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Abstract

We study the spectral stability of the solitary wave solutions to the nonlin-

ear Dirac equation in (1+1) dimension. We focus on a Soler type nonlinear

model, where the nonlinearity is given by (ψψ)p. The method we use con-

sists in perturbe the solutions with a sufficiently small function ρ, finding a

time evolution equation for this perturbation where this equation depends

on the spectrum of the linearized operator Hµ. We will say that the solitary

wave solutions are stable if the spectrum of Hµ does not have eigenvalues

with imaginary part other than zero. We were only able to provide bounds

for the real and imaginary part of the discrete spectrum of Hµ. In the end,

we summarize what is known about σ(Hµ).
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Chapter 1

Introduction

1.1 Motivation and context of the equation

The Dirac equation was proposed by the British physicist Paul Dirac in 1928, in his work

“The quantum theory of the electron” [26], where he treats the description of the relativis-

tic motion of a spin-1/2 particle in R3. A full overview of its applications would take us

too far. In particular, our interest is the description of materials that share a fundamen-

tal similarity: their low-energy fermionic excitations behave as massless Dirac particles.

This class of materials, called Dirac materials, exhibits unusual characteristics like Klein

tunneling, chiral symmetries and impurity resonances [64].

The interest in Dirac materials grew since the experimental discovery of graphene in 2004

[44]. This discovery gave the Nobel prize in physics to Andre Geim and Konstantin

Novoselov in 2010. This is a two dimensional material and it is so interesting given its

electronic properties, see [16, 52, 63].

Nonlinear models are been extensively investigated by many researchers in different areas of

physics. Most authors study nonlinear Schrödinger equations and there is many literature

on the topic. The physical motivation for studying nonlinear models is that stable pulses

(solitary waves) have been observed experimentally. For example, Fermi et al. studied the

nonlinear phenomena and found periodic behavior at least when the energy is not too high,
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CHAPTER 1. INTRODUCTION

and that stable pulses (solitary waves) propagate in nonlinear continuous systems. These

facts led it to conclude that there will be some nonlinear lattice which admits rigorous

periodic waves, and that certain pulses (lattice solitary waves) will be stable there, see

[60, 20, 32].

With respect to the nonlinear Dirac equation, there are many types of nonlinearities. In

1938 the Russian physicist Dimitri Ivanenko considered the non-linearity ψψ [36], then

Weyl in 1950 [66] and Heisenberg in 1953 [35] also studied the same type of nonlinearity.

But it was Mario Soler [55] who was the first to investigate the stationary states of the

nonlinear Dirac field with the scalar fourth order self coupling, proposing them as a model

of elementary extended fermions.

The massive Thirring nonlinear model [59] is also well known. The main difference between

this model and the Soler model is that the Thirring model is completely integrable and the

Soler model is not. Nonlinear generalizations of the Dirac equation, have emerged naturally

as a practical model in many physical systems, a few examples are: extended particles,

the gap solitary waves in nonlinear optics, light solitary waves in waveguide arrays and

experimental realization of an optical analog for relativistic quantum mechanics, Bose-

Einstein condensates in honeycomb optical lattices, phenomenological models of quantum

chromodynamics, as well as matter influencing the evolution of the Universe in cosmology,

etc. see [40, 41].

The Spanish physicist M. Soler re-introduced the Ivanenko type nonlinearity in 1970, since

then the model has been studied in many aspects. The n-dimensional Soler model is given

by the equation

i∂tψ(x, t) =
(
D0 + β

(
m− f(ψψ)

))
ψ(x, t), ψ(x, t) ∈ L2(R×Rn,CN ), (1.1)

where f(s) is a smooth function, ψψ = ψβψ and D0 is the n-dimensional massless free

Dirac operator. We are going to consider the case f(s) = sp with p > 0, giving particular

results to p = 1. The Soler model with this power like nonlinearity was exactly solved

only in the one dimensional case [42, 24]. Also, many other areas have been studied,
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1.2. ON THE MATHEMATICAL SIDE

applications, etc., see [25, 24, 14, 22, 6, 15, 21].

There are also variations of this model, like the generalization introduced by Poddubny and

Smirnova in 2018 for the two-dimensional case [47]. Most of our results can be extended

to this generalization see the appendix A. Basically, this model is a twisted Soler model

manipulated by a real constant α and is equal to the Soler model when α = 1. In this

way, by controlling the parameter α, other nonlinearities can be obtained, for example the

case α = −1 was considered by William Borrelli who showed the existence of solutions and

others general properties [8, 10, 9].

The existence of localized states (solitary waves) and its stability is so important because

this type of nonlinearity could be reproduced in laboratory. In the two-dimensional gen-

eralization of Poddubny and Smirnova they show one way of how the cubic nonlinearity is

reproducible. They even gave several examples where this two-dimensional model could be

implemented, like optofluidic platform with photonics crystal fibers filled by liquids, glass

fibers, etc. see [47, 43, 28, 48, 62, 23, 2, 18, 54, 19, 51].

The stability of the solitary waves solutions has a huge importance, determines the pos-

sibility of giving a physic application to the model. In our case we are talking about

applications in Dirac materials, like the graphene, etc.

1.2 On the mathematical side

The first natural question is about the existence of solutions. For the three-dimensional

Soler model, existence of stationary states ψ(x, t) = φ(x)e−iωt with ω ∈ (0,m), was proved

by Thierry Cazenave and Luis Vazquez in 1986 using ODE arguments [17]. Then, the exis-

tence of excited states was proved in [3]. Even the existence for more singular nonlinearities

has been proved [4].

In 1995 Maria Esteban and Éric Séré proved the existence of stationary states of the

Nonlinear Dirac Equation using variational methods [30]. These techniques have been

improved, see [27, 29]. Once we have solved the existence problem, the next natural
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CHAPTER 1. INTRODUCTION

question is about the stability of the solutions and this can be studied in many different

ways.

In particular we are going to consider the nonlinearity f(s) = sp with p > 0, so the equation

(1.1) becomes

i∂tψ(x, t) =
(
D0 + β

(
m− (ψψ)p

))
ψ(x, t), ψ(x, t) ∈ L2(R×Rn,CN ). (1.2)

The soler model with this p-power nonlinearity is exactly solvable in the one dimensional

case for any p > 0, see [42]. For other dimensions, no explicit solutions are known [24]. We

will concentrate on the stability of the solutions for the one-dimensional case.

The mathematical meaning of stability is the condition in which a small disturbance in a

system does not produce a big effect on that system. In terms of the solution of a differential

equation, a solution ψ(x) is said to be stable if any other solution of the equation ψ̃(x)

that starts out sufficiently close to it when x = 0, remains close to it for succeeding values

of x. If the difference between the solutions approaches zero as x increases, the solution is

called stable. If a solution does not have this property, it is called unstable.

In other words, assume that ψ(x, t) = φ(x)e−iωt is a solution of (1.2) where φ(x) ∈

L2(Rn,CN ) is a localized function. Then, the main goal is to prove that φ(x) is sta-

ble, so consider the perturbed solution ψ̃(x, t) = (φ(x) + ρ(x, t)) e−iωt, which starts close

to ψ, and then we can study how the perturbations ρ(x, t) behaves in time.

There are many criteria for analyzing stability, in chapter 2.3 we briefly summarize the most

typical stability criteria. A few examples of stability criteria applied to the solitary wave

solutions of the Soler model are: Vakhitov-Kolokolov criterium [21], asymptotic stability

[22], numerically stability analysis [25], dilatations stability [56] and spectral stability in

[14, 6, 15]. We are going to focus on the spectral stability for the one-dimensional case,

this is a work in collaboration between Edgardo Stockmeyer, Hanne van den Bosch, Julien

Ricaud and the present author.

Although the solutions in the one-dimensional case are known, their stability is still an
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1.3. ORGANIZATION OF THE THESIS

open problem. There is a lack of understanding of the problem and only partial results

have been given, see chapter 4. Throughout the thesis we will concentrate on trying to

solve the spectral stability problem.

Note the difficulty of the problem, first of all is a mathematical model of the year 1970

and the stability of the solitary wave solutions is until now an open problem. There have

been many attempts to resolve the stability problem, see [25, 24, 14, 22, 6, 15, 21]. The

strategies followed have even presented controversies, for the cubic nonlinearity in (1 + 1)

dimensions through a semi-analytical study Berkolaiko and Comech in [6] conclude that

the soliton associated is linearly stable for all values of its frequency ω. Then, this results

was validated by the results of [45].

The results of [6] together with the results of [1], which also claim soliton stability, came into

controversy with the results of [7], which reported instability of the soliton for ω = 0.5.

This fact pushed the numerical study [53] who questioned the results of [6]. Lakoba in

2018 [38] presented this controversy in detail and resolved it concluding that the soliton is

linearly stable for small values of frequencies up to ω = 0.01.

Mathematically, the principal difficulty of this model is the unboundedness and negativity

of the Dirac operator. In the nonlinear Schrödinger case, the positivity of the operator

facilitates the stability study, for example orbital stability is proved in [67] for unbounded

potentials, spectral stability is studied in [34] for cubic nonlinearities, etc.

1.3 Organization of the thesis

To help the understanding of the thesis, here is summarize the content of each chapter. In

this way the reader can understand the narrative throughout the document.

Chapter 2

In the chapter 2, the basic notions about the Dirac equation and non-linearities are pre-

sented. This chapter is organized as follows.
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CHAPTER 1. INTRODUCTION

Section 2.1: Starts by deriving the Dirac equation from the energy-moment relation. Then,

the Klein-Gordon equation is found. Next, the algebra of the Pauli matrices is introduced,

arriving at the Dirac equation. Finally, the Dirac free operator are defined.

Section 2.2: The basic properties of the Dirac operator are studied. We describe the Hilbert

space in which we will define this operator. Also the notation that we will use throughout

the thesis is also defined. In the end, we found the essential spectrum of the free Dirac

operator using the Fourier transform. This spectrum will be important later, since the

operators resulting from linearization turn out to have the same.

Section 2.3: A brief historical review of the non-linear Dirac equation is given. The n-

dimensional Soler model is introduced summarizing its general properties. Finally, we give

a brief summary of the stability criteria to contextualize the reader in the main problem

of this thesis.

Chapter 3

In the chapter 3, the stability of the solutions of the Soler model in one dimension is

studied. The chapter is organized as follows.

Section 3.1: First, the main equations of one-dimensional Soler model are introduced.

Starting with the Dirac equation in a dimension disturbed by a general Soler-type non-

linearity. Then, it is shown that the spinor components satisfy a Hamiltonian system,

where the Hamiltonian turns out to be 0.

Section 3.2: It is briefly discussed how the problem of the existence of solutions for this

model has been dealt with in the literature. Then, it is shown in detail how the solutions

for the 1D Soler model are found when the non-linearity is f(s) = s. Also, the solutions

for the general p-power nonlinearity f(s) = sp are shown.

Section 3.3: The stability of solutions is studied. Here the solutions are perturbed by means

of the Bogoliubov-deGennes linearization stability analysis. Here the operator resulting

from the linearization Hµ is found and the notion of spectral stability is defined, in terms
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of the spectra of this operator. This operator depends on two other operators L0 and Lµ,

which are analyzed extensively in the next section.

Section 3.4: The spectra of the operators L0 and Lµ are studied extensively. The basic

properties of their spectra are shown, properties that can be found in the literature and

new results. Some of the new result are for example: in the case p = 1 we will show it by

an oscillation argument that σd(L0) = {−2ω, 0}; the eigenvalues of L0 and Lµ are simple,

and so on. These results can be found summarized in the next chapter.

Section 3.5: The spectrum of the Hµ operator is analyzed. This is the most important

operator, since the spectral stability of the Soler model solutions depends on their spectrum.

The section begins by finding the main symmetries of the Hµ spectrum. Next, the spectral

projections of L0 are studied. These spectral projections are later used to give bounds on

the spectrum of the H2
µ operator.

Section 3.6: Here you can find the main results of this thesis. Bounds on the imaginary

and real part of σp(Hµ) are proved. These bounds allow us to exclude a region of the

complex plane where the eigenvalues cannot be. Therefore, the result is partial, we could

not exclude all complex eigenvalues that lead to instability. Therefore, the problem remains

open.

Chapter 4

The chapter 4 summarizes the characterizations for the spectra of the operators L0, Lµ

and the most important Hµ. The main known results are presented first and then the main

results of our work. It also indicates where this information can be found in the literature.

Not all the new results present in this chapter are in this thesis, they are part of a joint

work with E. Stockmeyer, H. van den Bosch and J. Ricaud. For those results that are not

proved here, a brief explanation of how they are obtained, is given.

Our results can be synthesized as follows: for suitable ω and p we have σd(L0) = {−2ω, 0}.

The operator L2 has exactly three negative eigenvalues, i.e. σd(L2) = {−2ω, λ, 0} where

λ ∈ (−2ω, 0). For proper ω and p, Lµ with µ ∈ (0, 2] has exactly one eigenvalue between
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CHAPTER 1. INTRODUCTION

(−2ω, 0) and none at (−m − ω,−2ω). For z ∈ σ(Hµ) \ {R ∪ iR} we give bounds on the

imaginary and real part of z. Also, for suitable ω and p there are no eigenvalues on the

imaginary axis.
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Chapter 2

Nonlinear Dirac equation

In this chapter the basic notions about the Dirac equation and non-linearities are presented.

This chapter is organized as follows.

Section 2.1: Starts by deriving the Dirac equation from the energy-moment relation. Then,

the Klein-Gordon equation is found. Next, the algebra of the Pauli matrices is introduced,

arriving at the Dirac equation. Finally, the Dirac free operator are defined.

Section 2.2: The basic properties of the Dirac operator are studied. We describe the Hilbert

space in which we will define this operator. Also the notation that we will use throughout

the thesis is also defined. In the end, we found the essential spectrum of the free Dirac

operator using the Fourier transform. This spectrum will be important later, since the

operators resulting from linearization turn out to have the same.

Section 2.3: A brief historical review of the non-linear Dirac equation is given. The n-

dimensional Soler model is introduced summarizing its general properties. Finally, we give

a brief summary of the stability criteria to contextualize the reader in the main problem

of this thesis.
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CHAPTER 2. NONLINEAR DIRAC EQUATION

Chapter 3

In the chapter 3, the stability of the solutions of the Soler model in one dimension is

studied. The chapter is organized as follows.

Section 3.1: First, the main equations of one-dimensional Soler model are introduced.

Starting with the Dirac equation in a dimension disturbed by a general Soler-type non-

linearity. Then, it is shown that the spinor components satisfy a Hamiltonian system,

where the Hamiltonian turns out to be 0.

Section 3.2: It is briefly discussed how the problem of the existence of solutions for this

model has been dealt with in the literature. Then, it is shown in detail how the solutions

for the 1D Soler model are found when the non-linearity is f(s) = s. Also, the solutions

for the general p-power nonlinearity f(s) = sp are shown.

Section 3.3: The stability of solutions is studied. Here the solutions are perturbed by means

of the Bogoliubov-deGennes linearization stability analysis. Here the operator resulting

from the linearization Hµ is found and the notion of spectral stability is defined, in terms

of the spectra of this operator. This operator depends on two other operators L0 and Lµ,

which are analyzed extensively in the next section.

Section 3.4: The spectra of the operators L0 and Lµ are studied extensively. The basic

properties of their spectra are shown, properties that can be found in the literature and

new results. Some of the new result are for example: in the case p = 1 we will show it by

an oscillation argument that σd(L0) = {−2ω, 0}; the eigenvalues of L0 and Lµ are simple,

and so on. These results can be found summarized in the next chapter.

Section 3.5: The spectrum of the Hµ operator is analyzed. This is the most important

operator, since the spectral stability of the Soler model solutions depends on their spectrum.

The section begins by finding the main symmetries of the Hµ spectrum. Next, the spectral

projections of L0 are studied. These spectral projections are later used to give bounds on

the spectrum of the H2
µ operator.

Section 3.6: Here you can find the main results of this thesis. Bounds on the imaginary

10



2.1. DERIVATION OF THE DIRAC EQUATION

and real part of σp(Hµ) are proved. These bounds allow us to exclude a region of the

complex plane where the eigenvalues cannot be. Therefore, the result is partial, we could

not exclude all complex eigenvalues that lead to instability. Therefore, the problem remains

open.

2.1 Derivation of the Dirac equation

The free Dirac equation describes the dynamics of a massive spin-1
2 relativistic fermion

in (3+1) space-time dimensions. The usual way to derive this equation is to use the fact

that classical quantities correspond to differential or multiplication operators in quantum

mechanics. The goal is to obtain an equation for quantum particles compatible with the

relativistic energy-momentum relation.

So far, we know these two relations:

a) E =
√
c2p2 +m2c4 b) E → i~

∂

∂t
(2.1)

The first one is the relativistic energy-momentum relation and the second one is the quan-

tum interpretation of the energy as operator. This relativistic energy needs to be an

eigenvalue of the quantum energy operator, and if we write this using the operator form

of the momentum, then we have the square-root Klein-Gordon equation:

i~
∂

∂t
ϕ(t,x) =

√
−c2~2∆ +m2c4ϕ(t,x), t ∈ R, x ∈ R3 (2.2)

If we apply the energy operator over each side, then obtain the Klein-Gordon equation.

The problem here is that this equation is second order in time and a quantum mechanical

evolution equation should be first order. Moreover this equation does not include the

spin structure because the scalar wave function [58]. So, Dirac’s idea was to change the
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CHAPTER 2. NONLINEAR DIRAC EQUATION

structure of the energy introducing new factors such that

E = c

3∑
i=1

αipi + βmc2 ≡ cα · p + βmc2 (2.3)

with α·p =
∑3

i=1 αj
∂
∂xj

, ~ = c = 1 and comparing this with the energy-momentum relation

we find that the following anti-commutative relations between these new quantities must

hold the following relations

{αi, αk} = 2δikI4, {αi, βk} = 0, β2 = I4, i, j = 1, 2, 3 (2.4)

with 14 being the 4×4 identity matrix and α y β are anti-commutating quantities and can

be represented by n × n matrices. This representation is not unique, the most common

choice is using the Pauli matrices given by (see [58], [26]),

σ1 =

0 1

1 0

 σ2 =

0 −i

i 0

 σ3 =

1 0

0 −1

 (2.5)

In the case of massless particles, the term with β vanish and the matrices can be used in a

direct way similarly happen in the case of one and two dimension where de 2× 2 matrices

are sufficient. In dimension three, we need write the matrices in the following way, which

is the standard representation introduced by Dirac,

β =

1 0

0 −1

 αi =

0 σi

σi 0

 i = 1, 2, 3 (2.6)

these matrices have a lot of properties and play a very important role in field theory. So,

using (2.3) we have the free Dirac equation:

i~
∂

∂t
ϕ(t,x) = Dmϕ(t,x), ϕ(t,x) ∈ C4 . (2.7)

12



2.2. BASIC SPECTRAL PROPERTIES OF THE FREE DIRAC OPERATOR

Using the triplets α = (α1, α2, α3) and σ = (σ1, σ2, σ3), Dm is given explicitly by

Dm = −i~cα ·∇ + βmc2 =

 mc21 −i~cσ ·∇

−i~cσ ·∇ −mc21

 . (2.8)

Dm is called the free Dirac operator and for the case Dm=0 := D0 is called the massless

free Dirac operator.

2.2 Basic spectral properties of the free Dirac Operator

We are going to introduce the Dirac operator following the presentation in [65, Section

10.6]. Consider the Hilbert space given by

H1(Rn)N = L2(Rn)N :=
N⊕
L2(Rn),

where N := N(n) = 2[(n+1)/2] and n ≥ 1 is the dimension. The Hilbert space is also

equipped with the scalar product

〈ψ,ϕ〉 =

N∑
n=1

∫
ψ∗n(x)ϕn(x) dx =

∫
(ψ,ϕ)CN dx, x ∈ Rn ,

where (·, ·)CN denotes the scalar product in CN and if ψ ∈ L2(Rn)N means that ψi ∈

L2(Rn) for i = 1, ..., N . Then for any continuously differentiable function ψ : Rn → CN

we can define the free Dirac operator as follows

Dmψ(x) =

(
~

N∑
i=1

αiDi +mβ

)
ψ(x), x ∈ Rn (2.9)

where αi and β are the N ×N Pauli matrices (2.6). Di is a first order differential operator

given by

13



CHAPTER 2. NONLINEAR DIRAC EQUATION

(Diψ)(x) = −i
(
∂

∂xi
ψ1,

∂

∂xi
ψ2, ...,

∂

∂xi
ψN

)>
.

The free Dirac operator is essentially self-adjoint in C∞0 (Rn) and self-adjoint on the Sobolev

space H1(Rn)N ⊂ L2(Rn)N [58, Theorem 1.1]. Moreover, its spectrum is purely absolutely

continuous and is given by

σess(Dm) = (−∞,−mc2] ∪ [mc2,∞). (2.10)

This can be easily proved taking the Fourier transform of Dm. In three dimensions the

transform is given by

Fψk(k) ≡ 1

(2π)3/2

∫
R3

e−ip·xψk(x) d3x

where k = 1, 2, 3, 4. Is defined for integrable functions, unitary and maps the coordinate

space to the momentum space, i.e. FL2(R3, d3x)4 = L2(R3, d3p)4. Any matrix differential

operator with constant coefficients in L2(R3, d3x)4 is transformed via F to a multiplication

operator in L2(R3, d3p)4, see [58]. So, for the Dirac operator (2.8) we have

(FDmF) (p) =

 mc21 ~cσ · p

~cσ · p −mc21



which is a matrix with eigenvalues depending on p with modulus λ(p)2 = c2p2 + m2c4,

this result is expected because we construct everything from (2.1). Then, the spectrum of

Dm is given by the range of λ±(p) = ±
√
c2p2 +m2c4 with p ∈ R3, therefore the spectrum

is (−∞,−mc2] ∪ [mc2,∞). From this expression, it is clear that the spectrum is purely

a.c. and therefore essential. Is easy to see that the essential spectrum is equal at least for

n = 1, 2, 3.

14



2.3. THE SOLER MODEL

2.3 The Soler model

In 1938 the Russian physicist Dimitri Ivanenko considered a self interacting model, includ-

ing the non-linearity ψψ [36] in the Hamiltonian. Then Weyl in 1950 [66] and Heisenberg

in 1953 [35] also studied the same type of nonlinearity. But it was Mario Soler [55] who

was the first to investigate the stationary states of the nonlinear Dirac field with the scalar

fourth order self coupling, proposing them as a model of elementary extended fermions.

This term transforms as a scalar under Lorentz transformations. Nonlinear generalizations

of the Dirac equation, have emerged naturally as a practical model in many physical sys-

tems, a few examples are: extended particles, the gap solitary waves in nonlinear optics,

light solitary waves in waveguide arrays and experimental realization of an optical analog

for relativistic quantum mechanics, Bose-Einstein condensates in honeycomb optical lat-

tices, phenomenological models of quantum chromodynamics, as well as matter influencing

the evolution of the Universe in cosmology, etc. see [40, 41].

Soler studied this model from a classical point of view, and considered extended nucleons

interacting with their own electromagnetic field [24]. The model describes a self-interaction

of the fermions with their own lattice, in the case of graphene this phenomenon is well

known, see [16]. The nonlinearity in the Soler model is a smooth function of Ivanenko’s

nonlinearity f(ψψ). In natural units the Soler equation is given by

i∂tψ(x, t) =
(
D0 + β

(
m− f(ψψ)

))
ψ(x, t), ψ(x, t) ∈ L2(R×Rn,CN ), (2.11)

where D0 is the massless free Dirac operator (2.9), n is the dimension and N comes from

the choice of the matrices (2.4).

The Soler model is a relativistically invariant Hamiltonian system. The Hamiltonian is

represented by

HSoler(ψ) = ψ∗Dmψ − F (ψ∗βψ), F (x) =

∫ x

0
f(t) dt.
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CHAPTER 2. NONLINEAR DIRAC EQUATION

Analogously we can characterize the Soler model with the following Lagrangian density

LSoler = ψ(iγµ∂µ −m)ψ + F (ψψ) ,

where we use the notation ψψ = ψ∗βψ. Given the symmetry of this system we have

conservation of the value of the charge functional

Q(ψ(t)) =

∫
Rn
ψ(x, t)∗ψ(x, t) dx ,

which is conserved in time assuming smooth enough solutions, see [42, 24]. Also, the energy

functional is conserved in time if the solutions are sufficiently smooth, and is given by

E(ψ(t)) =

∫
HSoler(ψ(x, t)) dx.

Soler computed that this quantities, E(ψ(t)) and Q(ψ(t)), both have minima at ωc = 0.936

[55]. Strauss and Vazquez in 1986 [56] studied the stability of this model in two dimensions

under dilatations. They found that the solutions are dilatation unstable for 0.936 < ω < 1

and conjectured that are dilatation stable for 0 < ω < 0.936.

We are interested in solitary-wave solutions of the form

ψ(x, t) = φ(x)e−iωt (2.12)

for some localized φ(x) ∈ L2(Rn,CN ). This kind of solutions are known as solitons or soli-

tary waves if they are stable, see [37, 24]. Solitary wave solutions or particle-like solutions

are localized solutions with finite energy and charge [5]. This kind of solutions only are

known explicitly in the one-dimensional case [24].

The main goal is to prove that φ(x) is stable, so consider the perturbed solution ψ̃(x, t) =

(φ(x) + ρ(x, t)) e−iωt, which starts close to ψ, and then we can study how the perturbations
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ρ(x, t) behaves in time. For the uniqueness based on the Picard-Lindelöf theorem, we also

need an initial data ψ(t = 0) so the perturbation starts close to ψ(t = 0).

The general stability case can be reeded mathematically as: ∀ε > 0, there exists a δ > 0

such that every solution ψ̃ having initial conditions within distance δ respect to ψ(t = 0),

i.e. that starts close to ψ(t = 0) in norm
∥∥∥ψ(t = 0)− ψ̃

∥∥∥ < δ, remains within distance ε

for all t ≥ 0, i.e.
∥∥∥ψ(t)− ψ̃

∥∥∥ < ε. This requirement in generally too strong, that is why

other stability criteria are studied when problems become more complicated, for example:

Orbital stability : Exist ε > 0, and δ0 > 0 such that ∀δ < δ0, if
∥∥∥ψ(t = 0)− ψ̃

∥∥∥ < δ then

∀t we have that
∥∥∥ψ − e−iθ(t)ψ̃

∥∥∥ < εδ. So, this tells us that if the perturbed solutions have

initial data within distance δ with respect to ψ(t = 0) then ψ̃ multiplied by a phase of

module one, remains close to ψ in time. For example, in [46], Pelinovsky y Shimabukuro

proved the orbital stability for the solitary waves of the cubic massive Thirring model.

Asymptotic stability : Exist δ0 > 0 such that ∀δ < δ0 we have that
∥∥∥ψ(t = 0)− ˜ψ(t, ω)

∥∥∥ ≤ δ,
then exist θ(t) and ω̃ such that

∥∥ψ(t)− eiθ(t)ψ(t, ω̃)
∥∥ → 0 as t → 0 and θ̇(t) → ω̃ as

t→∞. This means that the solution converges to a solitary wave with frequency ω̃. This

stability criteria are very strong and is false to completely integrable systems as Lax pairs,

Korteweg-de Vries and the massive Thirring model.

Spectral stability : Let ψ̃ = (φ(x) + ρ(x, t)) e−iωt be the perturbed solution of (1.1), where

ρ(x, t) = (ρ1, ρ2)> ∈ C2 is small enough to drop the quadratic terms. Recalling that

ψ = e−iωtφ(x) solve (1.1) we obtain an evolution type equation for ρ(x, t), so we can analyze

how it behaves in time. This procedure is known as the Bogoliubov-deGennes linearization

analysis. The time-evolution equation involves linearized operators as follow, i∂tρ = Aρ

where A is the linearized operator, therefore the stability depends on its spectrum. The idea

is, if we perturb the solutions and the perturbation goes to zero in a finite time or it keeps

oscillating, then this means that ψ̃ tends to ψ or keeps oscillating close to ψ, respectively.

Then we can say that the solution is linearly stable, conversely if the perturbation ρ grows

in time we have that ψ̃ moves away from ψ and the solution is called linearly unstable.

The existence of this solitary wave solutions was already proved in [17, 30] and can be ex-
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CHAPTER 2. NONLINEAR DIRAC EQUATION

tended to the Poddubny-Smirnova generalization see the appendix A. In the next chapters

we are goin to focus on the stability of this solitary waves using the Bogoliubov-deGennes

linearization criterium.
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Chapter 3

One dimensional Soler model

In this chapter the stability of the solutions of the Soler model in one dimension is studied.

The Soler model in one spatial dimension is also known as the Gross-Neveu model [33].

The chapter is organized as follows.

Section 3.1: First, the main equations of one-dimensional Soler model are introduced.

Starting with the Dirac equation in a dimension disturbed by a general Soler-type non-

linearity. Then, it is shown that the spinor components satisfy a Hamiltonian system,

where the Hamiltonian turns out to be 0.

Section 3.2: It is briefly discussed how the problem of the existence of solutions for this

model has been dealt with in the literature. Then, it is shown in detail how the solutions

for the 1D Soler model are found when the non-linearity is f(s) = s. Also, the solutions

for the general p-power nonlinearity f(s) = sp are shown.

Section 3.3: The stability of solutions is studied. Here the solutions are perturbed by means

of the Bogoliubov-deGennes linearization stability analysis. Here the operator resulting

from the linearization Hµ is found and the notion of spectral stability is defined, in terms

of the spectra of this operator. This operator depends on two other operators L0 and Lµ,

which are analyzed extensively in the next section.

Section 3.4: The spectra of the operators L0 and Lµ are studied extensively. The basic
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CHAPTER 3. ONE DIMENSIONAL SOLER MODEL

properties of their spectra are shown, properties that can be found in the literature and

new results. Some of the new result are for example: in the case p = 1 we will show it by

an oscillation argument that σd(L0) = {−2ω, 0}; the eigenvalues of L0 and Lµ are simple,

and so on. These results can be found summarized in the next chapter.

Section 3.5: The spectrum of the Hµ operator is analyzed. This is the most important

operator, since the spectral stability of the Soler model solutions depends on their spectrum.

The section begins by finding the main symmetries of the Hµ spectrum. Next, the spectral

projections of L0 are studied. These spectral projections are later used to give bounds on

the spectrum of the H2
µ operator.

Section 3.6: Here you can find the main results of this thesis. Bounds on the imaginary

and real part of σp(Hµ) are proved. These bounds allow us to exclude a region of the

complex plane where the eigenvalues cannot be. Therefore, the result is partial, we could

not exclude all complex eigenvalues that lead to instability. Therefore, the problem remains

open.

3.1 Setting the problem

In this case one can represent the equation (2.11) with N = 2 choosing α1 = σ2 and β = σ3

the standard Pauli matrices (2.5). So, the one-dimensional time-dependent nonlinear Dirac

equation is given by

i∂tψ(x, t) =
(
iσ2∂x + σ3

(
m− f(ψψ)

))
ψ(x, t), ψ(x, t) ∈ L2(R×R,C2) (3.1)

In this case, if ψ = (ψ1, ψ2)>, the argument of the function f becomes ψψ = ψ†σ3ψ =

|ψ1|2 − |ψ2|2. This equation gives us a coupled partial differential equation of the form

i∂tψ1 = ∂xψ2 + (m− f(|ψ1|2 − |ψ2|2))ψ1,

i∂tψ2 = −∂xψ1 − (m− f(|ψ1|2 − |ψ2|2))ψ2

(3.2)
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We are interested in solitary-wave solutions of the form

ψ(x, t) = φ(x)e−iωt (3.3)

for some localized φ(x) = (v, u)> ∈ H1(R,R2). Inserting this in (3.1):

ωφ(x) = (iσ2∂x + σ3 (m− f(φσ3φ)))φ(x). (3.4)

Equivalently we have the following coupled system


∂xv(x) = −

(
ω +m− f(|v|2 − |u|2)

)
u(x)

∂xu(x) =
(
ω −m+ f(|v|2 − |u|2)

)
v(x)

(3.5)

following the strategy of Cazenave and Vazquez [17] we can write (3.5) as a Hamiltonian

system as follows

∂xv(x) = −∂uH(u, v),

∂xu(x) = ∂vH(u, v).
(3.6)

Here, x is playing the role of the time and the Hamiltonian is given by

H(u, v) =
1

2

(
ω(v2 + u2)−G(v2 − u2)

)
, (3.7)

where

G(x) =

∫ x

0
g(t) dt, with g(t) = m− f(t). (3.8)

The solitary waves that we are looking belongs to the Sobolev space H1(R,R), so are such
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CHAPTER 3. ONE DIMENSIONAL SOLER MODEL

that vanish at infinity, that is

lim
x→±∞

v(x) = lim
x→±∞

u(x) = 0. (3.9)

So, this implies that limx→±∞ v
2+u2 = 0 and therefore H(u, v) ≡ 0. A completely analysis

of this problem can be found in [6]. So, from (3.7) we can conclude that

G(v2 − u2) = ω(v2 + u2). (3.10)

In the general case f(s) = sp with p > 0, the antiderivative take the form G(s) = ms− sp+1

p+1

and this last relation becomes

m(v2 − u2)− (v2 − u2)p+1

p+ 1
= ω(v2 + u2). (3.11)

The analysis of the Hamiltonian is useful to prove the existences of solutions in the one and

two-dimensional Soler model. In fact, we can extract a lot of information of the solutions

analyzing the level sets of the Hamiltonian, later we will study this Hamiltonian more

thoroughly.

Franz Mertens et al, in 2012 [42] considered the Lagrangian nonlinearity g2

p+1(ψψ)p+1 and

were able to find the exact solutions. In the next chapter we are going to show how the

solutions are get for p = 1, following the strategy of [6]. Is interesting note that there are

more nonlinearities in the literature, Walter Thirring in 1958 [59] considered the Lagrangian

nonlinearity λψ∗ψψ∗ψ and found the 1D solutions. Pelinovsky and Shimabukuro in [46]

proved the orbital stability for the Thirring model. Many other nonlinearities can be found

and most of them are exactly solvable in the 1-d case.
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3.2 Existence and solutions of the 1D Soler model

One of the first proof of existence was given by Cazenave and Vazquez [17] in 1986 using

ODE arguments. We will follow the lines of the proof to extend it to the generalization of

Poddubny-Smirnova for some range of the parameters in the appendix A. In 1995 Maria

Esteban and Éric Séré proved the existence of stationary states using variational methods

[30]. Then, improve the knowledge about the variational methods [27, 29], where the

existence problem for this type of nonlinearity is well summarize.

The one-dimensional Soler model is exactly solvable for any nonlinearity of the form f(s) =

sp, see [40, 41, 42]. But, in [14, Theorem 2.11] and [61] they show the absence of solitary

waves if |ω| > m, even more, in the first one proves the exponencial decay of the solutions.

Now we are going to show how Berkolaiko and Comech in [6] found the solutions in the

case v2 − u2 > 0 and 0 < ω < m ∈ R. The coupled system (3.5) take the form


∂xv(x) = −

(
ω +m− v2 + u2

)
u(x)

∂xu(x) =
(
ω −m+ v2 − u2

)
v(x).

(3.12)

To solve this we need to define some new variables and study his derivatives

h(x) = v(x)2 − u(x)2, p(x) = v(x)u(x). (3.13)

Using (3.5) the derivatives are

h(x)′ = 2
(
vv′ − uu′

)
= −4ωvu = −4ωp(x), (3.14)

p(x)′ = v′u+ vu′ = −
(
m− f(v2 − u2)

)
(v2 + u2) + ω(v2 − u2). (3.15)

Notice that since (3.10) the derivative of p(x), recalling that g(s) = m − f(t), can be
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CHAPTER 3. ONE DIMENSIONAL SOLER MODEL

written in terms of h(x) and these two new variables solve


h(x)′ = −4ωp(x),

p(x)′ = − 1
ωg(h)G(h) + ωh.

(3.16)

Now the second derivative of h(x):

h(x)′′ = 4g(h)G(h)− 4ω2h = ∂h
(
2G(h)2 − 2ω2h2

)
, (3.17)

integrating this expression, we obtain the equation that will be useful to find the exact

solutions of this model and its given by

(
h(x)′

)2
= 4G(h)2 − 4ω2h2, (3.18)

this implies that is needed G(x) > ωx, due the left side of the equation is positive. More-

over, realize that this equation is separable and, with the appropriate change of variable,

exactly solvable.

Until now the nonlinearity f introduced in (2.11) is a smooth function of the spinor and

the solutions found in [6] are specifically for the case of the Gross-Neveu model, which is

the same that the one-dimensional Soler model. These authors used m = 1 but it is easy

to do the same calculation for any m > ω > 0.

The antiderivative of the nonlinearity (3.8) for this model is given by:

G(x) = mx− x2

2
, (3.19)

replacing this in (3.18), choosing the negative square root and separating the derivatives
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3.2. EXISTENCE AND SOLUTIONS OF THE 1D SOLER MODEL

we obtain

dx = − dh

2h
√

(m− h/2)2 − ω2
. (3.20)

Now, using the substitution used in [6],

m− h

2
=

ω

cos 2θ
=⇒ h = 2

(
m− ω

cos 2θ

)
, (3.21)

so dh = −4ω sin 2θ
cos2 2θ

dθ. Then

dx =
4ω sin 2θ
cos2 2θ

dθ

4ω
(
m− ω

cos 2θ

)
sin 2θ
cos 2θ

=
dθ

m cos 2θ − ω
(3.22)

this equation is integrable and it is easy to verify that the solution is

x =
1

2κ
ln

∣∣∣∣√ν + tan θ√
ν − tan θ

∣∣∣∣ (3.23)

where κ =
√
m2 − ω2 and ν = m−ω

m+ω . The following steps are use trigonometric identities

to compute and combine the variables (3.13) and v2 + u2, all in terms of θ(x). Finally,

they get the following expressions for the spinor components:

v(x) =

√
2(1− ω)(

1− ν tanh2 κx
)

coshκx
, u(x) =

√
2ν(1− ω) tanhκx(

1− ν tanh2 κx
)

coshκx
. (3.24)

Note that u(x) =
√
ν tanh(kx)v(x). These functions decays exponentially to zero as |x| →

∞, see [6, Remark 3.5].

The graph of this functions and of v(x) + u(x) and v(x) − u(x) will be useful for reasons

that we will explain latter. So, the graphics for m = 1 and some values of ω are given by:
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Figure 3.1: Graph of functions v(x) in blue and u(x) in yellow for ω = {0.1, 0.2, 0.4, 0.8} respec-
tively.
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Figure 3.2: Graph of functions v(x) + u(x) in blue and v(x) − u(x) in yellow for ω =
{0.1, 0.3, 0.5, 0.9} respectively.

In the case where the nonlinearity is given by f(s) = sp, with p > 0 and ω ∈ (0,m), is also

exactly solvable, see [24]. The solitary wave solutions is given by φ0(x) := φ0(p, ω,m, x) :=
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v(p, ω,m, x)

u(p, ω,m, x)

 where the components are

v(p, ω,m, x) :=
1√

1− ν tanh2(pκx)

[
(p+ 1)(m− ω)

1− tanh2(pκx)

1− ν tanh2(pκx)

] 1
2p

, (3.25)

u(p, ω,m, x) :=
√
ν tanh(pκx) v(p, ω,m, x) , (3.26)

we have introduced the parameters

κ =
√
m2 − ω2 and ν =

m− ω
m+ ω

∈ (0, 1).

We will often omit the arguments p, ω and m written them as v(x) and u(x), when this

causes no confusion. The solution of (3.4) is unique up to multiplication by a constant

phase and translations in space. The solution φ0 = (v, u)> is (up to complex multiples)

the unique solution such that the first entry is even, the second entry odd.

Moreover, given the explicit spatial depends in pκx of φ0 and because it will often be

convenient for shortness and clarity, we will use the convention that a tilde means a spatial

rescaling by a factor pκ. Namely, if f is a function on R, then f̃ is defined through

f(x) = f̃(pκx) for any x ∈ R. For example,

ṽ =
1√

1− ν tanh2

[
(p+ 1)(m− ω)

1− tanh2

1− ν tanh2

] 1
2p

. (3.27)

Remark 3.1. Note that the function v(x) + u(x) and v(x) − u(x) does not change sign

for ω ∈ (0, 1) and p > 0. Because we have the relation u(x) =
√
ν tanh(pκx)v(x), where

ν =
1− ω

m
1+ ω

m
< 1 and the function tanh(z) ∈ (−1, 1) ∀z ∈ R. See figure 3.2.
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3.3 Perturbation and Linear Stability

The linear stability is considered by the Bogoliubov-deGennes linearization analysis, see

[24, 13]. General nonlinearities have been studied using the same linearization [24, 13, 14,

6]. In [15] gives a partial result on spectral stability for a range of parameters. Consider

another solution of the one-dimensional soler model (3.1) which is close to ψ (3.3) and is

given by

ψ̃ = (φ(x) + ρ(x, t)) e−iωt, ρ(x, t) = (ρ1, ρ2)> ∈ C2 (3.28)

and found a differential equation for the perturbation ρ(x, t). In the process you need to

consider that this perturbation is small enough to drop quadratic terms and this is called

the linearization. With this equation we can study the time evolution of the perturbation

and we hope, if the system is stable, that the norm is not growing in time. In fact, if the

system is stable this perturbation is only a oscillation and ψ̃ tend to ψ in a finite time.

Inserting this perturbation in (3.1)and dropping terms quadratic in ρ we obtain

i∂t (φ(x) + ρ(x, t)) e−iωt = (iσ2∂x + σ3 (m− f(s))) (φ(x) + ρ(x, t)) e−iωt (3.29)

where the argument of the nonlinearity is s = v2 − u2 + 2 (vRe(ρ1)− uRe(ρ2)). For the

case f(s) = s use that φ solve the equation (3.4):

i∂tρ =
(
iσ2∂x + σ3

(
m− v2 + u2

)
− ω

)
ρ− 2 (vRe(ρ1)− uRe(ρ2))σ3ρ (3.30)

i∂tρ := L0(ω)ρ− 2Q(ω) Re(ρ) (3.31)

where we have defined the following two operators
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3.3. PERTURBATION AND LINEAR STABILITY

L0(ω) ≡ L0 = iσ2∂x + σ3

(
m− v2 + u2

)
− ω (3.32)

Q(ω) ≡ Q =

 v2 −uv

−uv u2

 . (3.33)

Remark 3.2. Observe that Q acts as a projection on (v,−u)>: For all ϕ = (ϕ1, ϕ2)>,

Qϕ = (vϕ1 − uϕ2)

 v

−u

 . (3.34)

In particular if ϕ = (u, v)> then Qϕ = 0. We may also write Q = V ∗V with

V =

v −u

0 0

 , V ∗ =

 v 0

−u 0

 . (3.35)

These operators play a crucial role in the stability problem, the evolution equation of the

perturbation is determined by the spectrum of this operator as we will see next. Substi-

tuting ρ = Re(ρ) + i Im(ρ) in (3.30)

i∂t

Re ρ

Im ρ

 =

 0 iL0

−i (L0 − 2Q) 0

Re ρ

Im ρ

 =: H̃(ω)

Re ρ

Im ρ

 . (3.36)

This is a time evolution equation for the perturbation and it gives us an idea of how have

to be the eigenvalues of the operator H̃(ω) for the system to be stable, this is known as

the linearized equation. For example, if the operator has no complex eigenvalues, in some

sense, the solution is only an oscillatory wave and the original system after being perturbed

it stays stable. Following the idea described in [14] we are going to define the stability as

follows,

Definition 3.1. We will say that a particular solitary wave is spectrally stable if the

spectrum of the equation linearized at this wave does not contain points with imaginary

part.
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Hence, we need to focus in study the spectrum of the operator H̃(ω). For this purpose

we need analyze the following eigenvalue problem, let be ψ̃ = (ϕ̃1, ϕ̃2)> ∈ H1(R,C4) an

non-zero eigenfunction such that

H̃(ω)ψ̃ = zψ̃ . (3.37)

Notice that equation (3.37) is satisfied if and only if z is an eigenvalue of

H(ω) :=

 0 L0

L0 − 2Q 0

 , (3.38)

with eigenfunction ψ = (ϕ1, ϕ2)> = (ϕ̃1, iϕ̃2)>. It might be useful to define, for µ ∈ R,

the operators Lµ = L0 − µQ and

H(µ, ω) =

 0 L0

Lµ 0

 . (3.39)

Hence, our analysis is directed towards the existence of z ∈ C \R, for the case µ = 2, such

that

L0ϕ2 = zϕ1 (3.40)

Lµϕ1 = zϕ2 . (3.41)

Finally, for the general case where f(s) = sp the operators take the following form (see

[24])

L0 =

m− ω − (v2 − u2)p ∂x

−∂x −m− ω + (v2 − u2)p

 , (3.42)

Lµ = L0 − µp(v2 − u2)p−1

 v2 −uv

−uv u2

 ≡ L0 − µQ. (3.43)
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To avoid confusion, in the next chapters we will always specify which operator we are

referring to. Or analogously, what power p do we refer to. If we do not say anything,

is because the result works for every p or the statement is clear. Furthermore, note that

there is only one difference between the operators in the case of p = 1 and any p, that is

we need to add the coefficient p(v2 − u2)p−1 in front of Q.

Remark 3.3. The operator Hµ=2(ω) with domain H1(R,C4) is closed in L2(R,C)4.

Is useful study some properties of the eigenfunction components ϕ1 and ϕ2. We are going

to use several times the eigenvalues equations (3.40) and (3.41). The first easy property is

that either ϕ1 or ϕ2 can not be zero and his norms can not be equal to one. In order to

avoid confusions in the following properties z always going to be the eigenvalue of Hµ(ω)

associated to the normalized eigenfunction (ϕ1, ϕ2)> and we are going to call a = Re(z)

and b = Im(z).

Remark 3.4. Let (ϕ1, ϕ2)> be a normalized eigenfunction of Hµ(ω) associated with eigen-

value z ∈ C \ {0}. Then, ϕ1 6= 0 6= ϕ2 and ‖ϕ1‖2 6= 1 6= ‖ϕ2‖2.

Proof. From the eigenvalue equations (3.40) and (3.41) is straightforward. By contradic-

tion, if ‖ϕ1‖2 = 1 then, since (ϕ1, ϕ2)> is normalized, ϕ2 = 0 a.e., but zϕ1 = L0ϕ2 = 0.

The same follows for ‖ϕ2‖2 = 1.

3.4 Properties of L0 and Lµ

Let us first note that the essential spectrum of L0,

σess(L0) = (−∞,−m− ω] ∪ [m− ω,∞) . (3.44)

Since Q decays sufficiently fast at infinity these are relatively compact perturbation to

Dm − ω and therefore the essential spectrum remains equal, see [49, Theorem XIII.14].

The same is true for Lµ [6, Lemma 5.1].

An important fact about the spectrum of L0 is that it is symmetric with respect to −ω,
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this holds for any nonlinearity g(s), see [6, Lemma 5.2]. To verify this, suppose that

ψ = (R,S)> satisfies the eigenvalue equation (L0 − λ)ψ = 0. Then ψ̃ = (S,R)> satisfies

(L0 + (2ω + ω))ψ̃ = 0.

In the case p = 1 in the power of the nonlinearity, Berkolaiko and Comech found explicit

expression for resonances at the thresholds, that is, uniformly bounded eigenfunctions in

the endpoints of the essential spectrum [6, Lemma 5.5]. They forgot the factor −m−ω
2ω in

front of S(x) and the expressions they give are for m = 1.

Remark 3.5. For p = 1, the values λ = m − ω and λ = −m − ω are resonances of L0.

The generalized eigenfunctions corresponding to λ = m− ω are

ψ(x) =

R(x)

S(x)

 , where R(x) =
vu

v2 − u2
, S(x) = −m− ω

2ω

v2 − m+ω
m−ωu

2

v2 − u2
. (3.45)

By the symmetry of the spectrum, the eigenfunction corresponding to λ = −m − ω is

ψ = (S,R)>.

Proof. Write the system given by L0ψ(x) = (m− ω)ψ, so

∂xS = (v2 − u2)R , (3.46)

∂xR = −(2m− (v2 − u2))S. (3.47)

To verify the first one, using (3.11) and taking p = 1, we can rewrite S as

S(x) = − 1

4ω
(v2 − u2)

and using (3.5) to take the derivative, is straightforward that
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S′ = uv ≡ (v2 − u2)R .

Now using the same equations, we have that (v2 − u2)′ = −4ωvu and

(uv)′ = − 1

ω
(m(v2 − u2)− (v2 − u2)2

2
)(m− (v2 − u2)) + ω(v2 − u2), (3.48)

and the last useful relation is

4ω2v2u2 = (m(v2 − u2)− (v2 − u2)2

2
)2 − ω2(v2 − u2)2. (3.49)

So, the derivative of R(x) is

R′ =
(uv)′(v2 − u2) + 4ωu2v2

(v2 − u2)2

= − 1

ω
(m− (v2 − u2)

2
)(m− (v2 − u2)) + ω +

1

ω
(m− (v2 − u2)

2
)2 − ω

= − 1

ω
(m− (v2 − u2)

2
)(m− (v2 − u2)−m+

(v2 − u2)

2
)

= −(2m− (v2 − u2))
−1

4ω
(v2 − u2).

Then, since the symmetry of the spectrum, we have the following system:
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(L0 − (m− ω))

R
S

 = 0,

(L0 − (−m− ω))

S
R

 = 0,

=⇒ (L0 + ω)

R− S
S −R

 = m

R− S
S −R

 .

Hence m is an eigenvalue of the operator A := L0 +ω with eigenfunction (R− S, S −R)>.

Note that the spectrum of A is symmetric with respect to zero. The graphic of this

functions for some values of ω are given in the next figures.
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Figure 3.3: Graph of functions R(x) in blue and S(x) in yellow for ω = {0.1, 0.3, 0.5, 0.8} respec-
tively.
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Figure 3.4: Graph of functions R(x) − S(x) in blue and S(x) − R(x) in yellow for ω =
{0.2, 0.4, 0.6, 0.8} respectively.

Corollary. For all eigenvalue z ∈ C \ iR ∪ R of Hµ(ω), associated to the eigenfunction

(ϕ1, ϕ2)>, we have that ϕ1 cant be eigenfunction of Lµ and ϕ2 cant be eigenfunction of L0.

Proof. If Lµϕ1 = z1ϕ1 we have that zϕ2 = z1ϕ1 and therefore they can not be orthogonal.

The same argument holds to L0ϕ2 = z2ϕ2 = zϕ1.

For the nexts statements we are going to use the following relation that follows from

(3.40)–(3.41):

〈µQϕ1, ϕ2〉 = 〈L0ϕ1 − zϕ2, ϕ2〉 = z ‖ϕ1‖2 − z ‖ϕ2‖2 = a(‖ϕ1‖2 − ‖ϕ2‖2) + bi . (3.50)

Corollary. For z ∈ C \R∪ iR we have that ϕ1 can not be eigenfunction of L0 and ϕ2 can

not be eigenfunction of Lµ. Even more, neither ϕ1 nor ϕ2 can be eigenfunction of µQ.

Proof. By contradiction, let z1 be the eigenvalue of L0 associated to ϕ1, then L0ϕ1 =

z1ϕ1 = zϕ2 + µQϕ1, so we have that
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〈µQϕ1, ϕ2〉 = 〈z1ϕ1 − zϕ2, ϕ2〉 = z ‖ϕ2‖2

therefore, from (3.50) we can conclude that bi = −bi ‖ϕ2‖2 =⇒ b = 0, which is a

contradiction. Analogously, Lµϕ2 = z2ϕ2 = zϕ1 − µQϕ2 =⇒ µQϕ2 = zϕ1 − z2ϕ2 and

using again (3.50) we can conclude again that b must be zero.

On the other hand, if ϕ1 or ϕ2 are eigenfunctions of µQ, then 〈µQϕ1, ϕ2〉 = 0 and from

(3.50) we get the contradiction that b = 0.

Remark 3.6. Let z ∈ C \R ∪ iR be an eigenvalue of Hµ, then we have that

1. 〈ϕ1, [Lµ, µQ]ϕ1〉 = −4ab ‖ϕ1‖2 i

2. 〈ϕ2, [Lµ, µQ]ϕ2〉 = 4ab ‖ϕ2‖2 i

Proof. Using µQϕ2 = zϕ1 − Lµϕ2 is straightforward:

1.

〈ϕ1, [Lµ, µQ]ϕ1〉 = 〈ϕ1, LµµQϕ1〉 − 〈ϕ1, µQLµϕ1〉

= 〈zϕ2, µQϕ1〉 − 〈ϕ1, zµQϕ2〉

= z 〈ϕ2, µQϕ1〉 − z 〈ϕ1, µQϕ2〉

= z 〈zϕ1 − Lµϕ2, ϕ1〉 − z 〈ϕ1, zϕ1 − Lµϕ2〉

= z2 ‖ϕ1‖2 − |z|2 ‖ϕ2‖2 − z2 ‖ϕ1‖2 + |z|2 ‖ϕ2‖2

= ‖ϕ1‖2 (z2 − z2).
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2.

〈ϕ2, [Lµ, µQ]ϕ2〉 = 〈ϕ2, [L0, µQ]ϕ2〉

= 〈zϕ1, µQϕ2〉 − 〈ϕ2, zµQϕ1〉

= z 〈ϕ1, µQϕ2〉 − z 〈ϕ2, µQϕ1〉

= z 〈ϕ1, zϕ1 − Lµϕ2〉 − z 〈zϕ1 − Lµϕ2, ϕ1〉

= |z|2 ‖ϕ1‖2 − z2 ‖ϕ2‖2 − |z|2 ‖ϕ1‖2 + z2 ‖ϕ2‖2

= ‖ϕ2‖2 (z2 − z2).

Remark 3.7. Note that the functions R(x) − S(x) and R(x) + S(x) they have a single

zero for ω ∈ (0, 1).

Proposition 3.1. The operator L0 has only two eigenvalues −2ω and 0, with

L0

v
u

 = 0 , (3.51)

L0

u
v

 = −2ω

u
v

 . (3.52)

Proof. Clearly by (3.12) and (3.32),

L0(v, u)> =
(
iσ2∂x + σ3(m− v2 + u2)− ω

)
(v, u)> = 0.

We write L0 := A− ω. Then, using (2.4) is clear that σ1 anti-commutes with A, so we see

that

0 = σ1L0

v
u

 = −[A+ ω]σ1

v
u

 = −(L0 + 2ω)

u
v

 .

see [6, Lemma 5.4]. Notice that from (3.52), (u, v)> is an eigenfunction of A with eigenvalue
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−ω.

Now, we have to show that there are no other eigenvalues. It suffices to show that A has

no more eigenvalues. It is convenient to use the change of basis

U =
1√
2

1 1

1 −1

 =
1√
2

(σ1 + σ3)

to obtain the unitary equivalence, using the properties of the Pauli matrices we have that

UAU = −i∂xσ2 +Mσ1 =

 0 −∂x +M

∂x +M 0

 .

Where M := m+ u2 − v2, thus we find that A2 is unitarily equivalent to

(UAU)2 =

(−∂x +M)(∂x +M) 0

0 (∂x +M)(−∂x +M)


=

−∂2
x +M2 −M ′ 0

0 −∂2
x +M2 +M ′

 ,

which is a diagonal matrix with two Schrödinger operators on the diagonal, which are

isospectral away from zero. By applying the coordinate transformation to (v, u)>, we find

that v + u is an eigenfunction for −∂2
x +M2 −M ′ associated to the eigenvalue ω2.

From the remark 3.1 and the figure 3.2, we see that v + u does not change sign, hence it

must be the groundstate. Analogously holds that v−u is the groundstate of −∂2
x+M2+M ′

with eigenenergy ω2.

This shows the absence of eigenvalues for A in (−ω, ω). To proceed further, we use the

resonances found explicitly in [6, Lemma 5.5]. After the coordinate transformation, these

resonances give a bounded solution to the equation

(−∂2
x +M2 −M ′ −m2)f = 0.
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By plotting the explicit expression, we see that f has a single zero 3.7. By an oscillation

argument [31, Theorem 3.5], this shows that there are no eigenvalues of L2 in the interval

(ω2,m2).

Now we can obtain eigenfunctions of the operator Lµ, known by Berkolaiko and Comech

[6, Lemma 5.4].

Proposition 3.2. We have

Lµ

u
v

 = −2ω

u
v

 , µ ∈ R , (3.53)

Lµ

v′
u′

 = 0 , µ = 2 . (3.54)

Proof. Equation (3.53) is clear in view of Proposition 3.1 and the fact that Q(u, v)> = 0

by (3.34). We show (3.54), on the one hand, using again (3.34) and computing

Q

v′
u′

 = (vv′ − uu′)

 v

−u

 = −M
′

2

 v

−u

 .

On the other hand, since L0(v, u)> = 0, we have

L0

v′
u′

 = L0∂x

v
u

 = ∂xL0

v
u

−M ′σ3

v
u

 = −M ′
 v

−u

 .

From now on, we denote

ϕ0 :=

v
u

 = (v, u)> (3.55)
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and

ϕ−2ω :=

u
v

 = (u, v)>, (3.56)

with ϕ′0 and ϕ′−2ω their respective derivatives:

ϕ′0 =

v′
u′

 , (3.57)

ϕ′−2ω =

u′
v′

 . (3.58)

Lemma 3.3. For any µ ∈ R, p > 0 and 0 < ω < m, the eigenvalues of Lµ(p, ω,m) and

L0(p, ω,m) are simple.

Proof. Let λ ∈ R be an eigenvalue of Lµ and assume φ1 = (f1, g1)> and φ2 = (f2, g2)> to

be eigenfunctions associated to λ. The equation Lµφj = λφj can be rewritten as

∂xφj = −iλσ2φj −M(x)σ1φj − µσ2Q(x)φj ,

with M(x) defined as M(x) := m −
(
v2(x)− u2(x)

)p
. Furthermore, we can decompose

µQ(x) = q0(x)1C2 +q1σ1 +q2σ3, for some functions q0, q1 and q3 whose explicit expressions

are not necessary to complete the proof. Using the identity

σmσk = iεmklσl

we finally rewrite the eigenvalue equation as

∂xφj = (−iλ+ µq0)σ2φj − (M(x) + q2(x))σ1φj − µq1(x)σ3φj .

Now, define the determinant

W (x) := det
(
φ1(x)|φ2(x)

)
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and compute

W ′ = det
(
φ′1|φ2

)
+ det

(
φ1|φ′2

)
= (−iλ+ µq0)

(
det
(
σ2φ1|φ2

)
+ det

(
φ1|σ2φ2

))
+ (M(x) + q2(x))

(
det
(
σ1φ1|φ2

)
+ det

(
φ1|σ1φ2

))
− µq1(x)

(
det
(
σ3φ1|φ2

)
+ det

(
φ1|σ3φ2

))
For k = 1, 2, 3, we compute

det
(
σkφ1|φ2

)
= det

(
σkφ1|σ2

kφ2

)
= det(σk) det

(
φ1|σkφ2

)
= −det

(
φ1|σkφ2

)
,

so we conclude W ′ ≡ 0 because φi ∈ L2(R), even if µ = 0 that is the analogously case to

L0. This implies that W ≡ 0. Now we have to exclude the case where φ1 is proportional

to φ2 for every x ∈ R, i.e. there exists a function α : R → C s.t. φ1(x) = α(x)φ2(x) for

any x ∈ R. In particular, φ1(0) = α(0)φ2(0).

Since, by Picard-Lindelöf theorem (see [57, Theorem 2.2]), the trivial solution x 7→ (0, 0)>

is the unique solution to the Cauchy problem
LµΨ = λΨ

Ψ(0) = (0, 0)>,

we have φi(0) 6= 0 as, otherwise, we would have φi ≡ (0, 0)>, which would contradict that

φi is an eigenfunction. Therefore α(0) 6= 0 and we have that φ1 and x 7→ α(0)φ2(x) are

both the unique solution to the Cauchy problem
LµΨ = λΨ

Ψ(0) = φ1(0) = α(0)φ2(0),

This proves that φ1(x) = α(0)φ2(x) for any x ∈ R, ending the proof of simplicity of

eigenvalues. For more details about Picard-Lindelöf theorem see the Appendix B.
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Remark 3.8. Notice that, since

〈v
u

 ,

v′
u′

〉 = 0

we have that the kernels of L0 and Lµ (for µ = 2) are orthogonal.

Lemma 3.4. The operator Q which acts as point-wise multiplication by the two by two

matrix, is positive definite and satisfies

|||Q||| =


2p(p+ 1)m

ν

1 + ν
= p(p+ 1)(m− ω), if ν <

1

3
⇔ ω >

m

2
,

p
p+ 1

2

m

2

1 + ν

1− ν
= p

p+ 1

2

m2

2ω
, if ν ≥ 1

3
⇔ ω ≤ m

2
.

(3.59)

Proof. For all x ∈ R, the matrix Q(x) is positive semidefinite with eigenvalues 0 and

p(v2 − u2)p−1(v2 + u2). We have

|||Q||| = p
∥∥∥(v2 − u2

)p−1 (
v2 + u2

)∥∥∥
∞

= p
∥∥∥(ṽ2 − ũ2

)p−1 (
ṽ2 + ũ2

)∥∥∥
∞
.

Where the tilde notation is the spatial rescaling by a factor pκ form (3.27). Note that

the argument of the norm is a positive function and the rescaling does not affect since the

supremum of a real valued function remains equal under translations on the x axis. On

the other hand, we have

(
ṽ2 − ũ2

)p−1 (
ṽ2 + ũ2

)
=
(
ṽ2 − ũ2

)p ṽ2 + ũ2

ṽ2 − ũ2
= 2m(p+ 1)

ν

1 + ν
F,

where F is the even function

F (t) :=
1− tanh2(t)

1− ν tanh2(t)

1 + ν tanh2(t)

1− ν tanh2(t)
.

Its derivative satisfies

(
1− ν tanh2

)3
F ′ = 2

(
3ν − 1− ν(3− ν) tanh2

) (
1− tanh2

)
tanh .
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Therefore, on R+,

F ′(t) > 0⇔ 3ν − 1 > ν(3− ν) tanh2(t)

⇔


t < tν := arctanh

√
3ν−1
ν(3−ν) , if ν ≥ 1

3 ⇔ ω ≤ m
2 ,

∅, if ν < 1
3 ⇔ ω > m

2 .

Consequently, ‖F‖∞ = F (0) = 1 and
∥∥(v2 − u2)p−1(v2 + u2)

∥∥
∞ = 2m(p+ 1) ν

1+ν if ν < 1
3 ,

otherwise ‖F‖∞ = F (tν) = 1
8

1+ν
ν

1+ν
1−ν and

∥∥(v2 − u2)p−1(v2 + u2)
∥∥
∞ = m

2
p+1

2
1+ν
1−ν . We

therefore have proved (3.59).

3.5 Properties of Hµ(ω)

It is easy to see that

σess(Hµ(ω)) = σess(H0(ω)) = (−∞,−m− ω] ∪ [m− ω,∞) .

Since u(x) and v(x) decays sufficiently fast at infinity these are relatively compact pertur-

bation to a free Dirac-like operator.

3.5.1 Symmetries

Proposition 3.5. The spectrum of H(µ, ω) is symmetric with respect to both the real and

the imaginary axis.

Proof. This an immediate consequence of the eigenvalue equation

H(µ, ω)ψ = zψ , (3.60)

combined with the fact that H is equal to its complex conjugate and that βH = −Hβ,
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where

β =

12×2 0

0 −12×2

 . (3.61)

Let ψ be an eigenfunction of H(µ, ω) with eigenvalue λ, then βHψ = −Hβψ = −λβψ.

There is a further symmetry that relates H with its adjoint. Define

α =

 0 12×2

12×2 0

 , (3.62)

and note that αH = H∗α.

Proposition 3.6. Assume that 0 6= ψ = (ϕ1, ϕ2)> satisfies H(µ, ω)ψ = zψ for some

z ∈ C \ {0}. Then,

Im(z) Re〈ϕ2, ϕ1〉 = 0 , and Re(z) Im〈ϕ2, ϕ1〉 = 0 . (3.63)

Proof. From doing scalar product of (3.40) with ϕ2 we get that

z〈ϕ2, ϕ1〉 ∈ R . (3.64)

This implies that

Im(z)Re〈ϕ2, ϕ1〉+ Im〈ϕ2, ϕ1〉Re(z) = 0 . (3.65)

On the other hand, using (3.60) we have that

z〈ψ,αψ〉 = 〈ψ,αHψ〉 = 〈Hψ,αψ〉 = z〈ψ,αψ〉 . (3.66)

Then, (z − z)〈ψ,αψ〉 = 0, which together with (3.65) implies (3.63).

This implies that if an eigenvalue z is away from the real and imaginary axis, then its

associated ϕ1 and ϕ2 must be orthogonal.
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Corollary. Let z ∈ C \ (R ∪ iR) be an eigenvalue of Hµ(ω) with associated eigenfunction

(ϕ1, ϕ2)>. Then,

〈ϕ2, ϕ1〉 = 0.

Consequently,

〈ϕ2, L0ϕ2〉 = 0 = 〈ϕ1, Lµϕ1〉 .

Proof. The orthogonality 〈ϕ2, ϕ1〉 = 0 of the ϕ’s follows immediately from (3.65) since

Re z 6= 0 and Im z 6= 0. The second part is then readily obtained from (3.40)–(3.41).

3.5.2 Basics of the eigenvalue equation

Let us denote by P−1, P0 the orthogonal projections onto the eigenspaces of L0 associated

to the eigenvalues −2ω, 0, respectively. Moreover, let P+ := E[m−ω,∞)(L0) and P− :=

E(−∞,−m−ω](L0) are the projections onto the spectral subspaces associated to the positive

and negative energies in the essential spectrum of L0. We have the decomposition

1 = P− + P−1 + P0 + P+ . (3.67)

We further write P0(µ) to be the eigenprojection onto the kernel of Lµ.

Proposition 3.7. Assume that 0 6= z ∈ σd(H(µ, ω)) and let ψ = (ϕ1, ϕ2)> be a cor-

responding eigenfunction. Then, P0ϕ1 = 0 = P0(µ)ϕ2. If, in addition z2 6= 4ω2, then

P−1ϕ1 = P−1ϕ2 = 0.

Proof. That P0ϕ1 = 0 follows by multiplying (3.40) by P0. We proceed analogously for

P0(µ)ϕ2. For the statement on P−1 write φ− = (u, v)> and recall that Qφ− = 0. Since

the eigenvalues of L0 are simple P−1 = 〈φ−, ·〉φ−. Hence, QP−1 = 0 and, by taking

the adjoint, P−1Q = 0. Therefore, after multiplying (3.40) and (3.41) by P−1, we get

that (−2ω)P−1ϕ2 = zP−1ϕ1 and (−2ω)P−1ϕ1 = zP−1ϕ2. This concludes the proof since

z2 /∈ {0, 4ω2}.

Proposition 3.8. Let z ∈ C \ {0}. Then, the following statements are equivalent
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(i) z ∈ σd(H(µ, ω)),

(ii) z2 ∈ σd(H(µ, ω)2),

(iii) z2 ∈ σd(L0Lµ),

(iv) z2 ∈ σd(LµL0).

Proof. It follows by inspection that the latter three statements are equivalent and that (i)

implies (ii). Moreover, let z2 6= 0 be such that L0Lµφ = z2φ, for some φ 6= 0. Then, one

can verify that

 0 L0

Lµ 0

 φ

1
zLµφ

 = z

 φ

1
zLµφ

 .

Lemma 3.9. Let P⊥ = P− + P+ and z ∈ C \ {0,±2ω} be an eigenvalue of H(µ, ω)

satisfying (3.40) and (3.41). Then, we have that ϕ1 = P⊥ϕ1,

P⊥LµP
⊥ϕ1 = z2P⊥

1

L0
ϕ1 . (3.68)

Moreover, z2 satisfies the eigenvalue eqution,

|L0|1/2 (P+LµP+ − P−LµP− − µ(Q+− −Q−+)) |L0|1/2 ψ1 = z2ψ1, (3.69)

where ψ1 = |L0|−1/2 ϕ1, Q+− = P+QP−, and Q−+ = P−QP+.

Proof. By Proposition 3.7 we see that ϕ1 = P⊥ϕ1. Multiplying (3.41) by P⊥ we readly

get (3.68):

P⊥LµP
⊥ϕ1 = zP⊥ϕ2 = z2L−1

0 ϕ1 ,
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where we use (3.40) in the last equality. Next, we multiply (3.68) by P+ and P−, to get

P+LµP+ϕ1 − µQ+−ϕ1 = z2 |L0|−1 P+ϕ1 , (3.70)

P−LµP−ϕ1 − µQ−+ϕ1 = −z2 |L0|−1 P−ϕ1 . (3.71)

Substracting (3.71) from (3.70) we get that

(
P+LµP+ − P−LµP− − µ(Q+− −Q−+)

)
ϕ1 = z2 |L0|−1 ϕ1 .

From this follows (3.69) after multiplying by |L0|1/2.

From the previous result we get

z2
〈
ϕ1, |L0|−1 ϕ1

〉
=
〈
ϕ1,
(
P+LµP+ − P−LµP− − µ(Q+− −Q−+)

)
ϕ1

〉
. (3.72)

and, in particular, since Q+− −Q−+ ∈ C we have that

Re(z2) =

〈
ϕ1,
(
P+LµP+ − P−LµP−

)
ϕ1

〉〈
ϕ1, |L0|−1 ϕ1

〉 . (3.73)

3.6 Bounds to the eigenvalues of Hµ

Lemma 3.10. Let 0 < ω < m and µ ≥ 0. If z ∈ C is an eigenvalue of Hµ(ω, p), then

|Im z| ≤ µ

2
|||Q||| . (3.74)

Proof. Denoting by (ϕ1, ϕ2)> the normalized eigenfunction of Hµ associated to the eigen-

value z, taking the scalar products of (3.40) and (3.41) respectively with ϕ1 and ϕ2 gives

〈ϕ1, L0ϕ2〉+ 〈ϕ2, L0ϕ1〉 − 〈ϕ2, µQϕ1〉 = z
(
‖ϕ1‖2 + ‖ϕ2‖2

)
= z.
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But L0 being self-adjoint, we have 〈ϕ1, L0ϕ2〉+ 〈ϕ2, L0ϕ1〉 ∈ R and

Im z = µ Im 〈Qϕ1, ϕ2〉 .

Therefore, by Cauchy–Schwarz inequality

|Im z| ≤ µ |||Q||| ‖ϕ1‖ ‖ϕ2‖ ≤
µ

2
|||Q||| .

We can use Corollary 3.5.1 onto (3.73) in order to obtain bounds on Re(z2). To do that

we are going to use the following bound

Corollary. Let z ∈ C \R ∪ iR be an eigenvalue of Hµ(ω), then we have that

〈ϕ1, |L0|−1 ϕ1〉 = 2
∥∥∥|L0|−1/2 P+ϕ1

∥∥∥2
= 2

∥∥∥|L0|−1/2 P−ϕ1

∥∥∥2
≤ 2(m+ ω)−1 ‖P−ϕ1‖2 .

(3.75)

Proof. First of all observe that 0 = 〈ϕ2, L0ϕ2〉 so, using that ϕ2 = zL−1
0 ϕ1 implies 0 =

〈ϕ1, L
−1
0 ϕ1〉, hence

0 = 〈ϕ1, L
−1
0 P+ϕ1〉+ 〈ϕ1, L

−1
0 P−ϕ1〉 = 〈ϕ1, P+ |L0|−1 P+ϕ1〉 − 〈ϕ1, P− |L0|−1 P−ϕ1〉

Thus, we have that

〈ϕ1, |L0|−1 ϕ1〉 = 2
∥∥∥|L0|−1/2 P+ϕ1

∥∥∥2
= 2

∥∥∥|L0|−1/2 P−ϕ1

∥∥∥2
. (3.76)

Finally, recalling that P− projects over the negative essential spectrum of L0 and using the

spectral theorem, we have the bound 〈ϕ1, |L0|−1 ϕ1〉 ≤ 2(m+ ω)−1 ‖P−ϕ1‖2.
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Moreover, we also know from Corollary 3.5.1 that

0 = 〈ϕ1, Lµϕ1〉 = 〈ϕ1, (P+LµP+ + P−LµP− − µ(Q+− +Q−+))ϕ1〉 . (3.77)

For the followings bounds, define η ∈ R+ as

η =
‖P+ϕ1‖2

‖P−ϕ1‖2
. (3.78)

Remark 3.9. Since the spectrum of L0 is symmetric with respect −ω, ‖P−ϕ1‖2 cannot

be zero, because ‖P+ϕ1‖2 it would also have to be zero and then it would not make sense

to define η.

Thus, by combining this with (3.73), we obtain the following result

Lemma 3.11. Assume that z ∈ C\(R∪ iR) is an eigenvalue of Hµ(ω), with eigenfunction

(ϕ1, ϕ2)>. We have the bounds

Re(z2) ≥ (m+ ω)2

(
1− µη |||Q|||

4(m+ ω)

)
, if µη |||Q||| ≤ 4(m+ ω), (3.79)

Re(z2) ≥ (m+ ω)2η

(
η + η−1

2
− µ |||Q|||

2(m+ ω)

)
, if µ |||Q||| ≤ (η + η−1)(m+ ω). (3.80)

Proof.

〈ϕ1, |L0|−1 ϕ1〉Re(z2) = −2 〈ϕ1, P−LµP−ϕ1〉+ µ 〈ϕ1, (Q+− +Q−+)ϕ1〉

= 2 〈ϕ1, P− |L0|P−ϕ1〉+ µ 〈ϕ1, (2Q−− +Q+− +Q−+)ϕ1〉

= 2 〈ϕ1, P− |L0|P−ϕ1〉+ 2µ 〈(P− + P+/2)ϕ1, Q(P− + P+/2)ϕ1〉

− µ

2
〈P+ϕ1, QP+ϕ1〉

≥ 2(m+ ω) ‖P−ϕ1‖2 −
µ |||Q|||

2
‖P+ϕ1‖2

= 2(m+ ω)

(
1− ηµ |||Q|||

4(m+ ω)

)
‖P−ϕ1‖2 .

If the quantity in parenthesis is non-negative, we combine with the bound

〈ϕ1, |L0|−1 ϕ1〉 = 2 〈P−ϕ1, |L0|−1 P−ϕ1〉 ≤ 2(m+ ω)−1 ‖P−ϕ1‖2 ,
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to conclude (3.79). Now we look at the second case, which seems trickier. Note that this is

the bound for η large, so the positive projection of ϕ1 dominates. In this case, however, ϕ1

can not live very close to the (m−ω) treshold, because we still need (3.75), which implies

〈P+ϕ1, |L0|−1 P+ϕ1〉 = 〈P−ϕ1, |L0|−1 P−ϕ1〉 ≤ (m+ ω)−1 ‖P−ϕ1‖2 . (3.81)

To obtain a statement about the expectation value of L0 rather than its inverse, we use

Jensen’s inequality. According to Lieb-Loss Analysis book [39], for a convex function f , it

holds that

E[f(t)] ≥ f(E[t]).

By the spectral theorem, for a self-adjoint operator A and any nonzero ψ, there exists a

probability measure µψ such that

〈ψ, f(A)ψ〉
‖ψ‖2

= Eµψ [f(λ)]

for nice enough f and ψ, we can use the inequality for Rayleigh quotients. For more details

see Appendix C. We apply this with A = P+L
−1
0 P+, f(t) = t−1 and ψ = P+ϕ1 to conclude

〈P+ϕ1, |L0|P+ϕ1〉
‖P+ϕ1‖2

≥ ‖P+ϕ1‖2

〈P+ϕ1, |L0|−1 P+ϕ1〉
≥ (m+ ω)

‖P+ϕ1‖2

‖P−ϕ1‖2
= η(m+ ω), (3.82)

where the last line follows from (3.81). Now the remainder is easy. We start again from

(3.73) and bound

〈ϕ1, |L0|−1 ϕ1〉Re(z2) ≥ 〈P+ϕ1, |L0|P+ϕ1〉 − µ〈P+ϕ1, QP+ϕ1〉+ 〈P−ϕ1, |L0|P−ϕ1〉

≥ (η(m+ ω)− µ |||Q|||) ‖P+ϕ1‖2 + (m+ ω) ‖P−ϕ1‖2

=
((
η + η−1

)
(m+ ω)− µ |||Q|||

)
‖P+ϕ1‖2 .

If the quantity in parentheses is positive, we use again (3.81) for the left hand side:

〈ϕ1, |L0|−1 ϕ1〉 ≤ 2(m+ ω)−1 ‖P−ϕ1‖2 = 2η−1(m+ ω)−1 ‖P+ϕ1‖2 .
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We can improve this result seeing when the conditions of Lemma 3.11 are not satisfied. In

other words, for which η do we have

η >
4(m+ ω)

µ |||Q|||
(3.83)

η2 − µ |||Q|||
(m+ ω)

η + 1 < 0 (3.84)

the condition (3.84) is never fulfilled if µ|||Q|||
(m+ω) ≤ 2 because the coefficient of η2 is positive

and the the discriminant would be positive, thus the quadratic will never be negative and

the second bound from Lemma 3.11 would be satisfied. For others η, let x := µ|||Q|||
(m+ω) > 0

and we have that

η >
4

x
and

x−
√
x2 − 4

2
< η <

x+
√
x2 − 4

2
.

where x = µ|||Q|||
(m+ω) > 0. But for those η that satisfies (3.84) we want to see when also

satisfies (3.83) to exclude them. Since x > 0 the existence of such η is equivalent to

x+
√
x2 − 4

2
>

4

x
⇔ x >

4√
3
≈ 2.31.

Conclusion, Lemma 3.11 gives us a non-trivial lower bound on Re(z2) if, and only if,

x = µ
|||Q|||
m+ ω

≤ 4√
3
, (3.85)

and in this case, the lower bound is given by the second bound of Lemma 3.11 when

0 < x ≤ 2 and the lemma still gives us a nontrivial bound when 2 < x ≤ 4√
3
. More

precisely, for this sort of x, one or both conditions are satisfied.

Since x depends on the norm of Q we have to separate in two cases:
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CHAPTER 3. ONE DIMENSIONAL SOLER MODEL

Case 1: ω > m
2 . Then x = µp(p+1)m−ωm+ω <

µp(p+1)
3 < 4√

3
for any µ ≤ 2 and p < 1.42, since

|||Q||| = p(p + 1)(m − ω) by Lemma 3.59. From here to the next case, we are considering

this set of parameters unless we say otherwise.

Remark 3.10. On one hand the function (1 − ηx/4) from (3.79) decrease with η and

applies for any η ∈ (0, 4
x). So, for ω ≈ m

2 we have that η < 3 and if ω ≈ m this condition

applies for η > 0, therefore applies for any m/2 < ω < m when η < 3.

On the other hand the function 1
2(η2−xη+1) from (3.80) decreases until x/2 then increases,

and applies for any η > 0 when p < 1.3 because x < 2.

Now, note that we have two lower bounds depending on a lineal function and a parabola,

so we can found the value where the both functions match, i.e. 1
2(η2− xη+ 1) = 1− ηx/4,

or equivalently when η2 − x
2η − 1 = 0, thus the match value is given by

η? :=
x+
√
x2 + 16

4
=
µ

4

p(p+ 1)(m− ω)

m+ ω
+

√(
µ

4

p(p+ 1)(m− ω)

m+ ω

)2

+ 1 <
√

3,

Thus we have a lower bound for any ω > m/2 and obtain the following.

Proposition 3.12. Let z ∈ C \ (R ∪ iR) be an eigenvalue of H(µ, ω) for µ ≤ 2, m/2 <

ω < m and p < 1.3. Then for m = 1,

Re(z2) > 0.76 ,

in the case (µ = 2, p = 1,m = 1):

Re
(
z2
)
≥ 4ω2 + (1− ω)

(
4ω −

√
2(1 + ω2)

)
. (3.86)

Proof. We have already shown almost everything, note that η? < 2. So we only need

evaluate any bound from the Lemma 3.11 because the both of them applies and
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Re(z2) ≥ (m+ ω)2

4
(4− ηx)|η=η? (3.87)

=
(m+ ω)2

16
(16− x2 − x

√
x2 + 16) (3.88)

where the function in parenthesis is a positive decreasing function on x, so computing

x =
√

3 we have that Re(z2) > 5.45
16 (m+ ω)2 > 0.76. Replacing η?(µ = 2, p = 1,m = 1, ω)

we have that

Re
(
z2
)
≥ 4ω2 + (1− ω)

(
4ω −

√
2(1 + ω2)

)
.

Combining this previous bound with the bound on Im(z) of Lemma 3.10, we obtain that for

any µ ≤ 2, eigenvalues that are not on the axis can only be in the 3D region in Figure 3.5.

The drawn region is the one for µ = 2 since the region expands when µ increases.

(a) (b)

Figure 3.5: Region where the eigenvalues that are not on the axes can be for (µ = 2, p = 1,m =
1, 0.5 < ω < 1).

Case 2: ω ≤ m
2 . Then for m = 1 we have that x = µp(p+1)

2
m2

2ω(m+ω) <
p(p+1)

2
1

ω(1+ω) for any

µ ≤ 2 and p > 0, since |||Q||| = p(p+1)
2

m2

2ω by Lemma 3.59.
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Remark 3.11. In this case we need found some critical ω̃ such that x ≤ 4/
√

3 or equiva-

lently 0 ≤ ω2 + ω −
√

3p(p+1)
8 , thus ω ≥ 1

2

(√
1 +

√
3

2 p(p+ 1)− 1

)
:= ω̃.

Then, using Remark 3.10 we have that

η? :=
x+
√
x2 + 16

4
=
µ

4

p(p+ 1)m2

4ω(m+ ω)
+

√(
µ

4

p(p+ 1)m2

4ω(m+ ω)

)2

+ 1 <
√

3,

Proposition 3.13. Let z ∈ C\(R ∪ iR) be an eigenvalue of H(µ, ω) for µ ≤ 2, ω̃ < ω < m

and p < 1.3. Then for m = 1, Re(z2) > 0.597 and in the case (µ = 2, p = 1,m = 1, ω̃ <

ω ≤ m/2):

Re
(
z2
)
≥ (1 + ω)2 −

√
1 + (4ω(1 + ω))2 + 1

16ω2
. (3.89)

Proof. We already see that for ω̃ ≤ ω < m/2 we have that x < 4/
√

3 so we recover the

first part the proof of Proposition 3.12. Now take p = 1 to compute ω̃ ≈ 0.326, therefore

the bound is given by Re(z2) > 5.45
16 (m + ω)2 > 0.597. The next step is, replace the new

η? in (3.88) and we get (3.89).

Combining again the bound with the Lemma 3.10, we obtain that for any µ ≤ 2, eigenvalues

that are not on the axis can only be in the 3D region in Figure 3.6.

(a) (b)

Figure 3.6: Region where the eigenvalues that are not on the axes can be for (µ = 2, p = 1,m =
1, 0.326 ≤ ω ≤ 0.5).
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Chapter 4

Knowledge compilation

This chapter summarizes the characterizations for the spectra of the operators L0, Lµ and

the most important Hµ. The main known results are presented first and then the main

results of our work. It also indicates where this information can be found in the literature.

Not all the new results present in this chapter are in this thesis, they are part of a joint

work with E. Stockmeyer, H. van den Bosch and J. Ricaud. For those results that are not

proved here, a brief explanation of how they are obtained, is given.

Our results can be synthesized as follows: for suitable ω and p we have σd(L0) = {−2ω, 0}.

The operator L2 has exactly three negative eigenvalues, i.e. σd(L2) = {−2ω, λ, 0} where

λ ∈ (−2ω, 0). For proper ω and p, Lµ with µ ∈ (0, 2] has exactly one eigenvalue between

(−2ω, 0) and none at (−m − ω,−2ω). For z ∈ σ(Hµ) \ {R ∪ iR} we give bounds on the

imaginary and real part of z. Also, for suitable ω and p there are no eigenvalues on the

imaginary axis.

The first 3 theorems synthesize some results on the spectrum of L0, Lµ and Hµ of the

papers [6, 21].

Theorem 4.1 (Spectrum of L0). Let p > 0, and ω ∈ (0,m), and L0 defined in (3.42) with

domain H1(R,C2). Then L0 is self-adjoint and a bounded, relatively compact perturbation

of Dm − ω. We have
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(i) σess(L0) = (−∞,−m − ω] ∪ [m − ω,+∞), There are no eigenvalues embedded into

the essential spectrum. [6, Lemma 5.1]-[21, Lemma 2.4].

(ii) The spectrum is symmetric whit respect to −ω. [6, Lemma 5.2].

(iii) 0 and −2ω are simple eigenvalues of L0 with eigenfunctions φ0 and φ−2ω := σ1φ0

respectively. [6, Lemma 5.4]-[21, Lemma 2.6].

(iv) For p = 1, the values λ = m− ω and λ = −m− ω are resonances of L0. [6, Lemma

5.5].

Theorem 4.2 (Spectrum of L2). Let p > 0, ω ∈ (0,m), and L2 defined in (3.42) with

domain H1(R,C2). Then L2 is a bounded and relatively compact perturbation of L0 and

(i) σess(L2) = (−∞,−m − ω] ∪ [m − ω,+∞), There are no eigenvalues embedded into

the essential spectrum. [6, Lemma 5.1]-[21, Lemma 2.4].

(ii) 0 and −2ω are simple eigenvalues of L2 with eigenfunctions ∂xφ0 and φ−2ω := σ1φ0

respectively. [6, Lemma 5.4]-[21, Lemma 2.6].

Finally, the next Theorem groups the known facts about eigenvalues of the linearization

H2, which is no longer self-adjoint.

Theorem 4.3 (Spectrum of H2). Let p > 0. and ω ∈ (0,m), and H2 as defined in (3.39),

seen as an operator with domain H1(R,C4).

(i) Its essential spectrum satisfies σess(H2) = (−∞,−m + ω] ∪ [m − ω,+∞). Zero is

a double eigenvalue of H2 and ±2ω are eigenvalues. [6, Lemma 6.1]-[14, Lemma

2.4]-[21, Corollary 2.8].

(ii) σ(H2) is symmetric whit respect to R and iR and has not embedded eigenvalues above

m+ ω. [6, Lemma 6.1]-[14, Lemma 2.1]-[14, Theorem 2.10].

(iii) No eigenvalues with Im(z) 6= 0 appears from the essential spectrum of H2 above m+ω.

[14, Theorem 2.18].

(iv) The eigenfunctions decays exponentially. [14, Theorem 2.13].
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The essential spectrum is the essential spectrum of the free Dirac operators. Almost ev-

erything of these theorems are proved throughout the thesis. We are not able to obtain a

complete description of the spectrum of the operators, but we have the following informa-

tion.

Theorem 4.4 (Spectrum of L0). Let p > 0, and ω ∈ (0,m), and L0 defined in (3.42) with

domain H1(R,C2). Then,

(i) For p = 1, σ(L0) ∩ (−2ω, 0) = ∅. Proposition 3.1.

(ii) For any µ ∈ R, p > 0 and 0 < ω < m, the eigenvalues are simple. Lemma 3.3.

(iii) For p = 1 and any ω, OR p > 1 and ω be s.t. ω > p
p+1m and ω ≥ p+1

2p2
m, the only

eigenvalues of L0 are 0 and −2ω.

Theorem 4.5 (Spectrum of Lµ). Let p > 0, ω ∈ (0,m), and Lµ defined in (3.42) with

domain H1(R,C2). Then,

(i) For any µ ∈ R, p > 0 and 0 < ω < m, the eigenvalues are simple. Lemma 3.3.

(ii) The operator L2(ω,m) has exactly 3 nonpositive eigenvalues −2ω = λ0 < λ1 < λ2 =

0. Moreover, the second eigenvalue verifies λ1 ≥ max{−4(m− ω);−2ω}.

(iii) For p = 1 and any ω ∈ (0,m), OR for p > 1 and ω be s.t. ω > p
p+1m and ω ≥ p+1

2p2
m.

Lµ with µ ∈ (0, 2] has no eigenvalues in the interval (−m− ω,−2ω) and exactly one

eigenvalue in (−2ω, 0).

Where the proof of Theorem 5.4 (iii) and Theorem 5.5 (iii)-(iii) comes from the non-

relativistic limit ω → m and after a suitable scaling, we recover a nonrelativistic Schrö-

dinger operator related to the linearization of the nonlinear Schrödinger operator with

power 2p + 1. This operator is well known and the conclusions follows from comparing

their eigenvalues with the relativistic operator. Since its spectrum is known, we can obtain

good bounds on eigenvalues in this limit.

In [12] with the same non-relativistic limit ω → m they proved the stability for the quintic

nonlinearity, and then summarized their work in [11] where show stability for some critical
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values of p but excluding the case p ∈ (0, 2).

Theorem 4.6 (Spectrum of Hµ). Let p > 0. and ω ∈ (0,m), and H2 as defined in (3.39),

seen as an operator with domain H1(R,C4).

(i) Let 0 < ω < m and µ ≥ 0. If z ∈ C is an eigenvalue of Hµ(ω, p), then

|Im z| ≤ µ

2
|||Q||| , (4.1)

see Lemma 3.10.

(ii) Let z ∈ C \ (R ∪ iR) be an eigenvalue of H(µ, ω) for µ ≤ 2, m/2 < ω < m and

p < 1.3. Then for m = 1, Re(z2) > 0.76 and in the case (µ = 2, p = 1,m = 1):

Re
(
z2
)
≥ 4ω2 + (1− ω)

(
4ω −

√
2(1 + ω2)

)
, (4.2)

see Proprosition 3.12.

(iii) Let z ∈ C \ (R ∪ iR) be an eigenvalue of H(µ, ω) for µ ≤ 2, ω̃ < ω < m and p < 1.3.

Then for m = 1, Re(z2) > 0.597 and in the case (µ = 2, p = 1,m = 1, ω̃ < ω ≤ m/2):

Re
(
z2
)
≥ (1 + ω)2 −

√
1 + (4ω(1 + ω))2 + 1

16ω2
, (4.3)

see Proposition 3.13.

(iv) For p and ω such that L2(p, ω) has exactly one eigenvalue in (−2ω, 0). Then, there

are no eigenvalues on the imaginary axis.

The absence of eigenvalues in the imaginary axis comes from studying the algebraic and

geometric multiplicity of the Kernel of Lµ and L0 while studying the flow in µ : 0 → 2

mixed with an Vakhitov-Kolokolov stability criterion.

Combining these results, we conclude that eigenvalues leading to instability can only appear

far away from the imaginary axis. Affirmations ii and iv are stated separately since they

will follow from very different proofs, ii from bounds valid for eigenvalues away from the
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axes in the complex plane, and iv from the Vakhitov-Kolokolov criterion provided that L2

has a single eigenvalue in (−2ω, 0) and ii excludes eigenvalues arriving at the imaginary

axis from elsewhere in the complex plane.

From Theorem 4.6 and p = 1, we can exclude a region of the complex plane for which

there are no eigenvalues, see figures 3.5-3.6. The main objective is to show that there are

no eigenvalues with an imaginary part other than zero. If there were complex eigenvalues,

we know they must be in these regions, then we can focus on excluding them. Therefore,

the problem remains open and it is clear that there are still many questions to be resolved.

This thesis does not fully reflect the work carried out with E. Stockmeyer, H. van den

Bosch and J. Ricaud, but gives an idea of the complexity.
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Chapter 5

Conclusions

The nonlinear equation is of great importance in physics, with many applications. The

nonlinearity ψψ was first considered by Russian physicist Dimitri Ivanenko in 1938 [36].

Then, Mario Soler re-introduce this nonlinearity investigating the stationary states [55].

The existence of solitary wave solutions was solved with many techniques but only are

known in the one-dimensional case [24, 42].

We concentrate on the one-dimensional case, the solutions of which are known by any

power of the nonlinearity. Given the complexity of the model, only partial results are

known, which we summarized in the previous chapter. Exist numerically evidence of that

stability occur for some values of ω, see [38]. In [6] also claim stability using semi-analytic

arguments.

No explicit solitary wave solutions are known for the Soler model in higher dimensions

and the linearized operators becomes even more difficult to deal with. For this reason, the

studies in these cases are principally using numerical methods. In conclusion, the stability

of the solutions of this model is still an open problem.

This is a joint investigation with H. Van den Bosch, E. Stockmeyer and J. Ricaud. There

are more results that we do not present here but that we will publish soon, but none of

them prove stability yet. We expect, hopefully, be able to extend some of our results to
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higher dimensions.
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Appendix A

Poddubny-Smirnova generalization

The generalization of the Soler model introduced in 2018 by Poddubny and Smirnova [47]

was originally in two-dimensions but we are going to adapt the model to the 1D case. The

PS model consist in take f(s) = s from (3.5) and control the nonlinear terms with real

constants as follows

∂xv(x) =
(
−ω −m+ b |v|2 + a2 |u|2

)
u(x), (A.1)

∂xu(x) =
(
ω −m− a1 |v|2 − b |u|2

)
v(x). (A.2)

Notice that if a1 = a2 = −b = −1 we recover the Soler model. For symmetry reasons is

convenient consider a1 = −1, a2 = −α2 and b = α for α ∈ R. Then we have the following

twisted Soler model


∂xv(x) =

(
−ω −m+ α |v|2 − α2 |u|2

)
u(x)

∂xu(x) =
(
ω −m+ |v|2 − α |u|2

)
v(x)

(A.3)

Now, if α = 1 we get (3.5) in the case f(s) = s.

Remark A.1. The coupled system (A.3) also satisfies the Hamiltonian system (3.6) where
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H(u, v) becomes

H(v, u) =
ω

2
(v2 + u2)− m

2
(v2 − u2) +

1

4
(v2 − αu2)2. (A.4)

The problem now is, for which α exist solutions (v, u)> ∈ H1(R,R2). The case α = 1 is the

Soler model, α = −1 was proved by William Borrelli [8, 10, 9]. For others α the existence

follows from study the properties of the Hamiltonian (A.4) as Cazenave and Vazquez did for

general nonlinearities in [17]. The first step is study the behavior of H(v, u) as a function

of v and u. If m > 0 and ω > 0 then:

Lemma A.1. The Hamiltonian (A.4) is bounded from below by −m2

4 and H(v, u)→∞ if

|v|+ |u| → ∞ for α ≤ ω+m
m .

Proof. First of all, let us consider α ≤ 1 and thus v2 − αu2 ≥ v2 − u2. So,

H(v, u) ≥ ω

2
(v2 + u2)− m

2
(v2 − αu2) +

1

4
(v2 − αu2)2.

The first term is positive and the parabola 1
4x

2 − m
2 x has its vertex in (m,−m2

4 ) then

H(v, u) ≥ ω
2 (v2 + u2) − m2

4 , this implies for the case α ≤ 1 that the Hamiltonian go to

infinity if |v|+ |u| → ∞. Is clear that the lower bound is −m2

4 .

In the other case 1 < α < ω+m
m we have v2 − u2 ≥ v2 − αu2. Then,

H(v, u) =
ω

2
(v2 + u2)− m

2

∫ v2−u2

0
dt+

1

2

∫ v2−αu2

0
tdt

=
ω

2
(v2 + u2) +

1

2

∫ v2−αu2

0
t−mdt− m

2

∫ v2−u2

v2−αu2
dt

=
ω

2
(v2 + u2)− m

2
(v2 − αu2) +

1

4
(v2 − αu2)2 − m

2
u2(α− 1)

=
ω

2
v2 + (ω −m(α− 1))

u2

2
− m2

4
.
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APPENDIX A. PODDUBNY-SMIRNOVA GENERALIZATION

Also, using that v and u satisfies the system (3.6) is easy to see that

dH(v, u)

dx
=
∂H(v, u)

∂v
v′ +

∂H(v, u)

∂u
u′ = 0 (A.5)

So, the Hamiltonian as a function of x must be constant almost everywhere and (v, u)

give the compact levels sets of H(v, u). Since the Hamiltonian is an increasing function

of the spinor components these cannot be arbitrarily large and therefore these cannot be

monotonously increasing functions of x.

If we apply the linearization analysis 3.3 to this model we found the same kind of operators

as in (3.39) where

L̃0 =

m− ω − v2 + αu2 ∂x

−∂x −m− ω + αv2 − α2u2

 , (A.6)

Q̃ =

 v2 −αuv

−αuv α2u2

 . (A.7)

Lemma A.2. For any µ, α ∈ R, p > 0 and 0 < ω < m, the eigenvalues of Lµ and L0 are

simple.

Proof. If λ is eigenvalue of L̃0 associated to the eigenfunction (w1, w2)>. Thus w1 and w2

satisfies the coupled system

∂xw1 = −(m+ ω + λ+ α2u2 − αv2)w2

∂xw2 = (ω + λ−m− αu2 + v2)w1

(A.8)

Assume exist h1 and h2 such that L0(h1, h2)> = λ(h1, h2)> and now compute the deter-

minant
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W (r) = det

w1 w2

h1 h2

 = w1h2 − w2h1

consider the derivative

Ẇ = ẇ1h2 − w2ḣ1 + w1ḣ2 − ẇ2h1

= −(m+ ω + λ+ α2u2 − αv2)w2h2 + (m+ ω + λ+ α2u2 − αv2)h2w2

+ (ω + λ−m− αu2 + v2)w1h1 − (ω + λ−m− αu2 + v2)w1h1

= 0.

The determinant is therefore constant and since it vanishes at infinity (the eigenfunctions

are in L2(R)), it is zero everywhere and the two eigenfunctions are linearly dependent. We

can exclude the case where the functions are proportionals for each x through a function

α(x) in the same way that in Lemma 3.3. Analogously, following the same argument, if

λ is an eigenvalue of L0 − µQ associated to the eigenfunction (w1, w2)>. Thus w1 and w2

satisfies the next equations

∂xw1 = −(m+ ω + λ+ α2u2 − αv2)w2 − µ(αuvw1 + α2u2w2)

∂xw2 = (ω + λ−m− αu2 + v2)w1 + µ(v2w1 − αuvw2)
(A.9)

Assume exist h1 and h2 such that (L0 − µQ)(h1, h2)> = λ(h1, h2)>, defining the same

function and its derivative, so
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APPENDIX A. PODDUBNY-SMIRNOVA GENERALIZATION

Ẇ = ẇ1h2 − w2ḣ1 + w1ḣ2 − ẇ2h1

= [−(m+ ω + λ+ α2u2 − αv2)w2 − µ(αuvw1 + α2u2w2)]h2

+ [(m+ ω + λ+ α2u2 − αv2)h2 + µ(αuvh1 + α2u2h2)]w2

+ [(ω + λ−m− αu2 + v2)h1 + µ(v2h1 − αuvh2)]w1

− [(ω + λ−m− αu2 + v2)w1 + µ(v2w1 − αuvw2)]h1

= 0.

Note that the vast majority of section 3.4 onwards can be extended to this model since they

do not depend on the explicit form of the L0 and Lµ operators. This is interesting given

the possibility of applying this model to real physical 2D systems, explained by Poddubny

and Smirnova. They show one way of how the cubic nonlinearity is reproducible. They

even gave several examples where this two-dimensional model could be implemented, like

optofluidic platform with photonics crystal fibers filled by liquids, glass fibers, etc. see

[47, 43, 28, 48, 62, 23, 2, 18, 54, 19, 51].
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Appendix B

Picard-Lindelöf theorem

In this appendix we are going to enunciate the Picard-Lindelöf existence and uniqueness

theorem as in [57, Theorem 2.2] for the IVP:


ẋ = f(t, x)

x(t0) = x0,
(B.1)

Theorem B.1. Suppose f ∈ C(U,Rn) where U is an open subset of Rn+1 and (t0, x0) ∈ U .

If f is locally Lipschitz continuous in the second argument, uniformly with respect to the

first, then there exists a unique local solution x(t) ∈ C1(I) of the IVP (B.1), where I is

some interval around t0.

More specifically, if V = [t0, t0 + T ] × Bδ(x0) ⊂ U and M denotes the maximum of |f |

on V . Then the solution exist at least for t ∈ [t0, t0 + T0] and remains in Bδ(x0), where

T0 = min{T, δM }. The analogous result holds for the interval [t0 − T0, t0].

Is well known that a function f : X → Y such that exists a constant C > 0 that satisfies

dy (f(x1), f(x2)) ≤ Cdx (x1, x2) for all x1, x2 ∈ X, is Lipchitz continuous. Moreover, is

locally Lipchitz if each point x ∈ X is the center of a ball Br(x) such that the restriction

f |B is Lipchitz.
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APPENDIX B. PICARD-LINDELÖF THEOREM

Applying these for our case since the IVP LµΨ = λΨ and

Lµ ≡ L0−µQ = iσ2∂x + σ3

(
m− (v2 − u2)p

)
− ω−µp(v2−u2)p−1

 v2 −uv

−uv u2

 . (B.2)

Thus, the function f of the Picard-Lindelöf theorem for our case is given by

f(x, ω) := iσ2σ3

(
m− (v2 − u2)p

)
+ iµp(v2 − u2)p−1σ2

 v2 −uv

−uv u2

+ iσ2(λ+ ω)

where u(x, ω) and v(x, ω) are continuos uniformly bounded L2(R × (0,m),R) functions

on x, with exponential decay. Also, the function f is locally Lipchitz on ω, is sufficient

take ω? ∈ Bδ(ω) for some fix ω ∈ (0, 1), bound f by the norm |||Q||| and the supremum of

(v2 − u2)p to find the finite Lipchitz constant.
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Appendix C

Jensen’s inequality

In this appendix we are going to show the details of Jensen’s inequality based on Lieb-Loss

analysis book [39]. First of all, we are going to introduce the theorem as is presented in

the book:

Theorem C.1. Let J : R→ R be a convex function. Let f be a µ-measurable, real-valued

function on Ω. Since J is convex, it is continuos and therefore (J ◦ f)(x) := J(f(x)) is

also µ-measurable function on Ω. We assume that µ(Ω) =
∫

Ω µ( dx) is finite.

Suppose now that f ∈ L1(Ω) and let 〈f〉 be the average of f , i.e.,

〈f〉 =
1

µ(Ω)

∫
Ω
f dµ.

Then

(i) [J ◦ f ]−, the negative part of [J ◦ f ], is in L1(Ω), whence
∫

Ω(J ◦ f)(x)µ( dx) is well

defined although it might be +∞.

(ii)

〈J ◦ f〉 ≥ J(〈f〉). (C.1)

If J is strictly convex at 〈f〉 there is equality in (C.1) if and only if f is a constant function.
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APPENDIX C. JENSEN’S INEQUALITY

We want to applied this theorem to expectation values of the form 〈ψ, J(A)ψ〉, where J is

a convex function and A is a self adjoint operator. So, what we have to do is write this

expectation value using the spectral theorem (see [50][Theorem VIII.5] ), that is,

〈ψ, J(A)ψ〉 =

∫
R

J(x) dµψ(x)

where dµψ(x) is the spectral measure and ψ ∈ D(A) such that ‖ψ‖2 = 1. Thus, in the

other hand we have that µ(Ω) = 〈ψ,1ψ〉 = 1, so applying the Jensen’s inequality and using

the spectral theorem again we have that

〈ψ, J(A)ψ〉 =

∫
R

J(x) dµψ(x) ≥ J
(∫

R

x dµψ(x)

)
= J (〈ψ,Aψ〉) .

We can rewrite this inequality using that ψ = ϕ
‖ϕ‖ and then

〈ϕ, J(A)ϕ〉
‖ϕ‖2

≥ J
(
〈ϕ,Aϕ〉
‖ϕ‖2

)
.
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quantum mechanics: new approach to the computation of dirac eigenvalues. 01 2000.

[28] Lucia Duca, Tracy Li, Martin Reitter, Immanuel Bloch, Monika Schleier-Smith, and

Ulrich Schneider. An aharonov-bohm interferometer for determining bloch band topol-

ogy. Science (New York, N.Y.), 347, 07 2014.

[29] Maria J. Esteban, Mathieu Lewin, and Eric Séré. Variational methods in relativistic
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