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To all the wonder that surround us,
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FERNANDO ERNESTO ROSAS DE ANDRACA

RESUMEN

En los últimos años, la reducción de la energı́a necesaria para transferir información

entre transmisor a receptor se ha constituido en un objetivo importante para las técnicas de

comunicación inalámbricas. La búsqueda de nuevos métodos para aumentar la eficiencia

energética de las comunicaciones inalámbricas se ha transformado en un activo campo de

investigación. Algunos investigadores han sugerido que el uso de sistemas de múltiples

antenas podrı́a generar nuevas reducciones en el consumo energético de las comunica-

ciones inalámbricas. A pesar de un reciente interés en este tema, ningún análisis completo

ha sido reportado sobre como el tamaño del arreglo de antenas, el tamaño de la modu-

lación y la potencia irradiada han de elegirse para lograr comunicaciones energéticamente

eficientes sobre canales con desvanecimiento.

En esta tésis, enfrentamos este problema presentando un modelo que determina la en-

ergı́a consumida por cada bit de información transferido sin error a través de canales con

diversas estadı́sticas. Usando este modelo de consumo energético, primero presentamos

las reglas para elegir el tamaño de la modulación y la potencia de irradiación de un sistema

de una sola antena que logra la eficiencia energética máxima en función de la distancia de

enlace. Luego, extendemos el análisis a sistemas de multiples antenas que usan la técnica

de descomposición de valor singular, y presentamos el número óptimo de canales paralelos
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usados para reducir el consumo energético. Usando estos resultados, comparamos el con-

sumo mı́nimo alcanzable por sistemas de comunicaciones equipados con distinto número

de antenas. Nuestro análisis muestra que los sistemas de comunicaciones equipados con

un gran arreglo de antenas son óptimos para realizar comunicaciones a través de largas

distancias. Por otra parte, sistemas equipados con una sola antena son la mejor opción

para comunicaciones sobre distancias cortas.
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ABSTRACT

In the last years, the reduction of the total energy necessary for transferring informa-

tion from sender to receiver have emerged as an important goal of wireless communication

techniques. The search of new methods for increasing the energy efficiency of wireless

communications have become an active field of research. Some researchers have suggest

that multiple-input multiple-output systems could be used for achieving further reductions

of the energy consumption of wireless communications. Despite of a recent interest in

this topic, no complete analysis have been reported so far on how the antenna array size,

the modulation size and transmission power must be chosen in order to achieve energy-

efficient communications over fading channels.

In this thesis, we adress this problem by presenting a model that determines the en-

ergy consumed per payload bit transferred without error over fading channels of various

statistics. Using this energy-consumption model, we first derive rules for choosing the

modulation size and irradiation power of single antenna systems which achieves highest

energy efficiency as a function of link distance. Then, we extend this analysis to MIMO

SVD systems, and present the optimal number of eigenchannels to be used for reduc-

ing the energy consumption. Using these results, we compared the minimal consumption

achievable by communication systems of different antenna array sizes. Our analysis show

that communication systems equipped with large antenna arrays are optimal for long range
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communications. On the other hand, single antenna systems equipped with large constel-

lation sizes are the best choice for communications over short link distances.
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1. INTRODUCTION

Through history, one of the goals of communication engineers has been to increase

the efficiency of the process of transmitting information. In the days of the Roman or Inca

empires messages were carried by runners, who were aided by an extensive network of

roads and relay posts (Hagen, 2011). A significant improvement was achieved in Africa,

where people developed a system to code messages into drumming. This allowed to share

news among villages by means of sound waves (Carrington, 1949). Further improvements

were achieved in the 19th century with the invention of the telegraph, which enabled news

to travel at light speed (Gleick, 2011). In the 20th century, the telephone replaced the cold

beeps of the telegraphed Morse code by the warm sound of the human voice (Sterling,

Bernt, & Weiss, 2005). Today, advances in digital communication technologies allows

millions of people to share high definition images and sounds worldwide in real time.

Since the advent of digital communications, the quest for efficiency has been mainly

taken on as the maximization of throughput. This begun with the seminal work of Claude

Shannon (Shannon, 1948), who proved that the maximum theoretically achievable through-

put is given by

R ≤ W log2(1 + P/N) , (1.1)

where W is the bandwidth and P/N is the signal-to-noise (SNR) ratio. The Shannon

bound establishes the region of allowable performances for real communication systems.

Much of the work done since then has been a search for achieving Shannon’s upper bound

with practical systems (Forney & Costello, 2007).

As the Shannon curve gives the optimal relationship between bandwidth, power and

throughput, it was thought that the optimal power level could be found just by inverting

the Shannon equation (Sklar, 2001). Therefore, power efficiency would be achieved by

the same technical means as throughput efficiency (see Figure 1.1).

Nevertheless, during the first years of this millenium it was shown that energy effi-

ciency of single antenna systems is achieved by solutions that do not spring from Shannon
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FIGURE 1.1. Allowable region given by (1.1). To maximize the throughput of
a real system given a power constrain is equivalent to minimize the signal power
given a throughput constraint.

equations (Cui, Goldsmith, & Bahai, 2005; Raghunathan, Schurgers, Park, & Srivas-

tava, 2002). Since then, the idea of energy efficient communications has gathered a lot of

attention among researchers and became a prominent area of investigation.

In this dissertation we consider energy efficiency to be an independent criterion,

whose development leads to new principles and strategies for designing communication

systems. We address questions such as: what is the relationship between throughput and

energy efficiency? In particular, which are the rules by which the modulation and the

antenna array size of a communication system shall be chosen to attain energy-efficient

communications? Are multiple antenna systems capable of reducing the overall energy

consumption of wireless communication devices?

Although these questions are purely technical in principle, we think that they are

related with a desire for new solutions and paradigms which is blooming nowadays in dif-

ferent areas of our society. In fact, we believe that the throughput maximization criterion

and standard economics theory are strongly correlated, as both are based on the principle

of “infinite needs” (or bits to transmit) and scarcity of resources (power or bandwidth).
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On the contrary, energy-efficient communications are more related to sustainable initia-

tives, as they share the idea of reducing the consumption of resources (energy) necessary

to fullfil a fixed need (transfer of a message). We hope that this work may stimulate further

developments on this latter line of thought, which is so needed in a world overwhelmed

by the consequences of the abuse of the “more is better” principle.
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2. STATE OF THE ART AND CONTRIBUTIONS OF THIS THESIS

In the following, Section 2.1 formally introduces the general concept of energy-

efficient communication techniques. Sections 2.2 and 2.3 outline the state of the art of

energy-efficient communication techniques for optimizing the physical layer parameters

of single and multiple antenna systems, respectively. Finally, Section 2.4 presents the

goals of this dissertation and Section 2.5 summarizes its main contributions.

2.1 Energy-efficient communications techniques

Energy-efficient communication techniques are methods which seek to minimize the

total energy necessary for transferring one bit of data successfully from transmitter to

receiver. Such a bit is henceforth called a goodbit. These methods are not constrained

by bit-rates: they simply seek to reduce the overall energy consumption. For this reason,

energy efficiency optimization is independent of the throughput maximization criterion.

Optimization Constraints

Energy-efficient 
communications

Minimize energy 
consumption

Bandwidth
Amount of data

Standard 
communications

Maximize 
throughput

Bandwidth
Irradiated power

2.2 Energy-efficient SISO communications

The communication energy budget of single-input single-output systems (SISO), which

use a single antenna for transmitting and receiving signals, depends on choices such as the

modulation scheme, packet structure and transmission power. When attaining high data
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rates is not a requirement and when the communication system is power-limited, the com-

mon notion is to choose low-order modulations such as BFSK or BPSK, whose bandwidth

efficiency is lowest in favor of a lower SNR requirement for achieving a desired bit error

rate (Sklar, 2001). These modulations are, in fact, the only ones used in commercially

available low power transceivers like TI CC1000 (Chipcon, 2002) or CC2420 (Chipcon,

2006). Nevertheless, it has been shown that the above notion leads to suboptimal oper-

ation for communication over short distances through deterministic channels (Ammer &

Rabaey, 2006; Cui et al., 2005; Raghunathan et al., 2002; T. Wang, Heinzelman, &

Seyedi, 2008).

The rules by which the modulation size and transmission power shall be chosen to

attain energy-efficient communications through fading channels have not yet been studied

thoroughly. Most of the reported work about how to achieve energy efficient communica-

tions focuses on the additive white Gaussian noise channel (AWGN) (Ammer & Rabaey,

2006; Cui et al., 2005; Holland, 2007; Hou, Hamamura, & Zhang, 2005; Kan, Cai,

Zhao, & Xu, 2007; Raghunathan et al., 2002; Schurgers, Aberthorne, & Srivastava,

2001; A. Wang, Cho, Sodini, & Chandrakasan, 2001; Q. Wang, Hempstead, & Yang,

2006; T. Wang et al., 2008), and has no straightforward generalization to the analysis of

random channels. Therefore, their results are not directly applicable to wireless commu-

nications, which are characterized by fading channels with important outage probabilities

(Rappaport, 2002).

Attempts of considering other channels than AWGN have been found in (Holland &

Wang, 2011; T. Wang & Heinzelman, 2010). In (Holland & Wang, 2011), energy

consumption of block fading Rayleigh channels is studied. We do not like their approach,

as they consider the effect of the random channel fading via its outage probability, rather

than by taking into account the actual symbol error rate (SER) degradation. In (T. Wang &

Heinzelman, 2010), physical layer parameters of ultra-wide-band communications over

fading channels are optimized by numerical evaluations. However, the model used is only

valid for fast-fading channels and cannot be extended for fading channels with correlation

over time.
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Many existing energy consumption models such as the ones reported in (Cui et al.,

2005; Kan et al., 2007; Raghunathan et al., 2002; Schurgers et al., 2001; A. Wang

et al., 2001; Q. Wang et al., 2006) share the assumption that the bit error rate is a given

constant, which is determined by upper layer requirements. The idea that the bit error rate

should not be a constant but a parameter to be optimized is analyzed in (T. Wang et al.,

2008) and (Hartwell, Messier, & Davies, 2007), but those results are only valid for AWGN

channels. Their approach cannot be extended to fading channels because expressing the

SNR as function of the bit error rate leads to intractable mathematics.

2.3 Energy efficient MIMO communications

Multiple-input multiple-output (MIMO) communication systems, which use multiple

antenna arrays in both transmitter and receiver, were originally introduced as a way for

achieving higher data rates or for improving the reliability of wireless links (Foschini &

Gans, 1998). More recently, researchers have started to realize that the MIMO tech-

niques can also be used for reducing the energy consumption of wireless communications

(Belmega & Lasaulce, 2009; Bravos & Kanatas, 2008; Cui, Goldsmith, & Bahai, 2004;

Glazunov, 2012; Heliot, Imran, & Tafazolli, 2011; Jiang & Cimini, 2011; Kim, Chae,

de Veciana, & Heath, 2009; Prabhu & Daneshrad, 2010; Siam, Krunz, Cui, & Muqat-

tash, 2010; Xu & Qiu, 2012).

The multiple-input multiple-output singular value decomposition (MIMO SVD) mod-

ulation is widely known as an capacity achieving scheme for sending data through a

multi-antenna communications link in which the transmitter has knowledge of the channel

state (Tse & Viswanath, 2005). Consider a MIMO channel in which the received sig-

nal vector v = (v1, . . . , vNr)
t can be expressed in terms of the transmitted symbol vector

u = (u1, . . . , uNt)
t as

v = Hu + w , (2.1)

where uj is the complex symbol transmitted through the j-th antenna, vi is the complex

symbol received by the i-th transmission branch, H is a random matrix with coefficients
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hi,j which are i.i.d. standard complex normal random variables and w = (w1, . . . , wNr)
t

is the vector of additive white Gaussian noise terms experimented in each branch of the

receiver (Goldsmith, 2005). Using the singular value decomposition, the channel matrix

H is diagonalized creating N = min{Nt, Nr} non-interfering channels (eigenchannels in

the following). This can be described as

yk =
√
λkxk + nk k = 1 . . . N , (2.2)

where k indexes the eigenchannels, xk are the transmitted symbols, nk are additive white

Gaussian noise terms (AWGN) and
√
λk are the singular values of the channel matrix H

(Eckardt & Young, 1939). It is worth to notice that although the MIMO SVD modulation

provides N eigenchannels, there is no need to use them all. Using all the eigenchannels

maximizes the data rate, but sacrifices symbol error rate (SER). Conversely, using only the

n < N eigenchannels with most favorable fading statistics yields a better SER but at the

cost of decreasing the data-rate (Tse & Viswanath, 2005).

Most of the existent models for analyzing the energy consumption of MIMO SVD

communications reported so far in the literature (Belmega & Lasaulce, 2009; Glazunov,

2012; Heliot et al., 2011; Jiang & Cimini, 2011; Kim et al., 2009; Prabhu & Daneshrad,

2010; Xu & Qiu, 2012) are based on the abstract definition of the capacity of a MIMO

random fading channel. These models are not adequate for determining attainable perfor-

mances of concrete modulations with a specific number of eigenchannels used. In (Cui

et al., 2004) a model is presented that provide a more concrete framework. Neverthe-

less, using the bit error rate instead of the SNR as a variable, their formulation finds big

mathematical difficulties.

More important, none of these models consider the effect of retransmissions required

to guaranteeing error-free transmissions. To consider this, it is mandatory to know the

symbol error rate of the MIMO system. Despite the importance and popularity of the

MIMO SVD modulation, no simple formula for the symbol error rate (SER) of the eigen-

channels has been reported yet, even though the topic has seen much recent activity (e.g.
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(Au et al., 2008; Edelman & Persson, 2005; Jin, McKay, Gao, & Collings, 2008;

Kang & Alouini, 2003; Kwan, Leung, & Ho, 2007; Onatski, 2008; Zanella, Chiani,

& Win, 2009; Zhang, Guan, & Zhou, 2011)). The common approach for studying the

statistics of the eigenchannels is to consider λk as eigenvalues of the complex Wishart

matrix W = HH† (Muirhead, 1982). The eigenvalues of W have a joint probability

distribution (p.d.f.) given by (Edelman, 1989)

p = KN exp

(
−

N∑

k=1

λk

)
N∏

i=1

λ
|Nt−Nr|
i

N∏

i>j

(λi − λj)2 , (2.3)

with λ1 ≤ λ2 ≤ · · · ≤ λN and KN a constant. Deriving the statistics of each eigenchan-

nel requires to determine the exact marginal p.d.f. pλk(λk) of each eigenvalue from (2.3).

Following this approach, it is shown in (Edelman, 1989) that the SNR of the smallest

eigenchannel of a N × N MIMO channel have the same statistics as a Rayleigh channel

with power gain 1/N (i.e. pλ1(λ1) = Ne−Nλ1). Although expressions for the marginal

p.d.f. of the other eigenvalues have been found (Edelman & Persson, 2005; Kang &

Alouini, 2003; Kwan et al., 2007; Onatski, 2008; Zanella et al., 2009), they are

mathematically complex and do not provide much insight about the performance of the

corresponding eigenchannels. In (Ordoez, Palomar, Pages-Zamora, & Rodriguez Fonol-

losa, 2007), it was shown that in the high signal-to-noise ratio (SNR) regime the SER of

each eigenchannel can be expressed as

P̄s(γ̄) = (Gcγ̄)−Gd + o(γ̄−Gd) , (2.4)

where γ̄ is the SNR, Gc is the power gain of the channel and Gd is the diversity degree

(Zheng & Tse, 2003). The limitation of this result is that the high-SNR restriction leads

to insights of little practical interest. In (Taniguchi, Sha, Karasawa, & Tsuruta, 2007), the

idea of approximating the statistics of the largest eigenchannel by a Nakagami-m fading

is presented. The value of m is chosen in order to approximate the outage statistics of this

eigenchannel. Although the approximation thus obtained is accurate, it is not obvious if

the proposed method can be extended to model the statistics of other eigenchannels.
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2.4 Research goals

The main goal aimed at by this dissertation is to answer the question: can MIMO sys-

tems be used for reducing the energy consumption of wireless communications? Although

this is plausible, the available literature has not yet given a satisfactory answer.

In order to perform a proper comparison between SISO and MIMO systems, we will

seek the rules by which the main physical-layer parameters of each kind of system shall

be chosen for attaining energy-efficient communications. Using them, we will be able to

compare the minimal energy consumption of SISO and MIMO systems of arbitrary size.

2.5 Summary of contributions of this thesis

In the following, we present the a summary of the main contributions of this thesis.

I We have developed an energy consumption model that provides a general frame-

work that can be applied to a variety of situations, which may include:

• time correlated or uncorrelated random channels with arbitrary statistics

(Rayleigh, Nakagami-m, etc) (Rosas & Oberli, in press),

• MIMO systems with different antenna array size (Rosas & Oberli, submit-

ted).

To the best of our knowledge, our model is the first in considering the energy con-

sumption of wireless communications to be a random variable, one that depends

on both the channel and the thermal noise statistics (Rosas & Oberli, 2012b).

II We have found an explicit formula for the mean number of transmission trials (τ )

necessary for conveying a goodbit (i.e. until a frame is decoded without error)

(Rosas & Oberli, in press):

τ̄ = 1 +
∞∑

n=1

E

{
n∏

j=1

Pj

}
. (2.5)

Above, E{·} denotes the expectation operator and Pj is the probability of de-

coding the frame with error during the j-th transmission trial. The generality of
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(2.5) allows to estimate the energy consumption of retransmissions in both SISO

or MIMO communications over channels with arbitrary fading statistics.

III We developed a method for approximating the statistics of the eigenchannels of

MIMO SVD communications using the Nakagami-m fading model (Rosas &

Oberli, 2012c). This method was used for deriving an approximation of the

mean symbol error rate (SER) of MIMO SVD transmissions that use only the n

eigenchannels with better fading statistics. The approximation found is

P̄ (n)
s (γ̄N−n+1, . . . , γ̄n) ≈ 1

n

N∑

k=N−n+1

P̄s(γ̄k, µk,mk) , (2.6)

where P̄ (γ̄, µ,m) is the SER of a Nakagami-m channel with mean SNR γ̄ and

mean power gain µ. This expression is simple, accurate, easily computable and

provides intuition about the quality of the channel for data transmission (Rosas &

Oberli, 2012c). All these qualities are absent in alternative expressions found in

the literature (see Section 2.3). Using (2.6) we were able to a number of impor-

tant insights about the diversity degree and the power gain of the eigenchannels

of a N ×N MIMO system (Rosas & Oberli, under review).

IV Using our energy consumption model, we derive rules for choosing the modu-

lation size that achieves highest energy efficiency as a function of link distance

on fast fading channels. For SISO systems, we found that for long transmission

distances low bandwidth efficiency modulations (with small M -ary number like

BPSK) are optimal in the energy consumption sense (see Section 3.5) (Rosas &

Oberli, 2012b). As the transmission distance shortens, the optimal modulation

size grows. We found that this principle can be generalized for MIMO SVD

communications. In effect, the strategy that minimizes the energy consumption

of short range communications is to maximize the throughput using a large con-

stellation size over all the available eigenchannels (Rosas & Oberli, 2012a). As

the transmission distance increases, the optimal number of used eigenchannels

10



and the optimal modulation size decreases. For long link distances, the optimal

strategy is to use beamforming with a binary modulation.

V We found that small antenna array systems are more energy efficient than sin-

gle antenna systems for short range communications (see Section 3.6) (Rosas &

Oberli, submitted). On the contrary, we found that large MIMO systems are

optimal for long transmission distances.
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3. METHODOLOGY AND RESULTS

In order to find the rules by which the main physical-layer parameters may be op-

timized, we have developed a model for the total energy necessary for transferring one

goodbit from transmitter to receiver. In this chapter we present our model and use it for

comparing the energy consumption of SISO and MIMO systems of different antenna ar-

ray size. For SISO systems, we use the model for optimizing the SNR and the M-QAM

constellation size. For MIMO system, we focus on the MIMO SVD modulation and use

the model for also optimizing the number of used eigenchannels. Finally, we compared

the energy consumption of the optimized SISO and MIMO systems.

The chapter is structured as follows: Section 3.1 presents the energy consumption

model. Section 3.2 presents results regarding to mean number of retransmissions of SISO

and MIMO systems. Section 3.3 presents our work on characterizing the statistics of

the MIMO SVD channel, which was used later for evaluating the energy consumption

of MIMO SVD transmissions. Section 3.4 present our results about how to optimize

the SNR for further also minimizing the energy consumption of SISO or MIMO SVD

systems. Section 3.5 shows the relationship between the throughput and energy efficiency

of a given antenna array size. Finally, Section 3.6 compares the energy consumption

between optimized SISO and MIMO systems.

3.1 Energy consumption model

We assume that every frame transmitted in the forward direction is matched by a

feedback frame in the reverse direction, to acknowledge correct reception or requests a

re-transmission. We also assume that the irradiated power is determined by the transmitter

based upon knowledge of the statistics of the signal-to-noise ratio (SNR) at the intended

receiver. We further assume that all frames in both directions are always detected and that

all feedback frames are decoded without error.
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Transmissions in both directions cause energy expenses at respective transmitters and

receivers. In short range communications, the energy consumption for receiving a frame

is known to be on the same order as the consumption for transmitting it (Raghunathan et

al., 2002) and must hence be accounted for.

In our model, the energy consumed by the transmitter of forward frames per error-

free transferred bit, and for also decoding the corresponding feedback frames, is given by

(Rosas & Oberli, in press)

ET = Est +

[
Btx + (Pel,tx + PPA)Tb + Pel,rx

Tfb

L

]
τ . (3.1)

Here Est is the energy needed to wake up the transmitter from a low power consumption

(sleep) mode, divided by the number of payload bits that are going to be transmitted before

the transceiver goes again into low power consumption mode. Btx stands for the energy

consumption of the baseband processing per bit. PPA =
∑N

j=1 P
(j)
PA is the total power con-

sumption of the power amplifiers (N = 1 in the SISO case). Pel,tx (respectively Pel,rx) is

the power consumed by the remaining baseband and radio-frequency electronic compo-

nents that perform the forward transmission (respectively the feedback frame reception).

Tb is the average air time per payload bit on a forward frame, which includes acquisition,

synchronization and frame overhead. Tb = R−1(1 + O/L), where R is the physical layer

bit-rate, L is the number of payload bits per frame andO is a measurement of the overhead

in bits. Tfb = F/R is the air time of the feedback frame, where F is the feedback frame

length. Finally τ is the number of trials until the frame that contains the considered bit is

decoded without errors in the receiver.
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By analogy, the total energy used by the receiver of forward frames for demodulating

τ forward transmissions, and for transmitting the corresponding τ feedback frames, is

ER = Est +

[
Brx + Pel,rxTb + (Pel,tx + PPA)

Tfb

L

]
τ . (3.2)

The total energy consumption per bit transmitted without error is the sum of (3.1) and

(3.2):

Eb = 2Est +

[
Btx +Brx + (Pel,tx + PPA + Pel,rx)

(
Tb +

Tfb

L

)]
τ (3.3)

= S + [B + (Pel + PPA)T ] τ , (3.4)

where we have defined S = 2Est, B = Btx +Brx, Pel = Pel,tx +Pel,rx and T = Tb +Tfb/L.

Because of τ , Eb is a random variable that depends on the realizations of the channel

and of the thermal noise. Its mean value is

Ēb = E {Eb} = S + [B + (Pel + PPA)T ] τ̄ . (3.5)

Expressions for τ̄ are discussed in the sequel.

3.2 Mean number of retransmissions

A key contributor to the energy consumption is the need for re-transmissions due to

forward frames that get decoded with errors at the receiver. The probability of frame error

(and hence the probability of re-transmission) depends on the mean received SNR, γ̄, and

on the statistics of the wireless channel. Therefore, the number of trials (τ ) until a frame

is decoded without error is a random variable.

To calculate the mean number of trials, τ̄ , we have found a explicit formula (Rosas &

Oberli, in press):

τ̄ = 1 +
∞∑

n=1

E

{
n∏

j=1

Pj

}
, (3.6)

where E{·} denotes the expectation operator and Pj is the probability of decoding the

frame with error during the j-th transmission trial. Each of the terms of the infinite sum
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in (3.6) correspond to the expected value of the probability of having n successive frames

decoded with error. The generality of (3.6), which can be applied for SISO or MIMO

systems with different channel fading statistics, is a key element of the flexibility of our

energy consumption model.

The value of τ̄ depends on the joint distribution of the probabilities Pj for j = 1, . . . ,∞.

In effect, consider first a static channel, where the frame error probabilities Pj are fully

correlated which each other, and hence Pj = P1 ∀j ∈ N. In this case, (3.6) becomes

τ̄static = 1 +
∞∑

n=1

E {P n
1 } = E

{
1

1− P1

}
. (3.7)

Consider now a fading channel in which the SNR levels of any two frame transmission

trials are statistically independent. Then (3.6) can be re-written as

τ̄f = 1 +
∞∑

n=1

n∏

j=1

E {Pj} =
1

1− E {P1}
, (3.8)

where {Pj}∞k=1 is now a collection of i.i.d. random variables.

Using the Jensen inequality for the convex function Φ(x) = (1−x)−1 with x ∈ [0, 1),

it can be shown that

τ̄f ≤ τ̄static , (3.9)

where the equality is attained by the AGWN channel. This result shows that transferring

successfully one entire frame of data across uncorrelated channels takes, on average, fewer

transmission attempts than doing it over fully correlated channels. An intuitive explanation

for this is that unfavorable (initial) realizations of static channels have a permanent low

SNR level, and require therefore a large number of trials until a frame is received without

error. However unlikely, the poor performance of these unfavorable cases raise the mean

number of trials enough to spoil the average performance beyond the case of uncorrelated

channels.
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3.3 Characterization of MIMO SVD channels

In order to use (3.7) or (3.8) for calculating the corresponding expression for MIMO

SVD transmissions, we need to find expressions for the fading statistics of the MIMO

channel. For this, we have developed a method for approximating the statistics of the

eigenchannels of MIMO SVD communications using the Nakagami-m fading model (Rosas

& Oberli, 2012c). Maximum Likelihood Estimation of Nakagami-m channel parameters

is performed for each of the eigenchannels of the MIMO system. The accuracy of the

results can be shown by minimizing the mean square error for the 2 × 2 case, and using

the Kolmogorov-Smirnov test (Gregory & Corder, 2009) for larger system sizes.

The proposed method was used as a starting point for deriving an approximation of

the mean SER of MIMO SVD transmissions where only the n channels with better fading

statistics are used. Our approximation is given by

P̄ (n)
s (γ̄N−n+1, . . . , γ̄n) ≈ 1

n

N∑

k=N−n+1

P̄s(γ̄k, µk,mk) , (3.10)

where P̄s(γ̄, µ,m) is the SER of a Nakagami-m channel with mean SNR γ̄ and mean

power gain µ. This expression is simple, accurate, easily computable and provides intu-

ition about the quality of the channel for data transmission (see Figure 3.1). Using this

approximation, we have presented an upper and lower bound for the SER of MIMO SVD

based just on the SER of the weakest eigenchannel used for the transmission.

We also show that, for N > 15, the eigenchannels of a N ×N MIMO channel fit the

following general characterization: there are N − 5 eigenchannels which error statistics

are similar to an AWGN channel (within 1 dB SNR), while the five weakest eigenchannels

perform like a Rayleigh and Nakagami-m channels with m = 4, 9, 16 and 25, respectively

(Rosas & Oberli, under review). We also provide a number of insights about the mean

power gain distribution among the eigenchannels for large antenna arrays, and show that

75% of the total mean power gain of the MIMO channel goes to the top third of all the

eigenchannels.

16



−10 −5 0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

S
y
m

b
o
l 
e
rr

o
r 

ra
te

 

 

Full SVD

3 used eigenchannels

2 used eigenchannels

MIMO Beamforming

Theoretic approximations

FIGURE 3.1. Average SER of SVD transmissions over a 4 × 4 MIMO channel
using uncoded BPSK and 1, 2, 3 or 4 eigenchannels of the SVD modulation.
Markers show the average SER obtained by computer simulation of 106 symbols.
Solid lines show the corresponding proposed approximation (3.14). An increasing
diversity gain (i.e. the slope of the SER in the high SNR regime) can be observed
as the number of used eigenchannels is reduced.

3.4 Optimization of the SNR

Consider rewriting (3.5) so that the terms that depend on the mean SNR, γ̄, observed

at the decision stage of the receiver, become explicit:

Ēb (γ̄) = S + (B + [Pel + PPA(γ̄)]T ) τ̄(γ̄) . (3.11)

Above, PPA(γ̄) represents the dependency between the PA consumption and the irradiated

electromagnetic energy. We have shown that PPA(γ̄) = Adαγ̄, where A is a constant, d is

the link distance in meters and α is the path loss exponent (Rappaport, 2002). The mean

number of transmission trials, τ̄(γ̄), is a strictly decreasing function of γ̄ which satisfies

limγ̄→∞ τ̄(γ̄) = 1 (Rosas & Oberli, 2012a, in press).

By construction, (3.11) is the product of the decreasing function τ̄(γ̄) and the increas-

ing linear function PPA(γ̄). Such a product attains a unique minimum at the SNR level
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γ̄∗. Lower SNR levels are suboptimal because they force the system to do too many re-

transmissions, and higher SNR levels are also suboptimal because the overall irradiated

power is excessive. This behavior is common to both SISO and MIMO SVD systems (see

Figure 3.2 and 3.3).
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FIGURE 3.2. Simulated average energy consumption per effective transmitted bit
of a SISO system for various fading channels (markers) vs. numerical evalua-
tions of the model presented in (3.11) (solid lines) for a low-power transceiver
with typical parameters. Modulation is QPSK and link distance is d = 35 me-
ters. A unique minimum is observed, which corresponds to the optimal SNR for
maximum energy efficiency.

We further found that the optimal energy consumption per bit and the optimal SNR

at which this occurs take larger values for channels with less favorable error statistics. In

effect, for a generic SISO low-power device, the minimal energy consumption in Rayleigh

fading can double the optimal consumption in AWGN, and the corresponding SNR for

Rayleigh fading can be 15 dB higher than the one for AWGN (see Figure 3.2).

We found explicit expressions for the optimal SNR value of SISO systems for AWGN,

Rayleigh and Nakagami-m fading statistics (Rosas & Oberli, in press). For example, we
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FIGURE 3.3. Mean energy consumption of a low power 4×4 MIMO SVD system
with equal power allocation and all possibilities of used eigenchannels. Modula-
tion is uncoded BPSK and link distance is d = 50 meters.

found that the optimal SNR for a Rayleigh fading channel is given by

γ̄0 ≈
γ̄long

2

(
1 +

√
1 +

4Pel

γ̄longAdα

)
, (3.12)

where Pel is as defined in (3.4). γ̄long is the optimal SNR as d→∞, which is given by

γ̄long = 0.81
c

a

[
1 +

L+H

log2M

]
, (3.13)

where L is the number of payload bits, H is the number of bits of header, M the order of

the M-QAM modulation, c = 2
(

1− 1/
√
M
)

and a = 3/(M − 1). γ̄long approximates

the optimal SNR in the traditional sense of wireless communications, where the link bud-

get neglects the energy consumption of the electronics and only considers link gains and

losses. Using the first order Taylor approximation
√

1 + x ≈ 1 + x/2 in (3.12), we obtain

γ̄0 ≈ γ̄long +
Pel

Adα
. (3.14)

This expression reflects the counter-intuitive fact that the optimal SNR increases as dis-

tance decreases (see Figure 3.4).
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3.5 Optimization of the throughput

We want to study the minimal average energy consumption achievable for a given

transmission distance, namely

Ē∗b (d) = min
γ̄∈[0,∞]

Ēb(γ̄, d) = Ēb(γ̄
∗, d) , (3.15)

with Ēb(γ̄, d) given by (3.11) explicating its dependance on the link distance d.

We compared the value of (3.11) achieved by different modulation. For SISO systems,

we found that for long transmission distances low bandwidth efficiency modulations (with

small M -ary number like BPSK) achieve a smaller energy consumption (see Figure 3.5)

(Rosas & Oberli, 2012b). As the transmission distance shortens, the optimal modulation

size grows. In short range communications, the power consumed by electronic compo-

nents dominates over the irradiated power, and dominates also over the energy consump-

tion of the power amplifier. Under these conditions, the average air time spent per data

bit becomes a relevant parameter in the total energy budget. This makes optimal to pack

more bits into each symbol and hence to choose a larger M -ary number. Our results show
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that lifetime extensions up to 500% can be gained in short range networks by selecting

modulations with larger constellations than BPSK.
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FIGURE 3.5. Energy consumption of a SISO system per successfully transmitted
bit of various modulations over a Nakagami-m channel with m = 4 as a function
of the link distance. Each modulation is operated at its own optimal SNR for the
given distance. As distance decreases, modulations with higher spectral efficiency
become energy optimal.

We also found that the above principle can be generalized for MIMO systems (Rosas

& Oberli, 2012a). In effect, the strategy that minimizes the energy consumption of short

range communications is to maximize the throughput using a large constellation size over

all the available eigenchannels (see Figures 3.6 and 3.7). As the transmission distance

increases, the optimal number of used eigenchannels and the optimal modulation size

decreases. For long link distances it is optimal to reduce the irradiated power by reducing

the throughput and sending all the power only through the more favorable direction, which

is given by the beamforming pattern.
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3.6 Comparison between SISO and MIMO systems

We compared the minimal average energy consumption achievable by an N × N

MIMO SVD system for different antenna array sizes (N ). This minimal consumption is

found optimizing the modulation, the SNR used in each eigenchannel and the number

of used eigenchannels (Rosas & Oberli, submitted). The SISO case is recovered using

N = 1.

We found that small antenna arrays systems are more energy efficient than single

antenna system in short range communications (see Figure 3.8) (Rosas & Oberli, sub-

mitted). In this regime, large antenna arrays are suboptimal, as the reduction in the time

per bit achieved by a higher throughput is not enough to compensate the increase in the

electric power, which is linear on the antenna array size. The role played by the MIMO

overhead is critical, as it is the only component of the time per bit that do not decreases

when the throughput grows.
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On the contrary, we found that large MIMO systems are optimal for long transmission

distances (see Figure 3.8). The use of beamforming with a large antenna array generates

important reductions in the frame error rate. These more favorable error statistics allow

to reduce the irradiated energy needed to reach the receiver, which is the main source of

energy consumption in long transmission distances.
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4. CONCLUSIONS

In this thesis, we studied the optimization of physical-layer parameters in order to

reduce the energy consumed by a transceiver for delivering one bit of data without error.

In our study, we considered different transmission distances and various channel statistics,

as well as the energy cost of retransmissions, feedback frames and the consumption of

electronic components.

Most of the available literature about how to achieve energy efficient communications

focuses on the AWGN channel and has no straightforward generalization to the analysis of

random channels. We developed an energy consumption model which is, to the best of our

knowledge, the first in considering the energy consumption of wireless communications to

be a random variable, one that depends on both the channel and the thermal noise statistics.

The flexibility of our model allows to compare the energy consumption of systems with

different antenna array sizes and to evaluate the effect of channels with various statistics.

Our analysis shows that, for a given antenna array size, the optimal choice for reduc-

ing the energy consumption of short range communications is to maximize the throughput

by using large constellations over all the available eigenchannels. As the transmission

distance increases, the optimal modulation size and the optimal number of used eigen-

channels decreases. For long-range communications, the optimal choice is to reduce the

throughput by using a binary modulation and sending all the power through the largest

eigenchannel, which is given by the beamforming patter.

For long transmission distances, our results support the intuitive fact that important

energy savings can be achieved by using small constellations and performing beamform-

ing with large antenna arrays. On the contrary, our results show that single antenna systems

equipped with large modulation sizes are more efficient in the energy sense for performing

short range communications than MIMO systems.
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Abstract—It is commonly assumed that the energy consump-
tion of wireless communications is minimized when low-order
modulations such as BPSK are used. Nevertheless, the literature
provides some evidence that low-order modulations are subopti-
mal for short transmission distances. A thorough analysis on how
the modulation scheme and transmission power must be chosen
as a function of distance in order to achieve energy-efficient
communications over fading channels has not been reported yet.
In this paper we provide this analysis by presenting a model
that determines the energy consumed per payload bit transferred
without error over correlated or uncorrelated random channels.

We find that each modulation scheme has a single optimal
signal-to-noise ratio (SNR) at which the energy consumption is
minimized. We also find that if all modulations are operated at
their optimal SNR, BPSK and QPSK are the optimal choices
for long transmission distances, but as the transmission distance
shortens the optimal modulation size grows to 16-QAM and even
to 64-QAM. This result leads to showing that for short-range
communications the lifetime of a typical low-power transceiver
can be increased by up to 600% by selecting the optimal
constellation rather than BPSK.

I. INTRODUCTION

Attaining high energy efficiency is a key condition that
wireless communications technologies like wireless sensor
networks (WSN) must satisfy in order for the technology to
prosper into large-scale, autonomous networks. Requirements
on size and cost of the nodes pose vital constraints to the
problem. In fact, battery depletion has been identified as one
of the primary causes of lifetime limitation of these networks,
and replacing them regularly is impractical in large networks
or may even be impossible in hostile environments [1].

The communications energy budget depends on choices
such as the modulation scheme, packet structure and trans-
mission power. When the communication system is power-
limited (as in WSN), the common notion is to choose low-
order modulations such as BFSK or BPSK, which has a low
SNR requirement for achieving a desired bit error rate [2].
These modulations are, in fact, the ones used in commercially
available low-power transceivers like the TI CC1000 [3] or
CC2420 [4], often used for WSN applications. Nevertheless
it has been shown that the above notion leads to suboptimal
operation for short link distances [5]–[7].

The rules by which the modulation scheme and transmission
power shall be chosen to attain energy-efficient communi-

cations through random channels have not yet been clearly
established. Most of the work reported so far focuses on
the additive white Gaussian noise channel (AWGN) [5]–
[12]. In [13], energy consumption of block fading Rayleigh
channels is studied, but channel fading is included by its
outage probability rather than by taking into account the actual
symbol error rate (SER) degradation due to the fading process.

In this paper, we present an energy consumption model
which allows for optimizing the modulation scheme and
transmission power for communications over correlated or
uncorrelated random channels.

Furthermore, we establish rules for choosing the modulation
size that achieves highest energy efficiency as a function of
link distance on fast fading channels. For large transmission
distances, our model confirms the common notion discussed
above for power-limited systems, while for short transmission
distances it coincides with the results reported in [14] and [7]
for AWGN, extending them to fast-fading random channels.

Our model also shows that a single optimal SNR level exists
at which the least amount of energy is consumed per data bit
transferred without error, and reveals how it depends on the
packet frame length, modulation size and channel statistics.
Many existing energy consumption models such as the ones
reported in [5], [6], [8]–[11] share the assumption that the bit
error rate is a given constant, which is determined by upper-
layer requirements independently of physical layer parameters
such as the modulation type or the power consumption of
electronic components. The idea that the bit error rate should
be a parameter to be optimized can be found in [7] and [15],
but those results are only valid for AWGN channels.

The paper is organized as follows: Section II presents the
energy consumption model, Section III uses this model for op-
timizing the SNR to achieve energy efficiency, and Section IV
presents the principles for selecting modulation scheme and
SNR. Finally, Section V summarizes our conclusions.

II. ENERGY CONSUMPTION MODEL

Our goal is to determine the total energy that is necessary
for transferring one bit of data successfully, without error, in
a point-to-point packet-switched wireless communication link
(e.g. between two sensor nodes). We assume that every frame
transmitted in the forward direction is matched by a feedback
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frame in the reverse direction, which acknowledges correct
reception or requests a re-transmission. We also assume that
the irradiated power is determined by the transmitter based
upon knowledge of the statistics of the signal-to-noise ratio
(SNR) at the decision stage of the intended receiver. We further
assume that all frames in both directions are always detected
and that all feedback frames are decoded without error.

Transmissions in both directions cause energy expenses
at respective transmitters and receivers. In short range com-
munications, the energy consumption for receiving a frame
is known to be on the same order as the consumption for
transmitting it [5] and must hence be accounted for.

In the sequel, we first analyze the components of energy
consumption of a transceiver from the standpoint of a node that
transmits one payload frame and receives the corresponding
feedback frame (the reverse case —a transceiver that receives
one payload frame and transmits the corresponding feedback
frame— follows by analogy). We continue by analyzing the
statistics of re-transmissions and finally we present of our total
energy consumption model.

A. Total Energy Consumption per Successfully Transferred Bit

The energy consumed by the transmitter of forward frames
per error-free transferred bit, and for also decoding the corre-
sponding feedback frames, is given by

ET = Est +
[
(Pel,tx + PPA)Tb + Pel,rx

Tfb

L

]
τ . (1)

Here Est is the energy needed to wake up the transmitter from a
low power consumption (sleep) mode, divided by the number
of payload bits that are going to be transmitted before the
transceiver goes again into low power consumption mode.
PPA is the power consumed by the power amplifier (PA),
and Pel,tx (respectively Pel,rx) is the power consumed by
the remaining baseband and radio-frequency electronic com-
ponents that perform the forward transmission (respectively
the feedback frame reception). Tb is the average air time per
payload bit on a forward frame, which includes acquisition,
synchronization and frame overhead. Tb = R−1(1 + O/L),
where R is the physical layer bit-rate, L is the number of
payload bits per frame and O is a measurement of the overhead
in bits. Tfb = F/R is the air time of the feedback frame, where
F is the feedback frame length. Finally τ is the number of
trials until the frame that contains the considered bit is decoded
without errors in the receiver.

By analogy, the total energy used by the receiver of forward
frames for demodulating τ forward transmissions, and for
transmitting the corresponding τ feedback frames, is

ER = Est +
[
Pel,rxTb + (Pel,tx + PPA)

Tfb

L

]
τ . (2)

The total energy consumption per bit transmitted without
error is the sum of (1) and (2):

Eb = 2Est + (Pel,tx + PPA + Pel,rx)

(
Tb +

Tfb

L

)
τ (3)

= S + (Pel + PPA)Tτ , (4)

where we have defined S = 2Est, Pel = Pel,tx + Pel,rx and
T = Tb + Tfb/L.

It is to be noted that because of τ , Eb is a random variable
that depends on the realizations of the channel and of the
thermal noise. Its mean value is

Ēb = E {Eb} = S + (Pel + PPA)T τ̄ . (5)

Expressions for τ̄ are discussed in the sequel.

B. Re-transmission Statistics

A key contributor to the energy consumption is the need
for re-transmissions due to forward frames that get decoded
with errors at the receiver. The probability of frame error (and
hence the probability of re-transmission) depend on the mean
received SNR, γ̄, and on the statistics of the wireless channel.
Therefore, the number of trials (τ ) until a frame is decoded
without error is a random variable. It can be shown that its
mean value, τ̄ = E{τ}, where E{·} denotes the expectation
operator, can be expressed as

τ̄ = 1 +
∞∑

n=1

E

⎧
⎨
⎩

n∏

j=1

Pj

⎫
⎬
⎭ , (6)

where Pj is the probability of decoding the frame with error
during the j-th transmission trial. For lack of space, the
complete derivation will appear in a future journal article.

The value of τ̄ depends on the joint distribution of the
probabilities {Pj}∞j=1. In effect, consider first a static channel
where Pj = P1 ∀j ∈ N. In this case, (6) becomes

τ̄ = 1 +

∞∑

n=1

E {Pn
1 } = E

{
1

1− P1

}
Δ
= τ̄static . (7)

Consider now a fading channel in which the SNR levels of
any two frame transmission trials are statistically independent.
Then (6) can be re-written as

τ̄ = 1 +

∞∑

n=1

n∏

j=1

E {Pj} =
1

1− E {P1}
Δ
= τ̄f , (8)

where Pj and Pk are i.i.d. random variables whenever j �= k.
Using the Jensen inequality for the convex function Φ(x) =

(1− x)−1 with x ∈ [0, 1), it can be shown that

τ̄f ≤ τ̄static , (9)

where the equality is attained by the AGWN channel. This
result shows that transferring successfully one frame across
uncorrelated channels takes, on average, fewer transmission at-
tempts than doing it over fully correlated channels. An intuitive
explanation for this is that unfavorable (initial) realizations of
static channels have a permanent low SNR level, and require
therefore a large number of trials until a frame is received
without error. However unlikely, the poor performance of these
unfavorable cases raise the mean number of trials enough to
spoil the average performance beyond the case of uncorrelated
channels.



III. OPTIMAL MEAN SNR LEVEL FOR ENERGY

EFFICIENCY

In this section, we seek to determine the mean SNR for
which a communication with M-QAM modulation uses, on
the average, the least amount of energy per bit transferred
without error.

Consider rewriting (5) so that the terms that depend on the
mean SNR, γ̄, observed at the decision stage of the receiver,
become explicit:

Ēb (γ̄) = S + [Pel + PPA(γ̄)]T τ̄(γ̄) . (10)

Above, PPA(γ̄) is a linear function of γ̄. In effect, the PA’s
power consumption is related with the transmission power
as Ptx = (η/ξ)PPA where ξ is the peak-to-average power
ratio of the transmitted signal and η is the drain efficiency
of the PA [6]. The transmitted power attenuates over the air
with path loss and arrives at the receiver with a mean power
given by Prx = Ptx/(Ad

α), where A is a parameter that
depends on the transmitter and receiver antenna gains and the
transmission wavelength, d is the distance between transmitter
and receiver and α is the path loss exponent [16]. At the input
of the decision device of the receiver, γ̄ is related to Prx

as γ̄ = Prx/(N0WNfMl), where N0 is the power spectral
density of the baseband-equivalent additive white Gaussian
noise (AWGN), W is the transmission bandwidth, Nf is the
noise figure of the receiver’s front end and Ml is a link margin
term which represents any other additive noise or interference
[6]. Putting all these relationships together, we find that

PPA(γ̄) =
ξAdαN0WNfMl

η
γ̄ = Atotalγ̄ , (11)

with Atotal a constant.
Assume that an uncoded M -ary modulation is used for these

transmissions. Then, there are λ = (L+O)/ log2(M) symbols
per frame, where L is the number of payload bits per frame
and O is the overhead (c.f. Section II-A). The frame error rate
Pf can be written in terms of the symbol error rate Ps(γ) as
Pf = 1 −∏λ

k=1[1 − Ps(γk)], where γk is the SNR in effect
during the k-th symbol. Using this in (8) and assuming that
that all γk are i.i.d. random variables with mean γ̄ (i.e. fast
fading) we obtain:

τ̄f(γ̄) =
1

∏λ
k=1 [1− E {Ps(γk)}]

=
1

[1− E {Ps(γ1)}]λ
,

(12)
where the first equality follows from the assumption that each
symbol is decoded independently from all others.

Under fast fading conditions, replacing (11) and (12) into
(10), we find

Eb(γ̄) = S +
(Pel +Atotalγ̄)T

[1− P̄s(γ̄)]λ
, (13)

where we are using the shorthand notation P̄s(γ̄) for
E{Ps(γ)}. In general, P̄s(γ̄) is a strictly decreasing function
of γ̄ that satisfies limγ̄→∞ P̄s(γ̄) = 0. Therefore, the average
number of transmissions needed to successfully transfer one

frame under fast fading conditions, given by (12), is also a
strictly decreasing function of γ̄ and satisfies limγ̄→∞ τ̄(γ̄) =
1 (this reflects the intuitive fact that the average number of
retransmissions drops as the SNR grows). By construction,
(13) is the product of the decreasing function τ̄(γ̄) and the
increasing linear function PPA(γ̄). Such a product attains a
unique minimum at the optimal SNR level γ̄0. Lower SNR
levels are suboptimal because they force the system into
too many retransmissions, and higher SNR levels are also
suboptimal because the overall irradiated power is excessive.

The minimization of (13) over γ̄ is straightforward by taking
derivative and equating the result to zero. This leads to the
following implicit expression for γ̄0:

λ

(
Pel

Atotal
+ γ̄0

)
dP̄s

dγ̄
(γ̄0)− P̄s(γ̄0) + 1 = 0 . (14)

It is to be noted that the only parameters that influence
γ̄0 are the mean symbol error rate, P̄s(γ̄), the number of
payload symbols per frame, λ, and the ratio between the power
consumption of electronic components, Pel, and the coefficient
Atotal, which is proportional to the irradiated power.

Equation (14) can be used to find the optimal SNR for
different random channel models. The corresponding analysis
for AWGN, Rayleigh and Nakagami- m channels is currently
work in progress.

IV. OPTIMAL MODULATION AS A FUNCTION OF DISTANCE

We wish to understand how the energy consumption of
a given modulation varies with the transmission distance.
Our investigation will be focused on the case of fast fading
channels as defined in Section II-B. We will study the energy
consumption of M-QAM modulations compared against BPSK
and BFSK, motivated by the popularity of these modulations
among available of-the-shelf low-power transceiver compo-
nents [3], [4].

A. Energy consumption analysis

Numerical evaluations of (13) using the parameters pre-
sented in Table I show that BPSK, BFSK and various M-
QAM modulations attains it minimum energy consumption at
a different SNR. As can be seen in Figure 1, the SNR at which
these minima occur varies with transmission distance (curves
are plotted against Eb/N0 to compare the results against an
equal amount of energy per bit.).

The mean energy consumption (13) evaluated at the optimal
mean SNR as function of link distance (γ̄{d}) gives the
minimal consumption for that modulation at a given distance,
which we denote as Ēb(d) (Figure 2). Analytically, Ēb(d) can
be expressed from (10) as

Ēb(d) = S + [Pel + PPA {d, γ̄(d)}]T τ̄ {γ̄(d)} . (15)

In long range communications, the power consumed by the
power amplifier (PPA) dominates over the power consumed by
the electronic components (Pel). Under these conditions, the

‡Source: [6]



TABLE I
GENERIC LOW-POWER DEVICE PARAMETERS

Parameter Description Value

Rs Symbol rate 10 kBaud ‡

L Frame Payload 98 bits
O Overhead 30 bits
F Feedback frame length 11 bits
Est Start-up energy 0.125 nJ ‡

α Path-loss coefficient 3.5 ‡

A Channel loss 30 dB ‡

η PA efficiency 0.35% ‡

Pel,tx Tx electric power consumption 98.2 mW ‡

Pel,rx Rx electric power consumption 112.5 mW ‡

Nf Receiver noise figure 10 dB ‡

Ml Link margin 40 dB ‡
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Fig. 1. Optimal SNR for achieving energy efficiency as function of link

distance for a fast fading Rayleigh channel.

curves in Figure 2 confirm that the energy-optimal modulations
are the ones with lowest spectral efficiency (low M -ary
number).

However, for short transmissions distances (less than 15
meters in Figure 2) the power consumed by electronic compo-
nents (Pel) dominates over the irradiated power and therefore
also over the consumption of the power amplifier (PPA). The
energy consumption for this case can therefore be approxi-
mated as Ēb(d) ≈ S+ PelT τ̄{γ̄(d)}. This shows that for these
conditions the average time per bit, T , becomes a relevant
parameter in the total energy budget. This compels to pack
more bits into each symbol in order to reduce the transmission
time T of each bit.

It can further be seen in Figure 2 that for long range
transmissions BPSK and QPSK are optimal among the studied
modulations and nearly equally energy-efficient. At short dis-
tances, on the other hand, when Pel is relevant, BPSK almost
doubles the energy consumption per bit of QPSK because of
the doubly long time per bit.
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Fig. 2. Energy consumption per successfully transmitted bit of various

modulations over a fast fading Rayleigh channel as a function of link distance.

Each modulation is operated at its own optimal SNR. As distances decreases,

modulations with higher spectral efficiency become optimal.

BFSK is never an optimal modulation (Figure 2). For long
range transmissions it suffers the classic 3dB SNR gap with
respect to BPSK and is hence suboptimal in the energy sense.
For short range, it performs similarly to BPSK because of
their equal spectral efficiency, but worse than larger size
modulations.

B. Transceiver lifetime analysis

The results presented so far allow for studying the lifetime
of networks with finite energy supply. For illustration, consider
a simple network composed by two wireless sensor nodes with
parameters as given in Table I. The nodes exchange 10 kbits
of data every 5 minutes. Each node is powered by an ideal
1.2 Volt AA battery with a 2000 mAh initial energy charge.
This charge is used exclusively for the communications tasks
described in Section II.

Using this model, the average lifetime of the batteries
of these two nodes was calculated for BPSK, BFSK and
M-QAM transmissions over different channel models as a
function of link distance, with each modulation operated at
its optimal SNR. It was found that as distance decreases,
the longest network lifetime is achieved by more spectrally
efficient modulations (Figure 3 for the AWGN channel and
Figure 4 for fast fading Rayleigh channel). It is apparent
that, regardless of the channel type, lifetime extensions up
to 600% can be gained in short range networks by selecting
modulations with larger constellations than BPSK.

V. CONCLUSIONS

We studied the optimization of the SNR and modulation size
in order to minimize the energy consumed by a transceiver
for delivering one bit of data without error. In our study
we considered different transmission distances and various
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It is to be noted that the optimality of more spectrally efficient modulations

at short distances holds.

channel statistics, as well as the energy cost of retransmissions,
feedback frames and the consumption of electronic compo-
nents.

We found that for a given modulation scheme the average
energy consumed per bit by transmissions over a fast fading
channel as function of the SNR has a unique minimum
value, which is obtained at an SNR which is optimal in the
energy consumption sense. The parameters that influence this
optimal SNR are the mean symbol error rate, the number of
payload symbols per transmission frame and the ratio between
the power consumption of electronic components versus the
irradiated power.

We prove that transferring successfully one frame of data
across a fading channel in which the SNR levels of any two
frame transmission trials are statistically independent takes,
on the average, fewer transmission attempts than doing it over
static channels.

We also found that for long transmission distances, low
bandwidth efficiency modulations (small M -ary number, like
BPSK) are optimal in the energy consumption sense. As the
transmission distance shortens the optimal modulation size
grows. In short range communications the power consumed
by electronic components dominates over the irradiated power,
and hence also does so over the energy consumption of the
power amplifier. Under these conditions the average air time
spent per data bit becomes a relevant parameter in the total
energy budget. This makes optimal to pack more bits into each
symbol and thereby to chose a larger modulation size. Finally,
our results show that lifetime extensions up to 600% can be
gained in short range networks by selecting modulations with
larger constellations than BPSK.
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Abstract—MIMO SVD modulation is an efficient way of
sending data through a multi-antenna communication link in
which the transmitter has knowledge of the channel state. Despite
its importance, there is no simple formula available for its symbol
error rate (SER) and therefore no intuitive characterization
of the quality of this technique for data transmission. In this
paper, we show that the statistics of each eigenchannel of MIMO
SVD transmissions can be effectively approximated using the
Nakagami-m fading model. We show that the SER of the entire
MIMO SVD link can be approximated by the average of the
SER of Nakagami-m channels. The expression found is simple
and provides intuition about the quality of the channel for data
transmission. We also establish upper and lower bounds for the
SER of MIMO SVD, which allows us to estimate the diversity
degree of the MIMO SVD transmission. Finally, we also present
an approximation for the SER of MIMO SVD communications
with channel coding.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless channels
are created by the use of multiple antennas in both transmitter
and receiver. The most popular MIMO channel model used to
study narrow-band communications through fast fading scenar-
ios is the I.i.d. Rayleigh MIMO Fading Model [1]. This model
assumes that the received signal vector ~v = (v1, . . . , vNr

)t

can be expressed in terms of the transmitted symbol vector
~u = (u1, . . . , uNt)

t as

~v = H~u+ ~w (1)

where uj is the complex symbol transmitted through the j-
th antenna, vi is the complex symbol received by the i-th
antenna, H is a random matrix with coefficients hi,j which
are i.i.d. standard complex normal random variables, and wj
are the thermal noise experimented in the j-th receiver antenna
which distribute as i.i.d. zero mean complex normal variables
with variance σ2

n = N0.
The MIMO SVD modulation is widely known as an efficient

way of sending data through a MIMO channel like (1) when
the transmitter has knowledge of the channel state [1]. Using
this procedure the matrix channel is diagonalized creating
N = min{Nt, Nr} non interfering channels (eigenchannels
in the following), which can be described as

yk =
√
λkxk + nk k = 1 . . . N (2)

where xk are the transmitted symbols, nk is the thermal noise
and
√
λk are the singular values of the matrix H [2].

Despite the importance and popularity of the MIMO SVD
modulation, no simple formula for the symbol error rate (SER)
of the eigenchannels has been reported yet, even though the
topic has seen much recent activity [3]–[6]. The expressions
for the SER reported in these articles are quite complex and
do not give an insight about the quality of each eigenchan-
nel for transmitting information. The common approach for
studying the statistics of the eigenchannels is to consider λk
as eigenvalues of the matrix W = HH†. W is a complex
Wishart matrix [7], whose eigenvalues have a joint probability
distribution (p.d.f.) given by [8]

p = KN exp

(
−

N∑

k=1

λk

)
N∏

i=1

λ
|Nt−Nr|
i

N∏

i>j

(λi − λj)2 (3)

with λ1 ≤ λ2 ≤ · · · ≤ λN and KN a constant. Deriving the
statistics of each eigenchannel requires then to determinate the
exact marginal p.d.f. pλk

(λk) of each eigenvalue from (3).
In [8], it was shown that the SNR of the smallest eigen-

channel of a square MIMO channel have the same statistics
as a Rayleigh channel with power gain 1/N (i.e. pλ1(λ1) =
Ne−Nλ1 ). Although expressions for the marginals of the
other eigenvalues have been found [6], [9]–[12], they are
mathematically complex and do not provide much insight
about the performance of the corresponding eigenchannels. In
[13], it was shown that in the high SNR regime the SER of
each eigenchannel can be expressed as

P̄s(γ̄) = (Gcγ̄)−Gd + o(γ̄−Gd) , (4)

where Gc is the power gain of the channel and Gd represents
its diversity degree [14]. The limitation of this result is that
the high-SNR restriction leads to insights of little practical
interest. For example, (4) only gives accurate information of
the SER of the largest eigenchannel of a 4×4 MIMO channel
for P̄s(γ̄) < 10−8. In [15], the idea of approximating the
eigenchannel of the largest eigenvalue of a MIMO channel
by a Nakagami-m channel is presented. The value of m is
choose in order to approximate the outage statistics of this
eigenchannel. Although the approximation thus obtained is
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accurate, it is not obvious if the proposed method could be
extended to other eigenchannels.

In this paper we show that the statistics of all the eigenchan-
nels of MIMO SVD transmissions through a MIMO channel
with i.i.d. Rayleigh statistics can be approximated using the
Nakagami-m fading model. These approximations allow us to
derive an accurate approximation for the SER of the entire
MIMO SVD link, one that provides a strong insight on the
performance of each eigenchannel.

The rest of the paper is organized as follows: Section II
explains how Nakagami-m approximations can be calculated
for each eigenchannel of a MIMO system. In Section III, a
simple expression for the SER of MIMO SVD transmissions
is derived using the Nakagami-m approximations. Section IV
presents our conclusions.

II. STATISTICAL ANALYSIS OF THE MIMO
EIGENCHANNELS

For clarity of the exposition we focus on a MIMO commu-
nication system with equal number of transmit and receive
antennas, denoted by N . However, extending the ideas to
MIMO systems in which Nr 6= Nt is straightforward. Lets
denote by λk the k-th smallest eigenvalue of a N×N Wishart
matrix HH†, which correspond to the channel coefficients of
the eigenchannel of a MIMO SVD transmission through a
MIMO channel H with i.i.d. Rayleigh statistics.

We seek to approximate the fading statistics of each eigen-
channel using the well known Nagakami-m channel model
[16], [17]. The power gain of the Nakagami-m channel,
denoted here by λ, is a Gamma random variable with p.d.f.
given by [16]

pλ(λ) =

(
m

µ

)m
λm−1

Γ(m)
exp

(
−mλ

µ

)
. (5)

The Gamma distribution is characterized by the mean power
gain of the channel µ (as E{λ} = µ), and the diversity degree
of the channel m ( m is equal to the absolute value of the
asymptotic logarithmic slope of the SER, i.e. ps ∝ SNR−m for
the high SNR regime) [17]. The diversity degree m is related
to outage statistics [14]. In effect, when m = 1 (5) turns into
the p.d.f. of the exponential distribution, which corresponds to
a Rayleigh channel, well known for having the most adverse
outage statistics. When m → ∞ the channel tends to the
AWGN channel, which has no outage at all.

For a given MIMO size N we seek to find parameters µk
and mk, with k ∈ {1 . . . N}, for which a Gamma random
variable with these parameters best fits the p.d.f. of the k-th
eigenvalue λk. For a 2 × 2 MIMO system these parameters
can be determined by minimizing the mean square error
between the marginal distributions found from (3) and a
Gamma distribution (the actual calculation is presented in the
Appendix). When N > 2 that analytic minimization lead into
intractable mathematics (c.f. [6], [12]), and hence other kind
of analysis is needed.

In our approach, we propose to find values for mk and µk
by performing a maximum likelihood estimation (MLE) using

computer generated samples of the eigenvalues. The MLE
procedure finds the parameters mk and µk of the Gamma dis-
tribution that has the larger probability of generating random
numbers with the statistics observed in the given sample [18].
It has been shown that the Maximum Likelihood principle for
the Gamma distribution is equivalent to selecting µk and mk

as [19]

µk =
1

n0

n0∑

j=1

xj (6)

ln(mk)− ψ(mk) = ln


 1

n0

n0∑

j=1

xj


− 1

n0

n0∑

j=1

ln(xj) (7)

where {xj}n0
j=1 is a sample of n0 realizations of the k-th

eigenvalue and ψ(x) = Γ′(x)/Γ(x) is the Psi (digamma)
function [20]. Although (6) is the classic estimator of the mean
value of a population, (7) gives a nontrivial estimator to its
diversity degree. For a 2×2 MIMO system, the MLE method
over samples of size n0 = 106 of both eigenvalues λ1 and
λ2 gives values for m1,m2, µ1 and µ2 with less than 0.1% of
error compared to the values found by analytic optimization
in the Appendix (Table I).

For larger MIMO systems we have calculated the values
for µk and mk using samples of size n0 = 106 (Table I). It
is worth noting that these numbers provide the complete char-
acterization of the Nakagami-m approximation of any MIMO
systems of the same sizes and Rayleigh fading statistics.

TABLE I
VALUES OF THE NAKAGAMI-m DISTRIBUTION PARAMETERS FOR MIMO

SVD EIGENVALUE STATISTICS APPROXIMATION

2× 2 MIMO System
Eigenvalue m µ

λ2 3.82 3.5
λ1 1 .5
4× 4 MIMO System

Eigenvalue m µ
λ4 12.72 9.77
λ3 8.66 4.41
λ2 4.09 1.57
λ1 1 .25
8× 8 MIMO System

Eigenvalue m µ
λ8 38 23.73
λ7 37.66 15.85
λ6 31.32 10.63
λ5 23.52 6.82
λ4 15.89 4.02
λ3 9.26 2.05
λ2 4.15 .76
λ1 1 .125

III. SYMBOL ERROR RATE APPROXIMATIONS

In the sequel we derive an approximation for the av-
erage SER of uncoded MIMO SVD communications us-
ing the method of Nakagami-m approximations presented
in Section II. The approximation holds for a large family
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of commonly used modulations. We also present upper and
lower bounds for the SER, with which the diversity degree
of the MIMO SVD transmission can be estimated. Finally,
we show an application of these approximations for coded
communications.

A. SER approximation

Lets assume that the eigenchannels described by (2) are
used to send data using a modulation whose SER for a given
SNR γ can be express as

Ps = cQ(
√
aγ) . (8)

Above, Q(x) is the tail probability of the standard normal
distribution and c and a are constants that depend on the choice
of modulation scheme and constellation size. The SER of such
a modulation over a Nakagami-m channel with power gain λ
is calculated as

P̄s(γ̄, µ,m) = E{cQ(
√
aλγ̄)} (9)

=

∫ ∞

0

cQ(
√
aλγ̄)pλ(λ, µ,m)dλ , (10)

where λ is a Gamma random variable with p.d.f. pλ(λ, µ,m)
as given in (5).

Consider one realization of the eigenvalues λ1, . . . , λN .
Then, the SNR of the eigenchannels given by (2) are given
by

SNRk = λkγ̄k . (11)

Lets assume for simplicity of notation that all the eigenchan-
nels share the same γ̄k = γ̄. Then lets define as Ak the event in
which the transmitted symbol was send through the k-th eigen-
channel, and E the event that the symbol were decoded with
error. Assuming that the N eigenchannels are equally used
then the probability of Ak is given by P(Ak) = 1/N ∀k =
1 . . . N . As the Ak are jointly exhaustive, we can decompose
the error event E as E = ∪Nk=1 (E ∩Ak), where each event
E ∩ Ak denotes the possibility that the error has occurred in
the k-th eigenchannel. Therefore the symbol error rate (Ps)
can be calculated as:

Ps(γ̄, λ1 . . . λN ) = P(E|γ̄, λ1 . . . λN ) (12)

= P
(
∪Nk=1(E ∩Ak)|γ̄, λ1 . . . λN

)
(13)

=

N∑

k=1

P (E ∩Ak|γ̄, λk) (14)

=

N∑

k=1

P (Ak)P (E|Ak, γ̄, λk) (15)

=
1

N

N∑

k=1

cQ
(√

aλkγ̄
)

(16)

The equality from (13) to (14) follows because if k 6= j
the events E ∪ Ak and E ∪ Aj are disjoint, and E ∪ Ak
is independent of λj ; the equality from (14) to (15) follows
from the definition of conditional probability and from the
fact that Ak is independent of γ̄ and of λk. The step from

(15) into (16) considers the following rationale: as the values
of λ1 . . . λN are given, the randomness that influences on the
errors is only the thermal noise. Because data symbols and
noise in each eigenchannel are uncorrelated, the demodulation
of each symbol is an independent event.

Now assume that the eigenvalues are random with their joint
p.d.f. given by (3). Using the Nakagami-m approximations
described in Section II, the mean SER can be approximated,
using by (16), as:

P̄s(γ̄) = E {Ps(γ̄, λ1 . . . λN )} (17)

=
1

N

N∑

k=1

E
{
cQ
(√

aλkγ̄
)}

(18)

≈ 1

N

N∑

k=1

P̄s(γ̄, µk,mk) , (19)

where P̄s(γ̄, µk,mk) denotes the mean SER of a Nagakami-
m channel as given by (10) and mk and µk are parameters
determined by the method explained in Section II.

It is to be noticed that the above result can be general-
ized in the following way. Although a full range N × N
MIMO system provides N parallel channels there is no need
to use them all. As eigenchannels with smaller eigenvalues
have worse statistics, a relevant reduction of the mean SER
can be achieved by transmitting data only through the best
n < N eigenchannels, at the expense of lowering the data
rate. Furthermore, if unequal power allocation among the n
eigenchannels is used, then an analogous deduction allows to
express the mean SER as

P̄s(γ̄1, . . . , γ̄n) ≈ 1

n

N∑

k=N−n
P̄s(γ̄k, µk,mk) . (20)

The accuracy of this approximation has been tested by
computer simulation of 106 BPSK symbols through a N ×N
MIMO system, for various values of N . For each transmitted
symbol vector, an independent narrow-band MIMO channel
matrix H was generated following the MIMO channel i.i.d.
Rayleigh fading model. After SVD decomposition of each
realization H , statistics were calculated for transmissions that
use n = 1 (MIMO beamforming), n = 2, n = 3 and
n = 4 (full SVD). We allocated equal power to the used
eigenchannels. Each run of 106 symbols was evaluated at
various SNR levels. The results show that the approximation
proposed in (20) is accurate for any choice of n (Figure 1).

B. SER bounds

For equal power allocation, the weakest eigenchannel mean
SER will be the worst among all the used eigenchannels, so it
SER will be an upper bound to the average SER. For finding
a lower bound, it is enough to realize that (20) is a sum of
positive terms. Therefore, any of them is smaller than the sum.
Thus, the right side of (20) can be upper and lower bounded
as follows

P̄s(γ̄, µn,mn) ≥ P̄s(γ̄, n) ≥ 1

n
P̄s(γ̄, µn,mn) , (21)
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Fig. 1. Average SER of MIMO SVD transmissions using uncoded BPSK
using 1, 2, 3 or 4 eigenchannels of the SVD modulation. Markers show the
average SER obtained by computer simulation of 106 symbols, and solid lines
show the corresponding proposed approximation (20). An increasing diversity
gain (i.e. the slope of the SER in the high SNR regime) can be observed as
the number of used eigenchannels is reduced.

where P̄s(γ̄, n) equals (20) with γ̄j = γ̄ ∀j = 1 . . . n and
n < N .

Simulations show that these bounds are not only valid for
the approximated SER P̄s(γ̄, n), but also for the exact MIMO
SVD SER (Figure 2). The lower bound becomes exact as
SNR→∞, because the error rate of better eigenchannels tend
to zero faster than the error rate of the worst eigenchannel.
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Fig. 2. The theoretical bounds presented in (21) effectively enclose the
statistics obtained by computer simulations of MIMO SVD transmissions
using BPSK through the three best eigenchannels. It can be seen that in the
high-SNR regime the lower bound become exact.

The lower bound presented in (21) can be used to esti-

mate the diversity degree [14] of an uncoded MIMO SVD
transmissions with n ≤ N eigenchannels in use. In the
high SNR regime P̄s ≈ n−1P̄s (µnγ̄,mn), as can be seen in
Figure 2. It is thus apparent that the diversity degree of the
n-th eigenchannel, mn, approximates the diversity gain of this
MIMO SVD link. As a consequence, full SVD transmissions
(n = N ) always have diversity degree m1 = 1, similar
to the Rayleigh channel. On the other hand, beamforming
MIMO (with n = 1, also known as MIMO MRC [21]) has
diversity degree mN , which grows with N . This implies that
as the array size (N ) grows, the SER statistics of beamforming
MIMO tend to those of an AWGN channel.

C. Application to coded transmissions

In the sequel we illustrate how the work presented so far
in this chapter can be used to find a closed form formula
for the SER of channel-coded MIMO communications, which
uses a (n̂, k) maximum distance separable (MDS) linear block
code to perform forward error correction (FEC) [22]. Using a
transceiver architecture as the one shown in Figure 3, the (n̂, k)
MDS linear FEC code is able to correct t = b(n̂− k)/2c bit
errors per block, where bxc denotes the largest integer smaller
than x. In [23], a SER formula for linear block codes is found
in terms of the uncoded SER of the underlying modulation.
By plugging in (21) for the uncoded SER, the SER of the
coded MIMO SVD system is given by

P̄ (n̂,k)
s (γ̄, n) ≈ 1

n̂

n̂∑

j=t+1

j

(
n̂

j

)
[P̄s(γ̄, n)]j [1− P̄s(γ̄, n)]n̂−j .

(22)
(22) can be computed numerically, and can be used to study
analytically the dependance of the SER of the coded system
on the number of eigenchannels used (n) and on the code
parameters n̂ and k.
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Fig. 3. Architecture of a coded MIMO SVD transceiver.

IV. CONCLUSIONS

We have developed a method for approximating the statistics
of the eigenchannels of uncoded MIMO SVD communications
using the Nakagami-m fading model. Maximum Likelihood
Estimation of Nakagami-m channel parameters is performed
for each of the eigenchannels of the MIMO system. The
accuracy of the results was shown analytically for the 2 × 2
case and by simulations for larger MIMO system sizes.
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The method was used as an starting point for deriving an
approximation of the mean SER of MIMO SVD transmis-
sions. The approximation found is simple, accurate, easily
computable and provides intuition about the quality of the
channel for data transmission.

Furthermore we have presented an upper and lower bound
for the SER of MIMO SVD based on the SER of the weakest
eigenchannel used for the transmission. These bounds allow
quick calculations, and shows that the diversity degree of the
MIMO channel can be approximated by the diversity degree
of the weakest eigenchannel in use.

Finally, use of our results in coded MIMO SVD communi-
cations was illustrated for linear FEC block codes.

APPENDIX

The parameters of a Nakagami-m approximation of a 2×2
MIMO system can be found as follows. From [8] we know
that the smallest eigenvalue of such a system has a p.d.f. given
by λ1 ∼ exp(1/2), which implies that m1 = 1 and µ1 = 1/2.
On the other hand, the probability distribution of the largest
eigenvalue of a N × N MIMO system can be expressed as
[24]

pλN
(λN ) =




N∏

j=1

1

(N − j)!




2

d

dλ2
det{S(λ2)} (23)

where S(λ2) is a matrix with coefficients given by
[S(λ2)]i,j =

∫ λ2

0
xi+j−2e−xdx. Following [25] we find that

for N = 2, (23) can be simplified to obtain

pλ2
(λ2) =

[
(λ2)2 − 2λ2 + 2− 2e−λ2

]
e−λ2 (24)

By defining gm,θ(x) to be a p.d.f. of a Gamma random variable
as defined in (5), parametrized on m and θ = µ/m, the mean
square error between pλ2 and gm,θ can be expressed in terms
of m and θ as
∫ ∞

0

|pλ2
(λ2)− gm,θ(λ2)|2dλ2 = 2mθ

2 + θ −mθ
(θ + 1)m+2

. . .

+
4

(2θ + 1)m
− 4

(θ + 1)m
+

Γ(2m− 1)

22m−1θ[Γ(m)]2
+

19

108
.

(25)

This expression can be minimized on m and θ using numerical
methods, finding a minimum in m = 3.82 and θ = 0.911,
which gives µ = kθ = 3.48. The mean square error at the
minimum is≈ 6×10−6, which shows that the two distributions
pλ2 and gm,θ are identical for any practical purpose.
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Abstract—Multiple-input multiple-output (MIMO) techniques
can be used for reducing the energy consumption of wireless
communications. Although some research has been reported
on this topic, the rules by which the MIMO physical layer
parameters should be chosen in order to achieve energy efficiency
have not yet been formally established. In this paper, we analyze
the case of MIMO singular value decomposition (SVD) technique.
We present a model for the mean energy consumption of a MIMO
SVD system per data bit transferred without error.

We find that, for a given number of eigenchannels used with
equal power allocation, exists a single optimal radiation power
level at which the mean energy consumption is minimized. We
also find that beamforming (only the best eigenchannel is used)
is optimal in the energy consumption sense for long transmission
distances, while the optimal number of eigenchannels to be used
grows as transmission distance shortens. Using all the eigenchan-
nels is optimal only for very short transmission distances.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication
systems were originally introduced as a way for achieving
higher data rates or for improving the reliability of wireless
links [1]. More recently, researchers have started to realize that
the MIMO techniques can also be used for reducing the energy
consumption of wireless communications [2]–[11]. Despite
this recent interest, the rules by which the main physical-layer
parameters shall be chosen for attaining energy efficiency in
the MIMO system have not yet been formally established [12].

The MIMO SVD technique is a well known method for
sending data through a MIMO communication link in which
the transmitter has knowledge of the channel state [13]. The
core concept considers the diagonalization of the channel H ,
which we will assume to be a N × N matrix of full rank.
The diagonalization establishes N non interfering channels
(henceforth eigenchannels), whose input-output relationships
can be described as

yk =
√
λkxk + wk k = 1 . . . N . (1)

Above, k indexes the eigenchannels, xk are the transmitted
symbols, wk are additive white Gaussian noise terms (AWGN)
and
√
λk are the singular values of the channel matrix H

[14]. It is worth mentioning that although the MIMO SVD
modulation provides N eigenchannels, there is no need to use
them all. Using all the eigenchannels maximizes the data rate,
but sacrifices symbol error rate (SER). Conversely, using only
the n < N eigenchannels with most favorable fading statistics
yields a better SER but at the cost of decreasing the data-rate
[15].

In this paper we develop a formal model for analyzing the
energy consumption of MIMO SVD communications. Most of
the existent models reported so far in the literature [5]–[11]
are based on the abstract definition of the capacity of a MIMO
random fading channel. These models are not adequate for
determining attainable performances of concrete modulations
with a specific number of eigenchannels used. Our model
incorporate these elements. It shares some features with the
one reported in [2], but our model finds a more straightforward
mathematical formulation. Our approach to analize the energy
consumption of MIMO systems is also novel for considering
the effect of retransmissions required to guaranteing error free
transmissions.

Our model allows for optimizing the radiated power and the
number of eigenchannels (n ≤ N ) used for the transmission
as a function of link distance. In effect, we show that beam-
forming (n = 1) is the energy-optimal transmission strategy
for large transmission distances, while for short transmission
distances a larger number of eigenchannels is optimal in the
energy sense. Full SVD (n = N ) is optimal only for very
short link distances.

The paper is organized as follows: Section II presents the
energy consumption model, Section III specifies the depen-
dence of the energy consumption on the signal-to-noise ration
(SNR), and Section IV presents an analysis of the energy
consumption of a MIMO SVD system using various numbers
of used eigenchannels and link distances. Finally, Section V
presents our conclusions.

II. ENERGY CONSUMPTION MODEL

Our goal is to determine the total energy that is necessary
for transferring one bit of data successfully, henceforth called
a goodbit as in [7], in a point-to-point packet-switched MIMO
SVD communication. We assume that every frame transmitted
in the forward direction is matched by a feedback frame in
the reverse direction that acknowledges correct reception or
requests a re-transmission. We also assume that the irradiated
power is determined based upon knowledge of the statistics
of the signal-to-noise ratio (SNR) at the decision stage of the
receiver. We further assume that all frames in both directions
are always detected and that all feedback frames are decoded
without error.

The energy consumption analysis has been made for a
specific MIMO transceiver architecture, popular among aca-
demic [16], [17] and commercial [18] products (Figure 1).
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In the sequel, we present the analysis of the components of
energy consumption of the MIMO SVD transceiver from the
standpoint of a node that transmits one payload frame and
receives the corresponding feedback frame (the reverse case
—a transceiver that receives one payload frame and transmits
the corresponding feedback frame— follows by analogy),
followed by the analysis of the statistics of re-transmissions
and finally by a synthesis of our total energy consumption
model.
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PLL
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Processing

Filter
ADC

FilterFilter LNA IFAMixer

Filter
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Tx:
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Fig. 1. Common architecture of a MIMO SVD transceiver.

A. Components of Energy Consumption of the Forward
Transceiver

The energy consumption of the MIMO SVD transceiver
that transmits forward frames and receives feedback frames
is composed by three terms, each one described below.

1) RF electronic consumption: The total air time per
forward frame is composed by TL seconds used for the
transmission of the L bits that compose the frame, and TO
seconds used for the transmission of overhead signals for tasks
such as acquisition, channel estimation, synchronization, frame
parameters signaling, etc. The air time per bit is therefore

T̂b =
TL + TO

L
. (2)

TO is composed by overhead for acquisition, which depends
linearly on the number of transmitter antennas, and tasks like
synchronization, which are approximately independent of N .
By noting that L/TL = nbRs is the total bit-rate of the MIMO
system, where n is the number of used eigenchannels (cf.
Section I), Rs is the symbol-rate of each eigenchannel and
b is the number of bits modulated in each symbol, we may
express T̂b as

T̂b =
1

Rs

(
1

nb
+
NOa +Ob

L

)
, (3)

where Oa is the acquisition overhead per branch and Ob is the
remaining overhead, each one measured in bits.

During the T̂b seconds, the MIMO transceiver consumes
P̂el,tx Watts, which is largely dominated by the consumption
of passband processing components such as filters, mixers and

frequency synthesizers engaged in the forward transmission
[19]. It can be inferred from Figure 1 that P̂el,tx grows linearly
with the number of antennas (N ). Therefore, the energy per
goodbit consumed in the transmission processing may be
expressed as

Eel,tx = P̂el,txT̂b = NPel,tx
1

Rs

(
1

nb
+
NOa +Ob

L

)
, (4)

where Pel,tx stands for the electric power consumed by each
branch of the transceiver.

2) Energy Consumption due to Electromagnetic Radiation:
Each frame is aired through the N branches with a trans-
mission power P (j)

A irradiated by the j-th antenna, supplied
by corresponding power amplifier (PA) (Figure 1). The power
consumption of the j-th PA, P (j)

PA , is modeled by

P
(j)
PA =

ξ

η
P

(j)
A , (5)

where ξ is the peak-to-average ratio of the transmitted signal
and η is the drain efficiency of the PA [19]. Thus, the energy
per bit used for electromagnetic radiation is given by

ERF =




N∑

j=1

P
(j)
PA


 T̂b = P̂PAT̂b , (6)

where T̂b is given by (3), and we have defined P̂PA as the total
power consumption of all the PA’s.

3) Energy Consumption of Electronic Components due to
the Processing of Feedback Frames: Feedback frames are
assumed to last T̂fb = F/(nbRs) seconds, where F is the
number of bits that compose the feedback frame. During that
time, the MIMO receiver consumes P̂el,rx Watts, which mainly
includes the power needed to energize the passband receiver
elements (low-noise amplifiers, mixers, filters, frequency syn-
thesizers, etc.) of all the branches [19]. Hence, it grows linearly
with the number of antennas (N ). Therefore, the energy per
forward payload bit spent by the transmitter for decoding the
corresponding feedback frame is

Efb,rx = P̂el,rx
T̂fb

L
= NPel,rx

F

nbRsL
, (7)

where Pel,rx is the electronic power consumption of one branch
of the transceiver.

B. Re-transmission Statistics

A key contributor to the energy consumption is the need for
re-transmissions due to forward frames that get decoded with
errors at the receiver. The number of trials, τ , until a frame
is decoded without error is a random variable, whose mean
value has been shown to be [20]

τ̄ = 1 +
∞∑

r=1

E

{
r∏

i=1

Pf(i)

}
, (8)

where E{·} denotes the expectation operator and Pf(i) is the
probability of decoding the frame with error during the i-th
transmission trial. In general, the Pf(i) are random variables
that depend on the number of antennas, the frame size,
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modulation type and received SNR during the i-th trial. It
is to be noted that (8) is valid for correlated or uncorrelated
channel fading statistics [20].

C. Total Energy per Goodbit

The discussion in Sections II-A and II-B allows for stating
our model of the total energy consumption. Concretely, the
energy consumed by the transmitter of forward frames per
goodbit, which also decodes feedback frames, is given by

ET = (Eel,tx + ERF + Efb,rx)τ (9)

=

[
(P̂el,tx + P̂PA)T̂b +

P̂el,rxT̂fb
L

]
τ . (10)

By analogy, the total energy used by the receiver for
demodulating τ forward transmissions and for transmitting the
corresponding τ feedback frames, is

ER =

[
P̂el,rxT̂b +

(
P̂el,tx + P̂PA

) T̂fb
L

]
τ . (11)

The total energy consumption per goodbit is the sum of (10)
and (11):

Eb = (P̂el,tx + P̂PA + P̂el,rx)

(
T̂b +

T̂fb
L

)
τ (12)

= (P̂el + P̂PA)T̂ τ , (13)

where we have defined P̂el = P̂el,tx + P̂el,rx as the total power
consumed by electronic components and T̂ = T̂b + T̂fb/L the
total time per bit per transmission trial.

Because of τ , Eb is a random variable that depends on the
realizations of the channel and the thermal noise. Its mean
value is

Ēb = E {Eb} =
(
P̂el + P̂PA

)
T̂ τ̄ , (14)

with τ̄ as given by (8).

III. ENERGY CONSUMPTION AS FUNCTION OF THE SNR

We seek an explicit expression for the dependence on the
SNR of the energy consumption per goodbit of a MIMO SVD
system which only uses the n eigenchannels with the most
favorable fading statistics. To achieve this, we first analyze
the PA’s total power consumption (P̂PA) and the mean number
of transmission trials (τ̄ ), followed by the actual formulation
of the relationship between Ēb an the SNR.

A. PA’s total power consumption as function of the SNR

The transmission power that has been allocated to the k-th
eigenchannel, P̄ (k)

tx (k ∈ {1, . . . , n}), attenuates over the air
with path loss and arrives at the receiver with a mean power
given by

P̄ (k)
rx =

P̄
(k)
tx

A0dα
, (15)

where A0 is a parameter that depends on the transmitter and
receiver antenna gains and the transmission wavelength, d is

the distance between transmitter and receiver and α is the path
loss exponent. The SNR of the k-th eigenchannel is given by

SNRk =
λkP̄

(k)
rx

σ2
n

= λkφkγ̄ , (16)

where λk is the square of the k-th singular value of the
channel matrix H (cf. (1)), σ2

n is the noise power, γ̄ =

(
∑n
k=1 P̄

(k)
rx )/σ2

n is the total SNR (which may be produced if
all the radiated power was allocated to only one eigenchannel)
and φk = P̄

(k)
rx /(

∑n
k=1 P̄

(k)
rx ) is the percentage of the total

SNR that goes to the k-th eigenchannel. Furthermore, we
can express the noise power as σ2

n = N0WNfML, where
N0 is the power spectral density of the baseband-equivalent
additive white Gaussian noise (AWGN), W is the transmission
bandwidth, Nf is the noise figure of the receiver’s front end and
ML is a link margin term which represents any other additive
noise or interference [2].

Finally, using the result presented in Appendix A in addition
to (15) and (16), the following relation can be found:

P̂PA =
ξ

η

n∑

k=1

P
(k)
tx =

ξA0d
α

η

n∑

k=1

P (k)
rx (17)

=
ξA0d

ασ2
n

η
γ̄ = Adαγ̄ , (18)

with A a constant.

B. τ̄ as function of the SNR

Consider the assumption that the probabilities of frame error
of each transmission trial, {Pf(i)}∞i=1 (cf. (8)), are a set of
i.i.d. random variables. Define their mean value as E{Pf} :=
E{Pf(i)}, where we have dropped the index i for simplicity
of notation. Using these conditions on (8), it can be shown
[20] that

τ̄ =
1

1− E{Pf}
. (19)

An alternative derivation of (19) uses the proof presented
in Appendix B, which shows that τ is a Geometric random
variable with parameter 1− E{Pf}.

The value of the mean frame error rate, E{Pf}, and hence
the value of τ̄ , depends on how the data symbols are fed into
the SVD engine. To illustrate this, we present the analysis of
two cases that use uncoded M -ary modulation for transmitting
forward frames composed of L bits, hence by l = L/ log2(M)
M -ary symbols. (The possibility of using different modula-
tions on the different channels of the SVD decomposition is a
topic for future research). We will assume that the transmitter
is equipped with a randomizer device (e.g. an interleaver),
which decorrelates the eigenchannel coefficients -and therefore
the SNR- that occur during the transmission of each symbol.
For simplicity of the analysis, we will also assume that l is an
integer multiple of n.

1) Case I: Suppose that the data symbols are fed into the
SVD pre-coder using the same fixed order, in which the i-th
symbol of each frame is always sent through the k ≡ i mod n
eigenchannel. For a given realization of the channel matrix H ,
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the frame error rate Pf can be written in terms of the symbol
error rate (SER), Ps(SNRk), as

Pf = 1−
l∏

i=1

[1− Ps(SNRi mod n)] , (20)

where SNRi mod n is the signal to noise ratio of the i mod n
-th eigenchannel, as given by (16). Using (20) in (19), the
following expression is obtained:

τ̄ordered =

n∏

k=1

[1− P̄s(λkφkγ̄)]−l/n , (21)

where P̄s(λkφkγ̄) = E{Ps(λkφkγ̄)} is a shorthand notation
for the mean SER of the k-th eigenchannel.

2) Case II: Suppose now that the SVD engine is fed using a
different order for each transmission trial in a pseudo-random
fashion. Define Ak as the event in which a symbol is assigned
to the k-th eigenchannel, and E the event that a symbol is
decoded with error. As all events Ak are jointly exhaustive
and mutually exclusive, we can decompose the error event as
E = ∪Nk=1 (E ∩Ak). Hence, the average SER for a given
realization of the channel matrix H can be calculated as

P{E} = P {∪nk=1(E ∩Ak)} =

n∑

k=1

P (E ∩Ak) (22)

=

n∑

k=1

P (Ak)P (E|Ak) =
1

n

n∑

k=1

Ps (λkφkγ̄) . (23)

where we are using that P(Ak) = 1/n ∀k = 1 . . . n. It
is to be noted that this average SER is valid for all the l
symbols of the frame, and therefore the frame error rate for a
given channel realization can be expressed as Pf = 1 − (1 −
P{E|H})l. Using this result in (19), the following is obtained:

τ̄mixed =

[
1− 1

n

n∑

k=1

P̄s(λkφkγ̄)

]−l
. (24)

It can be shown that τ̄mixed ≤ τ̄ordered. In effect, de-
fine αk = 1 − P̄s(λkφkγ̄). Their arithmetic mean is
A(αk) = 1/n

∑n
k=1 αk, and their geometric mean is G(αk) =∏n

k=1 α
1/n
k . Then, τ̄ordered = G(αk)−l and τ̄random = A(αk)−l.

The inequality follows from the well known fact that the
arithmetic mean is always larger than the geometric mean.

C. Final equation

Under the conditions stated in III-B2, the mean total energy
consumption per goodbit (14) can be re-written using (18) and
(24) as

Ēb =
(NPel +Adαγ̄)T̂
[
1− P̄ (n)

s ({φk}, γ̄)
]l , (25)

where we have defined the mean MIMO SVD SER as
P̄ (n)

s ({φk}, γ̄) = 1
n

∑n
k=1 P̄s(λkφkγ̄), and Pel = Pel,tx + Pel,rx

is the total electronic power consumption per branch of the
transceiver (see Section II-A1).

IV. OPTIMAL NUMBER OF USED EIGENCHANNELS AS
FUNCTION OF DISTANCE

We seek to determine the radiation power and number of
eigenchannels for minimizing the average energy consumption
per goodbit in a MIMO SVD system. Throughout this section
we will assume that the MIMO channel matrix H has i.i.d.
complex gaussian fading coefficients [13]. We will consider
the case of equal power allocation among the n used eigen-
channels, i.e. φk = n−1 ∀k = 1, . . . , n (the optimization of
the φk’s for further energy minimization is ongoing work).

Previous work of the authors provides three key insights for
analyzing the case at hand:

1.- The mean SER of MIMO SVD (denoted above as
P̄ (n)

s ({φk}, γ̄)) can be approximated by the mean SER
of a single-antenna Nakagami-m fading channel [15].

2.- The mean energy consumption per goodbit of a single-
antenna system, which operates over a Nakagami-m
fading channel using a setup similar to the one presented
in this work, has the same algebraic structure than the
mean consumption (25) of a MIMO SVD system [20].

3.- The mean energy consumption per goodbit of transmis-
sions over a single-antenna Nakagami-m fading channel
as function of γ̄ has a unique minimum [20].

Therefore, we conclude that the energy consumption of a
MIMO SVD system as function of γ̄ must also have a unique
minimum. This insight has been confirmed by numerical
evaluations of (25) using the parameters presented in Table I
(Figure 2).
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Fig. 2. Mean energy consumption of a 4×4 MIMO SVD system with equal
power allocation and all possibilities of used eigenchannels. Modulation is
uncoded BPSK and link distance is d = 50 meters. System parameters where
taken from Table I.

By denoting γ̄∗ the SNR value at which the MIMO SVD
energy consumption achieves its minimum, the minimal en-
ergy consumption achievable for a given link distance can be
expressed as

Ē∗b (d) =
(NPel +Adαγ̄∗)T̂

[
1− P̄ (n)

s ({n−1}, γ̄∗)
]l . (26)
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TABLE I
GENERIC LOW-POWER DEVICE PARAMETERS

Parameter Description Value

Rs Symbol rate 10 kBaud †

L Frame length 108 bytes
Oa Acquisition overhead 1 byte
Ob Estimation and synchronization overhead 4 bytes
F Feedback frame length 11 bytes
α Path-loss coefficient 3.2
A0 Channel loss 30 dB †

η PA efficiency 35% †

Pel,tx Tx electric power consumption 98.2 mW †

Pel,rx Rx electric power consumption 112.5 mW †

N0 Noise power density -174 dBm/Hz
Nf Receiver noise figure 10 dB †

Ml Link margin 30 dB

From studying (26) we have found that in long range
communications, the power consumed by the power amplifiers
(equal to Adαγ̄∗ Watts) dominates over the power consumed
by the electronic components (NPel Watts). Under these
conditions, beamforming is the energy-optimal transmission
scheme (Figure 3), because it invests the radiated electromag-
netic energy entirely on the best eigenchannel. This reduces
the mean SER and thereby limits the average number of
retransmissions.

For medium link distances (below 350 meters in Figure 3)
the power consumed by electronic components begins to
dominate over the radiated power and therefore also over
the consumption of the power amplifiers. In this case, the
optimal energy consumption can be approximated as Ē∗b(d) ≈
NPelT̂ τ̄ , which shows that under these conditions the total
time per bit, T̂ , becomes a relevant parameter in the energy
budget. Therefore, it is attractive to use more eigenchannels
simultaneously, because it increases the baud rate and thereby
reduces the transmission time per bit. At very short link
distances (d ≤ 10 meters in Figure 3), this notion leads to
using full SVD (n = N ) as the most energy-efficient scheme.
We point out that this assumes that the channel matrix has a
full rank at all link distances.

V. CONCLUSIONS

We studied the optimization of the radiated power and the
number of eigenchannels to be used in order to minimize the
energy consumption of a MIMO SVD communication link for
delivering one bit of data without error.

We found that a MIMO SVD system that uses a given
number of eigenchannels with equal power allocation among
them, achieves a minimal mean energy consumption per bit
transferred without error at one unique optimal radiation power
level.

We also showed that for large link distances the more
energy-efficient transmission strategy is using only the eigen-
channel with best fading statistics (beamforming). As the
link distance shortens, the power consumed by electronic

†Source: [2]
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Fig. 3. Mean energy consumption per goodbit of a 4×4 MIMO SVD system
that uses uncoded BPSK with equal power allocation, as function of link
distance. For each amount of used eigenchannels, n, the system is operated
at the optimal total SNR for the given distance. As distance decreases, larger
values of n become optimal in the energy sense.

components starts to dominate over the radiated power. This
compels to reduce the average air time spent per data bit by
increasing the bit-rate using a larger number of eigenchannels.
Using all the eigenchannels (full SVD) is only optimal for very
short transmission distances.

APPENDIX A
ALTERNATIVE EXPRESSION FOR P̂PA

Lets deduce an alternative expression for the total power
consumption of all the power amplifiers P̂PA (cf. Section
II-A2).

If only the best n eigenchannels are being used, the trans-
mitted vector ~x is related to the transmitted symbol vector ~s
as ~x = Vn~s, where Vn is the N×n precoding matrix which is
composed by the first n columns of the unitary matrix V which
is obtained from the singular value decomposition H = U∗ΛV
[14]. Therefore

|xj |2 =
n∑

k=1

|vj,k|2P̄ (k)
tx (27)

where vj,k is the coefficient of the j-th row and k-th column of
Vn, and P̄ (k)

tx is the power allocated into the k-th eigenchannel
for j ∈ {1, . . . , n} (cf. Section III-A).

Assuming that |xj |2 = P
(j)
A , where P (j)

A denotes the power
aired by the j-th antenna, for j ∈ {1, . . . , N} (cf. II-A2), and
using the definition of P̂PA (cf. Section 5), then the total power
consumption of the PA’s can be written as

P̂PA =
N∑

j=1

P
(j)
PA =

η

ξ

N∑

j=1

|xj |2 (28)

=
η

ξ

n∑

k=1

N∑

j=1

|vj,k|2P̄ (k)
tx =

η

ξ

n∑

k=1

P̄
(k)
tx (29)
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where we are using the fact that
∑N
j=1 |vj,k|2 = 1 as the

columns of the unitary matrix V are orthonormal.

APPENDIX B
COMMENT ABOUT A HIERARCHICAL MODEL

In statistics, a hierarchical model is a random variable which
possesses one or more parameters that are themselves random
variables [21].

Lemma: Lets {pi}∞i=1 be a collection of i.i.d. random
variables, each one of which take positive values in [0, 1]
and have a finite mean E{p} = p̄. Lets {Xi}∞i=1 be another
collection of i.i.d. random variables, where each Xj can be
either 0 or 1, and its distribution is determined by pi as
P{Xi = 0} = pi and P{Xi = 1} = 1 − pi. Finally lets
be Y a random variable which takes the value n if Xn = 1
and Xi = 0 ∀ 1 ≤ i < n. Then Y is a Geometric random
variable with parameter p̄.

Proof: Lets start finding the distribution of Xi, which is
calculated as follows

P{Xi = 0} =

∫ 1

0

P{Xi = 0|pj}fpi(pi)dpi (30)

=

∫ 1

0

pifpi(pi)dpi = p̄ (31)

where P{A|B} denotes the conditional probability of A given
B, and fpi(pi) is the p.d.f. of the random variable pi. As
Xi can only show two outcomes, it is clear that P{Xi =
1} = 1− p̄. Therefore, Xi is a Bernoulli random variable with
parameter p̄.

Now lets find the distribution of Y . As it only takes integer
values, its distribution can be found by direct calculation as

P{Y = n} = P{X1 = 0, . . . , Xn−1 = 0, Xn = 1} (32)

= P{Xn = 1}
n−1∏

i=1

P{Xi = 0} (33)

= (1− p̄)p̄n−1 . (34)

Therefore, Y is a geometric random variable with parameter
1 − p̄. It is to be noted that this result only depends on the
mean value of the random variable pi, being independent of
its actual distribution fpi(pi).
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Abstract—It is commonly assumed that the energy consump-
tion of wireless communications is minimized when low-order
modulations such as BPSK are used. Nevertheless, the literature
provides some evidence that low-order modulations are subop-
timal for short transmission distances. No complete analysis on
how the modulation size and transmission power must be chosen
in order to achieve energy-efficient communications over fading
channels has been reported so far. In this paper we provide
this analysis by presenting a model that determines the energy
consumed per payload bit transferred without error over fading
channels of various statistics.

We find that each modulation scheme has a single optimal
signal-to-noise ratio (SNR) at which the energy consumption is
minimized. The optimal SNR and the minimal energy consump-
tion are larger for channels with less favorable error statistics. We
also find that, if each modulations is operated at its optimalSNR,
BPSK and QPSK are the optimal choices for long transmission
distances, but as the transmission distance shortens the optimal
modulation size grows to 16-QAM and even to 64-QAM. This
result leads to showing that for short-range communications the
lifetime of a typical low-power transceiver can be up to500%
longer by selecting the optimal constellation instead of BPSK.

Index Terms—Energy-efficiency, cross-layer design, fading
channels, modulation optimization, energy consumption model-
ing, wireless sensors networks, low-power communications.

I. I NTRODUCTION

A TTAINING high energy efficiency is a key condition that
wireless communications technologies like wireless sen-

sor networks (WSN) must satisfy in order for the technology to
prosper into large-scale autonomous networks. Requirements
on size and cost of the nodes pose vital constraints on the
problem. In fact, battery depletion has been identified as one
of the primary causes of lifetime limitation of these networks
[1]. Replacing them regularly is impractical in large networks
or may even be impossible in hostile environments [2].

The main tasks that WSN nodes perform are sensing
the environment, processing the data and communicating it
wirelessly across the network. The latter task dominates the
overall energy budget [3] and, therefore, optimizing it hasa
direct impact on a network’s lifetime [4].

The communication energy budget depends on choices such
as the modulation scheme, packet structure and transmission

Manuscript received July 4, 2011; revised December 23, 2011and April 29,
2012; accepted August 3, 2012. The associate editor coordinating the review
of this paper and approving it for publication was G. Yue.

The authors are with the Department of Electrical Engineering, Pontifi-
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obe@ing.puc.cl).
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power, whose choices have a direct impact on the link’s frame
error probability. The frame error probability, in turn, affects
the number of re-transmissions that are necessary and thereby
also affects the overall energy needed to convey successfully
each bit of information from one node to the next.

When attaining high data rates is not a requirement and
when the communication system is power-limited (as in
WSN), the common notion is to choose low-order modulations
such as BFSK or BPSK, whose bandwidth efficiency is lowest
in favor of a lower SNR requirement for achieving a desired
bit error rate [5]. These modulations are, in fact, the only
ones used in commercially available low power transceivers
like TI CC1000 [6] or CC2420 [7], often used in WSN nodes.
Nevertheless, it has been shown that the above notion leads to
suboptimal operation for communication over short distances
through deterministic channels [8]–[11].

The rules by which the modulation size and transmission
power shall be chosen to attain energy-efficient communi-
cations through fading channels have not yet been studied
thoroughly. Most of the reported work focuses on the additive
white Gaussian noise channel (AWGN) [8]–[17]. In [18], en-
ergy consumption of block fading Rayleigh channels is studied
by considering the channel fading via its outage probability,
rather than by taking into account the actual symbol error
rate (SER) degradation. In [19], physical layer parametersof
ultra-wide-band communications are optimized by numerical
evaluations. However, the model used is only valid for fast-
fading channels and cannot be extended for fading channels
with correlation over time.

In this paper we present an energy consumption model
which allows for optimizing the modulation scheme and
transmission power for communication over correlated and
uncorrelated fading channels. Furthermore, we derive rules for
choosing the modulation size that achieves highest energy ef-
ficiency as a function of link distance on fast fading channels.
For large transmission distances, our model confirms the com-
mon notion discussed above for power-limited systems, while
for short transmission distances it coincides with the results
reported in [11] and [14] for AWGN channels, extending them
to fading channels.

Our model also shows that a single optimal SNR exists for
each type of wireless channel and that it depends on the frame
length, modulation size and channel statistics. Many existing
energy consumption models such as the ones reported in [8],
[9], [12], [13], [15], [16] share the assumption that the biterror

1536-1276/12$31.00c© 2012 IEEE
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rate is a given constant, which is determined by upper layer
requirements. The idea that the bit error rate should not be a
constant but a parameter to be optimized is analyzed in [11]
and [20], but those results are only valid for AWGN channels.
Their approach cannot be extended to fading channels because
expressing the SNR as function of the bit error rate leads
to intractable mathematics. Using the SNR as a variable, our
model allows to derive analytic expressions for the optimal
SNR for AWGN, Rayleigh and Nakagani-m channels.

The rest of this article is organized as follows: Section II
presents the energy consumption model, Section III uses it
to optimize the SNR, Section IV studies the optimization of
the modulation scheme and finally Section V summarizes our
conclusions.

II. ENERGY CONSUMPTION MODEL

Our goal is to determine the total energy that is necessary
for transferring one bit of data successfully, without error, in
a point-to-point packet-switched wireless communicationlink
(e.g. between two sensor nodes). We assume that every frame
transmitted in theforward direction is matched by a feedback
frame in thereversedirection, to acknowledge correct recep-
tion or requests a re-transmission. We also assume that the
irradiated power is determined by the transmitter based upon
knowledge of the statistics of the signal-to-noise ratio (SNR)
at the intended receiver. We further assume that all frames
in both directions are always detected and that all feedback
frames are decoded without error.

Transmissions in both directions cause energy expenses
at respective transmitters and receivers. In short range com-
munications, the energy consumption for receiving a frame
is known to be on the same order as the consumption for
transmitting it [8] and must hence be accounted for.

In the sequel, we first analyze the components of energy
consumption of a transceiver from the standpoint of a node that
transmits one payload frame and receives the corresponding
feedback frame (the reverse case —a transceiver that receives
one payload frame and transmits the corresponding feedback
frame— follows by analogy). We continue then by analyzing
the statistics of re-transmissions and finally we present our
total energy consumption model.

A. Components of the Energy Consumption of the Forward
Transceiver

The energy consumption of the transceiver that transmits
forward frames and receives feedback frames is composed of
four terms, each one described next.

1) Start-up Energy Consumption:We assume that the
transmitter is by default in a low power consumption (sleep)
mode. Hence, it must be brought online before it can make a
transmission. The energy spent in the activation process can
be significant [4]. We will denote this energy, divided by the
number of payload bits that are going to be transmitted before
the transceiver goes into low power consumption mode again,
by Est. The value ofEst depends on the device architecture
and electronic components.

2) Energy Consumption of Electronic Components due to
Pre-transmission Processing:We assume that each physical-
layer forward frame carriesH bits of header with essential
transmission parameters andL bits of payload data. The total
duration of a forward frame is shared byTL seconds for
transmitting theL bits of payload (with a suitable modulation),
TH seconds for the transmission of the header andTO seconds
for the transmission of overhead signals for acquisition and
tracking (channel estimation, synchronization, etc.). The aver-
age air time per payload bit in a forward frame is

Tb =
TL + TH + TO

L
. (1)

Lets assume that anM -ary modulation is being used. Each
payload symbol therefore carrieslog2(M) bits. If Rs denotes
the physical layer symbol-rate, then (1) can be formulated
alternatively as

Tb =
1

Rs

(
1

log2(M)
+

H +O

L

)
, (2)

whereO is a measure of the total overhead per forward frame,
measured in bits [8].

Following (2), we may write the energy per bit per forward
frame used for transmit processing as

Eel,tx = Pel,txTb , (3)

where Pel,tx is the power consumption of the baseband
and radio-frequency electronic components that perform the
forward transmission. It is to be noted thatEel,tx is largely
dominated by passband processing components such as filters,
mixer and frequency synthesizer [21], whose consumption is
typically orders of magnitude larger than the one of the digital
baseband processing modules [4].

3) Energy Consumption due to Electromagnetic Radiation:
Each frame is aired with a transmission powerPtx provided
by the power amplifier (PA). The PA’s power consumption is
modeled by

Ptx =
η

ξ
PPA , (4)

whereξ is the peak-to-average ratio of the transmitted signal
andη is the drain efficiency of the PA [9]. Thus, the energy
per bit per forward frame used for electromagnetic radiation
is

EPA = PPATb . (5)

4) Energy Consumption of Electronic Components due to
the Processing of Feedback Frames:Feedback frames are as-
sumed to beTfb seconds long and consumePel,rx Watts during
that time at the receiver for decoding.Tfb = F/Rs, whereF
is the number of bits that compose the feedback frame andRs

is the physical layer symbol-rate.Pel,rx includes mainly the
power needed to energize the passband receiver elements (low-
noise amplifier, mixer, filters, frequency synthesizer, etc.) [21].
The energy per forward payload bit spent by the transmitter
of a forward frame for decoding the corresponding feedback
frame is

Efb,rx =
Pel,rxTfb

L
. (6)
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B. Re-transmission Statistics

A key contributor to the energy consumption is the need
for re-transmissions due to forward frames that get decoded
with errors at the receiver. The probability of frame error (and
hence the probability of re-transmission) depends on the mean
received SNR,̄γ, and on the statistics of the wireless channel.
Therefore, the number of trials (τ ) until a frame is decoded
without error is a random variable, whose mean value can be
calculated to be (see Appendix A)

τ̄ = 1 +

∞∑

n=1

E





n∏

j=1

Pj



 , (7)

whereE{·} denotes the expectation operator andPj is the
probability of decoding the frame with error during thej-th
transmission trial. In general, thePj are random variables that
depend on the frame size, modulation type and received SNR
during thej-th trial.

The value of τ̄ depends on the joint distribution of the
probabilitiesPj for j = 1, . . . ,∞. In effect, consider first
a static channel, where the frame error probabilitiesPj are
fully correlated which each other, and hencePj = P1 ∀j ∈ N.
In this case, (7) becomes

τ̄ = 1 +
∞∑

n=1

E {Pn
1 } = E

{
1

1− P1

}
∆
= τ̄static . (8)

Consider now a fading channel in which the SNR levels of
any two frame transmission trials are statistically independent.
Then (7) can be re-written as

τ̄ = 1 +

∞∑

n=1

n∏

j=1

E {Pj} =
1

1− E {P1}
∆
= τ̄f , (9)

where{Pj}∞k=1 is now a collection of i.i.d. random variables.
Using the Jensen inequality for the convex functionΦ(x) =

(1− x)−1 with x ∈ [0, 1), it can be shown that

τ̄f ≤ τ̄static , (10)

where the equality is attained by the AGWN channel. This
result shows that transferring successfully one entire frame
of data across uncorrelated channels takes, on average, fewer
transmission attempts than doing it over fully correlated
channels. An intuitive explanation for this is that unfavorable
(initial) realizations of static channels have a permanentlow
SNR level, and require therefore a large number of trials until
a frame is received without error. However unlikely, the poor
performance of these unfavorable cases raise the mean number
of trials enough to spoil the average performance beyond the
case of uncorrelated channels.

C. Total Energy per Successfully Transferred Bit

The discussion in Sections II-A and II-B leads to the
following model for the total energy consumption. The en-
ergy consumed by the transmitter of forward frames per bit
transferred to the receiver without error is given by

ET = Est + (Eel,tx + EPA + Efb,rx)τ (11)

= Est +
[
(Pel,tx + PPA)Tb + Pel,rx

Tfb

L

]
τ , (12)

where τ is the number of trials until the frame is decoded
without errors at the receiver.

By analogy, the total energy used by the receiver of forward
frames for demodulatingτ forward transmissions, and for
transmitting the correspondingτ feedback frames, is

ER = Est +
[
Pel,rxTb + (Pel,tx + PPA)

Tfb

L

]
τ . (13)

The total energy consumption per bit transmitted without
error is the sum of (12) and (13):

Eb = 2Est + (Pel,tx + PPA + Pel,rx)

(
Tb +

Tfb

L

)
τ (14)

= S + (Pel + PPA)Tτ , (15)

where we have definedS = 2Est as the total start-up energy
per bit,Pel = Pel,tx + Pel,rx as the total power consumed by
electronic components andT = Tb+Tfb/L the total time per
bit per transmission trial.

It is to be noted that because ofτ , Eb is a random variable
that depends on the realizations of the channel and of the
thermal noise. Its mean value is

Ēb = E {Eb} = S + (Pel + PPA)T τ̄ , (16)

with τ̄ as discussed in Section II-B.

III. O PTIMAL MEAN SNR LEVEL FOR M-QAM
TRANSMISSIONS

The received SNR varies over time according to the statisti-
cal properties of the wireless channel. In this section we seek
to determine the mean SNR for which a communication with
M-QAM modulation uses, on the average, the least amount of
energy per bit transferred without error.

In the sequel, a general framework for studying this problem
based on the results of Section II is presented (Section III-A).
Then, the accuracy of the results is tested by simulations
in Section III-B. Finally, a method for finding approximate
expressions for the optimal SNR is presented in Section III-C.

Although we analyze the performance of M-QAM trans-
missions, the results can be applied to any other modulation
scheme whose symbol error rate over an AWGN channel can
be written in the formPe(γ) = cQ(

√
aγ), whereQ(x) is the

tail probability of the standard normal distribution,a and c
are appropriate constants andγ is the SNR. This will be used
in Section IV for the cases of BPSK and BFSK modulations.

A. General Case

Consider rewriting (16) so that the terms that depend on the
mean SNR,̄γ, observed at the decision stage of the receiver,
become explicit:

Ēb (γ̄) = S + [Pel + PPA(γ̄)]T τ̄(γ̄) . (17)

Above, PPA(γ̄) is a linear function of γ̄. In effect, the
transmission power given in (4) attenuates over the air with
path loss and arrives at the receiver with a mean power given
by

Prx =
Ptx

A0dα
, (18)
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whereA0 is a parameter that depends on the transmitter and
receiver antenna gains and the transmission wavelength,d is
the distance between transmitter and receiver andα is the path
loss exponent [22]. At the input of the decision stage of the
receiver,γ̄ is related toPrx as

γ̄ =
Prx

N0WNfMl
, (19)

where N0 is the power spectral density of the baseband-
equivalent additive white Gaussian noise,W is the transmis-
sion bandwidth,Nf is the noise figure of the receiver’s front
end andMl is a link margin term that represents any other
additive noise or interference [9]. From (4), (18) and (19) we
find that

PPA(γ̄) =
ξA0d

αN0WNfMl

η
γ̄ = Adαγ̄ , (20)

with A a constant.
Assume that theL bits of payload are transmitted using

an uncodedM -ary modulation, and that theH bits of header
are modulated using a binary modulation for minimizing their
probability of error. Hence, the frame is composed byL/b
M -ary symbols andH binary symbols, whereb = log2(M).
Then, the frame error ratePf can be written in terms of the
M -ary modulation symbol error ratePs(γ) and the binary
modulation symbol error ratePbin(γ) as

Pf = 1−
H∏

k=1

[1− Pbin(γk)]

H+L/b∏

i=H+1

[1− Ps(γi)] , (21)

whereγk is the SNR during thek-th symbol. Using this in (9)
and assuming thatγk are i.i.d. random variables with mean̄γ
(fast fading scenario) we obtain:

τ̄f(γ̄) =
1

[1− P̄bin(γ̄)]H [1− P̄s(γ̄)]L/b
, (22)

where we are using the shorthand notation̄Pbin(γ̄) =
E{Pbin(γ)} and P̄s(γ̄) = E{Ps(γ)}.

Under fast fading conditions, replacing (20) and (22) into
(17) yields

Ēb(γ̄, d) = S +
(Pel +Adαγ̄)T

[1− P̄bin(γ̄)]H [1− P̄s(γ̄)]L/b
. (23)

It is to be noted that P̄s(γ̄) and P̄bin(γ̄) are strictly
decreasing functions of̄γ that satisfy limγ̄→∞ P̄s(γ̄) =
limγ̄→∞ P̄bin(γ̄) = 0. Therefore, the average number of
transmission trials needed to successfully transfer one frame
under fast fading conditions, given by (22), is also a strictly
decreasing function of̄γ and satisfieslimγ̄→∞ τ̄ (γ̄) = 1.
This reflects the intuitive fact that the average number of
retransmissions drops as the SNR grows. By construction,
(23) is the product of the decreasing functionτ̄ (γ̄) and the
increasing linear functionPPA(γ̄). Such a product attains a
unique minimum at the SNR level̄γ∗. Lower SNR levels are
suboptimal because they force the system to do too many
retransmissions, and higher SNR levels are also suboptimal
because the overall irradiated power is excessive.

TABLE I
GENERIC LOW-POWER DEVICE PARAMETERS

Parameter Description Value

W Bandwidth 10 kHz †

Rs Symbol rate 10 kBaud†

L Frame Payload 98 bytes§

H Frame Header 2 bytes§

O Overhead 5 bytes§

F Feedback frame length 11 bytes§

Est Start-up energy 0.125 nJ †

α Path-loss coefficient 3.2
A0 Free space path loss 30 dB †

Pel,tx Tx electric power consumption 98.2 mW†

η PA efficiency 35% †

Pel,rx Rx electric power consumption 112.5 mW†

N0 Noise power density -174 dBm/Hz
Nf Receiver noise figure 10 dB †

Ml Link margin 30 dB
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Fig. 1. Simulated average energy consumption per effectivetransmitted

bit for various fading channels (markers) vs. numerical evaluations of the

model presented in (23) (solid lines) for a low-power transceiver with typical

parameters. A unique minimum is observed, which corresponds to the optimal

SNR for maximum energy efficiency.

B. Simulations

We have simulated a communication between two low-
power transceivers, such as wireless sensor node radios, sep-
arated by35 meters, for various wireless channel models.
System parameters were taken from Table I. One simulation
consists of transmitting103 frames, each one composed of
98 bytes of payload and a header composed by2 bytes
(cf. Section II-A2). Each frame was re-transmitted until re-
ceived without error. For each symbol of each transmission
trial, an independent narrowband complex baseband equiva-
lent channel coefficient was randomly generated according to
the desired channel model. Every simulation of103 frames
was repeated for various mean SNR levels. Statistics were
calculated afterwards.

†Source: [9]
§Source: IEEE 802.15.4 standard [23]
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The results show that (23) is an accurate model for the
energy consumption per bit transferred without error, and
confirms the existence and uniqueness of the optimal SNR for
energy efficiency (Figure 1). Results also validate the intuition
that the minimal mean energy consumption per bit (24),Ē∗

b ,
and the optimal SNR̄γ∗ at which this occurs, are larger
for channels with less favorable error statistics (Figure 1).
In effect, the optimalEb/N0 for Rayleigh fading is about
15 dB higher than the one for AWGN, and the minimal
energy consumption in Rayleigh fading is twice the minimal
consumption in AWGN, when each channel is operated at its
optimal mean SNR.

C. Minimization of the energy consumption

We want to study the minimal average energy consumption
achievable for a given transmission distance, namely

Ē∗
b (d) = min

γ̄∈[0,∞]
Ēb(γ̄, d) = Ēb(γ̄

∗, d) , (24)

with Ēb(γ̄, d) given by (23).
Solving for γ̄∗ in closed-form is mathematically intractable.

Therefore, we seek to find a suitable approximation. For
this, consider the following inequality, valid for any M-QAM
constellation size:

[1− P̄bin(γ̄)]
b ≥ [1− P̄s(γ̄)] . (25)

The above inequality follows from the fact that is more
probable, at the same SNR, to decode without errorb bits
transmitted with a binary modulation than oneM -ary symbol
that carries the same amount of bits. Using (25), the following
upper bound for (23) can be constructed:

Ēb(γ̄, d) ≤ S +
(Pel +Adαγ̄)T

[1− P̄s(γ̄)](L+H)/b
. (26)

Equality is attained forM = 2. For the high SNR regime,
(26) approaches the equality, as the denominators of (23) and
(26) both tend to1.

An upper bound for the minimum stated in (24) can be
found by minimizing the right side of (26) over̄γ. This can
be done by taking derivative and equating the result to zero,
which leads to the following implicit expression for the SNR
γ̄0 that minimizes the upper bound:

λ

(
Pel

Adα
+ γ̄0

)
dP̄s

dγ̄
(γ̄0)− P̄s(γ̄0) + 1 = 0 , (27)

whereλ = (L + H)/b is a shorthand notation. It is to be
noted that the only parameters that influenceγ̄0 are the mean
symbol error rate,̄Ps(γ̄), λ and the ratio between the power
consumption of electronic components,Pel, and a coefficient
proportional to the irradiated power,Adα.

The value ofγ̄0 depends on the channel statistics. Formu-
lations of (27) for the specific cases of the AWGN, Rayleigh
and Nakagami-m channel models, along with approximated
solutions for̄γ0 in each case, are presented in Appendix B. The
Appendix also shows, by means of a few numerical examples,
the accuracy of (27) and of the found solutions for the three
channel models.
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Fig. 2. Optimal SNR that solves (28) for minimum the energy consumption

of a low-power transceiver with irradiation power limit ofP0 = 10 mW, as

a function of link distance for a Nakagami-m channel withm = 4. Dotted

lines show the unconstrained optimum SNR that minimizes (24).

IV. OPTIMAL MODULATION AS A FUNCTION OF DISTANCE

We wish to understand how the energy consumption of a
given modulation varies according to the transmission dis-
tance. Our investigation will be focused on the case of the fast
fading channels introduced in Section II-B. We will restrict our
study to the energy consumption of M-QAM modulations in
comparison to BPSK and BFSK, motivated by the popularity
of these latter two modulations among commercially available
low-power transceiver components [6], [7]. We have included
in our considerations the effect of transmission power limita-
tions and variable payload size on the energy consumption.

A. Energy consumption with irradiation power limit

Real transmitters have irradiation power limits due to hard-
ware and regulatory constraints. If the power limit isP0, then,
using (18), (19) and (20) it can be shown that the condition
Ptx ≤ P0 is equivalent tōγ ≤ Kd−α, whereK = ξP0/(ηA)
is independent of the transmission distance. Therefore, the
minimization of the energy consumption (24), with an added
irradiation power constraint, can be stated as

ĒP0

b (d) = min
γ̄∈[0,Kd−α]

Ēb(γ̄, d) . (28)

The SNR at which the minimum (28) is attained, which
we denotēγ∗

P0
, relates to the SNR at which the unconstrained

minimum (24) is attained,̄γ∗, as follows:

γ̄∗
P0
(d) =

{
γ̄∗(d) if γ̄∗(d) ≤ Kd−α

Kd−α otherwise
. (29)

The upper boundKd−α occurs for large transmission dis-
tances, when the allowable transmit power is not enough to
achieve the unconstrained optimum (Figure 2).

The minimum energy consumption (28) thus attained is

ĒP0

b (d) = S+
[
Pel + PPA

{
d, γ̄∗

P0
(d)
}]

T τ̄
{
γ̄∗
P0
(d)
}

, (30)
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Fig. 3. Energy consumption per successfully transmitted bit of various

modulations over a Nakagami-m channel withm = 4 as a function of the

link distance. Power limit isP0 = 10 mW. Each modulation is operated at its

own optimal SNR for the given distance. As distance decreases, modulations

with higher spectral efficiency become energy optimal.

which is shown in Figure 3 for different modulations schemes
using the parameters of Table I.

In long range communications, the power consumed by the
power amplifier (PPA) dominates over the power consumed
by the electronic components (Pel). Figure 3 confirms that the
energy-optimal modulations for long range links are the ones
with lowest spectral efficiency (smallM -ary number).

For short transmissions distances (less than approx.40
meters in Figure 3) the power consumed by electronic com-
ponents (Pel) dominates over the irradiated power and hence
also over the consumption of the power amplifier (PPA). The
energy consumption (30) can therefore be approximated for
this case as̄Eb(d) ≈ S + PelT τ̄{γ̄(d)}. This shows that for
these conditions the total time per bit,T , becomes a relevant
parameter in the total energy budget. This makes attractive
to pack more bits into each symbol in order to reduce the
transmission time of each bit. It can be seen in Figure 3
that BPSK almost doubles the energy consumption per bit
of QPSK at short distances, because of the longer time per
bit.

BFSK is never an optimal modulation (Figure 3). For long
range transmissions it suffers from the classic3 dB SNR gap
with respect to BPSK. For short range, it performs similarly
to BPSK because of their equal spectral efficiency, but worse
than larger size modulations.

Figure 3 also shows that when the irradiation power limit is
reached, the slope of the energy consumption curves becomes
sharply steeper. This illustrates that a transmission range
threshold ensues from the irradiation power restriction.

B. Energy consumption with variable payload size

Further minimization of the energy consumption can be
achieved by optimizing the number of payload bits per frame.
MAC protocols often give freedom to choose the length
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Fig. 4. Average energy consumption of various modulations for transmissions

with SNR and payload optimization according to (31). Power limit P0 is

10 mW, maximum payload sizeL0 is 127 bytes and channel is Nakagami-m

with m = 4.

of the payload,L, up to an upper boundL0 (for instance
L0 = 127 bytes in the IEEE 802.15.4 standard [23]). As
the current analysis considers fast fading channels, experience
from previous transmission trials does not provide useful
information for optimizing the length of the current trial.
Therefore, frame length optimization is attained by finding
the fixed number of payload bits per frame that minimizes the
average energy consumption. The optimization problem can
be formally stated as

ĒP0,L0

b (d) = min
γ̄∈[0,Kd−α]
L∈[0,L0]

Ēb(γ̄, d) . (31)

The frame length optimization softens the range threshold
caused by the power limit discussed above and allows for a
more graceful loss of coverage at large distances (Figure 4).
The optimal payload size grows as the transmission distance
shortens, reaching eventually the upper boundL0 (Figure 5).

It is to be noted that the optimal modulation as func-
tion of distance does not vary significantly when frame size
optimization is introduced.

C. Transceiver lifetime analysis

The results presented so far allow for studying the lifetime
of networks with finite energy supply. For illustration, consider
a simple network composed by two wireless sensor nodes with
parameters as given in Table I. The nodes exchange 10 kbits
of data every 5 minutes. Each node is powered by an ideal
battery with a 2000 mAh initial energy charge. This charge
is used exclusively for the communications tasks describedin
Section II.

Using our energy consumption model, we calculate the
average lifetime of the batteries of these two nodes for lifelong
operation using BPSK, BFSK and M-QAM over different
channel models. Each modulation operated at its optimal
SNR and frame size. The maximum irradiation power is
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Fig. 6. Lifetime of two wireless sensor nodes that exchange 10 kbits of

payload data every five minutes over an AWGN channel. At shorttransmission

distances, BPSK yields a shorter lifetime than more spectrally efficient

modulations.

P0 = 10 mW and the frame size is limited toL0 = 127
bytes. We find that as distance decreases, the longer network
lifetime is achieved by more spectral efficient modulations
(Figure 6 for the AWGN channel and Figure 7 for the Rayleigh
channel). In fact, Figures 6 and 7 show that lifetime extensions
up to500% can be gained in short range networks by selecting
modulations with larger constellations than BPSK.

Three regions can be identified in both figures: long range,
where BPSK is the optimal choice, short range, where 64-
QAM is the optimal modulation, and a transition region
between them. The three regions exist for any Nakagami-m
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Fig. 7. Same as in Figure 6 but for the Rayleigh fading channelcase. The

optimality of larger modulations as distance shortens holds.

channel (which includes the AWGN and Rayleigh channels
as extreme cases). The sizes of these regions vary according
to the randomness of the channel: the lower limit of the
long range changes from80 m to 40 m between AWGN and
Rayleigh channels respectively, and the high limit of the short
range moves from28 m to 7 m, respectively.

The observations presented above are valid for typical
parameters of commercially available IEEE 802.15.4 Zigbee
transceivers [24]. Although the three mentioned regions are
found in all cases, the energy consumption can vary by
more than a500% between different transceiver modules and
parameter choices.

V. CONCLUSIONS

We studied the optimization of the SNR and modulation size
in order to minimize the energy consumed by a transceiver
for delivering one bit of data without error. In our study,
we considered different transmission distances and various
channel statistics, as well as the energy cost of retransmissions,
feedback frames and the consumption of electronic compo-
nents.

We found that, for a given modulation scheme, the average
energy consumed per bit by transmissions over a fast fading
channel as function of the SNR has a unique minimum value.
We further found that the optimal energy consumption per bit
and the optimal SNR at which this occurs take larger values
for channels with less favorable error statistics. In effect, for
a generic low-power device, the minimal energy consumption
in Rayleigh fading can double the optimal consumption in
AWGN, and the corresponding SNR for Rayleigh fading can
be 15 dB higher than the one for AWGN.

We proved that transferring successfully one entire frame
of data across a fading channel in which the SNR levels of
any two frame transmission trials are statistically independent
takes, on the average, fewer transmission attempts than doing
it over static channels.
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We found that the optimal payload size is inversely pro-
portional to the transmission distance. For short-range trans-
missions, capping the payload size limits the potential energy
savings.

We also found that for long transmission distances low
bandwidth efficiency modulations (with smallM -ary number
like BPSK) are optimal in the energy consumption sense. As
the transmission distance shortens, the optimal modulation size
grows. In short range communications, the power consumed
by electronic components dominates over the irradiated power,
and dominates also over the energy consumption of the power
amplifier. Under these conditions, the average air time spent
per data bit becomes a relevant parameter in the total energy
budget. This makes optimal to pack more bits into each
symbol and hence to chose a largerM -ary number. Our results
show that lifetime extensions up to500% can be gained in
short range networks by selecting modulations with larger
constellations than BPSK.

APPENDIX A
PROOF OF(7)

Lemma:Suppose that a frame is transmitted repeatedly until
it is decoded by the receiver without errors. Consider the
probability of success of thej-th trial (1 − Pj). If τ denotes
the number of trials until the transmission is successful, then
its mean value is given by

τ̄ = 1 +

∞∑

n=1

E





n∏

j=1

Pj



 . (32)

Proof: Let en be an indicator function, whose value is 1 if at
leastn trials were needed to achieve a successful transmitted
frame and 0 otherwise. The number of trials needed for a
successful transmission can be characterized as follows:

τ =

∞∑

n=1

en . (33)

Lets first find an expression for the conditional probability
for the event{en = 1} for given frame error rates. By
definition, the value ofen is 1 if and only if all the frames
sent during the firstn − 1 trials where decoded with errors.
In general, errors depend on the channel and the thermal
noise realizations. LetPj be the probability of decoding with
error the frame sent during thej-th trial for a given channel
realization. If the values ofPj are given, then the channel
is fixed and the noise is the only random variable involved
in the desicion process. As noise is independent from frame
to frame, then each frame decoding is an independent event.
Therefore, it can be found that for anyn > 1

P
(
en = 1 | {Pj}∞j=1

)
= P

(
first n-1 trials in error| {Pj}∞j=1

)

(34)

=
n−1∏

j=1

Pj . (35)

The case forn = 1 is trivial ase1 = 1 by definition.
Now lets calculate the expected value ofen. Note thaten

given {P1 . . . Pn−1} is a Bernoulli random variable with its

parameter given by (35). As the expected value of a Bernoulli
random variable is its parameter, using (35) and the definition
of conditional expectation, it can be stated that for anyn > 1

E {en} = E
{
E
{
en | {Pj}∞j=1

}}
= E





n−1∏

j=1

Pj



 . (36)

This value is a number that depends on the compound prob-
ability density function of the random variablesP1 . . . Pn−1.

Finally, using Equations (33) and (36) the lemma is proved.

APPENDIX B
SOLUTION OF (27) FOR VARIOUS CHANNEL MODELS

In the following, we study (27) for AWGN, Rayleigh and
Nakagami-m channel models, and find closed-form approxi-
mations forγ̄0 for each case.

A. AWGN Channel

The symbol error rate of M-QAM transmissions over the
AWGN channel is given by

Ps(γ) = 1− (1− cQ(
√
aγ))

2
, (37)

where c = 2
(
1− 1/

√
M
)

and a = 3/(M − 1). An
approximation of (37) is

Ps(γ) ≈
2c

5
e−0.54aγ , (38)

which results from fitting the curvea1e−a2γ , with a1 anda2
constants, to (37) for10−8 < Ps < 10−1 andM = {4, 16, 64}
and minimizing the mean square error (MMSE). It should be
noted that (38) is not a bound but simply a MMSE best fit
curve.

Even though strictly speaking the AWGN channel is not
a fast fading channel, (27) remains valid for this case. By
replacing (38) in (27) we find:

53

33acλ
exp (0.54aγ̄0) = γ̄0 +

Pel

Adα
+

1

0.54aλ
. (39)

Despite being an approximation, the virtue of (39) is that it
provides insight into the fact that the optimal SNR is unique. In
effect, (39) is the intersection of an exponential functionwith
a straight line of unit slope. There can be only one intersection
in the first quadrant, which marks̄γ0.

B. Fast Fading Rayleigh Channel

The symbol error rate for uncoded M-QAM over a Rayleigh
channel is [25]

P̄s(γ̄) = c(1− s)− c2
[
1

4
− s

π
arctan

(
1

s

)]
, (40)

with c and a defined as in (37) ands =
√
aγ̄/(2 + aγ̄).

Equation (40) can be approximated by

P̄s(γ̄) ≈
B

γ̄
, (41)

with B = 0.81c/a. This constant has been found by fitting
(41), with B constant, to (40) for10−6 < Ps < 10−1 and
M ∈ {4, 16, 64} by means of MMSE.
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Replacing (41) into (27) yields a parabola with only one
positive root given by

γ̄0 =
(1 + λ)B

2

(
1 +

√
1 +

4λPel

(1 + λ)2BAdα

)
. (42)

For large distances (e.g.d > 100 m for low power devices)
γ̄0 converges to

lim
d→∞

γ̄0 = (1 + λ)B
∆
= γ̄long . (43)

γ̄long approximates the optimal SNR in the traditional sense
of wireless communications, where the link budget neglects
the energy consumption of the electronics and only considers
link gains and losses.

Assuming that a frame contains enough data symbols so
that λ̂/(λ+ 1) ≈ 1, we rewrite (42) using (43) as

γ̄0 ≈ γ̄long
2

(
1 +

√
1 +

4Pel

γ̄longAdα

)
. (44)

Finally, using the first order Taylor approximation
√
1 + x ≈

1 + x/2 in (44), we obtain

γ̄1
∆
= γ̄long +

Pel

Adα
. (45)

Clearly, γ̄1 is only a valid approximation for̄γ0 (and hence
for the optimal SNR) for large link distances, but it is a useful
rule of thumb. It also reflects the counter-intuitive fact that the
optimal SNR increasesas distance decreases. This aspect is
analized in Section IV-A.

C. Channels with Nakagami-m fading statistics

The Nakagami-m distribution happens naturally when mod-
eling maximum ratio combining receivers without power gain
under independent Rayleigh fading per receiver branch [26].
It is often used as an approximation for channels with Ricean
statistics, as we do in the sequel, because the probability of
symbol error for Ricean channels does not lend itself well for
analytical treatment of (27).

The SNR of a Nakagami-m channel is a Gamma-distributed
random variable [25], parametrized by its mean SNRγ̄ and
its diversity degreem [27]. The symbol error rate of square
M-QAM modulations under Nakagami-m fading can be cal-
culated as [25]

P̄s(γ̄) = 2cI
(π
2

)
− c2I

(π
4

)
, (46)

with I(x) defined by the following integral:

I(x) =
1

π

∫ x

0

(
1 +

aγ̄

2m sin2 θ

)−m

dθ . (47)

Above,a andc are defined as in (37) and (40). We point out
that general SER formulas for arbitrary rectangular M-QAM
modulations exist [28], but we restrict our analysis to square
modulations for the sake of mathematical tractability.

We propose the following approximation for (46):

P̄s(γ̄) ≈ hc
(
1.2 +

aγ̄

h

)−h

, (48)

whereh = (14m−4)/(m+9). This approximation is adecuate
for 10−5 < P̄s < 0.5∗10−2, M = {4, 16, 64} andm ∈ [1,∞).

Defining u = 1.2 + aγ̄/h, and using (48) in (27), the
following polynomial can be found:

uh+1 − αu− β = 0 . (49)

Above,α = hc(1 + λh) and β = hcλ[aPel/(Ad
α) − 1.2h].

For h = 1, 2 and 3, the polynomial can be solved using
well-known closed-form formulas. Whenh ≥ 4 (this implies
m ≥ 4) there exists no closed-form formula foru (Galois
Theorem, [29]). To find an approximate solution for the
general case, consider the functionφ(u) = uh+1 − αu. The
largest real root of this polynomial isα1/h, and the Taylor
series expansion of first order centered on this root is:

φ(u) ≈ αh(u− α
1
h ) . (50)

Equating the right side of the above expression toβ and
solving for u gives the following approximated solution to
(49):

û = α
1
h +

β

αh
, (51)

Expression (51) allows for determining an approximate opti-
mal SNRγ̄0 by a simple change of variables, resulting:

γ̄0 =
h

a
(û− 1.2) (52)

=
1

a

(
hα1/h +

β

α
− 1.2h

)
. (53)

The estimateγ̄0 allows for quick back-of-the-envelope calcu-
lations.

The accuracy of (53) decreases for large values ofβ, which
are found in short transmission distances (d ≤ 50 m for
typical low power devices), whenPel/(Ad

α) ≫ ah and
thereforeβ ≈ hcλaPel/(Ad

α) ≫ 0. In these cases, higher
order Taylor approximations are needed. For example, the
third order approximation also results in (52) but withû as
the only real root of the following third order polynomial:

(û − α
1
h ) +

(h+ 1)

α
1
h

(û− α
1
h )2

+
(h+ 1)(h− 1)

α
2
h

(û− α
1
h )3 =

β

hα
, (54)

which is the third order Taylor expansion ofφ(u) = uh+1−αu
centered inα

1
h , equated toβ.

It is to be noted that the expression given by equation (39)
does not provide a closed-form solution for the optimal SNR
in AWGN channels, whereas (53) and (54) does give explicit,
albeit approximate, formula for it form → ∞ .

We also point out that the expressions presented in (53) and
(54) can be used for Ricean channels of parameterK ≥ 0 by
choosingm = (1 +K)2/(1 + 2K) [30].

D. Numerical evaluations

Using the parameters of Table I we have calculated the av-
erage energy consumed by a communication system operated
under the SNR given by the various approximations developed
in this appendix (Figure 8). The energy consumption achieved
using the approximations presented closely matches the min-
imal consumption found by solving (24) numerically.
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Fig. 8. Average energy consumption using the optimal SNR determined
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Universidad Católica de Chile.

Christian Oberli received the B.S. degree from the
Pontificia Universidad Católica de Chile (PUC) in
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Abstract—MIMO SVD modulation is an efficient way of
sending data through a multi-antenna communications link in
which the transmitter has knowledge of the channel state. Despite
its importance, no simple formula for its symbol error rate (SER)
has been found, and hence no intuitive characterization of the
quality of this technique for data transmission is available at the
present. In this paper, we present a method for approximating
the statistics of each eigenchannel of MIMO SVD using the
Nakagami-m fading model. Using our method, we show that the
SER of the entire MIMO SVD link can be approximated by the
average of the SER of Nakagami-m channels. The expression
found is simple and yet accurate. This leads to characterize
the eigenchannels of N × N MIMO channels with N larger
than 14, showing that the smallest eigenchannel distributes as a
Rayleigh channel, the next four eigenchannels closely distributes
as Nakagami-m channels with m = 4, 9, 25 and 36, and the
N − 5 remaining eigenchannels have statistics similar to an
AWGN channel within 1 dB SNR. We also show that 75% of
the total mean power gain of the MIMO SVD channel goes to
the top third of all the eigenchannels.

I. INTRODUCTION

The multiple-input multiple-output singular value decom-
position (MIMO SVD) modulation is widely known as an
efficient way for sending data through a multi-antenna com-
munications link in which the transmitter has knowledge of
the channel state [1]. Consider a MIMO channel in which the
received signal vector v = (v1, . . . , vNr

)t can be expressed in
terms of the transmitted symbol vector u = (u1, . . . , uNt

)t as

v = Hu+w , (1)

where uj is the complex symbol transmitted through the j-
th antenna, vi is the complex symbol received by the i-th
transmission branch, H is a random matrix with coefficients
hi,j which are i.i.d. standard complex normal random variables
and w = (w1, . . . , wn)t is the vector of additive white
gaussian noise terms experimented in each branch of the
receiver [1]. Using the singular value decomposition, the
channel matrixH is diagonalized creating N = min{Nt, Nr}
non-interfering channels (eigenchannels in the following). This
can be described as

yk =
√
λkxk + nk k = 1 . . . N , (2)

where xk are the transmitted symbols, nk is the thermal noise
and
√
λk are the singular values of the channel matrix H [2].

Despite the importance and popularity of the MIMO SVD
modulation, no simple formula for the symbol error rate (SER)
of the eigenchannels has been reported yet, even though the
topic has seen much recent activity (e.g. [3]–[10]). The com-
mon approach for studying the statistics of the eigenchannels
is to consider λk as eigenvalues of the complex Wishart
matrix W = HH† [11]. The eigenvalues of W have a joint
probability distribution (p.d.f.) given by [12]

p = KN exp

(
−

N∑

k=1

λk

)
N∏

i=1

λ
|Nt−Nr|
i

N∏

i>j

(λi − λj)2 , (3)

with λ1 ≤ λ2 ≤ · · · ≤ λN and KN a constant. Deriving
the statistics of each eigenchannel requires to determine the
exact marginal p.d.f. pλk

(λk) of each eigenvalue from (3).
Following this approach, it is shown in [12] that the SNR of
the smallest eigenchannel of a N×N MIMO channel have the
same statistics as a Rayleigh channel with power gain 1/N (i.e.
pλ1(λ1) = Ne−Nλ1 ). Although expressions for the marginal
p.d.f. of the other eigenvalues have been found [6]–[10], they
are mathematically complex and do not provide much insight
about the performance of the corresponding eigenchannels. In
[13], it was shown that in the high signal-to-noise ratio (SNR)
regime the SER of each eigenchannel can be expressed as

P̄s(γ̄) = (Gcγ̄)−Gd + o(γ̄−Gd) , (4)

where γ̄ is the SNR, Gc is the power gain of the channel and
Gd is the diversity degree [14]. The limitation of this result is
that the high-SNR restriction leads to insights of little practical
interest. In [15], the idea of approximating the statistics of the
largest eigenchannel by a Nakagami-m fading is presented.
The value of m is chosen in order to approximate the outage
statistics of this eigenchannel. Although the approximation
thus obtained is accurate, it is not obvious if the proposed
method can be extended to model the statistics of other
eigenchannels.

In this paper we show that the statistics of all the eigen-
channels of MIMO SVD transmissions over MIMO channels
with i.i.d. Rayleigh fading statistics can be approximated
using the Nakagami-m fading model. These approximations
allow us to derive an accurate approximation for the SER
of the entire MIMO SVD link, one that provides a strong
insight on the performance of each eigenchannel. Using these
approximations we will show that for any N × N MIMO
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system with N > 15 the following characterization of its
eigenchannels can be made: there are N − 5 eigenchannels
which error statistics are similar to an AWGN channel (within
1 dB SNR), while the five weakest eigenchannels perform like
a Rayleigh and Nakagami-m channels with m = 4, 9, 16 and
25, respectively.

The rest of the paper is organized as follows: Section II
explains how Nakagami-m approximations can be calculated
for each eigenchannel of a MIMO system. In Section III, a
simple expression for the SER of MIMO SVD transmissions
is derived using the Nakagami-m approximations. Section IV
provides insights about the fading statistics of the eigenchan-
nels, and introduces the characterization of the eigenchannels
of N × N MIMO systems with N > 15. Finally, Section V
presents our conclusions.

II. STATISTICAL ANALYSIS OF THE MIMO
EIGENCHANNELS

Denote by λk the k-th smallest eigenvalue of a Wishart
matrix HH†. λk is the channel coefficient of the k-th eigen-
channel of a MIMO SVD transmission through a Nr × Nt
MIMO channel matrix H with i.i.d. Rayleigh statistics as in
(1). Denote N = min{Nr, Nt} be the number of eigenchannels
available for data transmission.

We seek to approximate the fading statistics of each eigen-
channel using the well known Nagakami-m fading channel
model [16], [17]. The power gain of the Nakagami-m channel,
denoted here by λ, is a Gamma random variable with p.d.f.
given by [16]

pµ,m(λ) =

(
m

µ

)m
λm−1

Γ(m)
exp

(
−mλ

µ

)
. (5)

The Gamma distribution is characterized by the mean power
gain µ of the channel, equal to the expected value of λ, and the
diversity degree m of the channel. It can be shown that m is
equal to the absolute value of the asymptotic logarithmic slope
of the SER, i.e. P̄s ∝ SNR−m for the high SNR regime [17].
The diversity degree m is also related to the outage statistics
of the channel [14]. In effect, when m = 1, (5) turns into the
p.d.f. of the exponential distribution, which corresponds to a
Rayleigh channel, whose outage statistics are well known to
be the most adverse. When m → ∞, the channel statistics
tend to those of the AWGN channel, which has no outage at
all.

For a given Nr × Nt MIMO system, we seek to find
parameters µk and mk for which a Gamma random variable
best fits the p.d.f. of the k-th eigenvalue λk. For a 2×2 MIMO
system, these parameters can be determined by minimizing the
mean square error between the marginal distributions found
from (3) and a Gamma distribution (the actual derivation is
presented in Appendix A). For larger system sizes, the mean
square error minimization lead to intractable mathematics.

In our approach, we find values for mk and µk by perform-
ing a maximum likelihood estimation (MLE) using computer
generated samples of the eigenvalues. The MLE procedure
finds the parameters mk and µk of the Gamma distribution
that has the largest probability of generating random numbers
with the statistics observed in the given sample [18]. It has

been shown in [19] that the Maximum Likelihood principle
for the Gamma distribution is equivalent to choosing µk as

µk =
1

n0

n0∑

j=1

xj , (6)

and solving for mk from

ln(mk)− ψ(mk) = ln


 1

n0

n0∑

j=1

xj


− 1

n0

n0∑

j=1

ln(xj) . (7)

Above, {xj}n0
j=1 is a sample of n0 realizations of the k-th

eigenvalue and ψ(x) = Γ′(x)/Γ(x) is the Psi (digamma)
function [20]. Although (6) is the classic estimator of the mean
value of a population, (7) gives a nontrivial estimator to its
diversity degree.

For samples of size n0 = 106 of a 2 × 2 MIMO channel,
the MLE method gives values for m1,m2, µ1 and µ2 with
less than 0.1% of error compared to the values found by
minimizing the mean square error in the Appendix A (Table I).
For larger MIMO systems, we have calculated the values for
µk and mk for some typical MIMO sizes using samples with
n0 = 106 (Table I). It is worth noting that these numbers
provide the complete characterization of the Nakagami-m
approximation of any MIMO system of the given sizes and
Rayleigh fading statistics.

We tested the accuracy of the Nakagami-m approximations
for 2×2, 4×4 and 8×8 Rayleigh fading MIMO channels using
the Kolmogorov-Smirnov (KS) test [21]. The KS test provides
an indication of the likelihood that a given sample comes
from a population that follows a certain candidate probability
distribution (see Appendix B). The tests were performed using
channel samples of size n0 = 104, 105 and 106, with Gamma
distributions as candidates with parameters found using (6)
and (7) and a false negative probability α = 5%.

TABLE I
PARAMETER VALUES OF THE NAKAGAMI-m APPROXIMATIONS AND

KOLMOGOROV-SMIRNOV TEST RESULTS

2× 2 MIMO System
Eigenvalue m µ n0 = 104 n0 = 105 n0 = 106

λ2 3.82 3.5 X X ×
λ1 1 0.5 X X X

4× 4 MIMO System
Eigenvalue m µ n0 = 104 n0 = 105 n0 = 106

λ4 12.72 9.77 X × ×
λ3 8.66 4.41 X X X
λ2 4.09 1.57 X X ×
λ1 1 0.25 X X X

8× 8 MIMO System
Eigenvalue m µ n0 = 104 n0 = 105 n0 = 106

λ8 38 23.73 X × ×
λ7 37.66 15.85 X × ×
λ6 31.32 10.63 X X ×
λ5 23.52 6.82 X X X
λ4 15.89 4.02 X X ×
λ3 9.26 2.05 X X ×
λ2 4.15 0.76 X × ×
λ1 1 0.125 X X X

We found that λ1 always passes the KS test for all system
sizes (Table I). This makes sense because it follows a exponen-



3

tial distribution (i.e. a Gamma distribution with m = 1) [12].
The largest eigenvalue of a 2×2 MIMO channel passes the test
for n0 = 104 and 105, but fails it for n0 = 106. This happens
because the distribution of λ2 does not belong to the Gamma
family, even though there are values of µ and m that provide
a very close fit, as shown in Appendix A. As n0 grows, the
KS test eventually fails because a larger sample provides more
detailed information, which makes the test more sensitive.

The fact that the Nakagami-m approximations do not fail
the test with a sample size of 104 (see Table I) is not to
be overlooked. It means that 104 channel realizations do not
contain enough evidence to conclude that the eigenchannels
do not fit the Nakagami-m model.

III. BIT ERROR RATE APPROXIMATION

N eigenchannels may be exploited in a MIMO system.
Nevertheless, a relevant reduction of the mean SER can be
achieved by transmitting data only through the n < N
eigenchannels with most favorable statistics, at the expense of
lowering the data rate. This is a manifestation of the diversity-
multiplexing tradeoff of MIMO channels [14].

In the sequel, we derive an approximation for the average
SER of uncoded MIMO SVD communications using the
method of Nakagami-m approximations presented in Sec-
tion II. The approximation holds for any number of eigen-
channels used. We also present upper and lower bounds for the
SER, which are based only on the Nakagami-m approximation
of the weaker eigenchannel in use.

A. SER approximation

Lets assume that the eigenchannels described by (2) are
used to send data using a modulation whose SER for a given
SNR γ can be expressed as

Ps = cQ(
√
aγ) . (8)

Above, Q(x) is the tail probability of the standard normal
distribution and c and a are constants that depend on the choice
of modulation scheme and constellation size. The SER of such
a modulation over a Nakagami-m channel with power gain λ
is calculated as

P̄s(γ̄, µ,m) = E{cQ(
√
aλγ̄)} (9)

=

∫ ∞

0

cQ(
√
aλγ̄)pµ,m(λ)dλ , (10)

where λ is a Gamma random variable with p.d.f. pµ,m(λ) as
presented in (5).

Consider one realization of the eigenvalues λ1, . . . , λN .
Then, the SNR of the k-th eigenchannel, as presented in (2),
is SNRk = λkγ̄k, where γ̄k = Pk/σ

2
n is the ratio between

the signal power Pk allocated to the k-th eigenchannel and
the noise power σ2

n . Lets define Ak as the event in which the
transmitted symbol was sent through the k-th eigenchannel,
and E the event that the symbol is decoded with error.
Assuming that the n ≤ N eigenchannels with more favorable

statistics are used equally often, then the probability of Ak is
given by

P(Ak) =

{
1/n if k ∈ {ν, . . . , N}
0 otherwise

(11)

where ν = N − n + 1 is just a shorthand notation for the
eigenchannel to be used which has the least favorable statistics.
As the Ak are jointly exhaustive and mutually exclusive events,
we can decompose the error event E as E = ∪Nk=1 (E ∩Ak),
where each event E ∩ Ak denotes the event that the error
has occurred in the k-th eigenchannel. Therefore, if we define
γ = (γ̄1, . . . , γ̄N )t and λ = (λ1, . . . , λN )t, then the symbol
error rate of a given channel realization can be calculated as:

P (n)
s (γ,λ) = P(E|γ,λ) (12)

= P
(
∪Nk=1(E ∩Ak)|γ,λ

)
(13)

=
N∑

k=1

P (E ∩Ak|γ,λ) (14)

=
N∑

k=1

P (Ak)P (E|Ak,γ,λ) (15)

=
1

n

N∑

k=ν

cQ
(√

aλkγ̄k

)
(16)

The equality from (13) to (14) follows because for k 6= j, the
events E ∪Ak and E ∪Aj are disjoint; the equality from (14)
to (15) follows from the definition of conditional probability.
The step from (15) to (16) considers the following rationale:
as the values of λ1 . . . λN are given, the error rates depends
only on the thermal noise. As data symbols and noise in each
eigenchannel are uncorrelated, symbol errors are independent
events.

The mean SER is obtained by averaging P (n)
s (γ,λ) over the

possible eigenchannel coefficient realizations. If the channel
coefficients have a joint p.d.f. given by (3), then, using (16)
and the Nakagami-m approximations described in Section II,
the mean SER can be approximated as:

P̄ (n)
s (γ) = E

{
P (n)

s (γ,λ)
}

(17)

=
1

n

N∑

k=ν

E
{
cQ
(√

aλkγ̄k

)}
(18)

≈ 1

n

N∑

k=ν

P̄s(γ̄k, µk,mk) , (19)

where P̄s(γ̄k, µk,mk) is the mean SER of a Nagakami-m
channel, as given by (10), with mk and µk determined by
the method explained in Section II.

The accuracy of this approximation has been tested by
simulating the transmission of 106 BPSK symbols over N×N
MIMO systems of various sizes. For each transmitted symbol
vector, an independent narrow-band MIMO channel matrix H
was generated following the MIMO channel i.i.d. Rayleigh
fading model. Statistics were calculated afterwards for each
number n of used eigenchannels in the range 1 ≤ n ≤ N .
Each run of 106 symbols was evaluated at various SNR levels.
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The results show that the approximation proposed in (19) is
accurate for any choice of n (Figure 1).
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Fig. 1. Average SER of SVD transmissions over a 4 × 4 MIMO channel
using uncoded BPSK and 1, 2, 3 or 4 eigenchannels of the SVD modulation.
Markers show the average SER obtained by computer simulation of 106

symbols. Solid lines show the corresponding proposed approximation (19).
An increasing diversity gain (i.e. the slope of the SER in the high SNR
regime) can be observed as the number of used eigenchannels is reduced.

B. SER bounds

Consider equal power allocation among all eigenchannels to
be used, i.e. γ̄k = γ̄ for all ν ≤ k ≤ N . In this case, the SER of
the eigenchannel with less favorable statistics, P̄s(γ̄, µν ,mν),
is larger than the SER of all the other eigenchannels in use.
Hence, it gives an upper bound for the average SER of the
n eigenchannels. For finding a lower bound, it is enough to
realize that (19) is a sum of positive terms. Therefore, any of
them is smaller than the sum. Thus, (19) can be upper and
lower bounded as follows:

P̄s(γ̄, µν ,mν) ≥ P̄ (n)
s (γ̄) ≥ 1

n
P̄s(γ̄, µν ,mν) . (20)

where γ̄ = (γ̄, . . . , γ̄). Simulations show that he lower bound
becomes exact as SNR → ∞, because the error rate of
eigenchannels with larger eigenvalues tends to zero faster than
the error rate of the smallest used eigenchannel.

IV. INSIGHTS ABOUT THE EIGENCHANNELS FADING
STATISTICS

The idea of using Nakagami-m approximations for mod-
eling the error statistics of MIMO SVD transmissions allows
for reaching interesting insights about the eigenchannel fading
statistics.

Throughout this section, we will denote the squared singular
values of an N × N MIMO channel as λNk , with λN1 ≤
λN2 ≤ · · · ≤ λNN . We denote by mN

k the diversity degree and
µNk the mean power gain of the Nakagami-m approximation
of the eigenchannel that corresponds to λNk , as developed in
Section II. The convenience of the non-conventional ordering
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Fig. 2. Upper and lower bounds (20) for the SER of a 4× 4 MIMO SVD
link in which n = 3 out of N = 4 eigenchannels are used to transmit BPSK
symbols. Simulation parameters as for Figure 1.

of the eigenchannels from smallest to largest will become
apparent in Section IV-A2.

A. Insights about the diversity degree

1) Evolution of mN
k as N grows: It is known that, for any

system size, the diversity degree of the smallest eigenchannel
is mN

1 = 1 [12]. For a given k 6= 1, numerical evaluations
show that mN

k tends monotonically to k2 as N increases
(Figure 3). The gap between mN

k and k2 is smaller than 10%
for N > 3k.
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Fig. 3. For 3k ≥ N ≥ k the values of the diversity degree mN
k grow

approaching k2, stabilizing for N ≥ 3k.

2) Characterization of N×N MIMO systems with N ≥ 15:
As m grows, the error statistics of the Nakagami-m channel
converge to the statistics of an AWGN channel. For example,
if we consider symbol error rates above 10−5, the error curves
of any Nakagami-m channels with m ≥ 30 differ by less than
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1 dB from the error curve of the AWGN channel (Figure 4)
(more precision can be achieved by increasing the value of
m). Based on this fact, and on the observations presented
in Section IV-A1, we can formulate the following qualitative
characterization of the N eigenchannels of a N ×N MIMO
system with N ≥ 15:

- The smallest eigenchannel behave like a Rayleigh channel
(corresponding to λN1 ).

- The next four channels satisfy k ≤ N/3. They behave
statistically as Nakagami-m eigenchannels with m =
4, 9, 16 and 25 (corresponding to λN2 . . . λN5 ).

- The remaining N − 5 eigenchannels (corresponding to
λN6 . . . λNN ) behave like AWGN channels, because mN

k >
30 holds for all of them.
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Fig. 4. Symbol error rate of BPSK transmissions over Nakagami-m channels
for various values of m. As m increases, the curves approach the curve of
the AWGN channel. For m ≥ 30, the Nakagami-m and the AWGN curves
differ by less than 1 dB for Ps > 10−5.

B. Insights about the mean power gain µNk
1) Evolution of µNk as N grows: It is known that for any

system size the mean value of the power gain of the smallest
eigenchannel is µN1 = 1/N [12]. Numerical evaluations of the
mean power gains of the remaining eigenchannels suggest that
µNk can be approximated by

µNk ≈
ν(k)

N
, (21)

with ν(k) a function independent of N (Figure 5).
2) Mean value of the largest eigenvalue µNN : By defining

MN =
∑N
k=1 µ

N
k as the total mean power gain of an N ×N

MIMO system, µNN can be expressed as:

µNN = MN −
N−1∑

n=1

µNk . (22)

Considering (21) for µNk and µN−1k , it is immediate that
NµNk ≈ (N − 1)µN−1k . Using this in (22), the following
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Fig. 5. The log-log plot suggests that, for a given k, the mean power gain
has a linear dependence on 1/N .

approximate expression for µNN can be found:

µNN ≈MN −
N − 1

N
MN−1 . (23)

Lets calculate the value of MN . As the trace of a symmetric
matrix is equal to the sum of its eigenvalues, it can be shown
that

N∑

k=1

λNk = Tr(W ), (24)

where W is a random matrix which distributes following a
complex central Wishart distributionWn(n, I) [12]. Applying
the expected value operator E{.} at both sides of (24), and
using the fact that µNk = E

{
λNk
}

, it is immediate that MN =
E {Tr(W )}. Furthermore, it can be proved that E {Tr(W )} =
N2 [22], and therefore the total mean power gain of a N ×N
MIMO system is

MN = N2 . (25)

Finally, replacing (25) in (23), the following rule of thumb
for the mean power gain of the largest eigenchannel results:

µNN ≈ 3N − 3 +
1

N
. (26)

Because 3N > 1/N , the dependence of µNN on the system size
is dominantly linear, as confirmed by numerical evaluations.
This observation is further supported by results about the
asymptotic behavior of the mean value of the largest eigen-
value of Wishart matrices [23].

3) Relative mean power gain: We want to understand
how the mean total power gain is distributed among the N
eigenchannels. For this, we define the relative mean power
gain µ̂Nk = µNk /µ

N
N . Numerical evaluations of µ̂Nk show that it

is essentially a function of the quotient k/N . This observation
has prompted us to consider

µ̂Nk ≈
(
k

N

)2

e
k
N−1 (27)
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as an empirical model for the relative power gains (see
Figure 6).

From (27), many questions about the mean power gain
distribution among the eigenchannels can find an answer by
studying the curve x2ex−1. The convexity of the curve says
that the differences µNk+1−µNk grow with k. Also, by studying
the area A(y) =

∫ y
0
x2ex−1dx, one can conclude that 75% of

the mean power gain is shared by the top third of all the
eigenchannels (i.e. k/N > 2/3).

V. CONCLUSIONS

We have developed a method for approximating the statistics
of the eigenchannels of MIMO SVD communications using
the Nakagami-m fading model. Maximum Likelihood Esti-
mation of Nakagami-m channel parameters is performed for
each of the eigenchannels of the MIMO system. The accuracy
of the results was shown by minimizing the mean square error
for the 2×2 case, and using the Kolmogorov-Smirnov test for
larger system sizes.

The proposed method was used as a starting point for
deriving an approximation of the mean SER of MIMO SVD
transmissions. The approximation found is simple, accurate,
easily computable and provides intuition about the quality of
the channel for data transmission. Using this approximation,
we have presented an upper and lower bound for the SER of
MIMO SVD based just on the SER of the weakest eigenchan-
nel used for the transmission.

We also show that, for N > 15, the eigenchannels of a
N × N MIMO channel fit the following general character-
ization: the five eigenchannels with less favorable statistics
(i.e. k = 1, . . . , 5) behaves like Nakagami-m channels with
diversity degree mk = k2, while the remaining N − 5
eigenchannels behave approximately like AWGN channels. We
also provide a number of insights about the mean power gain
of the eigenchannels, and show that 75% of the total mean
power gain of the MIMO channel goes to the top third of all
the eigenchannels.

APPENDIX A
FINDING THE NAKAGAMI-m PARAMETERS FOR A MIMO

2× 2

The parameters of a Nakagami-m approximation of a 2×2
MIMO system can be found as follows. From [12], we know
that the smallest eigenvalue of such a system has a p.d.f. given
by λ1 ∼ exp(1/2), which implies that m1 = 1 and µ1 = 1/2.
On the other hand, the probability distribution of the largest
eigenvalue of a N × N MIMO system can be expressed as
[24]

pλN
(λN ) =




N∏

j=1

1

(N − j)!




2

d

dλ2
det{S(λ2)} (28)

where S(λ2) is a matrix with coefficients given by
[S(λ2)]i,j =

∫ λ2

0
xi+j−2e−xdx. Following [25], we find that

for N = 2, (28) can be simplified to

pλ2
(λ2) =

[
(λ2)2 − 2λ2 + 2− 2e−λ2

]
e−λ2 (29)

By defining gθ,m(x) to be the p.d.f. of a Gamma random
variable as defined in (5), parametrized on m and θ = µ/m,
the mean square error between pλ2

and gm,θ can be expressed
in terms of m and θ as∫ ∞

0

|pλ2(λ2)− gm,θ(λ2)|2dλ2 = 2mθ
2 + θ −mθ
(θ + 1)m+2

. . .

+
4

(2θ + 1)m
− 4

(θ + 1)m
+

Γ(2m− 1)

22m−1θ[Γ(m)]2
+

19

108
.

(30)

This expression can be minimized on m and θ using numerical
methods, finding a minimum in m∗ = 3.82 and θ∗ = 0.911,
which gives µ∗ = k∗θ∗ = 3.48. Using these values, the
mean square error is ≈ 6 × 10−6, which shows that the two
distributions pλ2 and gm∗,θ∗ are identical for any practical
purpose.

APPENDIX B
INTRODUCTION TO THE KS TEST

The KS test works as follows. Consider a random variable
X , whose cumulative distribution function is F (x), and some
sample {yj}n0

j=1, whose empirical distribution function is

F0(y) =
1

n0

n0∑

j=1

1yj (y) . (31)

Above 1yj (y) is the indicator function of yj , whose value is
1 if yj ≤ y and zero otherwise. We wish to determine the
likelihood of the hypotesis that “the sample {yj}n0

j=1 follows
the distribution F(x)”.

The KS test [21] is built on the statistic

Dn0
= sup
x∈[0,∞]

|F0(x)− F (x)| . (32)

This statistic is a measure of the largest discrepancy between
F and F0. Using (32), the KS test estimates the probability
that the empirical distribution of a sample of size n0, generated
according to the c.d.f. of X , has a discrepancy of magnitude
Dn0

from F . This probability, which we will denote as
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P(Dn0
), is used to test the hypothesis, which is is rejected if

P(Dn0) is below a certain threshold value α. Common values
of α range between 1% and 10%, and represent the probability
of rejecting the hypothesis when it is correct (false negative).
As the sample size n0 grows, P(Dn0

) converges to the exact
probability of observing a discrepancy Dn0

, and hence the KS
test improves it accuracy.

In the case presented in Section II, the KS test will even-
tually reject the proposed hypothesis as n0 increases. This
happens because we know that the eigenvalues λk are not
Gamma (k = 1 is an exception). The interesting element to
observe in the test is the value of n0 at which the KS test
starts rejecting the hypotesis.
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Abstract—Multiple-input multiple-output (MIMO) techniques
can be used for reducing the energy consumption of wireless
communications. Although some research has been reported
on this topic, the rules by which the MIMO physical layer
parameters should be chosen in order to achieve energy efficiency
have not yet been formally established. In this paper, we analyze
the case of MIMO singular value decomposition (SVD) technique.
We present a model for the mean energy consumption of a MIMO
SVD system per data bit transferred without error.

We find that, for a given number of eigenchannels used with
equal power allocation, exists a single optimal radiation power
level at which the mean energy consumption is minimized. We
also find that beamforming (only the best eigenchannel is used)
is optimal in the energy consumption sense for long transmission
distances, while the optimal number of eigenchannels to be used
grows as transmission distance shortens. Using all the eigenchan-
nels is optimal only for very short transmission distances.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication
systems were originally introduced as a way for achieving
higher data rates or for improving the reliability of wireless
links [1]. More recently, researchers have started to realize that
the MIMO techniques can also be used for reducing the energy
consumption of wireless communications [2]–[11]. Despite
this recent interest, the rules by which the main physical-layer
parameters shall be chosen for attaining energy efficiency in
MIMO systems have not yet been formally established [12].

The MIMO SVD technique is well known as an efficient
method for sending data through a MIMO communications
link in which the transmitter has knowledge of the channel
state [13]. The core concept considers the diagonalization
of the channel H, which we will assume to be a full rank
N × N matrix, for establishing N non interfering channels
(henceforth eigenchannels), whose input-output relationships
can be described as

yk =
√
λkxk + wk k = 1 . . . N . (1)

Above, k indexes the eigenchannels, xk are the transmitted
symbols, nk are additive white Gaussian noise terms (AWGN)
and
√
λk are the singular values of the channel matrix H [14].

In this paper we extend our energy-consumption model for
single antenna systems reported in [15] to the analysis of the
energy consumption of MIMO SVD communications. Most of
the existent models reported so far in the literature are based
on the abstract definition of the capacity of a MIMO random
fading channel [5]–[11]. These models are not adequate for
determining attainable performances of concrete modulations

with a specific number of eigenchannels used. Our model in-
corporates these elements, sharing some features with the one
reported in [2] but having a more straightforward mathematical
formulation that enables more insightful analysis. Moreover,
our MIMO energy consumption model is also novel because
it considers the effect of retransmissions required to guarantee
error free transmissions.

Furthermore, although the MIMO SVD modulation pro-
vides, in general, N eigenchannels, there is no need to use
them all. Using all the eigenchannels maximizes the data
rate, but sacrifices symbol error rate (SER) [16]. Conversely,
using only the n < N largest eigenchannels yields a better
SER but at the cost of decreasing the data-rate. Our model
allows for optimizing the radiated power and the number of
eigenchannels used for the transmission as a function of link
distance. In effect, we show that beamforming (n = 1) is
the energy-optimal transmission strategy for large transmission
distances, while a larger number of eigenchannels is optimal
for short transmission distances. Full SVD (n = N ) is optimal
only for very short link distances.

By analyzing the energy consumption as a function of the
antenna array size (N ), we show that single antenna systems
are more energy-efficient for performing short range trans-
missions than multiple antenna systems. Conversely, multiple
antenna systems of growing size achieve important savings
when the link distance increases. Nevertheless, we show that
an antenna array size exists, beyond which larger systems do
not yield significant savings anymore.

The paper is organized as follows: Section II presents the
energy consumption model, Section III specifies the depen-
dence of the energy consumption on the signal-to-noise ratio
(SNR), and Section IV presents an analysis of the energy
consumption of a MIMO SVD system using various numbers
of used eigenchannels (n), antenna array sizes (N ) and link
distances. Finally, Section V presents our conclusions.

II. ENERGY CONSUMPTION MODEL

Our goal is to determine the total energy that is necessary
for transferring one bit of data successfully, henceforth called
a goodbit [7], in a point-to-point packet-switched MIMO SVD
communication. As in [15] we assume that every frame trans-
mitted in the forward direction is matched by a feedback frame
in the reverse direction that acknowledges correct reception or
requests a re-transmission. We also assume that the irradiated
power is determined based upon knowledge of the statistics
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of the signal-to-noise ratio (SNR) at the decision stage of the
receiver. We further assume that all frames in both directions
are always detected and that all feedback frames are decoded
without error.

The energy consumption analysis has been made for a
specific MIMO transceiver architecture, popular among aca-
demic [17], [18] and commercial [19] products (Figure 1).
In the sequel, we present the analysis of the components of
energy consumption of the MIMO SVD transceiver from the
standpoint of a node that transmits one payload frame and
receives the corresponding feedback frame (the reverse case
—a transceiver that receives one payload frame and transmits
the corresponding feedback frame— follows by analogy),
followed by the analysis of the statistics of re-transmissions
and finally by a synthesis of our total energy consumption
model.

DAC

Filter FilterMixer PA

channel

PLL

DAC

Filter FilterMixer PA

channel

PLL

Ref. Clock

Baseband

Processing

Filter
ADC

FilterFilter LNA IFAMixer

Filter
ADC
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PLL

Ref. Clock
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Processing

Tx:
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Fig. 1. Common architecture of a MIMO SVD transceiver.

A. Components of energy consumption of the forward
transceiver

The energy consumption of the MIMO SVD transceiver
that transmits forward frames and receives feedback frames
is composed by five terms, each one described below.

1) Startup energy consumption: We assume that the trans-
mitter is by default in a low power consumption (sleep)
mode. Hence, it must be brought online before it can make
a transmission. We will denote Êst the total startup energy
divided by the number of payload bits that are going to
be transmitted before the transceiver goes into low power
consumption mode again. In a MIMO system, Êst is largely
dominated by the energy spent in the stabilization of the
N phase-lock-loops (PLL) of the transceiver (see Figure 1),
while startup costs of components common to all branches are
negligible [20]. Therefore Êst = NEst, where Est is the startup
energy consumption per branch.

2) Baseband electronic consumption: Performing the SVD
of the MIMO channel matrix is the more demanding baseband
operation. Each SVD computation involve K different arith-
metic operations, each of which has an energy consumption
Ek and is performed nk times during the algorithm. Thus, the
energy consumption of performing one SVD, ESVD, is given
by

ESVD =
K∑

k=1

nkEk . (2)

If the operations are performed by an arithmetic processing
unit (APU), the energy consumption of the k-th operation can
be modeled as [21]

Ek = VddI0∆tk , (3)

where Vdd is the APU operating voltage and I0 is the average
current during the execution time of the arithmetic operations.
It is to be noted that I0 depends on Vdd and on the clock
frequency, fAPU. ∆tk is the time required for executing the k-
th operation. It is related to fAPU and to the number of clock
cycles required by the operation, ck, as follows:

∆tk =
ck
fAPU

. (4)

Replacing these terms in (2), the energy required for estimating
the channel is given by

ESVD =
VddI0
fAPU

K∑

k=1

nkck. (5)

The SVD decomposition has to be performed each time the
MIMO channel has significatly changed. This can be measured
by the coherence time, which can be defined as [22]

Tc =
9c0

16πvmfc
, (6)

where c0 is the speed of light, fc is the carrier frequency and
vm is the maximum speed found in the mobile environment.
Therefore, the energy consumption of performing one SVD
decomposition is shared among the payload bits that are
transmitted in one coherence time. That number of bits can
be approximated by ν = nbRsTc, where n is the number
of eigenchannels used for the transmission (cf. Section I),
b = log2M is the number of bits modulated in each M -
ary data symbol and Rs is the symbol-rate per eigenchannel.
Therefore, the energy consumption per bit of the baseband
processing can be expresed as

Ebaseband =
ESVD

ν
. (7)

3) RF electronic consumption: The total air time per
forward frame is composed by TL seconds used for the
transmission of the L payload bits that compose the frame,
TH seconds for the transmission of the H bits that compose
the frame header and TO seconds used for the transmission
of overhead signals for tasks such as acquisition, channel
estimation, synchronization, frame parameters signaling, etc.
The air time per bit is therefore

T̂b =
TL + TH + TO

L
. (8)
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TO is composed by overhead for acquisition, which depends
linearly on the number of transmitter antennas (N ), and tasks
like synchronization, which are approximately independent of
N . By noting that L/TL = nbRs is the total bit-rate of
the MIMO system (where n and b are used as defined in
Section II-A2), we may express T̂b as

T̂b =
1

Rs

(
1

nb
+

H

nL
+
NOa +Ob

L

)
, (9)

where Oa is the acquisition overhead per branch and Ob is
the reminding overhead, each one measured in bits. Equation
(9) assumes that the header bits are sent throught the n
eigenchannels using a binary modution.

During the T̂b seconds, the MIMO transceiver consumes
P̂el,tx Watts, which is largely dominated by the consumption
of passband processing components such as filters, mixers and
frequency synthesizers engaged in the forward transmission
[23]. It can be inferred from Figure 1 that P̂el,tx grows linearly
with the number of antennas (N ). Therefore, the energy per
goodbit consumed in the transmission processing may be
expressed as

Eel,tx = P̂el,txT̂b = NPel,txT̂b , (10)

where Pel,tx stands for the electric power consumed by each
branch of the transmiter.

4) Energy consumption due to electromagnetic radiation:
Each frame is aired out of all the N branches. We define P (j)

A
as the power irradiated by the antenna of the j-th branch,
which is supplied by a corresponding power amplifier (PA)
(Figure 1). The power consumption of the j-th PA, P (j)

PA , is
modeled by

P
(j)
PA =

ξ

η
P

(j)
A , (11)

where ξ is the peak-to-average ratio of the transmitted signal
and η is the drain efficiency of the PA [23]. Thus, the energy
per bit used for electromagnetic radiation is given by

ERF =




N∑

j=1

P
(j)
PA


 T̂b = P̂PAT̂b , (12)

where T̂b is given by (9), and we have defined P̂PA as a
shorthand notation for the total power consumption of all the
PA’s.

5) Energy Consumption of Electronic Components due to
the Processing of Feedback Frames: Feedback frames are
assumed to last T̂fb = F/(nbRs) seconds, where F is the
number of bits that compose the feedback frame and b and Rs
are as defined in Section II-A3. During that time, the MIMO
receiver consumes P̂el,rx Watts, which mainly includes the
power needed to energize the passband receiver elements (low-
noise amplifiers, mixers, filters, frequency synthesizers, etc.) of
all the branches [23]. Hence, it grows linearly with the number
of antennas (N ). Therefore, the energy per forward payload
bit spent by the transmitter for decoding the corresponding
feedback frame is

Efb,rx = P̂el,rx
T̂fb

L
= NPel,rx

F

nbRsL
, (13)

where Pel,rx is the electronic power consumption of one branch
of the receiver.

B. Re-transmission statistics
A key contributor to the energy consumption is the need for

re-transmissions due to forward frames that get decoded with
errors at the receiver. The number of trials, τ , until a frame
is decoded without error is a random variable, whose mean
value has been shown to be [15]

τ̄ = 1 +
∞∑

r=1

E

{
r∏

i=1

Pf(i)

}
, (14)

where E{·} denotes the expectation operator and Pf(i) is the
probability of decoding the frame with error during the i-th
transmission trial. In general, the Pf(i) are random variables
that depend on the number of antennas, the frame size,
modulation type, the number of eigenchannels used in the link
and the received SNR during the i-th trial. It is to be noted
that (14) is valid for any correlated or uncorrelated channel
fading statistics [15].

C. Total energy per goodbit
The material presented in Sections II-A and II-B allows for

stating our model of the total energy consumption. Concretely,
the energy consumed per goodbit by the transmitter of forward
frames, which also decodes feedback frames, is given by

ET = Est + (Ebaseband + Eel,tx + ERF + Efb,tx)τ (15)

= Est +

[
ESVD

ν
+ (P̂el,tx + P̂PA)T̂b +

P̂el,rxT̂fb

L

]
τ .

(16)
By analogy, the total energy used by the receiver for

demodulating τ forward transmissions and for transmitting
the corresponding τ feedback frames (recall that the SVD
algorithm must also be performed at the receiver for findind
the decoding matrix), is

ER = Est +

[
ESVD

ν
+ P̂el,rxT̂b +

(
P̂el,tx + P̂PA

) T̂fb

L

]
τ .

(17)
The total energy consumption per goodbit is the sum of (15)

and (17):

Eb = 2Est +

[
2
ESVD

ν
+ (P̂el + P̂PA)

(
T̂b +

T̂fb

L

)]
τ (18)

= Ŝ +
[
B̂ + (P̂el + P̂PA)T̂

]
τ , (19)

where we have defined P̂el = (P̂el,tx + P̂el,rx) as the total
power consumed by electronic components, Ŝ = 2Est as the
total startup energy consumption per bit, B̂ = 2ESVD/ν as
the total baseband processing consumption per bit and T̂ =
(T̂b + T̂fb/L) the total time per bit per transmission trial.

Because of τ , Eb is a random variable that depends on the
realizations of the channel and the thermal noise. Its mean
value is

Ēb = E {Eb} = Ŝ +
[
B̂ + (P̂el + P̂PA)T̂

]
τ̄ , (20)

with τ̄ as given by (14).
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III. ENERGY CONSUMPTION AS A FUNCTION OF THE SNR

We seek an explicit expression for the dependence on the
SNR of the energy consumption per goodbit of a MIMO
SVD system, in which only the n eigenchannels with the
largest singular values are used for data transmission in each
frame (see Section I). To achieve this, we first analyze the
PA’s total power consumption (P̂PA) and the mean number of
transmission trials (τ̄ ) as functions of the SNR. Finally, we
present how the mean energy consumption can be minimized
by optimizing the SNR.

A. PA’s total power consumption as function of the SNR

The transmission power that has been allocated to the k-th
eigenchannel, P̄ (k)

tx (k ∈ {1, . . . , n}), attenuates over the air
with path loss and arrives at the receiver with a mean power
given by

P̄ (k)
rx =

P̄
(k)
tx

A0dα
, (21)

where A0 is a parameter that depends on the transmitter and
receiver antenna gains and the transmission wavelength, d is
the distance between transmitter and receiver and α is the path
loss exponent. The SNR of the k-th eigenchannel is given by

SNRk =
λkP̄

(k)
rx

σ2
w

= λkφkγ̄ , (22)

where λk is the square of the k-th singular value of the
channel matrix H (cf. (1)), σ2

w is the noise power, γ̄ =

(
∑n
k=1 P̄

(k)
rx )/σ2

w is the total SNR (which may be produced if
all the radiated power was allocated to only one eigenchannel)
and φk = P̄

(k)
rx /(

∑n
k=1 P̄

(k)
rx ) is the percentage of the total

SNR that goes to the k-th eigenchannel. Furthermore, we
can express the noise power as σ2

w = N0WNfML, where
N0 is the power spectral density of the baseband-equivalent
additive white Gaussian noise (AWGN), W is the transmission
bandwidth, Nf is the noise figure of the receiver’s front end and
ML is a link margin term which represents any other additive
noise or interference [2].

Finally, using the result presented in Appendix A along with
(21) and (22), the following relationship can be found:

P̂PA =
ξ

η

n∑

k=1

P
(k)
tx =

ξA0d
α

η

n∑

k=1

P (k)
rx (23)

=
ξA0d

ασ2
w

η
γ̄ = Adαγ̄ , (24)

with A a constant.

B. τ̄ as function of the SNR

Assume that the probabilities of frame error of each trans-
mission trial, {Pf(i)}∞i=1 (cf. (14)), are a set of i.i.d. random
variables. Then, define their mean value as P̄f := E{Pf(i)}.
Using these conditions on (14), it can be shown that [15]

τ̄ =
(
1− P̄f

)−1
. (25)

Lets assume that H bits of header are transmitted using a
binary modulation for minimizing their probability of error,

and L bits of payload are modulated using an uncoded M -
ary modulation with b = log2M bits per symbol. Hence,
the frame is composed by H binary symbols and L/b M -
ary symbols. We will assume that the transmitter is equipped
with a deep interleaver [24], which completely decorrelates
the MIMO channel between any sucessive symbols.

There are different ways in which the symbols that compose
the frame can be fed into the SVD engine. Following [25], we
will consider the case in which these symbols are assigned to
the eigenchannels using a different order for each transmission
trial in a pseudo-random fashion. This has been shown to
outperform an ordered feeding [25]. Define Ak as the event in
which a symbol is assigned to the k-th eigenchannel and Ep as
the event that a payload symbol were decoded with error. As
all events Ak are jointly exhaustive and mutually exclusive,
we can decompose the error events as Ep = ∪Nk=1 (Ep ∩Ak).
Hence, for a given realization of the channel matrix H, the
average error rate of a payload symbol can be written in terms
of the symbol error rate (SER), Ps , as

P{Ep} = P {∪nk=1(Ep ∩Ak)} =
n∑

k=1

P (Ep ∩Ak) (26)

=
n∑

k=1

P (Ak)P (Ep|Ak) =
1

n

n∑

k=1

Ps (SNRk) , (27)

where SNRk is as defined in (22). Above, we are using that
P(Ak) = 1/n ∀k = 1 . . . n. In similar fashion, by defining
Eh as the event that a header symbol is decoded with error,
it can be proved that P{Eh} = 1

n

∑n
k=1 Pbin (SNRk), where

Pbin is the SER of the binary modulation.
It is to be noted that these SER are valid for all the header

and payload symbols that compose the frame. It follows that,
for a given channel realization, the frame error rate can be
expressed as Pf = 1− (1− P{Eh})H(1− P{Ep})L/b. Using
this and (27) in (25), the following is obtained:

τ̄ =
[
1− P̄ (n)

2 (φ̃k, γ̄)
]−H [

1− P̄ (n)
M (φk, γ̄)

]−L/b
. (28)

where we have defined the mean SVD SER as

P̄
(n)
M (φk, γ̄) =

1

n

n∑

k=1

P̄s(λkφkγ̄) , (29)

which is the average of the mean SER of the used eigenchan-
nels which use a M -ary modulation. Above, P̄ (n)

2 (φ̃k, γ̄) is
(29) for M = 2, and φ̃k is the percentage of the total SNR
that goes to the k-th eigenchannel during the transmission of
the header.

C. Optimizing the SNR

In the following, we will present how the total SNR γ̄ and
coefficients φk and φ̃k can be optimized to achieve energy
efficiency.

1) Optimization of φk and φ̃k: The mean total energy
consumption per goodbit (20) can be re-written using (24)
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and (28) as

Ēb(φk, φ̃k, γ̄) = Ŝ + . . .

+
B̂ + (P̂el +Adαγ̄)T̂

[
1− P̄ (n)

2 (φ̃k, γ̄)
]H [

1− P̄ (n)
M (φk, γ̄)

]L/b . (30)

The values of φk that minimize (30) are the ones that minimize
P̄

(n)
M (φk, γ̄). From (29), the optimal values φ∗1, . . . , φ

∗
n for

a given realization of the fading coefficients λ1, . . . , λn, are
given by

(φ∗1, . . . , φ
∗
n) = argmin

φ1,...,φn

{
1

n

n∑

k=1

Ps(λkφkγ̄)

}
, (31)

for which one solution is presented in Appendix B. Using
the solution to (31), the minimized mean SVD SER can be
expressed as

P̄
(n)
M (φ∗k, γ̄) = E

{
1

n

n∑

k=1

Ps(λkφ
∗
kγ̄)

}
, (32)

where the expectation is taken over the fading coefficients.
The values φ̃∗1, . . . , φ̃

∗
n that minimize P̄ (n)

2 (φ̃k, γ̄) can be
found as above using (31) and (32) for the specific case of
a binary modulation.

2) Optimization of the total SNR: Using (31) and (32), the
minimal energy consumption per goodbit for a given total SNR
γ̄ can be found by evaluating (30) at φ∗ and φ̃∗. It can be seen
from (30) that the energy consumption is large at extreme
values of the total SNR. In effect, if the SNR is low, then the
symbol error rate tends to 1, in which case the denominator in
(30) is small. This reflects the intuitive fact that at low SNR
the energy consumption is high because of the large number
of retransmissions needed for a succesful frame reception. On
the contrary, at a high SNR, (30) is also large because the
numerator is proportional to γ̄. This reveals that the energy
consumption is large because the irradiated power is excessive.
We thus infer that an optimal SNR that minimizes the energy
consumption must exist in between.

The previous analysis is analogous to the one made for
single antenna systems in [15]. Following that work, we define
the SNR at which the system attains a minimal average energy
consumption as

γ̄∗ = argmin
γ̄∈[0,∞)

Ēb(φ∗k, φ̃
∗
k, γ̄) , (33)

which represents an optimal tradeoff between irradiation
power and retransmission consumption.

IV. OPTIMIZATION OF THE ANTENNA ARRAY SIZE

The goal of this section is to compare the energy consump-
tion of MIMO systems of different sizes. For this, we first
optimize the modulation size and number of eigenchannels
to be used in order to minimize the energy consumption
of a MIMO system of a given size. Then, we compare the
optimal performances thus found amoung MIMO systems with
different sizes, and study how the minimal energy consumption
scales with the antenna array size.

A. Optimization of the number of eigenchannels used (n)
We begin by evaluating (30) at the optimal quantities φ∗k,

φ̃∗k and γ̄∗ (from (31) and (33)) and rewriting it so that the
dependence on the number of bits per symbol (b), on the
number of used eigenchannels (n) and on the antenna array
size (N ) becomes explicit. Concretely:

Ēb(φ∗k, φ̃
∗
k, γ̄
∗) = NS + . . .

+
(nb)−1B + [NPel +Adαγ̄∗]T̂

[
1− P̄ (n)

2 (φ̃∗k, γ̄
∗)
]H [

1− P̄ (n)
M (φ∗k, γ̄

∗)
]L/b , (34)

where S = 2Est, B = 2ESVD/(RsTc) and Pel = Pel,tx +Pel,rx is
the total electronic power consumption per transceiver branch
(see Section II). It is to be notice that the quantities φ∗k, φ̃∗k
and γ̄∗ are also functions of b, n and N .

Numerical evaluations of (34) were performed using param-
eters of a typical low-power device, which are given in Tables I
and II. Parameters nadd, nprod, ndiv and nroot where found
calculating averanges over the iterative algorithms presented
in [14] and [28].

TABLE I
GENERIC LOW-POWER DEVICE PARAMETERS

Parameter Description Value

fc Carrier frequency 2.4 GHz §
vmax Maximal mobility 3 m/s
W Bandwidth 10 kHz †

Rs Symbol rate 10 kBaud †

L Frame Payload 98 bytes §

Oa Adqusition overhead 1 byte §

Ob Estimation and sincronization overhead 3 bytes §

H Frame header 26 bytes §

F Feedback frame length 11 bytes §

Est Start-up energy per branch 0.125 nJ †

α Path-loss coefficient 3.2 ‖

A0 Free space path loss 30 dB †

η PA efficiency 35% †

Pel,tx Tx electric power consumption 98.2 mW †

Pel,rx Rx electric power consumption 112.5 mW †

N0 Noise power density -174 dBm/Hz
Nf Receiver noise figure 10 dB †

Ml Link margin 30 dB ‖

Consider now optimizing the modulation size for a given
number n out of N eigenchannels in a link distance of d
meters. Concretely, using (34), define

Ē∗b (d, n,N) = min
b∈M
Ēb(φ∗k, φ̃

∗
k, γ̄
∗) , (35)

whereM is a set of modulations. Computing (35) for various
M-QAM modulations, we find that smaller modulations are
optimal for long link distances. The optimal modulation size
grows as link distance decreases (see Figure 2). This general-
izes the results presented in [15] for single antenna systems.

†Source: [20]
§Source: IEEE 802.15.4 standard [29]
‖Source: [15]
∗Source: [30]
‡Source: [31]
††Source: [32]
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TABLE II
APU PARAMETERS

Parameter Description Value

fALU ALU frequency 20 MHz ‡

Vdd ALU voltage 3 V ‡

I0 Average current 6.37 mA ‡
cadd Adding cost 6 cycles ∗
cprod Product cost 13 cycles ∗
cdiv Division cost 21 cycles ∗

croot Root cost 149 cycles ††

nadd ALU cycles per addition 16
3
N3 + 10N2 − 28

3
N + 10

nprod ALU cycles per multiplication 16
3
N3 + 16N2 − 70

3
N + 4

ndiv ALU cycles per division 4N2 − 2N − 3
nroot ALU cycles per square root 2N2 − 3
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Fig. 2. Size of the M-QAM modulation which miminizes the energy
consumption of a 4 × 4 MIMO system over various link distances. Small
modulations are optimal for long link distances, while the optimal modulation
size grows as the link distance shortens.

Evaluations of (35) for varying values of n shows that
beamforming (n = 1), used together with BPSK, is the
optimal choice for minimizing the energy consumption in
long range communications (see Figure 3). This agrees with
intuition, because the power consumed by the power amplifiers
(P̂PA) dominates over the power consumed by the electronic
components (P̂el) when the link distance is large. It is therefore
convenient to reduce the irradiated power by investing it
exclusively in the most favorable eigenchannel.

On the other end, full SVD (n = N ) used along with
spectrally efficient modulations is optimal in the energy sense
for short transmission distances (see Figure 3). In this scenario,
the power consumed by electronic components dominates
over the consumption of the power amplifiers. The energy
consumption (34) can therefore be approximated for this case
as

Ēb ≈ NS + [(nb)−1B +NPel]T̂ . (36)

Hence, under these conditions it is attractive to increase the
throuput in order to reduce the total transmission time per bit
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Fig. 3. Minimal energy consumption of 4x4 MIMO SVD communications
using various numbers of used eigenchannels. Full SVD, where all the
available eigenchannels are being used, is the optimal strategy for short link
distances. On the contrary, beamforming (only using one eigenchannel) is
optimal for long range communications.

T̂ .

B. Optimization of array size (N )

We define the minimal energy consumption per goodbit of
an N ×N MIMO system as

Ē?b (d,N) = min
n∈{1,...,N}

Ē∗b (d, n,N) , (37)

where Ē∗b (d, n,N) is given by (35).
Numerical evaluations of (37) show that fpr long link

distances large MIMO systems are more energy efficient than
single antenna systems (see Figure 4). This is because the
use of beamforming with a large antenna array generates
important reductions in the frame error rate. These more
favorable statistics allow in turn for reducing the irradiated
energy needed to reach the receiver with an adequate SNR.

On the contrary, small antenna arrays are optimal for short
transmissions distances (see Figure 4). Large antenna arrays
are suboptimal, as the reduction in the time per bit achieved by
a higher throughput is not enough to compensate the increase
in the electric power P̂el, which is linear on N (see Equations
(36) and (39)). The rol played by the MIMO overhead (NOa+
Ob)/L is critical, as it is the only term in (39) that do not
decreases when the throughput grows.

It is important to notice that the above analysis continue to
hold if different modulation sizes are used over the eigenchan-
nels. In effect, it was shown in Section IV-A that, for short
link distances, the minimal energy consumption is achieved
maximizing the throuput, which is achieved using the larger
allowable modulation over all the eigenchannels. In fact, using
a different modulations over the eigenchannels will always
reduce the overall throughput, which will increase the total
time per bit increasing the mean energy consumption of short
range communications. Similarly, beamforming equiped with
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Fig. 4. Minimal energy consumption of different antenna array sizes. Single
antenna systems consume less energy in short range communications, while
large antenna arrays achieve better performances when the link distance is
large.

BPSK will continue to be the optimal transmission strategy for
large link distances, as the achieved mean SVD SER cannot be
improved by any other combination of modulations and used
eigenchannels [16].

C. Performance of very large MIMO systems

Section IV-B presents the idea that the strategy that min-
imizes the energy consumption of communications through
long link distances is to use a binary modulation over beam-
forming performed on a large antenna array. We want to study
how this performance scales when the array size grows.

In [16] is shown that the SER of beamforming in large
MIMO systems (N ≥ 15) is essentialy equal to the SER of
an AWGN channel with a array gain µN (cite Dresden), i.e.
P̄

(1)
2 (φ̃k, γ̄) ≈ Q(

√
2µN γ̄). Morover, at very long transmis-

sion distances the electronic consumption can be neglected.
Therefore, the minimal energy consumption given by (37) can
be approximated by

Ē?b (d,N) ≈ min
γ̄∈(0,∞)

Adαγ̄T̂
[
1−Q(

√
2µN γ̄)

]H+L/b
, (38)

where T̂ is given by (see Section II)

T̂ =
1

Rs

(
1

nb
+

F

nbL
+

H

nL
+
NOa +Ob

L

)
. (39)

For large values of N , (39) can be approximated as T̂ ≈
N(Oa/L). Also, simulations shows that, when beamforming
is used over long transmission distances, the optimal SNR (γ̄∗)
is such that the average number of retransmissions is low, so
τ̄(γ̄∗) =

[
1−Q(

√
2µN γ̄∗)

]−H−L/b ≈ 1. This is achieved at
an approximately fixed SNR level, which we will denote as
K = µN γ̄

∗. Therefore, (38) can be rewriten as

Ē?b (d,N) ≈ N

µN

(
AdαKOa

L

)
. (40)

Above, the term in parenthesis is a constant that do not depend
on N . Morover, it has been shown that µN ∝ N when
N is large [16]. Hence, it can be seen from (40) that the
benefits of a larger array gain (µN ) is compensated with the
increase in the mean time per bit (T̂ ), which grows with the
array size because of the need of estimating a larger MIMO
channel matrix. Therefore, the energy consumption of very
large MIMO systems is approximately the same, and there
is a critical antenna array size, beyond which no significant
energy savings can be achieved (see Figure 5).
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Fig. 5. Minimal energy consumption of large MIMO systems, which use
BPSK modulation over beamforming. It can be seen that, for long tranmssion
distances, the performance of very large MIMO systems is essentially the
same, and therefore there is no reason to go beyond arrays of 256 antennas.

V. CONCLUSIONS

We studied the energy consumed in a MIMO SVD commu-
nication link for delivering one bit of data without error, and
how it could be minimized by optimizing the radiated power,
modulation size and number of eigenchannels to be used.
In our study, we considered different transmission distances
and various channel statistics, as well as the energy cost
of retransmissions, feedback frames and the consumption of
electronic components.

We found that, for a given antenna array size, the strat-
egy that minimizes the energy consumption of short range
communications is to maximize the throughput using a large
constelation size over all the available eigenchannels. As the
transmission distance increases, the optimal number of used
eigenchannels and the optimal modulation size decreases. For
long link distances it is optimal to reduce the irradiated power
by reducing the throughput and sending all the power only
thought the more favorable direction, which is given by the
beamforming pattern.

We also found that single antenna systems are more energy
efficient for performing short range communications than
MIMO systems. On the contrary, large antenna arrays are the
optimal choice for long distance links, where beamforming
can achieve important array gains. Nevertheless, we found that
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there is a critical array size, over which larger array sizes do
not achieve further energy savings, and therefore their higher
cost and complexity cannot be justified.

APPENDIX A
ALTERNATIVE EXPRESSION FOR P̂PA

Lets deduce an alternative expression for the total power
consumption of all the power amplifiers P̂PA (cf. Section
II-A4).

If only the best n eigenchannels are being used, the trans-
mitted vector ~x is related to the transmitted symbol vector ~s
as ~x = Vn~s, where Vn is the N×n precoding matrix which is
composed by the first n columns of the unitary matrix V which
is obtained from the singular value decomposition H = U∗ΛV
[14]. Therefore

|xj |2 =

n∑

k=1

|vj,k|2P̄ (k)
tx (41)

where vj,k is the coefficient of the j-th row and k-th column of
Vn, and P̄ (k)

tx is the power allocated into the k-th eigenchannel
for j ∈ {1, . . . , n} (cf. Section III-A).

Assuming that |xj |2 = P
(j)
A , where P

(j)
A as defined in

Section II-A4), and using (11) and the definition of P̂PA (cf.
Equation 12), then the total power consumption of the PA’s
can be written as

P̂PA =
N∑

j=1

P
(j)
PA =

η

ξ

N∑

j=1

|xj |2 (42)

=
η

ξ

n∑

k=1

N∑

j=1

|vj,k|2P̄ (k)
tx =

η

ξ

n∑

k=1

P̄
(k)
tx (43)

where we are using the fact that
∑N
j=1 |vj,k|2 = 1 as the

columns of the unitary matrix V are orthonormal.

APPENDIX B
SOLUTION OF (31)

The problem stated in (31) is equivalent to

minimize f(φ1, . . . , φn) =
1

n

n∑

k=1

Ps(λkφkγ̄)

subject to
n∑

k=1

φk = 1,

φk ≥ 0, k = 1, . . . , n.

Above, the SER function is given by

Ps (λkφkγ̄) =

{
cQ
(√
aλkφkγ̄

)
BPSK

1−
[
1− cQ

(√
aλkφkγ̄

)]2
M-QAM

(44)

where a and c are appropiate constants [24]. We will first show
that the previous is a convex optimization problem, and then
apply the Karush-Kuhn-Tucker (KKT) conditions.

Lets write the objetive function as f = (1/n)
∑n
k=1 fk,

where fk(φ1, . . . , φn) = Ps (λkφkγ̄) as given in (44). It can
be shown that, for any value of k, fk : Rn → R is a convex
function, as it only depends on φk and ∂2fk

∂φ2
k
> 0. Therefore, f

is also convex because it is the sum of convex functions. The
domain of allowable solutions is a probability simplex, which
is a well known convex set [33].

As the above problem is convex, the KKT conditions
are necessary and sufficient to characterize the optimal so-
lution [33]. Therefore, expressions for the optimal values
(φ∗1, . . . , φ

∗
n) can be found using the following Lagrangian:

Λ =
1

n

n∑

k=1

Ps(λkφkγ)+η0

(
N∑

k=1

φk − 1

)
−

n∑

k=1

ηkφk . (45)

Using the KKT conditions on (45), it can be shown that the
optimal values φ∗k satisfy the conditions

sφ∗ke
sφ∗

k

[1− rQ(
√
sφ∗k)]2

= βλ2
k ∀k ∈ {1, . . . , n} , (46)

where s = aλkγ̄, β is a constant, and r = 2(1− 1/
√
M) for

M-QAM modulations or r = 0 for BPSK.
Solving (46) for BPSK can be done using the Lambert

function W (x) [34]. To be able to solve (46) for the general
case, we define a generalized Lambert function Wr(x) as

Wr(x) = y ⇐⇒ yey

(1− rQ(
√
y))2

= x . (47)

The general Wr(x) exists and is unique for all x ≥ 0 and
r ≥ 0, because it is the inverse of a strictly increasing function.

Using the generalized Lambert function, the solution can be
written as

φ∗k =
1

aλkγ̄
Wr(βλ

2
k) . (48)

The constant β is the number that satisfies the condition∑n
k=1 φ

∗
k = 1. Replacing (48) into this condition we find

aγ̄ =

n∑

k=1

1

λk
Wr(βλ

2
k) , (49)

from where β must be found numerically.
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