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Delocalization and conductance quantization in one-dimensional systems attached to leads
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We investigate the delocalization and conductance quantization in finite one-dimensional chains with only
off-diagonal disorder coupled to leads. It is shown that the appearance of delocalized states at the middle of the
band under correlated disorder is strongly dependent upon the even-odd parity of the number of sites in the
system. In samples with inversion symmetry the conductance eqe@ls fr odd samples and is smaller for
even parity. This result suggests that this even-odd behavior found previously in the presence of electron
correlations may be unrelated to charging effects in the sample.
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Since the pioneering work of Andersorpcalization in  coupling to the reservoirs of continuum states. We find that it
disordered systems has become a key issue in solid-stateepends on the parity of the string, i.e., on whether the num-
physics. Mott and Twogesuggested that all the electronic ber of sites is even or odd. Applied to the molecular wire
eigenstates in less than two-dimensiof2i) disordered sys- Sstructure with inversion symmetry, we observe that the con-
tems are localized. Borladdjave a rather general proof of ductance in the odd case always equaés/R while it is
this statement. Economou and Cofhéave reexamined the smaller than this quantity if the number of sites is even.
localization problem in the 1D tight-binding model, conclud- ~ The system considered here is a chaiNosites labeled
ing that all states are localized if and only if the nearest-1,2, ... N from left (L) to right (R), with its ends connected
neighbor coupling is considered. However, Theodorou ando reservoirs with chemical potentiaj . The hamiltonian is
Cohen showed that the state at the middle of the band is N-1
extended, regardless of the randomness of the nearest-
neighbor hopping matrix elements. Recently, it has also been " ~ 24 €0 a 21 (tiafag, o+ He)+ Zf R €iaDiDia
argued that the delocalization transition exists in 1D systems o
with correlated diagonal and/or nondiagonal disorder, i.e.,
that at some particular energies the states are extéritleel.
delocalization transition has now been investigated in 1D
random quantum Ising chaiis1D randomXY models®  wherea; (by) is the annihilation operator of electron at site
weakly disordered quasi-1D tight-binding hopping models, i (leadr), and the other terms have their usual meaning. We
and dirty superconducting wiré8. will characterize delocalization by perfect transmission at

On the other hand, Ogdtifound an even-odd parity ef- Some particular energy, i.e., by a transmission coefficient that
fect in the conductance characteristics of a finite Hubbar@quals 1. The corresponding state is then exteAdahsid-
chain coupled with continuum states. He attributed such &ring the sites to the right of site 1 as part of the right reser-
parity effect to the many-body Kondo resonance and the&oir, the Keldysh formalisrif yields for the transmission
presence of the reservoirs of continuum states, while BrouProbability the expression
wer et al® explained it by level repulsion of the transmission

+ Zk (VEb! a;+VRb! ay+H.c), (1)

eigenmodes. Similar even-odd behavior in the conductance — 2T t4]2Im Gl

has been found in first-principles numerical calculations in +{€F) = 2 r 2 L 2 r 2/
. ) o . — €9~ |t1]°ReGLR)*+ (I'"— 2|11 Im G5r) /4

monatomic molecular wires within the local-density- (er— o=ty 2r)"F It 2r) 2

functional approximation and interpreted as arising from
charge neutrality and resonant tunneling due to the sharp tigthere
structure*®

Here we address the question of whether these effects are
many-body effects or not. Our approach is to check if they
arise in the absence of a Coulomb term in the Hamiltonian.

TYR=" 27|VL'R125( e — € m),
K

Within a tight-binding model in the absence of electron- Gl(en)={Ta" (e)] 1= It:|2G" e L
electron interactions we find that both delocalization in a rter)={lgi(er)] [IGr 1r(er)}
sample with correlated disorder and the even-odd parity fea- i=23 . . N-1

ture in symmetric strings are present, irrespective of any
charging effects.

For the sake of simplicity, we consider only nondiagonal Gur(€r)=
disorder keeping on-site energies the same at all sites. We
derive an explicit delocalization condition to be satisfied by ) P
the parameters associated with hopping between sites and gi(er)=(er—e+i0") %, 1=12,...N,
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and the usual notation for Green functions has been enbe satisfied by a much broader set of parameter sequences,
ployed. The transmission probability depends in general othus defining a class of correlated disorder constraints in
the position of the Fermi level at the reservoirs as well as orwhich inversion symmetry is just a partlcql_ar case. For ex-
the disorder configuration of the hopping parameteréimple, —the  simple  pairlike = condition t,=1,,t3
(ty,ty, ... ty—1). Here we consider the most interesting =ts4, - - - atN72:tN—_11F =F_ would su_ﬁlc_:e to satisfy the_
case, when the Fermi leve} is pinned at the value of the even-odd rule, being one instance within such set. Notice
independent site energy, the middle of the band, or level that one may also find cases in which the rule is inverted,

g ’ such as whert;=t,,ts=t,, ... |ty_1|>=T"TR/4 with T'-
group of the 1D system: The real part of all retarded Green R 1=, = 1, I _
functions becomes zero and the first term in the denominatof I - But they are very special and difficult to achieve ex-
of Eq. (2) vanishes. Perfect transmission through the 1D latPerimentally.

tice is then obtained if The above results show that the even-odd behavior found
in symmetric Hubbard chains coupled to resenvbitsieed
b= —2[ty)%Im Ghg, (3)  not arise from Kondo-like or other type of electron correla-
tions. The results are also relevant to the case of transport
where now through a monatomic wire considered in the literattfre.
Rltgts: - -ty sl Thene_o is just the sitg energy of .thseorbital of the noble- or
Im Ghr=— Sl N odd, (4) alkali-like atoms, while the hopping elemeittsepresent the
28477 "IN-1 overlap between the nearest-neighisaorbitals and are all
) equal. Following our conclusions, if coupling to the left and
MG, = — i tats- - ty_q N even (5) right leads is the same, we then expect the conductance to be
2R ) : ; ; i
I'R|toty - - ty_2 quantized, as long as the number of atoms in the chain is
. o odd, again exhibiting the even-odd feature. For a wire with
The condition for perfect transmission thus becomes deformations perpendicular to its length the even-odd char-
5 L acter of the conductance is preserved since the normal defor-
titg- Iy :F_ N odd (6) mation just changes the inter-site couplings symmetrically.
oty ty-g| TR ' The above results are valid for any finke no matter how
long the chain is. Also, if the electron-electron interaction is
tyts- - 'tN,1|2 rtrr added, we expect them to hold as well since the on-site Cou-
oty tyo 4 N even. (7)) lomb interaction introduces a self-energy teliu. in the

Green’s function of each site. The influence of electron-
Equation(6) states that for a chain with an odd number of electron interactions is then just to shift and split the reso-
sites and mirror (inversion symmetry {“=I'R=TI, t; nance positiol? and Eq.(2) can also be formally used in
=ty_1, th=tn_», etc) perfect transmission is automatically their presence, with the formal replacemegijt=(er— €
satisfied at the middle of the band or level group. From the-ReX._,) ! and the new resonance conditiop= er
Landauer-Bttiker formula G=2e?77h it follows that the —Re3S,_,.
conductance is then quantized to the valeé/B. This is not In summary, we have shown that in the absence of
the case wheiN is even, however, as is apparent from theelectron-electron interactions a broad class of off-diagonal
structure of Eqs(7) and(2), yielding a transmission coeffi- correlated disordered 1D samples of finite length exhibit a
cient 4/(1+\)? less than unity, with state with transmission coefficient equal unity at the center of
the band. The set includes all sequences with inversion sym-
metry, for which perfect transmission takes place if the num-
ber of sites is odd, while if it is even transmission is less than

. . . 2 . .
and a conductance smaller thag?th. We thus see that the °No’ yleldlng. a conductance equaling™h in the f|r§t case,
. . and smaller in the latter. In the case of general disorder, one
even-odd feature appears in transport in the absence of an .
pects the even-odd rule to be violated. Our results strongly

electron correlations. Our argument also proves that Wheguggest that previous interpretation of this even-odd effect in

th_e system s symmetnc under inversion, the state at th?erms of electron correlations must be revised.

middle of the band is always delocalized, regardless of the
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