testing Sample Deciles 
of Risk Expected Observed Expected Observed 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.46% 
0.76% 
1.08% 
1.41% 
1.92% 
2.59% 
3.64% 
5.38% 
9.40% 

26.31% 

1.60% 
1.10% 
2.28% 
2.04% 
2.01% 
2.58% 
4.37% 
3.80% 

10.62% 
14.52% 

0.46% 
0.75% 
1.07% 
1.38% 
1.87% 
2.57% 
3.59% 
5.51% 
9.22% 

25.16% 

1.08% 
2.11% 
1.67% 
1.66% 
3.71% 
3.52% 
5.17% 
4.91% 
7.64% 

14.13% 

for nearly a century. However, raw mortality does not 
account for differences in patient mix across hospitals or 
providers. Therefore, the use of unadjusted mortality 
rates may produce a significant bias in comparing quality 
of care. Recently, there has been an increasing interest in 
using risk-adjusted mortality indicators by developing 
predictive models of operative mortality. The Department 
of Veterans’ Affairs and the state of New York have taken 
the initiative of collecting hospital mortality rates with the 
purpose of improving the quality of patient care [l, 21. 
These initiatives have captured the attention of the media 
and it is expected to increase the attention of the public 
and the medical community with the new trends in health 
care reforms. 

Clinical researchers and biostatisticians have proposed 
different methodologic approaches to develop predictive 
models. Without doubt, classic logistic regression is one 
of the most common statistical techniques used to predict 
adverse outcomes. Although Bayes’ theorem model is not 
as commonly used as logistic regression, it has compara- 
ble predictive power to other well-known classic statistical 
approaches. One of the advantages of logistic regression 
with respect to the Bayes’ theorem model is the compar- 
ative simplicity of the model equation and the fact that 
results can be easily interpreted by clinicians as odds 
ratios. The Bayes’ theorem model has a significantly more 
complicated model equation and it is not clear how to 
interpret clinically the model results with respect to indi- 
vidual predictor variables. 

Reformulating the Bayes‘ Theorem Model 
The Bayes’ theorem model could become a more attractive 
model for predicting adverse outcomes by reformulating 
it using the logistic equation (2), because the contribution 
of individual covariates can be interpreted from the re- 
sults. However, it is important to emphasize that by 
reformulating the Bayes’ theorem model we have learned 
that it is a constrained version of logistic regression. 
Although it is easier to compute, it can never exceed 
logistic regression in terms of predictive capability. This 
constraint is imposed by the assumption of conditional 

independence, which means that the model ignores the 
interrisk factor correlations. 

The Bayesian-Logit Model 
The Bayesian-logit model allows clinicians to include 
quantitative risk factors linearly in the model instead of 
breaking the variables into arbitrary intervals. This feature 
is particularly important in predicting the outcome of 
patients undergoing cardiac operation, as the effect of age 
on operative mortality has been shown to be continuous 
rather than constant by intervals [l, 71. By using the 
Bayesian-logit model we can also compare results with 
other statistical techniques such as logistic regression and 
discriminant analysis. Another advantage of using the 
Bayesian-logit model over the Bayes’ theorem model is 
the fact that the Bayesian-logit model is a constrained 
model of a mixture of logistic regression and discriminant 
analysis, which is not widely used as it is significantly 
more complex to compute. Therefore, the model is not a 
restrictive version of any other commonly used model as 
is the case with the Bayes’ theorem model, which we 
show to be a subset of logistic regression. It is also 
important to mention that both the Bayes‘ theorem model 
and the Bayesian-logit model are different applications of 
the same Bayes’ theorem, also known as the Bayes’ rule, 
which was named after Thomas Bayes (1702-1761). 

To compare performance of the different models in 
predicting outcomes we have reported the c-indices. On 
the basis of the results of this analysis, the predictive 
power of the Bayes’ theorem model, the Bayesian-logit 
model, and the logistic regression model is comparable, 
and any differences are unlikely to be clinically significant. 
However, these results do confirm what we obtained 
using analytical derivation. The advantage of these two 
Bayesian models with respect to logistic regression is the 
simplicity of parameter estimation. This advantage, how- 
ever, can be questionable with today‘s powerful computer 
hardware and widely available software that are able 
perform the complex numerical analysis required for 
logistic regression. In the immediate future, we must 
explore other computer-intensive models, such as neural 
networks, that may produce even better predictive re- 
sults. 

Appendix 1 
The conditional independence Bayes’ theorem model can be 
written as 

P{deu th I X }  

m 

nP{x,ldeuth} x P{deuth} 
F l  

m m 
- - 

nP{x,lsumivul} x P{survivuZ} + nP{x,ldeuth} x P{deuth} 
,=l ,=1 

where P{x,ldeuth} and P{x,lsurvivuZ} represent the conditional 
probability that the risk factor x ,  is present (x, = 1) or absent (x ,  = 
0) given one of the two possible operative outcomes: death and 
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survival, respectively. If we divide both the numerator and the 
denominator by 

m 

nP{xilsurvivul} x P{survival}, 

the first term in the denominator, the probability of operative 
death given the risk factors X is 

, = I  

where 

f ( x )  

1 + f(x)' 
P{denthiX} = - (4) 

P{x,ldeath} P{death} 
X (5) 

= tf Il{x,lsurvivulj P{survival}' 

For categorical risk factors, the distribution of the risk factors 
given the two outcomes can be written as P{x,ldeath} = p:i x (1 - 
p i l ) l - x r  and P{xiisurvival} = p:; x (1 - p,2)1-xl ,  respectively, where 
ptl and pt2 represent the conditional probability that the risk factor 
xi is present given the outcomes are death and survival, respec- 
tively. If we replace these expressions back into equation (5), f(X) 
reduces to 

and 

Replacing f ( x )  = exp{a + Plxl  + p2x2 + . . . + &xm} in equation 
(4) we prove that the conditional independence Bayes' theorem 
model can be reformulated as equation (2). 

Appendix 2 
For continuous risk factors, we assume that the distribution of 
the risk factor is normal. The probability function of the risk 
factor xi given the outcome of the operation is death is defined as 

{ ( x ,  7;."3 
P{x,ldeath} = c, x exp - ___ , 

where ci is a constant that only depends on xi but not on the 
operative outcome. The probability function P{x,lsurvivul} has the 
same form except that the constant p,l is replaced by pi*. The 
constants p i l ,  pi2, and crf represent the population means and 
common variance of the continuous risk factor xi for the deaths 
and survivors, respectively. 

The ratio between the two conditional probability functions as 
shown in equation (5) in Appendix 1 is 

P{x,ldeuth} 

2 
= exp 

and therefore, the regression coefficient P, is 

and where 

- (PI1 - Pt2) (Pcl + P d  
af 2 

is added to the constant a (see Appendix 1). 
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DISCUSSION 

DR RICHARD E. CLARK (Pittsburgh, PA): I welcome this type 
of investigative work, albeit in mathematics, exactly as we would 
any innovative experiment in the animal laboratory. It is very 
important to explore how we can treat our data sets in a 
predictive way that will stand the test of time. 

What we have seen here today is a marriage, in part, between 
the logistic and the Bayesian approaches to building predictive 
models of perioperative mortality. Doctor Fisher, a renowned 
American biostatistician, has said that all statistics come from the 
same trunk, which gwes forth several major branches. Doctor 
Marshall has tried to blend two major branches. 

The reason we use the Bayesian system in the STS National 
Database is that it can accommodate a very large number of 
variables. In your model, for example, you only had seven 

variables and then you tried it with 18. The STS risk stratification 
system in use in more than 650 hospitals uses 23 and it can 
accommodate more. In addition, the Bayesian system is forgiving 
for incomplete data for some variables in contrast to the logistic 
regression method. I congratulate you on the innovative effort. 

DR MARSHALL: Thank you, Dr Clark, for your comments. I 
think one of the most important conclusions is that all these 
models have the same predictive power, and, as Dr Clark 
mentioned, one of the most important advantages of the Bayes- 
ian model is that if you have missing values, if you have missing 
information on a patient, you still can compute the predictive 
mortality, whereas in logistic regression you have no information 
about the predictive mortality, unless you impute a value. 

The Third International Conference on 
Circulatory Support Devices for Severe Cardiac Failure 

Lawrence Convention Center 
Pittsburgh, Pennsylvania, October 28-30, 1994 

Circulatory Support 1994 will be a comprehensive mul- 
tidisciplinary meeting focusing on clinical applications for 
the entire spectrum of circulatory support devices. Sur- 
geons, cardiologists, anesthesiologists, intensivists, per- 
fusionists, engineers, and operating and intensive care 
nurses are encouraged to attend as individuals or as a 
team. 

The meeting is sponsored by The Society of Thoracic 
Surgeons under the direction of its Ad Hoc Committee on 
Circulatory Support and Thoracic Transplantation. An 
additional, optional program will be scheduled for Friday, 
October 28th, that will feature a site visit to either of two 
regional medical centers. Allegheny General Hospital will 
be visited in the morning to review their cardiomyoplasty 
program. An afternoon program will feature a site visit to 
the University of Pittsburgh to review their mechanical 
circulatory support program. Space will be limited for 
these special programs. 

The general program will begin on Saturday, October 29, 
at 8:OO AM and will conclude on Sunday, October 30, at 

2:45 PM. Session topics will review clinical and experimen- 
tal systems that focus on pulsatile ventricular assist, total 
artificial heart, nonpulsatile ventricular assist, ECMO for 
cardiopulmonary support, pediatric blood pump develop- 
ment, and pneumatic artificial heart segments; also clini- 
cal problems sessions will be presented that involve 
univentricular versus biventricular support, infection, 
thromboembolism and bleeding, patient selection, and 
extended bridge to permanent implant. Other sessions 
will cover dynamic myoplasty, a video review of selected 
devices, and a panel session dealing with topical regula- 
tory issues. 

The meeting will include a poster session and commer- 
cial exhibits including manufacturers and products that 
will be reviewed during the meeting. 

Further details on this meeting will be mailed to all 
members of The Society in the future and may be re- 
quested from the Society Headquarters at 401 N Michigan 
Ave, Chicago, IL 60611. 




