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1 Introduction
This work is about studying the behavior of K2 for complex stable sur-
faces with particular singularities. Stable surfaces are the surfaces used by
Kollár–Shepherd-Barron [KSB88] and Alexeev [Ale94] to give a natural com-
pactification to the moduli space of surfaces of general type. But the interest
on them goes beyond that compactification. A current topic of study is the
distribution of volumes K2 in the set of positive rational numbers. A funda-
mental result is the Descending Chain Condition (DCC for short) for {K2}
(the set of all K2 of stable surfaces), which is due to Alexeev. (Its most
general version for log stable surfaces can be found in [Ale94].) In particular,
the DCC property implies the existence of a minimum for {K2}. It is still
an open problem to know its value. Knowing the exact lower bound for K2

can be used, for example, to explicitly bound the automorphism group for
surfaces of general type. (See e.g. [Ale94] and [Kol94] for more motivation.)
Various authors have found low values for K2 (see e.g. [Bla95], [UYn17],
[Liu17], [AL19a], [AL19c]). On the other hand, upper bounds are not possi-
ble even if we fix the geometric genus [UU19, Thm. 1.9], contrary to what
happens for smooth projective surfaces of general type.

It turns out that we can also have accumulation points for the set of
volumes of (log) stable surfaces. There has been a recent interest on under-
standing better the set of accumulation points Acc({K2}), see e.g. [Kol94],
[Bla95], [UYn17], [AL19b], [AL19c]. In early times, Blache [Bla95] showed
that 1 ∈ Acc({K2}). It was done by constructing a family of stable sur-
faces with ten cyclic quotient singularities. Blache conjectured that N ⊆
Acc({K2}) ⊆ Q. In [AL19b] (see also [UYn17]), it is shown that all natural
numbers are accumulation points, and that iterated accumulation points can
have arbitrary complexity in unbounded regions. Additionally, Alexeev and
Liu [AL19b] proved general results about volumes of log canonical surfaces,
which has several implications. One of them is to solve the conjecture of
Blache about the closure of {K2}, which is indeed in Q. Although it is not
known if the set of K2 is closed (for empty boundary). A full description of
{K2} and Acc({K2}) is still missing. In the case of smooth varieties of gen-
eral type, there is a positive lower bound for the volume which depends only
on the dimension (see e.g [HM06], [HMX13]). However, no optimal bounds
are known for dimensions greater than 2. Recently, Totaro and Wang studied
the asymptotic behavior of the volumes for smooth varieties in [TW21].
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This work aims to describe how accumulation points of volumes of stable
surfaces are formed, in the case of surfaces with only one cyclic quotient sin-
gularity. We find the following numerical constraints which optimally bound
singularities1 when we restrict to specific situations, such as T-singularities
(recovering [RU19, Thm. 1.1] for example) or generalized T-singularities (see
Lemma 6.4). Of course one cannot expect to bound all cyclic quotient sin-
gularities because of the existence of accumulation points, but this theorem
gives a way to detect them. All notations will be introduced in the body of
the work.

Theorem 1.1. Let W be a stable surface with only one cyclic quotient sin-
gularity of type 1

n
(1, q) at P ∈ W . Let

C = C1 + . . .+ Cr

be the chain of the exceptional curves in the minimal resolution of P , and let
[b1, . . . , br] be its Hirzebruch-Jung continued fraction. Let X be the minimal
resolution of W , and let π : X → S be a minimal model of X. Then

r∑
j=1

(
bj − 2

)
≤ 2(K2

W −K2
S) + 2

(
2(n− 1)− q − q′

n

)
+ δ − π∗KS · C, (1)

and
r ≤ 13K2

W − 2K2
S + 38−

(
2 + q + q′

n

)
+ δ − π∗KS · C, (2)

where 0 < q′ < n with qq′ ≡ 1 (mod n), and δ is the positive number computed
in Lemma 5.13 for distinct geometric situations.

We point out that the core of Theorem 1.1 relies on finding explicit δ’s
and a classification of all possible geometric realizations. Bounding of δ for
a sequence of stable surfaces with one cyclic quotient singularity is directly
related to the existence of accumulation points. We will use Bogomolov-
Miyaoka-Yau inequality for proving the bound in (2) in Theorem 1.1. How-
ever, the bound in (1), and the computation of δ in Lemma 5.13, remain
valid in any characteristic.

Theorem 1.1 directly implies the following results about boundedness and
accumulation points.

1We refer to boundedness in this context to describe the possible cyclic quotient sin-
gularities which may occur on a surface with bounded invariants K2 and χ.
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Corollary 1.2. Let c > 0, and let S be a set of stable surfaces W with one
cyclic quotient singularity, KS nef, and K2

W ≤ c. Let Sing(S) be the set of
singularities of the surfaces in S. Then Sing(S) is finite if and only if the
number of 2’s at the extremes of every [b1, . . . , br] ∈ Sing(S) is bounded.

Corollary 1.3. Let {Wk} be a sequence of stable surfaces with only one
cyclic quotient singularity. Assume that for every k the minimal model Sk
of Wk has canonical class nef, and that K2

Wk
≤ c for a positive number c. If

the cases (A),(B.2) or (D.3) in Lemma 5.13 hold except for a finite number
of indices k, then Acc({K2

Wk
}) = ∅.

Next we introduce the set-up that will be used to define and work with
generalized T-singularities.

Definition 1.4 (see e.g. [OW77]). Let {a1, . . . , as} be an ordered set of
positive natural numbers. Let p−1 = 0, p0 = 1, q0 = 0, q1 = 1, and for i ≥ 1,

pi+1 = ai+1pi + pi−1 , qi+1 = ai+1qi + qi−1.

We say that {a1, . . . , as} is admissible if pi > 0 for i = 0, . . . , s− 1.

It is a straightforward calculation to show that if {a1, . . . , as} is admissi-
ble, then the Hirzebruch-Jung continued fraction [a1, . . . , as] is well-defined
(see Definition 3.14). As an example, we know that the sequence {5, 1, 5} is
admissible but {5, 1, 1, 5} is not. Note that if we have ai ≥ 2 for every i, then
{a1, . . . , as} is admissible.

Definition 1.5. Let [b1, . . . , br] be a Hirzebruch-Jung continued fraction with
bi ≥ 2 for all i. We say that [b1, . . . , br] is admissible for chains if

{b1, . . . , br, 1, b1, . . . , br, 1, . . . , 1, b1, . . . , br} (3)

is admissible for any number of inserted 1’s.

As for regular Hirzebruch-Jung continued fractions, we think geometri-
cally of {b1, . . . , br, 1, b1, . . . , br, 1, . . . , 1, b1, . . . , br} as a chain of P1’s, where
we have (−1)-curves inserted between some minimal resolution chains of the
cyclic quotient singularity associated to [b1, . . . , br]. For example, we have
that [4] is admissible for chains, and it gives all the initial chains to construct
all the T-singularities [KSB88, Prop.3.11]. We take this to define generalized
T-singularities.
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Definition 1.6. Let {a1, . . . , as} be an admissible set. Its reduced Hirzebruch-
Jung continued fraction is the continued fraction obtained after contracting
all (−1)-curves in {a1, . . . , as}, and all the new (−1)-curves after that.

Notation 1.7. The reduced Hirzebruch- Jung continued fraction of

{b1, . . . , br, 1, b1, . . . , br, 1, . . . , 1, b1, . . . , br},

where u is the number of inserted 1’s, will be denoted by [bu1 , . . . , b
u
ru ]. Also,

we will write [b01, . . . , b
0
r0

] to refer to [b1, . . . , br]. We write the singularity
[a1, . . . , as] to refer to the cyclic singularity associated to this continued frac-
tion.

Definition 1.8. Let [b1, . . . , br] be a Hirzebruch-Jung continued fraction
which is admissible for chains. We define the class of generalized T-singularity
of center [b1, . . . , br] inductively in the following way

(i) The singularities [bu1 , . . . , b
u
ru ] for every u ≥ 0 are generalized T-singularities.

(ii) If [a1, . . . , as] is a generalized T-singularity, then so are

[2, a1, . . . , as−1, as + 1] and [a1 + 1, a2, . . . , as, 2].

(iii) Every generalized T-singularity of center [b1, . . . , br] is obtained by
starting with one of the singularities described in (i) and iterating the
steps described in (ii).

We say that we apply the T-chain algorithm if we apply iterations of (ii).

It is clear that T-singularities are the generalized T-singularities of center
[4]. Rana and Urzúa in [RU19] showed an optimal bound of T-singularities
for stable surfaces with one singularity. A natural question is whether that
result remains valid for generalized T-singularities. We answer this question
in the following theorem by describing how the accumulation points of K2 on
stable surfaces with one generalized T-singularity of fixed center are formed.

Theorem 1.9. Let {Wk} be a sequence of stable surfaces such that any Wk

has only one generalized T-singularity with a fixed center [b1, . . . , br], say at
Pk ∈ Wk. Suppose that the minimal model Sk of the minimal resolution of
Wk has canonical class nef. Then {K2

Wk
} has accumulation points if and only

if {K2
Wk
} satisfy the property (*) (see Definition 6.8.)
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It is shown in Proposition 6.12 that every accumulation point which is
coming from a sequence as one described in Theorem 1.9, can be constructed
by blowing up a particular configuration of curves in a smooth surface and
then contracting the new configuration obtained.

8



Notation
Let S be a smooth surface. We recall the following notation:

• OS(D) is the invertible sheaf corresponding to a divisor D.

• Pic(S) is the group of isomorphism classes of invertible sheaves on S.

• NS(S) is the Néron-Severi group of S.

• q(S) = h1(OS) is the irregularity of S.

• pg(S) = h2(OS) is the geometric genus of S.

• g(C) = pa(C) = h1(OC) is the arithmetic genus of a smooth curve C.

• e(S) is the topological Euler-Poincaré characteristic of S.

• χ(S) is the algebraic Euler characteristic of S.
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2 General facts on nonsingular surfaces
We start by giving some definitions and basic properties of the objects that
are related to this work (see e.g. [Har77], [Bea96]). A projective variety over
a field k is a subset of the projective space Pn, which is the zero locus of a
finite number of polynomials with coefficients in k. Throughout this work,
the field k will be the field C of complex numbers. A projective surface is a
projective variety of dimension two. A non-singular point of a variety S is
a point P , which has a regular local ring OP . A variety with non-singular
points is called smooth or non-singular.

A variety is called normal if its local rings are integrally closed domains.
The set of singular points of a normal variety has codimension at least two,
so we can say that a normal variety has ‘simpler’ singularities than the ones
arising in non-normal varieties. In particular, a normal curve does not have
singular points, and every singular point in a normal surface is isolated.

Divisors on a variety X are generalizations of subvarieties of codimension
one, and they are used to obtain properties of X. There are several different
ways of defining divisors. A Weil divisor is a formal sum with multiplicities
of subvarieties of codimension one. We say that a Weil divisor is principal if
it is the divisor of a rational function.

A Cartier divisor D is a global section of the sheaf K∗X/O∗X , where KX is
the sheaf of rational functions on X. D can be described as D = {(fi, Ui)},
where {Ui} is an open cover of X, fi ∈ K∗X(Ui), and fif

−1
j ∈ O∗X . We say

that a Cartier divisor is principal if D = {(f,X)}. The set of Cartier divisors
forms a group with the multiplication in each open set Ui of the functions fi.
We have two important equivalence relations among the divisors, which are
linear equivalence and numerical equivalence. Indeed, we say that two Cartier
divisors D, and D′ are linearly equivalent if their difference is principal, and
in such a case, it is denoted by D ∼ D′. We say that two Cartier divisors D,
D′ are numerically equivalent if their intersections with any curve are equal,
and in this case, it is denoted by D ≡ D′.

Furthermore, there is a one to one correspondence between Cartier divi-
sors on X and invertible subsheaves of K, which respects linear equivalence.
That is, given a divisor D = {(fi, Ui)}, we have the invertible sheaf OX(D),
where OX(D)|Ui

= f−1i OUi
. If D ∼ D′, then OX(D) ∼= OX(D′). The Pi-

card group is the group of isomorphism classes of invertibles sheaves on X,
it is denoted by Pic(X). Also, we have the Néron-Severi group, which is the
group of elements in the Picard group modulo numerical equivalence, it is
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denoted by NS(X).
The definition of Weil divisor is the same as Cartier divisor in the case

where X is a smooth variety. If X is normal, then all Cartier divisors are
Weil divisors. Nevertheless, in general, both definitions are not the same.

In addition, we can identify a Cartier divisor with a line bundle. So, when
we have a smooth variety, we will refer to the class of a Cartier divisor D, or
to the corresponding line bundle LD, or to the corresponding invertible sheaf
OX(D), as the same object without distinction.

A Rational map f : X −→ X ′, is an equivalence class of pairs (f, U),
where f : U ⊆ X −→ W is a morphism and U is an open subset. Two pairs
(f, U) and (f ′, U ′) are considered equivalent if their restrictions are equal in
U ∩U ′. Given a divisor D, we can associate to it a rational map, to say φ|D|,
by choosing a basis of the global section in OX(D). Locally in an open set
U , the map is the evaluation of the basis at points of U .

2.1 Intersection theory

In this section we list some of the basic results about intersection theory. It
can be found in [Bea96] and [Har77].

Definition 2.1. (Intersection Multiplicity) (see e.g [Bea96] Definition I.2).
Let C,C ′ be two distinct irreducible curves on a surface S, x ∈ C ∩ C ′, Ox
the local ring of S at x. If f (resp. g) is an equation of C (resp. C ′) in Ox,
the intersection multiplicity of C and C ′ at x is defined to be

mx(C ∩ C ′) = dimCOx/(f, g).

Definition 2.2. (Intersection Number) (see e.g. [Bea96] Definition I.3). If
C,C ′ are two distinct irreducible curves on S, the intersection number (C ·C ′)
is defined by:

(C · C ′) =
∑

x∈C∩C′
mx(C ∩ C ′).

Theorem 2.3. (Intersection Form) For L,L′ in Pic(S), define

(L · L′) = χ(OS)− χ(L−1)− χ(L′−1) + χ(L−1 ⊗ L′−1).

then (·) is a symmetric bilinear form on Pic(S), such that if C and C ′
are two distinct irreducible curves on S then

(OS(C) · OS(C ′)) = (C · C ′).

11



Proof. See [Bea96], Theorem I.4.

Theorem 2.4 (Adjunction Formula). Let D be a smooth divisor in a smooth
variety X over C. Then KD ∼ (KX +D)|D.

Proof. See [Har77, II], Proposition 8.20.

In what follows S will be a complex smooth projective surface. By taking
the divisor D as a smooth curve C on S, in Theorem 2.4, we obtain the
Genus Formula

2g(C)− 2 = C2 + C ·KS.

It also can be obtained by using the Riemann-Roch Theorem.

Theorem 2.5 (Riemann-Roch Theorem). For all D ∈ Pic(S),

χ(D) = χ(OS) +
1

2
(D2 −D ·KS).

Proof. See [Bea96], Theorem I.12.

Theorem 2.6 (Noether’s Formula).

χ(OS) =
1

12
(K2

S + e(S))

Theorem 2.7 (Nakai-Moishezon Criterion). A divisor D on the surface X
is ample if and only if D2 > 0 and D · C > 0 for all irreducible curves C in
X.

Proof. See [Har77, pp. 365], Theorem 1.10.

2.2 Enriques classification

The Enriques classification consists of associating to each algebraic complex
surface a minimal model (up to birational equivalence). We say that two
varieties are birational if there exists a rational map between them, whose
inverse is also a rational map. This definition is a generalization of the
isomorphism, in the sense that two birational varieties have open subsets
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isomorphism, but the birational map is not necessarily defined in all points
on the variety. In particular, the blow-up of a point p ∈ S is a birational map
ε, which replaces p with the projective tangent space at that point. Some of
its properties are contained in the next proposition.

Proposition 2.8. Let S be a surface and p ∈ S. Then there exist a surface
Ŝ and a morphism ε : Ŝ −→ S, which are unique up to isomorphism, such
that

(i) The restriction of ε to ε−1(S \ {p}) is an isomorphism onto S \ {p}.

(ii) ε−1(p) = E, is isomorphic to P1. It is called the exceptional curve of
the blow-up.

(iii) Let C be a curve passing through p, then ε∗C = Ĉ + mE, where Ĉ is
the strict transform of the curve C, and m is the multiplicity of P in
C.

(iv) We have the isomorphisms of groups Pic(Ŝ) ∼= Pic(S)⊕Z, and NS(Ŝ) ∼=
NS(S)⊕ Z[E].

(v) Let D, and D′ be divisors on S. Then (ε∗D)·(ε∗D′) = D·D′, E ·(ε∗D) =
0, and E2 = −1.

(vi) KŜ = ε∗KS + E.

Proof. See [Bea96, pp.11-12].

We recall that a curve E ⊆ S is a (−1)-curve if it is the exceptional
curve of a blow-up. The birational maps between surfaces are completely
determined by blow-ups, as the following theorem shows.

Theorem 2.9. Let f : S −→ S0 be a birational morphism of surfaces. Then
there is a sequence of blow ups εk : Sk −→ Sk−1 (k = 1, . . . , n) and an
isomorphism u : S −→ Sn such that f = ε1 ◦ · · · ◦ εn ◦ u.

Proof. See [Bea96], Theorem II.11.

We denote by B(S) the set of isomorphism classes of surfaces birationally
equivalent to S. If S, S ′ ∈ B(S), then S is said to dominate S ′ if there
is a birational morphism S −→ S ′. A surface is called minimal surface (or
minimal model) if its class in B(S) is minimal. We would like to have a
representative of each class by a minimal surface.

13



Proposition 2.10. Every surface dominates a minimal surface.

Proof. See [Bea96], Theorem II.16.

By Theorem 2.9, we have that a surface without (−1)-curves is a minimal
surface. The following theorem gives us a numerical characterization of (−1)-
curves and allows us to construct the minimal model of a given smooth
algebraic surface.

Theorem 2.11. (Castelnuovo’s contractibility criterion). Let X be a surface
and E ⊆ X a curve isomorphic to P1 with E2 = −1. Then E is an exceptional
curve on X.

Proof. See [Bea96], Theorem II.17.

We say that two surfaces are in the same class if they are birational.
What follows is a distinguished birational invariant for every variety, which
is crucial to develop the classification.

Definition 2.12 (Kodaira dimension). LetX be a smooth projective variety,
let K be the canonical divisor of X, and let φnK be the rational map from
X to the projective space associated with the system |nK|. The Kodaira
dimension of X, written κ(X), is the maximum dimension of the images
φnK(X), for n ≥ 1.

In general, given a variety X of dimension n, κ(X) can assume the values
−∞, 0, . . . , n. In the case of algebraic curves we have the following classifi-
cation.

κ g Minimal model
−∞ 0 The projective line P1

0 1 Elliptic curves
1 ≥ 2 Curves of general type

Table 1: Table of algebraic curves classification.

In the case of surfaces, by starting from the classification by Kodaira
dimension, we obtain four different classes. The surfaces in the classes
κ(X) = −∞, 0, 1 can be classified in much more detail. In fact, there are
eight different classes which correspond to algebraic surfaces.
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κ K2 q pg Minimal model

−∞
8 or 9 0 0 Rational surfaces: P2,Fn, P1 × P1

8(1− g) > 0 0 Ruled surfaces of genus g ≥ 1: PC(E), C 6= P1,
where E is a rank 2 vector bundle over a curve C.

0 0

0 1 K3 surfaces
0 0 Enriques surfaces
1 0 Hyperelliptic (Bielliptic) surfaces
2 1 Abelian surfaces

1 0 ≥ 0 ≥ 0 Properly elliptic surfaces
2 > 0 ≥ 0 ≥ 0 Surfaces of general type

Table 2: Table of Enriques classification for algebraic surfaces.

We recall that minimal models are unique (up to isomorphism), with only
one exception, rational surfaces, which have infinitely many minimal models.
Next, we show some known examples of surfaces with different κ.
Example 2.13. (Complete intersection). Let Sd1,...,dr be a surface in Pr+2

which is the complete intersection of r hypersurfaces of degrees d1, . . . , dr,
and let K be its canonical class. By the adjunction formula we obtain that
K = (

∑
di − r − 3)H, where H is a hyperplane section of the surface (see

Theorem 2.4). Thus, for
∑
di < r+ 3 we obtain the surfaces S2 (∼= P1×P1),

S3 (del Pezzo surface), and S2,2 (del Pezzo surface) which have κ = −∞. So
they are rational surfaces. For di = r + 3 we obtain the surfaces S4, S2,3,
and S2,2,2 with κ = 0 and K ≡ 0. One can check that these surfaces are
K3 surfaces. For di > r + 3 we obtain that K is ample, and so the surfaces
Sd1,...,dr have κ = 2. So they are surfaces of general type.
Example 2.14. (Godeaux surface). A Godeaux surface is a minimal surface
of general type with pg = q = 0 and K2 = 1. Let S = {x50 +x51 +x52 +x53 = 0}
be a quintic surface on P3. Let G : = Z/5Z, and let ξ be a primitive 5-th
root of 1. We define the following action on S

σ · [x0, x1, x2, x3] := [x0, ξx1, ξ
2x2, ξ

3x3],

one can check directly that σ is a automorphism without fixed points. So
the surface S ′ : = S/G is smooth. It is known as the Godeaux surface. Now,
since KS ∼ OS(1) (see Theorem 2.4) then K2

S = 5. By the Riemann-Hurwitz
formula we know that e(S) = 5e(S ′) and χ(S) = 5χ(S ′). So, we obtain that
pg(S) = 4, χ(S) = 1 + 4 = 5, and q(S) = 0. It follows that q(S ′) = 0,
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χ(S ′) = 1, and pg(S ′) = 0. Putting all together in Noether’s formula for S
(see Theorem 2.6) we obtain 12 = 1 + e(S ′), and so by Noether’s formula
for S ′ we have that K2

S′ = 1. Thus, the surface S ′ is of general type with
pg = q = 0, and K2

S′ = 1.

Example 2.15. (Enriques surface) An Enriques surface is a surface such that
the irregularity q = 0 and the canonical line bundle K is non-trivial but has
trivial square. Let S2,2,2 be a complete intersection of 3 quadrics in P5 (see
Example 2.13). Say, the quadrics are Qi(x0, x1, x2)+Q′i(x3, x4, x5). We know
that K ≡ 0, and one can compute that q(S2,2,2) = 0. That is, S2,2,2 is a K3
surface. The involution σ of P5 defined by

σ · (x0, x1, x2, x3, x4) := (x0, x1, x2,−x3,−x4,−x5),

takes X to itself. By choosing generic quadrics Q1, Q2, Q3 (resp. Q′1, Q′2, Q′3)
such that they have no points in common in the planes x0 = x1 = x2 = 0
(resp. x3 = x4 = x5 = 0), we obtain that σ acts on S2,2,2 without fixed
points, and then the quotient X := S2,2,2/σ is smooth. Let π : S2,2,2 → X
the quotient map. Since, we have that KX ≡ π∗KS2,2,2 ≡ 0 we obtain that
2KX ≡ π∗π

∗KS2,2,2 ≡ 0 and then X is an Enriques surface.

Theorem 2.16. (Noether inequality). Let X be a minimal surface of general
type. Then

pg(X) ≤ 1

2
K2
X + 2.

Proof. See [BHPVdV04], Theorem V II.3.1.

Theorem 2.17. (Bogomolov-Miyaoka-Yau Inequality) For every surface of
general type X the inequality K2

X ≤ 3e(X) holds.

Proof. See [BHPVdV04], Theorem V II.4.1.
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3 Singularities and stable surfaces

3.1 General facts on singular surfaces

We list below some definitions and basic facts about singular surfaces. Some
of them can be found in [Mum61], [KM08], and [Har77].

Definition 3.1. Let X be a surface. X is nonsingular at a point P ∈ X
if the local ring OP,X is a regular local ring (dimkmP/m

2
P = dimkrullOP,X).

Otherwise, X is singular at P .

Definition 3.2. Let W be a normal surface. A resolution of W is a proper
birational morphism φ : X −→ W such that X is smooth.

For the next definition, we consider a normal algebraic surface W with a
singularity P ∈ W . Let φ : X → W be the minimal resolution of P , and let
A,B be divisors through P onW . Let E1, . . . , En be the exceptional divisors
which are contracted by φ to the point P .

Definition 3.3. (Intersection Theory) (See [Mum61, pp. 241]). The total
transform A′ of A is defined to be

A′ := A′0 +
∑

riEi

where A′0 is the proper transform of A, and the vector (r1, . . . , rn) is the
unique solution of the linear system (A′0 ·Ej)+

∑
i ri(Ei ·Ej) for j = 1, . . . , n.

We also define the intersection number of A,B at P to be the number such
that

i(A ·B,P ) :=
∑

P ′ over P

[
i(A′0 ·B′0, P ′) +

∑
rii(Ei ·B′0, P ′)

]
=

∑
P ′ over P

[
i(A′0 ·B′0, P ′) +

∑
sii(A

′
0 · Ei, P ′)

]
where A′ := A′0 +

∑
riEi, and B′ := B′0 +

∑
siEi are the total transforms of

A, B respectively.

Proposition 3.4. Under the previous notation, we have the following prop-
erties:

(i) If A = (f) in W then A′ = (f) in X; hence A ∼ B implies A′ ∼ B′.
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(ii) Let A be an effective divisor, then all ri are positive.

(iii) i(A ·B,P ) is symmetric and distributive.

(iv) Let A and B be effective divisors, then i(A ·B,P ) is greater than 0.

(v) i(A ·B,P ) is independent of the choice of X.

Proof. See [Mum61, pp. 241].

Theorem 3.5 (Nakai-Moishezon Criterion). Let D be a Cartier divisor on
a projective surface W . Then D is ample on W if and only if D2 > 0 and
D · C > 0 for all irreducible curves C in W .

Proof. See e.g. [Har77, pp. 434], Theorem 5.1.

Corollary 3.6. (Asymptotic Riemann-Roch) Let W be an irreducible pro-
jective surface, and let D be a nef divisor on W . Then

h0
(
W,OW (mD)

)
=

(D2)

2
m2 +O(m).

More generally,

h0
(
W,F ⊗OW (mD)

)
= rank(F)

(D2)

2
m2 +O(m).

for any coherent sheaf F on W .

Proof. See e.g [Laz17, 1.4.41]

Definition 3.7 (Volume of a line bundle). (See e.g [Laz17, 2.2.31]). Let W
be an irreducible projective surface, and let L be a line bundle on W . The
volume of L is defined to be the non-negative real number

vol(L) = volW (L) = lim sup
m→∞

h0(X,L⊗m)

m2/2
.

The volume is an interesting invariant of a big divisor D that measures
the asymptotic growth of the linear series |mD| for m >> 0.
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Definition 3.8. (Contractible) (See e.g [Art62] Section 0). Let X be a
complete algebraic surface and let C be a connected curve on X. Assume
that X is nonsingular along C. We say that C is contractible if there exists
a map π : X → W onto a surface W which is an isomorphism at every point
of X \ C and such that π(C) is a single point P .

We remark that if C is contractible then π is determined uniquely by the
condition that P be a normal point of W .

Theorem 3.9. (Artin’s Contractibility Theorem) Let X be a complete al-
gebraic surface and let C =

⋃
Ci be a connected curve. The following are

equivalent:

(a) C is contractible and if π : X → W is the contraction of C then χ(W ) =
χ(X).

(b) i. The intersection matrix ||(Ci · Cj)|| is negative definite.

ii. For every cycle Z with support on C, pa(Z) ≤ 0.

Moreover, if X is a normal projective surface and (a) holds, then W is
also projective.

Proof. See [Art62], Theorem 2.3.

Definition 3.10. (See e.g [TZ92]). LetX be a smooth projective surface and
let B =

∑
Bi be a reduced effective divisor on X with only simple normal

crossings. The pair (X,B) is called minimal if KX +B has a decomposition
into a sum of Q-divisors:

KX +B =
(
KX +

∑
αiBi

)
+
∑

(1− αi)Bi,

where

• 0 ≤ αi ≤ 1 and αi ∈ Q

• KX +
∑
αiBi is numerically effective,

• the intersection matrix of
∑

(1− αi)Bi is negative definite, and

• if αj 6= 1 then
(
KX +

∑
αi ·Bj

)
= 0 and B2

j ≤ −2.

19



This section ends with two known inequalities that we will use in the proof
of Proposition 5.4, and Theorem 1.1 for bounding the length of a singularity
only in terms of K2

W .
Remark 3.11. Let W be a stable surface. Let φ : X → W be the minimal
resolution ofW . Assume thatKX+B ∼ φ∗KW , and that (X,B) is a minimal
pair. Then we have the generalized Noether’s inequality shown in [TZ92],

χ(OW ) ≤ K2
W + 3.

Assume that W has only isolated quotient singularities. The Bogomolov-
Miyaoka-Yau inequality for orbifolds is (see e.g. [Lan03])

K2
W ≤ 3eorb(W ),

where eorb(W ) is the orbifold Euler number of a quasiprojective surface W
with only isolated cyclic quotient singularities. That is defined as

eorb(W ) = e(W )−
∑

w∈Sing(W)

(
1− 1

|π1(Lw)|

)
,

where Lw is the link of w ∈ Sing(W), and π1 denotes the fundamental group.

3.2 Cyclic quotient singularities

The results listed below can be found in [Ful93, pp.31-50]. We will only
consider stable surfacesW with one cyclic quotient singularity P . We denote
its minimal resolution by X, and a minimal model of X by S (i.e. S has no
(−1)-curves).

Definition 3.12. A two dimensional cyclic quotient singularity is the germ
at the origin of the quotient of C2 by Z/n. It is denoted by 1

n
(1, q), where

ξ · (x, y) 7→ (ξx, ξqy) is the action of Z/n on C2, ξ is a primitive n-root of 1,
and gcd(q, n) = 1.

Example 3.13. Toric Construction of 1
2
(1, 1). Let σ be the cone over Z2

generated by e2 = (0, 1) and 2e1 − e2 = (2,−1). The cone dual σ∗ over
R2 determines a commutative semigroup Sσ which is generated by e∗1, e∗1 +
e∗2, e

∗
1 + 2e∗2. Then, we have an finitely generated algebra

C[Sσ] := C[X,XY,XY 2]
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where X = χe
∗
1 , Y = χe

∗
2 . Note that

C[X,XY,XY 2] = C[u, v, w]/(v2 − uw).

It coincides with the quotient of C2 by Z/2, where ξ · (X, Y ) = (−X,−Y )
is the action.

Every cyclic quotient singularity 1
n
(1, q) can be constructed as a singular-

ity of a toric surface by starting from the cone generated by e2 = (0, 1) and
ne1 − qe2 = (n,−q) . This construction can be used to obtain an explicit
resolution of the singularity, which is entirely determined by the numbers n
and q as is described in Proposition 3.16.

Definition 3.14. Let q, n be integers such that 0 < q < n and gcd(q, n) = 1.
We define a Hirzebruch-Jung continued fraction of n/q as the expression

n

q
= b1 −

1

b2 −
1

. . . − 1

br

, (4)

where bj ≥ 1 are integers, and none of the denominators in (4) are equal to
zero. It is denoted by [b1, . . . , br].

Remark 3.15. If we have that bj ≥ 2 then we obtain a one-to-one correspon-
dence between the numbers n/q and the Hirzebruch-Jung continued fraction
[b1, . . . , br]. Otherwise, we can have different continued fractions for a number
n/q. For instance, we know that 15/4 = [4, 4], and 15/4 = [5, 1, 5].

Proposition 3.16. Let W be a surface with a singularity 1
n
(1, q). Then,

the minimal resolution φ : X → W contains a chain C of exceptional curves
C1, . . . , Cr such that Cj ' P1, and

Ci · Cj =


1 if i = j ± 1
−bj if i = j
0 otherwise

(5)

where [b1, . . . , br] is the Hirzebruch-Jung continued fraction of n
q
. We say that

this singularity has length r.

21



Given the chain C = C1 + · · ·+Cr, its dual graph is defined as in Figure
1, where the i-th vertex corresponds to the curve Ci, and the edge between
the curves Cj and Cj+1 corresponds to the point in the intersection between
them.

C1 C2 Cr−1 Cr

Figure 1: The dual graph of 1
n
(1, q).

In this case, we have the following numerical equivalence

KX ≡ φ∗KW +
r∑
j=1

ajCj (6)

where the coefficients aj are rational numbers aj ∈]−1, 0] called discrepancies.
We call (6) the canonical class formula.

Remark 3.17. The vector of discrepancies is the solution of the following
linear system

A =



−b1 1 0 0 · · · 0 b1 − 2
1 −b2 1 0 · · · 0 b2 − 2

0 1
. . . . . . . . . ...

...
... . . . . . . . . . 1 0 br−2 − 2
0 · · · 0 1 −br−1 1 br−1 − 2
0 · · · 0 0 1 −br br − 2


That linear system can be solved using the tridiagonal matrix algorithm

because we have that bi ≥ 2 (see e.g. [HJ12]). Then, we obtain the discrep-
ancies from the formulas ar = dr, and aj = dj − cjaj+1 for j = 2, . . . r, where
cj, dj are auxiliary coefficients defined as follows:

• c1 =
1

−b1
, and cj =

1

−bj − cj−1
for j = 2, . . . , r − 1.

• d1 =
b1 − 2

−b1
, and dj =

1

−bj − cj−1
for j = 2, . . . , r.
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Following Proposition 3.16, we denote by [b1, . . . , br] the continued frac-
tion of P . Also, we denote by q′ the inverse of q modulo n, that is, the unique
integer 0 < q′ < n such that qq′ ≡ 1(mod n).

Proposition 3.18. Let W be a normal projective surface with only one sin-
gularity and of type 1

n
(1, q). Let φ : X → W be the minimal resolution of W .

Then we have

K2
X = K2

W +
r∑
j=1

(2− bj) +
2(n− 1)− q − q′

n
.

Proof. See e.g. the proof of Proposition 3.4 in [Urz10].

3.3 Stable surfaces

This section introduce two essential concepts that appear in the minimal
model program (MMP for short), and the moduli theory. The MMP aims to
study geometric and cohomological properties of algebraic varieties by con-
structing a birational model that is as simple as possible. It starts with Mori
for varieties of higher dimension (see [Mor87]). In the case of dimension two,
this program agrees with the theory of minimal models of smooth surfaces
developed by Castelnuovo and Enriques. Contrary to the surfaces, a minimal
model of a smooth variety of higher dimensions is usually a singular variety.

On the other hand, moduli theory aims to construct and describe a suit-
able space parameterizing surfaces of general type with K2 and χ fixed. In
compactifying such a space, Kollár and Shepherd-Barron also obtained the
same class of singularities of the MMP. Both theories include not only vari-
eties X but pairs of the form (X,B), where B is a suitable divisor.

Definition 3.19. Let X be a smooth variety and D ⊂ X a divisor. We
say that D is a simple normal crossing divisor, snc divisor for short, if every
irreducible component of D is smooth and all intersections are transverse.

Definition 3.20. Let X be a normal variety and B =
∑
biBi a Q-divisor

on X such that KX +B is Q-Cartier. A log resolution of (X,B) is a proper
birational morphism φ : Y −→ X such that Y is smooth and Exc(φ)∪φ−1∗ (B)
has simple normal crossing support.

We can write

KY ≡ φ∗(KX +B) +
∑

a(Ei, X,B)Ei
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where Ei are the divisors in Exc(φ) and φ−1∗ (B). The numbers ai are called
the discrepancies of Ei with respect to (X,B).

In the following table, we find some of the singularities needed to run the
minimal model program. We say that (X,B) is:

Terminal if ai > 0
Canonical if ai ≥ 0

Kawamata log terminal (klt) if ai > −1 and bBc = 0
Log canonical (lc) if ai ≥ −1

where φ : Y −→ X is a resolution of (X,B). One can prove that the above
definitions are independent of the choice of the resolution. Assuming B = 0,
terminal singularities are the smallest class needed for running the MMP,
starting with smooth varieties. Canonical singularities appear on canonical
models of varieties of general type. In the case of surfaces, they have been
studied since antiquity, and they are known as Du Val singularities (see e.g
[Dur79]). The terminal and canonical singularity log version appear when
we run the MMP for pairs (X,B). Also, there are other classes of singular-
ities which are defined in [KM08] for technical purposes, namely purely log
terminal singularities (plt for short) and divisorial log terminal singularities
(dlt for short). Both of them agree with klt singularities when B = 0, hence
they are known as log terminal singularities.

Theorem 3.21. The normal surface singularity P ∈ W is log terminal if
and only if it is a quotient singularity.

Proof. See [Kaw88].

In the case of having a non-normal variety, we also have a similar notion
of a log canonical pair. It was introduced by Kollár and Shepherd-Barron
in [KSB88, 4.17], and it is known as semi log canonical pair, slc for short.
Since, we will only work with normal surfaces with only one cyclic quotient
singularity, we will not introduce technical details about slc singularities, but
these can be found in [KSB88]. Scl singularities appear on stable degener-
ations of smooth varieties of general type. Hence, slc singularities play an
important role in moduli theory.

A moduli space is a geometric space whose points represent isomorphism
classes of some geometric objects. For instance, Mg is the moduli space of
smooth projective curves of genus g ≥ 2 together with their isomorphisms.
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Because there are smooth curves which can be degenerated into singular
curves, we have thatMg is not a complete space. One of the ways for con-
structing a compactification ofMg is to add more curves that maybe resolve
the new moduli problem. That curves are called Deligne-Mumford moduli-
stable curves. They are defined as connected and complete reduced curves
X with ordinary nodes only, such that the automorphism group Aut(X) is
finite, and the dualizing sheaf KX is ample. This construction is supported
into the invariant geometric theory, and it involves the minimal model pro-
gram for surfaces.

Similarly to the construction ofMg, Gieseker in [Gie77] showed the exis-
tence of a quasi-projective scheme parameterizing surfaces with at worst Du
Val singularities, ample canonical class K, and K2 fixed. As well as in the
case of curves, this space is not complete. In order to obtain a complete such
a space, Kollár–Shepherd-Barron enlarge the parameter space to one that
parameterizes smoothable stable surfaces with K2. They constructed such a
space as a separated algebraic space. It is denoted byMsm

K2 . (See [KSB88]).

Definition 3.22. A stable surface is a projective surface S such that S has
only semi-log-canonical singularities, and ω

[k]
S is locally free and ample for

some k > 0.

We can find a more general version of Definition 3.22 in [Kol90, Definition
5.2].

Definition 3.23. A singularity (X, x) is called smoothable if there exists
a one-parametric deformation φ : (X , x) → (C, 0) of (X, x) such that for
t ∈ C \ {0} sufficiently close to 0 the fibre Xt = φ−1(t) is smooth.

Furthermore, Kollár proved that if Msm
K2 is bounded, then it is coarsely

represented by a projective algebraic scheme (See [Kol90, Corollary 5.6]),
and that boundedness was proved by Alexeev in [Ale94]. The moduli space
M(K+B)2,χ for stable pairs (X,B) and its (KSBA) compactification can be
found in [Ale96].

3.4 Some facts about volumes of stable surfaces

In this section, we list some of the known results about the set K2(C). As
part of the work carried out for the compactification of the moduli space in
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[Ale94], Alexeev proved the Descending Chain Condition, D.C.C. for short,
for the set

K2(C) := {(KX +B)2 : (X,B) ∈ S(C), KX +B is ample},

where S(C) is the set of log-canonical projective surfaces (X,B) such that
the coefficients of B belong to C.

Definition 3.24. A set C ⊂ R is called a D.C.C set if it satisfies the descend-
ing chain condition: a decreasing subsequence of C eventually stabilizes.

Theorem 3.25 ([Ale94],8.2). Fix a D.C.C set C. Consider all log canonical
projective surfaces X with an R-divisor B =

∑
biBi such that KX + B is

ample, and bi ∈ C. Then the set {(KX +B)2} is a D.C.C set.

Remark 3.26. The three most commonly used sets of coefficients are C0 = ∅,
C1 = {1}, and C2 = {1− 1

n
|n ∈ N} ∪ {1}.

The D.C.C. is an important property of Acc(K2(C)), the set of accu-
mulation points of K2(C). The problem of describing this set remains still
open. The following result shows that K2(∅) is unbounded even if we fix the
geometric genus.

Theorem 3.27. [UU19, Thm. 1.9] Given integers g ≥ 0 and N , there exists
a normal projective surface X over C with the following properties:

1. X has geometric genus pg = g.

2. X has only one singular point, which is log-terminal.

3. KX is Q-Cartier and ample.

4. K2
X > N .

Theorem 3.28. [AL19b, Theorem 1.1] Suppose that C ⊂ (0, 1] satisfies the
descending chain condition. Then v∞ ∈ R>0 is an accumulation point of
K2(C) if and only if there exists a log canonical surface (W,B) ∈ S(C ∪ {1})
such that

1. KW +B is ample, and v∞ = (KW +B)2.

2. One of the following conditions is satisfied:
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(a) The set of codiscrepancies of divisors overW with respect to (W,B)
contains an accumulation point of C.

(b) (W,B) has an accessible nklt center.

3. If 1 is not in the closure C of C then each irreducible component of bBc
has geometric genus at most 1.

Corollary 3.29. [AL19b, Corollary 1.3] Let C ⊂ (0, 1] be a D.C.C set. Then
Acc(K2(C)) ⊂ Acc(K2(C̄ ∪ {1})). In particular, if C̄ ⊂ Q then Acc(K2(C)) ⊂
Q.

Theorem 3.30. [AL19b, Theorem 1.7] The following is true:

(i) For C = C0, C1 and C2, ones has min Acc(K2(C)) = minK2
nklt(C).

(ii) One has 1
86436

= 1
72·422 ≤ minK2

nklt(C2) ≤ 1
1764

= 1
422
.

(iii) For C = C0 or C1, one has 1
86436

= 1
72·422 ≤ minK2

nklt(C) ≤ 1
462

= 1
11·42 .
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4 Generalized T-singularities

4.1 T-singularities

Singularities which admit a one-parameter Q-Gorenstein smoothing are im-
portant because only surfaces with these singularities can appear in the
boundary of MK2,χ as stable limits of families of surfaces in MK2,χ. The
facts that we list below can be found in [KSB88].

Definition 4.1. ([KSB88], Definition 3.1). A normal surfaceW isQ-Gorenstein
if some nonzero integral multiplemKW of the canonical divisorKW is Cartier.

Definition 4.2. ([KSB88], Definition 3.7). A normal surface singularity
is of class T if it is a quotient singularity and admits a one-parameter Q-
Gorenstein smoothing. We also called it a T-singularity.

The next proposition gives us a characterization of the T-singularities
which are not rational double points, RPD for short.

Proposition 4.3. (i) The cyclic quotient singularities associated to [4] and
[3, 2, . . . , 2, 3] are T-singularities.

(ii) If the singularity associated to [b1, . . . , br] is a T-singularity, then so
are [2, b1, . . . , br + 1] and [b1 + 1, . . . , br, 2].

(iii) Every T-singularity that is not an RDP can be obtained by starting
with one of the singularities described in (i)and iterating the steps described
in (ii).

Proof. See [KSB88], Proposition 3.11.

It is follows from Proposition 4.3 that any T-singularity that is not an
RDP is a cyclic quotient singularity of type 1

dn2 (1, dna − 1) where (n, a) =
1, and d is square-free. In particular, when d = 1 we have the following
definition.

Definition 4.4. AWahl singularity is a cyclic quotient singularity 1
n2 (1, na−

1) where (n, a) = 1.

Wahl singularities are the cyclic quotient singularities which admit only
one one-parameter Q-Gorenstein smoothing. Proposition 4.3 was proved by
Wahl in [Wah81] in the case of Wahl Singularities.
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4.2 Admissibility

This section describes the Hirzebruch-Jung continued fractions that are ad-
missible for chains (see Definition 1.5). Given a singularity [b1, . . . , br], we
say that a coefficient bi does not contract if the curve associated with bi does
not.

Lemma 4.5. If [b1, . . . , br] is admissible for chains, then there are bi, bj with
i ≤ j such that

[b1, . . . , br]− 1− [b1, . . . , br]− 1− [b1, . . . , br]

does not contract bi and bj.

Proof. Otherwise we would have eventually inside of the contraction a situ-
ation [1, 1], and that makes the chain not admissible. In order to prove that,
we will use induction on r.

We first compute the base case for r = 1. Here, to contract b1 we must
have either b1 = 2 or b1 = 3, and so we obtain either the situation [1, 1, 1, 2]
or [1, 1], respectively.

Let us suppose that for every [a] = [a1, . . . , ak], and k < r if ai are
contracted for every i, then we obtain eventually the situation [1, 1] inside
of the contraction [a] − 1 − [a] − 1 − [a]. Now, let k = r. We must have
that b1 = 2 or br = 2. Assume, without loss of generality (we could flip the
order), that br = 2. Then, after contracting br, we have

1 + [b1 − 1, . . . , br−1, 1, b1 − 1, . . . , br−1, 1, b1 − 1, . . . , br−1, 2],

and so, we obtain inside of it the situation [a] − 1 − [a] − 1 − [a], where
[a] = [b1− 1, b2, . . . , br−1]. By the inductive hypothesis, we conclude that the
situation [1, 1] will appear inside of [a] − 1 − [a] − 1 − [a], and so inside of
[b1, . . . , br]− 1− [b1, . . . , br]− 1− [b1, . . . , br].

The [bi, . . . , bj] is a sort of core which is necessary for the property ad-
missible for chains.

Lemma 4.6. Let 0 < a < n be coprime integers, let n
a

= [x1, . . . , xf ] and
n

n−a = [y1, . . . , yg]. Then

[x1, . . . , xf , 1, yg, . . . , y1] = 0.
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Lemma 4.6 is well-known, and it is the justification for the Riemenschnei-
der’s dot diagram. For example, if n

n−a = [2, . . . , 2, yi, . . . , yg] where yi > 2,
then x1 = i− 1 + 2 = i+ 1.

Definition 4.7. A core is a Hirzebruch-Jung continued fraction [e1, . . . , es]
such that ei > 1 for all i and either

(1) s = 1 and e1 ≥ 4

(2) s 6= 1 and e1 ≥ 3 and es ≥ 3.

In this way, the limit cases [4] and [3, e2, . . . , es−1, 3] are cores, and with
ei = 2 for i = 2, . . . , s − 1, they are exactly the cores of T-chains. One can
check by a direct computation that every core is admissible for chains. The
remarkable fact is that all [b1, . . . , br] admissible for chains are constructed
from a core following the formation rule of T-chains.

Theorem 4.8. Let [b1, . . . , br] be an admissible for chains continued fraction.
Then there is a unique core [e1, . . . , es] such that [b1, . . . , br] is obtained by
applying the T-chain algorithm to [e1, . . . , es].

Proof. Consider the center [bi, . . . , bj] of [b1, . . . , br] as shown in Lemma 4.5,
adding the condition that i is the minimal index such that bi is not contracted.
Similarly, we ask for j to be the maximal index such that bj is not contracted.

First, we assume that i = 1, and j = r. In this case, we obtain directly
that [b1, . . . , br] is a core. So, we take [e1, . . . , es] = [b1, . . . , br].

In what follows, we will suppose that 1 < i or j < r. Let us write

[b1, . . . , br] = [a1, . . . , au, bi, . . . , bj, c1, . . . , cv],

of course keeping the position of [bi, . . . , bj]. Note that the initial conditions
over i, j imply that [c1, . . . , cv, 1, a1, . . . , au] will disappear. Assume, without
loss of generality (we could flip the order), that au is the last curve that
disappears. In particular, we have that 1 < i. Now, we should treat j = r
and j < r separately.

Case A. Say j = r. Observe that [a1, . . . , au] = [2, . . . , 2], and that

[u+ 1, 1, a1, . . . , au] = 0.

As bi, bj have to survive, we obtain that bi ≥ 3 and bj ≥ u+ 3.
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In this case, we have that [b1, . . . , br] is obtained by applying the T-chain
algorithm to [e1, . . . , es] := [bi, . . . , bj−1, bj−u]. We observe that if i < j then
[e1, . . . , es] is a core. However, if i = j we have to prove that bj − u ≥ 4. On
the contrary, let us suppose that bj − u = 3. Then, we obtain the situation
[a1, . . . , au, bj − (u+ 1), bj − (u+ 2), bj − 1] = 0 inside of

[b1, . . . , br]− 1− [b1, . . . , br]− 1− [b1, . . . , br]. (7)

But, this is impossible because bj = u + 3 must survive. So, we obtain
that bj ≥ 4. Thus, we know that [e1, . . . , es] is a core.

Case B. Say j < r. Let [a1, . . . , au] = [a1, . . . , aw, 2, . . . , 2] with aw > 2
and say that the number of 2’s at the end is l. Then, one can check that

[l + 2, c1, . . . , cv, 1, a1, . . . , aw, 2, . . . , 2] = 0.

As bi, bj have to survive, we know that bi ≥ 3 and bj ≥ l + 4. Let
[e1, . . . , es] = [bi, . . . , bj−1, bj − (l + 1)]. The Riemenschneider’s dot diagram
will then give the algorithm from T-chains.

On the other hand, we note that [e1, . . . , es] is a core if i < j. Similarly
to Case A, if i = j and bj = l+ 4 then we obtain [a1, . . . , au, bj − (u+ 2), bj −
(u + 3), bj − 1, c1, . . . , cv] = 0 inside of (7). But, this is impossible. So, if
i = j then bj ≥ l + 5. Thus, we have that [e1, . . . , es] is a core. Due to the
choice of [bi, . . . , bj], we conclude that [e1, . . . , es] is unique.

Definition 4.9. Let [e1, . . . , es] be a core, we say that [e1, . . . , es] is minimal
if it cannot be obtained from another core [b1, . . . , br] by inserting 1’s (see
Definition 1.8, (i)).

Remark 4.10. Let [b1, . . . , br] be an admissible for chains continued fraction,
and let [e1, . . . , es] be its associated core (see Theorem 4.8). It is immediate
that the set of generalized T-singularities of center [b1, . . . , br], is contained
in the set of generalized T-singularities of center [e1, . . . , es]. In particular,
we have that fact if the core is minimal. For instance, the family of T-
singularities is obtained by starting with the minimal core [4]. We classify
the minimal cores in Proposition 4.11.

Proposition 4.11. A core [e1, . . . , es] is minimal if and only if one of the
following cases holds:

(i) s is a prime number and [e1, . . . , es] 6= [e1, e1 − 1, . . . , e1 − 1, e1].
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(ii) s is not prime and for every 1 < u < s divisor of s (say s = ur), either

– there exist 2 ≤ i < r, and 1 ≤ j < u such that ei 6= ei+jr,

– there exists 1 ≤ j < u such that e1+jr + 1 6= e1, or

– there exists 1 ≤ j < u such that er+jr + 1 6= es.

Proof. Let [b1, . . . , br] be a core, and let [c1, . . . , ckr] be the continued frac-
tion [b1, . . . , br, 1, b1, . . . , br, 1, . . . , 1, b1, . . . , br], where k − 1 is the number of
inserted 1’s. We start by analysing the coefficients of the new continued
fraction. Indeed, we obtain the following:

• For every 2 ≤ i < r, and 1 ≤ j < k we have that ci = ci+jr = bi.

• For every 1 ≤ j < k we have that c1+jr = c1 − 1 = b1 − 1.

• For every 1 ≤ j < k we have that cr+jr = ckr − 1 = br − 1.

In particular, if we fix a divisor 1 < u < kr of k then c1+jvr = c1− 1, and
cr+jvr = cr − 1 for every 1 ≤ j < u. Also, we have that for every 2 ≤ i < vr,
and 1 ≤ j < u we have that ci = ci+jvr. Thus, we can also obtain [c1, . . . , ckr]
from a core [a1, . . . , avr] by inserting u − 1 1’s, where k = uv. However, it
may not be valid if we choose a divisor u of r.

Now, let [e1, . . . , es] be a core. Assume that s is not a prime number.
Then, we have that the core [e1, . . . , es] is not minimal if and only if it fulfills
the conditions above for some divisor u > 1 of s.

Say s is prime. By the conditions shown above, we have that [e1, . . . , es]
is a minimal core if and only if [e1, . . . , es] = [e1, e1 − 1, . . . , e1 − 1, e1] (it is
obtained by starting in [e1 + 1]).

Proposition 4.12. Let [b1, . . . , bs] = n/q be a continued fraction. Let q′ be
the inverse of q modulo n with 0 < q′ < n, and let m be the integer such that
qq′ = 1 +mn. Assume that n > 2. Then, we have that [b1 + 1, b2, . . . , bs, 2] =
N/Q, where N = 2q−m+ 2n− q′, and Q = 2q−m. Moreover, we have that
[2, bs, . . . , b2, b1 + 1] = N/Q′, where Q′ = q + n.

Proof. We know that n
q

= [b1, . . . , bs] implies [b1, . . . , bs] = n
q′
, where q′ is the

inverse of q modulo n. So, we obtain that [2, bs, . . . , b1] = 2n−q′
n

. Now, we
would like to find n′ the inverse of n modulo 2n− q′. We observe that n(2q−
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m) = q(2n− q′) + 1, so n′ ≡ (2q −m) mod (2n− q′). Thus, [b1, . . . , bs, 2] =
2n−q′
n′

.
We will prove that n′ = 2q −m. Observe that m < q. Otherwise, if we

have that m > q, then mn+1 ≥ qn > qq′, but qq′ = mn+1. Also, if we have
m = q, then q(q′ − n) = 1. But this is impossible. So we know that m < q.
In the same way, we obtain that m < q′. So, we have that 2q −m > 0. In
addition, because m+ 1 ≤ q′, and 2n− q′ > 2 (if n > 2), then we have that
2 + m(2n − q′) < q′(2n − q′). So, we obtain that (2q − m) < (2n − q′) by
using q′ > 0, and qq′ = 1 +mn. Thus, n′ = 2q −m.

Therefore, we have that [b1 + 1, b2, . . . , bs, 2] = N
Q
, where N = 2q −m +

2n− q′ and Q = 2q −m.
Finally, we show that the inverse of Q modulo N is q + n. Indeed, note

that (2q − m)(q + n) ≡ 1 mod(n). Also, by using that m < q we obtain
that N = q + n + (q + n − m − q′) > q + n > 0. Thus, we obtain that
[2, bs, . . . , b2, b1 + 1] = N/Q′, where Q′ = q + n.
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5 Bounding the case with one cyclic quotient
singularity P

5.1 Type of diagrams for exceptional divisors with E ·
C = 1

We start with some notation. Let us consider the diagram

X
π

��

φ

  

S W

where φ : X −→ W is the minimal resolution of W , and π : X → S is a
birational morphism to the minimal model S. Thus it is a composition of
blow ups, each of which contracts a single (−1)-curve Fi ⊂ Xi to a point
xi−1 ∈ Xi−1. In this way we have the diagram:

X = Xm
πm→ Xm−1

πm−1→ · · · π2→ X1
π1→ X0 = S

Let us define Em := Fm, and for each i ∈ {1, . . . ,m− 1}

Ei := (πi+1 ◦ πi+2 ◦ · · · ◦ πm)∗(Fi) ⊂ X. (8)

It follows from the definition that E2
i = −1 and Ei · Ej = 0 whenever

i 6= j. Furthermore, we have that each Ei is not necessarily reduced, and its
support is a tree of smooth rational curves. Assuming that m > 0, each Ei
contains at least one (−1)-curve, and their irreducible components intersect
transversally at most once. Of course we have

K2
W −K2

S =
r∑
j=1

(bj − 2)−m−
(

2(n− 1)− q − q′

n

)
. (9)

Lemma 5.1. We have
(∑m

i=1Ei
)
·C =

∑r
j=1(bj−2)−λ, where λ = π∗KS ·C.

Proof. It follows directly from KX · C =
r∑
j=1

(bj − 2), and
∑m

i=1Ei = KX −

π∗KS.
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In order to describe the behavior of the accumulations points of vol-
umes, we will find a suitable lower bound for the intersection between C and∑m

i=1Ei. We first introduce a graph ΓEi
for each exceptional divisor, as it

was done in [Ran17, pp.9]. It is constructed by replacing the j-th vertex in
the dual graph of C, by a box if Ci ⊂ Ei. For instance, if we have C1, C5

belonging to Ei, the ΓEi
is as in Figure 2.

C1 C2 C3 C4 C5

Figure 2: Example of the graph of Ei.

As a way of example, it follows from Figure 2 that there are at least two
points in the intersection of curves in C not in Ei and Ei, which correspond
to the two extreme edges of the graph.

Lemma 5.2. For any i, we have Ei · C ≥ 1.

Proof. First we observe that if Cj ⊂ Ei, then Ei ·Cj = −1 is only possible for
one j. Otherwise, we have Ei · Cj = 0. Since, there is a (−1)-curve F ⊂ Ei,
and because of ampleness of KW then we have that F · C ≥ 2. Hence, we
have that Ei intersects with C \ Ei in at least 2. Thus, we conclude that
Ei · C ≥ 1.

Remark 5.3. As we saw in the proof, we remark that for any (−1)-curve F
in X we must have F · C ≥ 2. (This is because KW is ample.) Similarly,
any (−2)-curve in X must intersect the chain C positively. In addition, note
that we have

∑m
i=1Ei · C ≥ m+ 1.

In this section, we consider a normal stable surfaceW with only one cyclic
quotient singularity P , following the notation used previously. The goal is
to show optimal bounds for the continued fraction associated to P . To start,
we can easily see that if every exceptional divisor Ei satisfies Ei ·C ≥ 2, then
we obtain the following bounds.

Proposition 5.4. Assume that Ei · C ≥ 2 for all i. Then

r∑
j=1

(
bj − 2

)
≤ 2(K2

W −K2
S) + 2

(
2(n− 1)− q − q′

n

)
− π∗KS · C, (10)

35



and
r ≤ 13K2

W − 2K2
S + 38−

(
2 + q + q′

n

)
− π∗KS · C. (11)

Proof. This corresponds to have δ = 0 in Theorem 1.1.

In this way, if KS is nef, then we can bound singularities for all such W
with bounded K2

W .

Remark 5.5. In the particular case when m = 0, we have that

r∑
j=1

(
bj − 2

)
= (K2

W −K2
S) + 2−

(
2 + q + q′

n

)
,

and then, by using (18) we have

r ≤ 12K2
W −K2

S + 36.

So, if KW ≤ c for some positive number c, and KS is nef, we obtain finitely
many options for b1, . . . , br, and r. Thus, in what follows we will assume that
m > 0.

Therefore, the critical case is when there exist an exceptional divisors Ei
such that

Ei · C = 1.

Remark 5.6. Using the same strategies as in the proof of Lemma 5.2, we can
see that if there are at least three points in the intersection of curves in C \Ei
and curves in Ei then we have that Ei ·

(∑r
j=1Cj

)
≥ 2. Thus, if we have

Ei ·
(∑r

j=1Cj
)

= 1 then there are two or fewer points on this intersection,
and ΓEi

must be one of the following (see [RU19, pp. 6]):

Figure 3: Case A.

Figure 4: Case B.
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Figure 5: Case C.

In order to describe more in detail the behavior of ΓEi
, where Ei is an

exceptional divisor such that Ei · C = 1, we will introduce the following
definition.

Definition 5.7. Let k, l be positive integers. We say that Ei has a long
diagram if ΓEi

is a diagram of type (i), (ii), (iii), (iv), and there is a (−1)-
curve F as shown in the following figures.

-1

−2 −2 Cl+1 −b

Figure 6: Diagram of type (i).

-1

−2 −2 Cl+1 −b

Figure 7: Diagram of type (ii).

−2 −2 −(k + 2) Cl+1 Cr−k −2 −2

-1

Figure 8: Diagram of type (iii).
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C1 C2 Cl Cl+1 Cr−k Cr+1−k −2

-1

Figure 9: Diagram of type (iv).

Now, we order the set of exceptional divisors according to their graph.
Indeed, we say that ΓEi

is a subtree of ΓEj
if every �-vertex of ΓEi

is a
�-vertex of ΓEj

. Note that the set of the graphs ΓEi
is a partially ordered

set with the following order:

ΓEi
≤ ΓEj

⇐⇒ ΓEi
is a subtree of ΓEj

.

Definition 5.8. We say that the graph ΓEi
is called maximal if it is a

maximal element with respect ≤, and Ei · C = 1.

By adding the discarded cases on Lemma 2.7 in [RU19], which is valid in
the context of T-singularities, we obtain the following result to the general
case of cyclic quotient singularities.

Lemma 5.9. Suppose that Ei ·C = 1 for some i, then Ei has a long diagram.
Moreover, if Ei has a diagram of type (iv), and ΓEi

is maximal, then there
exists a sequence {m1, . . . ,ms} of natural numbers such that C has continued
fraction

[. . . , 2, 2 +m3, 2, . . . , 2︸ ︷︷ ︸
m2−1

, 2 +m1, a1, . . . , at, 2, . . . , 2︸ ︷︷ ︸
m1−1

, 2 +m2, 2, . . . ],

where −a1, . . . ,−at correspond to the self-intersection of the • curves in ΓEi
,

and one of the ends is 2 and the other one is 2 +ms.

Proof. We divide this proof into the three cases of Remark 5.6. In the first
two cases, the argument is the one used in Lemma 2.7 in [RU19] for T-
singularities.

Case (1). Assume that Ei has the diagram shown in Figure 3. Because
of the ampleness of KW we obtain that there is a (−1)-curve F in Ei which
intersects C twice (see Remark 5.3). In this situation, we would obtain either
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a loop in Ei or a third point of intersection with C \ Ei. But these cannot
happen because Ei is a tree of rational curves and Ei · C = 1.

For the next case, we will denote by C1, . . . , Cl the � curves on the left
side in the diagrams shown in Figure 4 and 5.

Case (2). Suppose that Ei has the diagram shown in Figure 4. By the
same argument done in Case (1), there exists a (−1)-curve F in Ei which
intersects a � curve Cj, and a • curve Cj′ , in both cases transversally. Note
that there are no more intersections of F and curves in Ei, because otherwise
we will have a loop in Ei.

In what follows, we will prove that the (−1)-curve F must intersect C as
is shown in Figure 6 or in Figure 7, and that the � curves are (−2)-curves.
Indeed, we first claim that C2

j = −2. Otherwise, we would need other (−1)-
curve disjoint to F to continue contracting Ei, but this situation gives from
the beginning either a cycle in Ei or a third point of intersection with C \Ei.
So, we have C2

j = −2.
Now, we note that if Cj had two � neighbors, then F would have mul-

tiplicity at least 2 in Ei, which violates that Ei · C = 1. So we have that
Cj = C1 or Cj = Cl (see Figure 6 and Figure 7).

On the other hand, note that after contracting Cj, we will have the same
situation above for the curve C2 or Cl−1 respectively. Thus, applying the
same argument above, we obtain that all curves C1, . . . , Cl are (−2)-curves.
So, we conclude that Ei either has a diagram of type (i) or (ii) (see Definition
5.7).

For the last case, we will denote by C1, . . . , Cl the � curves on the left
side of ΓEi

, and Cr−k+1, . . . , Cr the � curves on the right side.
Case (3). Suppose that Ei has the diagram shown in Figure 5. By

Remark 5.3, we have that a (−1)-curve F in Ei intersects C twice. In this
case, the curve F must intersect one � curve Cj on the left, and one � curve
Cj′ on the right (see Figure 10).

C1 Cl Cr−k+1 Cr

F

Figure 10: Case (3), and (−1)-curve F .

We first claim that C2
j = −2 or C2

j′ = −2. On the contrary, we would
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need another (−1)-curve to contract them, but this would give either a loop
in Ei or a third point of intersection with C.

Let us say C2
j′ = −2, then we must have that Cj′ = Cr. Indeed, if we

suppose that Cj′ has two � neighbors, then after contracting F and Cj′ , we
will have a triple point in some Ej. But, it is not possible because Ej is a
normal simple crossings tree of rational curves. Thus, we have that C ′j is one
of the curves Cr−k+1 or Cr. Now, if we had Cj′ = Cr−k+1 then Cr−k+1 would
have multiplicity at least 2 in Ei, which contradicts the fact that Ei ·C = 1.
Thus, we obtain that Cj′ = Cr.

On the other hand, we will prove that Cj must be either C1 or Cl. Oth-
erwise, assume that Cj has two � neighbors. Let i′ be a index such that
C2
r−i′+1 = · · · = C2

r = −2, and Cr−i′ < −2. We know that Cr−k is not a
curve in Ei, then we have C2

r−k < −2, and i′ ≤ k. Assume that after blowing
down F,Cr, . . . , Cr−i′+1, we have that Cj becomes a (−1)-curve. If i′ = k,
then Cr−i′+1 would has multiplicity at least two in Ei, but then Ei · C > 1.
If instead i′ < k, then contracting those curves and Cj would give a triple
point, which is not possible. Thus, we have that Cj does not become a (−1)-
curve. In this situation, we must need another (−1)-curve F ′ to contract
Cj. If F ′ is disjoint of F,Cr, . . . , Cr−i′+1, then F ′ must intersect a • curve.
But this would impliy that Ei · C > 1. So, F ′ must intersect some of the
Cr, . . . , Cr−i′+1 in Ei, which is not possible because Ei does not have loops.
Thus, the unique possible case is that i′ = k. But this implies that Cr−k+1

would have multiplicity at least two in Ei, which violates that Ei · C = 1.
Thus, we obtain that Cj cannot have two � neighbors. So, we know that
Cj = C1 or Cj = Cl. In this situation, we have that Ei has a diagram of type
(iv) if Cj = C1. (See Definition 5.7). We recall that diagrams of type (iv)
were discarded on Lemma 2.7 in [RU19] for T-singularities, because of the
ampleness of K2

W , we cannot have a (−1)-curve intersecting both ends in a
T-configuration.

Assume that Cj = Cl. We want to show that Ei has a diagram of type
(iii). Indeed, let i′ be the maximal number such that C2

r = · · · = C2
r−i′+1 =

−2, and C2
r−i′ < −2. As we did before, we know that i′ ≤ k because C2

r−k <
−2. Let us first suppose that i′ < k. Note that if after blowing down F
and those (−2)-curves the curve Cl becomes a (−1)-curve, then Cl would
have multiplicity at least 2 in Ei because i′ < k. So, Cl does not became a
(−1)-curve. Then, we must need another (−1)-curve F ′ to contract Cl. If
F ′ is a (−1)-curve at the beginning, this would imply either a loop in Ei or
a third point of intersection of Ei with C, none of which is possible. So, we
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have that F ′ must intersect some curve in Cr, . . . , Cr−i′+1. It implies that
Cr−k+1 would has multiplicity at least two in Ei which violates the fact that
Ei · C = 1.

Thus we have that i′ = k, that is C2
r−k+1 = · · · = C2

r = −2. In this case,
after blowing down F and those (−2)-curves, the curve Cl must become
a (−1)-curve. On the contrary, we need another (−1)-curve intersecting
Cl. That curve must be a (−2)- curve in the beginning in the process of
contracting Ei and it intersects the curve Cr+1−k, which implies that Cr+1−k
has at least multiplicity two in Ei. But this contradicts that Ei · C = 1.
So, we have C2

l = −(k + 2). By using a similar argument, it is shown that
C2

1 = · · ·C2
l−1 = −2. Therefore, we have shown that Ei has a diagram of

type (iii). We recall that this case was discarded on Lemma 2.7 in [RU19] for
T-singularities, because we cannot have a T-configuration with (−2)-curves
in both ends.

For the last part of the proof, let us assume that Ei has a diagram of
type (iv), and that ΓEi

is maximal. Let ms be the maximal number such
that C2

r−ms
< −2, and C2

r = · · · = C2
r−ms+1 = −2. If after blowing down the

curves F,Cr, . . . , Cr−ms+1 the curve C1 does not became a (−1)-curve then
we must need another (−1)-curve F ′ in Ei to contract C1. If we have that
F ′ is a (−1)-curve at the beginning, it would imply either a loop in Ei or
a third point of intersection of Ei with C. So, F ′ must intersect the curves
F,Cr, . . . , Cr−ms+1, and then Cr−k+1 would has multiplicity at least two in
Ei which violates the fact that Ei · C = 1.

Thus, we have shown that C1 is contracted after blowing down the curves
F,Cr, . . . , Cr−ms+1, and then C2

1 = −(ms + 2), where 0 < ms ≤ k − 1. We
also note that after contracting the curves F,Cr, . . . , Cr−ms+1 we obtain the
same situation for the remaining curves in C, and then we can apply the
same analysis. Therefore, we obtain that C has continued fraction:

[. . . , 2, 2 +m3, 2, . . . , 2︸ ︷︷ ︸
m2−1

, 2 +m1, a1, . . . , at, 2, . . . , 2︸ ︷︷ ︸
m1−1

, 2 +m2, 2, . . . ],

where −a1, . . . ,−at correspond to the self-intersection of the • curves in ΓEi
,

and {m1, . . . ,ms} is a fixed sequence of natural numbers.

Remark 5.10. Let Ei be an exceptional divisor with diagram of type (iv)
such that ΓEi

is maximal. Assume that E is a pullback of a curve in Ei. We
associate to E the sub sequence of {m1, . . . ,ms} which corresponds to the
curves Cmj

with C2
mj

= −(2 +mj) that are contracted in E.
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Remark 5.11. We remark that only one of the following situations can hap-
pen.

• We have that Ei · C ≥ 2 for all i.

• There is a unique exceptional divisor Ei such that its graph is maximal.

• There are two exceptional divisors Ei, Ej such that their graphs are
maximal. Moreover, we have that ΓEi

, ΓEj
must be of type (i) or (ii).

5.2 Optimal bounds for the Hirzebruch-Jung continued
fraction associated to P

Notation 5.12. The number of exceptional divisors Ej such that Ej ·C = 1
will be denoted by δ.

Lemma 5.13. Under conditions of Theorem 1.1. Let E1, . . . , Em be the
exceptional divisors defined after Diagram (8). (They satisfy E2

i = −1 and
Ei · Ej = 0.) We have that one of the following cases holds:

(A) For every i we have Ei · C ≥ 2. In this case δ = 0.

(B) There is a unique ΓEi
maximal graph. Assume that Ei contains only

the curves C1, . . . , Cl in C. Then

(B.1) δ = l if Ei has a diagram of type (i).

(B.2) δ = 1 if Ei has a diagram of type (ii).

(C) There is a unique ΓEi
maximal graph. Assume that Ei contains only

the curves C1, . . . , Cl, Cr+1−k, . . . , Cr in C. Then

(C.1) δ = k + 1 if Ei has a diagram of type (iii).

(C.2) δ = k + l if Ei has a diagram of type (iv).

(D) There exist two maximal graphs ΓEi
,ΓEi′

. Assume that Ei only contains
the curves C1, . . . , Cl, and that Ei′ only contains the curves Cr+1−k, . . . , Cr
in C. Then

(D.1) δ = l + k if Ei and Ei′ have diagrams of type (i).

(D.2) δ = l + 1 if Ei has a diagram of type (i), and Ei′ has a diagram
of type (ii).
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(D.3) δ = 2 if Ei and Ei′ have diagrams of type (ii).

Proof. We divide the proof into the cases of the statement.
If there are not exceptional divisor with a long diagram, then by Lemma

5.2, and Lemma 5.9 we have that Ei · C ≥ 2 for every i. Thus, we obtain
the case (A) which was proven in Proposition 5.4. In what follows, we will
suppose that there are exceptional divisors with a long diagram.

(B) Suppose that there is a unique ΓEi
which is maximal. Assume that

Ei contains only the curves C1, . . . , Cl in C. So, by this assumption and
Lemma 5.9 we obtain that the graph ΓEi

is of type (i) or (ii), C2
j = −2 for

every 1 ≤ j ≤ l, and C2
l+1 ≤ −3. Without loss of generality, assume that π

starts by blowing down F , where F is the (−1)-curve in Ei, that is Em = F .
Let E be an exceptional divisor such that E · C = 1. By Lemma 5.9, we

have that E has a long diagram. Since ΓEi
is the unique maximal graph, then

E has a diagram of type (i) or (ii), and it must have as components some
of the (−2)-curves {C1, . . . , Cl} or maybe all of them; otherwise we would
obtain another maximal graph. Note that if the (−1)-curve in the diagram
of E is not F , then we have either a loop in E or E · C ≥ 2, thus F ⊆ E,
and hence E has a diagram of the same type as Ei.

Let us write E = c1F + c1C1 + c2C2 + · · ·+ clCl +D, where c1 ≥ 1, ci ≥ 0
for i > 1, and D is an effective divisor which has no components of C in
its support. By using 1 = E · C = c1 + D · C, we obtain that c1 = 1, and
D · C = 0. But if D > 0, we have that to contract D, it must exist another
curve (−1) disjoint from C, which contradicts the condition KW ample, and
then D = 0. Thus,

E = c1F + c1C1 + c2C2 + · · ·+ clCl

where c1 ≥ 1, ci ≥ 0 for i > 1.
At the same time, in the process of contracting F,C1, . . . , Cl, we obtain

the following exceptional divisors:

Em−j =

{
F + C1 + · · ·+ Cj if ΓEi

is of type (i), 1 ≤ j ≤ l.
F + Cl + · · ·+ Cl+1−j if ΓEi

is of type (ii), 1 ≤ j ≤ l.

With this notation we have that Ei = Em−l. If ΓEi
is of type (i), analyzing

the graph of Em−j, we obtain that only for 0 < j ≤ l we could have Em−j ·C =
1. In the case that ΓEi

is of type (ii), we have that Ei is the only divisor such
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that Em−j · C = 1 in the list 0 ≤ j ≤ l. For case (i), we have Em−j · C = 1
for all j.

Therefore, if Ei has a diagram of type (i) then δ = l, and if Ei has a
diagram of type (ii) then δ = 1. (See [RU19, Lemma 2.10]).

(C) Suppose that there is a unique ΓEi
which is maximal. Assume that

Ei contains only the curves C1, . . . , Cl, Cr+1−k, . . . , Cr in C. By Lemma 5.9,
we have that Ei can only have diagram of type (iii) or (iv). We assume
that π starts by blowing down the (−1)-curve F in Ei, that is Em = F . We
recall that C2

1 = −2 or C2
r = −2 (see proof of Lemma 5.9). Let us say that

C2
r = −2.
(C.1) Say that Ei has a diagram of type (iii). Let E be a exceptional divi-

sor such that E ·C = 1, by Lemma 5.9 we have that E has a long diagram. So,
because ΓEi

is maximal, then E must have some of C1, . . . , Cl, Cr−k+1, . . . , Cr
(or maybe all of them) as components; otherwise we would obtain another
maximal graph. We also note that the (−1)-curve in the diagram of E is F .
Otherwise, we would have either a loop in Ei or Ei · C > 1, but this is not
possible. So, we can write E as follows.

E = c1C1 + · · ·+ clCl + cr−k+1Cr−k+1 + · · ·+ crCr + (cl + cr)F +D,

where cj ≥ 0, cr > 0, and D is an effective divisor which has no components
of C in its support. Since, we have that C2

j = −2 for j ∈ {1, . . . , l − 1, r −
k + 1, . . . , r}, and C2

l = −(k + 2) (see Figure 8). Then,

1 = E · C = cr − (c1 + (k − 2)cl) +D · C. (12)

Now, we prove that D ·C = 0. On the contrary, suppose that D ·C > 0.
We first note that if c1 = 0 then c2 = · · · = cl = 0, since otherwise E
would not have a long diagram, and so E · C > 1. In this case, because
D is effective then by (12) we obtain that D · C = 0. If instead c1 > 0
then c2, . . . , cl > 0 because E has a long diagram. Observe that D can
only intersect one component Cj of E, otherwise after contracting D, we
would obtain a loop in E which is not possible. Also, we note that D does
not intersect the curves Cl or Cr−k+1, since otherwise we would have cl or
cr−k+1 > 1, and then E · C > 1. In addition, if D intersects a curve Cj for
some 1 ≤ j ≤ l − 1, then cl > 1 which violates the fact that E · C = 1.
Thus, the divisor D could only intersect a component Cj of E for some
j = r−k+2, . . . , r. Then, contractingD does not affect the curves C1, . . . , Cl,
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and so we obtain c1 = · · · = cl = 1. Finally, because cr−k+1 = 1 we obtain
that cr ≥ k. Then, by (12), we obtain D ·C = k − cr ≤ 0. In both cases, we
conclude that D · C = 0.

Using the fact that D · C = 0, we will prove that D = 0. Indeed, if we
had that D > 0, then to contract D it must exist another (−1)-curve disjoint
from C (that is, a (−1)-curve from the beginning in E) because D does not
intersect C. But, this contradicts the condition KW ample, and then D = 0.

Therefore, the divisor E shows up in the process of contracting Ei. Note
that in that process, we obtain the exceptional divisors Em−(j+1) = F +Cr +
· · · + Cr−j where 0 ≤ j ≤ k − 1, and that Em−(k+j+1) = (k + 1)F + kCr +
· · ·+Cr−k+1 +Cl + · · ·+Cl−j where 0 ≤ j ≤ l− 1. Here, because ΓEi

is the
unique maximal graph, then Ei = Em−(k+l). By analyzing the graph of Em−j
and by using (12), we obtain that E ·C = 1 only for Ei and Em−(j+1), where
0 ≤ j ≤ k − 1. Thus, we have δ = k + 1.

(C.2) Say that Ei has a diagram of type (iv). Let E be an exceptional
divisor such that E ·C = 1. As in the Case (C.1), we have that E must have
some of C1, . . . , Cl, Cr−k+1, . . . , Cr (or maybe all of them) as components,
and that the (−1)-curve in the diagram of E is F . Thus, we can write E as
follows.

E = c1C1 + · · ·+ clCl + cr−k+1Cr−k+1 + · · ·+ crCr + (c1 + cr)F +D,

where cj ≥ 0, cr > 0, and D is an effective divisor which has no components
of C in its support. Now, we prove that D · C = 0. On the contrary,
suppose that D ·C > 0. Note that D can only intersect one component Cj of
E, otherwise after contracting D, we would obtain a loop in E which is not
possible. In addition, we have that D must be contracted after blowing down
the curves Cj in E. Otherwise, we would obtain a loop in E. Let j ≤ l the
maximal number such that cj > 0, and let j′ ≤ r the minimal number such
that cj′ > 0. If we have that D intersect one component of C in E, then we
would have that cj > 0 or cj′ > 0, neither of which is possible. (both imply
E · C > 1).

Therefore, we have that D can only intersect one curve in C which is not
in E. Then to contract D it must exist another (−1)-curve disjoint from
the curves of C in E or a (−2)-curve intersecting Cj or Cj′ . But this is not
possible because KW is ample and E · C = 1. Thus, D · C = 0.

As we proved in case (C.1), the fact D · C = 0 implies D = 0. Thus,
E is a pullback of a curve in Ei. So, E has a diagram of type (i), and a
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(−1)-curve intersecting both ends of the chain or it has a diagram of type
(iv).

Now, we will show that δ = k + l. Indeed, by following the notation
described in Lemma 5.9, let {m1, . . . ,ms} be the sequence associated to Ei.
Let us denote by Cmj

to the curve with self-intersection −(2 +mj) in C, and
by cmj

their multiplicities in Ei. In addition, let us write cms+1 := cr, and
Cms+1 := Cr . With this notation, we have c1 = cms , and then

Ei · C = cms(1−ms) + cms+1 +
s−1∑
j=1

cmj
(−mj). (13)

We first show that δ = k+ l in the case when s = 1 (see Figure 11). Note
that in this case we have that l = 1, and k = m1.

−(k + 2) C2 Cr−k −2 −2

-1

Figure 11: The case when s = 1.

Note that in this case, Ei has also a diagram of type (iii), and then
δ = k+1 as we proved in case (C.1). Here we obtain that cm1 = 1, cm2 = m1.

Assume s > 1. We claim that cmj
= cmj−2

+mj−1cmj−1
for 2 < j ≤ s+ 1.

Indeed, by Lemma 5.9, we have thatmj−1−1 is the number of the (−2)-curves
between Cmj

and Cmj−1
in C. After contracting Cmj

and such (−2)-curves,
we obtain a SNC situation between Cmj−1

and Cmj−2
. It follows from the

form of contracting this curves, that cmj
= cmj−2

+mj−1cmj−1
.

Moreover, if we assume that

cms−2(1−ms−2) + cms−1 +
s−3∑
j=1

cmj
(−mj) = 1. (14)

Then, by plugging cmj
= cmj−2

+ mj−1cmj−1
for j = s, s + 1, and (14) in

(13) , we obtain

Ei · C = cms(1−ms) + cms+1 +
s−1∑
j=1

cmj
(−mj) = 1. (15)
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Note that for Ei we have that cm1 = 1, and cm2 = m1. However, the
analysis above does not depend on the initial values of cmj

. But, it only
depends on the form of contracting the curves in diagrams of type (iv). For
instance, one can have cm1 = · · · = cm′j = 0 for some j′ ≤ s. Let 1 ≤ j′ ≤ s+1
be the minimal number such that Cm′j is contracted in E. This implies that
cm′j > 0, and cm1 = · · · = cmj′−1

= 0. Since, we know that E is a pullback
of a curve in Ei, then by the form of contracting the curves in E we obtain
that cmj

> 0 for every j ≥ j′. By using the form of the contraction in E, we
compute that cmj′+1

= mj′cmj′
Thus, we know that cmj

= cmj−2
+mj−1cmj−1

for every j ≥ j′ + 2, and then we have that (13), and (15) remain valid for
E. So, we obtain that E · C = 1.

Therefore, because k+l is the number of exceptional divisors E that show
up as pullback of curves in Ei, we obtain that δ = k + l.

By Remark 5.11, we have the following last case.
(D) Suppose that there exist two maximal graphs ΓEi

,ΓEi′
. Assume

that Ei′ only contains the curves Cr+1−k, . . . , Cr, and that Ei only con-
tains the curves C1, . . . , Cl in C. In this case, by Lemma 5.9 we have that
Ei and E ′i can only have a diagram of type (i) or (ii), and we have that
C1, . . . , Cl, Cr+1−k, . . . , Cr are (−2)-curves. Because Ei, and E ′i are maximal
divisors such that their intersection with C is equal to 1, then we obtain that
C2
l+1 ≤ −3, and C2

r−k ≤ −3. As before, we assume that π starts by blowing
down the (−1)-curve F in Ei. Let F ′ be the (−1)-curve in the diagram of
E ′i. We must have that F 6= F ′, otherwise, we could not contract the divisor
Ei′ . Thus, we can describe separately the process to contract the divisors Ei,
and E ′i using Case (B). Combining the possible situations for Ei and Ei′ , we
obtain the values described for δ.

Proof of Theorem 1.1. We start by proving the initial inequality. It follows
from the assumption that

(∑m
i=1Ei

)
· C ≥ 2m− δ. It follows from (9), and

Lemma 5.1 that

r∑
j=1

(
bj − 2

)
≤ 2(K2

W −K2
S) + 2

(
2(n− 1)− q − q′

n

)
+ δ − π∗KS · C. (16)

In order to have the bound for the length we will use a generalization of
the Bogomolov-Miyaoka-Yau inequality to orbifolds, log-BMY inequality for
short (see e.g. [Lan03])

47



K2
W ≤ 3eorb(W ),

where eorb(W ) is the orbifold Euler number of a quasiprojective surface W ,
with only isolated cyclic quotient singularities. That is defined as

eorb(W ) = e(W )−
∑

w∈Sing(W)

(
1− 1

|π1(Lw)|

)
,

where Lw is the link of w ∈ Sing(W), and π1 denotes the fundamental group.
We recall that the germ of w ∈ Sing(W) is topologically the cone over a
3-manifold S3/G, where G ⊂ U(2,C) is a subgroup acting without fixed
points. The 3-manifold S3/G is called the link of w.

In our case, the surface W has Sing(W) = {P}. Since the singularity P
is defined as the germ at the origin of a quotient of C2 by the group Z/nZ,
we have that |π1(Lw)| = |Z/n| = n. Therefore,

eorb(W ) = e(W )−
(

1− 1

n

)
.

Plugging this formula together with e(W ) = e(X)− r, and the Log-BMY
inequality, we have

K2
W ≤ 3e(X)− 3r − 3

(
1− 1

n

)
.

By Proposition 3.18, and Noether’s formula for X, we have that

12χ(OX) = K2
W + A+ e(X),

where A =
∑r

j=1

(
2−bj

)
+

2(n− 1)− q − q′

n
. Putting these formulas together

and using the fact that χ(OX) = χ(OW ) (W has a rational singularity), we
have that

12χ(OW ) ≤ 4e(X)− 3r − 3

(
1− 1

n

)
+ A. (17)

Also, by the Noether’s formula for X, we have 4e(X) = 48χ(OX)− 4K2
X .

Replacing this in (17), and by Proposition 3.18, we obtain that

r ≤ 12χ(OW )− 4

3
K2
W − A−

(
1− 1

n

)
. (18)
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Finally, using (18) together with the generalized Noether’s inequality (see
Remark 3.11), and the inequality for the sum

∑r
j=1

(
bj − 2

)
previously ob-

tained, we have the boundedness for r.

Proof of Corollary 1.2. Assume that the number of 2’s at the extremes of
every [b1, . . . , br] ∈ Sing(S) is bounded, say by a number k > 0. Then, by
Theorem 1.1 we have that δ ≤ k+1, and because KS ≥ 0 for every surface in
S, we obtain that r, and

∑r
j=1 bj are bounded. So, we conclude that Sing(S)

is finite. On the other hand, if the number of 2’s at the extremes of every
[b1, . . . , br] ∈ Sing(S) is not bounded, then we can construct infinitely many
sets S of stable surfaces with KS nef, and K2

W ≤ c such that Sing(S) is
infinite. (See e.g. Example 6.1 with n0 ≥ c).

Proof of Corollary 1.3. It follows from the facts that KS is nef, and that
δ ≤ 2 in that cases.
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6 Accumulation points of volumes for surfaces
with one cyclic quotient singularity

6.1 Example

The following example shows a sequence of accumulation points of {K2} on
stable surfaces with only one cyclic singularity. It is constructed in a similar
way to the one shown in [Bla95].

Example 6.1. Let S ′ → P1 be an elliptic fibration obtained by blowing up
at the intersection points of two general cubic curves in P2. It has 12 nodal
rational fibers (type I1 according to Kodaira’s notation). Now, let n0 > 0
and let f : S → S ′ be the n0-th cyclic cover (see e.g [Urz10]) branched along
F1 + · · ·+ Fn0 , where Fi are general fibers on S ′.

We have that K2
S = 0. Note that for every (−1)-curve β in S ′ the self-

intersection of f ∗(β) is −n0. Let us choose two nodal singular fibers F and
F ′ in S ′. After blowing up at the points on the nodes of F , and F ′, we obtain
a smooth projective surface X0, which has the configuration [4, n0, 4] shown
in Figure 12.

Figure 12: The configuration [4, n0, 4].

Let us denote by C1, C2 and C3 the curves in Figure 12 with self-intersection
−4,−n0, and −4 respectively. We will construct a sequence of smooth pro-
jective surfaces {Xk} by blowing up at points in [4, n0, 4]. First, let X1

be the surface obtained by blowing up at the point P in Figure 12, and
let Γ the exceptional curve. The surface X2 is obtained by blowing up at
C1 ∩ Γ, where C1 is the strict transform. We continue blowing up at the
point in the intersection between the strict transform of C1 and the last ex-
ceptional curve obtained. After k blow ups at points in the configuration,
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we obtain a smooth projective surface Xk, which has a chain of rational
curves C. Each component Cj of C has a self-intersection in the sequence
{−2, . . . ,−2,−(4 + k),−n0,−4}, where k is the number of 2’s on the left
side. By the construction, there is a (−1)-curve intersecting C1, and Ck+1.
By Artin’s contractibility Theorem [Art62, Thm. 2.3], we may contract C to
obtain a normal projective surface Wk with only one cyclic quotient singu-
larity. Note that there are k + 1 divisors Ej corresponding to the pull-back
of the (−1)-curves of the blow downs. The graph of ΓEj

for j = 1, . . . , k is
shown in Figure 13, where j is the number of 2’s on the left side.

−2 −2 −2 −(4 + j) −n0 −4

−1

Figure 13: The graph of ΓEj
.

By pulling back the canonical divisor KWk
, we can directly write it as

an effective sum of divisors, and then by the Nakai-Moishezon criterion, we
obtain that KWk

is ample. By the canonical formula and induction over k,
we obtain that

lim
k→∞

K2
Wk

=
4n2

0 − 8n0 + 2

4n0 − 1
,

which is a sequence of accumulation points tending to ∞.

6.2 Case of generalized T-singularities

Remark 6.2. In particular, by Theorem 4.8 we have that a generalized T-
singularity [b1, . . . , br] fulfills the condition b1 > 2 or br > 2.

Corollary 6.3. Let W be a stable surface with a unique generalized T-
singularity of center [b1, . . . , br]. Then, we have either Ei · C ≥ 2 for every
exceptional divisor Ei or there is a unique exceptional divisor Ei such that
ΓEi

is maximal. In this case, we have that ΓEi
cannot be a diagram of type

(iii).

Proof. By Theorem 4.8 we have that b1 > 2 or br > 2. So, we cannot have
two maximal graphs nor a graph of type (iii). Then, by Remark 5.11, and by
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Lemma 5.9 we conclude that either Ei · C ≥ 2 for every exceptional divisor
or there is a unique exceptional divisor Ei with a maximal graph such that
ΓEi

is of type (i), (ii) or (iv).

Lemma 6.4. LetW be a stable surface with a unique generalized T-singularity
[a1, . . . , as] of center [b1, . . . , br]. Assume that the minimal model of the min-
imal resolution of W has canonical class nef. Suppose that the maximal
exceptional divisor Ei has diagram of type (i), and there is not a (−1)-curve
intersecting the ends of C, then

2δ ≤
s∑
j=1

(
aj − 2

)
− 2.

Proof. Let Γ be the curve in C which intersects the (−1)-curve in Ei. We
have that [a1, . . . , as] is of the following form:

[2, . . . , 2, x1, . . . , xs−l−1, xs + l]

where l is the number of 2’s on the left side, and xs+ l ≥ 3. Note that x1 ≥ 3
because of the admissibility of [b1, . . . , br].

The curve Γ cannot be a (−2)-curve on the left of the chain, because Ei
does not have loops. Thus Γ is a curve Cl+j such that C2

l+j = −xj for some
1 ≤ j ≤ s− l − 1.

By Remark 6.6, we have

s∑
j=1

(
aj − 2

)
=

s−l−1∑
j=1

(
xj − 2

)
+ l.

Let us suppose that Γ = Cl+1, that is Γ2 = −x1. After contracting
the curves F,C1, . . . , Cl, the curve Γ becomes a curve D which has self-
intersection equal to −x1 + l+ 2. By the adjunction formula and because KS

is nef, we obtain that x1 − 2 ≥ l + 2. Due to the fact that 0 ≤ xj − 2 for all
j, we obtain

l + 2 ≤ x1 − 2 ≤
s∑
j=1

(
aj − 2

)
− l,

so 2δ ≤
∑s

j=1

(
aj − 2

)
− 2 because by Theorem 1.1 we have that δ = l.
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On the other hand, if Γ = Cj for 1 < j ≤ s − l − 1, we obtain that the
curve Cj becomes a curve D, which has D2 = −xj + l + 1. Because KS is
nef, we obtain that xj ≥ l + 3. So we have

l + 3− 2 + 1 ≤ l + 3− 2 + x1 − 2 ≤ xj − 2 + x1 − 2 ≤
s∑
j=1

(
aj − 2

)
− l,

so we obtain that 2δ ≤
∑s

j=1

(
aj − 2

)
− 2.

Notation 6.5. We denote by B([b1, . . . , br]) to the set formed for each iter-
ation of (ii) (the T-chain algorithm) applied to [b1, . . . , br]. (See Definition
1.8).

Remark 6.6. Let [b1, . . . , br] be a continued fraction. Let [a1, . . . , as] be an
element of B([b1, . . . , br]). Then, by a direct computation, we obtain

s∑
j=1

(aj − 2) =
r∑
j=1

(bj − 2) + (s− r). (19)

Assume that [b1, . . . , br] is a core. Let us denoted by [bk1, . . . , b
k
rk

] the
resulting continued fraction [b1, . . . , br, 1, b1, . . . , br, 1, . . . , 1, b1, . . . , br], where
k is the number of inserted 1’s. Then, rk = r(k + 1) and

rk∑
j=1

(bkj − 2) = (k + 1)
r∑
j=1

(bj − 2)− 2k. (20)

Therefore, given a generalized T-singularity [a1, . . . , as] of center [b1, . . . , br],
we have

s∑
j=1

(aj − 2) = (k + 1)
r∑
j=1

(bj − 2)− 2k + (s− rk), (21)

where k is a number such that [a1, . . . , as] belongs to B([bk1, . . . , b
k
rk

]).

Lemma 6.7. LetW be a stable surface with only one generalized T-singularity
with a fixed center [b1, . . . , br], say at P ∈ W . Suppose that the minimal
model S of the minimal resolution of W has canonical class nef. Assume
that K2

W < c for some positive number c. Then, one of the following holds
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(i) Assume that there is not a (−1)-curve intersecting the ends of the chain
that resolves P , or that we have Ei ·C ≥ 2 for every exceptional divisor,
then

s∑
j=1

(
aj − 2

)
< 4c+ 6, and s < 15c+ 40.

(ii) Assume that there exists a (−1)-curve intersecting the ends of the chain
that resolves P , then P ∈ B([bu1 , . . . , b

u
ru ]) for some u < 2c + 1. More-

over, we have that there exists a non-negative number m′ such that
m′ + 1 ≤

∑ru
j=1(b

u
j − 2), and

K2
W = K2

S +
ru∑
j=1

(buj − 2)− (m′ + 1)−
(

2(n− 1)− q − q′

n

)
.

Proof. We start by fixing some notation. Let n
q

= [a1, . . . , as] be the Hirzebruch-
Jung continued fraction associated to P ∈ W . We first note that it can be
assumed that [b1, . . . , br] is a core. Otherwise, by Theorem 4.8, there exists
a core [e1, . . . , es] such that [b1, . . . , br] belongs to B([e1, . . . , es]), and that
[a1, . . . , as] is a generalized T-singularity of center [e1, . . . , es].

Now, let φ : X → W be the minimal resolution of P and let C be the
chain of exceptional rational curves. Let π : X → S be a birational morphism
to the minimal model S. By Corollary 6.3 we have the following two cases.

(1) We have that Ei · C ≥ 2 for every exceptional divisor of π. That is,
δ = 0. In this case, by Theorem 1.1 we have

s∑
j=1

(
aj − 2

)
< 2c+ 4, and s < 13c+ 38. (22)

(2) There is a unique exceptional divisor Ei of π such that Ei · C = 1,
and its graph is maximal. By Corollary 6.3, we also have that ΓEi

is of type
(i), (ii) or (iv). Now, we divide this case into the following sub-cases.

(2.A) Suppose that Ei has a diagram of type (i), and there is not a (−1)-
curve intersecting the chain C at both ends. Then, by putting together the
bound for δ shown in Lemma 6.4, and Theorem 1.1 we obtain that

s∑
j=1

(aj − 2) < 4c+ 6, and s < 15c+ 40. (23)
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(2.B) Assume that Ei has a diagram of type (ii). Then, by Theorem 1.1
we obtain that δ = 1, and

s∑
j=1

(aj − 2) < 2c+ 5, and s < 13c+ 39. (24)

By putting cases (1), (2.A), and (2.B) together, we obtain the first part
of the statement. By Corollary 6.3, the last case is the following.

(2.C) Suppose that Ei has a diagram of type (iv) or Ei has a diagram of
type (i), and there exist (−1)-curve intersecting both ends of C. Let F be
the (−1)-curve of Ei.
Claim 1. Let P be a T-singularity (a generalized T-singularities of center
[4]). Then there is not a (−1)-curve intersecting both ends of C.

Proof. We recall that a T-singularity P can be expressed as 1
dn2 (1, dna− 1)

for some natural numbers n, d, a such that gcd(n, a) = 1, and d is a square-
free. Let us suppose that there exists a (−1)-curve F which intersects both
ends of C. Then, we obtain that

φ(F ) ·KW = −1 + 1− dna− 1 + 1

dn2
+ 1− dn(n− a)− 1 + 1

dn2
= 0,

since the discrepancies of the ends of the chain are −1 + dna−1+1
dn2 and −1 +

dn(n−a)−1+1
dn2 . (See e.g. [Urz16, Section 2.1]). But, that violates the condition

of being ample for KW .

Therefore, we obtain that [a1, . . . , as] cannot be a T-singularity (an usual
T-singularity). Now, we know that [a1, . . . , as] ∈ B([bu1 , . . . , b

u
ru ]) for some

u ≥ 0. (See Notation 1.7). Here, by Definition 4.7 we have that [bu1 , . . . , b
u
ru ]

is a core, and then ru = r(u+ 1) (see Remark 6.6).
We claim that u < 2c + 1. Indeed, we know that bu1 = b1 > 2, and

buru = br > 2, because [b1, . . . , br] is a core. Also, by the formation rule of
[a1, . . . , as], we obtain that Ei contains exactly (s − ru) curves in C. They
are contracted by starting at F . Thus, we know that δ = s− ru. (see Cases
(B.1), and (C.2) in Theorem 1.1). So, by plugging the formula in (21) into
the inequality (1), we obtain that

(u+ 1)
r∑
j=1

(bj − 2)− 2u+ (s− ru) < 2c+ 4 + s− ru. (25)
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Due to the fact that [a1, . . . , as] is not a T-singularity, we obtain that
neither is [b1, . . . , br]. So, we have that

∑r
i=1(bj − 2) ≥ 3. Thus, by (25) we

conclude that 0 ≤ u < 2c+ 1. Therefore, we have proved that

P ∈
b2c+1c⋃
u=0

B([bu1 , . . . , b
u
ru ]),

and so P ∈ B([bu1 , . . . , b
u
ru ]) for some u < 2c+ 1.

In addition, by (20) in Remark 6.6, we obtain that ru < r(2c+ 2) and

ru∑
j=1

(buj − 2) < (2c+ 2)
r∑
j=1

(bj − 2). (26)

On the other hand, by (19) in Remark 6.6, we know that

s∑
j=1

(aj − 2) =
ru∑
j=1

(buj − 2) + (s− ru). (27)

Let m be the number of blow downs necessary to reach the minimal
model S from X. Note that by the formation rule of [a1, . . . , as], we can
write m = (s− ru + 1) + m′ with m′ ≥ 0. By putting (27) in Equation (9),
we obtain that

K2
W = K2

S +
ru∑
j=1

(buj − 2)− (m′ + 1)−
(

2(n− 1)− q − q′

n

)
. (28)

Note that by Lemma 5.1, and Remark 5.3 for m, we obtain m′ + 1 ≤∑ru
j=1(b

u
j − 2).

Definition 6.8. Let {Wk} be a sequence of stable surfaces with only one
generalized T-singularity of center [b1, . . . , br]. We say that {K2

Wk
} satisfy

the property (*) if there exists an infinite set of indices J such that

• The self-intersection K2
Sk

is constant for every k ∈ J .

• There exists a (−1)-curve intersecting the ends of the chain that re-
solves Pk for every k ∈ J .

• There exists a number u ≥ 0 such that Pk ∈ B([bu1 , . . . , b
u
ru ]) for every

k ∈ J .
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• The reduced Hirzebruch-Jung continued fraction of Pk is different for
each k ∈ J .

Proof of Theorem 1.9. We start by fixing some notation. Let nk

qk
= [a1, . . . , as]

be the Hirzebruch-Jung continued fraction associated to Pk ∈ Wk. As in the
proof of Lemma 6.7, we can assume without loss of generality that [b1, . . . , br]
is a core. Let φk : Xk → Wk be the minimal resolution of Pk and let Ck be
the chain of exceptional rational curves. Let πk : Xk → Sk be a birational
morphism to the minimal model Sk. Let c be a positive but arbitrary real
number.

Assume that {K2
Wk
} has accumulation points. Then, there exists a pos-

itive number c such that {K2
Wk

: K2
Wk

< c} has accumulation points. Let
J ′ be the set of indices k such that K2

Wk
< c, and there exists a (−1)-curve

intersecting both ends of Ck. We know that J ′ is an infinite set. Otherwise,
by Lemma 6.7 we obtain bounds for

∑s
j=1(aj − 2), and s which only depend

on c. So, we would have that {K2
Wk

: K2
Wk

< c} has no accumulation points.
But this is impossible, so J ′ is an infinite set of indices. More precisely, we
know that

Acc
(
{K2

Wk
: K2

Wk
< c}

)
= Acc

(
{K2

Wk
: k ∈ J ′}

)
. (29)

Again, by Lemma 6.7 for each k ∈ J ′ there exists u < 2c + 1 such that
Pk ∈ B([bu1 , . . . , b

u
ru ]), and so

K2
Wk

= K2
Sk

+
ru∑
j=1

(buj − 2)− (m′k + 1)−
(

2(nk − 1)− qk − q′k
nk

)
, (30)

where 0 < m′k + 1 ≤
∑ru

j=1(b
u
j − 2).

So, by replacing the bound for m′k in (30), it follows that K2
Sk
< c+ 2 for

every k ∈ J ′. Thus, because K2
Sk

is an integer for every k, we obtain that
{K2

Sk
: k ∈ J ′} is a finite set.

For each u < 2c + 1, let J ′u ⊆ J ′ be the set of indices k such that
Pk ∈ B([bu1 , . . . , b

u
ru ]). By Lemma 6.7, we know that J ′ =

⋃b2c+1c
u=0 J ′u. So, there

exists at least one u < 2c+ 1 such that J ′u is an infinite set of indices. Note
that between the infinite sets J ′u we can choose one of them with the property
that the reduced Hirzebruch-Jung continued fraction of Pk are different for
each k ∈ J ′u (except maybe for a finite set of J ′u). On the contrary, we
would have by (30) that {K2

Wk
: k ∈ J ′u} is a finite set for every u, and
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then {K2
Wk

: K2
Wk

< c} would not have accumulation points. But this is not
possible. Let J ′u0 such a set. Now, because we have that {K2

Sk
: k ∈ J ′} is a

finite set then we may choose an infinite subset of indices J ⊆ J ′u0 such that
K2
Sk

is constant for every k ∈ J .
Then, we know that J is the set with the desired properties of the state-

ment in Theorem 1.9.
Conversely, let us suppose that there exists an infinite set of indices J

such that

• We have that K2
Sk

is constant for every k ∈ J .

• There exists a (−1)-curve intersecting the ends of the chain that re-
solves Pk for every k ∈ J .

• There exists a number u ≥ 0 such that Pk ∈ B([bu1 , . . . , b
u
ru ]) for every

k ∈ J .

• The reduced Hirzebruch-Jung continued fraction of Pk is different for
each k ∈ J .

By using those statements and Lemma 6.7, it follows that for every k ∈ J

K2
Wk

= K2
Sk

+
ru∑
j=1

(buj − 2)− (m′k + 1)−
(

2(nk − 1)− qk − q′k
nk

)
, (31)

where 0 < m′k + 1 ≤
∑ru

j=1(b
u
j − 2). Let c′ be a positive number such that

K2
Sk

= c′ for every k ∈ J . Then, by (31) we obtain that

K2
Wk

< c′ +
ru∑
j=1

(buj − 2) + 2,

for every k ∈ J . So, we have that {K2
Wk

: k ∈ J} is a bounded set.
Now, we construct an infinite set of indices J ′ such that the continued

fraction of Pki+1
is obtained by applying the T-chain algorithm (see Definition

1.8) to the continued fraction of Pki for every ki ∈ J ′. In fact, let us fix an
integer s ≥ r. By using the formation rule in B([bu1 , . . . , b

u
ru ]) and the fact

that Pk has different continued fraction for every k ∈ J , we know that there
exist finitely many k ∈ J such that Pk has a continued fraction of length
s. Thus, we can choose k0 ∈ J such that the continued fraction of Pk is
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obtained by applying the T-chain algorithm to the continued fraction of Pk0
for infinitely many k ∈ J . Let Jk0 ⊆ J be a subset of indices with such a
property. In the same way, we can choose an index k1 ∈ Jk0 such that the
continued fraction length of Pk1 is greater than the length of Pk0 , and that
Pk is obtained by applying the T-chain algorithm to the continued fraction
of Pk1 for infinitely many k ∈ J . Let Jk1 ⊆ Jk0 be an infinite set of indices
with such a property. By using an inductive argument, we may construct an
infinite set of indices J ′ = {k0, k1, . . .} with the desired property.

Observe that the quotients 2(nki − 1)− qki − q′ki/nki are different for each
ki ∈ J ′. Indeed, by Proposition 4.12, one can compute directly that

2(nki+1
− 1)− qki+1

− q′ki+1

nki+1

<
2(nki − 1)− qki − q′ki

nki
.

Therefore, by (31) we know that {K2
Wk

: k ∈ J} is an infinite set which
also is bounded. So, we conclude that {K2

Wk
} has accumulation points.

Proposition 6.9. Let W be a stable surface which has only one generalized
T-singularity P ∈ W with continued fraction [b1, . . . , br]. Assume that there
exists a (−1)-curve intersecting both ends of the chain C associated to P .
Then there exist a sequence {Wk} of stable surfaces with only one generalized
T-singularity Pk of center [b1, . . . , br] such that {K2

Wk
} has an accumulation

point.

Proof. Let us write W1 := W , and let X1 be the minimal resolution of P .
Let F1 be the (−1)-curve intersecting the ends C1, and Cr of C.

Step 1. Let X2 be the smooth surface obtained by blowing up at the
point in F1 ∩ C1. Let F2 be the exceptional curve in X2. Note that X2 has
a configuration of (r+ 1)-rational curves (with SNC), and that F2 intersects
the ends of the chain. The new configuration has continued fraction [b1 +
1, . . . , br−1, br, 2].

Step k. Let us assume constructed the surfaces X1, . . . , Xk−1, induc-
tively. Let Fk−1 be the exceptional curve in Xk−1. In the same way of Step
1, we construct a smooth surface Xk which is obtained by blowing up at the
point in Fk−1 ∩ C1, where C2

1 = −(b1 + k − 2). Here, we obtain a new con-
figuration of rational curves with SNC, and that Fk (the exceptional curve
in Xk+1) intersects the ends of the chain. That configuration has continued
fraction [b1 + (k − 1), b2 . . . , br, 2, . . . , 2], where k − 1 is the number of 2’s on
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the right side. Thus, we obtain a sequence {Xk} of smooth surfaces with a
configuration [b1 + (k − 1), b2 . . . , br, 2, . . . , 2], and a (−1)-curve intersecting
the ends of the chain.

Now, by Artin’s contractibility Theorem [Art62, Thm. 2.3], we may con-
tract the configuration inXk for every k, to obtain a normal projective surface
Wk with only one cyclic quotient singularity Pk ∈ B[b1,...,br]. In particular, Pk
is a generalized T-singularity of center [b1, . . . , br]. Thus, to complete the
proof, we must show that KWk

is ample divisor for every k. In fact, let aj be
the discrepancies of [b1, . . . br] for j = 1, . . . , r, and let a′j be the discrepancies
of [b1 + 1, . . . , br, 2] for i = 1, . . . , r + 1. We recall that −1 < aj, a

′
j ≤ 0 for

every j.
Claim 2. We have that aj > a′j for every j = 1, . . . , r.

Proof. Let cj, dj (respectively c′j, d′j) be the auxiliary coefficients defined in
Remark 3.17 for [b1, . . . , br] (respectively for [b1+1, . . . , br, 2] ). We recall that
c1 = −1/b1, c′1 = −1/(b1 + 1), d1 = (2− b1)/b1, and d′1 = (1− b1)/(b1 + 1).

We have that −1 < c′j < cj < 0 for every j = 1, . . . r − 1. Indeed, by
a direct computation we know that −1 < c′1 < c1 < 0. Let us suppose the
statement for j − 1. Then,

c′j =
−1

bj + c′j−1
<

−1

bj + cj−1
= cj,

one can check directly that −1 < cj, c
′
j < 0 by using that bj ≥ 2.

Also, we obtain that d′j < dj for every j = 1, . . . , s. In fact, we note that
d1 − d′1 = 2/(b1(b1 + 1)) > 0. Assume the statement for j − 1. Then,

d′j − dj ≤ (bj − 2− d′j−1)c′j − (bj − 2− dj)c′j = c′j(dj−1 − d′j−1),

by using c′j < 0, and d′j−1 < dj−1, we obtain that d′j < dj.
In addition, we note that because −1 < c′s < 0 then

ar − a′r = dr − d′r(1− (c′r)
2) > dr − d′r > 0.

Now, if we suppose that aj+1 > a′j+1 then by using c′j < cj < 0 we obtain
that

aj − a′j = (dj − d′j) + (c′ja
′
j+1 − cjaj+1) > 0.

Thus, we obtain that aj > a′j for every j = 1, . . . , r.
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We will use Claim 2 to prove the ampleness. Let Bj the curves in the
configuration on X2, that is B2

j = −bj, B2
1 = −(b1 + 1), and B2

r+1 = −2. Let
f : X2 → W1 be the map which contracts F2, B1, . . . , Br, and let φ : X1 → W2

be the map which contracts B1, . . . , Br+1 (the minimal resolution of W2).
Then, one can check that

φ∗(KW2) = f ∗(KW1) + (a1 + 1)F2 +
r∑
j=1

(aj − a′j)Bj − a′r+1Br+1,

by Claim 2, we obtainKW2 written as an effective sum of divisors. So, we only
need to check that K2

W2
> 0 φ∗(K2) · F2 > 0 to prove the ampleness of KW2 .

We first recall that −1−a1−ar = 1− (2+q+q′)/n, where [b1, . . . , br] = n/q.
(See e.g. [Urz16, Section 2.1]).

Because of the ampleness of K2
W1

, we obtain that 0 < −1−a1−ar. So, we
have that 2+q+q′ < n. Let N,Q be the integers such that [b1+1, . . . , br, 2] =
N/Q. By Proposition 4.12 we know that N = 2q−m+ 2n− q′, Q = 2q−m,
and Q′ = q + n. So,

φ∗(K2) · F2 = −1− a′1 − a′r+1 =
n(n− (2 + q + q′))

(n+ q)(2n− q′) + 1
, (32)

then, we obtain directly from (32) that φ∗(K2) · F2 > 0.
On the other hand, we have that

K2
W2

= K2
W1

+
2 +Q+Q′

N
− 2 + q + q′

n
, (33)

and

(2+Q+Q′)n−(2+q+q′)N =
(n− (2 + q + q′))(n2 + 2nq − nq′ − qq′ + 1)

n
> 0.

Thus, we obtain from (33) that K2
W2

> 0. Then, by the Nakai-Moishezon
criterion we obtain that KW2 is ample. Note that we only use the facts that
KW1 is ample, and the formation rule of the configuration in X2 to prove
that KW2 is ample. So, we also proved that KWk

ample implies KWk+1
ample

for every k. Therefore, we have that {K2
Wk
} has accumulation points.

Remark 6.10. We recall some useful data from the proof of Proposition 6.9.
Let W1 be a stable surface which has only one generalized T-singularity P1 ∈
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W1 with continued fraction [b1, . . . , br]. Let X1 be the minimal resolution
of P1. Let X2 be the surface obtained by blowing up X1 as described in
Step 1 (see proof of Proposition 6.9). As we saw in the proof, we have that
W2 has a generalized T-singularity P2 with the continued fraction associated
[b1 + 1, . . . , br, 2], and such that KW2 is an ample divisor.

Example 6.11. Let W1 be a stable surface which has only the singularity P
with continued fraction [n+ 1, 2] = 2n+ 1/2 for some n ≥ 5. Note that the
inverse of 2 modulo 2n + 1 is n + 1. Assume that W fulfils the conditions
of Proposition 6.9. Following the proof of Proposition 6.9, let {Wk} be the
sequence formed by blowing up the configuration of P such that Wk has only
the singularity [n+ k, 2, . . . , 2], where k is the number of 2′ on the right side.
By Proposition 6.9 we know that Wk are stable surfaces and that {K2

Wk
} has

accumulation points.
Let [n + k, 2, . . . , 2] = Nk/Qk, and let 0 < Q′k < Nk be the inverse of Qk

modulo Nk. Let Mk the integer such that QkQ
′
k = 1 +MkNk.

Now, by Proposition 4.12 and by induction, one can compute directly
that Nk = (k + 1)n + k2, Qk = k + 1, Q′k = kn + k2 − k + 1, and Mk = k.
Then,

lim
k→∞

K2
Wk

= lim
k→∞

K2
W1

+
2 +Qk +Q′k

Nk

− n+ 5

2n+ 1
= K2

W1
+ 1− n+ 5

2n+ 1
.

For the following proposition, let us consider the diagram

X ′k

πk

��

φk

!!

X ′k1
π

}}

φ

!!

W ′
k

Sk1 W ′
k1

(34)

where the birational morphism φ : X ′k1 → W ′
k1

(Respectively φk : X ′k →
W ′
k) is the minimal resolution of W ′

k1
(Respectively W ′

k), and the surface Sk1
is the minimal model of X ′k1 , X

′
k.
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Proposition 6.12. Under the assumptions of Theorem 1.9. Let ν∞ ∈ Q
be an accumulation point of {K2

Wk
}. Then, there exists a sequence {W ′

k} of
stable surfaces such that

• W ′
k has only one generalized T-singularity Pk which is analytically the

same singularity of Wk for every k ∈ I, where I is an infinite set of
indices.

• There exist k1 ∈ I such that for every k ∈ I, the minimal resolution
X ′k of W ′

k is obtained by blowing up the minimal resolution X ′k1 of W ′
k1
.

(See Diagram 34).

• The limit of the sequence K2
W ′k

is ν∞.

Proof. Let J be an infinite subset of indices as in Theorem 1.9 such that
ν∞ ∈ Acc({K2

Wk
: k ∈ J}). Let us choose an infinite subset J ′ of J such

that the sub sequence {KWk
}k∈J ′ converges to ν∞. As we saw in the proof of

Theorem 1.9, we can choose an infinite set of indices J ′′ ⊆ J ′ such that K2
Wki

goes to ν∞ when i goes to infinity, and also such that the continued fraction
of Pki is obtained by applying the T-chain algorithm (see Definition 1.8) to
the continued fraction of Pki−1

.
By using Lemma 6.7, it follows that for every k ∈ J ′′

K2
Wk

= K2
Sk

+
ru∑
j=1

(buj − 2)− (m′k + 1)−
(

2(nk − 1)− qk − q′k
nk

)
, (35)

where 0 < m′k + 1 ≤
∑ru

j=1(b
u
j − 2). So, we may choose an infinite set of

indices I ⊆ J ′′ such that m′k is constant for every k ∈ I. After renaming the
surfaces Wk we may suppose that I = N.

Let us write W ′
1 := W1, and let X ′1 := X1 be the minimal resolution of

P1. Now, let X ′2 be the surface obtained by blowing up the configuration
C1 associated to P1 such that after contracting the new configuration C2

in X ′2, we obtain a normal projective surface W ′
2 with the generalized T-

singularity P2. We remark that is possible because the continued fraction of
P2 is obtained by applying the T-chain algorithm (see Definition 1.8) to the
continued fraction of P1. By using Remark 6.10 (maybe several times) we
obtain that KW2 is an ample divisor. Also, by using the facts that K2

Sk
,m′k

are constants for every k ∈ I in (35), we obtain that K2
W ′2

= K2
W2

.
Finally, by using an inductive argument, we construct a sequence of stable

surfaces {W ′
k} with the desired properties of the statement.
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6.3 Open questions

To describe the behavior of the accumulation points for stable surfaces with
one generalized T-singularity with a fixed center (Theorem 1.9), we used that
the canonical class of S is nef. We do not know what happens otherwise.
We note that Theorem 1.1 is still valid for KS not nef, and so it could be
used for some further analysis. Also, we are interested in finding properties
for generalized T-singularities, like the one that motives the definition of
T-singularities in [KSB88].

On the other hand, the general question on how accumulation points show
up for stable surfaces with only one cyclic quotient singularity remains open.
Remark 6.13. Given a sequence as in Theorem 1.9, we saw in the proof of
Theorem 1.9 that every accumulation point of a sequence {K2

Wk
} can be

obtained from a subsequence such that every Wk has only one singularity in
the set B([bu1 , . . . , b

u
ru ]) for a fixed u ≥ 0. In that case, we recall that K2

Wk
are

related by the following formula

K2
Wk

= c+
ru∑
j=1

(buj − 2)− (m+ 1)−
(

2(nk − 1)− qk − q′k
nk

)
, (36)

where c,m are fixed numbers, and c = K2
Sk
. By Proposition 4.12, we know a

recursive way of computing the quotients in (36). So, we have the following
question

Question 6.14. Let {Wk} be a sequence of stable surfaces as in Theorem
1.9. What are the accumulation points of {K2

Wk
}?

We saw in Proposition 6.12 that every accumulation point of stable sur-
faces with only one generalized T-singularity can be constructed by blowing
up a certain configuration of curves in a smooth surface and then contracting
the new configuration obtained. Following that idea, we want to finish with
the following question concerning that topic.

Question 6.15. Let {Wk} be a sequence of stable surfaces such that any
Wk has only one cyclic quotient singularity, say Pk ∈ Wk. Assume that
singularities Pk are analytically different for every k. Let Ek be an excep-
tional divisor in the minimal resolution of Wk such that ΓEk is maximal (see
Definition 5.8). Assume that Ek has only one type of diagram. Namely, a
diagram of type (i), (iii) or (iv) (see Definition 5.7). Then, the set {K2

Wk
}

has accumulation points.
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