
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

RECONNECTION WITH THE IDEAL

TREE: A NEW APPROACH TO

REAL-TIME SEARCH

LEÓN ILLANES FONTAINE

Thesis submitted to the O�ce of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

JORGE A. BAIER A.

Santiago de Chile, January 2014

c� MMXIII, Le´on Illanes

c� MMXIII, Le´on Illanes

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier

medio o procedimiento, incluyendo la cita bibliográfica que acredita al trabajo y a

su autor.

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

RECONNECTION WITH THE IDEAL

TREE: A NEW APPROACH TO

REAL-TIME SEARCH

LEÓN ILLANES FONTAINE

Members of the Committee:

JORGE A. BAIER A.

JUAN L. REUTTER D.

CARLOS HERNÁNDEZ U.

ANDRÉS GUESALAGA M.

Thesis submitted to the O�ce of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, January 2014

c� MMXIII, Le´on Illanes

To my family and friends.

ACKNOWLEDGEMENTS

Above all I want to acknowledge and thank my thesis advisor, Jorge Baier, and

my o�ce mate and research partner, Nicolás Rivera –whose ideas form the base over

which this work is built. Without either of them, no part of the thesis would have

ever existed.

Alongside them, I’d like to thank Carlos Hernández, whose insight and expertise

helped guide the project. I also want to thank the other members of my commit-

tee, Andrés Guesalaga and Juan Reutter, for helping expediting the final processes

involved.

In addition, I’d like to express my gratitude to all other sta↵ members at the

Department of Computer Science, and specially acknowledge Soledad Carrión for

her endless help throughout every step of my career.

Of course, I wish to acknowledge my family and my friends, without whom all

else is unimportant. Among them, I specifically thank the people at (and around)

o�ce O10: Andrés, Gabriel, Gonzalo, Mart́ın and –once again– Nicolás.

Finally, I’d like to thank my soon-to-be-wife, Andréıta, for always supporting

me and helping me, both in relation to this work and all other activities in my life.

Real stupidity beats artificial intelligence every time.

—Terry Pratchett, Hogfather (1996)

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

RESUMEN . xii

1. INTRODUCTION . 1

1.1. Background . 1

1.1.1. State-Space Problems . 3

1.1.2. Heuristic Search . 4

1.1.3. Incremental Heuristic Search . 7

1.1.4. Real-Time Heuristic Search . 9

1.2. Thesis Work . 13

1.2.1. Major Contributions . 13

1.2.2. Future Work . 14

2. ARTICLE SUBMITTED TO JOURNAL OF ARTIFICIAL INTELLIGENCE

RESEARCH . 15

2.1. Introduction . 15

2.2. Background . 18

2.2.1. Real-Time Search . 19

2.3. Searching via Tree Reconnection . 22

2.3.1. The Ideal Tree . 22

2.3.2. Following and Reconnecting . 24

2.4. Satisfying the Real-Time Property . 27

2.4.1. FRIT with Real-Time Heuristic Search Algorithms 29

vi

2.4.2. FRIT with Bounded Complete Search Algorithms 33

2.5. Theoretical Analysis . 34

2.5.1. Proofs for InTree[c] . 35

2.5.2. Termination and bound for FRITRT 36

2.5.3. Termination and bound for FRIT 37

2.5.4. Convergence . 38

2.6. Empirical Evaluation . 39

2.6.1. Analysis of the results for real-time search algorithms 41

2.6.2. Analysis of the results for incremental algorithms modified to satisfy

the real-time property . 42

2.6.3. Comparison of the two approaches 45

2.7. Related Work . 45

2.7.1. Incremental and Real-Time Heuristic Search Algorithms 45

2.7.2. Bug Algorithms . 47

2.8. Summary . 49

References . 51

vii

LIST OF TABLES

2.1 Relationship between search expansions and number of iterations in which

the agent does not move in games maps. The table shows a parameter k

for each algorithm. In the case of AA* and Repeated A* the parameter

corresponds to the number of expanded states. In case of FRIT, the

parameter corresponds to the number of visited states during an iteration.

In addition, it shows average time per search episode (Time/ep), and the

percentage of iterations in which the agent was not moved by the algorithm

with respect to the total number of iterations (No moves). 44

viii

LIST OF FIGURES

1.1 A heuristic depression in a graph. The numbers represent the heuristic

values for each state. 12

1.2 A heuristic depression in a grid pathfinding problem. The numbers

represent the heuristic value for each cell of the grid. Black cells are

obstacles. The gray colored cells are a heuristic depression. 12

2.1 An illustration of some of the steps of an execution over a 4-connected grid

pathfinding task, where the initial state is cell D3, and the goal is E6. The

search algorithm A is breadth-first search, which, when expanding a cell,

generates the successors in clockwise order starting with the node to the

right. The position of the agent is shown with a black dot. (a) shows the

true environment, which is not known a priori by the agent. (b) shows the

p pointers which define the ideal tree built initially from the Manhattan

heuristic. Following the p pointers, the algorithm leads the agent to D4,

where a new obstacle is observed. D5 is disconnected from T and GM ,

and a reconnection search is initiated. (c) shows the status of T after

reconnection search expands state D4, finding E4 is in T . The agent is

then moved to E4, from where a new reconnection search expands the gray

cells shown in (d). The problem is now solved by simply following the p

pointers. 28

2.2 Real-time algorithms: Total Iterations versus Time per Episode 42

2.3 Incremental algorithms: Total Iterations versus Time per Episode 43

2.4 Incremental algorithms: Total Iterations versus Time per Episode (zoomed) 43

2.5 Comparison of FRIT using a real-time algorithm versus FRIT as an

incremental algorithm in games benchmarks. 46

ix

2.6 Bug2 (a) and FRIT (b) in a pathfinding scenario in which the goal cell is

E10 and the initial cell is E2. The segmented line shows the path followed

by the agent. 49

x

ABSTRACT

In this thesis we present FRIT, a simple approach for solving single-agent de-

terministic search problems under tight time constraints in partially known envi-

ronments. Unlike traditional Real-Time Heuristic Search (RTHS) algorithms, FRIT

does not search for the goal but rather searches for a path that connects the current

state with a so-called ideal tree T . Such a tree is rooted in the goal state and is built

initially using a user-given heuristic h. When the agent observes that an arc in the

tree cannot be traversed in the actual environment, it removes such an arc from T
and then carries out a reconnection search whose objective is to find a path between

the current state and any node in T .

Reconnection is done using an algorithm that is passed as a parameter to FRIT.

As such, FRIT is a general framework that can be applied to many search algorithms.

If such a parameter is an RTHS algorithm, then the resulting algorithm can be an

RTHS algorithm. We show, however, that FRIT may be fed with a complete blind-

search algorithm, which in some applications with tight time constraints (including

video games) may be acceptable and, perhaps, preferred to a pure RTHS algorithm.

We evaluate over standard grid pathfinding benchmarks including game maps

and mazes. Results show that FRIT, used with RTAA*, a standard RTHS algo-

rithm, outperforms RTAA* significantly; by one order of magnitude under tight time

constraints. In addition, FRIT(daRTAA*) substantially outperforms daRTAA*, a

state-of-the-art RTHS algorithm, usually obtaining solutions 50% cheaper on aver-

age when performing the same search e↵ort. Finally, FRIT(BFS), i.e., FRIT using

breadth-first-search, obtains very good quality solutions and is perhaps the algorithm

that should be preferred in video game applications.

Keywords: Heuristic Search, Real-Time Heuristic Search, Incremental

Search, Heuristic Learning, A*, Learning Real-Time A*, FRIT

xi

RESUMEN

En esta tesis se presenta FRIT, un algoritmo simple que resuelve problemas

de búsqueda determińıstica para un agente, en ambientes parcialmente conocidos

bajo restricciones de tiempo estrictas. A diferencia de otros algoritmos de búsqueda

heuŕıstica en tiempo real (BHTR), FRIT no busca el objetivo: busca un camino que

conecte el estado actual con un árbol ideal T . El árbol tiene su ráız en el objetivo y

se construye usando la heuŕıstica h. Si el agente observa que un arco en el árbol no

existe en el ambiente real, lo saca de T y realiza una búsqueda de reconexión para

encontrar un camino que lleve a cualquier estado en T .

La búsqueda de reconexión se lleva a cabo por medio de otro algoritmo. Aśı,

FRIT puede aplicarse sobre muchos algoritmos de búsqueda y si se trata de un

algoritmo para BHTR, el algoritmo resultante puede serlo también. Por otro lado,

mostramos que FRIT también puede usar un algoritmo de búsqueda ciega, resultando

en un algoritmo que puede ser aceptable para aplicaciones con restricciones de tiempo

estrictas (como videojuegos) y que incluso puede ser preferible a un algoritmo de

BHTR.

Evaluamos el algoritmo en problemas estándares de búsqueda en grillas, in-

cluyendo mapas de videojuegos y laberintos. Los resultados muestran que FRIT

usado con RTAA*—un algoritmo de BHTR t́ıpico—es significativamente mejor que

RTAA*, con mejoras de hasta un orden de magnitud bajo restricciones de tiempo

estrictas. Además, FRIT(daRTAA*) supera a daRTAA*—el estado del arte en

BHTR—y en promedio obtiene soluciones un 50% menos costosas usando el mismo

tiempo total. Finalmente, FRIT usando búsqueda en amplitud obtiene soluciones

de muy buena calidad y puede ser ideal para aplicaciones de videojuegos.

Palabras Claves: Búsqueda Heuŕıstica, Búsqueda en Tiempo Real, Búsqueda In-

cremental, Aprendizaje de Heuŕısticas, A*, FRIT

xii

1. INTRODUCTION

1.1. Background

Many algorithmic problems in Computer Science are formulated as search tasks,

in which the goal is to find a solution for the original problem. Indeed, search

algorithms are one of the core tools used in the development of Artificial Intelligence,

where so called rational agents act based on their observation of the environment

and attempt to achieve positive outcomes (Russell & Norvig, 2010, Ch. 1). Many of

the problems solved by such agents are naturally modeled as search problems. Some

examples are pathfinding for field robotics and general planning of action sequences.

Generally, many other problems can be formalized as state-space problems. This

formulation defines a space of states and operations that describe the environment,

where the operations modify the environment and change the state. In this setting,

we aim to find a set of operations that can modify an initial state into a goal state.

This can be modeled as a graph, where states are nodes and operations are the edges

that connect di↵erent nodes. Here, a solution is a sequence of operations forming a

path from the initial state to the goal state. This path can be optimized for di↵erent

criteria, such as length or cost.

As an example, we can see how this approach can be used to model puzzle

problems such as the Rubik’s Cube. A 3 ⇥ 3 ⇥ 3 cube is formed by 26 visible

smaller cubes, called cubies. Of these, 6 represent the centers of each face and

cannot be moved. The remaining 20 cubies can be either one of the 8 corners or

one of the 12 edges. Each of the corner cubies has 3 colors, whereas the edges have

2. This uniquely identifies each cubie, and can be therefore used to identify the

state of the full cube as a list describing the position of each of the 20 movable

cubies with respect to the static frame of reference defined by the 6 unmovable

ones. There is a set of 12 (or 18) primitive or fundamental operations that can be

performed on every state. These correspond to rotating any of the 6 faces 90� in

1

either direction (traditionally, rotating 180� is considered a separate action, although

it could be represented as two 90� rotations in the same direction). This way, a

graph representation for this problem has a node for each state, and each node is

connected to 12 (or 18) other nodes through the corresponding operators. Note that

even considering some other restrictions regarding the respective positions of the fixed

center cubies, such a representation has over 4.3⇥1019 states (Korf, 1997). However,

it has been computationally proved that for every state in the graph resulting from

considering 18 operators, there exists at least one path to the goal of length shorter

or equal to 20 (Rokicki, Kociemba, Davidson, & Dethridge, 2013).

The general problem of finding optimal paths in graphs has been studied exten-

sively both in Mathematics and Computer Science, and many algorithms have been

designed specifically for this. Algorithms employing uninformed search strategies

make no assumptions on the structure and characteristics of the problem, and work

well in the general case. However, they can be ine�cient when dealing with very

large state spaces, such as the ones found in many real-world applications. Informed

search strategies aim to solve this issue by means of heuristic functions that try to

guide the search e↵orts towards the goal, avoiding unnecessary computation. The

heuristics are designed specifically for each application, and often attempt to imitate

techniques used by humans when dealing with similar tasks. The area of Artificial

Intelligence concerned with heuristics and informed search is Heuristic Search.

For some applications, additional constraints and limitations are placed upon

the formalization of the problem. For instance, the information available for a robot

moving in an unknown environment can be limited to what the robot has already

observed, or the amount of computation allowable before moving a character in a

real-time video game is limited. This thesis is concerned with problems that combine

both of this constraints, in what we call Real-Time Heuristic Search in unknown

environments.

2

1.1.1. State-Space Problems

As discussed above, many problems in Artificial Intelligence and Computer Sci-

ence can be formulated as state-space search problems, and can subsequently be

solved with search techniques. Below, we formalize state-space search problems.

A state-space search problem is defined as a tuple P = (S,A, c, sstart, G). The

directed graph (S,A) represents the state-space, where S is the set of all possible

states and A is the set of operations or actions that can transition the problem

through di↵erent states. This way, if a = (s, t) and a 2 A, then it is possible to

transition from state s to state t by executing action a. sstart 2 S corresponds to the

initial state and G ✓ S is the set of all goal states. The function c : A! R+
0 assigns

costs to the actions, so that an agent performing action a will incur in a cost of c(a).

Note that without loss of generality, we can assume one single goal state g, such

that G = {g}. To use this formulation with a problem that does have multiple goal

states we can add a new state, g, and connect every state s 2 G to g with an action

a = (s, g) such that c(a) = 0. Below, we mostly use this formulation.

A sequence of states � = s0, s1, . . . , sn such that for every i < n, we have

(si, si+1) 2 A is called a path. Any path starting in sstart and finishing in g is a

solution for P . An optimal solution is one that minimizes the sum of the costs of

the actions used. Depending on the application, the goal can be to find an optimal

path or to quickly find a suboptimal path. The standard algorithm for finding an

optimal path is Dijkstra’s Algorithm. Pseudo-code for the algorithm is shown in

Algorithm 1.

In very general terms, this algorithm extends the search outwards from sstart

until it reaches g. More specifically, it searches the states of the problem in order of

cumulative distance from sstart, ensuring each node is reached through an optimal

path. Using an appropriate data structure for the priority queue Q, the algorithm

can run in O(|A|+ |S| log |S|) steps (Fredman & Tarjan, 1984).

3

Algorithm 1: Dijkstra’s Algorithm
Input: S,A, c, sstart, G
Output: A sequence of states representing the shortest path from sstart to a

state in G.
1 Initialization:
2 for each x 2 S do
3 x.distance 1
4 x.expanded False
5 x.previous null

6 sstart.distance 0
7 Insert sstart into priority queue Q.
8 Search:
9 while Q is not empty do

10 Remove s from Q with smallest distance.
11 if s 2 G then
12 return // The solution can be extracted from the previous

pointers.

13 s.expanded True
14 for each n 2 S such that (s, n) 2 A do
15 d s.distance+ c(s, n)
16 if d < n.distance then
17 n.distance d
18 n.previous s
19 if ¬n.expanded then
20 Insert n into Q.

1.1.2. Heuristic Search

For some real-world applications where the number of states is large, Dijkstra’s

Algorithm is somewhat ine�cient. To solve these issue, we can guide the search

by using information specific to the problems involved. Usually, we include this

information into the search as a heuristic function, a function that somehow ranks

the various available states.

In our formal setting, a heuristic is defined as a function h : S ! R+
0 , that

assigns to each state s 2 S an estimated value of the cost needed to go from s to g

through a path in the state-space graph. We define the perfect or optimal heuristic

4

h⇤ as the heuristic that correctly estimates the minimum distances for each state.

This way, for any s 2 S, h⇤(s) corresponds to the cost of the best path between s

and g. Additionally, we say that a heuristic h is admissible if for every state s 2 S

it holds that h(s)  h⇤(s). That is, a heuristic is admissible if it never overestimates

the distances. Finally, we say that h is consistent if for every (s, t) 2 A it holds that

h(s)  c(s, t) + h(t), and for every g 2 G it holds that h(g) = 0. It is easy to prove

that all consistent heuristics are also admissible.

1.1.2.1. The A* Algorithm

The standard algorithm used for finding shortest paths in Heuristic Search is

called A* (Hart, Nilsson, & Raphael, 1968). It works by maintaining and updating

a merit function f that estimates, for each state s, the cost of an optimal path going

from sstart to g and passing through s. For a given state s 2 S, it is defined as

f(s) = g(s) + h(s),

where g(s) corresponds to the accumulated cost of the best path already discovered

that goes from sstart to s. Initially, g(sstart) = 0 and g(s) = 1 for all other states.

Pseudo-code for this algorithm is shown in Algorithm 2.

A* uses two lists, Open and Closed, which intuitively represent the information

known for each state. As states are discovered, they are put in the Open list. When

the state is expanded (i.e.: all its neighbors are discovered) it is moved to the Closed

list. Whenever a shorter path to a state in Closed is discovered, the state is moved

back to Open, to eventually check if this implies better paths for any of it neighbors.

Note that the order in which the states are explored and expanded depends on the

merit function f , which is determined by both the heuristic function h and the costs

of the discovered paths. This contrasts with Dijkstra’s Algorithm, where the order

of expansion is determined exclusively by the costs. Indeed, if h(s) = 0 for all states

s 2 S, and assuming tie-breaking for states with the same merit is done in the same

5

Algorithm 2: The A* Algorithm

Input: S,A, c, sstart, G, h(·)
Output: A sequence of states representing the shortest path from sstart to a

state in G.
1 Initialization:
2 Closed ?
3 Open {sstart}
4 for each s 2 S do
5 g(s) 1
6 s.previous = null

7 g(sstart) 0
8 f(sstart) h(sstart)
9 Search:

10 while Open is not empty do
11 Remove s from Open with minimum f(s).
12 Insert s into Closed.
13 if s 2 G then
14 return // The solution can be extracted from the previous

pointers.

15 for each n 2 S such that (s, n) 2 A do
16 if g(s) + c(s, n) < g(n) then
17 n.previous s
18 g(n) g(s) + c(s, n)
19 f(n) g(n) + h(n)
20 if n 2 Closed then
21 Remove n from Closed.

22 if n 62 Open and n 62 Closed then
23 Insert n into Open.

way, then A* expands the states in the same order as Dijkstra’s Algorithm and gives

identical results.

Other relevant properties of A* are that if h is admissible, it will return an op-

timal solution (Hart et al., 1968). Moreover, if h is consistent then A* is optimally

e�cient and no algorithm can be shown to expand fewer states than A* when using

the same heuristic (Edelkamp & Schrödl, 2011) and tie-breaking strategy. Further-

more, given two di↵erent consistent heuristics h1 and h2 such that h2(s) � h1(s) for

6

all states s 2 S, A* using h2 will expand fewer states than A* using h1. Intuitively,

this means that the performance of A* improves when the heuristic is a better ap-

proximation. This motivates the concept of heuristic learning, which has been a key

tool for real-time heuristic search and is further discussed in the following sections.

Additionally, A* can be easily used to find suboptimal paths by using weights

that modify an admissible heuristic, making it inadmissible. Typically, this is done

by redefining the merit function f to f(s) = g(s) + w · h(s). This is known as

the Weighted A* Algorithm (wA*), and—when compared to simply using A* with

the admissible heuristic—will usually result in a much faster performance time wise,

albeit at a loss in solution quality (i.e.: cost). When using an admissible heuristic

and a weight w, the obtained solution is suboptimal by at most a factor of w.

1.1.3. Incremental Heuristic Search

An alternative method for speeding up searches is to use Incremental Search.

This technique is used when searches are done repeatedly in the same or similar

environment, so algorithms attempt to reuse information obtained in previous e↵orts

in order to solve newer problems faster than by doing a completely new search.

It is particularly relevant when dealing with dynamic environments—such as those

encountered by most applications involving the real, physical world or by applications

involving multiple independent agents. Here, planning needs to be repeated as the

state-space graph changes. Many uninformed algorithms focused on finding optimal

paths on these graphs have been proposed in literature. Indeed, Deo and Pang (1984)

refer to several such algorithms published in the 1960s.

Since then, algorithms that combine Incremental Search with Heuristic Search

have been developed. Some examples are D* (Stentz, 1995), D*Lite (Koenig &

Likhachev, 2002), Lifelong Planning A* (Koenig & Likhachev, 2001; Koenig, Likhachev,

& Furcy, 2004) and Adaptive A* (Koenig & Likhachev, 2006a). These algorithms

can be used to solve search problems in initially unknown environments, which are

frequently seen in the field of Robotics. A robot moving in an unknown terrain which

7

knows its relative position with regards to a goal can plan a path to it by assuming

all unknown areas to be traversable. This is known as planning with the free-space

assumption. When traveling through the resulting path, the robot might encounter

obstacles and will need to replan.

1.1.3.1. Adaptive A*

As mentioned above, Adaptive A* (AA*) is an incremental search algorithm

that guides the search with the use of a heuristic function. It is based on A*, and

as such has certain guarantees on optimality. E↵ectively, if the given heuristic is

consistent, then at every point of the search the planned path-to-go is optimal with

regards to the currently known information. Algorithm 3 shows pseudo-code for an

implementation of AA* designed for use in pathfinding in initially partially known

terrain.

Algorithm 3: Adaptive A*

Input: S,A, c, sstart, G, h(·)
E↵ect: The agent is moved from sstart to a state in G, if such a path exists.

1 Initialization:
2 Observe the environment around sstart and remove non-traversable arcs from
A.

3 s sstart
4 Search:
5 while s 62 G do
6 Call A*(S,A, c, s, G, h(·)). Extract a solution path � and keep the Open

and Closed lists.
7 f ⇤ minx2Open f(x)
8 for each x 2 Closed do
9 h(x) f ⇤ � g(x)

10 Move the agent through the path �. While moving, observe the
environment and remove non-traversable arcs from A. Stop if an arc in �
is removed from A.

The algorithm works by repeatedly searching with A*, and uses the returned

path and the Open and Closed lists (Line 6). The agent is moved through the

path and the state-space graph is updated according to observation of the agent’s

8

environment (Line 10). Whenever an arc in the path is removed, the movement stops

and the path is replanned. Finally, note that Lines 7–9 modify the heuristic function.

This is known as heuristic learning and is used here to ensure that information

discovered in a planning episode of the algorithm can be used in further planning

stages. Heuristic learning is a key idea in real-time heuristic search, and will be

discussed in more detail below.

1.1.4. Real-Time Heuristic Search

Certain search applications impose restrictions on the amount of time that can

pass between the execution of two consecutive actions. E↵ectively, this limits the

amount of computation that can be performed by an agent before deciding on a path

to follow.

One of the original goals for the field was to limit the search to only consider

states in a vicinity of the agent (Korf, 1990). This idea is sometimes called agent-

centered search (Koenig, 2001). The underlying motivation for this is that it repre-

sents an e�cient way of handling problems in very large space-states.

For this thesis, we are mostly concerned with the application of real-time heuris-

tic search algorithms in a priori unknown environments. One of the most straightfor-

ward applications of this is pathfinding in video games, where characters must often

move automatically in a partially known map. For interactivity reasons, systems

are sometimes given only a few milliseconds to decide where to move a number of

di↵erent characters (Bulitko, Björnsson, Sturtevant, & Lawrence, 2011). A di↵erent

application considers very fast robots, which physically move in real-time.

1.1.4.1. Learning Real-Time A*

Most real-time heuristic search algorithms are variants of one of the original

algorithms proposed by Korf (1990), Learning Real-Time A* (LRTA*). As such,

most of these algorithms share a familiar structure based around four distinct parts:

observing, planning, learning, and moving.

9

As for Adaptive A*, the learning process corresponds to heuristic learning. In

general terms, the goal of learning is to update the heuristic to consider some of the

information discovered during search.

In Algorithm 4 we show the pseudo-code for an implementation of LRTA*.

Algorithm 4: Learning Real-Time A*

Input: S,A, c, sstart, G, h(·)
E↵ect: The agent is moved from sstart to a state in G, if such a path exists.

1 Initialization:
2 s sstart
3 Search:
4 while s 62 G do
5 Observe the environment around the location of the agent and remove

from A all newly discovered non-traversable edges.
6 n argmint:(s,t)2A c(s, t) + h(t)
7 if h(s) < c(s, n) + h(n) then
8 h(s) c(s, n) + h(n)

9 Move the agent to n, setting s n.

Note that the four concepts defined are clearly represented in the algorithm.

Indeed, in Line 5 the agent observes the environment, updating the relevant infor-

mation. Then, in Line 6, the agent plans which of its direct neighbors it will move to.

Lines 7 and 8 define how the heuristic is updated, which corresponds to the learning

stage. Finally, Line 9 moves the agent according to the plan.

The learning process is focused on inflating the heuristic values of visited states as

much as possible without making the heuristic inconsistent. Therefore, the update

sets the heuristic of a state s to the highest possible value that does not break

consistency, which is mint:(s,t)2A c(s, t) + h(t).

Variants of LRTA* algorithm modify the di↵erent stages, usually performing

more elaborate computations in some of them. For example, both RTAA* (Koenig

& Likhachev, 2006b) and LSS-LRTA* (Koenig & Sun, 2009) modify the planning

and learning stages, allowing for a longer path planned and more heuristic values

updated in each iteration. Both of these algorithms use—as their planning stage—an

10

A* search that stops whenever a predetermined number of states has been expanded.

They di↵er in how they perform the heuristic update. LSS-LRTA* extends the idea

used in LRTA*, inflating the heuristic as much as possible in a larger region. RTAA*

uses the same the update strategy as AA*, which results in a faster procedure where

the states’ heuristic values are not raised as much.

1.1.4.2. Convergence

One of the key properties of LRTA* is that repeatedly running the algorithm

over the same problem will continue to increase the heuristic values of the visited

nodes until they converge to optimal values. That is, running su�cient trials over

the same problem without reseting the heuristic function will inflate it for states

in the visited paths until it reaches h⇤. Eventually, all states in the optimal path

between sstart and G will have accurate heuristic values and running the algorithm

again will result in the optimal solution.

Many real-time search algorithms share this property, which we call optimal

convergence. Additionally, some algorithms converge to suboptimal solutions. The

number of repeated trials needed for convergence varies between algorithms, problem

domains and problem instances.

1.1.4.3. Heuristic Depressions

Among the most important issues involved is real-time search, is the fact that

heuristics often contain depressions. Intuitively, depressions are bounded regions

of the state-space that do not contain a goal state and where the heuristic values

are comparatively low with respect to the heuristic values of states just outside the

region. It is well known that real-time search algorithms can perform poorly in these

regions. Indeed, Korf (1990) provides the example shown in Figure 1.1. Here, if an

agent based on LRTA* starts in one of the two nodes of the graph that have heuristic

value 1, it will move back and forth between them increasing their heuristic values

in small steps until at least one of them reaches a heuristic value of 5.

11

1 1 55
Figure 1.1. A heuristic depression in a graph. The numbers represent the
heuristic values for each state.

Figure 1.2 shows an example of how a heuristic depression can naturally occur

in simple pathfinding problems in grids using a common heuristic function. This

heuristic is known as the Manhattan Heuristic, and it estimates the cost to the goal

(marked as G) as the sum of the horizontal and vertical distances.

10 9 8 7 6 5 4 3

9 8 7 2

8 7 6 5 4 3 1

7 6 5 4 3 2 G

8 7 6 5 4 3 1

9 8 7 2

10 9 8 7 6 5 4 3

Figure 1.2. A heuristic depression in a grid pathfinding problem. The
numbers represent the heuristic value for each cell of the grid. Black cells
are obstacles. The gray colored cells are a heuristic depression.

Algorithms such as LSS-LRTA* are not very e↵ective when dealing with heuristic

depressions. Although learning the heuristic correctly in a big enough are will ensure

that the depressions are mostly avoided, this approach will not work when the rele-

vant regions are larger that what is feasible to learn in limited time. More elaborate

12

approaches consider removing or pruning states that are proved to be not conducive

towards the goal (Sharon, Sturtevant, & Felner, 2013). A di↵erent family of algo-

rithms attempts to actively identify depressions and escape them quickly (Hernández

& Baier, 2012).

1.2. Thesis Work

The goal of the research project described here is to apply a new approach to

real-time search. Although the approach shares similarities with both Incremental

Search and traditional Real-Time Heuristic Search, we believe the core idea behind

it has not been previously considered in literature. To understand the motivation

behind this idea, we can somewhat reformulate search problems in initially unknown

environments.

As we have discussed in the previous sections, the planning stage of algorithms

for these problems is repeated when previous plans are discovered to be incorrect.

Usually, each planning stage is treated as a new search problem in which the objective

is to find a path to a goal state. We propose that the objective could rather be to find

a path to an area where we believe finding a path to the goal will be easy. Basically,

the agent should move to regions in which the heuristic seems to be correct. This

is similar to what is described by Hernández and Baier (2012), but our approach is

very di↵erent in spirit.

1.2.1. Major Contributions

The major contributions presented in this thesis are outlined below.

• We describe FRIT, a new family of search algorithms for initially partially

known environments.

• We show two di↵erent ways to use FRIT with real-time constraints.

• We prove that both versions of our algorithm terminate, and we give ex-

plicit bounds on the returned solutions.

13

• We prove that both algorithms converge after a second trial run.

• We empirically show that our algorithms perform well. Tests were run

on standard grid pathfinding benchmarks (Sturtevant, 2012), where FRIT

significantly outperforms state-of-the-art RTHS algorithms.

1.2.2. Future Work

Future work in this area can be based upon applying the proposed algorithms to

other problems where real-time heuristic search is relevant. Some of these problems

void some of the key assumptions made by algorithms such as LRTA*. For example,

the number of states in the vicinity of an agent is usually assumed to be constantly

bounded, which is not true in a dense graph. We believe our algorithms may be well

suited for some of these situations.

14

2. ARTICLE SUBMITTED TO JOURNAL OF ARTIFICIAL INTELLI-

GENCE RESEARCH

2.1. Introduction

Real-Time Heuristic Search (Korf, 1990) is an approach to solving single-agent

search problems when a limit is imposed on the amount of computation that can be

used for deliberation. It is used for solving problems in which agents have to start

moving before a complete search algorithm can solve the problem and is especially

suitable for problems in which the environment is only partially known in advance.

An application of real-time heuristic search algorithms is goal-directed navigation

in video games (Bulitko et al., 2011) in which computer characters are expected to

find their way in partially known terrain. Game-developing companies impose a

constant time limit on the amount of computation per move close to one millisecond

for all simultaneously moving characters (Bulitko et al., 2011). As such, real-time

search algorithms are applicable since they provide the main loop with quick moves

that allow implementing continuous character moves.

Standard Real-Time Heuristic Search algorithms—e.g., LRTA*(Korf, 1990) or

LSS-LRTA* (Koenig & Sun, 2009)—however, are not algorithms of choice for videogame

developers, since they will require to re-visit many states in order to escape so-

called heuristic depressions, producing back-and-forth movements, also referred to

as scrubbing (Bulitko et al., 2011). The underlying reason for this behavior is that

the heuristic used to guide search must be updated—in a process usually referred to

as heuristic learning—whenever new obstacles are found. To exit so-called heuristic

depressions, the agent may need to revisit a group of states many times (Ishida,

1992).

By exploiting preprocessing (e.g. Bulitko, Björnsson, Lustrek, Schae↵er, & Sig-

mundarson, 2007; Bulitko, Björnsson, & Lawrence, 2010; Hernández & Baier, 2011),

one can produce algorithms based on Real-Time Heuristic Search algorithms that

15

will control the agent in a way that is sensible to the human observer. Give a map of

the terrain, these algorithms generate information o✏ine that can later be utilized

online by a Real-Time Search algorithm to find paths very quickly.

Unfortunately, preprocessing is not applicable in all settings. For example if one

wants to implement an agent which has no knowledge of the terrain, there is no map

that is available prior to search and hence no preprocessing can be carried out. On

the other hand, when knowledge about the terrain is only partial (i.e., the agent

may know the location of some of the obstacles but not all of them), using a plain

Real-Time Heuristic Search along with partial information about the map obtained

from preprocessing (i.e., a perfect heuristic computed for the partially known map)

may still result in the same performance issues described above.

In this paper we present FRIT, a real-time search algorithm that does not neces-

sarily rely on heuristic learning to control the agent, and that produces high-quality

solutions in partially known environments. While easily motivated by game applica-

tions, our algorithm is designed for general search problems. An agent controlled by

our algorithm always follows the branch of a tree containing a family of solutions.

We call such a tree the ideal tree because the paths it contains are solutions in the

world that is currently known to the agent, but such solutions may not be legal in

the actual world. As the agent moves through the states in the ideal tree it will

usually encounter states that are not accessible and which block a solution in the

ideal tree. When this happens, a secondary algorithm is used to perform a search

and reconnect the current state with another state known to be in the ideal tree.

After reconnection succeeds the agent is again on a state of the ideal tree, and it can

continue following a branch.

We evaluated our algorithm over standard game and maze pathfinding bench-

marks using both a blind, breadth-first search algorithm and two di↵erent real-time

search algorithms for reconnection. Even though our algorithm does not guarantee

optimality, solutions returned, in terms of quality and total time, are significantly

16

better than those returned by the state-of-the-art real-time heuristic search algo-

rithms we compared to, when the search e↵ort is fixed. Upon inspection of the route

followed by the agent, we observe that when using blind-search algorithms for recon-

nection they do not contain back-and-forth, “irrational” movements, and that indeed

they look similar to solutions returned by so-called bug algorithms (LaValle, 2006;

Taylor & LaValle, 2009) developed by the robotics community. As such, it usually

detects states that do not need to be visited again—sometimes referred to as dead-

ends or redundant states (Sturtevant & Bulitko, 2011; Sharon et al., 2013)—without

implementing a specific mechanism to detect them.

We also compared our algorithm to incremental heuristic search algorithms that

can be modified to behave like a real-time search algorithm. We find that, although

FRIT does not reach the same solution quality, it can obtain solutions that are

significantly better when the time deadline is tight (under 40µ sec).

Our algorithm is extremely easy to implement and, in case there is su�cient

time for pre-processing, can utilize techniques already described in the literature,

like so-called compressed path databases (Botea, 2011), to compute an initial ideal

tree. Furthermore, we provide proofs for termination of the algorithm using real-

time search and blind-search for reconnection, and provide a bound on the number

of moves required to find a solution in arbitrary graphs.

Some of the contributions presented in this paper have been published in con-

ference papers (Rivera, Illanes, Baier, & Hernandez, 2013). This articles extends the

work and includes new material that has not been presented before. In particular:

• We describe a method to use our algorithm with a real-time search algo-

rithm passed as a parameter, and evaluate the results obtained when using

two di↵erent real-time algorithms.

• We provide proofs for the termination of algorithms obtained by using the

aforementioned method, and a general proof for convergence applicable to

all the algorithms we propose.

17

• We incorporate a small optimization that a↵ects the InTree[c] function

described in Section 2.3.

• We extend some of the previous empirical results by including maze bench-

marks, which had not been previously considered, and by evaluating on

more problem instances.

The rest of the paper is organized as follows. In Section 2.2 we describe the back-

ground necessary for the rest of the paper. In Section 2.3 we describe a simple version

of our algorithm that is not real-time. In Section 2.4 we describe two alternative

ways to make the algorithm satisfy the real-time property. In Section 2.5 we present

a theoretical analysis, followed by a description of our experimental evaluation in

Section 2.6. We then describe other related work, and finish with a summary.

2.2. Background

The search problems we deal with in this paper can be described by a tuple

P = (G, c, sstart, g), where G = (S,A) is a digraph that represents the search space.

The set S represents the states and the arcs in A represent all available actions.

State sstart 2 S is the initial state and state g 2 S is the goal state. We assume that

S is finite, that A does not contain elements of form (s, s), that G is such that g is

reachable from all states reachable from sstart. In addition, we have a non-negative

cost function c : A ! R which associates a cost with each of the available actions.

Naturally, the cost of a path in the graph is the sum of the costs of the arcs in the

path. Finally g 2 S is the goal state. Note that even though our definition considers

a single goal state it can still model problems with multiple goal states since we can

always transform a multiple-goal problem into a single-goal problem by adding a

new state g to the graph and connecting the goals in the original problem to g with

a zero-cost action.

We define the distance function dG : S ⇥ S ! R such that dG(s, t) denotes

the cost of a shortest path between s and t in the graph G. A heuristic for a

18

search graph G is a non-negative function h : S ! R such that h(s) estimates

dG(s, g). We say that h is admissible if h(s)  dG(s, g), for all s 2 S. In addition,

we say a heuristic h is consistent if for every pair (s, t) 2 A it holds that h(s) 
c(s, t) + h(t), and furthermore that h(g) = 0. It is simple to prove that consistency

implies admissibility.

2.2.1. Real-Time Search

Given a search problem P = (G, c, sstart, g), the objective of a real-time search

algorithm is to move an agent from sstart to g, through a low-cost path. The algorithm

should satisfy the real-time property, which means that the agent is given a bounded

amount of time for deliberating, independent of the size of the problem. After

deliberation, the agent is expected to move. After such a move, more time is given

for deliberation and the loop repeats.

Most Real-Time Heuristic Search algorithms rely on the execution of a bounded

but standard state-space search algorithm (e.g., A*, Hart et al., 1968). In order to

apply such an algorithm in partially known environments, they carry out their search

in a graph which may not correspond to the graph describing the actual environment.

In particular, in pathfinding in grid worlds, it is assumed that the dimensions of

the grid are known, and to enable search a free-space assumption (Zelinsky, 1992)

is made, whereby grid cells are regarded as obstacle-free unless there is su�cient

information to the opposite.

Below we define a version of the free-space assumption for use with general search

problems. We assume a certain search graph GM is given as input to the agent. Such

a graph reflects what the agent knows about the environment, and is kept in memory

throughout execution. We assume that this graph satisfies the following generalized

version of the free-space assumption: if the actual search graph is G = (S,A), then

GM is a spanning supergraph of G, i.e. GM = (S,A0), with A ✓ A0. Note that

because GM is a supergraph of G then dGM (s, t)  dG(s, t) for all s, t 2 S, and that

if h is admissible for GM then so it is for G.

19

While moving through the environment, we assume the agent is capable of ob-

serving whether or not some of the arcs in its search graph GM = (S,A0) are present

in the actual graph. Specifically, we assume that if the agent is in state s, it is able

to sense whether (s, t) 2 A0 is traversable in the actual graph. If an arc (s, t) is

not traversable, then t is inaccessible and hence the agent removes from GM all arcs

that lead to t. Note that this means that if GM satisfies the free-space assumption

initially, it will always satisfy it during execution.

Note the following fact implicit to our definitions: the environment is static. This

is because G, unlike GM , never changes. The free-space assumption also implies that

the agent cannot discover arcs in the environment that are not present in its search

graph GM .

Many standard real-time search algorithms have the structure of Algorithm 5,

which solves the search problem by iterating through a loop that runs four proce-

dures: lookahead, heuristic learning, movement, and observation. The lookahead

phase (Line 3) runs a time-bounded search algorithm that returns a path that later

determines how the agent moves. The heuristic learning procedure (Line 4) changes

the h-value of some of the states in the search space to make them more informed.

Finally, in the movement and observation phase (Line 5), the agent moves along the

path identified previously by lookahead search. While moving, the agent observes

the environment, and prunes away from GM any arc that is perceived to be absent

in the actual environment.

RTAA* (Koenig & Likhachev, 2006b) is an instance of Algorithm 5. In its

lookahead phase, it runs a bounded A* from scurr towards the goal state, which

executes as regular A* does but execution is stopped as soon the node with lowest

f -value in Open is a goal state or as soon as k nodes have been expanded. The path

returned is the one that connects scurr and the best state in Open (i.e., the state

with lowest f-value in Open). On the other hand, heuristic learning is carried out

20

Algorithm 5: A Generic Real-Time Search Algorithm
Input: A search graph GM , a heuristic function h, a goal state g
E↵ect: The agent is moved from the initial state to a goal state if a

trajectory exists
1 while the agent has not reached the goal state do
2 scurr the current state.
3 path LookAhead(scurr, g).
4 Update the heuristic function h.
5 Move the agent through the path. While moving, observe the

environment and update GM , removing any non traversable arcs. Stop if
an arc in path is removed.

using Algorithm 6, which resets the heuristic of all states expanded by the lookahead

according to the f -value of the best state in Open.

Algorithm 6: RTAA*’s heuristic learning.

1 procedure Update ()
2 f ⇤ mins2Open g(s) + h(s)
3 for each s 2 Closed do
4 h(s) f ⇤ � g(s)

LRTA* (Korf, 1990) is also instance of Algorithm 5; indeed, LRTA* is an instance

of RTAA* when the k parameter is set to 1. In a nutshell, LRTA* decides where to

move to by just looking at the best of scurr’s neighbors, and updates the heuristic of

scurr also based on the heuristic of its neighbors.

It is easy to see that both RTAA* and LRTA* satisfy the real-time property since

all operations carried out prior to movement take constant time. These algorithms

are also complete—in the sense that they always find a solution if one exists—

when the input heuristic is consistent. To prove completeness, heuristic learning

is key. First, because learning guarantees that the state the agent moves to has a

lower heuristic value compared to h(scurr). Second, because the learning procedure

guarantees that the heuristic is always bounded (in the case of RTAA*, and many

other algorithms, consistency, and hence admissibility is preserved during execution).

21

Finally, bounds for the number of execution steps are known for some of these

algorithms. LRTA*, for example, can solve any search problem in (|S|2 � |S|)/2
iterations, where |S| is the number nodes in the search graph (Edelkamp & Schrödl,

2011, Ch. 11).

2.3. Searching via Tree Reconnection

The algorithm we propose below moves an agent towards the goal state in a par-

tially known environment by following the arcs of a so-called ideal tree T . Whenever

an arc in such a tree cannot be traversed in the actual environment, it carries out a

search to reconnect the current state with a node in T . In this section we describe

a simple version of our algorithm which still does not satisfy the real-time property.

Prior to that, we describe how T is built initially.

2.3.1. The Ideal Tree

The ideal tree intuitively corresponds to a family of paths that connect some

states of the search space with the goal state. The tree is ideal because some of the

arcs in the tree may not exist in the actual search graph. Formally,

Definition 1 (Ideal Tree). Given a search problem P = (G, c, sstart, g), and a

graph GM that satisfies the generalized free-space assumption with respect to G, the

ideal tree T over P and GM is a directed acyclic subgraph of GM such that:

(i) the goal state g is in T and has no parent (i.e., it is the root), and

(ii) if t is a child of s in T , then (t, s) is an arc in GM .

Properties 1 and 2 of Definition 1 imply that given an ideal tree T and a node

s in GM it su�ces to follow the arcs in T (which are also in GM) to reach the goal

state g. Property 2 corresponds to the intuition of T being ideal : the arcs in T may

not exist in the actual search graph because they correspond to arcs in GM but not

necessarily in G.

22

We note that in search problems in which the search graph is defined using a

successor generator (as is the case of standard planning problems) it is possible to

build an ideal tree by first setting which states will represent the leaves of the tree,

and then computing a path to the goal from those states. A way of achieving this is

to relax the successor generator (perhaps by removing preconditions), which allows

including arcs in T that are not in the original problem. As such, Property 2 does

not require the user to provide an inverse of the successor generator in planning

problems.

The internal representation of an ideal tree T is straightforward. For each node

s 2 S we store a pointer to the parent of s, which we denote by p(s). Formally

p : S [{null} ! S [{null}, p(null) = null and p(g) = null. Notice that this

representation can actually be used to describe a forest. Below, we sometimes refer

to this forest as F and use the concept of paths in F , that correspond to paths in

some connected component of F that might or not be T .

At the outset of search, the algorithm we present below starts o↵ with an ideal

tree that is also spanning, i.e., such that it contains all the states in S. In the

general case, a spanning ideal tree can be computed by running Dijkstra’s algorithm

from the goal node in a graph like GM but in which all arcs are inverted. Indeed,

if h(s) is defined as the distance from g to s in such a graph, an ideal tree can

be constructed using the following rules: for every s 2 S \ {g} we define p(s) =

argminu:(s,u)2A[GM] c(s, u) + h(u), where A[GM] are the arcs of GM .

In some applications like real-time pathfinding in video games, when the envi-

ronment is partially known a priori it is reasonable to assume that there is su�cient

time for preprocessing (Bulitko et al., 2010). In preprocessing time, one could run

Dijkstra’s algorithm for every possible goal state. If memory is a problem, one could

use so-called compressed path databases (Botea, 2011), which actually define span-

ning ideal trees for every possible goal state of a given grid.

23

Moreover, in gridworld pathfinding in unknown terrain, an ideal tree over an

obstacle-free GM can be quickly constructed using the information given by a stan-

dard heuristic. This is because both the Manhattan distance and the octile distance

correspond to the value returned by a Dijkstra call from the goal state in 4-connected

and 8-connected grids, respectively. In cases in which the grid is completely or par-

tially known initially but there is no time for preprocessing, one can still feed the

algorithm with an obstacle-free initial graph in which obstacles are regarded as ac-

cessible from neighbor states. Thus, a call to an algorithm like Dijkstra does not

need to be made if there is no su�cient time.

In the implementation of our algorithm for gridworlds we further exploit the fact

that the tree can be built on the fly. Indeed, we do not need to set p(s) for every s

before starting the search; instead, we set p(s) when it is needed for the first time.

As such, no time is spent initializing an ideal tree before search. More generally,

depending on the problem structure, specific implementations can exploit the fact

that T need not be an explicit tree.

2.3.2. Following and Reconnecting

Our search algorithm, Follow and Reconnect with the Ideal Tree (FRIT, Algo-

rithm 7) receives as input a search graph GM , an initial state sstart, a goal state g,

and a graph search algorithm A. GM is the search graph known to the agent initially,

which we assume satisfies the generalized free-space assumption with respect to the

actual search graph. A is the algorithm used for reconnecting with the ideal tree.

We require A to receive the following parameters: an initial state, a search graph,

and a goal-checking boolean function, which receives a state as parameter.

In its initialization (Lines 1–4), it sets up an ideal tree T over graph GM . As

discussed above, the tree can be retrieved from a database, if pre-processing was

carried out. If there is no time for pre-processing but a suitable heuristic is available

for GM , then it computes T on the fly. In addition it sets the value of the variable c

and the color of every state to 0, and sets the variable hobstacle to 1. Note that if T

24

Algorithm 7: FRIT: Follow and Reconnect with The Ideal Tree
Input: A search graph GM , an initial state sstart, a goal state g, and a search

algorithm A
1 Initialization: Let T be an ideal tree for GM .
2 Set s to sstart.
3 Set c to 0 and the color of each state in GM to 0.
4 Set hobstacle to 1.
5 while s 6= g do
6 Observe the environment around s.
7 for each newly discovered inaccesible state o do
8 if h(o) < hobstacle then
9 hobstacle h(o).

10 Prune from T and GM any arcs that lead to o.

11 if p(s) = null then
12 c c+ 1
13 Reconnect (A, s, GM , InTree[c](·)).
14 Movement: Move the agent from s to p(s) and set s to the new position

of the agent.

Algorithm 8: Reconnect component of FRIT
Input: A search algorithm A, an initial state s, a search graph GM and a

goal function fGOAL(·)
1 Let � be the path returned by a call to A(s,GM , fGOAL(·)).
2 Assuming � = s0s1, . . . sn make p(si) = si+1 for every i 2 {0, . . . , n� 1}.

is computed on the fly, then state colors can also be initialized on the fly. hobstacle is

used to maintain a record of the smallest heuristic value observed in an inaccessible

state. The role of state colors and hobstacle will become clear below, when we describe

reconnection and the InTree[c] function. After initialization, in the main loop

(Lines 6–14), the agent observes the environment and prunes from GM and from T
those arcs that do not exist in the actual graph. Additionally, it updates hobstacle

if needed. If the current state is s and the agent observes that its parent is not

reachable in the actual search graph, it sets the parent pointer of s, p(s), to null.

Now the agent will move immediately to state p(s) unless p(s) = null. In the latter

case, s is disconnected from the ideal tree T , and a reconnection search is carried out

25

as shown in Algorithm 8. This procedure calls algorithm A. The objective of this

search is to reconnect to some state in T : the goal function InTree[c](·) returns

true when invoked over a state in T and false otherwise. Once a path is returned,

we reconnect the current state with T through the path found and then move to the

parent of s. The main loop of Algorithm 7 finishes when the agent reaches the goal.

The InTree[c] Function. A key component of reconnection search is the InTree[c]

function that determines whether or not a state is in T . Our implementation—shown

in Algorithm 9—follows the parent pointers of the state being queried and returns

true when it reaches the goal state or a state whose h-value is smaller than hobstacle.

This last condition exploits the fact that the way T is built (i.e.: the free-space

assumption) ensures that all states that are closer to the goal than all observed

obstacles must still be in T . This is merely an optimization technique, and removing

it will incur in a small performance reduction, but no change in the actions of the

agent. In addition, it paints each visited state with a color c, given as a parameter.

The algorithm returns false if a state visited does not have a parent or has been

painted with c (i.e., it has been visited before by some previous call to InTree[c]

while in the same reconnection search).

Algorithm 9: InTree[c] function

Input: a vertex s
1 while s 6= g do
2 if h(s) < hobstacle then
3 return true

4 Paint s with color c.
5 if p(s) = null or p(s) has color c then
6 return false

7 s p(s)

8 return true

Figure 2.1 shows an example execution of the algorithm in an a priori unknown

grid pathfinding task. As can be observed, the agent is moved until a wall is encoun-

tered, and then continues bordering the wall until it solves the problem. It is simple

26

to see that, had the vertical been longer, the agent would have traveled beside the

wall following a similar down-up pattern.

This example reflects a general behavior of this algorithm in grid worlds: the

agent usually moves around obstacles, in a way that resembles bug algorithms

(LaValle, 2006; Taylor & LaValle, 2009). This occurs because the agent believes

there is a path behind the wall currently known and always tries to move to such a

state unless there is another state that allows reconnection and that is found before.

A closer look shows that some times the agent does not walk exactly besides the wall

but moves very close to them performing a sort of zig-zag movement. This can occur

if the search used does not consider the cost of diagonals. Breadth-First Search (BFS)

or Depth-First Search (DFS) may sometimes prefer using two diagonals instead of

two edges with cost 1.

To avoid this problem we can use a variant of BFS, that, for a few iterations,

generates first the non-diagonal successors and later the diagonal ones. For nodes

deeper in the search it uses the standard ordering (e.g., clockwise). Such a version

of BFS achieves in practice a behavior very similar to a bug algorithm.1 This ap-

proach was explored in previous work (Rivera, Illanes, et al., 2013), and the overall

improvements were shown to be small. For this paper, we use standard BFS. See

Section 2.7.2 for a more detailed comparison to bug algorithms.

Note that our algorithm does not perform any kind of update to the heuristic h.

This contrasts with traditional real-time heuristic search algorithms, which rely on

increasing the heuristic value of the h to exit the heuristic depressions generated by

obstacles. In such a process they may need to revisit the same cell several times.

2.4. Satisfying the Real-Time Property

FRIT, as presented, does not satisfy the real-time property. There are two

reasons for this:

1Videos can be viewed at http://web.ing.puc.cl/
~

jabaier/index.php?page=research.

27

http://web.ing.puc.cl/~jabaier/index.php?page=research

1 2 3 4 5 6 7 8

A

B

C

D

E

F

1 2 3 4 5 6 7 8

A

B

C

D

E
g

F

1 2 3 4 5 6 7 8

A

B

C

D

E
g

F

1 2 3 4 5 6 7 8

A

B

C

D

E
g

F

(a) (b) (c) (d)

Figure 2.1. An illustration of some of the steps of an execution over a
4-connected grid pathfinding task, where the initial state is cell D3, and
the goal is E6. The search algorithm A is breadth-first search, which, when
expanding a cell, generates the successors in clockwise order starting with
the node to the right. The position of the agent is shown with a black dot.
(a) shows the true environment, which is not known a priori by the agent.
(b) shows the p pointers which define the ideal tree built initially from
the Manhattan heuristic. Following the p pointers, the algorithm leads the
agent to D4, where a new obstacle is observed. D5 is disconnected from T
and GM , and a reconnection search is initiated. (c) shows the status of T
after reconnection search expands state D4, finding E4 is in T . The agent
is then moved to E4, from where a new reconnection search expands the
gray cells shown in (d). The problem is now solved by simply following the
p pointers.

R1. the number of states expanded by a call to the algorithm passed as a

parameter, A, depends on the search graph GM rather than on a constant;

and,

R2. during the execution of A, each time A checks whether or not a state is

connected to the ideal tree T , function InTree[c] may visit a number of

states dependent on the size of the search graph GM .

Below we present two natural approaches to making FRIT satisfy the real-time

property. The first approach is to use a slightly modified, generic real-time heuristic

search algorithm as a parameter to the algorithm. The resulting algorithm is a real-

time search algorithm both because it satisfies the real-time property and because

the time between movements is bounded by a constant. The second approach limits

the amount of reconnection search but does not guarantee that the time between

movements is limited by a constant.

28

2.4.1. FRIT with Real-Time Heuristic Search Algorithms

A natural way of addressing R1 is by using a real-time search algorithm as

parameter to FRIT. It turns out that it is not possible to plug into FRIT a real-time

search algorithm directly without modifications. However, the modifications we need

to make to Algorithm 5 are simple. We describe them below.

The following two observations justify the changes that need to be made to the

pseudocode of the generic real-time search algorithm. First we observe that the

objective of the lookahead search procedure of real-time heuristic algorithms like

Algorithm 5 is to search towards the goal and thus the heuristic h estimates the

distance to the goal. However, FRIT carries out search with the sole objective of

reconnecting with the ideal tree, which means that both the goal condition and the

heuristic have to be changed. Second, one of the main ideas underlying FRIT is to

use and maintain the ideal tree T ; that is, when the agent has found a reconnecting

path, the p function needs to be updated accordingly.

Algorithm 10 shows the pseudocode for the modified generic real-time heuris-

tic search algorithm, which has two main di↵erences with respect to Algorithm 5.

First, the goal condition is now given by function gT , which returns true if evaluated

with a state that is in T . Second, Line 5 of Algorithm 10 connects the states in

the path found by the lookahead search to T . This implies also that the Recon-

nect procedure described in Algorithm 8 needs to be changed by that described in

Algorithm 11.

Now we turn our attention to how we can guide the search towards reconnection

using reconnecting heuristics. Before giving a formal definition for these heuristics,

we introduce a little notation. Given the graph GM = (S,A) and the ideal tree T
for GM over a problem P with goal state g, we denote by ST the subset of states in

S that are connected to g via arcs in T . Now we are ready to define reconnecting

heuristics formally.

29

Algorithm 10: A Generic Real-Time Search Algorithm for FRIT

Input: A search graph GM , a heuristic function h, a goal function gT (·) that
receives a state as parameter.

E↵ect: The agent is moved from the initial state to a goal state if a
trajectory exists. The ideal tree T is updated.

1 while the agent has not reached a goal state do
2 scurr the current state
3 path LookAhead(scurr, gT (·))
4 Update the heuristic function h.
5 Given path = s0s1 . . . sn, update T so that p(si) = si+1 for every

i 2 {0, . . . , n� 1}.
6 Move the agent through the path. While moving, observe the

environment and update GM and T , removing any non traversable arcs
and updating hobstacle if needed. Stop if the current state has no parent in
T .

Algorithm 11: Reconnect component for FRIT with a real-time algorithm
Input: A real-time search algorithm A, an initial state s, a search graph GM

and a goal function fGOAL(·)
1 Call A(s,GM , fGOAL).

Definition 2 (Reconnecting Heuristic). Given an ideal tree T over graph GM

and a subset B of ST , we say function h : S ! R+
0 is a reconnecting heuristic with

respect to B i↵ for every s 2 S it holds that h(s)  dGM (s, s0), for any s0 2 B.

Intuitively, a reconnecting heuristic with respect to B is an admissible heuristic

over the graph GM where the set of goal states is defined as B. As such, when Al-

gorithm 10 is initialized with a reconnecting heuristic, search will be guided towards

those connected states.

Depending on how we choose B, we may obtain a di↵erent heuristic. At first

glance, it may seem sensible to choose B as ST . However, it is not immediately

obvious how one would maintain (i.e., learn) such a heuristic e�ciently. This is

because both T and ST change when new obstacles are discovered. Initially ST

contains all states but during execution, some states in S cease to belong to ST as

an arc is removed and other become members after reconnection is completed.

30

In this paper we propose to use an easy-to-maintain reconnecting heuristic,

which, for all s is initialized to zero and then is updated in the standard way. Below,

we prove that if the update procedure has standard properties, such an h corresponds

to a reconnecting heuristic for the subset B = V (E) of ST , where V (E) is defined

as follows:

B = V (E) = {s 2 ST : s has not been visited by the agent and s 62 E}.

In addition, E must be set to the set of states whose heuristic value has been po-

tentially updated by the real-time search algorithm. The reason for this is that, by

definition, all states in B should have their h-value set to zero and thus we do not

want to include in B states that have been potentially modified.

Now we prove that a simple heuristic initialized as 0 for all states and updated

in a standard way is indeed a reconnecting heuristic.

Proposition 1. Let FRIT be modified to initialize h as the null heuristic. Let

E be defined as the set of states that the update procedure has potentially updated.2

Furthermore, assume that A is an instance of Algorithm 10 satisfying:

P1. gT (s) returns true i↵ s 2 ST .

P2. Heuristic learning maintains consistency; i.e., if h is consistent prior to

learning, then it remains as such after learning.

Then, along the execution of FRIT(A), h is a reconnecting heuristic with respect

to B = V (E).

Proof. First we observe that initially h is a reconnecting heuristic because it

is set to the zero for every state. Let s be any state in S and s0 be any state in B.

We prove that h(s)  d(s, s0). Indeed, let � = s0s1 . . . sn, with s0 = s and sn = s,

2Note that in practice, E is a very natural set of states. For example if RTAA* is used, the set
of states that have potentially been updated are those that were expanded by some A* lookahead
search.

31

be a shortest path between s and s0. Since h is consistent, it holds that

h(si)  c(si, si+1) + h(si+1), (2.1)

for any i 2 {0, . . . , n� 1}. From where we can write

h(s)� h(s0) =
n�1X

i=0

h(si)� h(si+1) 
n�1X

i=0

c(si, si+1) = d(s, s0) (2.2)

Now observe that because s0 2 B, then the h-value of s0 could have not been updated

by the algorithm and therefore h(s0) = 0, which substituted in Inequation 2.2, proves

the desired result. ⇤

2.4.1.1. Tie-breaking

In pathfinding, the standard approach to tie-breaking among states with equal

f-values is to select the state with highest g-value. For the reconnection search, we

propose a di↵erent strategy based on selecting a state based on a user-given heuristic

that should guide towards the final goal state. For example, in our experiments on

grids we break ties by selecting the state with smallest octile distance to the goal.

Intuitively, among two otherwise equal states, we prefer the one that seems to be

closer to the final goal. This seems like a reasonable way to use information that

is commonly used by other search algorithms, but unavailable to the reconnection

search due to the initial use of the null heuristic.

2.4.1.2. Making InTree[c] Real-Time

Above we identified R1 and R2 as the two reasons why FRIT does not satisfy

the real-time property, and then discussed how to address R1 by using a real-time

search algorithm. Now we discuss how to address R2.

To address R2, we simply make InTree[c] a bounded algorithm. All real-time

search algorithms receive a parameter that allows them to bound the computation

carried out per search. Assume that Algorithm 10 receives k as parameter. Fur-

thermore, assume without loss of generality that lookahead search is implemented

32

with an algorithm that constantly expands states (such as bounded A*). Then we

can always choose implementation-specific constants NE and NT , associated respec-

tively to the expansions performed during lookahead and the operation that follows

the p pointer in the InTree[c] function. Given that e is the number of expansions

performed by lookahead search and f is the number of times the p pointer has been

followed in a run of the real-time search algorithm, we modify the stop condition of

InTree[c] to return false if NE · e +NT · f > k. Also, we modify lookahead search

to stop if the same condition holds true.

Henceforth we call FRITRT the algorithm that addresses R1 and R2 using a

real-time search algorithm and a bounded version of InTree[c]. Note that because

the computation per iteration of FRITRT is bounded, the time between agent moves

is bounded, and thus FRITRT can be considered a standard real-time algorithm, as

originally defined by Korf (1990).

2.4.2. FRIT with Bounded Complete Search Algorithms

In the previous section we proposed to use a standard real-time heuristic search

algorithm to reconnect with the ideal tree. A potential downside of such an approach

is that those algorithms usually find suboptimal solutions and sometimes require to

re-visit the same state many times—a behavior usually referred to as “scrubbing”

(Bulitko et al., 2011). In applications in which the quality of the solution is impor-

tant, but in which there are still real-time constraints it is possible to make FRIT

satisfy the real-time property in a di↵erent way.

Imagine for example, that we are in a situation in which FRIT is given a sequence

of time frames, each of which is very short. After each time frame FRIT is allowed

to return a movement which is performed by the agent. Such a model for real-

time behavior has been termed as the game time model (Hernández, Baier, Uras, &

Koenig, 2012b) since it has a clear application to video games in which the game’s

main cycle will reserve a fixed and usually short amount of time to plan the next

move for each of the automated characters.

33

To accommodate this behavior in FRIT we can apply the same simple idea

already described in Section 2.4.1.2, but using a complete search algorithm for re-

connection rather than a real-time search algorithm. As described above this simply

involves choosing implementation-specific constants NE and NT , associated respec-

tively to the expansions performed by the (now complete) search algorithm for recon-

nection and the operation that follows the p pointer in the InTree[c] function. As

before, given that e is the number of expansions performed by reconnection search

and f is the number of times the p pointer we modify the Reconnect algorithm

to return an empty path as soon as NEe+NTf > k and save all local variables used

by A and InTree[c]. Once Reconnect is called again, search is resumed at the

same point it was in the previous iteration and e and f are set to 0.

Note that instead of returning an empty path other implementations may choose

to move the agent in a fashion that is meaningful for the specific application. We

leave a thorough discussion on how to implement such a movement strategy out of

the scope of this paper since we believe that such a strategy is usually application-

specific. If a movement ought to be carried out after each time frame, the agent could

choose to move back-and-forth, or choose any other moving strategy that allows it to

follow the reconnection path once it is found. Later, in our experimental evaluation,

we choose not to move the agent if computation exceeds the parameter and discuss

why this seems a good strategy in the application we chose.

Note that if a non-empty path is returned after each given time frame, then

FRIT, modified in the way described above, is also a real-time search algorithm, as

originally defined by Korf (1990). Finally, we note that implementing the stop-and-

resume mechanism described above is easy for most search algorithms.

2.5. Theoretical Analysis

The results described in this section prove the termination of the algorithms

and present explicit bounds on the number of agent moves performed by FRIT

34

and FRITRT before reaching the goal. Additionally, we show that both algorithm

converge in the second run so that subsequent executions of the algorithm result in

identical paths. Our first theorem is correctness of the InTree[c] function.

2.5.1. Proofs for InTree[c]

To determine whether or not a state s belongs to the ideal tree, our InTree[c]

function (Algorithm 9) follows the p pointers until the goal is reached or until some

state whose h-value is smaller than hobstacle is reached. Here we prove that InTree[c]

is correct in the sense that it returns true i↵ a state s belongs to the ideal tree. We

start by proving the following intermediate result.

Lemma 1. Let H = {s : h(s) < hobstacle}. Reconnection search never modifies

the parent pointer of a state s 2 H.

Proof. Take any state s 2 H. It is clear that any call to InTree[c](s) will

immediately return true (Algorithm 9, Lines 2 and 3). This e↵ectively ends the

search, and a path that ends in s is selected. This path does not change the parent

of s. ⇤

Note that the property described in the Lemma holds both for FRIT and FRITRT.

The bounded version of InTree[c] used for FRITRT will always answer true when

called for a state in H. Indeed, all states in H are part of the reconnection target

set B, and are correctly identified as such during execution.

Theorem 1. When T is initialized as described in Section 2.3 and the color c

is set to increment for each reconnection search, InTree[c], as described in Algo-

rithm 9, returns true for a state s i↵ s 2 T .

Proof. Note that besides the exit condition established in Lines 2 and 3, the

algorithm is trivially correct. It follows the parent pointers, returns true only if it

reaches the goal, and returns false if it reaches a dead end or a state that has already

been checked.

35

Let H be as defined in Lemma 1. We need to prove that all states s 2 H are in

T . We know that all such states have their original parent pointers as set through

the construction of T described in Section 2.3. Note that all the paths in the initial

Ideal Tree are monotonous; for every state s di↵erent from the goal it holds that

h(s) � h(p(s)). From this, we know that for any state s 2 H, p(s) 2 H is true.

This proves that all ancestors of s are in H, and therefore they represent a path that

existed in the initial T and has not been modified at all. ⇤

2.5.2. Termination and bound for FRITRT

Our first result proves termination of the algorithm when it uses a real-time

search algorithm as parameter. We provide an explicit bound on the number of

agent moves until reaching the goal.

Theorem 2. Consider the same conditions of Proposition 1 and let A be a

modified real-time search algorithm, as described in Algorithm 10, such that for any

problem with x states guarantees termination in at most fA(x) steps, and such that

it never updates the h-value of the goal state. Then FRITRT (A) solves the problem

in O(|S|fA(|S|)) steps.

Proof. Let M denote the elements in the state space S that are inaccessible

from any state in the connected component that contains sstart. Furthermore, let

T be the ideal tree computed at initialization. Note that, by Proposition 1, we

know that we use a reconnecting heuristic. By definition, this means the heuristic

is always admissible for some subset of states in T that will always contain at least

g. Therefore, we know that all reconnections are eventually successful and that each

reconnection takes at most fA(|S|) steps. Notice that the agent moves at most |S|
steps in the Ideal Tree before it reaches an inaccessible state. Because reconnection

search is only invoked after a new inaccessible state is detected, it can be invoked at

most |M| times. By the definition of T , we know that after |M| reconnections, the

36

agent must be able to reach the goal by following T . Therefore, the total number of

steps is at most |S|+ |M|(fA(|S|) + |S|) 2 O(|S|fA(|S|)). ⇤

The average length of the paths found by FRITRT can be expected to be much

lower. Indeed, the number of reconnections is bounded by the number of obstacles

that are reachable by some state in GM , which in many cases is much lower than the

number of total inaccessible states.

2.5.3. Termination and bound for FRIT

The following result provides a bound on the length of the solutions found by

FRIT.

Theorem 3. Given an initial tree GM that satisfies the generalized free-space

assumption, then FRIT solves P in at most (|S|+1)2

4
agent moves.

Proof. Let M and T be as described in the proof of Theorem 2. Note that the

goal state g is always part of T , thus T can never become empty and reconnection

will always succeed. As for FRITRT, reconnection search can be invoked at most |M|
times. Between two consecutive calls to reconnection search, the agent moves in a

tree and thus cannot visit a single state twice. Hence, the number of states visited

between two consecutive reconnection searches is at most |S| � |M|. We conclude

that the number of moves until the algorithm terminates is

(|M|+ 1)(|S|� |M|), (2.3)

which maximizes when |M| = |S|�1
2

. Substituting such a value in (2.3), gives the

desired result. ⇤

Again, the average complexity can be expected to be much lower than this bound.

37

2.5.4. Convergence

The following results prove that after termination of either FRIT or FRITRT,

the agent knows a solution to the problem that is possibly shorter than the one just

found.

Lemma 2. Let F be the forest defined by the p pointers. Throughout the execu-

tion of either FRIT or FRITRT, there is a path � in F that goes from sstart to the

current position of the agent.

Proof. The proof is done by induction over the number of steps taken by the

agent. Let s represent the current position of the agent. Initially, the proposition is

trivial, as sstart = s. Let s0 be the position of the agent after moving. By hypothesis,

we know there is a path � from sstart to s. If s0 is not in �, we know that the parent

pointers of the states in � di↵erent from s have not been modified, and therefore the

path that extends � by appending s0 is valid and satisfies the property. If s0 is in �,

we have that the parent pointers of states in � that appear before s0 have not been

modified, and therefore there is a valid subpath of � that goes from sstart to s0 which

satisfies the property. ⇤

Theorem 4. Running the algorithm for a second time over the same problem,

without reinitializing the ideal tree, results in an execution that never runs recon-

nection search and finds a potentially better solution than the one found in the first

run.

Proof. The proof is straightforward from Lemma 2. At the end of the execu-

tion, there is a path in F , and specifically in T , from sstart to g. Note that all states

on the path have necessarily been visited during the first execution, which ensures

that this new path is at most as long as the one resulting from the first execution. ⇤

Note that Theorem 4 implies that our algorithm can return a di↵erent path

in a second trial, which can be viewed as an “optimized solution” that does not

38

contain the loops that the first solution had. The second execution of the algorithm

is naturally very fast, because reconnection search is not required.

It is interesting to note that this approach could be used with any other real-

time search algorithm. By storing for each visited state the direction in which the

agent moved away from it, a path with no loops that goes from sstart to g can be

immediately extracted as soon as the execution finishes.

2.6. Empirical Evaluation

The objective of our experimental evaluation was to compare the performance

of our algorithm with various state-of-the-art algorithms on the task of pathfinding

with real-time constraints. We chose this application since it seems to be the most

straightforward application of real-time search algorithms.

We compared two classes of search algorithms. For the first class, we considered

state-of-the-art real-time heuristic search algorithms and the corresponding versions

of FRITRT that result when it is fed with these. Specifically, we compare RTAA*

(Koenig & Likhachev, 2006b) and daRTAA* (Hernández & Baier, 2012), a variant

of RTAA* that may outperform it significantly. For the second class, we compared

FRIT fed with a breadth-first-search algorithm to the incremental heuristic search

algorithms Repeated A* (RA*) and Adaptive A* (AA*). We chose them on the one

hand because it is fairly obvious how to modify them to satisfy the real-time property

following the same approach we follow with FRIT, and on the other hand because

they have reasonable performance. Indeed, we do not include D* Lite (Koenig &

Likhachev, 2002) since it has been shown that Repeated A* is faster than D* Lite in

most instances of the problems we evaluate here (Hernández, Baier, Uras, & Koenig,

2012a). Other incremental search algorithms are not included since it is not the focus

of this paper to propose strategies to make various algorithms satisfy the real-time

property.

39

Repeated A* and Adaptive A* both run a complete A* search until the goal is

reached. Then the path found is followed until the goal is reached or until the path

is blocked by an obstacle. When this happens, they iterate by running another A*

to the goal. To make both algorithms satisfy the real-time property, we follow an

approach similar to that employed in the design of the algorithm Time-Bounded A*

(Björnsson, Bulitko, & Sturtevant, 2009). In each iteration, if the algorithm does

not have a path to the goal (and hence it is running an A*) we only allow it to

expand at most k states, and if no path to the goal is found the agent is not moved.

Otherwise (the agent has a path to the goal) the agent makes a single move on the

path.

For the case of FRIT(BFS), we satisfy the real-time property as discussed above

by setting both constants, NE and NT , to 1. This means that in each iteration, if

the current state has no parent then only k states can be expanded/visited during

the reconnection search and if no reconnection path is found the agent is not moved.

Otherwise, if the current state has a non-null parent pointer, the agent follows the

pointer.

Therefore in each iteration of FRIT(BFS), Repeated A* or Adaptive A* two

things can happen: either the agent is not moved or the agent is moved one step.

This moving strategy is sensible for applications like video games where, although

characters are expected to move fluently, we do not want to force the algorithm to

return an arbitrary move if a path has not been found, since that would introduce

moves that may be perceived as pointless by the users. In contrast, real-time search

algorithms return a move at each iteration.

We use eight-neighbor grids in the experiments since they are often preferred

in practice, for example in video games (Bulitko et al., 2011). The algorithms are

evaluated in the context of goal-directed navigation in a priori unknown grids. The

agent is capable of detecting whether or not any of its eight neighboring cells is

40

blocked and can then move to any one of the unblocked neighboring cells. The

user-given h-values are the octile distances (Bulitko & Lee, 2006).

To carry out the experiments, we used twelve maps from deployed video games

and four di↵erent mazes. Six of the maps are taken from the game Dragon Age, and

the remaining six are taken from the game StarCraft. Both the maps and the mazes

were retrieved from Nathan Sturtevant’s pathfinding repository (Sturtevant, 2012).3

We averaged our experimental results over 500 test cases with a reachable goal

cell for each map. For each test case the start and goal cells were chosen randomly.

All real-time algorithms were run with 10 di↵erent parameter values. The incremen-

tal algorithms were run to completion once per test case, after which the results were

processed to show the behaviour corresponding to using 150,000 di↵erent parameter

values. All the experiments were run on a 2.00GHz QuadCore Intel Xeon machine

running Linux.

2.6.1. Analysis of the results for real-time search algorithms

Figure 2.2 shows two plots of the average solution cost versus average time

per planning episode for the four real-time search algorithms in games and mazes

benchmarks.

We observe that for the games benchmarks FRITRT outperforms RTAA* and

daRTAA* substantially. FRITRT(daRTAA*) finds solutions of about half the cost of

those found by daRTAA* for any given time deadline. Moreover, the average plan-

ning time per episode needed by FRITRT(daRTAA*) to obtain a particular solution

quality is about one half of that needed by daRTAA*. The improvements are more

pronounced with FRITRT(RTAA*), where solutions for a given time deadline are

at least three times cheaper than pure RTAA* and up to one order of magnitude

3Maps used from Dragon Age: brc202d, orz702d, orz900d, ost000a, ost000t and ost100d whose
sizes are 481⇥ 530, 939⇥ 718, 656⇥ 1491, 969⇥ 487, 971⇥ 487, and 1025⇥ 1024 cells respectively.
Maps from StarCraft: ArcticStation, Enigma, Inferno, JungleSiege, Ramparts and WheelofWar of
sizes 768⇥ 768, 768⇥ 768, 768⇥ 768, 768⇥ 768, 512⇥ 512 and 768⇥ 768 cells respectively.
The four mazes all have the same size, 512⇥ 512, and di↵erent corridor widths: 4, 8, 16 and 32.

41

1000

10000

100000

1000000

10000000

0 20 40 60 80 100 120 140

Av
er

ag
e

So
lu

tio
n

Co
st

 (l
og

-s
ca

le
)

Average time per planning episode (us)

12 games' maps - 500 runs

FRIT_rt(RTAA)
FRIT_rt(daRTAA)

RTAA
daRTAA

(a) Real-time algorithms in games.

10000

100000

1000000

10000000

0 20 40 60 80 100 120

Av
er

ag
e

So
lu

tio
n

Co
st

 (l
og

-s
ca

le
)

Average time per planning episode (us)

4 mazes - 500 runs

FRIT_rt(RTAA)
FRIT_rt(daRTAA)

RTAA
daRTAA

(b) Real-time algorithms in mazes.

Figure 2.2. Real-time algorithms: Total Iterations versus Time per Episode

cheaper for very small time frames. It is interesting to note that even though daR-

TAA* improves significantly over RTAA*, FRITRT(daRTAA*) is only marginally

better than FRITRT(RTAA*).

For mazes, the FRITRT variants seem to be slightly better than daRTAA*, with

bigger improvements in performance noticeable as the time deadlines are increased.

The best solutions found by daRTAA* and FRITRT(daRTAA*) are of comparable

lengths, but FRITRT(daRTAA*) finds these solutions requiring slightly more than

half of the time per planning episode than daRTAA*.

2.6.2. Analysis of the results for incremental algorithms modified to sat-

isfy the real-time property

Figure 2.3 shows two plots of the average number of agent steps versus average

time per planning episode for the incremental search algorithms used as real-time

algorithms as described aboved in games and mazes benchmarks. Figure 2.4 shows

the regions of the same plots as Figure 2.3 in which FRIT(BFS) appears.

We observe that FRIT(BFS) returns significantly better solutions when time

constraints are very tight. Indeed, for games benchmarks our algorithm does not

need more than 41µ sec per planning episode to return its best solution. Given such

a time as a limit per episode, AA* requires over four times as many iterations on

42

1000

10000

100000

1000000

10000000

0 100 200 300 400 500 600

Av
er

ag
e

So
lu

tio
n

Le
ng

th
 (l

og
-s

ca
le

)

Average time per planning episode (us)

12 games' maps - 500 runs

FRIT(BFS)
RA
AA

(a) Incremental algorithms in games.

1000

10000

100000

1000000

10000000

100000000

0 200 400 600 800 1000

Av
er

ag
e

So
lu

tio
n

Le
ng

th
 (l

og
-s

ca
le

)

Average time per planning episode (us)

4 mazes - 500 runs

FRIT(BFS)
RA
AA

(b) Incremental algorithms in mazes.

Figure 2.3. Incremental algorithms: Total Iterations versus Time per Episode

1000

10000

100000

1000000

10000000

0 10 20 30 40 50

Av
er

ag
e

So
lu

tio
n

Le
ng

th
 (l

og
-s

ca
le

)

Average time per planning episode (us)

4 mazes - 500 runs

FRIT(BFS)
RA
AA

(a) Incremental algorithms in games.

1000

10000

100000

1000000

10000000

100000000

0 5 10 15 20

Av
er

ag
e

So
lu

tio
n

Le
ng

th
 (l

og
-s

ca
le

)

Average time per planning episode (us)

4 mazes - 500 runs

FRIT(BFS)
RA
AA

(b) Incremental algorithms in mazes.

Figure 2.4. Incremental algorithms: Total Iterations versus Time per
Episode (zoomed)

average. Furthermore, to obtain a solution of the quality returned by FRIT(BFS) at

41µ sec, AA* needs around 220µ sec; i.e., more than 5 times as long as FRIT(BFS).

This behaviour is more extreme in the case of mazes, where the best solutions for

FRIT(BFS) are obtained with less than 19µ sec per planning episode. With this time

limit, the number of steps required on average by AA* is a whole order of magnitude

larger than the number required by FRIT(BFS).

Generally, FRIT(BFS) behaves much better than both RA* and AA*, requiring

fewer iterations and less time. Nevertheless, when provided more time, FRIT(BFS)

does not take advantage of it and the resulting solutions cease to improve. This

43

FRIT(BFS) RA* AA*
k Avg. Its Time/ep No moves Avg. Its Time/ep No moves Avg. Its Time/ep No moves

(µ s) (%) (µ s) (%) (µ s) (%)
1 1508631 0.0430 99.80 3505076 0.3754 99.95 1144680 0.4152 99.84
5 303483 0.2148 99.01 702029 1.8761 99.76 229967 2.0727 99.25
10 152858 0.4283 98.03 351648 3.7499 99.51 115628 4.1376 98.51
50 32401 2.0940 90.71 71343 18.655 97.60 24156 20.378 92.86
100 17370 4.0678 82.67 36305 37.077 95.29 12723 40.004 86.44
500 5449 16.115 44.74 8304 175.89 79.42 3607 172.41 52.15
1000 4035 24.840 25.38 4901 322.74 65.13 2583 274.35 33.20
5000 3073 39.316 2.046 2261 915.66 24.44 1854 474.29 6.904
10000 3026 40.487 0.501 1947 1171.9 12.26 1775 514.88 2.764
50000 3011 40.851 0.030 1726 1458.9 1.041 1728 524.55 0.117
100000 3011 40.869 0.007 1711 1484.7 0.133 1726 543.66 0.014

Table 2.1. Relationship between search expansions and number of itera-
tions in which the agent does not move in games maps. The table shows
a parameter k for each algorithm. In the case of AA* and Repeated A*
the parameter corresponds to the number of expanded states. In case of
FRIT, the parameter corresponds to the number of visited states during an
iteration. In addition, it shows average time per search episode (Time/ep),
and the percentage of iterations in which the agent was not moved by the
algorithm with respect to the total number of iterations (No moves).

can be seen both in Figure 2.3, across both sets of benchmarks, and Table 2.1. As

an example of this, we can see that for k = 5000 to k = 100000 the number of

iterations required to solve the problem only decreases by 62 steps, and the time

used per search episode only increases by 1.55µ sec. E↵ectively, this means that the

algorithm does not use the extra time in an advantageous way. This is in contrast

to what is usually expected for real-time search algorithms.

An interesting variable to study is the number of algorithm iterations in which

the agent did not return a move because the algorithm exceeded the amount of

computation established by the parameter without finishing search. As we can see

in Table 2.1, FRIT, using BFS as its parameter algorithm, has the best relationship

between time spent per episode and the percentage of no-moves over the total number

of moves. To be comparable to other real-time heuristic search algorithms, it would

be preferrable to reduce the number of incomplete searches as much as possible.

44

With this in mind, we can focus on the time after which the amount of incomplete

searches is reduced to less than 1%. Notice that for FRIT(BFS) this is somewhere

around 40 µs, whereas for AA* and RA* this requires times of over 514 µs and 1458

µs respectively.

2.6.3. Comparison of the two approaches

Figure 2.5 shows a plot of the average time per planning episode versus aver-

age number of agent steps for both FRITRT(daRTAA*) and FRIT(BFS) in games

benchmarks. We observe that FRIT(BFS) obtains better resuts for most time lim-

its. Indeed, for any given time deadline of more than 10µ sec, FRIT(BFS) finds a

solution that is about half as long as that found by FRITRT(daRTAA*). For smaller

time deadlines the results are similar for both algorithms. Furthermore, the best

solution obtained by FRIT(BFS) is, on average, less than 60% as long as the best

solution obtained by FRITRT(daRTAA*). As mentioned above, this particular solu-

tion requires a time deadline of less than 41µ sec per planning episode. The number

of no-moves incurred with this time limit in our experiments was of only 465 iter-

ations throughout all the experiments in games benchmarks, which corresponds to

approximately 1 no-move every 40, 000 moves.

2.7. Related Work

There are two bodies of work that are related to our algorithm: real-time and in-

cremental heuristic search algorithms, and the bug family of pathfinding algorithms.

We discuss both of them below.

2.7.1. Incremental and Real-Time Heuristic Search Algorithms

Incremental Heuristic Search and Real-time Heuristic Search are two heuristic

search approaches to solving search problems in partially known environments using

the free-space assumption that are related to the approach we propose here. Incre-

mental search algorithms based on A*, such as D* Lite (Koenig & Likhachev, 2002),

45

1000

10000

100000

1000000

10000000

0 10 20 30 40 50 60

Av
er

ag
e

So
lu

tio
n

Le
ng

th
 (l

og
-s

ca
le

)

Average time per planning episode (us)

12 maps - 500 runs

FRIT_rt(daRTAA)
FRIT(BFS)

Figure 2.5. Comparison of FRIT using a real-time algorithm versus FRIT
as an incremental algorithm in games benchmarks.

Adaptive A* (Koenig & Likhachev, 2005) and Tree Adaptive A* (Hernández, Sun,

Koenig, & Meseguer, 2011), reuse information from previous searches to speed up

the current search. The algorithms can solve sequences of similar search problems

faster than Repeated A*, which performs repeated A* searches from scratch.

During runtime, most incremental search algorithms, like our algorithm, store a

graph in memory reflecting the current knowledge of the agent. In the first search,

they perform a complete A* (backward or forward), and in the subsequent searches

they perform less intensive searches. Di↵erent to our algorithm, such searches return

optimal paths connecting the current state with the goal. FRIT is similar to incre-

mental search algorithms in the sense that it uses the ideal tree, which is information

that, in some cases, may have been computed using search, but di↵ers from them in

that the objective of the search is not to compute optimal paths to the goal. Our

algorithm leverages the speed of simple blind search and does not need to deal with

a priority queue, which is computationally expensive to handle.

Many state-of-the-art real-time heuristic search algorithms (e.g. Koenig & Sun,

2009; Koenig & Likhachev, 2006b; Sturtevant & Bulitko, 2011; Hernández & Baier,

46

2012; Rivera, Baier, & Hernández, 2013), which satisfy the real-time property, rely

on updating the heuristic to guarantee important properties like termination. Our

algorithm, on the other hand, does not need to update the heuristic to guarantee ter-

mination. Like incremental search algorithms, real-time heuristic search algorithms

usually carry out search for a path between the current node and the goal state.

Real-time heuristic search algorithms cannot return a likely better solution after the

problem is solved without carrying any search at all (cf. Theorem 4). Instead, when

running multiple trials they eventually converge to an optimal solution or o↵er guar-

antees on solution quality. Our algorithm does not o↵er guarantees on quality, even

though experimental results are reasonable.

HCDPS (Lawrence & Bulitko, 2010) is a real-time heuristic algorithm that does

not employ learning. This algorithm is tailored to problems in which the agent knows

the map initially, and in which there is time for preprocessing.

The idea of reconnecting with a tree rooted at the goal state is not new and

can be traced back to bi-directional search (Pohl, 1971). Recent Incremental Search

algorithms such as Tree Adaptive A* exploits this idea to make subsequent searches

faster. Real-Time D* (RTD*) (Bond, Widger, Ruml, & Sun, 2010) uses bi-directional

search to perform searches in dynamic environments. RTD* combines Incremental

Backward Search (D*Lite) with Real-Time Forward Search (LSS-LRTA*).

Finally, our notion of generalized free-space assumption is related to that pro-

posed by Bonet and Ge↵ner (2011), for the case of planning in partially observable

environments. Under certain circumstances, they propose to set unobserved variables

in action preconditions in the most convenient way during planning time, which in-

deed corresponds to adding more arcs to the original search graph.

2.7.2. Bug Algorithms

Above we observed that in pathfinding applications, FRIT tends to follow walls,

which is precisely what a family of algorithms called bug algorithms (LaValle, 2006;

47

Taylor & LaValle, 2009) do. Bug algorithms are a family of algorithms for pathfind-

ing in continuous 2D terrain. They make their decisions based on sensory input,

require very limited time and memory resources, and are inspired by the behav-

ior of insects while finding their way through obstacles. Bug algorithms are not

heuristic as they do not utilize a heuristic function to make decisions (Rao, Kareti,

Shi, & Iyengar, 1993). There are several strategies for implementing bug algorithms

(Lumelsky & Stepanov, 1987; Sankaranarayanan & Vidyasagar, 1990; Kamon &

Rivlin, 1997; Horiuchi & Noborio, 2001; Magid & Rivlin, 2004; Gabriely & Rimon,

2008). The relative performance of these algorithms vary significantly depending on

the environment (Ng & Bräunl, 2007).

Some bug algorithms navigate towards the goal state following a line (mline)

which is the shortest trajectory between the initial state and the goal state under

the assumption that the terrain is obstacle-free. As we have seen above, FRIT may

traverse the perimeter of an obstacle just like a bug algorithm does. However, the

main di↵erence between FRIT and bug algorithms is that the decision in FRIT is

made using search, whereas for bug algorithms the turning direction (right or left)

is determined by the design of the algorithm and thus not based on search. As such,

depending on the situation, Bug algorithms could work better or worse than FRIT.

Figure 2.6 compares the behaviors of FRIT and Bug2, a popular bug algorithm

which is the base of a number of other bug algorithms. In this particular situation,

Bug2 does not make a good decision and FRIT solves the problem fairly quickly. Of

course it is possible to contrive families of problems in which a bug algorithm will

outperform FRIT.

An important di↵erence between FRIT and Bug algorithms is that FRIT is

designed to work on general search spaces, whereas Bug algorithms are specifically

designed for 2D pathfinding applications.

48

1 2 3 4 5 6 7 8 9 10 11 12 13

A

B

C

D

E

F

G

H

T

1 2 3 4 5 6 7 8 9 10 11 12 13

A

B

C

D

E

F

G

H

T

(a) (b)

Figure 2.6. Bug2 (a) and FRIT (b) in a pathfinding scenario in which
the goal cell is E10 and the initial cell is E2. The segmented line shows the
path followed by the agent.

2.8. Summary

We presented FRIT, a search algorithm that follows a path in a tree—the ideal

tree—that represents a family of solutions in the graph currently known by the agent.

The algorithm is simple to describe and implement, and does not need to update

the heuristic to guarantee termination. FRIT uses a secondary search algorithm to

search for branches in the ideal tree when the agent is disconnected from it. We

show that with slight modifications we can use a real-time search algorithm for this

purpose, and we obtain a real-time version of FRIT, FRITRT. In addition, we propose

a di↵erent way of using FRIT in some applications that use real-time search.

We provide theoretical results proving that both FRIT and FRITRT always find

solutions if these exist. Furthermore, we give explicit bounds on the length of the

obtained solutions. Finally, we prove that both algorithms converge after two trial

runs.

Our experiments show that the proposed algorithms return solutions faster than

other state-of-the-art real-time search algorithms. In particular FRIT(daRTAA*)

substantially improves performance over daRTAA*, a state-of-the-art Real-Time

Search algorithm. Larger performance improvements are observed when time con-

straints are tighter. Additionally, we compare both our approaches and show that

49

FRIT(BFS)—that is, FRIT fed with the breadth first search algorithm—produces

similar or better results for all tight time constraints.

As a disadvantage of our approach, we note that FRIT cannot exploit com-

putational time as other algorithms do. Indeed, other incremental heuristic search

algorithms will return better quality solutions if allowed large time constraints, while

FRIT will generally not converge asymptotically to the optimal path if given arbi-

trary time.

50

References

Björnsson, Y., Bulitko, V., & Sturtevant, N. R. (2009). TBA*: Time-bounded

A*. In Proc. of the 21st Int’l joint Conf. on Artificial Intelligence (IJCAI)

(p. 431-436).

Bond, D. M., Widger, N. A., Ruml, W., & Sun, X. (2010, July). Real-time

search in dynamic worlds. In Proc. of the 3rd symposium on combinatorial search

(SoCS). Atlanta, Georgia.

Bonet, B., & Ge↵ner, H. (2011). Planning under partial observability by classical

replanning: Theory and experiments. In Proc. of the 22nd Int’l joint Conf. on

Artificial Intelligence (IJCAI) (p. 1936-1941). Barcelona, Spain.

Botea, A. (2011, October). Ultra-fast Optimal Pathfinding without Runtime

Search. In Proc. of the 7th annual Int’l aiide conference (AIIDE). Palo Alto,

California.

Bulitko, V., Björnsson, Y., & Lawrence, R. (2010). Case-based subgoaling in

real-time heuristic search for video game pathfinding. Journal of Artificial In-

telligence Research, 38 , 268-300.

Bulitko, V., Björnsson, Y., Lustrek, M., Schae↵er, J., & Sigmundarson, S.

(2007). Dynamic control in path-planning with real-time heuristic search. In

Proc. of the 17th Int’l Conf. on automated planning and scheduling (ICAPS)

(p. 49-56).

Bulitko, V., Björnsson, Y., Sturtevant, N., & Lawrence, R. (2011). Real-time

heuristic search for game pathfinding. In P. A. Gonzalez Celero (Ed.), (p. 1-30).

Springer Verlag.

Bulitko, V., & Lee, G. (2006). Learning in real time search: a unifying frame-

work. Journal of Artificial Intelligence Research, 25 , 119-157.

51

Deo, N., & Pang, C.-Y. (1984). Shortest-path algorithms: Taxonomy and an-

notation. Networks , 14 (2), 275-323.

Edelkamp, S., & Schrödl, S. (2011). Heuristic search: Theory and applications.

Morgan Kaufmann.

Fredman, M. L., & Tarjan, R. E. (1984). Fibonacci heaps and their uses in

improved network optimization algorithms. In Proc. of the 25th ieee symposium

on foundations of computer science (FOCS) (p. 338-346).

Gabriely, Y., & Rimon, E. (2008). CBUG: A quadratically competitive mobile

robot navigation algorithm. IEEE Transactions on Robotics , 24 (6), 1451-1457.

Hart, P. E., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic

determination of minimal cost paths. IEEE Transactions on Systems Science

and Cybernetics , 4 (2), 100-107.

Hernández, C., & Baier, J. A. (2011, June). Fast subgoaling for pathfinding via

real-time search. In Proc. of the 21th Int’l Conf. on automated planning and

Scheduling (ICAPS). Freiburg, Germany.

Hernández, C., & Baier, J. A. (2012). Avoiding and escaping depressions in real-

time heuristic search. Journal of Artificial Intelligence Research, 43 , 523-570.

Hernández, C., Baier, J. A., Uras, T., & Koenig, S. (2012a). Position paper:

Incremental search algorithms considered poorly understood. In Proc. of the

5th symposium on combinatorial search (SoCS).

Hernández, C., Baier, J. A., Uras, T., & Koenig, S. (2012b). TBAA*: Time-

Bounded Adaptive A*. In Proc. of the 10th Int’l joint Conf. on autonomous

agents and multi agent systems (AAMAS).

Hernández, C., Sun, X., Koenig, S., & Meseguer, P. (2011, May). Tree adaptive

A*. In Proc. of the 10th Int’l joint Conf. on autonomous agents and multi agent

systems (AAMAS). Taipei, Taiwan.

52

Horiuchi, Y., & Noborio, H. (2001). Evaluation of path length made in sensor-

based path-planning with the alternative following. In Proc. of the 2001 ieee

Int’l Conf. on robotics and automation (ICRA) (Vol. 2, pp. 1728–1735).

Ishida, T. (1992). Moving target search with intelligence. In Proc. of the 10th

national Conf. on Artificial Intelligence (AAAI) (p. 525-532).

Kamon, I., & Rivlin, E. (1997). Sensory-based motion planning with global

proofs. IEEE Transactions on Robotics and Automation, 13 (6), 814–822.

Koenig, S. (2001). Agent-centered search. Artificial Intelligence Magazine,

22 (4), 109–131.

Koenig, S., & Likhachev, M. (2001). Incremental a*. In Proc. of the 14th Conf.

on advances in neural information processing systems (NIPS) (p. 1539-1546).

Koenig, S., & Likhachev, M. (2002). D* lite. In Proc. of the 18th national Conf.

on Artificial Intelligence (AAAI) (pp. 476–483).

Koenig, S., & Likhachev, M. (2005). Adaptive A*. In Proc. of the 4th Int’l joint

Conf. on autonomous agents and multi agent systems (AAMAS) (p. 1311-1312).

Koenig, S., & Likhachev, M. (2006a). A new principle for incremental heuris-

tic search: Theoretical results. In Proc. of the 16th Int’l Conf. on automated

planning and scheduling (ICAPS) (p. 402-405). Lake District, UK.

Koenig, S., & Likhachev, M. (2006b). Real-time Adaptive A*. In Proc. of the

5th Int’l joint Conf. on autonomous agents and multi agent systems (AAMAS)

(pp. 281–288).

Koenig, S., Likhachev, M., & Furcy, D. (2004). Lifelong planning a*. Artificial

Intelligence, 155 (1-2), 93-146.

Koenig, S., & Sun, X. (2009). Comparing real-time and incremental heuristic

search for real-time situated agents. Autonomous Agents and Multi-Agent Sys-

tems , 18 (3), 313-341.

53

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence, 42 (2-3),

189–211.

Korf, R. E. (1997). Finding optimal solutions to rubik’s cube using pattern

databases. In (p. 700-705).

LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.

Lawrence, R., & Bulitko, V. (2010). Taking learning out of real-time heuristic

search for video-game pathfinding. In Australasian Conf. on Artificial Intelli-

gence (p. 405-414).

Lumelsky, V. J., & Stepanov, A. A. (1987). Path-planning strategies for a point

mobile automaton moving amidst unknown obstacles of arbitrary shape. Algo-

rithmica, 2 (1-4), 403–430.

Magid, E., & Rivlin, E. (2004). CAUTIOUSBUG: A competitive algorithm for

sensory-based robot navigation. In Proc. of the 2004 Int’l Conf. on intelligent

robots and systems (IROS) (Vol. 3, pp. 2757–2762).

Ng, J., & Bräunl, T. (2007). Performance comparison of bug navigation algo-

rithms. Journal of Intelligent and Robotic Systems , 50 (1), 73–84.

Pohl, I. (1971). Bi-directional heuristic search. InMachine intelligence 6 (p. 127-

140). Edinburgh, Scotland: Edinburgh University Press.

Rao, N. S., Kareti, S., Shi, W., & Iyengar, S. S. (1993, July). Robot navigation in

unknown terrains: Introductory survey of non-heuristic algorithms (Tech. Rep.

No. ORNL-TM-12410). Oak Ridge National Laboratory.

Rivera, N., Baier, J. A., & Hernández, C. (2013). Weighted real-time heuris-

tic search. In Proc. of the 11th Int’l joint Conf. on autonomous agents and

multi agent systems (AAMAS). Retrieved from http://www.cs.toronto.edu/

~jabaier/publications/RiveraBH13.pdf

54

http://www.cs.toronto.edu/~jabaier/publications/RiveraBH13.pdf
http://www.cs.toronto.edu/~jabaier/publications/RiveraBH13.pdf

Rivera, N., Illanes, L., Baier, J. A., & Hernandez, C. (2013). Reconnecting

with the ideal tree: An alternative to heuristic learning in real-time search. In

Proceedings of the 6th symposium on combinatorial search (socs). Retrieved from

http://www.cs.toronto.edu/~jabaier/publications/RiveraIBH13.pdf

Rokicki, T., Kociemba, H., Davidson, M., & Dethridge, J. (2013). The diameter

of the rubik’s cube group is twenty. SIAM J. Discrete Math., 27 (2), 1082-1105.

Russell, S. J., & Norvig, P. (2010). Artificial intelligence - a modern approach

(3. internat. ed.). Pearson Education.

Sankaranarayanan, A., & Vidyasagar, M. (1990). A new path planning algo-

rithm for moving a point object amidst unknown obstacles in a plane. In Proc.

of the 1990 ieee Int’l Conf. on robotics and automation (ICRA) (pp. 1930–1936).

Sharon, G., Sturtevant, N., & Felner, A. (2013). Online detection of dead states

in real-time agent-centered search. In Proc. of the 6th symposium on combina-

torial search (SoCS). Leavenworth, WA, USA.

Stentz, A. (1995). The focussed D* algorithm for real-time replanning. In Proc.

of the 14th Int’l joint Conf. on Artificial Intelligence (IJCAI) (pp. 1652–1659).

Sturtevant, N. R. (2012). Benchmarks for grid-based pathfinding. IEEE Trans-

actions Computational Intelligence and AI in Games , 4 (2), 144-148.

Sturtevant, N. R., & Bulitko, V. (2011, July). Learning where you are going

and from whence you came: h- and g-cost learning in real-time heuristic search.

In Proc. of the 22nd Int’l joint Conf. on Artificial Intelligence (IJCAI) (p. 365-

370). Barcelona, Spain.

Taylor, K., & LaValle, S. M. (2009). I-bug: An intensity-based bug algorithm. In

Proc. of the 2009 ieee Int’l Conf. on robotics and automation (ICRA) (p. 3981-

3986).

Zelinsky, A. (1992). A mobile robot exploration algorithm. IEEE Transactions

on Robotics and Automation, 8 (6), 707-717.

55

http://www.cs.toronto.edu/~jabaier/publications/RiveraIBH13.pdf

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	RESUMEN
	1. INTRODUCTION
	1.1. Background
	1.1.1. State-Space Problems
	1.1.2. Heuristic Search
	1.1.3. Incremental Heuristic Search
	1.1.4. Real-Time Heuristic Search

	1.2. Thesis Work
	1.2.1. Major Contributions
	1.2.2. Future Work

	2. ARTICLE SUBMITTED TO JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
	2.1. Introduction
	2.2. Background
	2.2.1. Real-Time Search

	2.3. Searching via Tree Reconnection
	2.3.1. The Ideal Tree
	2.3.2. Following and Reconnecting

	2.4. Satisfying the Real-Time Property
	2.4.1. FRIT with Real-Time Heuristic Search Algorithms
	2.4.2. FRIT with Bounded Complete Search Algorithms

	2.5. Theoretical Analysis
	2.5.1. Proofs for InTree[c]
	2.5.2. Termination and bound for FRITRT
	2.5.3. Termination and bound for FRIT
	2.5.4. Convergence

	2.6. Empirical Evaluation
	2.6.1. Analysis of the results for real-time search algorithms
	2.6.2. Analysis of the results for incremental algorithms modified to satisfy the real-time property
	2.6.3. Comparison of the two approaches

	2.7. Related Work
	2.7.1. Incremental and Real-Time Heuristic Search Algorithms
	2.7.2. Bug Algorithms

	2.8. Summary

	References

