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ABSTRACT

Rule-based information extraction has lately received a fair amount of attention from

the database community, with several languages appearing in the last few years. Although

information extraction systems are intended to deal with semistructured data, all language

proposals introduced so far are designed to output relations, thus making them incapable

of handling incomplete information. Moreover, little is known about how these proposals

compare to each other in terms of expressive power, and we do not have a deep understanding

of the complexity of these languages.

To remedy the situation, in this thesis we study the expressiveness and complexity

of information extraction languages under a unifying framework supporting incomplete

information. To this end, we propose a general framework subsuming previously proposed

languages and allowing us to handle mappings instead of relations. We then use this

framework to compare different methods for extracting information defined in the past,

and study their computational properties such as query enumeration, satisfiability and

equivalence. As we show, no previously proposed method reigns supreme, however, by

combining several characteristics of different approaches we can obtain an expressive

information extraction formalism which can be efficiently implemented and used in practice.

Keywords: Information Extraction; Automata Theory; Formal Languages; Database

Theory.
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RESUMEN

Los lenguajes de Extracción de Información (EI) en base a reglas han recibido atención

de parte de la comunidad de bases de datos últimamente, con varios lenguajes nuevos

apareciendo en los últimos años. A pesar de que los sistemas de EI suelen procesar

datos semi-estructurados, todos los lenguajes que se han propuesto hasta ahora están

diseñados para producir relaciones y, por lo tanto, son incapaces de trabajar con información

incompleta. Además, existe poco conocimiento acerca de cómo estas propuestas se

comparan en términos de poder expresivo y complejidad.

Para remediar esto, esta tesis estudia la expresividad y complejidad de distintos lenguajes

de EI a través de un marco teórico unificador con soporte para información incompleta.

Con este fin, se propone un lenguaje que generaliza otras propuestas anteriores y que

utiliza funciones parciales (también llamadas mappings) en lugar de relaciones. Luego

utilizamos este lenguaje general para comparar distintos métodos de EI definidos en el

pasado y estudiar sus propiedades computacionales, tales como: enumeración de consultas,

satisfacibilidad y equivalencia. Como se muestra, ninguno de los métodos propuestos

domina a los otros, sin embargo, combinando ciertas características de distintos enfoques se

puede obtener un lenguaje para EI que es expresivo, puede implementarse eficientemente y

puede ser utilizado en la práctica.

Palabras claves: Extracción de Información; Teoría de Automatas; Lenguajes Formales;

Teoría de Bases de Datos.
ix
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1. INTRODUCTION

With the abundance of different formats arising in practice these days, there is a great

need for methods extracting singular pieces of data from a variety of distinct files. This

process, known as information extraction, or IE for short, is particularly prevalent in big

corporations that manage systems of increasing complexity which need to incorporate data

coming from different sources. As a result, a number of systems supporting the extraction

of information from text-like data have appeared throughout the years (Cunningham, 2002;

Krishnamurthy et al., 2008; Shen, Doan, Naughton, & Ramakrishnan, 2007), and the

topic received a substantial coverage in research literature (see Kimelfeld, 2014 for a good

survey).

Historically, there have been two main approaches to information extraction: the

statistical approach utilizing machine-learning methods, and the rule-based approach

utilizing traditional finite-language methods. In this thesis we focus on the rule-based

approach to information extraction for two reasons. First, rule-based information extraction

is founded onmethods traditionally used by the database community (such as logic, automata,

or datalog-based languages) and has therefore enjoyed a great amount of coverage in the

database literature (Arenas, Maturana, Riveros, & Vrgoč, 2016; Fagin, Kimelfeld, Reiss,

& Vansummeren, 2014, 2015; Freydenberger & Holldack, 2016). Second, as argued by

Chiticariu, Li, and Reiss (2013); Kimelfeld (2014), due to their simplicity and ease of use,

rule-based systems seem to be more prevalent in the industrial solutions.

Generally, most rule-based information extraction frameworks deploy some form of

regular-like expressions as the core mechanism for extracting the data (Arenas et al., 2016;

Califf & Mooney, 1999; Fagin et al., 2015). Perhaps the best representative of this approach

are the regular expressions with capture variables introduced by Fagin et al. (2015), called

regex formulas, which form the basis of IBM’s commercial IE tool SystemT (Krishnamurthy

et al., 2008). In this setting, documents being processed are viewed as strings, which is a

natural assumption for a wide variety of formats in use today (e.g. plain text, CSV files,

JSON documents, etc.). The pieces of information we want to extract are captured by spans,
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which are simply intervals inside the string representing our document (that is, spans are

defined by the starting point and the ending point of some substring). Regex formulas are

now used to parse these strings, with variables storing spans.

Once spans have been extracted using regular-like expressions, most IE frameworks

allow combining them and controlling their structure through a variety of different methods.

For instance, Fagin et al. (2015) permit manipulating spans extracted by regex formulas

using algebraic operations, while Arenas et al. (2016) and Shen et al. (2007) deploy

datalog-like programs to obtain a more general way of defining relations over spans. Unlike

regex, which specify variable filters explicitly inside formulas, Arenas et al. (2016) use a

more visual approach implemented through extraction rules. These permit constraining the

shape of a span captured inside a variable separately.

The way that most frameworks view information extraction is by defining a relation

over spans. For example, in regex formulas of Fagin et al. (2015) all variables must be

assigned in order to produce an output tuple, and a similar thing happens with the rule-based

language of Arenas et al. (2016). However, in practice we are often working with documents

which have missing information or optional parts, and would therefore like to maximise the

amount of information we extract from a document. To illustrate this, consider a CSV file1

containing land registry records about buying and selling property. In Table 1.1 we give a

few rows of such a document, where “␣” represents space and “

�

” the new line symbol.

Some sellers in this file have an additional field which contains the amount of tax they paid

when selling the property. If we are extracting information about sellers (for instance their

names) from such a file, we would then like to also include the tax information when it is

available. However, if we are set on extracting relations, this will not be possible, since all

variables need to be assigned in order to produce an output.

1CSV, or comma separated values, is a simple table-like format storing information separated by commas and
new lines.
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Table 1.1. Part of a CSV document containing information about buying
and selling property.

Seller: John, ID75

�

Buyer: Marcelo, ID832, P78

�

Seller: Mark, ID7, $35,000

�

...

Apart from the inability to capture partial or incomplete information, some further

shortcomings of previous approaches are that defining the semantics of extraction expressions

cannot be done in a fully declarative way (Fagin et al., 2015), or that they assign arbitrary

spans to variables when these are not matched against the document (Arenas et al., 2016).

Furthermore, not much is known about how these approaches compare in terms of expressive

power, and apart from some preliminary studies on their computational properties (Arenas

et al., 2016; Freydenberger & Holldack, 2016), we do not have a good understanding of how

difficult it is to evaluate these languages, nor of the complexity of their main static tasks.

In order to overcome these issues, we propose a general framework subsuming several

previous approaches to IE. For this, we consider core extraction mechanisms such as

variants of regular expressions and automata, and extend them in order to accommodate

incompleteness. We start with regex formulas of Fagin et al. (2015) as the base, and redefine

their semantics in such a way that they output mappings in place of relations, as it was done

for the SPARQL query language in the Semantic Web context (Pérez, Arenas, & Gutierrez,

2009). This allows us to capture optional parts of documents, such as in the example from

Table 1.1, since our expression will output a mapping that binds an extra variable to the tax

data only when the latter is present in the document (otherwise we only extract the name of

the seller). Furthermore, the generality of mappings allows us to have a simple declarative

semantics of regex formulas. We also extend the automata models of Fagin et al. (2015) to

this new setting and show how they can capture the extraction expressions under the new

semantics.
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Next, we study how the formal IE frameworks introduced previously compare in terms

of expressive power. Here we start with regex formulas of Fagin et al. (2015) and span

regular expressions of Arenas et al. (2016), since these form the information extraction base

of the two frameworks. We prove that both languages are special cases of our definition2,

with the latter being less expressive. We then analyse extraction rules of Arenas et al. (2016)

showing how these can be used to capture regex formulas and also provide a method for

simplifying such rules.

After this we consider computational aspects of base IE formalisms, starting with

the combined complexity of evaluating extraction expressions over documents. Here we

isolate a decision problem which, once solved efficiently, would allow us to enumerate all

mappings an expression outputs when matched to a document. Since the size of the answer

is potentially exponential here, our objective is to obtain an incremental polynomial time

algorithm (Johnson, Yannakakis, & Papadimitriou, 1988), that is, an enumeration algorithm

that takes polynomial time between each output. As we show, this is generally not possible,

but we do isolate a well-behaved fragment, called sequential regex, which properly includes

functional regex introduced by Fagin et al. (2015). We also analyze the evaluation problem

parametrized by the number of variables and show that the problem is fixed parameter

tractable (Flum & Grohe, 2006) for all expressions and automata models studied in this

thesis.

Then, we study static analysis of these languages, focusing on satisfiability and

containment. While satisfiability is NP-hard for unrestricted languages, the sequentiality

restriction we introduce when studying evaluation allows us to solve the problem efficiently.

On the other hand, containment is bound to be PSPACE-hard, since all of our IE formalisms

contain regular expressions, with a matching upper bound giving us completeness for the

class. Since one way to lower this bound for regular languages is to consider deterministic

models, we show how determinism can be introduced to IE languages and study how it

affects the complexity.

2Note that in this thesis we do not consider the content operator of Arenas et al. (2016), nor the string selection
of Fagin et al. (2015), since these do not directly extract information, but rather compare two pieces of existing
data.
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Finally, we show an application of our framework to the task of annotating documents.

This task consists in associating certain regions of a document to specific annotations, which

typically function as metadata. To this end, we specify a fragment of our IE language that

covers all the common use cases. In addition to this, we provide an algorithm that efficiently

evaluates this fragment along with experimental results that show the performance of this

algorithm on real-world data.

Organisation. We define documents, spans and mappings in Chapter 2. The unifying

framework is introduced in Chapter 3, where we define different notions of extraction

expressions and automata, and show how are they are connected. Expressiveness of IE

languages is studied in Chapter 4, and the complexity of their evaluation in Chapter 5. We

then tackle static analysis in Chapter 6 and present an application of our framework to the

task of annotating documents in Chapter 7 . Finally, we conclude in Chapter 8 by outlining

our key contributions and discussing future challenges.
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2. PRELIMINARIES

Documents and spans. Let Σ be a finite alphabet. A document d, from which we

will extract information, is a string over Σ. We define the length of d, denoted by |d |,
as the length of this string. As done in previous approaches (Arenas et al., 2016; Fagin

et al., 2015), and implemented in practical information extraction tools (Chiticariu et al.,

2010), we use the notion of a span to capture the part of a document d that we wish to

extract. Formally, a span p of a document d is a pair (i, j) such that 1 ≤ i ≤ j ≤ |d | + 1,

where |d | is the length of the string d. Intuitively, p represents a continuous region of

the document d, whose content is the infix of d between positions i and j − 1. The set

of all spans associated with a document d, denoted span(d), is then defined as the set

{(i, j) | i, j ∈ {1, . . . , |d | + 1} and i ≤ j}. Every span p = (i, j) of d has an associated

content, which is denoted by d(p) or d(i, j), and is defined as the substring of d from

position i to position j − 1. Notice that if i = j, then d(p) = d(i, j) = ε. Given two spans
s1 = (i1, j1) and s2 = (i2, j2), if j1 = i2 then their concatenation is equal to (i1, j2) and it is
denoted s1 · s2.

As an example, consider the following document d0, where the positions are enumerated

and “␣” denotes the white space character:
I n f o r m a t i o n  e x t r a c t i o n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Here the length of d0 is 22 and the span p0 = (1, 23) corresponds to the entire document

d0. On the other hand, the span p1 = (1, 12) corresponds to the first word of our document

and its content d(p1) = d(1, 12) equals the string “Information”. Similarly, for the span

p2 = (13, 23) we have that d(p2) = extraction, i.e., it spans the second word of our

document.

Mappings. In the introduction we argued that the traditional approaches to information

extraction that store spans into relations might be somewhat limited when we are processing

documents which might have optional parts, or contain incomplete information. Therefore

to overcome these issues, we define the process of extracting information from a document

d as if we were defining a partial function from a set of variables to the spans of d. The
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use of partial functions for managing optional information has been considered before, for

example, in the context of the Semantic Web (Pérez et al., 2009). Formally, letV be a set

of variables disjoint from Σ. For a document d, a mapping, is a partial function from the

set of variablesV to span(d). The domain of a mapping µ (denoted dom(µ)) is the set of
variables for which µ is defined. For instance, if we consider the document d0 above, then

the mapping µ0 which assigns the span p1 to the variable x and leaves all other variables

undefined, extracts the first word from d0.

Two mappings µ1 and µ2 are said to be compatible (denoted µ1 ∼ µ2) if µ1(x) = µ2(x)
for every x in dom(µ1)∩dom(µ2). If µ1 ∼ µ2, then µ1∪ µ2 denotes the mapping that results

from extending µ1 with the values from µ2 on all the variables in dom(µ2) \ dom(µ1). The
empty mapping, denoted by µ∅, is the mapping such that dom(µ∅) = ∅. Similarly, [x → s]
denotes the mapping that only defines the value of variable x and assigns it to be the span s.

The join of two set of mappings M1 and M2 is defined as follows:

M1 Z M2 = {µ1 ∪ µ2 | µ1 ∈ M1 and µ2 ∈ M2 such that µ1 ∼ µ2}.

Finally, we say that a mapping µ is hierarchical if for every x, y ∈ dom(µ), either: µ(x) is
contained in µ(y), µ(y) is contained in µ(x), or µ(x) and µ(y) are disjoint. By extension, a

set of mappings is said to be hierarchical if it only contains hierarchical mappings.
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3. UNIFYING FRAMEWORK

In this chapter , we introduce a theoretical framework for information extraction that

encompasses previous approaches proposed in the literature and allows us to manipulate

partial and/or incomplete information often arising in practical applications. The idea

behind our framework is quite simple, namely, we use mappings in place of relations to

allow extracting the maximal amount of information from the document we are processing.

For this, we borrow the syntax of variable regex and variable automata (Fagin et al., 2015),

and redefine (and simplify) their semantics to output mappings. We start by redefining

regular expressions with capture variables and show how our proposal subsumes extraction

languages from Fagin et al. (2015) and Arenas et al. (2016). We then define variable stack

and variable set automata for extracting mappings of spans and discuss their connection

with extraction expressions under the new semantics.

3.1. Extracting information using RGX

Previous approaches to information extraction (Arenas et al., 2016; Fagin et al., 2015;

Shen et al., 2007; Soderland, 1999) use some form of regular expressions with capture

variables in order to obtain the desired spans. Intuitively, in such expressions we use

ordinary regular languages to move through our document, thus jumping to the start of a

span that we want to capture. The variables are then used to store the desired span, with

further subexpressions controlling the shape of the span we wish to capture. Following

Fagin et al. (2015) and Arenas et al. (2016), we define a class of regular expressions with

variables, called variable regex.

Let Σ be a finite alphabet and V a set of variables disjoint with Σ. A variable regex

(RGX) is defined by the following grammar:

γ B ε | a | x{γ} | γ · γ | γ ∨ γ | γ∗
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where a ∈ Σ is a letter in the alphabet and x ∈ V is a variable. For a RGX γ we define

var(γ) as the set of all variables occurring in γ.
Just as in the previously introduced information extraction languages, RGX use regular

expressions to navigate the document, while a subexpression of the form x{γ} stores a
span starting at the current position and matching γ into the variable x. For example, if we

wanted to extract the name of each seller from the document in Table 1.1, we could use the

following RGX:

Σ
∗ · Seller:␣ · x{(Σ − {,})∗}·, ·Σ∗

where Σ stands for the disjunction of all the letters of the alphabet, and where the

concatenation symbols between alphabet letters is omitted for convenience. Here the

subexpression Σ∗ · Seller:␣ navigates to the position in our document where the name

of some seller starts. The variable x then stores a string not containing a comma until it

reaches the first comma—that is, the full name of our seller. The rest of the expression then

simply matches the rest of the document.

Note that, syntactically, our expressions are the same as the ones introduced by Fagin

et al. (2015) and as we show in Chapter 3.2, the expressions of Arenas et al. (2016) can

be seen as a restriction of variable regex. The only explicit difference from Fagin et al.

(2015) is that we do not allow the empty language ∅ explicitly in order to make some of the

constructions more elegant. Adding this variant would not affect any of the results, though.

In contrast to previous approaches, our semantics views RGX formulas as expressions

defining mappings and not only relations. To illustrate how this works, consider again the

document in Table 1.1, but now suppose that we want to extract the names of the sellers

and, when available, also the amount of tax they paid (recall from the Introduction that not

all rows have this information). For this, consider the following RGX:

Σ
∗ · Seller:␣ · x{R′} · , · R′ · (, · ␣ · y{(Σ − {

�

})∗} ∨ ε) · Σ∗,

where R′ = (Σ − {,,

�

})∗. Note that this expression extracts the information about the

amount of tax paid into the variable y only when this data is present in the document

(otherwise, it matches ε). This defines two types of mappings: the first kind will contain
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only the names of sellers (stored into the variable x), while the second kind will contain

both the name and the amount of tax paid (stored into y), when the latter information is

present in our file.

Table 3.1. The semantics nγod of a RGX γ over a document d. Here R2 is
a shorthand for R · R, similarly R3 for R · R · R, etc.

nγod = {µ | ((1, |d | + 1), µ) ∈ [γ]d}

[ε]d = {(s, µ∅) | s ∈ span(d) and s = (i, i)}

[a]d = {(s, µ∅) | s ∈ span(d) and d(s) = a}

[x{R}]d = {(s, µ) | ∃(s, µ′) ∈ [R]d : x < dom(µ′) and µ = µ′ ∪ [x → s]}

[R1 · R2]d = {(s, µ) | ∃(s1, µ1) ∈ [R1]d, ∃(s2, µ2) ∈ [R2]d :

s = s1 · s2, dom(µ1) ∩ dom(µ2) = ∅, and µ = µ1 ∪ µ2}

[R1 ∨ R2]d = [R1]d ∪ [R2]d

[R∗]d = [ε]d ∪ [R]d ∪ [R2]d ∪ [R3]d ∪ · · ·

The full semantics of RGX expressions is defined in Table 3.1. As explained above, we

view our expression γ as a way of defining a partial mapping µ : var(γ)⇀ span(d). These
semantics have two layers. The first layer (denoted [γ]d) defines a set of pairs that contain a
span of d where γ matches, and the corresponding mapping obtained from that match. For

instance, the alphabet letter a must match a part of the document equal to a and it defines

no mapping. Correspondingly, a subexpression of the form x{R} assigns to x the span

captured by R (while preserving the previous variable assignments). Similarly, in the case

of concatenation R1 · R2 we join the mappings defined on the left with the ones defined on

the right, while imposing the restriction that the same variable is not assigned in both parts

(as this would lead to inconsistencies). The second layer of our semantics (denoted nγod)

then simply gives us the mappings that γ defines when matching the entire document. Note
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that in the case of an ordinary regular expression we output the empty mapping singleton

(representing TRUE) when the expression matches the entire document and the empty set

(representing FALSE) when not, thus making RGX a natural generalisation of ordinary

regular expressions with the ability to extract spans.

It is worthwhile mentioning that the denotational semantics introduced here is much

simpler than the semantics of variable regex defined by Fagin et al. (2015). In Table 3.1,

we give the semantics of our framework directly in terms of spans and mappings. On the

other hand, the semantics of variable regex by Fagin et al. (2015) are given through the

so-called parse trees: syntactical structures that represent the evaluation of an expression

over a document. We believe that one contribution of our work is the simplification of the

semantics which could help us better understand variable regex and other IE languages.

3.2. Connection with previous approaches

Having the general definition of RGX formulas which define mappings, we can now

show how this framework subsumes some previously proposed classes of regular expressions

used in information extraction. Most notably, we compare with regex formulas introduced

by Fagin et al. (2015) and span regular expressions from Arenas et al. (2016). We start with

regex formulas.

Although the expressions from Fagin et al. (2015) use the same syntax as our RGX

formulas, the setting they consider dictates that extraction expressions always define relations.

This automatically excludes expressions such as R1 ∨ R2 from Chapter 3.1 which allows

mappings with different domains. What Fagin et al. (2015) proposes instead is that each

mapping defined by an expression assigns precisely the same variables every time (and also

all of them); that is, we want our expressions to act as functions. As shown in Fagin et al.

(2015), there is a very easy syntactic criteria for this, resulting in functional RGX formulas.

A RGX γ is called functional with respect to the set of variables X if one of the following

syntactic restrictions holds:

• γ = ε, γ = w for some w ∈ Σ and X = ∅.
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• γ = ϕ1 ∨ ϕ2, where ϕ1, ϕ2 are functional with respect to X (implying that

var(ϕ1) = var(ϕ2)).
• γ = ϕ1 · ϕ2, where ϕ1 is functional with respect to X′ ⊆ X and ϕ2 is functional

with respect to X \ X′ (implying that var(ϕ1) ∩ var(ϕ2) = ∅).
• γ = (ϕ)∗, where var(ϕ) = ∅ and X = ∅.
• γ = x{γ′} where x ∈ X and γ′ is functional with respect to X \ {x}.

A RGX γ is called functional if it is functional with respect to var(γ).
This condition ensures that each variable mentioned in γ will appear exactly once in

every word that can be derived from γ, when we treat γ as a classical regular expression

with variables as part of the alphabet. We refer to the class of functional RGX as funcRGX.

Note that this corresponds to the original definition of regex formulas given by Fagin et al.

(2015), even when we consider the new semantics. Thus, we have:

Theorem 3.1. Regex formulas of Fagin et al. (2015) are equivalent to the class funcRGX

defined above. �

Next, we show how RGX formulas subsume span regular expressions of Arenas et al.

(2016). To do this, note that span regular expressions can be seen as RGX formulas defined

above, but where the subexpressions of the form x{γ} allow only for γ = Σ∗. That is, when

we have no control over the shape of the span we are capturing, and where we cannot nest

variables. We call such formulas span RGX formulas and denote them by spanRGX. For

simplicity, we omit Σ∗ after variables when showing these formulas.

To compare spanRGX with span regular expressions, we also need to take note of the

semantics proposed in Arenas et al. (2016). One problem with that semantics is that when

a variable is not matched by the expression, the resulting mapping is assigned an arbitrary

span, which does not seem the correct approach since it can mislead us in some cases.

For instance, in our example with names and tax information above we will always assign

spans to both variables, thus not knowing if the tax information is really associated with

the correct name. Of course, this type of behaviour can easily be simulated by “joining”
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the results obtained by spanRGX with the set of all total mappings or, in other words,

constructing a new set of mappings where unassigned variables are mapped to all possible

spans. Another, more subtle problem, is that the formalism of Arenas et al. (2016) allows

expressions of the form x{Σ∗} · x{Σ∗} (forcing x to be assigned the empty span at the same

position multiple times), while this RGX is not satisfiable. We call span regular expressions

which prohibit such behaviour proper. We now obtain the following:

Theorem 3.2. Let d be a document, γ be a RGX, M be the set of all total functions

from var(γ) to span(d), and let nγo′d = M Z nγod . Under these semantics, spanRGX and

proper span regular expressions of Arenas et al. (2016) are equivalent. �

We can therefore conclude that the proposed framework indeed generalises the two

previously proposed classes of information extraction expressions.

3.3. Automata for information extraction

In this section, we define two automata models for capturing spans. We start with the

automata model equivalent to RGX and then extend it in order to allow defining complex

sets of mappings. Just as with RGX, the definitions of our automata come from Fagin et al.

(2015), however, we need to redefine the semantics to support mappings.

Variable-stack automaton. This class of automata operates in a way analogous to

RGX; that is, it behaves as an usual finite state automaton, except that it can also open and

close variables. To mimic the way this happens in RGX, variable-stack automata use a

stack in order to track which variables are open and when to close them.

Formally, a variable-stack automaton (VAstk) is a tuple (Q, q0, q f , δ), where: Q is a

finite set of states; q0 ∈ Q is the initial state; q f ∈ Q is the final state; and δ is a transition

relation consisting of triples of the forms (q,w, q′), (q, ε, q′), (q, x ,̀ q′) or (q, a, q′), where
q, q′ ∈ Q, w ∈ Σ, x ∈ V, ` is a special open symbol, and a is a special close symbol. For a
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VAstk automaton A we define the set var(A) as the set of all variables x such that x ` appears
in some transition of A. Figure 3.1a shows an example of a variable-stack automaton.

A configuration of a VAstk automaton A is a tuple (q,V,Y, i), where q ∈ Q is the current

state; V ∈ var(A)∗ is the stack of active variables; Y ⊆ var(A) is the set of available

variables; and i ∈ [1, |d | + 1] is the current position. A run ρ of A over document

d = a1a2 · · · an is a sequence of configurations c0, c1, . . . , cm where c0 = (q0, ∅, var(A), 1)
and for every j ∈ [0,m − 1], one of the following holds for c j = (q j,Vj,Yj, i j) and
c j+1 = (q j+1,Vj+1,Yj+1, i j+1):

(i) Vj+1 = Vj , Yj+1 = Yj , and either

(a) i j+1 = i j + 1 and (q j, aij, q j+1) ∈ δ (ordinary transition), or
(b) i j+1 = i j and (q j, ε, q j+1) ∈ δ (ε-transition).

(ii) i j+1 = i j and for some x ∈ var(A), either
(a) x ∈ Yj , Vj+1 = Vj · x, Yj+1 = Yj \ {x}, and (q j, x ,̀ q j+1) ∈ δ (variable push),

or

(b) Vj = Vj+1 · x, Yj+1 = Yj and (q j, a, q j+1) ∈ δ (variable pop).
The set of runs of A over a document d is denoted Runs(A, d). A run ρ = c0, . . . , cm is

accepting if cm = (q f ,Vm,Ym, |d | + 1). The set of accepting runs of A over d is denoted

ARuns(A, d). Let ρ ∈ ARuns(A, d), then for each variable x ∈ var(A) \ (Ym ∪ Vm) there are
configurations cb = (qb,Vb,Yb, ib) and ce = (qe,Ve,Ye, ie) such that Vb is the first one in the

run where x occurs and Ve (with e , m) is the last one in the run where x occurs; the span

(ib, ie) is denoted by ρ(x). The mapping µρ is such that µρ(x) is ρ(x) if x ∈ var(A)\(Ym∪Vm),
and undefined otherwise. Finally, the semantics of A over D, denoted by nAod , are defined

as the set {µρ | ρ ∈ ARuns(A, d)}.
Note here that the only difference between our definition and Fagin et al. (2015) is how

we define accepting runs and the mappings µρ. In particular, we do not impose that all the

variables in var(A) should be used in the run, and we also allow some of them to remain on

the stack. Furthermore, we leave our mappings undefined for any unused variable.
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(a) Variable-stack automaton equivalent
to regex x{a∗c∗} ∨ (a∗ ∨ b) · y{c∗}.

q0

q1

q2

q3 qf

x `

b

a

ε

ε

y `

c

a

(b) Variable-set automaton equivalent to
regex (ε ∨ x{a∗}) · (ε ∨ y{c}).

q0 q1

q2 q3 q4

qf
x `

ε

a

a x

y ` b

ε
a y

Figure 3.1. Examples of variable automata.

Variable-set automaton. Following Fagin et al. (2015), we introduce a more general

class of automata which allow defining mappings that are not necessarily hierarchical as in

the case of VAstk automata and RGX. We call these automata variable-set automata (VA).

The definition of variable-set automata is almost identical to the one of VAstk automata, but

we now have transitions of the form (q, a x, q′) instead of (q, a, q′), that allow us to explicitly

state which variable is closed. Likewise, instead of a stack, they operate using a set, thus

allowing us to add and remove variables in any order. Figure 3.1b shows an example of a

variable-set automaton.

The only difference between VA and VAstk automata is in the condition 2.(b) of a run,

where we directly stipulate which variable should be removed from the set Vj (this used to

be a stack in VAstk). Acceptance is defined analogously as before. To avoid repeating the

same definition we refer the reader to Fagin et al. (2015) for details, taking note of the new

semantics. We also discuss how the results of Fagin et al. (2015) can be preserved under

these new semantics in Chapter 3.4.
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Similarly to functional RGX, it also makes sense to consider automata which force their

runs to be functional. A run ρ of an automaton A is functional if dom(µρ) = var(A) (in
other words, µρ is a total function). A functionally restricted variable automaton (fVA) is

such that it only considers functional runs as valid runs. Note that these restrictions can be

defined for VAstk automata in the same manner. Lastly, we say that a VA is hierarchical if

every mapping it produces is hierarchical.

3.4. Comparing expressions to automata

One of the main problems studied by Fagin et al. (2015) was to determine the precise

relationship between the automata models introduced in the previous section (restricted

such that they always output relations) with the class of functional RGX formulas. As our

framework is a generalisation of Fagin et al. (2015) that allows mappings instead of simple

relations, here we show how main results on fVA and funcRGX can be generalised to our

setting. We start by showing that the class of RGX formulas is also captured by VAstk

automata in our new setting.

Theorem 3.3 (Fagin et al. 2015). Every VAstk automaton has an equivalent RGX

formula and vice versa. That is VAstk ≡ RGX.

Proof. Just as in the proof for the relational case (Fagin et al., 2015), the main step is

to show that VAstk automata can be simplified by decomposing them into an (exponential)

union of disjoint paths known as PUstk (path union VAstk). In PUstk automata each path

is essentially a functional RGX formula, thus making the transformation straightforward.

The only difference to the proof of Fagin et al. (2015) is that when transforming VAstk

automaton into a union of paths, we need to consider all paths of length at most 2 · k + 1

in order to accommodate partial mappings. The notion of a consistent path also changes,

since we are allowed to open a variable, but never close it. As a corollary we get that every
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RGX is equivalent to (a potentially exponential) union of functional RGX formulas (with

this union being empty when the RGX is not satisfiable).

Given a RGX, we can obtain an equivalent VAstk by using an adapted version of

Thompson’s construction algorithm (Hopcroft & Ullman, 1979). This is the classical

algorithm for building an automaton from a regular expression, and it can be easily adapted

to consider variable operations. It is also worth noting that this algorithm runs in polynomial

time with respect to the size of the expression. �

Similarly as in the functional case, it is also straightforward to prove that the mappings

defined by VAstk and RGX are hierarchical. Furthermore, just as Fagin et al. (2015) did,

one can show that the class of VA automata which produce only hierarchical mappings is

equivalent to RGX in the general case.

Theorem 3.4 (Fagin et al. 2015). Every VA automaton that is hierarchical has an

equivalent RGX formula and vice versa. �

Both VA and VAstk automata, as well as RGX, provide a simple way of extracting

information. To permit a more complex way of defining extracted relations, Fagin et al.

(2015) allow combining them using basic algebraic operations of union, projection and join.

While defining a union or projection of two automata or RGX is straightforward, in the case

of join we now use joins of mappings instead of the natural join (as used by Fagin et al. 2015).

Formally, for two VA automatons A1 and A2, we define the “join automaton” A1 Z A2 using

the following semantics: for a document d, we have nA1 Z A2od = nA1od Z nA2od . We

denote the class of extraction expressions obtained by closing VA under union, projection

and join with VA{∪,π,Z}, and similarly for VAstk and RGX.

To establish a relationship between algebras based on VAstk and VA automata, Fagin

et al. (2015) show that VA is closed under union, projection and join. We can show that

the same holds true when dealing with mappings, but now the proofs change quite a bit.

That is, while closure under projection is much easier to prove in our setting, closure under

join now requires an exponential blowup, since to join mappings, we need to keep track of
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variables opened by each mapping in our automaton. Similarly, Fagin et al. (2015) show

that each VA automaton can be expressed using the expressions in the algebra VAstk
{∪,π,Z};

as this proof holds verbatim in the case of mappings we obtain the following.

Theorem 3.5 (Fagin et al. 2015). VA{∪,π,Z} ≡ VA ≡ VAstk
{∪,π,Z} . �

As we showed here, the main results from Fagin et al. (2015) can be lifted to hold in

the more general setting of mappings, thus suggesting that the added generality does not

impact the intuition behind the extraction process.
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4. EXPRESSIVENESS OF IE LANGUAGES

In chapter 3 we defined a unifying framework subsuming previous approaches to

information extraction. As shown there, RGX formulas of Fagin et al. (2015) strictly

subsume spanRGX of Arenas et al. (2016). However, the approach of the latter also allows

combining spanRGX formulas into rules. Therefore, in this chapter we study the exact

connection between the two frameworks. We start by defining rules based on spanRGX,

and then isolate a simple subclass of such rules that is equivalent to RGX. We also study

how rules can be simplified by removing cycles, and compare RGX to more general classes

of rules.

4.1. Rules for information extraction

Regex formulas allow the user to specify the shape of the span captured by some variable

using an expression of the form x{γ}. For example, if we wanted to say that the string

corresponding to the span captured by the variable x belongs to the regular language R,

we would write x{R}. As we have seen in the previous chapter , this immediately makes

RGX formulas more expressive than spanRGX formulas, since the latter cannot constrain

the shape of the span captured by a variable. So, how can one specify that a span captured

by a variable inside a spanRGX formula has a specific shape?

A natural approach to solve this issue allows joining spanRGX formulas using a rule-like

syntax (Arenas et al., 2016). For instance, to specify that the content of the spans captured

by the variable x belongs to a language in the intersection of two regular expressions R1

and R2, we can now write x.R1 ∧ x.R2. Of course, since regular languages are closed under

intersection, it is also possible to express this property using RGX, however, the resulting

expression will generally be less intuitive than the simple rule above. One can see that the

two approaches to information extraction have slightly different design philosophies: on the

one hand, we have the concise syntax of RGX, and on the other hand we have a more visual
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approach which combines spanRGX formulas into rules. In this chapter we explore how

these two approaches compare in terms of expressive power.

To do this, we first need to define a rule-based language for extracting information from

documents that is based on spanRGX formulas. In our language, we will allow two types

of formulas: R and x.R, where R is a spanRGX formula and x a variable. The former is

meant to be evaluated over the entire document, while the latter applies to the span captured

by the variable x. The semantics of the extraction formula R over a document d is defined

as before, and for x.R as follows:

nx.Rod = {µ | ∃s. (s, µ) ∈ [x{R}]d}.

We can now define rules for extracting information from a document as conjunctions of

extraction formulas. Formally, an extraction rule is an expression of the form:

ϕ = ϕ0 ∧ x1.ϕ1 ∧ · · · ∧ xm.ϕm (†)

where m ≥ 0, all ϕi are spanRGX formulas, and xi are variables1. Extraction rules typically

have an implication symbol and a head predicate, which we will omit because it does not

affect the analysis performed in this thesis.

While Arenas et al. (2016) has a simple definition of the semantics of extraction rules,

lifting this definition to the domain of (partial) mappings requires us to account for the

nondeterminism of our expressions. What we mean by this is perhaps best captured by a

rule which is of the form (x ∨ y) ∧ x.(ab∗) ∧ y.(ba∗), where we first choose which variable

is going to be mapped to the entire document, and then we need to satisfy its respective

constraint. For instance, if x is matched to the document, we want it to conform to the

regular expression ab∗; however, in this case we do not really care about the content of y,

so we should leave our mapping undefined on this variable.

Formally, we will define when a rule of the form (†) is satisfied by a tuple of mappings

µ = (µ0, µ1, . . . , µm). To avoid the problem mentioned above, we need the concept of

1For simplicity we assume that there is only one formula applying to the entire document; namely ϕ0. It is
straightforward to extend the definitions below to include multiple formulas of this form.
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instantiated variables in our tuple of mappings. For a rule ϕ = ϕ0 ∧ x1.ϕ1 ∧ · · · ∧ xm.ϕm

and a tuple of mappings µ = (µ0, µ1, . . . , µm) we define the set of instantiated variables,

denoted by ivar(ϕ, µ) as the minimal set such that:
• dom(µ0) ⊆ ivar(ϕ, µ); and
• If xi ∈ ivar(ϕ, µ), then dom(µi) ⊆ ivar(ϕ, µ).

Intuitively, we want to capture only the variables which are used in nondeterministic choices

made by the rule. For instance, in the case of the rule (x ∨ y) ∧ x.(ab∗) ∧ y.(ba∗), if we
decide that x should be matched to our document, then we will not assign a value to the

variable y and vice versa. We now define that a tuple of mappings µ = (µ0, µ1, . . . , µm)
satisfies ϕ over a document d, denoted by µ |=d ϕ, if the following holds:

• µ0 ∈ nϕ0od;

• If xi ∈ ivar(ϕ, µ) then µi ∈ nxi .ϕiod;

• If xi < ivar(ϕ, µ) then µi = µ∅; and

• µi ∼ µ j for all i, j.

Here the last condition will allow us to “join” all the mappings capturing each subformula

ϕi into one. The problem with nondeterminism is handled by the two rules in the middle,

since we force all instantiated variables to take a value, and the non-instantiated ones to be

undefined. Finally, the definition starts from our main subformula (ϕ0) which refers to the

entire document and serves as a sort of a root for our mappings.

We can now define the semantics of an extraction rule ϕ over a document d as follows:

nϕod = {µ | ∃ µ such that µ |=d ϕ and µ =
⋃

i

µi},

where
⋃

i µi signifies the mapping defined as the union of all µi.

Extraction rules allow us to define complex conditions about the spans we wish to

extract. For instance, if we wanted to extract all spans whose content is a word belonging

to (ordinary) regular expressions R1 and R2 at the same time, we could use the rule

Σ∗ · x · Σ∗ ∧ x.R1 ∧ x.R2. More importantly, using extraction rules, we can now define

valuations which cannot be defined using RGX, since they can define mappings which are

not hierarchical. For instance, the rule x ∧ x.ayaa∧ x.aaza is one such rule, since it makes
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y and z overlap. In some sense, the ability of rules to use conjunctions of variables makes

them more powerful than RGX formulas. On the other hand, the ability of RGX formulas

to use disjunction of variables poses the same type of problems for spanRGX. Here one

separating example is the RGX Σ∗ · (x{y{Σ∗} · a} ∨ y{x{Σ∗} · a}) · Σ∗. Therefore, we have
the following:

Proposition 4.1. Extraction rules and RGX formulas are incomparable in terms of the

expressive power.

Proof. First we will show that there is an extraction rule that is not expressible by any

RGX. As shown by Fagin et al. (2015), funcRGX are hierarchical. It is clear that this result

also extends to non-functional RGX. With this mind, one can realize that the extraction rule

x ∧ x.Σ∗ · y · Σ∗ ∧ x.Σ∗ · z · Σ∗ is not hierarchical, since y and z might be assigned spans

that overlap in a non-hierarchical way. It is, therefore, not expressible by RGX.

Now we prove that there is a variable regex that is not expressible by any extraction rule.

Consider the following variable regex: γ = (a · x{b}) ∨ (b · x{a}). There are only two ways
in which a document and mapping can satisfy it: (1) d1 = ab and µ1(x) = (2, 3); or (2)
d2 = ba and µ2(x) = (2, 3). Suppose that there is an extraction rule ϕ that is satisfied only

by these two document-mapping pairs. By the structure of extraction rules, we know that

there is an extraction expression x.ϕx such that ϕx is equivalent to the expression a ∨ b; if
not, we can construct a document d3 that satisfies ϕ and is different from d1 and d2. By the

same argument, we know that ϕ0, the root extraction expression of ϕ, must be equivalent to

ax ∨ bx. Notice, however, that now the document d3 = aa and the mapping µ3 such that

µ3(x) = (2, 3), satisfy ϕ. We have reached a contradiction, and therefore conclude that such

ϕ cannot exist. �

Of course, a natural question now is which fragments of the two languages are equivalent.
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4.2. Unions of rules

In order to express all RGX formulas, we will show how unions of rules can be used

to simulate the disjunction of variables. However, for this we also need to prune the class

of rules we allow, since already a single rule can express properties beyond the reach of

RGX. As we have seen, allowing conjunctions of the same variable is problematic for

RGX. Another thing that makes rules different from RGX, is their ability to enforce cyclic

behaviour through expressions of the form x.y ∧ y.ax.

A natural way to circumvent both of these shortcomings is to force the rules to have a

tree-like structure. In fact, this class of extraction rules was already considered by Arenas

et al. (2016), as it allows faster evaluation than general rules. In order to define the class of

tree-like rules, we need to explain how each rule can be viewed as a graph.

To each extraction rule ϕ = ϕ0 ∧ x1.ϕ1 ∧ · · · ∧ xm.ϕm we associate a graph Gϕ defined

as follows. The set of nodes of Gϕ contains all the variables x1, . . . , xm plus one special

node labelled doc corresponding to the formula ϕ0. There exists an edge (x, y) between two
variables in Gϕ if and only if there is an extraction formula x.R in ϕ such that y occurs in

R. Furthermore, if the variable x occurs in the formula ϕ0, we add an edge (doc, x) to Gϕ.

Then we say that ϕ is tree-like if (1) every variable x appears at most once on the left-hand

side of an expression of the form x.R; and (2) Gϕ is a tree rooted at doc. We can now show

that the class of tree-like rules is indeed subsumed by RGX.

Lemma 4.1. Every tree-like rule can be transformed into an equivalent RGX.

Proof. We can transform tree-like extraction rules into RGX by recursively nesting

extraction expressions into their associated variables. The procedure is as follows. Let

ϕ = ϕx0 ∧ x1.ϕx1 ∧ · · · ∧ xm.ϕxm be a tree-like extraction rule, and let Gϕ be its graph.

Without loss of generality, we assume that every variable x ∈ var(ϕ) appears on the left

side of an extraction expression (if not, we can add x.Σ∗ expressions without altering the

rule’s semantics). For all i ∈ [0,m] we define the RGX γxi as ϕxi where each mention of
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each variable y ∈ var(ϕxi ) is replaced with y{γy}. As an example, consider the tree-like

rule ϕ = (a · x · b · y) ∧ x.(abc · z) ∧ y.(Σ∗) ∧ z.(d). The resulting RGX in this case would

be γ = a · x{abc · z{d}} · b · y{Σ∗}.
It can be proved with an straightforward induction that the expression γx0 will be a

well-formed RGX and will be equivalent to θ. It is also clear that this procedure terminates

since Gϕ is a tree. Note, however, that the resulting RGX might be of exponential size with

respect to the input extraction rule, since multiple appearances of the same variable can

cause the expression to grow rapidly when the replacements are made. �

As we know, RGX alone are more expressive than any single rule, but by allowing unions

of tree-like rules, we get a class of extraction rules capturing RGX formulas. Formally, a

union of tree-like rules is a set of tree-like rules A. The semantics over a document d is

defined as:

nAod = {µ | µ is a variable assignment over d such that µ ∈ nϕod, for some ϕ ∈ A}.

With this in hand, we can now better understand the connection between rules and RGX.

Theorem 4.1. Unions of tree-like rules are equivalent to RGX formulas.

The proof of this theorem relies on the fact that RGX formulas are equivalent to unions

of functional RGX which do not use disjunctions of (expressions containing) variables.

The latter can then be easily expressed using a tree-like rule, giving us one direction of

the theorem. The other direction follows from Lemma 4.1 and the fact that RGX formulas

are closed under disjunction. Analysing the proof also shows us that the transformation is

exponential in both directions.

Proof. We begin by presenting vstk-graph, vstk-path, and vstk-path union, originally

defined by Fagin et al. (2015) (the vset variants are defined analogously). A vstk-graph is a

tuple G = (Q, q0, q f , δ) defined as a vstk-automaton, except that each transition in δ is of

one of the following forms: (q, γ, x ,̀ q′), (q, γ, a, q′), and (q, γ, q f ), where q, q′ ∈ Q \ {q f },
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x ∈ V, and γ is a regular expression over Σ. Configurations are defined in the same

way as in the case of vstk-automata. A run ρ of G on a document d is a sequence of

configurations c0, . . . , cm where for all j ∈ [1,m − 1] the configurations c j = (q j,Vj,Yj, i j)
and c j+1 = (q j+1,Vj+1,Yj+1, i j+1) are such that i j ≤ i j+1 and, depending on the transition

used, one of the following holds:

(i) (q j, γ, x ,̀ q j+1) ∈ δ, the substring d(i j, i j+1) is in L(γ), x ∈ Yj , Vj+1 = Vj · x, and
Yj+1 = Yj \ {x};

(ii) (q j, γ, a, q j+1) ∈ δ, the substring d(i j, i j+1) is in L(γ), Yj = Yj+1, and Vj = Vj+1 · x;
or

(iii) (q j, γ, q j+1) ∈ δ (this means q j+1 = q f ), d(i j, i j+1) is in L(γ), Yj = Yj+1, and

Vj = Vj+1.

Accepting runs, var(G), and the semantics of vstk-graph, are defined the same way as in the

case of vstk-automata.

A vstk-path P is a vstk-graph that consists of a single path. That is, P has exactly m

states q1, . . . , qm = q f and exactly m transitions such that there is a transition from q1 to q2,

from q2 to q3, and so on. A vstk-path union is a vstk-graph that consists of a set of vstk-path

such that: (1) each vstk-path is sequential, and (2) every pair of vstk-paths have the same

initial state, the same final state, and share no other states.

We also define path RGX, which disallow the disjunction of variables. Formally, a path

RGX is an expression that can be derived from the following grammar using E as the start

symbol.

E F x{E}, x ∈ V | (E · E) | R

R F w, w ∈ (Σ ∪ {ε}) | (R · R) | (R ∨ R) | (R)∗

It is easy to see that path RGX are equivalent to vstk-path automata. With this in mind, we

will show that every RGX can be transformed into an equivalent set of tree-like rules.

From the proof of Theorem 3.3, it can be deduced that RGX are equivalent to path

union vstk automata (PUstk), which are vstk automata that consist of a union of disjoint

paths. It is apparent that each path in one of the PUstk automata will be equivalent to a path
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RGX. This implies that every RGX can be transformed into an equivalent union of path

RGX through PUstk automata (notice, however, that this union might be exponential in size

with respect to the starting expression).

Given this, it only suffices to show that each path RGX is equivalent to a tree-like rule.

Let γ be a path RGX. Given a variable regex α, we denote as flat(α) the spanRGX that

results when replacing every top-level subexpression of the form x{β} with x. It is easy

to notice from the structure of path RGX that each variable in γ can appear at most once.

Therefore, we can decompose γ into an extraction rule by using the following procedure:

add the extraction expression flat(γ) to the result and, for every subexpression of the form
x{γx} in γ, add the extraction expression x. flat(γx) to the result. It is apparent that the

resulting rule is tree-like, and it is straightforward to prove that it is equivalent to γ.

The proof that every set of tree-like rules can be transformed into an equivalent RGX

follows from Lemma 4.1 and the fact that RGXs are closed under union (by using the

disjunction operator). Notice that this direction will also produce expressions of exponential

size. �

4.3. Eliminating cycles from rules

In the previous section we isolated a class of rules whose unions are equivalent to RGX

formulas. To do this, we prohibited rules from using conjunctions of the same variable

multiple times, and forced them to have a tree-like structure. And while prohibiting arbitrary

conjunction was shown to be crucial, we have still not answered if the capability of rules

to define cycles is really an obstacle, or if they can be removed. Consider for instance

a rule of the form x ∧ x.y ∧ y.x, whose underlying graph is cyclic. This rule is clearly

equivalent to x ∧ x.y, that requires no cycles in order to express the same property. In this

chapter we consider the question whether cycles can be eliminated from rules and somewhat

surprisingly show that, while generally not possible, in the case where all expressions

defining a rule are functional spanRGX formulas this is indeed true.
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Let us formally define the classes of rules we will consider in this chapter . First, as

discussed above, the capability of an extraction rule to use conjunctions of the same variable

multiple times already takes them outside of the reach of RGX. Therefore the most general

class of rules we will consider disallows that type of behaviour. We call such rules simple

rules. Formally, an extraction rule ϕ = ϕ0 ∧ x1.ϕ1 ∧ · · · ∧ xm.ϕm is simple, if all xi are

pairwise distinct. Note that simple rules can still be “cyclic” in nature, namely, the graph

Gϕ associated with the rule ϕ can have cycles. We call a rule ϕ dag-like if the graph Gϕ

contains no cycles. Furthermore, a rule ϕ is called functional with respect to the set of

variables X , if all of the spanRGX formulas ϕ0, . . . , ϕm are functional spanRGX formulas,

all nodes in Gϕ are reachable from the root, and
⋃

i∈[0,m] ϕi = X .

To answer the question whether cycles can be eliminated from rules, let us consider the

most general case: simple rules over full RGX. It is straightforward to see that in a rule of

the form (x ∨ y) ∧ x.(y ∨ Σ∗) ∧ y.(x ∨ Σ∗), the cycle formed by x and y cannot be broken

and the rule cannot be rewritten as a single dag-like rule. The main obstacle here is the fact

that in each part of the rule we make a nondeterministic choice which can then affect the

value of all the variables.

However, there is one important class of expressions, which would prohibit our rules to

define properties such as the one above; that is, functional span regular expressions. The

notion of functionality, first introduced by Fagin et al. (2015), was shown to be crucial

for having a well-behaved fragment of RGX formulas, and it also has a profound effect

on complexity of formula evaluation, since it brings it down from NP-hard to tractable

(see chapter 6). As defined previously, functional formulas force that the variables used on

the two sides of a disjunction are always the same, and furthermore, require concatenated

expressions to share no variables (thus also forcing the star operator to be allowed only over

variable-free formulas). Somewhat surprisingly, we can show that in the case of functional

rules cycles can always be removed and, in fact, converting a simple rule that is functional

into a dag-like rule takes only polynomial time.
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Theorem 4.2. For every simple rule that is functional there is an equivalent (functional)

dag-like rule. Moreover, we can obtain the equivalent rule in polynomial time.

Proof. Consider an arbitrary simple rule that is functional. We start by analyzing what

sort of a value can a mapping assign to the variables which form a cycle. For this, take any

rule ϕ and assume that there is a simple cycle x1, . . . , xn appearing in Gϕ and a mapping µ

satisfying ϕ. Then the following must hold:

(i) All variables in the cycle must be assigned the same value. This follows from the

fact that in a simple rule each edge (x, y) in Gϕ implies that µ(x) contains µ(y)
(see Figure 4.1a).

(ii) Every variable reachable from a cycle, but not inside it, must be assigned the

empty content. This follows from the observation above, plus the fact that edges

(x, y) and (x, z) in Gϕ imply that x and y appear in the same spanRGX. By

the structure of spanRGX, if x , y then µ(y) and µ(z) must be disjoint (see

Figure 4.1b).

(iii) If the cycle has a chord, then all the variables inside it must be assigned the empty

content. Here a chord means that we have a path from some xi to some x j inside

Gϕ which consists of nodes not belonging to our cycle, or there is a direct edge

between them which is not part of the cycle. In the case there is an intermediate

node, we know that it must be assigned ε, therefore x j and all other nodes in the

cycle must be ε as well. If the edge is direct, then by the definition of a chord, x j

is not a successor of xi in the cycle, so just as in the previous case, the content of

the successor of xi and the content of x j must be disjoint and equal, which is only

possible if they are ε (see Figure 4.1c).
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(a) Simple cycle.
(b) Cycle with reachable
nodes. (c) Cycle with a chord.

Figure 4.1. Different cycle arrangements in rule graphs. Shaded nodes
correspond to variables with empty content.

The procedure for eliminating cycles from simple rules is based on the following

colouring scheme for a graph Gϕ associated with the rule ϕ. Let ϕ be an extraction rule

with variables x1, . . . xn. We will colour a node xi black if:

• xi .ϕi appears in ϕ and ϕi is such that, when treating it as a regular expression,

every word that can be derived from it must contain a symbol from Σ.

We then paint the graph by assigning the colour red to all black nodes, and all nodes which

can reach a black node. All other nodes are coloured green. It is clear that this procedure

can be carried out in polynomial time, since reachability takes only polynomial time. Note

that in a black node coming from a conjunct of the form xi .ϕi, the content of each variable

appearing in ϕi must be strictly contained in the content of the variable xi. This is because

ϕi is functional and, since we painted its node black, it must have symbols from Σ which

are not part of the content of the variables used in ϕ. Also note that each cycle has to be

coloured using the same color.

If we now have a simple cycle x1, . . . , xn we can eliminate it by considering its color:

• If the cycle is coloured red, then the rule is not satisfiable, so we can replace it

by an arbitrary unsatisfiable dag-like rule. We have two cases here. First, if a

cycle contains a black node, then the content of its successor must be strictly

contained inside its own content, which can not happen by the analysis above.

Second, if a node x in the cycle can reach some black node not inside the cycle,
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then its content must be different from ε, which contradicts point (2) of the above

analysis.

• If the cycle is green we can simplify it using an auxiliary variable. Let u1, . . . , um

be the variables that are not part of the cycle and for which there is an edge (ui, xi).
Let y1, . . . , yl be the variables that are not part of the cycle and are reachable

from some xi (they must have empty content, as proved before). We then add an

auxiliary variable w and an edge from it to x1. Each expression associated with

some ui is changed so that it uses w instead of xi, and all expression associated

with some yi are changed to yi .ε. Next, for i < n, an expression xi .ϕi is changed

to xi .ϕ
′
i , where ϕ

′
i maintains the possible orderings of variables in ϕi. This is done

by removing all other letters or starred subexpressions, and is explained in detail

later in this proof. For xn, we replace the occurrences of x1 by Σ∗. This yields an

equivalent simple rule without the mentioned cycle.

As an example of how the rewriting above works, consider the rule x.y ∧ y.z ∧ z.ux.

This rule can be rewritten to w.x ∧ x.y ∧ y.z ∧ z.u · Σ∗ ∧ u.ε.

Of course, here we explained only how a single cycle can be removed, but how do

we transform a rule with multiple cycles in its graph? For this we start by identifying the

strongly connected components of our graph Gϕ. Each component can then be either: (a) a

single node, (b) a simple cycle, or (c) a simple cycle with additional edges. In the latter two

cases, if any component is coloured red, we know that the rule is unsatisfiable, so we can

replace it by an arbitrary unsatisfiable dag-like rule. In the case they are coloured green, we

can deploy the procedure above to remove the cycles, taking care that in the case (b) our

variables can take an arbitrary, but always equal value, while in the case (c) they must be

equal to the empty content. In both cases, all the variables reachable from the component

are made ε.

Now we precisely describe the procedure for eliminating cycles in rules. Let ϕ =

ϕx0 ∧ x1.ϕx1 ∧ · · · ∧ xm.ϕxm be a simple rule such that each ϕxi (0 ≤ i ≤ m) is functional,

and let Gϕ be its graph. We will assume that for every variable x ∈ var(ϕ) there is an

extraction expression x.ϕx in ϕ. The resulting dag-like rule will be denoted as α.
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First, we will color the nodes in Gϕ. For this, we define a function ν : spanRGX →
spanRGX that will indicate when a variable cannot have empty content. Here, ∅ has the
usual definition in the regular expression context, with the following properties: ∅ · α = ∅,
∅ ∨ α = α, ∅∗ = ε, where α is any expression.

• ν(w) = ∅, where w ∈ Σ.
• ν(x) = x, where x ∈ V.

• ν(ϕ1 · ϕ2) = ν(ϕ1) · ν(ϕ2).
• ν(ϕ1 ∨ ϕ2) = ν(ϕ1) ∨ ν(ϕ2).
• ν(ϕ∗) = ε.

Thus, a node xi is painted black if ν(ϕi) = ∅. After this, nodes are painted red by “flooding”

the graph doing a depth-first search starting at each black node and traversing edges in

reverse.

Second, we run the Strongly Connected Components Algorithm (Tarjan, 1972). This

algorithm computes the strongly connected components (SCCs) in the graph and outputs

them in some topological order with respect to the dag formed by the SCCs of Gϕ. We

denote the ordered SCCs as S1, . . . , Sl , where each Si (1 ≤ i ≤ l) is a set of nodes.

Finally, we process the SCCs in order. Each SCC Si will be of one of the following

types: (1) Si is a single node; (2) Si is a simple cycle; or (3) Si contains a cycle and has

additional edges (that is, anything that does not fall under types (1) or (2)). According to

the type, the following is done:

• Type (1): let Si = {y}. We copy the extraction expression y.ϕy to α.

• Type (2): let Si = {y1, . . . , yk}, such that (yk, y1) and (y j, y j+1) are edges in Gϕ,

for j ∈ [1, k − 1]. If Si has a red node, then the rule is unsatisfiable and we may

stop and replace α with any unsatisfiable dag-like rule. Otherwise, we add a new

auxiliary variable ui and replace every appearance of variables of Si in α with ui.

Add the following extraction expressions to α:

– ui .y1;

– y j .ν(ϕyj ), for j ∈ [1, k − 1];
– and yk .ψ, where ψ is ν(ϕyk ) with all appearances of y1 replaced with (Σ∗).



32

After this, mark every SCC reachable from Si as a type (3) SCC.

• Type (3): let Si = {y1, . . . , yk}. If Si has a red node, then the rule is unsatisfiable

and we may stop and replace α with any unsatisfiable dag-like rule. Add an

auxiliary variable ui and add the following rules to α:

– ui .y1 · · · yk ;

– y j .ψ, for j ∈ [1, k] where ψ is ν(ϕyj ) with all appearances of variables

y1, . . . , yk replaced with ε.

After this, mark every SCC reachable from Si as a type (3) SCC.

The resulting rule α will be dag-like and equivalent to ϕ. If we take into account the

observations presented at the beginning of this proof, then it is straightforward to verify

that the transformations outlined above will remove the cycles in Gϕ while preserving

equivalence. �

We now know that cycles can be eliminated from functional rules, but is there any

way to simplify rules that are not functional? As it turns out, although functional and

non-functional rules are not equivalent, every non-functional simple rule can in fact be

expressed as a union of functional rules.

Proposition 4.2. Every non-functional simple rule is equivalent to a union of functional

simple rules.

To see this, observe first that every non-functional spanRGX formula can be expressed

as a (potentially exponentially big) union of functional spanRGX formulas (Theorem 4.1).

Therefore, each non-functional rule can be rewritten into a rule whose formulas are unions

of functional spanRGX. Then each such rule can be transformed into a union of functional

rules by taking all the possible disjunctions (of which there will generally be exponentially

many).

Proof. Let ϕ = ϕ0 ∧ x1.ϕ1 ∧ · · · ∧ xm.ϕm be a rule such that each ϕi is a spanRGX,

where i ∈ [0,m]. We can transform each ϕi into an equivalent disjunction ψi,1 ∨ · · · ∨ ψi,li

where each ψi, j is a functional spanRGX (by using the PUstk construction from Theorem 3.3).
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Specifically, we transform ϕi into a VAstk A and then into a PUstk A′. It is clear that each

path in A′ can be directly transformed into a functional spanRGX (since paths do not have

disjunctions of variables). Therefore, each ψi, j will be a functional spanRGX. Notice,

however, that this transformation might produce exponentially many ψi, j with respect to the

size of ϕi.

As an example of this step, the spanRGX (x∨ y) · (z∨w) is equivalent to the disjunction
(x · z ∨ x · w ∨ y · z ∨ y · w). Note that each of the disjuncts is independently functional.

Rule ϕ will be equivalent to the set of rules that consist of all possible conjunctions

that can be made by taking one disjunct ψi, j from every extraction expression (i ∈ [0,m]).
Formally, ϕ will be equivalent to {ψ0,k0 ∧ x1.ψ1,k1 · · · ∧ xm.ψm,km | (k0, . . . , km) ∈ [1, l0] ×
· · · × [1, lm]}. Note that this will produce another exponential blow-up in size. The resulting
set will therefore be double-exponential in size with respect to ϕ.

For example, consider the rule ϕ = (x ∨ y) ∧ x.(a∨ b) ∧ y.(c). Then, ϕ is equivalent to

the following set of rules:

{x ∧ x.a ∧ y.c, x ∧ x.b ∧ y.c, y ∧ x.a ∧ y.c, y ∧ x.b ∧ y.c}

Finally, we briefly explain why the algorithm is correct. The correctness of the

transformation from spanRGX to PUstk carries from the original proof without modification.

Given the definition of the semantics for rules, it is fairly easy to observe that taking

every possible combination of the disjuncts in each extraction expression will produce an

equivalent set of rules. �

4.4. Regex vs. rules

One final thing we would like to determine is the connection of the more general classes

of simple and dag-like rules to RGX. We will start by considering functional rules and

comparing them to functional RGX formulas. As shown in Theorem 4.1, unions of tree-like

rules are equivalent to RGX. It is straightforward to see that this is still true when we
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consider functional rules and RGX. Therefore to connect functional rules which are not

necessarily tree-like to RGX, we will show how and when can they be viewed as tree-like.

First, observe that a functional RGX formula is always satisfiable; namely, there is

always a document on which there is an assignment satisfying this formula. Similarly, every

functional tree-like rule is also satisfiable. On the other hand, the functional simple rule

x ∧ x.y ∧ y.ax is clearly not satisfiable, since it forces x and y to be equal and different at

the same time. Therefore, to link functional rules with RGX, we need to consider only the

satisfiable ones. As we know that each functional simple rule has an equivalent dag-like

rule, we start there.

Theorem 4.3. Every functional dag-like rule that is satisfiable is equivalent to a union

of functional tree-like rules.

The idea of the proof here is similar to the cycle elimination procedure of Theorem 4.2,

but this time considering undirected cycles. One can show that eliminating undirected

cycles results in a double exponential number of tree-like rules. In case that the rule was

not satisfiable, our algorithm will simply abort.

Proof. Let ϕ = ϕx0 ∧ x1.ϕx1 ∧ · · · ∧ xn.ϕxn be a satisfiable dag-like rule such that each

ϕxi is a functional spanRGX (i ∈ [0, n]), and let Gϕ be its graph. Without loss of generality,

we assume that for every variable x ∈ var(ϕ) there is an expression x.ϕx .

x u2 u3 · · · ul1−1

v2 v3 · · · vl2−1

y

Figure 4.2. Undirected cycle in the graph of a dag-like rule.

First, let us consider how an undirected cycle in a rule can be satisfied. Let x and

y be nodes such that there are at least two distinct paths u1, . . . , ul1 and v1, . . . , vl2 where
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u1 = v1 = x and ul1 = vl2 = y (see Figure 4.2). Let d and µ be a document and a mapping

that satisfy ϕ. Since all expressions are functional, we know the following: µ(x) contains
µ(u2) and µ(v2); µ(u2) and µ(v2) contain µ(y); µ(u2) and µ(v2) are disjoint. From these

facts we can deduce that µ(y) must be an empty span. Therefore, if the rule is satisfiable, y

must be painted green by the coloring procedure. Furthermore, every variable reachable

from y must be assigned the empty content, which means that ϕ may be rewritten as in the

proof of Theorem 4.2 to simplify Gϕ for all the nodes reachable from y.

The procedure is as follows. Given ϕ, we first paint all nodes using the same procedure

from Theorem 4.2. After this, we transform every spanRGX ϕxi into a disjunction of

spanRGX ϕxi,1, . . . , ϕxi,mi by the procedure from the proof of Theorem 4.1.

After this, we generate a new set of rules, where each individual rule consists of a

possible combination of extraction expressions made by taking exactly one disjunct ϕxi, ji

for each variable xi. Formally, we generate the following set of rules:

R = {ϕ0,k0 ∧ x1.ϕ1,k1 ∧ · · · ∧ xn.ϕn,kn | (k0, . . . , kn) ∈ [1,m0] × · · · × [1,mn]}.

Given a rule α = αx0 ∧ x1.αx1 ∧ · · · ∧ xn.αxn in R, we can now easily transform it into a

tree-like rule. Consider, as before, any pair of nodes x and y such that there are exactly two

distinct paths u1, . . . , ul1 and v1, . . . , vl2 where u1 = v1 = x and ul1 = vl2 = y (the proof can

be generalized to more paths). Consider, without loss of generality, that u2 appears to the

left of v2 in ϕx . Then, for α to be satisfiable, everything between u2 and v2 in ϕ must be

forced to have empty content. Likewise, everything to the right of u3 in ϕu2 and everything

to the left of v3 in ϕv2 must be forced to have empty content. In general, everything to

the right of variable ui+1 in ϕui must be forced to have empty content (1 ≤ i < l1), and

everything to the left of v j+1 in ϕvj must be forced to have empty content (1 ≤ j < l2). This

can be done in polynomial time because it is equivalent to checking if a regular expression

accepts the word ε and checking if certain variables were painted green. As we do this, we

rewrite the spanRGX, removing everything but the variables from the parts that are forced

to have empty content. If at any point we find an expression that cannot be made empty,
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we remove α from R. Finally, we remove every occurrence of variable y in ϕvl2−1 , thus

removing the edge from vl2−1 to y in Gα and eliminating the undirected cycle.

As an example, consider the following dag-like rule:

(x · Σ∗ · y) ∧ x.(a · z · b∗) ∧ y.(b∗ · z · a) ∧ z.(Σ∗)

This rule is satisfiable only by the document d = aa and the mapping µ such that

µ(x) = (1, 2), µ(y) = (2, 3), and µ(z) = (2, 2). By applying the procedure we described, we

obtain the following rule:

(x · y) ∧ x.(a · z) ∧ y.(d) ∧ z.(ε)

It is simple to observe that this rule is equivalent and tree-like.

Notice that the final expression will be of double-exponential size with respect to the

initial dag-like rule: it will experience one exponential blow-up when the spanRGX are

transformed into disjunctions of path spanRGX, and another exponential blow-up when we

generate a rule for each possible combination of disjuncts.

Given the definitions of the semantics of extraction rules and spanRGX, it can be proven

without difficulty that the final set of tree-like rules will be equivalent to the initial dag-like

rule. �

With this at hand, we can now also describe the relationship between functional simple

rules and RGX.

Theorem 4.4. The class of funcRGX formulas is equivalent to unions of satisfiable

simple rules that are functional with respect to the same set of variables.

Proof. As shown by Theorem 4.2, simple rules are equivalent to dag-like rules in the

functional case. Given a functional dag-like rule ϕ = ϕx0 ∧ x1.ϕx1 ∧ · · · ∧ xm.ϕxm , one can

obtain an equivalent funcRGX by taking ϕx0 and repeatedly replacing each variable x with

the corresponding expression x{ϕx}. Since ϕ is dag-like, this procedure is guaranteed to

terminate. It is not difficult to see that the resulting RGX will be functional, since all the



37

spanRGX in ϕ are functional. Finally, we take the disjunction of the RGX formulas that

resulted from each of the dag-like rules in the union. Since they are all functional with

respect to the same set of variables, the final RGX will also be functional.

In the opposite direction, we can use Theorem 4.1, that tells us that RGX formulas can

be transformed into unions of tree-like rules. In this case, it is straightforward to prove that

if the starting RGX is functional, then the resulting union of tree-like rules will also be

functional. �

By using some of the theorems proven in this chapter , we can get a more general results

that considers all of RGX.

Theorem 4.5. The class of RGX formulas is equivalent to unions of simple rules.

Proof. Unsatisfiable RGX are trivially equivalent to unsatisfiable simple rules. There-

fore, for the rest of this proof, we will only consider satisfiable expressions.

We know, from Proposition 4.2, that simple rules are equivalent to unions of functional

simple rules. Also, Theorem 4.2 implies that unions of functional simple rules are equivalent

to unions of functional dag-like rules. From Theorem 4.3 we can deduce that unions of

functional dag-like rules are equivalent to unions of functional tree-like rules. Finally,

Theorem 4.1 indicates that unions of functional tree-like rules are equivalent to RGX,

completing the proof. �
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5. EVALUATION OF IE LANGUAGES

In this chapter , we study the computational complexity of evaluating an extraction

expression γ over a document d, namely, the complexity of enumerating all mappings

µ ∈ nγod . Given that we are dealing with an enumeration problem, our objective is to

obtain an incremental polynomial time algorithm (Johnson et al., 1988), i.e., an algorithm

that enumerates all the mappings in nγod by taking time polynomial in the size of γ and d

between outputting two consecutive results. For this analysis, we model our problem as a

decision problem and relate it to the enumeration problem. Formally, let ⊥ be a new symbol.

An extended mapping µ over d is a partial function fromV to span(d) ∪ {⊥}. Intuitively,
in our decision problem µ(x) = ⊥ will represent that the variable x will not be mapped to

any span. Furthermore, we usually treat µ as a normal mapping by assuming that x is not in

dom(µ) for all variables x that are mapped to⊥. Given two extended mappings µ and µ′, we

say that µ ⊆ µ′ if, and only if, µ(x) = µ′(x) for every x ∈ dom(µ). Also, given a mapping

µ, we will denote as µ⊥ the extended mapping such that, for all x ∈ var(γ), it holds that
µ⊥(x) = µ(x) if x ∈ dom(µ) and ⊥ otherwise. Now, for any language L for information

extraction we define the main decision problem for evaluating expressions from L:

Problem: Eval[L]
Input: An expression γ ∈ L, a document d,

and an extended mapping µ.

Question: Does there exist µ′ such that

µ ⊆ µ′ and µ′ ∈ nγod?

In other words, in Eval[L] we want to check whether µ can be extended to a mapping

µ′ that satisfies γ in d. Note that in our analysis we will consider the combined complexity

of Eval[L].
We claim that Eval[L] correctly models the problem of enumerating all mappings

in nγod . Indeed, if we can find a polynomial time algorithm for deciding Eval[L], one
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can have an incremental polynomial time algorithm for computing nγod as presented in

Algorithm 5.1.

Function Enumerate(γ, d, µ,V)
if Eval[L](γ, d, µ) is false then return
if V = ∅ then yield µ and return
let x be some element from V
for s ∈ span(d) ∪ {⊥} do

Enumerate(γ, d, µ[x → s],V \ {x})

Figure 5.1. Algorithm for enumerating all spans in nγod .

The procedure starts with the empty mapping µ = µ∅ and the set V of variables yet to

be assigned equal to var(γ). We will recursively build a mapping µ such that µ ∈ nγod .

First, we check if the current mapping µ can be extended to satisfy the input expression

(line 5.1). If not, then the procedure returns; this ensures that we will only proceed if this

will lead us to a satisfactory mapping. Next, if all variables have been assigned a span or the

⊥ symbol (that is, V = ∅ in line 5.1) then we output µ, since the previous check guarantees

that µ is an satisfactory mapping. Finally, the recursive step simply picks some unassigned

variable (line 5.1) and iterates over all s ∈ span(d) (or the symbol ⊥) recursively calling the
procedure with µ[x → s] (which is a new extended mapping equivalent to µ, except that x

is assigned to s) and the remaining unassigned variables (V \ {x}).
Now we will show that, as long as Eval[L] can be decided efficiently, this procedure

efficiently enumerates all spans in nγod .

Proposition 5.1. If Eval[L] is in PTIME, then enumerating all mappings in nγod can

be done in incremental polynomial time.

Proof. It is easy to observe that µ ∈ nγod if and only if Eval[L](γ, d, µ⊥). It is also
easy to observe that for every mapping µ, it holds that µ∅ ⊆ µ. From these two observations,
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and since line 5.1 iterates over all possible spans, it is straightforward to prove by induction

that the algorithm will eventually output all (and only) µ ∈ nγod .

Now, we prove that this is an incremental polynomial time algorithm. As noted above,

the algorithm will only recurse if there exists a mapping µ′ such that µ′ ∈ nγod and µ ⊆ µ′.
Since the size of span(d) is in O(|d |2) and the algorithm can only recurse up to a depth of

|V|, the function Eval[L] will be called O(|V||d |2) times before an output is reached (or

the algorithm terminates). Given that Eval[L] can be decided in polynomial time, then

time to produce the next output will be polynomial. �

Two decision problems associated with Eval[L], that have a long standing history in
data management (Abiteboul, Hull, & Vianu, 1995), are themodel checking problem and the

non-emptiness problem. Formally, the model checking problem (non-emptiness problem),

denoted by ModelCheck[L] (NonEmp[L] resp.), asks whether µ ∈ nγod (nγod , ∅ resp.)
for any γ ∈ L, document d and mapping µ. One can easily see that both problems are

actually restricted instances of Eval[L], namely:

ModelCheck[L](γ, d, µ) = Eval[L](γ, d, µ⊥)

NonEmp[L](γ, d) = Eval[L](γ, d, µ∅)

This implies that if we can find an efficient algorithm for Eval[L] then the same holds

for ModelCheck[L] and NonEmp[L]. In contrast, if we show that ModelCheck[L] or
NonEmp[L] are NP-hard, then we will have that Eval[L] is NP-hard and, consequently,

the enumeration of nγod is inefficient. We use these relations to simplify results that follow.

Now that we identified the appropriate decision problem, we start by understanding the

complexity of Eval[L] in the most general case. First of all, one can see that checking

Eval[L] is in NP for all languages and computational models considered in this thesis.

Indeed, given a mapping µ′ such that µ ⊆ µ′ one can check in PTIME if µ′ ∈ nγod by using

finite automata evaluation techniques (Hopcroft & Ullman, 1979). As the following result

shows, this is the best that one can do if RGX or variable-set automata contain the language

of spanRGX.
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Theorem 5.1. NonEmp[spanRGX] is NP-comp.

We would like to remark that this result was proved by Arenas et al. (2016) and here we

just rephrased it in light of the unifying framework presented in this thesis.

Proof. To prove that NonEmp[spanRGX] is NP-hard, we provide a reduction from

1-IN-3-SAT. The input of 1-IN-3-SAT is a propositional formula α = C1 ∧ · · · ∧ Cn, where

each Ci (1 ≤ i ≤ n) is a disjunction of exactly three propositional variables (negative

literals are not allowed). Then the problem is to verify whether there exists a satisfying

assignment for α that makes exactly one variable per clause true. 1-IN-3-SAT is known to

be NP-complete (Garey & Johnson, 1979).

For the reduction, we construct a spanRGX γα such that nγαod is not empty if and only

if there exists a satisfying assignment for α that makes exactly one variable per clause true,

with d = ε. In this reduction, we assume that for every clause Ci in α (1 ≤ i ≤ n), it holds

that Ci = (pi,1 ∨ pi,2 ∨ pi,3), where each pi, j is a propositional variable. Notice that distinct

clauses can have propositional variables in common, which means that pi, j can be equal to

pk,` for i , k.

To define γα we consider two sets of variables: {xi, j | 1 ≤ i ≤ n and 1 ≤ j ≤ 3} and
{yi, j,k,` | 1 ≤ i < k ≤ n and 1 ≤ j, ` ≤ 3}. With these variables we encode the truth values

assigned to the propositional variables in α; in particular, a span is assigned to the variable

xi, j if and only if the propositional variable pi, j is assigned value true. Moreover, γα is used

to indicate that exactly one of pi,1, pi,2 and pi,3 is assigned value true, which is essentially

represented by a spanRGX of the form (xi,1 ∨ xi,2 ∨ xi,3), indicating that exactly one of xi,1,

xi,2 and xi,3 has to be assigned a span. Besides, γα is used to indicate that if pi, j is assigned

value true, then we are forced to assign value false not only to pi,k with k , j but also to

some propositional variables in other clauses. This idea is formalized by means of the

notion of conflict between propositional variables. More precisely, we say that pi, j is in

conflict with pk,` if i < k and one of the following conditions holds:

• there exists m ∈ {1, 2, 3} such that pi, j = pk,m and m , `;

• there exists m ∈ {1, 2, 3} such that pi,m = pk,` and m , j.
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Thus, if pi, j is assigned value true and pi, j is in conflict with pk,`, then we know that pk,`

has to be assigned value false. In γα, the variable yi, j,k,` is used to indicate the presence of

such a conflict; in particular, a span is assigned to yi, j,k,` if and only if the propositional

variable pi, j is in conflict with the propositional variable pk,`. We collect all the conflicts of

pi, j in the set conflict(pi, j):

{yi, j,k,` | pi, j is in conflict with pk,`} ∪ {yk,`,i, j | pk,` is in conflict with pi, j}

The variable yi, j,k,` is used as follows in γα. If some spans have been assigned to xi, j

and yi, j,k,`, then no span is assigned to xk,`, as the propositional variable pi, j has been

assigned value true and pi, j is in conflict with the propositional variable pk,`. To encode this

restriction, define the spanRGX γi, j as the concatenation of the variables in conflict(pi, j) in
no particular order. For example, if

conflict(p3,1) = {y1,2,3,1, y1,3,3,1, y3,1,4,1, y3,1,5,2},

then

γ3,1 = y1,2,3,1 · y1,3,3,1 · y3,1,4,1 · y3,1,5,2

Finally, for every clause Ci (1 ≤ i ≤ n) define spanRGX γi as:

(xi,1 · γi,1 ∨ xi,2 · γi,2 ∨ xi,3 · γi,3)

With this notation, we define spanRGX γα as follows:

γα = γ1 · · · γn

At this point it is important to understand how the variables yi, j,k,` are used in the spanRGX

γα. Assume that p1,1 = p2,1, so that p1,1 is in conflict with p2,2. Then if we assigned value

true to p1,1, we have that p2,1 is also assigned value true, so p2,2 has to be assigned value false.

This restriction is encoded by using the variable y1,1,2,2. More precisely, γα = γ1 · γ2 · · · γn,
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where γ1 is of the form:

(x1,1 · · · y1,1,2,2 · · · ∨ x1,2 · γ1,2 ∨ x1,3 · γ1,3),

given that y1,1,2,2 ∈ conflict(p1,1), and γ2 is of the form:

(x2,1 · γ2,1 ∨ x2,2 · · · y1,1,2,2 · · · ∨ x2,3 · γ2,3),

given that y1,1,2,2 ∈ conflict(p2,2). Thus, if x1,1 is assigned a span, representing the

assignment of value true to the propositional variable p1,1, then also y1,1,2,2 is assigned a

span (both spans will have empty content by the definition of γα and d). If we now try to

assign a span to x2,2, then we are forced to assign a span to y1,1,2,2 again. This, however,

violates the definition of the semantics of RGX, because the mappings for concatenated

expressions must have disjoint domains (in other words, they cannot both assign the same

variable).

Based on the previous intuition, it is straightforward to prove that nγαod is not empty if

and only if there exists a satisfying assignment for α that makes exactly one variable per

clause true, which was to be shown. As before, we take d to be ε. �

The previous result implies that the evaluation problem for RGX and variable-set

automata is NP-complete. However, it does not say anything about the model checking

problem. By adapting the proof of the previous result it can be shown that, unfortunately,

the model checking problem is also hard for RGX and variable automata.

Theorem 5.2. ModelCheck[spanRGX] is NP-complete.

Proof. To prove this result, we will modify the proof of Theorem 5.1. In this case,

given a propositional formula α we define the spanRGX γ′α as follows:

γ′α = γα · ψα, where ψα = (
∨

x∈var(γα)
x )∗
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In addition to this, we set d to an empty document and µ to the mapping that assigns the

span (1, 1) to every variable in var(γα). The newly added part of the spanRGX will allow

us to match µ by assigning all the variables that were not assigned in the first part of the

formula. This, however, does not make the problem easier because we have to make sure

that there exists some mapping µ′ that satisfies the first part of the formula. Then, there is a

satisfying assignment for α that makes exactly one variable per clause true if and only if

µ ∈ nγ′αod .

Now we show why this construction is correct. Consider the definition of the semantics

of RGX. In this case, since d = ε all the spans will be (1, 1) so we will omit them. The

definition of concatenation tells us, then, that for µ to satisfy γ′α there must exist mappings µ1

and µ2 such that µ1 satisfies γα, µ2 satisfies ψα, dom(µ1) ∩ dom(µ2) = ∅, and µ = µ1 ∪ µ2.

Since ψα is satisfied by any mapping that assigns some subset of var(γα), deciding the

model checking problem in this case is equivalent to determining if there exists a mapping

that satisfies γα. This is, in other words, the non-emptiness problem for γα, which we

showed it was hard. �

With the previous negative results, we examine several syntactical restrictions of RGX

and variable-set automata that make the evaluation problem tractable. Note that the previous

negative results are considering a more general setting than the one presented by Fagin et al.

(2015), where RGX and variable-set automata are restricted to be functional which forces

them to only generate relations of spans. Interestingly, the functional restriction decreases

the complexity of the non-emptiness and evaluation problem for RGX as the following

result shows.

Proposition 5.2. Eval[funcRGX] is in PTIME.

We will omit the proof, since this proposition is implied by Theorem 5.3 introduced

later in this section.

This result proves that the functional restriction for RGX introduced by Fagin et al.

(2015) is crucial for getting tractability. The question that remains is what the necessary
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restrictions are that make the evaluation of RGX tractable when outputting mappings and

how to extend these restrictions to other classes like variable-set automata. One possible

approach is to consider variable-set automata that produce only relations. Formally, we say

that a variable-set automaton A is relational if for all documents d, the set nAod forms a

relation. As the next result shows, this semantic restriction is not enough to force tractability

on Eval[VA].

Proposition 5.3. ModelCheck and NonEmp of relational variable-set automata are

NP-complete.

Proof. First, we prove that both problems belong to NP. In both cases, we only need to

guess a run for the variable automaton (that conforms to the input document and mapping)

and verify that it is accepting. The size of the runs that we need to consider is bounded by a

polynomial in the size of the document and the automaton. This is because any sufficiently

long valid run will have a sequence of consecutive ε-transitions that form a cycle, which

means that it is equivalent to a shorter (polynomially bounded) run that does not contain

that kind of cycles.

To prove the NP-hardness of the ModelCheck problem we will describe a reduction

from the Hamiltonian path problem. This problem consists in deciding whether or not

a directed graph has a path that visits every vertex exactly once, and it is known to be

NP-hard (Garey & Johnson, 1979). Let G = (V, E) be a graph and let A = (Q, q0, q f , δ) be
the variable automaton that results from reducing G. We will construct A in such a way

that G has a Hamiltonian path if and only if µε ∈ nAod , where d = ε and µε is such that

µε(x) = (1, 1) for all x ∈ var(A).
The automaton A is built as follows: (1) for every vertex v ∈ V , add states pv,1, pv,2, . . . , pv,|V |

to Q; (2) for every edge (u, v) and every i ∈ [1, |V | − 1] add the transitions (pu,i, a
xv, pv,i+1), (q0, a xv, pv,1) to δ; (3) add two fresh states for q0, q f and, for every v ∈ V add

transitions (pv,|V |, ε, q f ), (q0, xv ,̀ q0) to δ. Figure 5.2 shows an example of this reduction.
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(a) Instance of the Hamilton-
ian Path problem.

x

zy

(b) Result of reduction for this instance.
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x ,̀

y ,̀
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Figure 5.2. Example of reduction from Hamiltonian Path to ModelCheck
of relational VA (Theorem 5.3).

Notice that every accepting run of A assigns every variable to the span (1, 1), since to
go from q0 to q f it must go through |V | closing transitions (which must be different if the

run is valid). Thus, A is relational. Because the states and transitions in A correspond to

the vertices and edges in G there will be a one-to-one correspondence between runs in A

and Hamiltonian paths in G. That is, if there is an accepting run that goes through states

pv1,1, . . . , pv |V |,|V |, then there is a Hamiltonian path through the vertices of G. Proving this

last statement is straightforward given the way A was built.

To see why the NonEmp is also NP-hard, notice that in the aforementioned construction

when graph G does not have a Hamiltonian path there will be no accepting runs. Therefore,

it holds that nAod is not empty if and only if G has a Hamiltonian path. �

By taking a close look at the proof of the previous result, one can note that a necessary

property for getting intractability is that, during a run, the automaton can see the same

variable on potential transitions many times but not use it if it has closed the same variable

in the past. Intuitively, this cannot happen in functional RGX formulas where for every

subformula of the form ϕ1 · ϕ2 it holds that var(ϕ1) ∩ var(ϕ2) = ∅. Actually, we claim that

this is the restriction that implies tractability for evaluating RGX formulas. Formally, we
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say that a RGX formula γ is sequential if for every subformula of the form ϕ1 · ϕ2, ϕ∗, or

x{ϕ} it holds that var(ϕ1) ∩ var(ϕ2) = ∅, var(ϕ) = ∅, and x < var(ϕ), respectively.
We can also extend these ideas of sequentiality from RGX formulas to variable-set au-

tomata as follows. A path π of a variable-set automaton A = (Q, q0, q f , δ) is a finite sequence
of transitions π : (q1, s2, q2), (q2, s3, q3) . . . , (qm−1, sm, qm) such that (qi, si+1, qi+1) ∈ δ for

all i ∈ [1,m− 1]. We say that a path π of A is sequential if for every variable x ∈ V it holds

that: (1) there is at most one i ∈ [1,m] such that si = x `; (2) there is at most one j ∈ [1,m]
such that s j =a x; and (3) if such a j exists, then i exists and i < j. We say that variable-set

automaton A is sequential if every path in A is sequential. Finally, we denote the class of

sequential RGX and sequential variable-set automata by seqRGX and seqVA, respectively.

The first natural question about sequentiality is whether this property can be checked

efficiently. As the next proposition shows, this is indeed the case.

Proposition 5.4. Deciding if a variable-set automaton is sequential can be done in

NLOGSPACE.

Proof. We describe an algorithm for checking if a variable automaton is sequential

that is in coNLOGSPACE, which is known to be equal to NLOGSPACE (Immerman, 1988).

The algorithm non-deterministically traverses the automaton searching for a non-

sequential path. To do so, it remembers the current variable’s status, which can be either

available, open or closed. If it finds a transition which is incompatible with the current

status (e.g. opening an already open variable), it accepts, indicating that the variable

automaton is not sequential. More formally, let A = (Q, q0, q f , δ) be a variable automaton,

let qcurr denote the current state and let scurr denote the current variable’s status. For every

variable x ∈ V the algorithm proceeds as follows:

• Set qcurr to q0 and scurr to available;

• while qcurr , q f :

– non-deterministically pick a transition (qcurr, a, qnext) ∈ δ;
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– if a is incompatible with the status scurr , then accept; otherwise, update qcurr

to qnext and scurr according to a;

• reject.

It is simple to realize that the algorithm is correct, since if there is a non-sequential

path, then there is a sequence of non-deterministic decisions that will lead the algorithm

to accept. On the other hand, it is also apparent that the algorithm uses only logarithmic

space, because it only has to store the current variable, current state, next state and variable

status; in other words, a constant amount of information that is at most logarithmic in size

with respect to the input. �

Sequentiality is a mild restriction over extraction expressions since it still allows many

RGX formulas that are useful in practice. For example, all extraction expressions discussed

in Chapter 3 are sequential. Furthermore, as we now show, no expressive power is lost

when restricting to sequential RGX or automata.

Proposition 5.5. For every RGX (VA automaton), there exists a sequential RGX

(sequential VA, respectively) that defines the same extraction function.

Proof. By using the PUstk construction (mentioned in Theorem 3.3), we know that

we can transform any RGX (or VA) into an equivalent path union vstk-automaton. Let A

be the automaton that results from such construction. It is easy to see from the way A is

constructed that the individual path automata that compose A will always be sequential.

Each of these path automata can be transformed into an equivalent RGX that will clearly be

sequential as well. Therefore, A is equivalent to the disjunction of a finite set of sequential

RGX, which is evidently also a sequential RGX. �

We believe that sequentiality is a natural syntactical restriction of how to use variables

in extraction expressions: in simple terms users should not reuse variables by concatenation

since this can easily make the formula unsatisfiable. Furthermore, the more important

advantage for users is that RGX and variable-set automata that are sequential can be

evaluated efficiently.



49

Theorem 5.3. Eval[seqRGX] and Eval[seqVA] is in PTIME.

Proof. We first show that Eval[seqRGX] can be reduced to Eval[seqVA] in polynomial

time. By Theorem 3.3, we know that RGX can be efficiently transformed into VAstk.

Therefore, it only remains to show that the resulting variable automaton will be sequential

if the starting RGX is sequential. This can be proven with a straightforward induction over

the structure of RGX, showing that, for each operator, the construction algorithm preserves

the sequentiality of the output automaton.

Now, we prove that the Eval[seqRGX] problem is in PTIME. The main idea behind this

proof, and many of the following, will be to embed in document d the variable operations

corresponding to mapping µ. This will allow us to then treat variable operation transitions

as normal transitions. This is an advantage because then we can use classical algorithms for

finite automata to decide problems.

Let Op(A) = {x ,̀ a x | x ∈ V(A)}, that is, the set of all variable operations for variables
in A. Let ρ be a run for document d and mapping µ on a variable automaton A. We refer to

the label of ρ, denoted L(ρ), as the string λ ∈ (Σ ∪ Op(A)) that is the concatenation of the

labels of the transitions in ρ, in the order they are used.

Given a label λ, we may easily generate the document-mapping pair (d, µ) from the run

of λ in logarithmic-space. We simply scan λ from left to right, outputting symbols of Σ to

d, then we do a second scan, counting symbols to determine the spans that compose µ. It is

simple to see that if we change the order of consecutive variable operation in λ, then the

generated (d, µ) will be the same.

As an example, consider the document d = abc and themapping µ such that µ(x) = (1, 3)
and µ(y) = (3, 3). Some labels that correspond to these are λ1 = x ,̀ a, b, y ,̀ a x, a y, c or

λ2 = x ,̀ a, b, a x, y ,̀ a y, c.
Similarly, for every pair (d, µ) and finite set of variables, there is a finite set of possible

labels of runs that correspond to d and µ. By the previous paragraph, it is an easy observation

that the labels in this set will differ only on the ordering of consecutive variable operations,

and variables that are opened but never closed.
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Since the ordering of variable operations will be a problem in most proofs, we will

frequently use the technique of coalescing consecutive variable operations. What this means,

is that we will consider a set of consecutive variable operations as a single symbol. We will

usually accompany this by introducing new transitions to the automata that recognize these

coalesced symbols.

Let A = (Q, q0, q f , δ) be the sequential automaton, d the document and µ the mapping.

First, let λ be some label for (d, µ). Let τ = T1, . . . ,T` be a partition of dom(µ) such that

two variable operations o1 and o2 belong to the same Ti if and only if o1 ·w · o2 is a substring

of λ and w is ε or consists solely of variable operations. We treat the sets in τ as new

symbols of the alphabet. We will coalesce all sequences of consecutive variable operations

in λ replacing them with their respective Ti, and call the result d′.

Let A′ = (Q, q0, q f , δ
′) be as follows. For each transition (p, a, q) ∈ δ: (1) if a ∈ Σ∪ {ε},

then (p, a, q) ∈ δ′; (2) if a is a variable operation for x and x < dom(µ), then (p, ε, q) ∈ δ′;
otherwise, ignore the transition. Finally, for every set Ti (i ∈ [1, `]), transition (p,Ti, q) ∈ δ′

if there exists a path from p to q in A satisfying the following conditions: (1) every transition

in the path is either an ε-transition or corresponds to a variable operation in Ti; and (2) for

every variable operation in Ti, there is exactly one transition in the path that corresponds

to it. Notice that A′ has no variable operations, and therefore, behaves exactly like a

non-deterministic finite automaton. Therefore, the problem has been reduced to that of

deciding whether the non-deterministic finite automaton A′ accepts the word d′, which is

known to be in PTIME (Hopcroft & Ullman, 1979).

Except for the last step, it is clear that this reduction runs in polynomial time. Therefore,

in order to complete this part of the proof, we only need to provide an algorithm that given

states p, q and i ∈ [1, n + 1] decides whether (p,Ti, q) ∈ δ′. We will describe an algorithm

that finds a path in A that in NLOGSPACE, which is contained in PTIME (Papadimitriou,

1993). Taking into account that A is sequential, we know that the paths will not repeat

operations nor execute them in a wrong order, therefore, we only need to count the number

of variable operations.
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The algorithm starts from state p and sets a counter c to 0. Then, at each step it guesses

the next transition, and checks that it is either an ε-transition or corresponds to a variable

transition in Ti. If it is the latter, then it increments c by one. If the algorithm reaches q, it

accepts only if c = |Ti |. From the description of the algorithm it is straightforward to prove

that it is correct and uses logarithmic-space.

Now we prove the correctness of the algorithm. Namely, we will prove that there exists

an extension µ′ of µ if and only if A′ accepts d′. We will consider the three cases that can

happen to a variable x with respect to µ: (1) x < dom(µ), (2) µ(x) = ⊥, and (3) µ(x) = (i, j)
for i, j ∈ [1, n + 1]. In case (1), we have that x may or may not be in dom(µ′). This agrees
with the fact that variable operations for x are replaced with ε in A′. Furthermore, because

A is sequential, we know that there are no valid runs in A′ that would be invalid in A. In

case (2), µ′ cannot assign x, which agrees with A′ because variable operations for x were

removed. Finally, in case (3), we know that µ′ will be compatible with µ on x because each

of the Ti symbols we introduced can be matched by A′ if and only if there exists a path in A

that performs the variable operations in Ti in some order. Given these observations it is

very apparent that there is a one-to-one correspondence between accepting runs in A and

A′, which finishes the proof of correctness. �

It is important to recall that this result implies, by Proposition 5.1, that the evaluation

of sequential RGX formulas can be done in incremental polynomial time. Moreover,

ModelCheck and NonEmp of this class can also be decided in PTIME. This provides

us with a good upper-bound for evaluating formulas and shows that it might be possible

to find an efficient algorithm that works in practice. With this, we refer to a constant

delay algorithm (Johnson et al., 1988) like the one presented by Arenas et al. (2016) for

the so-called navigational formulas—a class strictly subsumed by sequential RGX. Thus,

sequential RGX seem like a good direction for extending the constant delay algorithm for

navigational formulas given by Arenas et al. (2016).

Now that we have captured an efficient fragment of RGX, we will analyze what happens

with the complexity of the evaluation problem for extraction rules. First, we show that



52

evaluating rules is in general a hard problem. In fact, non-emptiness is already NP-hard,

even when restricted to functional RGX and dag-like rules.

Theorem 5.4. NonEmp of functional dag-like rules is NP-complete.

Proof. First, we show that the problem is in NP. Consider a functional dag-like rule

ϕ, and a document d. To decide the problem we can guess a mapping µ, which is of

polynomial size, and check that µ ∈ nϕod . This can be done in polynomial time as follows.

From Theorem 5.3, we know that ModelCheck of sequential (and thus functional) RGX is

in PTIME. With this in mind, we can check that µ respects the semantics of rules detailed

in Chapter 4 (with regards to instantiated variables, among other conditions) and for each

relevant extraction expression x.ϕx , check that µ restricted to Var(ϕx) satisfies ϕx , when d

is restricted to µ(x) (which, as we mentioned, is in PTIME).

To show that the problem is NP-hard, we will describe a polynomial time reduction

from the 1-IN-3-SAT problem. The input for 1-IN-3-SAT consists of a propositional formula

α = C1 ∧ · · · ∧Cn where each clause Ci (1 ≤ i ≤ n) is a disjunction of three positive literals:

pi,1, pi,2, and pi,3. The problem is to determine if there is a truth assignment that makes

exactly one literal true in each clause. This problem is known to be NP-complete (Garey &

Johnson, 1979).

Given the propositional formula α, the reduction will output a functional dag-like rule

ϕ, and a document d such that nϕod is non-empty if and only if α is satisfiable. Let V

be the set of variables used in α. The expression ϕ will use the variables in V plus fresh

variables ci for i ∈ [1, n], and two extra variables: T and F. Here, variables ci will represent

the clauses in α, and T, F will signal those variables that are true and false, respectively.

The rule ϕ consists of the following extraction expressions:

• T · c1 · F;
• ci .(pi,1 ·ci+1 · pi,2 · pi,3)∨(pi,2 ·ci+1 · pi,1 · pi,3)∨(pi,3 ·ci+1 · pi,1 · pi,2) for i ∈ [1, n−1];
and
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• cn.(pi,1 ·T · # · F · pi,2 · pi,3) ∨ (pi,2 ·T · # · F · pi,1 · pi,3) ∨ (pi,3 ·T · # · F · pi,1 · pi,2),
where # is a symbol in the alphabet.

Note that every spanRGX is functional, and that the rule is dag-like.

The intuition behind the reduction is that every variable placed to the left of the #

symbol should be assigned a true value, and every variable placed to the right of the symbol

should be assigned a false value. Notice that ϕ can only be satisfied by the document d = #

and a mapping µ such that µ(T) = (1, 1) and µ(F) = (2, 2). If µ satisfies ϕ, we can make the

following observations: (1) for every x ∈ V , either µ(x) = (1, 1) or µ(x) = (2, 2); and (2)

for every i ∈ [1, n], there is exactly one j ∈ {1, 2, 3} such that µ(pi, j) = (1, 1). With these

observations in mind, it is easy to see that every satisfying mapping of ϕ will correspond to

a satisfying truth assignment of α and vice versa, thus proving the reduction correct. �

The difficulty in this case arises from the fact that dag-like rules allow referencing

the same variable from different extraction expressions. A natural way to circumvent this

is to use tree-like rules. Indeed, the fact that, in a tree-like rule, different branches are

independent, causes the evaluation problem to become tractable. In fact, the functionality

constraint is not really needed here, as the result holds even for sequential rules.

Theorem 5.5. Eval of sequential tree-like rules is in PTIME.

Proof. In order to prove that Eval of sequential tree-like rules is in PTIME, we will

describe an algorithm that first does some polynomial-time preprocessing of the input, and

then runs in alternating logarithmic space (ALOGSPACE), which is known to be equivalent

to PTIME (Papadimitriou, 1993).

Let ϕ = ϕx0 ∧ x1.ϕx1 ∧ · · · ∧ xm.ϕxm be a sequential tree-like rule with graph Gϕ, let d

be a document, and let µ be a mapping. We assume, without loss of generality, that for

every variable x in ϕ there is an extraction expression x.ϕx in ϕ.

We may immediately reject in two cases: (1) µ is not hierarchical; and (2) there are

variables x and y such that µ(x) = µ(y), the content of µ(x) is not empty, and there is
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no directed path in Gϕ that connects x and y. These two cases can easily be checked in

polynomial-time, and will help us simplify the proceeding analysis.

For the purpose of this proof, we say that two variables x and y are indistinguishable if

µ(x) = µ(y) = (i, i) for some i ∈ [1, n + 1] and they are siblings in Gϕ; that is, there exists a

variable z such that (z, x) and (z, y) are edges in Gϕ. The problem with these variables is

that we cannot deduce from µ and ϕ the order in which they must be encountered when

processing the document. Therefore, we will coalesce each set of indistinguishable variables

into a single variable. This means removing these variables from the global set of variables

and replacing them with a single new variable that represents the set. We refer to these new

variables as coalesced variables, and we refer to mapping µ updated to reflect this change

as µ′.

By coalescing indistinguishable variable, however, we will be destroying the subtrees

rooted at them. Therefore, we must check that µ agrees with these subtrees. Let U be

a maximal set of pairwise indistinguishable variables. For each x ∈ U we perform the

following “emptiness” check. Transform ϕx into a variable automaton Ax and check that:

(1) there is a path from the initial state to the final state of Ax that uses only ε-transitions

and variable operations; (2) this path opens and closes every variable y such that (x, y) is in
Gϕ; (3) for every variable y used in this path, either µ(x) = µ(y) or y < dom(µ); and (4)

recursively perform the “emptiness” check on y and ϕy. This may be done in polynomial

time by using similar techniques to those shown on the proof of Theorem 5.3.

For this proof, we will use again the idea of labels (defined in the proof of Theorem 5.3).

Notice that if we fix an order �Op over the variable operations and limit to those variables

in dom(µ), then there is a unique label for (d, µ) in which consecutive variable operations
are ordered according to �Op . We denote this label L(d, µ, �Op ), and we may compute it

easily in polynomial time.

In addition to the above, we say that a label λ is balanced if all of its opening and

closing variable operations are correctly balanced (like parentheses). It is clear that given a

valid (d, µ), µ is hierarchical if and only if (d, µ) have at least one balanced label.
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Now, notice that if we take into account µ′, Gϕ and indistinguishable variables, then

there is a unique order in which variable operations could be seen by the rule if the document

is processed sequentially. We will use this order as the order �Op , which we can compute as

follows. Let V = {x ∈ dom(µ′) | µ(x) , ⊥} and consider the induced subgraph T = Gϕ[V].
A node x in T precedes its sibling y if µ′(x) = (i, j), µ′(y) = (k, l), and min(i, j) < max(k, l).
Since we coalesced indistinguishable variables, we know that there is a unique way to put

siblings in this order. Finally, the order can be obtained by doing an ordered depth-first

search on T : when we enter a node x we add x ` to the output, when we finish processing
the subtree rooted at x we add a x to the output. With this in mind, we define the document

d′ = L(d, µ′, �Op ).
Next, we transform each sequential spanRGX ϕxi into a non-deterministic finite

automaton Axi = (Q, q0, q f , δ). For each coalesced variable X that represents the set

of indistinguishable variables U, we add a new state qX and transitions (p, X ,̀ qX) and
(qX, aX, q) if there is a path from p to q that uses only ε-transitions and variable transitions

such that every variable in set U is opened and closed in this path. This can be done in

polynomial-time because all expressions are sequential (the same way it was done on the

proof of Theorem 5.3).

Now, we run the alternating logarithmic space algorithm. We will have two pointers:

icurr and iend . They will denote the part of the document that we are considering at any

given time, and will start as 1 and |d′| + 1 respectively. The algorithm works by traversing

the automata guessing transitions. Every time we choose a transition in Ax that opens

variable y, we find the position iclose in d′ where y is closed (or guess it if y < dom(µ′))
and check two conditions in parallel (by use of alternation): (1) Ay recursively accepts

(d′, µ′) on the interval (icurr, iclose); and (2) Ax accepts (d′, µ′) on the interval (iclose, iend),
continuing from the current state. More specifically, the algorithm is the following:

(i) Set icurr to 1, iend to |d′| + 1, and xcurr to x0.

(ii) Let Axcurr be (Q, q0, q f , δ).
(iii) Set qcurr to q0.

(iv) While qcurr , q f and icurr ≤ iend:
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(a) Non-deterministically pick a transition (qcurr, a, qnext) ∈ δ.
(b) If a = ε, set qcurr to qnext and continue.

(c) Else if a = x ` for some variable x (that is not coalesced), do as follows. If

x ∈ dom(µ′), then check that a = aicurr , then find the position iclose such

that aiclose =a x. Else if x < dom(µ′), guess iclose ≥ icurr and set qnext to the

state reached by following the a x-transition from the current qnext . Do the

following two things in parallel:

• Set icurr to iclose, qcurr to qnext , and continue.

• Set iend to iclose, xcurr to x, increment icurr , and go to step 2.

(d) Else if a is a = aicurr , then set qcurr to qnext and increment icurr .

(e) Otherwise, reject.

(v) If icurr = iend , accept.

Now we will sketch a proof of correctness. By the definition of the semantics of rules, it

is clear that there is a correspondence between mappings and a set of runs for the automata

that compose the rule. It is easy to see that the algorithm described above will find accepting

runs for each of the automatons that correspond to variables instanced by the rule. These

runs will correspond to a mapping ν which is an extension of µ′ and that can be easily be

transformed into an extension of µ by separating the coalesced variables. To see why the

algorithm will accept whenever such a ν exists, consider the following. It can be proven

without much difficulty that, given the nested structure of tree-like rules and the plainness

of sequential spanRGX, the way in which we ordered the variable operations in d′ is the

only way in which they might be actually seen. The only case in which this is not true, is in

the case of indistinguishable variables, which we handled as a separate case. Therefore, the

algorithm will accept whenever there exists an extension to µ that satisfies ϕ. �

This implies that we should focus on sequential tree-like rules if we wish to have efficient

algorithms for rules. Luckily, these do not come at a high price in terms of expressiveness,

since Theorem 4.2, Proposition 4.2, and Theorem 4.3 imply that every satisfiable simple

rule is equivalent to a union of sequential tree-like rules.
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The previous results show how far we can go when syntactically restricting the class of

RGX formulas, variable-set automata, or extraction rules in order to get tractability. The

next step is to parametrize the size of the query not only in terms of the length, but also

in terms of meaningful parameters that are usually small in practice. In this direction, a

natural parameter is the number of variables of a formula or automata since one would

expect that this number will not be huge. Indeed, if we restrict the number of variables of a

RGX formula or variable-set automata we can show that the problem becomes tractable.

We express this by using the notion of fixed parameter tractability and the complexity class

FPT (Flum & Grohe, 2006).

Theorem 5.6. Eval[RGX] and Eval[VA] parametrized by the number of variables is

FPT.

Proof. We know from Theorem 3.3 that RGX can be transformed into equivalent

variable automata in polynomial time (and without altering the parameter). Therefore, the

rest of the proof will focus only on VA.

Let A be a variable automaton, d a document, µ a mapping and k the number of

variables in A, that is, k = | var (A)|. We can decide this instance of the Eval[VA] problem
using the same reduction from the proof of Theorem 5.3, but with two modifications.

First, we change the algorithm that decides if (p,Ti, q) ∈ δ′, for some given states

p, q ∈ Q and i ∈ [1, n + 1]. The original algorithm will not work in this case because A

might not be sequential. Thus, now we iterate over all possible total orders over the set

Ti (there are |Ti |! such orders) and let (t1, . . . , t|Ti |) be a sequence with the elements of Ti

according to that order. We give (t1, . . . , t|Ti |) as an additional input to the algorithm and

proceed in a similar way than before, but we keep an additional counter e with the current

position in the new sequence (we set e to 1 at the start). Whenever the algorithm chooses a

transition with a variable operation, it compares it with te: if it is the same, it increments e;

otherwise, it rejects. At the target state q we accept if and only if e = |Ti | + 1, which means
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we saw all the variable operations of |Ti | exactly once. Notice that this gives an algorithm
that runs in time at most k! · p(n), where p is a polynomial.

Second, we slightly change the way we handle a variable x when x < dom(µ). Instead
of replacing the variable operation transitions of x with ε-transitions, we preserve them as

they are. In this part of the algorithm, we will iterate over all valid sequences of variable

operations in {x ,̀ a x | x ∈ (var(A) \ dom(µ))}. We say that a sequence of variable

operations is valid if, for every variable x: (1) the operations x ` and a x appear at most once;

(2) if a x is in the sequence, then x ` is in the sequence at an earlier position. For example,

[x ,̀ y ,̀ a x, a y] and [x ,̀ z ,̀ a x, y `] would be two valid sequences of operations for

variables x, y, z. Given a sequence of operations, the modified automaton, and the modified

document, the problem then reduces to checking if the final state of the variable automaton

is reachable from its initial state, subject to the constraint that the chosen transitions must

match the sequence of operations and the document.

Formally, the algorithm would be the following. Let A′ = (Q, q0, q f , δ
′) be the modified

variable automaton, and let d′ = a1a2 · · · an be the modified input document (the label).

Throughout the algorithm we will keep: idoc, the current position in the document; iseq, the

current position in the sequence of operations; and qcurr , the current state. For every valid

sequence of operations s1, s2, . . . , sm we proceed as follows:

(i) Set qcurr to q0, idoc to 1, and iseq to 1.

(ii) While qcurr , q f :

(a) Non-deterministically pick a transition (qcurr, a, qnext) ∈ δ such that a = aidoc

or a = siseq . If no such transition exists, then reject.

(b) Set qcurr to qnext , and if a = aidoc , increment idoc by one; otherwise, increment

iseq by one.

(iii) if idoc = n + 1, then accept; otherwise, reject.

If at any point the counters go “out of bounds”, then we also reject. This part of the

algorithm will run in time at most (2k)! · q(n), for some polynomial q.

It is straightforward to prove that these modification will not alter the correctness of

the algorithm. Also, by combining the different parts of the algorithm, we will get a total
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running time of k! · p(n) + (2k)! · q(n) + r(n) where p, q, r are polynomials. This is in

O( f (k)nc) for some constant c and some function f . Therefore, the problem is in FPT. �
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6. STATIC ANALYSIS AND COMPLEXITY

In this chapter , we study the computational complexity of static analysis problems for

information extraction languages like satisfiability and containment. Determining the exact

complexity of these problems is crucial for query optimization (Abiteboul et al., 1995) and

data integration (Lenzerini, 2002), and it gives us a better understanding of how difficult it

is to manage RGX formulas and VA. Although formal frameworks for defining rule-based

information extraction languages were introduced by Fagin et al. (2015) and Arenas et al.

(2016), and further studied by Freydenberger and Holldack (2016), there is still no analysis

of static properties for regular IE languages (that is, languages without the content operator).

Furthermore, as we have seen in Chapter 5, the results for regular languages generally do

not extend to RGX or VA. Therefore, it is important to analyse the complexity of static

problems for IE languages.

We start with the satisfiability problem for RGX formulas and VA. Formally, given an

information extraction language L, the satisfiability problem of L is defined as follows.

Problem: Sat[L]
Input: An expression γ ∈ L.

Question: Does there exist a document d

such that nγod is non-empty?

Sat[L] is the natural generalization of the satisfiability problem for ordinary regular

languages: if γ does not contain variables, then asking if nγod , ∅ for some document

d is the same as asking whether the language of γ is non-empty. It is a folklore result

that satisfiability of regular languages given by regular expressions or NFAs has low-

complexity (Hopcroft & Ullman, 1979). Unfortunately, in the information extraction

context, this problems is intractable even for spanRGX.

Theorem 6.1. Sat[VA] andSat of extraction rules are inNP. Furthermore, Sat[spanRGX]
is NP-hard.
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To prove a part of the previous result, we have to show that Sat[VA] is in NP. In order

to do this, we will first prove a lemma that will limit the size of the documents we must

consider.

Lemma 6.1. Let A = (Q, q0, q f , δ) be a VA, and letV = V(A). If A is satisfiable, then

there exists a document of size at most (2 · |V| + 1)|Q | that satisfies it.

Proof. The proof of this lemma follows a similar idea to the idea behind the pumping

lemma for regular languages (Hopcroft & Ullman, 1979). Suppose the smallest document

d = a1 · · · an that satisfies A is of size greater than (2 · |V| + 1)|Q |, and let µ be its

corresponding mapping. Then, there must exist a substring ak · · · al in d of size at least

|Q | + 1 inside which A does not use any variable operations (since A can use at most 2 · |V|
variable operations). Denote the state of A after processing ai as qi. Since A has |Q | states,
there must exist i, j ∈ [k, l] such that i < j, qi = q j , and |ak · · · aia j+1 · · · al | ≤ |Q |. Because
A does not use any variable operations in this substring, it is clear that if A accepts d and

µ, then it will accept d′ = a1 · · · aia j+1 · · · an and µ′, where µ′ is µ with all the positions

greater than j adjusted by ( j − i). If we repeat this for all substrings of size greater than |Q |
with no variable operations, then the final document will have size at most (2 · |V| + 1)|Q |,
contradicting our initial supposition. This proves the lemma. �

With this result in mind, we can now prove the previous theorem.

Proof of Theorem 6.1. A direct consequence of Lemma 6.1 is that every satisfiable

VA A has an accepting run that is at most polynomial in size with respect to A. Therefore, a

NP algorithm for Sat[VA] is to simply guess a run and check that it is an accepting run

(which can easily be done in polynomial-time).

Now, we prove that Sat[spanRGX] is NP-hard. Consider the proof of Theorem 5.1.

Notice that the expression γα is satisfiable if and only if it is satisfied by document

d = ε, since γα only matches empty documents. Therefore, 1-IN-3-SAT can be reduced to

Sat[spanRGX]. Since the former is NP-hard, the latter is also NP-hard. �
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These results show that satisfiabilty is generally NP-complete for all IE languages

considered in this thesisṪhe next step is to consider syntactic restrictions of RGX or VA,

i.e., sequentiality introduced in Chapter 5. Indeed, when considering sequential VA we can

restore tractability.

Theorem 6.2. Sat[seqVA] is in NLOGSPACE.

Proof. Let A = (Q, q0, q f , δ) be a sequential variable automata. Notice that any

sequential path from q0 to q f corresponds to an accepting run, because sequential paths

respect the correct use of variables. Since A is sequential, finding an accepting run for A

is as easy as finding a path from q0 to q f . This problem is equivalent to the problem of

reachability on graphs, which is in NLOGSPACE (Papadimitriou, 1993). �

It is interesting to note that this result is very similar to satisfiability of finite state

automata: given a sequential VA the NLOGSPACE algorithm simply checks reachability

between initial and final states. This again shows the similarity between finite state automata

and VA if the sequential restriction is imposed.

Next, we consider extraction rules combinedwith the sequential and functional spanRGX.

Similarly as before, Sat of extraction rules remains intractable even for the class of functional

dag-like rules. However, if we consider sequential tree-like rules we can restore tractability

since tree-like rules are always satisfiable.

Theorem 6.3. Sat of functional dag-like rules is NP-hard. Furthermore, any sequential

tree-like rule is always satisfiable.

Proof. Consider the proof of Theorem 5.4. Notice that the rule ϕ in this proof is

satisfiable if and only if it is satisfied by the document d = #, since ϕ matches only one

# symbol. Therefore, 1-IN-3-SAT can be reduced to Sat of functional dag-like rules in

polynomial time. Since the former problem is NP-hard, the latter must also be NP-hard. �
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It is important to make the connection here between regular expressions and sequential

RGX: both formalisms are trivially satisfiable. We believe that this gives more evidence

that sequential RGX are the natural extension of regular expressions, as they inherit all the

good properties of its predecessor.

We continue by considering the classical problems of containment and equivalence of

expressions. Since equivalence can be defined in terms of containment, we only formalize

the latter.

Problem: Containment[L]
Input: Expressions γ1 and γ2 in L.

Question: Does it hold that

nγ1od ⊆ nγ2od for every document d?

It is well known that containment for regular languages is PSPACE-complete (Stock-

meyer & Meyer, 1973), even for restricted classes of regular expressions (Martens, Neven,

& Schwentick, 2009). Since our expressions are extensions of regular expressions and

automata, these results imply that a PSPACE bound is the best we can aim for. Given that the

complexity of evaluation and satisfiability for VA increases compared to regular languages,

one would expect the complexity of containment to do the same. Fortunately, this is not the

case. In fact, containment of all IE languages we consider is PSPACE-complete.

Theorem 6.4. Containment of extraction rules and Containment[VA] are PSPACE-

complete.

Proof. As previously stated, it is easy to see that regular expressions are a subset of

RGX, and it is known that the containment problem for regular expressions is PSPACE-hard.

Therefore, we will only prove that Containment[VA] is in PSPACE.

Let A1 = (Q1, q0
1, q

f
1 , δ1) and A2 = (Q2, q0

2, q
f
2 , δ2) be two variable automata. We will

prove that deciding if nA1od ⊆ nA2od for every document d is in PSPACE by describing a

non-deterministic algorithm that decides its complement. The algorithm will attempt to
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prove that there exists a counterexample, that is, a document d and a mapping µ such that

µ ∈ nA1od and µ < nA2od . At every moment, we will have sets S1 ⊆ Q1 and S2 ⊆ Q2 that

will hold the possible states in which A1 and A2 might be. We will also have sets V and Y

which will hold the available and open variables respectively.

Assume, without loss of generality, that V = var(A1) = var(A2) and O = Op(A1) =
Op(A2). We define the ε-closure of a state q, denoted E(q), as the set of states reachable
from q by using only ε-transitions (including q). Similarly, we define S(q, a) = {q′ |
(q, a, p) ∈ δ and q′ ∈ E(p)}, where a ∈ (Σ ∪ O) and δ is the relevant transition relation.

Given a set of states R, we define E(R) = ⋃
q∈R E(q) (and S(R) analogously). Lastly, we

define S(R, aw) = S(S(R, a),w), where w ∈ (Σ ∪ O)∗.
The algorithm proceeds as follows:

(i) Set S1 to E(q0
1), set S2 to E(q0

2), set V toV, and set Y to ∅.
(ii) If q f

1 ∈ S1 and q f
2 < S2, then accept. Otherwise, guess either an element a from Σ

or a set of variable operations P ⊆ O.
(iii) If the algorithm guessed a ∈ Σ then:

(a) Set S1 to S(S1, a) and S2 to S(S2, a).
(b) Go to step 2.

(iv) If the algorithm guessed a set P of variable operations, then:

(a) Check that P is compatible with V and Y . If they are, the update V and Y

accordingly; if not, reject.

(b) Let Perm(P) be the set of all strings that are permutations of P.

(c) Set Si to
⋃

w∈Perm(P) S(Si,w) for i ∈ {1, 2}.
(d) Go to step 2.

It is clear that this algorithm uses only polynomial-space, since we are only guessing strings

of polynomial size, and storing information about variables and states.

Nowwe prove that the algorithm is correct. Notice that if the algorithm accepts, then there

exists strings w1 and w2 differing only on the ordering of consecutive variable operations,

such that q f
1 ∈ S(E(q0

1),w1) and q f
2 < S(E(q0

2),w2). Moreover, q f
1 ∈ S(E(q0

1),w1) if and
only if there exists a document d and mapping µ such that µ ∈ nA1od . Since w1 and
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w2 generate the same document-mapping pairs, and the algorithm tries all the possible

permutations of consecutive variable operations, it is clear that there is no accepting run in

A2 with label w2. Therefore µ < nA2od , which concludes the proof. �

Given that all RGX subfragments contain regular expressions, it does not make sense to

consider the functional or sequential restrictions of RGX to lower the complexity. Instead,

we have to look for subclasses of regular languages where containment can be decided

efficiently like, for example, deterministic finite state automata (Hopcroft & Ullman, 1979).

It is well-known that containment between deterministic finite state automata can be

checked in PTIME (Stockmeyer & Meyer, 1973). Then a natural question is: what is the

deterministic version of VA? One possible approach is to consider a deterministic model

that, given any document produces a mapping deterministically. Unfortunately, this idea

is far too restrictive since it will force the model to output at most one mapping for each

document. A more reasonable approach is to consider an automata model that behaves

deterministically both in the document and the mapping. This can be formalized as follows:

a VA (Q, q0, q f , δ) is deterministic if δ does not have ε-transitions and for every p ∈ Q and

v ∈ Σ ∪ {x ,̀ a x | x ∈ V} there exists at most one q ∈ Q such that (p, v, q) ∈ ∆. That is,
the transition relation of a deterministic VA is functional with respect to both Σ and V.

Although the deterministic version of VA seems obvious, as far as we know, this is the first

attempt to introduce this notion for IE languages.

The first natural question to ask is whether deterministic VA can still define the same

class of mappings as the non-deterministic version. Indeed, one can easily show that every

VA can be determinized by following the standard determinization procedure (Hopcroft &

Ullman, 1979).

Proposition 6.1. For every VA A, there exists a deterministic VA Adet such that

nAod = nAdetod for every document d.

Proof. Let A = (Q, q0, q f , δ) be a variable automaton. We will determinize A by using

the classical method of subset construction (Hopcroft & Ullman, 1979). Without loss of
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generality, we will allow a set of final states instead of a single final state. We reuse the

definitions of E(q) and S(q) from the proof of Theorem 6.4.

We define the deterministic variable automaton Adet = (Q′, q′0, F
′, δ′) as follows. Let

Q′ = 2Q, q′0 = E(q0), F′ = {P ∈ Q′ | q f ∈ P}. The transition (P, a, P′) ∈ δ′ if and only if
P′ =

⋃
q∈P S(q, a).

Now we will prove that for every document d and mapping µ, µ ∈ nAod if and only

if µ ∈ nAdetod . Let ρ be an accepting run for d and µ on A. Then it is easy to prove by

induction that ρ can be mapped to an accepting run ρ′ in Adet . For the base case, we have

that q0 ∈ q′0. For the inductive case, consider that ρ uses transition (p, a, p′), and that the last
state we appended to ρ′ is P: if a = ε then p′ ∈ P and we do nothing to ρ′; if a ∈ (Σ ∪Op)
then there exist (P, a, P′) ∈ δ′ such that p′ ∈ P′, so we add P′ to ρ′. Since ρ′ uses the same

transitions as ρ (except for ε-transitions), Adet will also accept d and µ.

Now consider the opposite direction: if there is an accepting run ρ′ in Adet , then there is

an accepting run ρ in A. This is also easily proved with induction. In this case the inductive

hypothesis is that if there exists a path from P to P′ using a certain sequence of symbols

and variable operations, then for all p′ ∈ P′ there exists p ∈ P such that there is a path

from p to p′ using the same sequence of symbols and operations. For the base case we

have that E(q0) = q′0, so it is trivial. For the inductive case, consider that ρ′ uses transition

(P, a, P′). Consider some state p′ ∈ P′. By definition, there is some state q ∈ P′ such that

p′ ∈ E(q) and there exists a state p ∈ P such that (p, a, q) ∈ δ. By composing the different

paths between states, we get the path that proves our hypothesis. By considering the last

state in ρ′ then, we can build an accepting run ρ. �

As mentioned previously, the motivation of having a deterministic model is to look for

subclasses of VA where Containment has lower complexity. We can indeed show that this

is the case for deterministic VA, although the drop in complexity is not as dramatic as with

regular languages.

Theorem 6.5. Containment of deterministic VA is in Πp
2 . Moreover, Containment

of deterministic sequential VA is coNP-complete.
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Proof. Let A1 = (Q1, q0
1, q

f
1 , δ1 and A2 = (Q2, q0

2, q
f
2 , δ2) be deterministic variable

automata. Assume, without loss of generality, that O = Op(A1) = Op(A2) and V =
var(A1) = var(A2). We will prove the theorem by showing that the complement of this

problem is in ΣP
2 . We describe an algorithm that will accept if there exists a document d

and mapping µ such that µ ∈ nA1od and µ < nA2od . We will use the fact that when we fix

some linear order �Op over the variable operations, then there is a unique label λ to each

document-mapping pair (d, µ), denoted L(d, µ, �Op ), d.
First, we guess a document d, a mapping µ, and a linear order �1

Op over O. Then, for
all linear orders �2

Op over O, we execute the following polynomial-time procedure. We

compute the label λ1 = L(d, µ, �1
Op ) and the label λ2 = L(d, µ, �2

Op). Finally, we check if
there is a run in Ai that has λi as a label, for i ∈ {1, 2}. This is equivalent to checking if a
deterministic finite automaton accepts a word, and therefore it can be done in polynomial

time. If A1 accepts λ1 and A2 rejects λ2, then we accept; otherwise, we reject.

It is straightforward to prove that the algorithm is correct. Therefore it only remains

to show that the guessed document d is of polynomial size (since that will determine the

size and running time of the rest). This can be done by using the same “pumping lemma”

argument from the proof of Theorem 6.1. In this case, the substrings without variable

operations will be of size at most |Q1 | · |Q2 |; if its longer, then there are indices i and j

such that the pair of states of A1 and A2 will be the same at position i and j, and therefore

we can shorten the substring by removing the characters in between. Therefore, we only

need to consider documents of size at most (2|V| + 1)|Q1 | |Q2 |.
Now we prove that for deterministic sequential variable automata A1, A2 the problem

is in coNP. As in the previous case, we show that the complement of the problem is in

NP. To do this, we guess a document d and a mapping µ and then check that µ ∈ nA1od

and µ < nA2od . This is the ModelCheck problem, and since A1 and A2 are sequential,

Theorem 5.3 guarantees that we can check this in polynomial time. The same argument

made in the previous case for the size of d applies here.

It only remains to prove that Containment of deterministic sequential variable automata

is coNP-hard. For this we will describe a polynomial-time reduction from the disjunctive
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normal form validity problem. The problem consists in determining whether a propositional

formula α in disjunctive normal form is valid, that is, all valuations make α true. We may

assume, without loss of generality, that every clause in α has exactly three literals. This

problem is known to be coNP-complete, since it can be easily shown to be the complement

of the conjunctive normal form satisfiability problem (Garey & Johnson, 1979).

Let α = C1 ∨ · · · ∨ Cm be a propositional formula in disjunctive normal form with

propositional variables {p1, . . . , pn}, and let Ci = li,1 ∧ li,2 ∧ li,3 (i ∈ [1,m]), where each li, j

is a literal. We assume, without loss of generality, that for each clause Ci, the variables

corresponding to its literals are pairwise distinct.

Now, we will describe the procedure for constructing automata A1 = (Q1, q0
1, q

f
1 , δ1)

and A2 = (Q2, q0
2, q

f
2 , δ2). The construction will only use variable operation transitions so,

in order to simplify the construction, we use transitions of the form (p, x, q) to represent

a “gadget” that opens and closes variable x in succession, that is, a fresh state r and the

transitions (p, x ,̀ r) and (r, a x, q). For the automata, we are going to use variables p1, . . . , pn

to represent positive literals; p1, . . . , pn to represent negative literals; and c1, . . . , cm to

represent clauses. Thus, we have a total of 2n + m variables.

The automaton A1 is will consist of a long chain with two parts. In the first part, states

are joined with two parallel transitions pi and pi, for every propositional variable pi. This

forces the automaton to choose a valuation for the propositional variables. The second part

consists of a path with all the clause variables ci. This will make the automaton compatible

with A2. Formally, A1 is defined as follows:

Q1 = {r1, . . . , rn+m+1} q0
1 = r1 q f

1 = rn+m+1

δ1 = {(ri, pi, ri+1), (ri, pi, ri+1) | i ∈ [1, n]} ∪ {(rn+i, ci, rn+1+i) | i ∈ [1,m]}

The automaton A2 will consist of m independent branches, each one representing a

clause. Each branch has three parts, which we refer to as parts (a), (b), and (c). Part (a)
starts with the clause variable ci, and then follows with the variables corresponding to the

literals in Ci. This forces any run that assigns ci to also assign its literals. In part (b), states
are joined with two parallel transitions p j and p j , for every propositional variable p j not



69

used in Ci. This lets the run decide the truth value of the variables not used in the clause.

Finally, part (c) consists of a path with all the clause variables ck such that i , k. That is,

we let the run assign the rest of the variables corresponding to clauses. Therefore, every

accepting run in this automaton corresponds to a variable assignment that makes some

clause in α true. Figure 6.1 shows how a branch of this automaton looks for a particular

clause.

We will give the formal definition of the automata that correspond to the branches of

A2. Formally, the automaton Ai
2 = (Q, q0, q f , δ) corresponding to clause Ci is defined as

follows (i ∈ [1,m]).

Q = {s1, . . . , sn+m+1} q0 = s1 q f = sn+m+1

We define the transition relation δ in three sets, δa, δb, δc, corresponding to the three different

parts of the automaton.

δa = {(s1, ci, s2), (s2, li,1, s3), (s3, li,2, s4), (s4, li,3, s5)}

δb = {(s j+4, p′j, s j+5), (s j+4, p′j, s j+5) | p′1, . . . , p′n−3 are the variables

not in Ci, in some order, and j ∈ [1, n − 3]}

δc = {(sn+ j+1, c′j, sn+ j+2) | c′1, . . . , c
′
m−1 are the clause variables

different from ci, renumbered, and j ∈ [1,m − 1]}

Thus, δ = δa ∪ δb ∪ δc. Finally, A2 is defined as the automaton that results when we take

all the Ai
2 automata (i ∈ [1,m]) and fuse their initial states into a single initial state, and

fuse all their final states into one.
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C2 = p2 ∧ ¬p4 ∧ ¬p3

c2 p2 p4 p3
p1

p1

p5

p5

p6

p6
· · · c1 c3 c4 · · ·

Part (a) Part (b) Part (c)

Figure 6.1. Example of automaton Ai
2, where i = 2, from the proof of

Theorem 6.5.

Now we prove that nA1od ⊆ nA2od for every document d if and only if α is valid. First,

notice that we need only consider d = ε, since this is the only document that may satisfy A1

and A2. First, it is easy to see that each mapping µ corresponds to a valuation ν, namely, by

considering ν(p) = 1 if p ∈ dom(µ), and ν(p) = 0 if p ∈ dom(µ). The automaton A1 will

accept the set of mappings that correspond to all possible valuations over p1, . . . , pn. It is

also easy to see that the branch i in A2 will accept mapping µ if and only if µ corresponds

to a valuation that satisfies clause Ci. Therefore, if nA1od ⊆ nA2od , then A2 accepts the

mappings corresponding to all possible valuations. This means that for each valuation ν

there is a clause in α satisfied by ν, which means that α is valid. �

Since the complexity is still intractable, it would be interesting to isolate a subclass of

deterministic VA, where containment can be solved in PTIME. It is not difficult to show

that this can be obtained by considering deterministic VA which never produce a mapping

extracting two spans that intersect at their limit points.
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7. APPLICATION TO DOCUMENT ANNOTATION

The ideas and results presented in this thesis can also be applied in a practical scenario.

One such scenario is the annotation of semi-structured documents, such as comma-separated

values (CSV) files.

In this context, an annotation is a relation over spans, which is used to denote that

the tuples in this relation have a certain property or are related to a certain concept. For

example, one may use an annotation to indicate all spans in a document that correspond to

dates in “yyyy-mm-dd” format, or to indicate all pairs of spans in a CSV file that violate a

primary-key constraint. To accomplish this objective, one may use the rules explored in this

thesis to specify the regions in a document that will be associated with a specific annotation.

In their paper, Arenas et al. (2016) propose the language of navigation expressions,

which is a subset of spanRGX that fulfills most of the common use cases related to this

task. In this chapter , we present this language and explain how the results of this thesis

apply to it.

7.1. Navigation expressions

We start by defining a navigation language, which uses span regular expressions in a

very restricted form but can express most of the span-directed extraction used in practice.

A navigation expression (NE) ψ is defined by the following grammar:

ψ ::= ψ/ψ | any(S) | next(S) | x : next(S), x ∈ V | 〈x〉 : next(S), x ∈ V

S ::= w, w ∈ ∆+ | S + S

where S is assumed to be prefix free, that is, every expression S is of the form w1 + · · ·+wn,

where (a) ∆ = Σ ∪ { ,̀ a}, (b) every wi ∈ ∆+ (1 ≤ i ≤ n), and (c) wi is not a prefix of w j

(1 ≤ i, j ≤ n and i , j).

An NE is constructed as a sequence of expressions using either any or next. The axis

any(S) is used to move forward in a document reading any sequence of symbols ending
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with a word in S, while the axis next(S) is used to move forward to the next occurrence of a

word in S. Moreover, x : next(S) and 〈x〉 : next(S) perform the same form of navigation

as next(S), but in the former case the traversed span is stored in the variable x, while in

the latter case it is checked whether the content of the traversed span coincides with the

content of the span stored in x. Thus, the expressions any(S), next(S), x : next(S) and
〈x〉 : next(S) are useful to restrict the navigation between two or more separators, which is

a very common operation on CSV documents. Notice that we assume that S is prefix free,

as the set of separators used in practice usually satisfies this restriction (e.g comma and

semicolon).

We define the semantics of NEs in the same way as for span regular expressions.

More precisely, given a document d and a mapping µ over d, the base case nSo and the

recursive case nψ1/ψ2o, which denotes concatenation, are defined as for the case of span
regular expressions. Moreover, nany(S)o is defined as n(Σ ∪ { ,̀ a})∗/So. Finally, the

evaluation of next(S), x : next(S) and 〈x〉 : next(S) are defined as follows assuming that

S = w1 + · · · + wn and rS is the spanRGX ∆∗w1∆
∗ + · · · + ∆∗wn∆

∗ with ∆ = Σ ∪ { ,̀ a}:

nnext(S)o = {(i, j) ∈ span(d) |

∃k ≥ i : (k, j) ∈ nSo and (i, j − 1) < nrSo}
nx : next(S)o = {(i, j) ∈ span(d) | ∃k ≥ i : µ(x) = (i, k),

(k, j) ∈ nSo and (i, j − 1) < nrSo}

Notice that a span p belongs to nrSo if the content associated to p is a string of the form

uwiv with u, v ∈ ∆∗ and 1 ≤ i ≤ n, that is, if one of the separators in S occurs in the content

associated to p. Thus, if (i, j) ∈ nnext(S)o, then we know that there exists a position k

such that i ≤ k < j, the content of (k, j) is a word in S and no separator in S occurs between

positions i and j − 1. Hence, in this case we know that k is the next position from i where a

separator from S occurs.

Extraction expressions based on NEs are defined exactly as for spanRGX, that is, if ψ is

an NE, then ψ and x.ψ are considered to be extraction expressions if x ∈ V. However, the
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semantics of these formulas are defined in a slightly different way:

nψod = {µ | µ is a mapping over d such that

(1, k) ∈ nψo for some k, 1 ≤ k ≤ |d | + 1}

nx.ψod = {µ | µ is a mapping over d such that

µ(x) = (i, j) and (i, k) ∈ nψo for some k, i ≤ k ≤ j}

This definition formalises the fact that NEs are intended to be used to navigate forward in

a document until we find a separator, and without taking into consideration the symbols

after this separator. Thus, µ ∈ nψod if there exists a prefix (1, k) of the span (1, |d | + 1)
representing the entire document d such that (1, k) conforms to the conditions encoded in

ψ, thus without taking into account the symbols in the positions k + 1, . . ., |d |.
A navigation rule is defined the same way as before, but using NE instead of spanRGX.

The notion of tree-like navigation rules is defined analogously.

7.2. Complexity of evaluating Navigation Expressions

Given that this is a language designed to be used in a practical setting, we would expect it

to have good complexity properties. In their paper, Arenas et al. (2016) proved that tree-like

navigation rules can be efficiently evaluated. This, however, should not come as a surprise

to the reader of this thesis, since tree-like navigation rules combine the two properties that

we have shown are essential to have good complexity properties: sequentiality and tree-like

structure.

Given that NEs are a restriction of sequential spanRGX, and that we have already shown

that sequential tree-like rules can be evaluated efficiently (Theorem 5.5), we obtain the

following result.

Theorem 7.1. Eval of tree-like navigation rules is in PTIME. �
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Even though the above theorem gives us an algorithm for evaluating NEs, that algorithm

is far too general, and would probably have an unsatisfactory performance in a real-world

system. For this purpose, we designed and implemented an algorithm that is tailored to

NEs.

7.3. Efficient evaluation of NEs

The use of our framework requires an efficient algorithm for enumerating all the

mappings satisfying a navigation expression. We provide an algorithm that has running time

O(|ψ | · |d | + |Output|), where ψ is a navigation expression, d is a document and |Output| is
the size of the output. Furthermore, this algorithm belongs to the class of constant-delay

algorithms (Segoufin, 2014), namely, enumeration algorithms that take polynomial time in

preprocessing the input (i.e. ψ and d), and constant time between two consecutive outputs

(i.e. mappings).

7.3.1. A normal form for navigation expressions

The initial step for evaluating a navigation expression is to remove unnecessary any-

operators from the input navigation expression. For this purpose, we introduce a normal

form for navigation expressions and show that every formula can be transformed into this

normal form. Specifically, we say that an NE ϕ is a next-formula if it is the concatenation

of next-operators and at least one variable occurs in ϕ. Then a navigation expression is in

next normal form (NNF) if it is of the form ϕ0/any(S1)/ϕ1/. . . /any(Sk)/ϕk , where k ≥ 0,

ϕ0 is a sequence of next-operators and ϕ1, . . . , ϕk are next-formulas. Thus, between any

pair of contiguous any-operators there must exist at least one variable that captures a span.

The next step is to show that every NE ϕ can be efficiently converted into an equivalent

NE ψ in NNF. Here we say that ϕ and ψ are equivalent if for every document d and every

mapping µ over d, it holds that nϕo = nψo. Then we consider the following rewriting rules
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to meet our goal:

ψ1/any(S)/ϕ/any(S′)/ψ2 → ψ1/next(S)/ϕ/any(S′)/ψ2

ψ1/any(S)/ϕ → ψ1/next(S)/ϕ

where ϕ is a sequence of zero or more next-operators without variables, and ψ1, ψ2 are

arbitrary NEs. The following example illustrates how these two rules can be used to convert

a navigation expression into an equivalent one in NNF.

Example 7.1. Consider the following navigation expression:

ϕ = any(;)/next(;)/any(←↩)/x :next(←↩)/any(; )

This NE is not in NNF as it starts with two any-operations without variables in between.

This can be solved by applying the first rewriting rule, giving us:

ϕ1 = next(;)/next(;)/any(←↩)/x :next(←↩)/any(;)

Notice that ϕ and ϕ1 are equivalent NEs. Now ϕ1 is not in NNF as it ends with an

any-expression. This can be solved by applying the second rewriting rule, resulting in:

ϕ2 = next(;)/next(;)/any(←↩)/x :next(←↩)/next(;)

Finally, we have that ϕ2 is in NNF and ϕ2 is equivalent to ϕ.

It can be proved that every NE ϕ can be transformed into an equivalent NE ψ in NNF

by using the previous rewriting rules. Moreover, this transformation can be performed in

time O(|ϕ|).

7.3.2. An efficient algorithm for evaluating NE

We divide the evaluation of an NE into four steps. The input of this process is an NE ψ

in NNF and a document d, and then the output is the set of mappings µ such that µ ∈ nψod .
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We assume that ψ has no repeated variables, as if it had then the evaluation of ψ would

be empty (recall that the content operator is not used, and two spans (i, j) and (k, `) are
assumed to be equal if i = k and j = `). Besides, it can be easily checked whether ψ has

repeated variables.

The first procedure takes as input a document d and a prefix-free set of words S (recall

that in an NE of the form any(S) or next(S), the set S is assumed to be prefix-free). The

procedure then runs the Aho-Corasick algorithm (Aho & Corasick, 1975) to produce an

array A that is of the length of the input document, and such that A[i] stores the next span
in d that matches a word from S for every i ∈ {1, . . . |d |}. This idea is illustrated in the

following figure.

d
i s1 s2

w ∈ SA[i] = (s1, s2)

In this figure, and others illustrating how the evaluation works, the straight line represents

the input document d, while the markings i, s1, s2 denote positions inside the document.

Recall that the content of a span (i, j) is the infix of d between position i and j − 1.

The algorithm itself (called separators_match) is given in Figure 7.1. To analyse the

algorithm, observe that we repeatedly run the Aho-Corasick string matching procedure.

The iterator m starts at the begining of the document and after we find a match (s1, s2) for
some string in S we store this span into A[m] through A[s1]. After this the iterator m is

set to s1 + 1, as this is the position of the next possible match. It is important to stress

that there are no matches for strings in S beginning between positions m and s1, therefore

(s1, s2) is the first possible match. Besides, due to the fact that S is prefix-free, this is also

the only possible match starting at s1. As the running time of the Aho-Corasick algorithm

is O(|S | + |d |) (since S is prefix-free), and the only overhead we have is assigning spans to

the array A, the total time of the algorithm separators_match is still O(|S | + |d |).
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Data: A document d and a prefix-free set of words S

Result: An array A[1..|d | + 1] of span(d)

Function separators_match(d, S)
aho_corasick. init(d, S)

m := 1

while (s1, s2) := aho_corasick. next() do
for i = m to s1 do

A[i] := (s1, s2)

m := s1 + 1

return A

Figure 7.1. Finding all matches for a set of separators.

The next part of the algorithm, presented in Figure 7.2, deals with computing the

possible valuations for a context, that is, a subformula of the expression that is of the form

any(S)/v1 :next(S1)/. . . /vn :next(Sn), where vi is either a variable, or a placeholder ⊥,
specifying that next is used without a variable. Note that contexts are the building blocks

of any expression in NNF since any NNF-expression is of the form ϕ0/E1/. . . /En where

ϕ0 is a sequence of next-operators and each subformula Ei is a context. Similarly to the

previous algorithm, here we will again return an array whose i-th position will contain the

information about the next possible match that occurs after the position i.

To start the computation, the algorithm context_match in Figure 7.2 calls the function

separators_match from Figure 7.1 for each of the input sets of words S, S1, . . ., Sn. The

information for the set S is stored in an array A, while the information about each Si is stored

in an array B[i]. Therefore, A and B[i], for i = 1 . . . n, are all arrays of size |d |. This means

that we can also refer to B as a matrix whose entry B[i][ j] contains the information about

the next span matching a word from the set Si after the position j of the input document d.
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Data: A document d, a prefix-free set of words S, and a sequence (v1, S1), . . . (vn, Sn)
where each Si is a prefix-free set of words and vi ∈ V ∪ ⊥.

Result: An array C[1..|d | + 1] of triples (r1, r2, µ), where (r1, r2) ∈ span(d) and
µ : V → span(d) is a partial function.

Function context_match(d, S, (v1, S1), . . . (vn, Sn))
A := separators_match(d, S)
for i = 1 to n do

B[i] := separators_match(d, Si)
m := 1
while A[m] , null do
(s1, s2) := A[m]
r1 := s1
µ := ∅
for i = 1 to n do

if B[i][s2] = null then break
(t1, t2) := B[i][s2]
if vi , ⊥ then µ(vi) := (s2, t1)
(s1, s2) := (t1, t2)

if i = n + 1 then
r2 := s2
for i = m to r1 do

C[i] := (r1, r2, µ)
m := r1 + 1

else if A[r1 + 1] v A[r1] then
A[m] := A[r1 + 1]

else break
return C

Figure 7.2. Finding all matches for a context.

The main loop of the algorithm now proceeds to try and match the context expression

any(S)/v1 :next(S1)/. . . /vn :next(Sn) to the input document d to the right of the position

m (beginning with m = 1). As long as the algorithm can keep on matching S (the condition
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A[m] , null), it stores the information about the next possible match and tries to match S1

through Sn (now using the matrix B in the for loop). If the matching was successful we

store the information about the used-up portion of the document d into the (context) array

C (note that this means that all positions from m to the start of the match for S, namely r1,

will have this information), and then we start matching again from the position r1 + 1. In

the case we did not manage to match all of the context expression, the only other possibility

of a successful match is when we have that A[r1 + 1] is contained in A[r1], where a span
(k1, k2) is contained in an span (`1, `2), denoted by (k1, k2) v (`1, `2), if `1 ≤ k1 and k2 ≤ `2.

To clarify why this is so consider the following illustration of what the algorithm does.

d
ii r1 r2

S S1 Sn
. . . . . .

C[i] = (r1, r2, µ)

If there is a match for S that starts after the position r1, ends after the ending position of the

current match for S, and allows to successfully match all the sets S1 through Sn, then so

does the current match of S (after all our expression only asks for the next position that

matches each Si and nothing more). Therefore, if the match starting at r1 fails, so does one

starting after r1 that is longer than it. On the other hand, if the match at r1 fails, but there is

one starting at or after r1 + 1 that is contained in it, there is a possibility for this match to be

extended to cover all the sets S1 to Sn. This possibility is illustrated in the figure below.

d
ii r1 r2

A[i]

S1A[r1 + 1] Sn
. . .

C[i] = (r1 + 1, r2, µ)

Notice that if all of the possibilities fail, we have exhausted our options and the algorithm

finishes. To analyse the running time of the algorithm context_match, we first notice that

running separately the function separators_match for the sets S, S1, . . . , Sn takes total time

O(|S | + ∑n
i=1 |Si | + (n + 1) · |d |). Moreover, the while loop of the algorithm takes time

O(n · |d |), as we have to loop over every set Si, for i = 1 . . . n. We can thus conclude that

running the procedure context_match from Figure 7.2 takes time O(|S | +∑n
i=1 |Si | + n · |d |),

which is indeed O(|ψ | · |d |) where |ψ | is the size of the input navigation expression.
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With the two procedures presented before, we are able to find all matchings for a context

of the form any(S)/v1 :next(S1)/. . . /vn :next(Sn). Recall that every expression in NNF
is simply a concatenation of such contexts, plus an easily evaluable initial segment. In fact,

the last two steps of the algorithm assume that we have partitioned our input navigation

expression ψ into contexts E1, . . . , En of such subexpressions, and we have computed the

corresponding arrays C1, . . . ,Cn using the algorithm context_match from Figure 7.2.

Data: A document d and a sequence C1, . . . ,Cn such that each Ci is an array

Ci[1..|d | + 1] of triples (r1, r2, µ), where (r1, r2) ∈ span(d) and
µ : V → span(d) is a partial function.

Result: An array R[1..|d | + 1] over {1, . . . , n + 1}.

Function forward_index(d,C1, . . . ,Cn)
k := n

for i = |d | + 1 to 1 do

if k = 0 then

R[i] := 1

else if Ck[i] = null then

R[i] := k + 1

else

(r1, r2, µ) := Ck[i]

if R[r2] = k + 1 then k := k − 1

R[i] := k + 1

return R

Figure 7.3. Computing the forward index.
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The next step of our procedure is a quick index building algorithm (called forward_index)

that will allow us to discard positions not leading to a match in an efficient manner. This

step, presented in Figure 7.3, computes an array R such that for each position i in the input

file (e.g. CSV-like document), R[i] contains the least number k such that, starting from

position i, it is possible to find a match for the subexpression Ek/Ek+1/· · · /En of the input

expression. This idea can be depicted as follows:

d
ii r1 r2

Ek Ek+1 En
. . . . . .

R[i] = k

As expected, the algorithm forward_index traverses the input document d backwards and at

each position tries to match the context Ek , starting with k = n. If a match is possible (the

second else clause in Figure 7.3), we take note of that and reduce the index k by one in order

to move to the previous subexpression Ek−1. Since all of the information is already stored

in arrays C1, . . . ,Cn, the cost of this part of the algorithm is simply the cost of traversing

the input document d once, or in other words O(|d |).
The final part of the algorithm, presented in Figure 7.4, computes all the possible

valuations that make an expression ψ = E1/E2/. . . /En true, where each Ei is a context of

the form any(S)/v1 : next(S1)/. . . /vn : next(Sn). As input, all_matches takes all of the

information computed by the previous algorithms. In particular it has at its disposal the

arrays Ci corresponding to the context Ei (computed by the function context_match), as

well as the array R from forward_index. With this information the algorithm proceeds to

compute the output in time that is proportional to the number of valuations that allow for a

successful match of ψ.

The idea of the evaluation is to simulate the typical recursive approach that tries all

possible combinations of matchings for E1 through En and backtracks as necessary. To

do this, we use the array T whose i-th position stores the next possible starting point for a

match of the context Ei. Intuitively, T acts as a stack where we store the current position

of a match for the context Ei in T[i]. Whenever T[1] to T[i] contains a match of E1 to

Ei, respectively, we try to match the contexts Ei+1 to En (and compute all the successful

matches for them) before we move the starting point of the next match for Ei one position to
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the right. The procedure is then repeated until we have exhausted the search space. What

makes our approach efficient is the fact that we only explore a branch of the search tree

that is guaranteed to lead to a match. Specifically, we reduce the search space by using the

index R from forward_index, which tell us if a match from the current position is possible.

Next we describe this process in more detail.

The algorithm all_matches uses the iterator m to denote which context Em is currently

processing. It starts with m = 1 and with T[1] = 1, thus assuming that it will be possible to

match the entire expression ψ to the input document d. In each step the algorithm then

checks if it can match the part of the expression starting from Em, namely, the subexpression

Em/. . . /En. If this is not possible (the condition R[T[m]] > m is true), then we simply

move to the previous subexpression and try to match it from the next position to the right.

Note that the use of array R allows us to terminate the evaluation of a branch that will not

lead to a successful match at the first possible occasion. If a match is possible, we take

note of that (σm stores the valuation for Em using the information precomputed in array

Cm) and move to the next context. This step is executed in the else clause of the algorithm

all_matches. Finally, if m reaches n + 1, then we manage to match the entire expression

(the final if clause), so we take the union of µ1, . . ., µn to produce a mapping that makes

ψ true (this union is well defined as ψ does not have repeated variables). Then we try to

match En again, but this time starting one position to the right of the previous match. The

algorithm then moves downwards to find the next match for En−1 and so on until it found all

the matches for ψ.
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Data: A document d, an array R[1..|d | + 1] over {1, . . . , n + 1}, and a sequence
C1, . . . ,Cn such that each Ci is an array Ci[1..|d | + 1] of triples (r1, r2, µ),
where (r1, r2) ∈ span(d) and µ : V → span(d) is a partial function.

Result: A set O of partial functions µ : V → span(d).
Function all_matches(d, R,C1, . . . ,Cn)

Let T[0..n + 1] be an array of integers
Let µ1, . . . , µn be partial functions fromV to span(d)
T[1] := 1
m := 1
while m ≥ 1 do

if R[T[m]] > m then
m := m − 1
T[m] := T[m] + 1

else
(r1, r2, µ) := Cm[T[m]]
T[m] := r1
µm := µ
m := m + 1
T[m] := r2

if m > n then
O := O ∪ {µ1 ] · · · ] µn}
m := m − 1
T[m] := T[m] + 1

return O

Figure 7.4. Computing all possible matches.

To analyse the running time of the algorithm, first notice that the total running time

needed to precompute arrays Ci and R is bounded by O(|ψ | · |d |). As discussed above,

the final part of the algorithm simply outputs all valid matchings, and does so knowing in

advance if a branch in the tree of all possible matches will result in a valid match. Therefore

the running time of that part of the algorithm is equal to the number of valid matchings for

the expression, or size of the output. Summing up, the total running time of the algorithm



84

is O(|ψ | · |d | + |Output|). The algorithm is also constant-delay (Segoufin, 2014), as it takes

O(|ψ | · |d |) time to preprocess the input, and constant time between two consecutive outputs.

7.4. Experimental evaluation

To illustrate that the algorithm from the preceding section does not only have good

theoretical complexity, in this section we describe how a system based on its implementation

performs over real world datasets. Here we describe the datasets and the experiments used

to test the efficiency of this algorithm, and compare it with the stream editing tool AWK.

Due to the lack of space programs used in the experiments have been omitted, but are

made available at Annotating CSV documents: An Online Appendix (2015), where we also

provide the complete source code and documentation of our implementation and more

detailed results of the experiments.

Implementation details. Our prototype implements a restricted but functional version of

navigation programs that covers all use cases inW3C (2014). To simplify the implementation,

we restrict navigational expressions to use at most one content operator, rules to be tree-like,

and navigational programs to be non-recursive. It is important to add that to cope with

the requirement ForeignKeyReferences we allow binary relations in the head of rules for

storing results. For the evaluation of these programs, we use the algorithm discussed in this

chapter to evaluate navigational expressions. Finally, for the evaluation of non-recursive

programs we compute each rule in order, evaluating its navigational expressions separately,

and intersecting their results with the precomputed annotations mentioned in the rule.

Datasets. We test our implementation on a number of CSV datasets and query logs. CSV

files come from the use cases considered by W3C’s CSV on the Web working group (W3C,

2014) and use data from: World Bank (2015) (WB), Office for National Statistics (2015)

(ONS) and The City of Palo Alto, California Urban Forest Section (2015) (PA). While

the Palo Alto tree data provides us with only one CSV file, for other two datasets we

used many files of different sizes. In the end we tested our implementation on a total of

thirteen different CSV files with sizes ranging from 6 to 183 MB. Note that most of the files
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published by these organisations are of much smaller size, however, we decided to use larger

files in order to show how the implementation works in extreme circumstances. As all of

the CSV files we obtained were well structured, we also tested how our implementation

behaves on noisy data by modifying the existing files by including additional empty rows,

changing the expected values in one column in 5% of the rows, and adding an extra column

to 5% of the rows. For each CSV document we created its noisy variant and used it for

testing. The query log files we use were collected by The LSQ team (2015) and come from

public SPARQL endpoints of The British Museum (2015) and DBpedia team (2015). For

the experiments we used the raw log files provided by The LSQ team (2015) and tested our

implementation on a total of 19 files, their sizes ranging between 2 and 190 MB. Due to a

large number of files,and since files of similar size show same trends in evaluation times,

we will present the evaluation result for only a handful of them. We provide the complete

results for all the files in Annotating CSV documents: An Online Appendix (2015).

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  

16	
  

18	
  

PA	
  (18	
  MB)	
   WB	
  (31MB)	
   ONS	
  (55	
  MB)	
  

Ti
m
e	
  
(s
ec
on

ds
)	
  

Dataset	
  (size)	
  

exp1	
  

exp2	
  

exp3	
  

exp4	
  

exp5	
  

Figure 7.5. Running time on medium sized CSV files.

Experiments for CSV files. These experiments were motivated by the requirements for

CSV metadata proposed by the W3C CSV on the Web working group (W3C, 2014). To test

our implementation we will use five different experiments that run navigation programs

which annotate CSV files, or check if some constraint is violated. Our first experiment

(exp1) annotates the entire file. This type of annotation is used when we want to specify

that the file is in particular language, or that it is to be displayed in a particular way. Next,

in exp2 we annotate a single column within a file, which is used when one wants to specify
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that this column contains values that are of a certain type, or that it forms a primary key. In

exp3 we check if a primary key constraint is violated in our file. We continue with exp4

where conformance of a column to a datatype specification is tested. Finally, in exp5 we

use a more complex navigation program consisting of three rules, each of which annotates

a different column and checks that its values are of a certain datatype.

Experiments for query logs. Here we were annotating the data one might naturally want

to obtain when managing log files, such as the actual text of the query, the time it was

executed, the endpoint used, etc. Over these datasets we also use five experiments. The

first experiment exp1 annotates all the queries which use the OPTIONAL operator of the

SPARQL query language. Similarly, in exp2 we find all the queries which have more than

one occurrence of this operator. In exp3 we annotate all the queries using the FILTER

operator that were executed between noon and one o’clock. Next, in exp4 we find the

queries with double OPTIONAL and using a binary output relation store such queries

together with the time when they were executed. The final experiment, exp5, works

similarly, but stores queries with two occurrences of FILTER, together with the details

about the endpoint used to execute them.

Results. The testing was done using a Laptop with an Intel Core i7-4510u processor and 8

GB of main memory, running Arch Linux x86_64, kernel 4.2.2. Each experiment was ran

three times and the average score was reported (we also note that there were no significant

deviations from the average).

The first set of results, presented in Figure 7.5, shows the running times when CSV files

of reasonable size are used. Here we test on three files: the Palo Alto trees file is 18 MB in

size, while the World Bank file weights 35 MB and the ONS one 55 MB. As expected, the

running times scale according to the size of the file, but as all of the times were really fast

(less than sixteen seconds), we can conclude that on average sized files our implementation

runs well considering that we use raw data with no precomputed indices. One can notice

that times are much longer for experiment 5, however, this is to be expected, as the program

exp5 does about three times more work than any of the other programs, as discussed above.
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Next we wanted to see how the results scale when similar files of increasing sizes

are used. To test this we selected one large CSV file from the World Bank dataset of

size 130 MB and containing around 600,000 lines. From this we generated ten different

files, each containing first k × 60,000 lines of the original file, with k between one and

ten. The experiments were then ran against each of these files. As we can see from

Figure 7.6, the results do scale as expected from the formal analysis this chapter. Here

we selected experiments 1, 3 and 4 as they are the most representative. The other two

experiments behave similarly (see Annotating CSV documents: An Online Appendix (2015)

and Table 7.1).
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Figure 7.6. Scaling based on file size.

We also considered three large files (one obtained from the World Bank and two from

the ONS). Although these files are in no way representative of the average size appearing in

practice, we wanted to see if our implementation could still be used in these cases. The file

from the World Bank dataset was 160 MB in size, while the two from the ONS weighed

175 MB and 183 MB. The test results are show in Table 7.1. As we can see, for files less

than 200 MB in size there are no significant problems in terms of the evaluation. Since

in practice one is likely to work with files that fall on the smaller end of the spectrum,

we believe that our experiments serve to illustrate that navigation programs can be used

efficiently.
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Table 7.1. Running times (in seconds) on large files.

exp1 exp2 exp3 exp4 exp5

WB (160 MB) 4 13 12 13 39

ONS (175 MB) 5 16 17 16 47

ONS (183 MB) 5 17 18 17 50

Our final round of experiments for CSV files was conducted using noisy documents

which do not conform to the tabular format as described in W3C (2015). The theoretical

analysis of our programs in this chapter showed that, whether a file is noisy or not, this

should not have much impact on the performance of the evaluation and our experiments

on CSV files with synthetically created noise show this. In particular, since the amount of

noise we added did not significantly change the size of the files, the performance for each

experiment was essentially the same as on original data (in fact the results on noisy files are

generally slightly faster as less data passes the filters and gets stored). The details on noisy

files and the precise performance of the experiments over them can be found at Annotating

CSV documents: An Online Appendix (2015).

As far as the experimental results on query logs are concerned they show similar

performance as the ones on CSV files. In Figure 7.7 we present evaluation times of our

five programs for four different query log files. From the logs of the British Museum we

selected the smallest and the largest file available, and from DBPedia we selected two files

on the larger end of the spectrum. The sizes were selected so that they further illustrate the

fact that the performance scales as the size of the document increases.
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Figure 7.7. Running times on query logs.

Comparison with stream editing tools. We also compare our implementation with the

standard stream editing tool AWK (Aho, Kernighan, & Weinberger, 1988). Although

AWK is less expressive than the framework we propose, in some cases AWK programs

which simulate navigation expressions can be constructed. To carry out the comparison we

created AWK programs equivalent to navigation expressions used in exp1 through exp4

over query logs. Of course, when allowed to match just a single pattern line by line, AWK

performs better than our implementation; however, when asked to produce the same set of

annotations as our experiments over the files being treated as a single line, the majority

of AWK programs took more than a minute, or ran out of memory, while processing the

DBPedia and British Museum query logs. In comparison, our implementation computed

the answers in less than 14 seconds (Figure 7.7). Complete programs and running times

can be found at Annotating CSV documents: An Online Appendix (2015). We can conclude

that when annotations spanning multiple lines, or with noisy files missing many new line

symbols, AWK techniques might not be the best choice for producing annotations.
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8. CONCLUSION

Throughout this work, we have seen many of the different properties of variable regexes,

variable automata, and some of their variants. To finalize, we will discuss some of the

possible avenues for future research and summarize our key contributions.

8.1. Future work

Implementation. Even though we have shown that many problems related to these

IE languages are tractable, some of the algorithms we have provided would be inadequate

for real-world implementations. Therefore, there is still a need for practical algorithms

with finer complexity guarantees and a concern for possible implementation constraints and

issues.

Full Datalog rules. In this work, we studied the expressiveness and complexity of span

regex in conjunction with a very constrained form of Datalog. The next step, thus, would be

to study how do bounds change when we consider additional features from Datalog, such as

recursion. On a similar note, one could study the usability of this approach and how would

it relate to an extension of context-free grammars with variables.

Computation models. Variable automata seem like a very natural extension of finite

automata. In this regard, there is a vast amount of computation models that could be

similarly extended with variable operations (e.g., Pushdown Automata). It would therefore

be interesting how would this different models would compare to variable automata in terms

of expressiveness and complexity.

8.2. Final remarks

In this thesis we showed how previous frameworks for information extraction can be

extended in order to incorporate incomplete or missing information, a feature often needed

when processing data from noisy sources, such as the Web. We did so by redefining the
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semantics of regex formulas introduced by Fagin et al. (2015), allowing them to output

mappings instead of relations. This addition also permitted us to subsume other approaches

to IE, thus creating a general framework for studying expressiveness and complexity of

information extraction languages.

From our analysis it follows that several variants of expressions proposed by Fagin et

al. (2015) and Arenas et al. (2016) are in fact equivalent, and that obtaining an efficient

algorithm for enumerating all of their outputs is generally not possible. To overcome the

latter, we isolated a class of sequential regex formulas, which extend the functionality

constraint proposed by Fagin et al. (2015), and show that these can be efficiently evaluated

both in isolation, and when combined into tree-like rules of Arenas et al. (2016). Finally,

we showed that the good properties of sequential tree-like rules are also preserved when

considering main static tasks, such as satisfiability, non-emptiness, and containment. This

suggests that these kind of expressions have the potential to serve as a theoretical base of

information extraction languages.
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