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Abstract This paper describes the trigger and offline

reconstruction, identification and energy calibration al-
gorithms for hadronic decays of tau leptons employed

for the data collected from pp collisions in 2012 with

the ATLAS detector at the LHC center-of-mass energy√
s = 8TeV. The performance of these algorithms is

measured in most cases with Z decays to tau leptons

using the full 2012 dataset, corresponding to an inte-

grated luminosity of 20.3 fb−1. An uncertainty on the

offline reconstructed tau energy scale of 2−4%, depend-

ing on transverse energy and pseudorapidity, is achieved
using two independent methods. The offline tau identifi-

cation efficiency is measured with a precision of 2.5% for

hadronically decaying tau leptons with one associated

track, and of 4% for the case of three associated tracks,
inclusive in pseudorapidity and for a visible transverse

energy greater than 20 GeV. For hadronic tau lepton

decays selected by offline algorithms, the tau trigger

identification efficiency is measured with a precision of

2 − 8%, depending on the transverse energy. The per-
formance of the tau algorithms, both offline and at the

trigger level, is found to be stable with respect to the

number of concurrent proton-proton interactions and

has supported a variety of physics results using hadron-
ically decaying tau leptons at ATLAS.
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1 Introduction

With a mass of 1.777 GeV and a proper decay length

of 87 µm [1], tau leptons decay either leptonically

(τ → ℓνℓντ , ℓ = e, µ) or hadronically (τ → hadrons ντ ,

denoted τhad) and do so typically before reaching active

regions of the ATLAS detector. They can thus only

be identified via their decay products. In this paper,
only hadronic tau lepton decays are considered. The

hadronic tau lepton decays represent 65% of all possi-

ble decay modes [1]. In these, the hadronic decay prod-

ucts are one or three charged pions in 72% and 22% of
all cases, respectively. Charged kaons are present in the

majority of the remaining hadronic decays. In 78% of

all hadronic decays, up to one associated neutral pion is

also produced. The neutral and charged hadrons stem-

ming from the tau lepton decay make up the visible
decay products of the tau lepton, and are in the follow-

ing referred to as τhad-vis.

The main background to hadronic tau lepton de-

cays is from jets of energetic hadrons produced via the

fragmentation of quarks and gluons. This background
is already present at trigger level (also referred to as

online in the following). Other important backgrounds

are electrons and, to a lesser degree, muons, which

can mimic the signature of tau lepton decays with one
charged hadron. In the context of both the trigger and

the offline event reconstruction (shortened to simply

offline in the following), discriminating variables based

on the narrow shower shape, the distinct number of

charged particle tracks and the displaced tau lepton
decay vertex are used.

Final states with hadronically decaying tau lep-

tons are an important part of the ATLAS physics

program. Examples are measurements of Standard

Model processes [2,3,4,5,6], Higgs boson searches [7],
searches for new physics such as Higgs bosons in mod-

els with extended Higgs sectors [8,9,10], supersymme-

try (SUSY) [12,13,11], heavy gauge bosons [14] and

leptoquarks [15]. This places strong requirements on
the τhad-vis identification algorithms (in the following,

referred to as tau identification): robustness and high
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performance over at least two orders of magnitude in
transverse momentum with respect to the beam axis

(pT) of τhad-vis, from about 15 GeV (decays of W and

Z bosons or scalar tau leptons) to a few hundred GeV

(SUSY Higgs boson searches) and up to beyond 1 TeV

(Z ′ searches). At the same time, an excellent energy
resolution and small energy scale uncertainty are par-

ticularly important where resonances decaying to tau

leptons need to be separated (e.g. Z → ττ fromH → ττ

mass peaks). The triggering for final states which rely
exclusively on tau triggers is particularly challenging,

e.g. H → ττ where both tau leptons decay hadroni-

cally. At the trigger level, in addition to the challenges

of offline tau identification, bandwidth and time con-

straints need to be satisfied and the trigger identifica-
tion is based on an incomplete reconstruction of the

event. The ATLAS trigger system, together with the

detector and the simulation samples used for the stud-

ies presented, are briefly described in Sect. 2.
The ATLAS offline tau identification uses various

discriminating variables combined in Boosted Decision

Trees (BDT) [16,17] to reject jets and electrons. The

offline tau energy scale is set by first applying a local

hadronic calibration (LC) [18] appropriate for a wide
range of objects and then an additional tau-specific

correction based on simulation. The online tau iden-

tification is implemented in three different steps, as is

required by the ATLAS trigger system architecture [19].
The same identification and energy calibration proce-

dures as for offline are used in the third level of the

trigger, while the first and second trigger levels rely

on coarser identification and energy calibration proce-

dures. A description of the trigger and offline τhad-vis re-
construction and identification algorithms is presented

in Sect. 3, and the trigger and offline energy calibration

algorithms are discussed in Sect. 5.

The efficiency of the identification and the energy
scale are measured in dedicated studies using a Z → ττ -

enhanced event sample of collision data recorded by

the ATLAS detector [20] at the LHC [21] in 2012 at

a centre-of-mass energy of 8 TeV. This is described in

Sect. 4 and Sect. 5. Conclusions and outlook are pre-
sented in Sect. 6.

2 ATLAS detector and simulation

2.1 The ATLAS detector

The ATLAS detector [20] consists of an inner track-

ing system surrounded by a superconducting solenoid,

electromagnetic (EM) and hadronic (HAD) calorime-
ters, and a muon spectrometer (MS). The inner detec-

tor (ID) is immersed in a 2 T axial magnetic field, and

consists of pixel and silicon microstrip (SCT) detectors
inside a transition radiation tracker (TRT), providing

charged-particle tracking in the region |η| < 2.5.1 The

EM calorimeter uses lead and liquid argon (LAr) as

absorber and active material, respectively. In the cen-

tral rapidity region, the EM calorimeter is divided in
three layers, one of them segmented in thin η strips

for optimal γ/π0 separation, and completed by a pre-

sampler layer for |η| < 1.8. Hadron calorimetry is

based on different detector technologies, with scintil-
lator tiles (|η| < 1.7) or LAr (1.5 < |η| < 4.9) as ac-

tive medium, and with steel, copper, or tungsten as the

absorber material. The calorimeters provide coverage

within |η| < 4.9. The MS consists of superconducting

air-core toroids, a system of trigger chambers covering
the range |η| < 2.4, and high-precision tracking cham-

bers allowing muon momentum measurements within

|η| < 2.7.

Physics objects are identified using their specific de-

tector signatures; electrons are reconstructed by match-

ing a track from the ID to an energy deposit in the
calorimeters [22,23], while muons are reconstructed us-

ing tracks from the MS and ID [24]. Jets are recon-

structed using the anti-kt algorithm [25] with a dis-

tance parameter R = 0.4. Three-dimensional clusters

of calorimeter cells called TopoClusters [26], calibrated
using a local hadronic calibration [18], serve as inputs

to the jet algorithm. The missing transverse momentum

(with magnitude Emiss
T ) is computed from the combina-

tion of all reconstructed physics objects and the remain-
ing calorimeter energy deposits not included in these

objects [27].

The ATLAS trigger system [19] consists of three

levels; the first level (L1) is hardware-based while the

second (L2) and third (Event Filter, EF) levels are

software-based. The combination of L2 and the EF are

referred to as the high-level trigger (HLT). The L1 trig-
ger identifies regions-of-interest (RoI) using information

from the calorimeters and the muon spectrometer. The

delay between a beam crossing and the trigger decision

(latency) is approximately 2 µs at L1. The L2 system
typically takes the RoIs produced by L1 as input and re-

fines the quantities used for selection after taking into

account the information from all subsystems. The la-

tency at L2 is on average 40 ms, but can be as large

1 ATLAS uses a right-handed coordinate system with its
origin at the nominal interaction point (IP) in the centre of
the detector and the z-axis along the beam direction. The x-
axis points from the IP to the centre of the LHC ring, and the
y-axis points upward. Cylindrical coordinates (r, φ) are used
in the transverse (x, y) plane, φ being the azimuthal angle
around the beam direction. The pseudorapidity is defined in
terms of the polar angle θ as η = − ln tan(θ/2). The distance
∆R in the η–φ space is defined as ∆R =

√

(∆η)2 + (∆φ)2.
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Process Trigger Requirements at EF [GeV]

H± →τhadν τhad-vis + Emiss
T pT(τ) > 29 Emiss

T > 50
HSM →τhadτlep, Z →τhadτlep τhad-vis + e pT(τ) > 20 pT(e) > 18

τhad-vis + µ pT(τ) > 20 pT(µ) > 15
HSM →τhadτhad τhad-vis + τhad-vis pT(τ1) > 29 pT(τ2) > 20
SUSY(τhadτhad), HSUSY →τhadτhad τhad-vis + τhad-vis pT(τ1) > 38 pT(τ2) > 38
Z’→τhadτhad τhad-vis + τhad-vis pT(τ1) > 100 pT(τ2) > 70
W ’→τhadν τhad-vis pT(τ) > 115

Table 1 Tau triggers with their corresponding kinematic requirements. Examples of physics processes targeted by each trigger
are also listed, where τhad and τlep refer to hadronically and leptonically decaying tau leptons, respectively.

as 100 ms at the highest instantaneous luminosities. At

the EF level, algorithms similar to those run in the of-

fline reconstruction are used to select interesting events
with an average latency of about 1 s.

During 2012, the ATLAS detector was operated

with a data-taking efficiency greater than 95%. The

highest peak luminosity obtained was 8 · 1033 cm−2s−1

at the end of 2012. The observed average number of

pile-up interactions (meaning generally soft proton–

proton interactions, superimposed on one hard proton–

proton interaction) per bunch crossing in 2012 was 20.7.
At the end of the data-taking period, the trigger system

was routinely working with an average (peak) output

rate of 700 Hz (1000 Hz).

2.2 Tau trigger operation

In 2012, a diverse set of tau triggers was implemented,

using requirements on different final state configura-

tions to maximize the sensitivity to a large range of

physics processes. These triggers are listed in Table 1,
along with the targeted physics processes and the as-

sociated kinematic requirements on the triggered ob-

jects. For the double hadronic triggers, in the lowest

threshold version (29 and 20 GeV requirement on trans-

verse momentum for the two τhad-vis) two main criteria
are applied: isolation at L12, and full tau identifica-

tion at the HLT. The isolation requirement is dropped

for the intermediate threshold version, and both crite-

ria are dropped in favour of a looser (more than 95%
efficient), non-isolated trigger for the version with the

highest thresholds.

As the typical rejection rates of τhad-vis identifica-

tion algorithms against the dominant multi-jet back-
grounds are considerably smaller than those of elec-

tron or muon identification algorithms, τhad-vis triggers

must have considerably higher pT requirements in or-

der to maintain manageable trigger rates. Therefore,

2 A detailed definition of the isolation requirement is pro-
vided in Sect. 3.3.

most analyses using low-pT τhad-vis in 2012 depend on

the use of triggers which identify other objects. How-

ever, by combining tau trigger requirements with re-
quirements on other objects, lower thresholds can be

accommodated for the tau trigger objects as well as

the other objects.

Figure 1 shows the tau trigger rates at L1 and the

EF as a function of the instantaneous luminosity dur-
ing the 8 TeV LHC operation. The trigger rates do not

increase more than linearly with the luminosity, due

the robust performance of the trigger algorithms under

different pile-up conditions. The only exception is the

τhad-vis + Emiss
T trigger, where the extra pile-up associ-

ated with the higher luminosity leads to a degradation

of the resolution of the reconstructed event Emiss
T . At

the highest instantaneous luminosities, the rates are af-

fected by deadtime in the readout systems, leading to
a general drop in the rates.

2.3 Simulation and event samples

The optimization and measurement of tau performance

requires simulated events. Events with Z/γ∗ and W bo-

son production were generated using alpgen [28] in-

terfaced to herwig [29] or Pythia6 [30] for fragmen-
tation, hadronization and underlying-event (UE) mod-

elling. In addition, Z → ττ and W → τν events were

generated using Pythia8 [31], and provide a larger sta-

tistical sample for the studies. For optimization at high
pT, Z

′ → ττ with Z ′ masses between 250 GeV and 1250

GeV were generated with Pythia8. Top-quark-pair as

well as single-top-quark events were generated with

mc@nlo+herwig [32], with the exception of t-channel

single-top production, where AcerMC+Pythia6 [33]
was used. WZ and ZZ diboson events were generated

with herwig, and WW events with alpgen+herwig.

In all samples with τ leptons, except for those simu-

lated with Pythia8, Tauola [34] was used to model
the τ decays, and Photos [35] was used for soft QED

radiative corrections to particle decays.
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Fig. 1 Tau trigger rates at (a) Level 1 and (b) Event Filter
as a function of the instantaneous luminosity for

√
s = 8TeV.

The triggers shown are described in Table 1, with the τhad-vis
+τhad-vis being the rate for the lowest threshold trigger re-
ported in the table. The rates for the higher threshold triggers
are approximately three and five times lower at L1 and HLT,
respectively, and are partially included in the rate of the low-
est threshold item.

All events were produced using CTEQ6L1 [36]

parton distribution functions (PDFs) except for the

mc@nlo events, which used CT10 PDFs [37]. The UE
simulation was tuned using collision data. Pythia8

events employed the AU2 tune [38], herwig events the

AUET2 tune [39], while alpgen+Pythia6 used the

Perugia2011C tune [40] and AcerMC+Pythia6 the

AUET2B tune [41].

The response of the ATLAS detector was simulated

using GEANT4 [42,43] with the hadronic-shower model
QGSP BERT [44,45] as baseline. Alternative models

(FTFP BERT [46] and QGSP) were used to estimate

systematic uncertainties. Simulated events were over-

laid with additional minimum-bias events generated
with Pythia8 to account for the effect of multiple inter-

actions occurring in the same and neighbouring bunch

crossings (called pile-up). Prior to any analysis, the sim-
ulated events were reweighted such that the distribution

of the number of pile-up interactions matched that in

data. The simulated events were reconstructed with the

same algorithm chain as used for collision data.

3 Reconstruction and identification of hadronic

tau lepton decays

In the following, the τhad-vis reconstruction and identifi-

cation at online and offline level are described. The trig-

ger algorithms were optimized with respect to hadronic

tau decays identified by the offline algorithms. This typ-
ically leads to online algorithms resembling their offline

counterparts as closely as possible with the information

available at a given trigger level. To reflect this, the de-

tails of the offline reconstruction and identification are
described first, and then a discussion of the trigger al-

gorithms follows, highlighting the differences between

the two implementations.

3.1 Reconstruction

The τhad-vis reconstruction algorithm is seeded by

calorimeter energy deposits which have been recon-
structed as individual jets. Such jets are formed us-

ing the anti-kt algorithm with a distance parameter of

R = 0.4, using calorimeter TopoClusters as inputs. To

seed a τhad-vis candidate, a jet must fulfil the require-
ments of pT > 10 GeV and |η| < 2.5. Events must have

a reconstructed primary vertex with at least three as-

sociated tracks. In events with multiple primary vertex

candidates, the primary vertex is chosen to be the one

with the highest Σp2T,tracks value. In events with multi-
ple simultaneous interactions, the chosen primary ver-

tex does not always correspond to the vertex at which

the tau lepton is produced. To reduce the effects of pile-

up and increase reconstruction efficiency, the tau lepton
production vertex is identified, amongst the previously

reconstructed primary vertex candidates in the event.

The tau vertex (TV) association algorithm uses as

input all tau candidate tracks which have pT > 1 GeV,

satisfy quality criteria based on the number of hits in

the ID, and are in the region ∆R < 0.2 around the
jet seed direction; no impact parameter requirements

are applied. The pT of these tracks is summed and the

primary vertex candidate to which the largest fraction

of the pT sum is matched to is chosen as the TV [47].

This vertex is used in the following to determine

the τhad-vis direction, to associate tracks and to build
the coordinate system in which identification variables

are calculated. In Z → ττ events, the TV coincides
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with the highest Σp2T,tracks vertex (for the pile-up pro-
file observed during 2012) roughly 90% of the time. For

physics analyses which require higher-pT objects, the

two coincide in more than 99% of all cases.

The τhad-vis three-momentum is calculated by first

computing η and φ of the barycentre of the TopoClus-
ters of the jet seed, calibrated at the LC scale, as-

suming a mass of zero for each constituent. The four-

momenta of all clusters in the region ∆R < 0.2 around

the barycentre are recalculated using the TV coordinate

system and summed, resulting in the momentum mag-
nitude pLC and a τhad-vis direction. The τhad-vis mass is

defined to be zero.

Tracks are associated with the τhad-vis if they are

in the core region ∆R < 0.2 around the τhad-vis direc-

tion and satisfy the following criteria: pT > 1 GeV, at
least two associated hits in the pixel layers of the inner

detector, and at least seven hits in total in the pixel

and the SCT layers. Furthermore, requirements are im-

posed on the distance of closest approach of the track
to the TV in the transverse plane, |d0| < 1.0 mm, and

longitudinally, |z0 sin θ| < 1.5 mm. When classifying a

τhad-vis candidate as a function of its number of asso-

ciated tracks, the selection listed above is used. Tracks

in the isolation region 0.2 < ∆R < 0.4 are used for the
calculation of identification variables and are required

to satisfy the same selection criteria.

A π0 reconstruction algorithm was also developed.

In a first step, the algorithm measures the number of re-
constructed neutral pions (zero, one or two), Nπ0 , in the

core region, by looking at global tau features measured

using strip layer and calorimeter quantities, and track

momenta, combined in BDT algorithms. In a second

step, the algorithm combines the kinematic informa-
tion of tracks and of clusters likely stemming from π0

decays. A candidate π0 decay is composed of up to two

clusters among those found in the core region of τhad-vis
candidates. Cluster properties are used to assign a π0

likeness score to each cluster found in the core region,

after subtraction of the contributions from pile-up, the

underlying event and electronic noise (estimated in the

isolation region). Only those clusters with the highest

scores are used, together with the reconstructed tracks
in the core region of the τhad-vis candidate, to define

the input variables for tau identification described in

the next section.

3.2 Discrimination against jets

The reconstruction of τhad-vis candidates provides very

little rejection against the jet background. Jets in which

the dominant particle3 is a quark or a gluon are re-
ferred to as quark-like and gluon-like jets, respectively.

Quark-like jets are on average more collimated and have

fewer tracks and thus the discrimination from τhad-vis is

less effective than for gluon-like jets. Rejection against

jets is provided in a separate identification step us-
ing discriminating variables based on the tracks and

TopoClusters (and cells linked to them) found in the

core or isolation region around the τhad-vis candidate

direction. The calorimeter measurements provide infor-
mation about the longitudinal and lateral shower shape

and the π0 content of tau hadronic decays.

The full list of discriminating variables used for tau

identification is given below and is summarized in Ta-

ble 2.

Central energy fraction (fcent): Fraction of trans-

verse energy deposited in the region ∆R < 0.1
with respect to all energy deposited in the region

∆R < 0.2 around the τhad-vis candidate calculated

by summing the energy deposited in all cells belong-

ing to TopoClusters with a barycentre in this re-
gion, calibrated at the EM energy scale. Biases due

to pile-up contributions are removed using a correc-

tion based on the number of reconstructed primary

vertices in the event.

Leading track momentum fraction (ftrack): The
transverse momentum of the highest-pT charged

particle in the core region of the τhad-vis candidate,

divided by the transverse energy sum, calibrated at

the EM energy scale, deposited in all cells belonging
to TopoClusters in the core region. A correction

depending on the number of reconstructed primary

vertices in the event is applied to this fraction,

making the resulting variable pile-up independent.

Track radius (Rtrack): pT-weighted distance of the
associated tracks to the τhad-vis direction, using all

tracks in the core and isolation regions.

Leading track IP significance (Sleadtrack):

Transverse impact parameter of the highest-pT
track in the core region, calculated with respect to

the TV, divided by its estimated uncertainty.

Number of tracks in the isolation region (N iso
track):

Number of tracks associated with the τhad-vis in the

region 0.2 < ∆R < 0.4.
Maximum ∆R (∆RMax): The maximum ∆R be-

tween a track associated with the τhad-vis candidate

and the τhad-vis direction. Only tracks in the core

region are considered.
Transverse flight path significance (Sflight

T ): The

decay length of the secondary vertex (vertex recon-

3 This is often interpreted as the parton initiating the jet
or the highest-pT parton within a jet; however, none of these
concepts can be defined unambiguously.
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structed from the tracks associated with the core
region of the τhad-vis candidate) in the transverse

plane, calculated with respect to the TV, divided

by its estimated uncertainty. It is defined only for

multi-track τhad-vis candidates.

Track mass (mtrack): Invariant mass calculated
from the sum of the four-momentum of all tracks

in the core and isolation regions, assuming a pion

mass for each track.

Track-plus-π0-system mass (m
π

0+track):
Invariant mass of the system composed of the

tracks and π0 mesons in the core region.

Number of π0 mesons (N
π

0): Number of π0

mesons reconstructed in the core region.

Ratio of track-plus-π0-system pT (pπ
0+track

T /pT):

Ratio of the pT estimated using the track + π0

information to the calorimeter-only measurement.

Variable Offline Trigger
1-track 3-track 1-track 3-track

fcent • • • •
ftrack • • • •
Rtrack • • • •

Sleadtrack • •
N iso

track • •
∆RMax • •
Sflight
T • •

mtrack • •
mπ0+track • •

Nπ0 • •
pπ

0+track
T /pT • •

Table 2 Discriminating variables used as input to the tau
identification algorithm at offline reconstruction and at trig-
ger level, for 1-track and 3-track candidates. The bullets in-
dicate whether a particular variable is used for a given selec-
tion. The π0-reconstruction-based variables, mπ0+track, Nπ0 ,

pπ
0+track

T /pT are not used in the trigger.

The distributions of some of the important discrim-

inating variables listed in Table 2 are shown in Figs. 2
and 3.

Separate BDT algorithms are trained for 1-track

and 3-track τhad-vis decays using a combination of sim-

ulated tau leptons in Z, W and Z ′ decays. For the jet

background, large collision data samples collected by

jet triggers, referred from now on as the multi-jet data
samples, are used. For the signal, only reconstructed

τhad-vis candidates matched to the true (i.e., generator-

level) visible hadronic tau decay products in the region

around∆R < 0.2 with ptrueT,vis > 10GeV and |ηtruevis | < 2.3
are used. In the following, the signal efficiency is de-

fined as the fraction of true visible hadronic tau decays
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Fig. 2 Signal and background distribution for the 1-track
τhad-vis decay offline tau identification variables (a) fcent
and (b) N iso

track. For signal distributions, 1-track τhad-vis de-
cays are matched to true generator-level τhad-vis in simulated
events, while the multi-jet events are obtained from the data.

with n charged decay products, which are reconstructed

with n associated tracks and satisfy tau identification

criteria. The background efficiency is the fraction of re-

constructed τhad-vis candidates with n associated tracks
which satisfy tau identification criteria, measured in a

background-dominated sample.

Three working points, labelled tight, medium and

loose, are provided, corresponding to different tau iden-
tification efficiency values. Their signal efficiency values

(defined with respect to 1-track or 3-track reconstructed

τhad-vis candidates matched to true τhad-vis) can be seen

in Fig. 4. The requirements on the BDT score are cho-

sen such that the resulting efficiency is independent of
the true τhad-vis pT. Due to the choice of input vari-

ables, the tau identification also shows stability with

respect to the pile-up conditions as shown in Fig. 4.

The performance of the tau identification algorithm in
terms of the inverse background efficiency versus the

signal efficiency is shown in Fig. 5. At low transverse
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Fig. 3 Signal and background distribution for the 3-track
τhad-vis decay offline tau identification variables (a) Rtrack

and (b) mπ0+track. For signal distributions, 3-track τhad-vis
decays are matched to true generator-level τhad-vis in sim-
ulated events, while the multi-jet events are obtained from
data.

momentum of the τhad-vis candidates, 40% signal ef-

ficiency for an inverse background efficiency of 60 is

achieved. The signal efficiency saturation point, visible

in these curves, stems from the reconstruction efficiency
for a true τhad-vis with one or three charged decay prod-

ucts to be reconstructed as a 1-track or 3-track τhad-vis
candidate. The main sources of inefficiency are track

reconstruction efficiency due to hadronic interactions
and migration of the number of reconstructed tracks

due to conversions or underlying-event tracks being er-

roneously associated with the tau candidate.

3.3 Tau trigger implementation

The tau reconstruction at the trigger level has differ-

ences with respect to its offline counterpart due to the
technical limitations of the trigger system. At L1, no in-

ner detector track reconstruction is available, and the
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Fig. 4 Offline tau identification efficiency dependence on the
number of reconstructed interaction vertices, for (a) 1-track
and (b) 3-track τhad-vis decays matched to true τhad-vis (with
corresponding number of charged decay products) from SM
and exotic processes in simulated data. Three working points,
corresponding to different tau identification efficiency values,
are shown.

full calorimeter granularity cannot be accessed. Latency

limits at L2 prevent the use of the TopoCluster algo-

rithm, and only allow the candidate reconstruction to

be performed within the given RoI. At the EF, the same

tau reconstruction and identification methods as offline
are used, except for the π0 reconstruction. In this sec-

tion, the details of the tau trigger reconstruction algo-

rithm are described.

Level 1 At L1, the τhad-vis candidates are selected us-

ing calorimeter energy deposits. Two calorimeter re-

gions are defined by the tau trigger for each candi-
date, using trigger towers in both the EM and HAD

calorimeters: the core region, and an isolation region

around this core. The trigger towers have a granularity

of ∆η × ∆φ = 0.1 × 0.1 with a coverage of |η| < 2.5.
The core region is defined as a square of 2 × 2 trigger

towers, corresponding to 0.2 × 0.2 in ∆η × ∆φ space.
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Fig. 5 Inverse background efficiency versus signal efficiency
for the offline tau identification, for (a) a low-pT and (b) a
high-pT τhad-vis range. Simulation samples for signal include
a mixture of Z, W and Z′ production processes, while data
from multi-jet events is used for background. The red markers
correspond to the three working points mentioned in the text.
The signal efficiency shown corresponds to the total efficiency
of τhad-vis decays to be reconstructed as 1-track or 3-track
and pass tau identification selection.

The ET of a τhad-vis candidate at L1 is taken as the
sum of the transverse energy in the two most energetic

neighbouring central towers in the EM calorimeter core

region, and in the 2×2 towers in the HAD calorimeter,

all calibrated at the EM scale. For each τhad-vis candi-
date, the EM isolation is calculated as the transverse

energy deposited in the annulus between 0.2× 0.2 and

0.4× 0.4 in the EM calorimeter.

To suppress background events and thus reduce trig-

ger rates, an EM isolation energy of less than 4 GeV is
required for the lowest ET threshold at L1. Hardware

limitations prevent the use of an ET-dependent selec-

tion. This requirement reduces the efficiency of τhad-vis
events by less than 2% over most of the kinematic range.
Larger efficiency losses occur for τhad-vis events at high

ET values; those are recovered through the use of trig-

gers with higher ET thresholds but without any isola-
tion requirements.

The energy resolution at L1 is significantly lower
than at the offline level. This is due to the fact that

all cells in a trigger tower are combined without the

use of sophisticated clustering algorithms and without

τhad-vis-specific energy calibrations. Also, the coarse en-
ergy and geometrical position granularity limits the pre-

cision of the measurement. These effects lead to a sig-

nificant signal efficiency loss for low-ET τhad-vis candi-

dates.

Level 2 At L2, τhad-vis candidate RoIs from L1 are

used as seeds to reconstruct both the calorimeter- and
tracking-based observables associated with each τhad-vis
candidate. The events are then selected based on an

identification algorithm that uses these observables.

The calorimeter observables associated with the τhad-vis
candidates are calculated using calorimeter cells, where
the electronic and pile-up noise are subtracted in the

energy calibration. The centre of the τhad-vis energy de-

posit is taken as the energy-weighted sum of the cells

collected in the region ∆R < 0.4 around the L1 seed.
The transverse energy of the τhad-vis is calculated using

only the cells in the region ∆R < 0.2 around its centre.

To calculate the tracking-based observables, a fast

tracking algorithm [48] is applied, using only hits from

the pixel and SCT tracking layers. Only tracks satisfy-

ing pT > 1.5 GeV and located in the region ∆R < 0.3

around the L2 calorimeter τhad-vis direction are used.
The tracking efficiency with respect to offline reaches a

plateau of 99% at 2 GeV (with an efficiency of about

98% at 1.5 GeV). The fast tracking algorithm required

an average of 37 ms to run at the highest pile-up condi-
tions at peak luminosity in 2012 (approximately forty

pile-up interactions).

As there is no vertex information available at this

stage, an alternative approach is used to reject tracks

coming from pile-up interactions. A requirement is

placed on the ∆z0 between a candidate track and the
highest-pT track inside the RoI. The distribution of

∆z0 is shown in Fig. 6 for simulated Z → ττ events

with an average of eight interactions per bunch cross-

ing. High values of ∆z0 typically correspond to pile-up

tracks while the central peak corresponds to the main
interaction tracks.

The ∆z0 distribution is fit to the sum of a Breit–
Wigner function to describe the central peak and a

Gaussian function to describe the broad distribution

from tracks in pile-up events. The half-width of the

Breit–Wigner σ=0.32 mm is taken as the point where
68% of the signal events are included in the central

peak. A dependence of the trigger variables on pile-
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up conditions is minimized by considering only tracks
within −2 mm < ∆z0 < 2 mm and ∆R < 0.1 with

respect to the highest-pT track.

Track isolation requirements are applied to τhad-vis
candidates to increase background rejection. For multi-

track candidates (candidates with two or three associ-
ated tracks, defined to be as inclusive as possible with

respect to their offline counterpart), the ratio of the

sum of the track pT in 0.1 < ∆R < 0.3 to the sum of

the track pT in ∆R < 0.1 is required to be lower than

0.1. Any 1-track candidate with a reconstructed track
in the isolation region is rejected.

In the last step, identification variables combining

calorimeter and track information are built as described

in Sect. 3.2. The calorimeter-based isolation variable

fcent uses an expanded cone size of ∆R < 0.4 with-
out the pile-up correction term to estimate the fraction

of transverse energy deposited in the region ∆R < 0.1

around the τhad-vis candidate. The variables ftrack and

Rtrack, measuring respectively the ratio of the trans-
verse momentum of the leading pT track to the total

transverse energy (calibrated at the EM energy scale)

and the pT-weighted distance of the associated tracks

to the τhad-vis direction, are calculated using selected

tracks in the region ∆R < 0.3 around the highest-pT
track. Cuts on the chosen identification variables are

optimized to provide an inverse background efficiency

of roughly ten while keeping the signal efficiency as high

as possible (approximately 90% with respect to the of-
fline medium tau identification).
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Fig. 6 Distribution of ∆z0 for the tau trigger at L2 in sim-
ulated Z → ττ events with an average of eight interactions
per bunch crossing. The wide Gaussian distribution corre-
sponds to pile-up tracks while the central peak, displayed in
the upper-right corner, corresponds to the main interaction
tracks. A Breit–Wigner function is fitted to the central peak
and 68% of the signal events are found within a distance σ =
0.32 mm from the peak.

Event Filter At the EF level, the τhad-vis reconstruc-
tion is very similar to the offline version. First, the

TopoCluster reconstruction and calibration algorithms

are run within the RoI. Then, track reconstruction in-

side the RoI is performed using the EF tracking algo-

rithm. In the last step, the full offline τhad-vis recon-
struction algorithm is used. The EF tracking is almost

100% efficient over the entire pT range with respect

to the offline reconstructed tracks. It is, however, con-

siderably slower than the L2 fast tracking algorithm,
requiring about 200 ms per RoI under severe pile-up

conditions (forty pile-up interactions). The TopoClus-

tering algorithms need only about 15 ms.

The τhad-vis candidate four-momentum and input

variables to the EF tau identification are then calcu-

lated. The main difference with respect to the offline

tau reconstruction is that π0-reconstruction-based in-
put variables (mπ0+track, Nπ0 and pπ

0+track
T /pT) are not

used; the methodology to compute these variables had

not yet been developed when the trigger was imple-

mented. Furthermore, no pile-up correction is applied

to the input variables at trigger level.

Since full-event vertex reconstruction is not avail-

able at trigger level (vertices are only formed using the

tracks in a given RoI), the selection requirements ap-
plied to the input tracks are also different with respect

to the offline τhad-vis reconstruction. Similarly to L2, the

∆z0 requirement for tracks is computed with respect to

the leading track, and loosened to 1.5 mm with respect
to the offline requirement. The ∆d0 requirement is cal-

culated with respect to the vertex found inside of the

RoI, and is loosened to 2 mm.

A BDT with the input variables listed in Table 2 is

used to suppress the backgrounds from jets misidenti-

fied as τhad-vis. The BDT was trained on 1- and 3-track

τhad-vis candidates with simulated Z, W and Z ′ events

for the signal and data multi-jet samples for the back-
ground, respectively. Only events passing an L1 tau

trigger matched with an offline reconstructed τhad-vis
with pT > 15GeV and |η| < 2.2 are used, where the

medium identification is required for the τhad-vis candi-
dates. For the signal, in addition, a geometrical match-

ing to a true τhad-vis is required. The performance of

the EF tau trigger is presented in Fig. 7. The signal ef-

ficiency is defined with respect to offline reconstructed

τhad-vis candidates matched at generator level, and the
inverse background efficiency is calculated in a multi-

jet sample. The working points are chosen to obtain a

signal efficiency of 85% and 80% with respect to the

offline medium candidates for 1-track and multi-track
candidates respectively, where the inverse background

efficiency is of the order of 200 for the multi-jet sample.
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Fig. 7 Inverse background efficiency versus signal efficiency
for the tau trigger at the EF level, for τhad-vis candidates
which have satisfied the L1 requirements. The signal effi-
ciency is defined with respect to offline medium tau identi-
fication τhad-vis candidates matched at generator level, and
the inverse background efficiency is calculated in a multi-jet
sample.

3.4 Discrimination against electrons and muons

Additional dedicated algorithms are used to discrim-

inate τhad-vis from electrons and muons. These algo-
rithms are only used offline.

Electron veto The characteristic signature of 1-track

τhad-vis can be mimicked by electrons. This creates
a significant background contribution after all the

jet-related backgrounds are suppressed via kinematic,

topological and τhad-vis identification criteria. Despite

the similarities of the τhad-vis and electron signatures,
there are several properties that can be used to discrim-

inate between them: transition radiation, which is more

likely to be emitted by an electron and causes a higher

ratio fHT of high-threshold to low-threshold track hits

in the TRT for an electron than for a pion; the angu-
lar distance of the track from the τhad-vis calorimeter-

based direction; the ratio fEM of energy deposited in

the EM calorimeter to energy deposited in the EM and

HAD calorimeters; the amount of energy leaking into
the hadronic calorimeter (longitudinal shower informa-

tion) and the ratio of energy deposited in the region

0.1 < ∆R < 0.2 to the total core region ∆R < 0.2

(transverse shower information). The distributions for

two of the most powerful discriminating variables are
shown in Fig. 8. These properties are used to define a

τhad-vis identification algorithm specialized in the rejec-

tion of electrons misidentified as hadronically decaying

tau leptons, using a BDT. The performance of this elec-
tron veto algorithm is shown in Fig. 9. Slightly different

sets of variables are used in different η regions. One of

the reasons for this is that the variable associated with
transition radiation (the leading track’s ratio of high-

threshold TRT hits to low-threshold TRT hits) is not

available for |η| > 2.0. Three working points, labelled

tight, medium and loose are chosen to yield signal effi-

ciencies of 75%, 85%, and 95%, respectively.
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Fig. 8 Signal and background distribution for two of the
electron veto variables, (a) fHT and (b) fEM. Candidate 1-
track τhad-vis decays are required to not overlap with a re-
constructed electron candidate which passes tight electron
identification [23]. For signal distributions, 1-track τhad-vis
decays are matched to true generator-level τhad-vis in simu-
lated Z → ττ events, while the electron contribution is ob-
tained from simulated Z → ee events where 1-track τhad-vis
decays are matched to true generator-level electrons.

Muon veto Tau candidates corresponding to muons can

in general be discarded based on the standard muon

identification algorithms [24]. The remaining contam-
ination level can typically be reduced to a negligible

level by a cut-based selection using the following char-
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Fig. 9 Electron veto inverse background efficiency versus
signal efficiency in simulated samples, for 1-track τhad-vis
candidates. The background efficiency is determined using
simulated Z → ee events.

acteristics. Muons are unlikely to deposit enough en-

ergy in the calorimeters to be reconstructed as τhad-vis
candidates. However, when a sufficiently energetic clus-
ter in the calorimeter is associated with a muon, the

muon track and the calorimeter cluster together may be

misidentified as a τhad-vis. Muons which deposit a large

amount of energy in the calorimeter and therefore fail

muon spectrometer reconstruction are characterized by
a low electromagnetic energy fraction and a large ratio

of track-pT to ET deposited in the calorimeter. Low-

momentum muons which stop in the calorimeter and

overlap with calorimeter deposits of different origin are
characterized by a large electromagnetic energy fraction

and a low pT-to-ET ratio. A simple cut-based selection

based on these two variables reduces the muon contam-

ination to a negligible level. The resulting efficiency is

better than 96% for true τhad-vis, with a reduction of
muons misidentified as τhad-vis of about 40%. However,

the performance can vary depending on the τhad-vis and

muon identification levels.

4 Efficiency measurements using Z
tag-and-probe data

To perform physics analyses it is important to measure

the efficiency of the reconstruction and identification

algorithms used online and offline with collision data.
For the τhad-vis signal, this is done on a sample enriched

in Z → ττ events. For electrons misidentified as a tau

signal (after applying the electron veto) this is done on

a sample enriched in Z → ee events.

The chosen tag-and-probe approach consists of se-

lecting events triggered by the presence of a lepton

(tag) and containing a hadronically decaying tau lepton
candidate (probe) in the final state and extracting the

efficiencies directly from the number of reconstructed

τhad-vis before and after tau identification algorithms

are applied. In practice, it is impossible to obtain a

pure sample of hadronically decaying tau leptons, or
electrons misidentified as a tau signal, and therefore

backgrounds have to be taken into account. This is de-

scribed in the following sections.

4.1 Offline tau identification efficiency measurement

To estimate the number of background events for the
purpose of tau identification efficiency measurements,

a variable with high separation power, which is mod-

elled well for simulated τhad-vis decays is chosen: the

sum of the number of core and outer tracks associated
to the τhad-vis candidate. Outer tracks in 0.2 < ∆R <

0.6 are only considered if they fulfill the requirement

Douter = min([ pcoreT /pouterT ] · ∆R(core, outer)) < 4,

where pcoreT refers to any track in the core region, and

∆R(core, outer) refers to the distance between the can-
didate outer track and any track in the core region.

This requirement suppresses the contribution of outer

tracks from underlying and pile-up events, due to re-

quirements on the relative momentum and separation
of the tracks. This allows the signal track multiplicity

to retain the same structure as the core track multiplic-

ity distribution. For backgrounds from multi-jet events,

the track multiplicity is increased by the addition of

tracks with significant momentum in the outer cone.
The requirement on Douter was chosen to offer opti-

mal signal to background separation. A fit is then per-

formed using the expected distributions of this variable

for both signal and background to extract the τhad-vis
signal. This fit is performed for each exclusive tau iden-

tification working point, corresponding to: candidates

failing the loose requirement, candidates satisfying the

loose requirement but failing the medium requirement,

candidates satisfying the medium requirement but fail-
ing the tight requirement and candidates satisfying the

tight requirement.

4.1.1 Event selection

Z → τlepτhad events are selected by a triggered muon

or electron coming from the leptonic decay of a tau lep-
ton, and the hadronically decaying tau lepton is then

searched for in the rest of the event, considered as the

probe for the tau identification performance measure-

ment. These events are triggered by a single-muon or
a single-electron trigger requiring one isolated trigger

muon or electron with a pT of at least 24 GeV.
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Offline, muons and electrons with pT > 26 GeV are
thereafter selected, representing the tag objects. Addi-

tional track and calorimeter isolation requirements are

applied to the muon and electron. Identified muons are

required to have |η| < 2.4. Identified electrons are re-

quired to have |η| < 1.37 or 1.52 < |η| < 2.47, therefore
excluding the poorly instrumented region at the inter-

face between the barrel and endcap calorimeters. In ad-

dition to the requirement of exactly one isolated muon

or electron (ℓ), a τhad-vis candidate is selected in the
kinematic range pT > 15GeV and |η| < 2.5, requiring

one or three associated tracks in the core region and

an absolute electric charge of one and no geometrical

overlap with muons with pT > 4GeV or with electrons

with pT > 15GeV of loose or medium quality (depend-
ing on η). For τhad-vis with one associated track, a muon

veto and a medium electron veto is applied. In addition

to this, a very loose requirement on the tau identifica-

tion BDT score is made which strongly suppresses jets
while being more than 99% efficient for Z → ττ sig-

nal. The tag and the probe objects are required to have

opposite-sign electric charges (OS).

Additional requirements are made in order to sup-

press (Z → ℓℓ) + jets and (W → ℓνℓ) + jets events:

– On the invariant mass calculated from the lepton

and the τhad-vis four-momenta (mvis(ℓ, τhad-vis)): for

pτhad-visT < 20 GeV, 45 GeV < mvis(ℓ, τhad-vis) <

80 GeV. Otherwise, for the µ channel, 50 GeV <
mvis(µ, τhad-vis) < 85 GeV, and for the e channel:

50 GeV < mvis(e, τhad-vis) < 80 GeV. For the sig-

nal, this variable peaks in these regions.

– On the transverse mass of the lepton and Emiss
T

system (mT =
√

2pℓT · Emiss
T (1− cos∆φ(ℓ, Emiss

T ))):

mT < 50 GeV. For most backgrounds (e.g.

(W → ℓνℓ) + jets), this variable peaks at larger

values.
– On the distance in the azimuthal plane between

the lepton and Emiss
T (neutrinos) and between the

τhad-vis and Emiss
T (Σ cos∆φ = cos∆φ(ℓ, Emiss

T ) +

cos∆φ(τhad-vis, E
miss
T )): Σ cos∆φ > −0.15. For the

signal, this variable tends to peak at zero, indicating
that the neutrinos point mainly in the direction of

one of the two leptons from Z decay products. For

W + jets background events, the value is typically

negative, indicating that the neutrino points away
from the two lepton candidates.

4.1.2 Background estimates and templates

The signal track multiplicity distribution is modelled

using simulated Z → τlepτhad events. Only recon-
structed τhad-vis matched to a true hadronic tau decay

are considered.

A single template is used to model the background
from quark- and gluon-initiated jets that are misidenti-

fied as hadronic tau decays. The background is mainly

composed of multi-jet and W+jets events with a mi-

nor contribution from Z+jets events. The template is

constructed starting from a enriched multi-jet control
region in data that uses the full signal region selection

but requires that the tag and probe objects have same-

sign charges (SS). The contributions from W+jets and

Z+jets in the SS control region are subtracted. The
template is then scaled by the ratio of OS/SS multi-

jet events, measured in a control region which inverts

the very loose identification requirement of the signal

region. Finally, the OS contributions from W+jets and

Z+jets are added to complete the template. The Z+jets
contribution is estimated using simulated samples. The

shape of the W+jets contribution is estimated from a

high-purity W+jets control region, defined by remov-

ing the mT requirement and inverting the requirement
on Σ cos∆φ. The normalization of the W+jets contri-

bution is estimated using simulation.

An additional background shape is used to take into

account the contamination due to misidentified elec-

trons or muons. This small background contribution

(stemming mainly from Z → ℓℓ events) is modelled
by taking the shape predicted by simulation using can-

didates which are not matched to true τhad-vis in events

of type Z → τlepτhad, tt̄, diboson, Z → ee, µµ where

the reconstructed tau candidate probe is matched to a
electron or muon. For the fit, the contribution of these

backgrounds is fixed to the value predicted by the simu-

lation, which is typically less than 5% of the total signal

yield.

To measure both the 1-track and 3-tracks τhad-vis
efficiencies, a fit of the data to the model (signal plus
background) is performed, using two separate signal

templates. The signal templates are obtained by requir-

ing exactly one or three tracks reconstructed in the core

region of the τhad-vis candidate. To improve the fit sta-
bility in the background-dominated region where the

tau candidates fail the loose requirements, the ratio of

the 1-track to 3-track normalization is fixed to the value

predicted by the simulation. For other exclusive regions,

the ratio is allowed to vary during the fit.

In the fit to extract the efficiencies for real tau lep-
tons passing different levels of identification, the ratio

of jet to other τhad-vis candidates is determined in a

preselection step (where no identification is required)

and then extrapolated to regions where identification is
required by using jet misidentification rates determined

in an independent data sample.
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4.1.3 Results

Figure 10 shows an example of the track multiplicity

distribution after the tag-and-probe selection, before

and after applying the tau identification requirements,

with the results of the fit performed. The peaks in the

one- and three-track bins are due to the signal contri-
bution. These are visible before any identification re-

quirements are applied, and become considerably more

prominent after identification requirements are applied,

due to the large amount of background rejection pro-
vided by the identification algorithm. To account for the

small differences between data and simulations, correc-

tion factors, defined as the ratio of the efficiency in data

to the efficiency in simulation for τhad-vis signal to pass

a certain level of identification, are derived. Their val-
ues are compatible with one, except for the tight 1-track

working point, where the correction factor is about 0.9.

Results from the electron- and muon-tag analysis

are combined to improve the precision of the correction

factors, shown in Fig. 11. No significant dependency on

the pT of the τhad-vis is observed and hence the results
are provided separately only for the barrel (|η| < 1.5)

and the endcap (1.5 < |η| < 2.5) region, and for one and

three associated tracks. Uncertainties depend slightly

on the tau identification level and kinematic quanti-

ties. In Table 3, the most important systematic uncer-
tainties for the working point used by most analyses,

medium tau identification, are shown, together with the

total statistical and systematic uncertainty. Uncertain-

ties due to the underlying event (UE) are the domi-
nant ones for the signal template, and are estimated by

comparing alpgen-Herwig and Pythia simulations.

The shower model and the amount of detector material

are also varied and included in the number reported

in Table 3. The W+jets shape uncertainty accounts
for differences between the W+jets shape in the signal

and control regions and is derived from comparisons to

simulated W+jets events. The jet background fraction

uncertainty accounts for the effect of propagating the
statistical uncertainty on the jet misidentification rates.

The results apply to τhad-vis candidates with pT >

20 GeV. For pT < 20 GeV, uncertainties increase to

a maximum of 15% for inclusive τhad-vis candidates.
For pT > 100 GeV, there are no abundant sources of

hadronic tau decays to allow for an efficiency measure-

ment. Previous studies using high-pT dijet events in-

dicate that there is no degradation in the modelling of
tau identification in this pT range, within the statistical

uncertainty of the measurement [14].
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Fig. 10 Template fit result in the muon channel, inclusive
in η and pT for pT > 20 GeV for the offline τhad-vis candi-
dates (a) before the requirement of tau identification, and (b)
fulfilling the medium tau identification requirement.

Source Uncertainty [%]
1-track 3-track

Jet background fraction 0.8 1.5
Jet template shape 0.9 1.4
Tau energy scale 0.7 0.8
Shower model/UE 1.8 2.5
Statistics 1.0 2.2

Total 2.5 4.0

Table 3 Dominant uncertainties on the medium tau identi-
fication efficiency correction factors estimated with the Z tag-
and-probe method, and the total uncertainty, which combines
systematic and statistical uncertainties. These uncertainties
apply to τhad-vis candidates with pT > 20 GeV.
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Fig. 11 Correction factors needed to bring the offline tau
identification efficiency in simulation to the level observed in
data, for all tau identification working points as a function
of η. The combinations of the muon and electron channels
are also shown, and the results are displayed separately for
(a) 1-track and (b) 3-track τhad-vis candidates with pT > 20
GeV. The combined systematic and statistical uncertainties
are shown.

4.2 Trigger efficiency measurement

The tau trigger efficiency is measured with Z → ττ

events using tag-and-probe selection similar to the one

described in Sect. 4.1. The only difference is that the
efficiency is measured with respect to identified offline

τhad-vis candidates and thus, offline tau identification

selection criteria are applied during the event selection.

Only the muon channel is considered, as the background

contamination is smaller than in the electron channel.
The statistical uncertainty improvements that could be

obtained by the addition of the electron channel are

offset by the larger systematic uncertainties associated

with this channel. The systematic uncertainties are also
different from those in the offline identification mea-

surement, since the purity after identification is already

high. The systematics are dominated by the uncertain-
ties on the modelling of the kinematics of the back-

ground events, rather than the total normalization, as

is the case for the offline identification measurement.

The dominant background contribution is due to W

+ jets and multi-jet events, where a jet is misidentified
as a τhad-vis. These backgrounds are estimated using a

method similar to the one described in Sect. 4.1.2. The

same multi-jet and W + jets control regions are used.

The shape of other backgrounds is taken from simu-
lation but the normalizations of the dominant back-

grounds are estimated from data control regions. The

contribution of top quark events is normalized in a con-

trol region requiring one jet originating from a b-quark.

Z+jets events with leptonic Z decays and one of the
additional jets being misidentified as τhad-vis are nor-

malized by measuring this misidentification rate in a

control region with two identified oppositely charged

same-flavour leptons.
In total, more than 60,000 events are collected, with

a purity of about 80% when the offline medium tau

identification requirement is applied. With the addition

of the tau trigger requirement, the purity increases to

about 88%. Most of the backgrounds accumulate in the
region pT < 30GeV.

Figure 12 shows the measured tau trigger efficiency

for τhad-vis candidates identified by the offline medium

tau identification as functions of the offline τhad-vis
transverse energy and the number of primary vertices in

the event, for each level of the trigger. The tau trigger

considered has calorimetric isolation and a pT threshold

of 11 GeV at L1, a 20 GeV requirement on pT, the num-

ber of tracks restricted to three or less, and medium se-
lection on the BDT score at EF. The efficiency depends

minimally on pT for pT > 35GeV or on the pile-up

conditions. The measured tau trigger efficiency is com-

pared to simulation in Fig. 13; the efficiency is shown
to be modelled well in simulation. Correction factors,

as defined in Sect. 4.1, are derived from this measure-

ment. The correction factors are in general compatible

with unity, except for the region pT < 40GeV where a

difference of a few per cent is observed.
In the pT range from 30 GeV to 50 GeV, the un-

certainty on the correction factors is about 2% but in-

creases to about 8% for pT = 100GeV. The uncertainty

is also sizeable in the region pT < 30GeV, where the
background contamination is the largest.

4.3 Electron veto efficiency measurement

To measure the efficiency for electrons reconstructed as
τhad-vis to pass the electron veto in data, a tag-and-

probe analysis singles out a pure sample of Z → ee
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Fig. 12 The tau trigger efficiency for τhad-vis candidates
identified by the offline medium tau identification, as a func-
tion of (a) the offline τhad-vis transverse energy and (b) the
number of primary vertices. The error bars correspond to the
statistical uncertainty in the efficiency.

events, as illustrated in Fig. 14 (a). The measurement

uses probe 1-track τhad-vis candidates in the opposite

hemisphere to the identified tag electron. The tag elec-

tron is required to fulfil ptagT > 35 GeV in order to sup-

press backgrounds from Z → ττ events. The probe is
required not to overlap geometrically with an identified

electron, e.g. in the case of Fig. 14 a loose electron iden-

tification is used. Different veto algorithms are tested in

combination with different levels of jet discrimination,
and the effects estimated. Efficiencies are extracted di-

rectly from the number of reconstructed τhad-vis before

and after identification, in bins of η of the τhad-vis can-

didate, after subtracting the background modelled by

simulation (normalized to data in dedicated control re-
gions). The shape and normalization of the multi-jet

background distribution for the η of the τhad-vis are es-

timated using events with SS tag electron and probe

τhad-vis in data after subtracting backgrounds in the
SS region using simulation. To estimate the W → eν,

Z → ττ , and tt̄ backgrounds, the shape of this distri-
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Fig. 13 The measured tau trigger efficiency in data and sim-
ulation, for the offline τhad-vis candidates passing the medium

tau identification, as a function of offline τhad-vis transverse
energy. The expected background contribution has been sub-
tracted from the data. The uncertainty band on the ratio
reflects the statistical uncertainties associated with data and
simulation and the systematic uncertainty associated with the
background subtraction in data.

bution is obtained from simulation but normalized to
dedicated data control regions for each background.

Differences in the modelling of the electron veto al-
gorithm’s performance in simulation compared to data

are parameterized as correction factors in bins of η of

the τhad-vis candidate, by comparing distributions sim-

ilar to the one shown in Fig. 14 (b).

Uncertainties on the correction factors (which are

typically close to unity) are η-dependent and amount
to about 10% for the loose electron veto and get larger

for the medium and tight electron veto working points,

mainly driven by statistical uncertainties. A summary

of the main uncertainties for the working point shown

in Fig. 14 is provided in Table 4.

Source Uncertainty [%]

Tag selection (pT, isolation) 5–28
Background rejection 1–8
Statistics 7–12

Total 8–30

Table 4 Dominant uncertainties on the loose electron veto
efficiency correction factors estimated with the Z tag-and-
probe method. The range of the uncertainties reflects their
variation with η.
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Fig. 14 (a) Visible mass of electron–positron pairs for the
offline electron veto efficiency measurement, after tag-and-
probe selection, where the probe lepton passes medium tau
identification and does not overlap with loose electrons, before
the electron veto is applied. (b) η distribution for τhad-vis
candidates (electrons misidentified as hadronic tau decays)
after applying a loose electron veto. Uncertainties shown are
only statistical.

5 Calibration of the τhad-vis energy

The τhad-vis energy calibration is done in several steps.

First, a calibration described in Sect. 5.1 and derived

from simulation brings the tau energy scale (TES) into

agreement with the true energy scale at the level of

a few per cent and removes any significant dependen-
cies of the energy scale on the pseudorapidity, energy,

pile-up conditions and track multiplicity. Then, addi-

tional small corrections to the TES are derived using

one of two independent data-driven methods described
in Sect. 5.2. Which of the two methods is used depends

on whether for a given study the agreement between re-

constructed and true TES or the modelling of the TES
in simulation is more important.

5.1 Offline τhad-vis energy calibration

The clusters associated with the τhad-vis reconstruc-
tion are calibrated at the LC scale. For anti-kt jets

with a distance parameter R = 0.4, this calibration

accounts for the non-compensating nature of the AT-

LAS calorimeters and for energy deposited outside the

reconstructed clusters and in non-sensitive regions of
the calorimeters. However, it is neither optimized for

the cone size used to measure the τhad-vis momentum

(∆R = 0.2) nor for the specific mix of hadrons observed

in tau decays; and it does not correct for the underlying
event or for pile-up contributions. Thus an additional

correction is needed to obtain an energy scale which is

in agreement with the true visible energy scale, thereby

also improving the τhad-vis energy resolution.

This correction (also referred to as a response curve)

is computed as a function of Eτ
LC using Z → ττ , W →

τν and Z ′ → ττ events simulated with Pythia8. Only

τhad-vis candidates with reconstructed ET > 15 GeV
and |η| < 2.4 matched to a true τhad-vis with Etrue

T,vis > 10

GeV are considered. Additionally, they are required to

satisfy medium tau identification criteria and to have

a distance ∆R > 0.5 to other reconstructed jets. The
response is defined as the ratio of the reconstructed

τhad-vis energy at the LC scale Eτ
LC to the true visible

energy Etrue
vis .

The calibration is performed in two steps: first, the

response curve is computed; then, additional small cor-

rections for the pseudorapidity bias and for pile-up ef-

fects are derived.

The response curve is evaluated in intervals of Etrue
vis

and of the absolute value of the reconstructed τhad-vis
pseudorapidity for τhad-vis candidates with one or more

tracks. In each interval, the distribution of this ratio is
fitted with a Gaussian function to determine the mean

value. This mean value as a function of the average

Eτ
LC in a given interval is then fitted with an empiri-

cally derived functional form. The resulting functions
are shown in Fig. 15.

After using this response curve to calibrate hadron-

ically decaying tau leptons their reconstructed mean

energy is within 2% of the final scale, which is set using
two additional small corrections. First, a pseudorapid-

ity correction is applied, which is necessary to counter

a bias due to underestimated reconstructed cluster en-

ergies in poorly instrumented regions. The correction
depends only on |ηLC| and is smaller than 0.01 units

in the transition region between the barrel and end-
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Fig. 15 Offline τhad-vis energy response curves as a func-
tion of the reconstructed τhad-vis energy Eτ

LC for hadronic
tau decays with (a) one and (b) more than one associated
tracks. One curve per pseudorapidity region |ηLC| is shown.
The region where markers are shown corresponds approxi-
mately to a transverse energy Eτ

T,LC > 15 GeV. For very low
and very high energies, the response curves are assumed to
be constant. Uncertainties are statistical only.

cap electromagnetic calorimeters and negligible else-

where, leading to the final reconstructed pseudorapidity
ηrec = ηLC − ηbias.

Pile-up causes response variations of typically a few

per cent. This is corrected by subtracting an amount

of energy which is proportional to the number of re-
constructed proton–proton interaction vertices nvtx in

a given event. The parameter describing the propor-

tionality is derived for different regions of |ηrec| using a

linear fit versus nvtx, for τhad-vis candidates with one or
more tracks. The correction varies in the range 90–420

MeV per reconstructed vertex, increasing with |η|.
The energy resolution, as determined from simu-

lated data, as a function of the true visible energy af-
ter the complete tau calibration is shown in Fig. 16.

The resolution is about 20% at very low E and re-

duces to about 5% for energies above a few hundred
GeV. The resolution is worst in the transition region

1.3 < |η| < 1.6.
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Fig. 16 Offline energy resolution for hadronically decaying
tau leptons, separately for (a) one and (b) three associated
tracks and for different pseudorapidity regions. The resolution
shown is the standard deviation of a Gaussian function fit to
the distribution of (Ereco −Etrue

vis )/Etrue
vis in a given range of

Etrue
vis and |ηtrue

vis |.

5.2 Additional offline tau calibration corrections and
systematic uncertainties

The systematic uncertainties on the tau energy scale

are evaluated with two complementary methods. The
deconvolution method gives access to uncertainties on

both the absolute TES (differences between recon-

structed and true visible energy) and the modelling

(differences between data and simulation) and is based
on dedicated measurements (such as test beam data

and low-luminosity runs) and simulation. The in-situ
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method only tests the modelling and uses collision data
with typical 2012 LHC run conditions. Both methods

are also able to provide small additional data-driven

corrections albeit only inclusively in ET and |η| due to

the limited statistical power of the dataset. They thus

depend on the first calibration step explained in the
previous section to remove any significant TES depen-

dencies on kinematics or pile-up.

The deconvolution method is almost identical to the

method employed to measure the jet energy scale for
ATLAS in 2010 [49] and is only briefly described here.

The central idea is to decompose each tau lepton into

its decay products and to combine the calorimeter re-

sponses according to the branching ratios of tau leptons

to the various hadronic final states. The response to
charged hadrons is estimated from different sources de-

pending on the momentum and pseudorapidity; in-situ

E/p measurements are used at low momentum, com-

bined test beam measurements are used at high mo-
mentum in the central region (|η| < 0.8), and simu-

lation is used otherwise (here, the uncertainty is esti-

mated using events simulated using different hadronic

shower models). The response to electromagnetic show-

ers was studied in Z → ee decays and is used for
neutral pions. Pseudo-experiments are used to prop-

agate the single-particle response uncertainties to the

reconstructed hadronically decaying tau lepton. In each

pseudo-experiment, the tau decay product energies are
varied randomly using Gaussian distributions centred

on the observed ratio of the response in data and sim-

ulation and with a width corresponding to the statisti-

cal uncertainty, and Gaussian distributions centred at

unity and with widths given by each systematic un-
certainty. These distributions depend on particle type,

energy and pseudorapidity. The TES shift for a single

pseudo-experiment is given by the mean of the energy

ratio of the τhad-vis to an identical pseudo-experiment
in which only statistical uncertainties of the measure-

ment are considered by Gaussian distributions centred

at unity. The distribution of TES shifts for a large

number of pseudo-experiments is fitted with a Gaus-

sian function. The mean of the fit is the expected scale
shift between data and simulation, and its standard de-

viation the contribution to the TES uncertainty.

Additional contributions considered are uncertain-

ties due to the detector modelling in the simulation, the

underlying event, the effect of pile-up, the non-closure
of the calibration method (meaning the difference be-

tween the reconstructed and the true τhad-vis energy,

when applying the calibration to the same sample it was

derived from) and the hadronic-shower model, as shown
in Table 5. The total TES uncertainty for ET > 20 GeV

and |η| < 2.5 is between 2% and 3% for τhad-vis with

one track and between 2% and 4% for τhad-vis with more
tracks, depending on ET and |η|. A TES shift of 1% is

observed with no significant dependence on ET or |η|
and a trend towards slightly higher values for 3-track

τhad-vis candidates. The shift is dominantly due to E/p

response differences between data and simulation.

Source Uncertainty [%]

Response 1.2–2.5
Detector model 0.3–2.5
UE 0.2–2.4
Pile-up 0.5–2.0
Non-closure 0.5–1.2
Shower model 0.0–2.0

Total 1.8–3.9

Table 5 Systematic uncertainties on the tau energy scale es-
timated using the deconvolution method. In general, the val-
ues depend on ET, |η| and the number of associated tracks.
The range of values for ET > 20 GeV is shown.

The in-situ method is based on the fact that the

distribution of the reconstructed visible mass mvis in
Z → ττ events where one tau decays hadronically and

the other to a muon plus neutrinos can be used to mea-

sure a TES shift between data and simulation and its

uncertainty. Here, mvis is defined as the invariant mass
of the τhad-vis and the muon. The muon momentum

scale is measured independently with high precision.

The TES shift α is determined by introducing an energy

shift ET → (1 + α)ET for τhad-vis objects and finding

the value α for which the mvis peak position in data
and simulation agrees. A fifth-order polynomial fit is

used to estimate the mvis peak position as simulation

studies show that this gives both the highest sensitiv-

ity and robustness. For small values of α, the mvis peak
position depends linearly on ET.

The results are based on collision data recorded

by the ATLAS detector in 2012 using a muon trigger

threshold of 24 GeV. The event selection is similar to

the one used by the Z → ττ tag-and-probe studies de-
scribed in Sect. 4.1 with the following differences: the

τhad-vis candidates are required to have ET > 20GeV

and to satisfy medium tau identification criteria. No

selection requirement is applied to mvis, and a looser

cos∆φ > −0.5 requirement is made. Additionally, a
pseudorapidity difference between the τhad-vis and the

muon smaller than 1.5 as well as Eτ
T,vis−Eµ

T > −15GeV

is required. The motivation for the differences is that

this measurement requires a highly pure sample of
hadronically decaying tau leptons after applying tau

identification while the priority of the efficiency mea-
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surement is to obtain a largely unbiased sample before
applying any identification requirements.

The background contributions are estimated in the

same way as described in Sect. 4.2. The dominant sys-
tematic uncertainties of the in-situ measurement are

estimated using pseudo-experiments and are due to a

potential bias of the fit, missing transverse momentum

resolution and scale, muon momentum resolution, muon

trigger efficiency and the normalization of the multi-jet
background. They are summarized in Table 6.

The measured TES shift is α = 0.8% ± 1.3% (stat)

± 0.6% (syst) and α = 1.1% ± 1.4% (stat) ± 0.7%
(syst) for τhad-vis with one or three associated tracks

respectively. No significant dependence on η or pile-up
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Fig. 17 The mvis distribution used for the in-situ offline
TES measurement. Shown is the comparison between data
and simulation for τhad-vis with (a) one or (b) three associ-
ated tracks.

Source Uncertainty [%]

Fit bias 0.5
Emiss

T resolution 0.2
Emiss

T scale 0.1
pµT resolution 0.1–0.3
Trigger 0.1
Jet background 0.1–0.3

Total 0.6–0.7

Table 6 Dominant systematic uncertainties on the tau en-
ergy scale estimated using the in-situ method. In general, the
values depend on the number of associated tracks. All other
systematic uncertainties are smaller than 0.1%.

conditions is observed. The corrections are positive, i.e.

the momentum of τhad-vis in data has to be scaled up in
order to yield agreement (on average) with simulation,

and are in agreement with the bias observed in data us-

ing the deconvolution method. The resulting mvis dis-

tribution for data and simulation is shown in Fig. 17
before applying any correction (i.e., α = 0). The un-

certainties given above only account for differences be-

tween data and simulation and not in the absolute TES.

For the latter, uncertainties due to non-closure and pile-

up conditions estimated with the deconvolution method
have to be added in quadrature to the systematic un-

certainties given above.

5.3 Trigger τhad-vis energy calibration and resolution

As described in Sect. 3.3, reconstructed τhad-vis candi-

dates at both L1 and L2 use a dedicated energy recon-
struction algorithmwhich differs from the offline τhad-vis
energy reconstruction and calibration, while at the EF,

the same algorithm is used. In this section, comparisons

of the online energy calibrations between data and sim-
ulation are shown.

The measured transverse energy resolution for of-

fline τhad-vis candidates passing medium tau identifi-

cation is shown in Fig. 18 at all three trigger lev-

els. This measurement is carried out using the same
methodology as described in the previous section. The

reconstructed energy at L1 is underestimated since at

this level calorimeter energies are calibrated at the EM

scale. The overestimation seen at L2 is due to the clus-

tering algorithm used at L2, which does not implement
the same noise suppression scheme as offline. At the

EF, the energy reconstruction is almost identical to the

offline case. The slight difference with respect to the of-

fline energy resolution is mainly due to the pile-up cor-
rections, which are only applied offline. Some discrep-

ancies can be seen between the resolutions measured in
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data and in simulation. This reinforces the importance
of having a trigger efficiency measurement performed

directly in data as a function of the offline τhad-vis pT,

as presented in section 4.2.

6 Summary and conclusions

The algorithms developed in the ATLAS experiment

at the LHC for tau identification and tau energy cal-

ibration are described, along with their optimization

and the associated procedures to mitigate the effects of
pile-up. These algorithms were employed in the dataset

corresponding to 20.3 fb−1 of
√
s = 8 TeV pp collisions.

The performance of the tau algorithms have helped to

fulfil a variety of physics searches and measurements
with hadronically decaying tau leptons, an important

part of the ATLAS physics program. The performance

of trigger and offline tau identification and calibration

is measured, in most cases using Z → ττ tag-and-

probe measurements. The uncertainties on the offline
tau identification efficiency measurement are dependent

on the working point and are about (2–3)% for τhad-vis
with one associated track, and (4–5)% for the case of

three associated tracks, inclusive in η and for a visible
transverse momentum greater than 20 GeV. A precision

of (2–8)% for the tau trigger identification efficiency is

measured for hadronic tau decays selected by offline

algorithms, depending on the transverse energy. Stabil-

ity of all algorithms with respect to the pile-up condi-
tions is observed. The reconstructed tau energy scale is

measured with a precision of about (2–4)% depending

on transverse energy and pseudorapidity, using either a

method based on estimating and deconvolving the re-
sponse uncertainties of the hadronic tau decay products

or a direct measurement of the Z → ττ visible mass us-

ing collision data recorded in 2012.
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5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de F́ısica d’Altes Energies and Departament de F́ısica de la Universitat Autònoma de Barcelona,
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51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy

Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble,
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134 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma,
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