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Delocalization and conductance quantization in one-dimensional systems attached to leads
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We investigate the delocalization and conductance quantization in finite one-dimensional chains with only
off-diagonal disorder coupled to leads. It is shown that the appearance of delocalized states at the middle of the
band under correlated disorder is strongly dependent upon the even-odd parity of the number of sites in the
system. In samples with inversion symmetry the conductance equals 2e2/h for odd samples and is smaller for
even parity. This result suggests that this even-odd behavior found previously in the presence of electron
correlations may be unrelated to charging effects in the sample.
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Since the pioneering work of Anderson,1 localization in
disordered systems has become a key issue in solid-
physics. Mott and Twose2 suggested that all the electron
eigenstates in less than two-dimensional~2D! disordered sys-
tems are localized. Borland3 gave a rather general proof o
this statement. Economou and Cohen4 have reexamined the
localization problem in the 1D tight-binding model, conclu
ing that all states are localized if and only if the neare
neighbor coupling is considered. However, Theodorou
Cohen5 showed that the state at the middle of the band
extended, regardless of the randomness of the nea
neighbor hopping matrix elements. Recently, it has also b
argued that the delocalization transition exists in 1D syste
with correlated diagonal and/or nondiagonal disorder, i
that at some particular energies the states are extended.6 The
delocalization transition has now been investigated in
random quantum Ising chains,7 1D random XY models,8

weakly disordered quasi-1D tight-binding hopping mode9

and dirty superconducting wires.10

On the other hand, Oguri11 found an even-odd parity ef
fect in the conductance characteristics of a finite Hubb
chain coupled with continuum states. He attributed suc
parity effect to the many-body Kondo resonance and
presence of the reservoirs of continuum states, while Br
wer et al.9 explained it by level repulsion of the transmissio
eigenmodes. Similar even-odd behavior in the conducta
has been found in first-principles numerical calculations
monatomic molecular wires within the local-densit
functional approximation and interpreted as arising fro
charge neutrality and resonant tunneling due to the sharp
structure.13

Here we address the question of whether these effects
many-body effects or not. Our approach is to check if th
arise in the absence of a Coulomb term in the Hamiltoni
Within a tight-binding model in the absence of electro
electron interactions we find that both delocalization in
sample with correlated disorder and the even-odd parity
ture in symmetric strings are present, irrespective of a
charging effects.

For the sake of simplicity, we consider only nondiagon
disorder keeping on-site energies the same at all sites.
derive an explicit delocalization condition to be satisfied
the parameters associated with hopping between sites
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coupling to the reservoirs of continuum states. We find tha
depends on the parity of the string, i.e., on whether the nu
ber of sites is even or odd. Applied to the molecular w
structure with inversion symmetry, we observe that the c
ductance in the odd case always equals 2e2/h while it is
smaller than this quantity if the number of sites is even.

The system considered here is a chain ofN sites labeled
1,2, . . . ,N from left ~L! to right ~R!, with its ends connected
to reservoirs with chemical potentialeF . The hamiltonian is

H5(
i 51

N

e0ai
†ai1 (

i 51

N21

~ t iai
†ai 111H.c.!1 (

k,r 5L,R
ekrbkr

† bkr

1(
k

~Vk
LbkL

† a11Vk
RbkR

† aN1H.c.!, ~1!

whereai (bk) is the annihilation operator of electron at si
i ~leadr ), and the other terms have their usual meaning.
will characterize delocalization by perfect transmission
some particular energy, i.e., by a transmission coefficient
equals 1. The corresponding state is then extended.5 Consid-
ering the sites to the right of site 1 as part of the right res
voir, the Keldysh formalism12 yields for the transmission
probability the expression

T~eF!5
22GLut1u2Im G2R

r

~eF2e02ut1u2ReG2R
r !21~GL22ut1u2Im G2R

r !2/4
,

~2!

where

GL/R5(
k

2puVk
L/Ru2d~eF2ekL/R!,

GiR
r ~eF!5$@gi

r~eF!#212ut i u2Gi 11,R
r ~eF!%21,

i 52,3, . . . ,N21,

GNR
r ~eF!5F @g~eF!#211

i

2
GRG21

,

gi
r~eF!5~eF2e01 i01!21, i 51,2, . . . ,N,
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and the usual notation for Green functions has been
ployed. The transmission probability depends in genera
the position of the Fermi level at the reservoirs as well as
the disorder configuration of the hopping paramet
(t1 ,t2 , . . . ,tN21). Here we consider the most interestin
case, when the Fermi leveleF is pinned at the value of the
independent site energye0, the middle of the band, or leve
group of the 1D system.6,9 The real part of all retarded Gree
functions becomes zero and the first term in the denomin
of Eq. ~2! vanishes. Perfect transmission through the 1D
tice is then obtained if

GL522ut1u2Im G2R
r , ~3!

where now

Im G2R
r 52

GR

2 Ut3t5•••tN22

t2t4•••tN21
U2

, N odd, ~4!

Im G2R
r 52

2

GRUt3t5•••tN21

t2t4•••tN22
U2

, N even. ~5!

The condition for perfect transmission thus becomes

Ut1t3•••tN22

t2t4•••tN21
U2

5
GL

GR
, N odd, ~6!

Ut1t3•••tN21

t2t4•••tN22
U2

5
GLGR

4
, N even. ~7!

Equation~6! states that for a chain with an odd number
sites and mirror ~inversion! symmetry (GL5GR5G, t1
5tN21 , t25tN22, etc.! perfect transmission is automatical
satisfied at the middle of the band or level group. From
Landauer-Bu¨ttiker formula G52e2T/h it follows that the
conductance is then quantized to the value 2e2/h. This is not
the case whenN is even, however, as is apparent from t
structure of Eqs.~7! and ~2!, yielding a transmission coeffi
cient 4l/(11l)2 less than unity, with

l5U2t1t3•••tN21

Gt2t4•••tN22
U2

,

and a conductance smaller than 2e2/h. We thus see that the
even-odd feature appears in transport in the absence of
electron correlations. Our argument also proves that w
the system is symmetric under inversion, the state at
middle of the band is always delocalized, regardless of
amount of disorder that respects such symmetry condit
This is a special kind of generic correlation in the disord
defined by specular symmetry. Of course, Eq.~6! or ~7! may
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be satisfied by a much broader set of parameter sequen
thus defining a class of correlated disorder constraints
which inversion symmetry is just a particular case. For e
ample, the simple pairlike condition t15t2 ,t3
5t4 , . . . ,tN225tN21 ,GL5GR would suffice to satisfy the
even-odd rule, being one instance within such set. No
that one may also find cases in which the rule is invert
such as whent15t2 ,t35t4 , . . . ,utN21u25GLGR/4 with GL

ÞGR. But they are very special and difficult to achieve e
perimentally.

The above results show that the even-odd behavior fo
in symmetric Hubbard chains coupled to reservoirs9,11 need
not arise from Kondo-like or other type of electron corre
tions. The results are also relevant to the case of trans
through a monatomic wire considered in the literature14

Thene0 is just the site energy of thes orbital of the noble- or
alkali-like atoms, while the hopping elementst i represent the
overlap between the nearest-neighbors orbitals and are all
equal. Following our conclusions, if coupling to the left an
right leads is the same, we then expect the conductance t
quantized, as long as the number of atoms in the chai
odd, again exhibiting the even-odd feature. For a wire w
deformations perpendicular to its length the even-odd ch
acter of the conductance is preserved since the normal de
mation just changes the inter-site couplings symmetricall

The above results are valid for any finiteN, no matter how
long the chain is. Also, if the electron-electron interaction
added, we expect them to hold as well since the on-site C
lomb interaction introduces a self-energy termSe-e in the
Green’s function of each site. The influence of electro
electron interactions is then just to shift and split the re
nance position15 and Eq.~2! can also be formally used in
their presence, with the formal replacementgi

r5(eF2es

2ReSe2e)
21 and the new resonance conditione05eF

2ReSe2e .
In summary, we have shown that in the absence

electron-electron interactions a broad class of off-diago
correlated disordered 1D samples of finite length exhibi
state with transmission coefficient equal unity at the cente
the band. The set includes all sequences with inversion s
metry, for which perfect transmission takes place if the nu
ber of sites is odd, while if it is even transmission is less th
one, yielding a conductance equaling 2e2/h in the first case,
and smaller in the latter. In the case of general disorder,
expects the even-odd rule to be violated. Our results stron
suggest that previous interpretation of this even-odd effec
terms of electron correlations must be revised.
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